xref: /titanic_50/usr/src/cmd/fm/fmd/common/fmd_module.c (revision 14ea4bb737263733ad80a36b4f73f681c30a6b45)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 #include <signal.h>
31 #include <dirent.h>
32 #include <limits.h>
33 #include <alloca.h>
34 #include <unistd.h>
35 #include <stdio.h>
36 
37 #include <fmd_string.h>
38 #include <fmd_alloc.h>
39 #include <fmd_module.h>
40 #include <fmd_error.h>
41 #include <fmd_conf.h>
42 #include <fmd_dispq.h>
43 #include <fmd_eventq.h>
44 #include <fmd_timerq.h>
45 #include <fmd_subr.h>
46 #include <fmd_thread.h>
47 #include <fmd_ustat.h>
48 #include <fmd_case.h>
49 #include <fmd_protocol.h>
50 #include <fmd_buf.h>
51 #include <fmd_ckpt.h>
52 #include <fmd_xprt.h>
53 
54 #include <fmd.h>
55 
56 /*
57  * Template for per-module statistics installed by fmd on behalf of each active
58  * module.  These are used to initialize the per-module mp->mod_stats below.
59  * NOTE: FMD_TYPE_STRING statistics should not be used here.  If they are
60  * required in the future, the FMD_ADM_MODDSTAT service routine must change.
61  */
62 static const fmd_modstat_t _fmd_modstat_tmpl = {
63 {
64 { "fmd.dispatched", FMD_TYPE_UINT64, "total events dispatched to module" },
65 { "fmd.dequeued", FMD_TYPE_UINT64, "total events dequeued by module" },
66 { "fmd.prdequeued", FMD_TYPE_UINT64, "protocol events dequeued by module" },
67 { "fmd.dropped", FMD_TYPE_UINT64, "total events dropped on queue overflow" },
68 { "fmd.wcnt", FMD_TYPE_UINT32, "count of events waiting on queue" },
69 { "fmd.wtime", FMD_TYPE_TIME, "total wait time on queue" },
70 { "fmd.wlentime", FMD_TYPE_TIME, "total wait length * time product" },
71 { "fmd.wlastupdate", FMD_TYPE_TIME, "hrtime of last wait queue update" },
72 { "fmd.dtime", FMD_TYPE_TIME, "total processing time after dequeue" },
73 { "fmd.dlastupdate", FMD_TYPE_TIME, "hrtime of last event dequeue completion" },
74 },
75 { "fmd.loadtime", FMD_TYPE_TIME, "hrtime at which module was loaded" },
76 { "fmd.snaptime", FMD_TYPE_TIME, "hrtime of last statistics snapshot" },
77 { "fmd.accepted", FMD_TYPE_UINT64, "total events accepted by module" },
78 { "fmd.debugdrop", FMD_TYPE_UINT64, "dropped debug messages" },
79 { "fmd.memtotal", FMD_TYPE_SIZE, "total memory allocated by module" },
80 { "fmd.memlimit", FMD_TYPE_SIZE, "limit on total memory allocated" },
81 { "fmd.buftotal", FMD_TYPE_SIZE, "total buffer space used by module" },
82 { "fmd.buflimit", FMD_TYPE_SIZE, "limit on total buffer space" },
83 { "fmd.thrtotal", FMD_TYPE_UINT32, "total number of auxiliary threads" },
84 { "fmd.thrlimit", FMD_TYPE_UINT32, "limit on number of auxiliary threads" },
85 { "fmd.caseopen", FMD_TYPE_UINT64, "cases currently open by module" },
86 { "fmd.casesolved", FMD_TYPE_UINT64, "total cases solved by module" },
87 { "fmd.caseclosed", FMD_TYPE_UINT64, "total cases closed by module" },
88 { "fmd.ckptsave", FMD_TYPE_BOOL, "save checkpoints for module" },
89 { "fmd.ckptrestore", FMD_TYPE_BOOL, "restore checkpoints for module" },
90 { "fmd.ckptzero", FMD_TYPE_BOOL, "zeroed checkpoint at startup" },
91 { "fmd.ckptcnt", FMD_TYPE_UINT64, "number of checkpoints taken" },
92 { "fmd.ckpttime", FMD_TYPE_TIME, "total checkpoint time" },
93 { "fmd.xprtopen", FMD_TYPE_UINT32, "total number of open transports" },
94 { "fmd.xprtlimit", FMD_TYPE_UINT32, "limit on number of open transports" },
95 { "fmd.xprtqlimit", FMD_TYPE_UINT32, "limit on transport event queue length" },
96 };
97 
98 static void
99 fmd_module_start(void *arg)
100 {
101 	fmd_module_t *mp = arg;
102 	fmd_event_t *ep;
103 	fmd_xprt_t *xp;
104 
105 	(void) pthread_mutex_lock(&mp->mod_lock);
106 
107 	if (mp->mod_ops->mop_init(mp) != 0 || mp->mod_error != 0) {
108 		if (mp->mod_error == 0)
109 			mp->mod_error = errno ? errno : EFMD_MOD_INIT;
110 		goto out;
111 	}
112 
113 	if (fmd.d_mod_event != NULL)
114 		fmd_eventq_insert_at_head(mp->mod_queue, fmd.d_mod_event);
115 
116 	ASSERT(MUTEX_HELD(&mp->mod_lock));
117 	mp->mod_flags |= FMD_MOD_INIT;
118 
119 	(void) pthread_cond_broadcast(&mp->mod_cv);
120 	(void) pthread_mutex_unlock(&mp->mod_lock);
121 
122 	/*
123 	 * If the module opened any transports while executing _fmd_init(),
124 	 * they are suspended. Now that _fmd_init() is done, wake them up.
125 	 */
126 	for (xp = fmd_list_next(&mp->mod_transports);
127 	    xp != NULL; xp = fmd_list_next(xp))
128 		fmd_xprt_xresume(xp, FMD_XPRT_ISUSPENDED);
129 
130 	/*
131 	 * Wait for events to arrive by checking mod_error and then sleeping in
132 	 * fmd_eventq_delete().  If a NULL event is returned, the eventq has
133 	 * been aborted and we continue on to call fini and exit the thread.
134 	 */
135 	while ((ep = fmd_eventq_delete(mp->mod_queue)) != NULL) {
136 		/*
137 		 * If the module has failed, discard the event without ever
138 		 * passing it to the module and go back to sleep.
139 		 */
140 		if (mp->mod_error != 0) {
141 			fmd_eventq_done(mp->mod_queue);
142 			fmd_event_rele(ep);
143 			continue;
144 		}
145 
146 		mp->mod_ops->mop_dispatch(mp, ep);
147 		fmd_eventq_done(mp->mod_queue);
148 
149 		/*
150 		 * Once mop_dispatch() is complete, grab the lock and perform
151 		 * any event-specific post-processing.  Finally, if necessary,
152 		 * checkpoint the state of the module after this event.
153 		 */
154 		fmd_module_lock(mp);
155 
156 		if (FMD_EVENT_TYPE(ep) == FMD_EVT_CLOSE)
157 			fmd_case_delete(FMD_EVENT_DATA(ep));
158 
159 		fmd_ckpt_save(mp);
160 		fmd_module_unlock(mp);
161 		fmd_event_rele(ep);
162 	}
163 
164 	if (mp->mod_ops->mop_fini(mp) != 0 && mp->mod_error == 0)
165 		mp->mod_error = errno ? errno : EFMD_MOD_FINI;
166 
167 	(void) pthread_mutex_lock(&mp->mod_lock);
168 	mp->mod_flags |= FMD_MOD_FINI;
169 
170 out:
171 	(void) pthread_cond_broadcast(&mp->mod_cv);
172 	(void) pthread_mutex_unlock(&mp->mod_lock);
173 }
174 
175 fmd_module_t *
176 fmd_module_create(const char *path, const fmd_modops_t *ops)
177 {
178 	fmd_module_t *mp = fmd_zalloc(sizeof (fmd_module_t), FMD_SLEEP);
179 
180 	char buf[PATH_MAX], *p;
181 	const char *dir;
182 	uint32_t limit;
183 	int err;
184 
185 	(void) strlcpy(buf, fmd_strbasename(path), sizeof (buf));
186 	if ((p = strrchr(buf, '.')) != NULL && strcmp(p, ".so") == 0)
187 		*p = '\0'; /* strip trailing .so from any module name */
188 
189 	(void) pthread_mutex_init(&mp->mod_lock, NULL);
190 	(void) pthread_cond_init(&mp->mod_cv, NULL);
191 	(void) pthread_mutex_init(&mp->mod_stats_lock, NULL);
192 
193 	mp->mod_name = fmd_strdup(buf, FMD_SLEEP);
194 	mp->mod_path = fmd_strdup(path, FMD_SLEEP);
195 	mp->mod_ops = ops;
196 	mp->mod_ustat = fmd_ustat_create();
197 
198 	(void) fmd_conf_getprop(fmd.d_conf, "ckpt.dir", &dir);
199 	(void) snprintf(buf, sizeof (buf),
200 	    "%s/%s/%s", fmd.d_rootdir, dir, mp->mod_name);
201 
202 	mp->mod_ckpt = fmd_strdup(buf, FMD_SLEEP);
203 
204 	(void) fmd_conf_getprop(fmd.d_conf, "client.tmrlim", &limit);
205 	mp->mod_timerids = fmd_idspace_create(mp->mod_name, 1, limit + 1);
206 	mp->mod_threads = fmd_idspace_create(mp->mod_name, 0, INT_MAX);
207 
208 	fmd_buf_hash_create(&mp->mod_bufs);
209 	fmd_serd_hash_create(&mp->mod_serds);
210 
211 	(void) pthread_mutex_lock(&fmd.d_mod_lock);
212 	fmd_list_append(&fmd.d_mod_list, mp);
213 	(void) pthread_mutex_unlock(&fmd.d_mod_lock);
214 
215 	/*
216 	 * Initialize the module statistics that are kept on its behalf by fmd.
217 	 * These are set up using a template defined at the top of this file.
218 	 */
219 	if ((mp->mod_stats = (fmd_modstat_t *)fmd_ustat_insert(mp->mod_ustat,
220 	    FMD_USTAT_ALLOC, sizeof (_fmd_modstat_tmpl) / sizeof (fmd_stat_t),
221 	    (fmd_stat_t *)&_fmd_modstat_tmpl, NULL)) == NULL) {
222 		fmd_error(EFMD_MOD_INIT, "failed to initialize per-mod stats");
223 		fmd_module_destroy(mp);
224 		return (NULL);
225 	}
226 
227 	(void) fmd_conf_getprop(fmd.d_conf, "client.evqlim", &limit);
228 
229 	mp->mod_queue = fmd_eventq_create(mp,
230 	    &mp->mod_stats->ms_evqstat, &mp->mod_stats_lock, limit);
231 
232 	(void) fmd_conf_getprop(fmd.d_conf, "client.memlim",
233 	    &mp->mod_stats->ms_memlimit.fmds_value.ui64);
234 
235 	(void) fmd_conf_getprop(fmd.d_conf, "client.buflim",
236 	    &mp->mod_stats->ms_buflimit.fmds_value.ui64);
237 
238 	(void) fmd_conf_getprop(fmd.d_conf, "client.thrlim",
239 	    &mp->mod_stats->ms_thrlimit.fmds_value.ui32);
240 
241 	(void) fmd_conf_getprop(fmd.d_conf, "client.xprtlim",
242 	    &mp->mod_stats->ms_xprtlimit.fmds_value.ui32);
243 
244 	(void) fmd_conf_getprop(fmd.d_conf, "client.xprtqlim",
245 	    &mp->mod_stats->ms_xprtqlimit.fmds_value.ui32);
246 
247 	(void) fmd_conf_getprop(fmd.d_conf, "ckpt.save",
248 	    &mp->mod_stats->ms_ckpt_save.fmds_value.bool);
249 
250 	(void) fmd_conf_getprop(fmd.d_conf, "ckpt.restore",
251 	    &mp->mod_stats->ms_ckpt_restore.fmds_value.bool);
252 
253 	(void) fmd_conf_getprop(fmd.d_conf, "ckpt.zero",
254 	    &mp->mod_stats->ms_ckpt_zeroed.fmds_value.bool);
255 
256 	if (mp->mod_stats->ms_ckpt_zeroed.fmds_value.bool)
257 		fmd_ckpt_delete(mp); /* blow away any pre-existing checkpoint */
258 
259 	/*
260 	 * Place a hold on the module and grab the module lock before creating
261 	 * the module's thread to ensure that it cannot destroy the module and
262 	 * that it cannot call ops->mop_init() before we're done setting up.
263 	 * NOTE: from now on, we must use fmd_module_rele() for error paths.
264 	 */
265 	fmd_module_hold(mp);
266 	(void) pthread_mutex_lock(&mp->mod_lock);
267 	mp->mod_stats->ms_loadtime.fmds_value.ui64 = gethrtime();
268 	mp->mod_thread = fmd_thread_create(mp, fmd_module_start, mp);
269 
270 	if (mp->mod_thread == NULL) {
271 		fmd_error(EFMD_MOD_THR, "failed to create thread for %s", path);
272 		(void) pthread_mutex_unlock(&mp->mod_lock);
273 		fmd_module_rele(mp);
274 		return (NULL);
275 	}
276 
277 	/*
278 	 * At this point our module structure is nearly finished and its thread
279 	 * is starting execution in fmd_module_start() above, which will begin
280 	 * by blocking for mod_lock.  We now drop mod_lock and wait for either
281 	 * FMD_MOD_INIT or mod_error to be set before proceeding.
282 	 */
283 	while (!(mp->mod_flags & FMD_MOD_INIT) && mp->mod_error == 0)
284 		(void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock);
285 
286 	/*
287 	 * If the module has failed to initialize, copy its errno to the errno
288 	 * of the caller, wait for it to unload, and then destroy it.
289 	 */
290 	if (!(mp->mod_flags & FMD_MOD_INIT)) {
291 		err = mp->mod_error;
292 		(void) pthread_mutex_unlock(&mp->mod_lock);
293 
294 		if (err == EFMD_CKPT_INVAL)
295 			fmd_ckpt_rename(mp); /* move aside bad checkpoint */
296 
297 		/*
298 		 * If we're in the background, keep quiet about failure to
299 		 * load because a handle wasn't registered: this is a module's
300 		 * way of telling us it didn't want to be loaded for some
301 		 * reason related to system configuration.  If we're in the
302 		 * foreground we log this too in order to inform developers.
303 		 */
304 		if (fmd.d_fg || err != EFMD_HDL_INIT) {
305 			fmd_error(EFMD_MOD_INIT, "failed to load %s: %s\n",
306 			    path, fmd_strerror(err));
307 		}
308 
309 		fmd_module_unload(mp);
310 		fmd_module_rele(mp);
311 
312 		(void) fmd_set_errno(err);
313 		return (NULL);
314 	}
315 
316 	(void) pthread_cond_broadcast(&mp->mod_cv);
317 	(void) pthread_mutex_unlock(&mp->mod_lock);
318 
319 	fmd_dprintf(FMD_DBG_MOD, "loaded module %s\n", mp->mod_name);
320 	return (mp);
321 }
322 
323 static void
324 fmd_module_untimeout(fmd_idspace_t *ids, id_t id, fmd_module_t *mp)
325 {
326 	void *arg = fmd_timerq_remove(fmd.d_timers, ids, id);
327 
328 	/*
329 	 * The root module calls fmd_timerq_install() directly and must take
330 	 * responsibility for any cleanup of timer arguments that is required.
331 	 * All other modules use fmd_modtimer_t's as the arg data; free them.
332 	 */
333 	if (arg != NULL && mp != fmd.d_rmod)
334 		fmd_free(arg, sizeof (fmd_modtimer_t));
335 }
336 
337 void
338 fmd_module_unload(fmd_module_t *mp)
339 {
340 	(void) pthread_mutex_lock(&mp->mod_lock);
341 
342 	if (mp->mod_flags & FMD_MOD_QUIT) {
343 		(void) pthread_mutex_unlock(&mp->mod_lock);
344 		return; /* module is already unloading */
345 	}
346 
347 	ASSERT(mp->mod_thread != NULL);
348 	mp->mod_flags |= FMD_MOD_QUIT;
349 
350 	if (mp->mod_queue != NULL)
351 		fmd_eventq_abort(mp->mod_queue);
352 
353 	/*
354 	 * Wait for the module's thread to stop processing events and call
355 	 * _fmd_fini() and exit.  We do this by waiting for FMD_MOD_FINI to be
356 	 * set if INIT was set, and then attempting to join with the thread.
357 	 */
358 	while ((mp->mod_flags & (FMD_MOD_INIT | FMD_MOD_FINI)) == FMD_MOD_INIT)
359 		(void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock);
360 
361 	(void) pthread_cond_broadcast(&mp->mod_cv);
362 	(void) pthread_mutex_unlock(&mp->mod_lock);
363 
364 	fmd_thread_destroy(mp->mod_thread, FMD_THREAD_JOIN);
365 	mp->mod_thread = NULL;
366 
367 	/*
368 	 * Once the module is no longer active, clean up any data structures
369 	 * that are only required when the module is loaded.
370 	 */
371 	fmd_module_lock(mp);
372 
373 	if (mp->mod_timerids != NULL) {
374 		fmd_idspace_apply(mp->mod_timerids,
375 		    (void (*)())fmd_module_untimeout, mp);
376 
377 		fmd_idspace_destroy(mp->mod_timerids);
378 		mp->mod_timerids = NULL;
379 	}
380 
381 	if (mp->mod_threads != NULL) {
382 		fmd_idspace_destroy(mp->mod_threads);
383 		mp->mod_threads = NULL;
384 	}
385 
386 	(void) fmd_buf_hash_destroy(&mp->mod_bufs);
387 	fmd_serd_hash_destroy(&mp->mod_serds);
388 
389 	fmd_module_unlock(mp);
390 	fmd_dprintf(FMD_DBG_MOD, "unloaded module %s\n", mp->mod_name);
391 }
392 
393 void
394 fmd_module_destroy(fmd_module_t *mp)
395 {
396 	fmd_conf_formal_t *cfp = mp->mod_argv;
397 	int i;
398 
399 	ASSERT(MUTEX_HELD(&mp->mod_lock));
400 
401 	if (mp->mod_thread != NULL) {
402 		(void) pthread_mutex_unlock(&mp->mod_lock);
403 		fmd_module_unload(mp);
404 		(void) pthread_mutex_lock(&mp->mod_lock);
405 	}
406 
407 	ASSERT(mp->mod_thread == NULL);
408 	ASSERT(mp->mod_refs == 0);
409 
410 	/*
411 	 * Once the module's thread is dead, we can safely remove the module
412 	 * from global visibility and by removing it from d_mod_list.  Any
413 	 * modhash pointers are already gone by virtue of mod_refs being zero.
414 	 */
415 	(void) pthread_mutex_lock(&fmd.d_mod_lock);
416 	fmd_list_delete(&fmd.d_mod_list, mp);
417 	(void) pthread_mutex_unlock(&fmd.d_mod_lock);
418 
419 	/*
420 	 * Once the module is no longer processing events and no longer visible
421 	 * through any program data structures, we can free all of its content.
422 	 */
423 	if (mp->mod_queue != NULL) {
424 		fmd_eventq_destroy(mp->mod_queue);
425 		mp->mod_queue = NULL;
426 	}
427 
428 	if (mp->mod_ustat != NULL) {
429 		(void) pthread_mutex_lock(&mp->mod_stats_lock);
430 		fmd_ustat_destroy(mp->mod_ustat);
431 		mp->mod_ustat = NULL;
432 		mp->mod_stats = NULL;
433 		(void) pthread_mutex_unlock(&mp->mod_stats_lock);
434 	}
435 
436 	for (i = 0; i < mp->mod_dictc; i++)
437 		fm_dc_closedict(mp->mod_dictv[i]);
438 
439 	fmd_free(mp->mod_dictv, sizeof (struct fm_dc_handle *) * mp->mod_dictc);
440 
441 	if (mp->mod_conf != NULL)
442 		fmd_conf_close(mp->mod_conf);
443 
444 	for (i = 0; i < mp->mod_argc; i++, cfp++) {
445 		fmd_strfree((char *)cfp->cf_name);
446 		fmd_strfree((char *)cfp->cf_default);
447 	}
448 
449 	fmd_free(mp->mod_argv, sizeof (fmd_conf_formal_t) * mp->mod_argc);
450 
451 	fmd_strfree(mp->mod_name);
452 	fmd_strfree(mp->mod_path);
453 	fmd_strfree(mp->mod_ckpt);
454 	nvlist_free(mp->mod_fmri);
455 
456 	fmd_free(mp, sizeof (fmd_module_t));
457 }
458 
459 /*
460  * fmd_module_error() is called after the stack is unwound from a call to
461  * fmd_module_abort() to indicate that the module has failed.  The mod_error
462  * field is used to hold the error code of the first fatal error to the module.
463  * An EFMD_MOD_FAIL event is then created and sent to fmd-self-diagnosis.
464  */
465 static void
466 fmd_module_error(fmd_module_t *mp, int err)
467 {
468 	fmd_event_t *e;
469 	nvlist_t *nvl;
470 	char *class;
471 
472 	ASSERT(MUTEX_HELD(&mp->mod_lock));
473 	ASSERT(err != 0);
474 
475 	TRACE((FMD_DBG_MOD, "module aborted: err=%d", err));
476 
477 	if (mp->mod_error == 0)
478 		mp->mod_error = err;
479 
480 	if (mp == fmd.d_self)
481 		return; /* do not post event if fmd.d_self itself fails */
482 
483 	/*
484 	 * Send an error indicating the module has now failed to fmd.d_self.
485 	 * Since the error causing the failure has already been logged by
486 	 * fmd_api_xerror(), we do not need to bother logging this event.
487 	 * It only exists for the purpose of notifying fmd.d_self that it can
488 	 * close the case associated with this module because mod_error is set.
489 	 */
490 	nvl = fmd_protocol_moderror(mp, EFMD_MOD_FAIL, fmd_strerror(err));
491 	(void) nvlist_lookup_string(nvl, FM_CLASS, &class);
492 	e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, class);
493 	fmd_dispq_dispatch(fmd.d_disp, e, class);
494 }
495 
496 void
497 fmd_module_dispatch(fmd_module_t *mp, fmd_event_t *e)
498 {
499 	const fmd_hdl_ops_t *ops = mp->mod_info->fmdi_ops;
500 	fmd_event_impl_t *ep = (fmd_event_impl_t *)e;
501 	fmd_hdl_t *hdl = (fmd_hdl_t *)mp;
502 	fmd_modtimer_t *t;
503 	volatile int err;
504 
505 	/*
506 	 * Before calling the appropriate module callback, enter the module as
507 	 * if by fmd_module_enter() and establish mod_jmpbuf for any aborts.
508 	 */
509 	(void) pthread_mutex_lock(&mp->mod_lock);
510 
511 	ASSERT(!(mp->mod_flags & FMD_MOD_BUSY));
512 	mp->mod_flags |= FMD_MOD_BUSY;
513 
514 	if ((err = setjmp(mp->mod_jmpbuf)) != 0) {
515 		(void) pthread_mutex_lock(&mp->mod_lock);
516 		fmd_module_error(mp, err);
517 	}
518 
519 	(void) pthread_cond_broadcast(&mp->mod_cv);
520 	(void) pthread_mutex_unlock(&mp->mod_lock);
521 
522 	/*
523 	 * If it's the first time through fmd_module_dispatch(), call the
524 	 * appropriate module callback based on the event type.  If the call
525 	 * triggers an fmd_module_abort(), we'll return to setjmp() above with
526 	 * err set to a non-zero value and then bypass this before exiting.
527 	 */
528 	if (err == 0) {
529 		switch (ep->ev_type) {
530 		case FMD_EVT_PROTOCOL:
531 			ops->fmdo_recv(hdl, e, ep->ev_nvl, ep->ev_data);
532 			break;
533 		case FMD_EVT_TIMEOUT:
534 			t = ep->ev_data;
535 			ASSERT(t->mt_mod == mp);
536 			ops->fmdo_timeout(hdl, t->mt_id, t->mt_arg);
537 			break;
538 		case FMD_EVT_CLOSE:
539 			ops->fmdo_close(hdl, ep->ev_data);
540 			break;
541 		case FMD_EVT_STATS:
542 			ops->fmdo_stats(hdl);
543 			fmd_modstat_publish(mp);
544 			break;
545 		case FMD_EVT_GC:
546 			ops->fmdo_gc(hdl);
547 			break;
548 		case FMD_EVT_PUBLISH:
549 			fmd_case_publish(ep->ev_data, FMD_CASE_CURRENT);
550 			break;
551 		}
552 	}
553 
554 	fmd_module_exit(mp);
555 }
556 
557 int
558 fmd_module_transport(fmd_module_t *mp, fmd_xprt_t *xp, fmd_event_t *e)
559 {
560 	fmd_event_impl_t *ep = (fmd_event_impl_t *)e;
561 	fmd_hdl_t *hdl = (fmd_hdl_t *)mp;
562 
563 	ASSERT(ep->ev_type == FMD_EVT_PROTOCOL);
564 	return (mp->mod_info->fmdi_ops->fmdo_send(hdl, xp, e, ep->ev_nvl));
565 }
566 
567 void
568 fmd_module_timeout(fmd_modtimer_t *t, id_t id, hrtime_t hrt)
569 {
570 	fmd_event_t *e;
571 
572 	t->mt_id = id; /* save id in case we need to delete from eventq */
573 	e = fmd_event_create(FMD_EVT_TIMEOUT, hrt, NULL, t);
574 	fmd_eventq_insert_at_time(t->mt_mod->mod_queue, e);
575 }
576 
577 /*
578  * Garbage collection is initiated by a timer callback once per day or at the
579  * request of fmadm.  Purge old SERD entries and send the module a GC event.
580  */
581 void
582 fmd_module_gc(fmd_module_t *mp)
583 {
584 	fmd_hdl_info_t *info;
585 	fmd_event_t *e;
586 
587 	if (mp->mod_error != 0)
588 		return; /* do not do anything if the module has failed */
589 
590 	fmd_module_lock(mp);
591 
592 	if ((info = mp->mod_info) != NULL) {
593 		fmd_serd_hash_apply(&mp->mod_serds,
594 		    (fmd_serd_eng_f *)fmd_serd_eng_gc, NULL);
595 	}
596 
597 	fmd_module_unlock(mp);
598 
599 	if (info != NULL) {
600 		e = fmd_event_create(FMD_EVT_GC, FMD_HRT_NOW, NULL, NULL);
601 		fmd_eventq_insert_at_head(mp->mod_queue, e);
602 	}
603 }
604 
605 void
606 fmd_module_trygc(fmd_module_t *mp)
607 {
608 	if (fmd_module_trylock(mp)) {
609 		fmd_serd_hash_apply(&mp->mod_serds,
610 		    (fmd_serd_eng_f *)fmd_serd_eng_gc, NULL);
611 		fmd_module_unlock(mp);
612 	}
613 }
614 
615 int
616 fmd_module_contains(fmd_module_t *mp, fmd_event_t *ep)
617 {
618 	fmd_case_t *cp;
619 	int rv = 0;
620 
621 	fmd_module_lock(mp);
622 
623 	for (cp = fmd_list_next(&mp->mod_cases);
624 	    cp != NULL; cp = fmd_list_next(cp)) {
625 		if ((rv = fmd_case_contains(cp, ep)) != 0)
626 			break;
627 	}
628 
629 	if (rv == 0)
630 		rv = fmd_serd_hash_contains(&mp->mod_serds, ep);
631 
632 	fmd_module_unlock(mp);
633 	return (rv);
634 }
635 
636 void
637 fmd_module_setdirty(fmd_module_t *mp)
638 {
639 	(void) pthread_mutex_lock(&mp->mod_lock);
640 	mp->mod_flags |= FMD_MOD_MDIRTY;
641 	(void) pthread_mutex_unlock(&mp->mod_lock);
642 }
643 
644 void
645 fmd_module_setcdirty(fmd_module_t *mp)
646 {
647 	(void) pthread_mutex_lock(&mp->mod_lock);
648 	mp->mod_flags |= FMD_MOD_CDIRTY;
649 	(void) pthread_mutex_unlock(&mp->mod_lock);
650 }
651 
652 void
653 fmd_module_clrdirty(fmd_module_t *mp)
654 {
655 	fmd_case_t *cp;
656 
657 	fmd_module_lock(mp);
658 
659 	if (mp->mod_flags & FMD_MOD_CDIRTY) {
660 		for (cp = fmd_list_next(&mp->mod_cases);
661 		    cp != NULL; cp = fmd_list_next(cp))
662 			fmd_case_clrdirty(cp);
663 	}
664 
665 	if (mp->mod_flags & FMD_MOD_MDIRTY) {
666 		fmd_serd_hash_apply(&mp->mod_serds,
667 		    (fmd_serd_eng_f *)fmd_serd_eng_clrdirty, NULL);
668 		fmd_buf_hash_commit(&mp->mod_bufs);
669 	}
670 
671 	(void) pthread_mutex_lock(&mp->mod_lock);
672 	mp->mod_flags &= ~(FMD_MOD_MDIRTY | FMD_MOD_CDIRTY);
673 	(void) pthread_mutex_unlock(&mp->mod_lock);
674 
675 	fmd_module_unlock(mp);
676 }
677 
678 void
679 fmd_module_commit(fmd_module_t *mp)
680 {
681 	fmd_case_t *cp;
682 
683 	ASSERT(fmd_module_locked(mp));
684 
685 	if (mp->mod_flags & FMD_MOD_CDIRTY) {
686 		for (cp = fmd_list_next(&mp->mod_cases);
687 		    cp != NULL; cp = fmd_list_next(cp))
688 			fmd_case_commit(cp);
689 	}
690 
691 	if (mp->mod_flags & FMD_MOD_MDIRTY) {
692 		fmd_serd_hash_apply(&mp->mod_serds,
693 		    (fmd_serd_eng_f *)fmd_serd_eng_commit, NULL);
694 		fmd_buf_hash_commit(&mp->mod_bufs);
695 	}
696 
697 	(void) pthread_mutex_lock(&mp->mod_lock);
698 	mp->mod_flags &= ~(FMD_MOD_MDIRTY | FMD_MOD_CDIRTY);
699 	(void) pthread_mutex_unlock(&mp->mod_lock);
700 
701 	mp->mod_gen++;
702 }
703 
704 void
705 fmd_module_lock(fmd_module_t *mp)
706 {
707 	pthread_t self = pthread_self();
708 
709 	(void) pthread_mutex_lock(&mp->mod_lock);
710 
711 	while (mp->mod_flags & FMD_MOD_LOCK) {
712 		if (mp->mod_owner != self)
713 			(void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock);
714 		else
715 			fmd_panic("recursive module lock of %p\n", (void *)mp);
716 	}
717 
718 	mp->mod_owner = self;
719 	mp->mod_flags |= FMD_MOD_LOCK;
720 
721 	(void) pthread_cond_broadcast(&mp->mod_cv);
722 	(void) pthread_mutex_unlock(&mp->mod_lock);
723 }
724 
725 void
726 fmd_module_unlock(fmd_module_t *mp)
727 {
728 	(void) pthread_mutex_lock(&mp->mod_lock);
729 
730 	ASSERT(mp->mod_owner == pthread_self());
731 	ASSERT(mp->mod_flags & FMD_MOD_LOCK);
732 
733 	mp->mod_owner = 0;
734 	mp->mod_flags &= ~FMD_MOD_LOCK;
735 
736 	(void) pthread_cond_broadcast(&mp->mod_cv);
737 	(void) pthread_mutex_unlock(&mp->mod_lock);
738 }
739 
740 int
741 fmd_module_trylock(fmd_module_t *mp)
742 {
743 	(void) pthread_mutex_lock(&mp->mod_lock);
744 
745 	if (mp->mod_flags & FMD_MOD_LOCK) {
746 		(void) pthread_mutex_unlock(&mp->mod_lock);
747 		return (0);
748 	}
749 
750 	mp->mod_owner = pthread_self();
751 	mp->mod_flags |= FMD_MOD_LOCK;
752 
753 	(void) pthread_cond_broadcast(&mp->mod_cv);
754 	(void) pthread_mutex_unlock(&mp->mod_lock);
755 
756 	return (1);
757 }
758 
759 int
760 fmd_module_locked(fmd_module_t *mp)
761 {
762 	return ((mp->mod_flags & FMD_MOD_LOCK) &&
763 	    mp->mod_owner == pthread_self());
764 }
765 
766 int
767 fmd_module_enter(fmd_module_t *mp, void (*func)(fmd_hdl_t *))
768 {
769 	volatile int err;
770 
771 	(void) pthread_mutex_lock(&mp->mod_lock);
772 
773 	ASSERT(!(mp->mod_flags & FMD_MOD_BUSY));
774 	mp->mod_flags |= FMD_MOD_BUSY;
775 
776 	if ((err = setjmp(mp->mod_jmpbuf)) != 0) {
777 		(void) pthread_mutex_lock(&mp->mod_lock);
778 		fmd_module_error(mp, err);
779 	}
780 
781 	(void) pthread_cond_broadcast(&mp->mod_cv);
782 	(void) pthread_mutex_unlock(&mp->mod_lock);
783 
784 	/*
785 	 * If it's the first time through fmd_module_enter(), call the provided
786 	 * function on the module.  If no fmd_module_abort() results, we will
787 	 * fall through and return zero.  Otherwise we'll longjmp with an err,
788 	 * return to the setjmp() above, and return the error to our caller.
789 	 */
790 	if (err == 0 && func != NULL)
791 		(*func)((fmd_hdl_t *)mp);
792 
793 	return (err);
794 }
795 
796 void
797 fmd_module_exit(fmd_module_t *mp)
798 {
799 	(void) pthread_mutex_lock(&mp->mod_lock);
800 
801 	ASSERT(mp->mod_flags & FMD_MOD_BUSY);
802 	mp->mod_flags &= ~FMD_MOD_BUSY;
803 
804 	(void) pthread_cond_broadcast(&mp->mod_cv);
805 	(void) pthread_mutex_unlock(&mp->mod_lock);
806 }
807 
808 /*
809  * If the client.error policy has been set by a developer, stop or dump core
810  * based on the policy; if we stop and are resumed we'll continue and execute
811  * the default behavior to discard events in fmd_module_start().  If the caller
812  * is the primary module thread, we reach this state by longjmp'ing back to
813  * fmd_module_enter(), above.  If the caller is an auxiliary thread, we cancel
814  * ourself and arrange for the primary thread to call fmd_module_abort().
815  */
816 void
817 fmd_module_abort(fmd_module_t *mp, int err)
818 {
819 	uint_t policy = FMD_CERROR_UNLOAD;
820 	pthread_t tid = pthread_self();
821 
822 	(void) fmd_conf_getprop(fmd.d_conf, "client.error", &policy);
823 
824 	if (policy == FMD_CERROR_STOP) {
825 		fmd_error(err, "stopping after %s in client %s (%p)\n",
826 		    fmd_errclass(err), mp->mod_name, (void *)mp);
827 		(void) raise(SIGSTOP);
828 	} else if (policy == FMD_CERROR_ABORT) {
829 		fmd_panic("aborting due to %s in client %s (%p)\n",
830 		    fmd_errclass(err), mp->mod_name, (void *)mp);
831 	}
832 
833 	/*
834 	 * If the caller is an auxiliary thread, cancel the current thread.  We
835 	 * prefer to cancel because it affords developers the option of using
836 	 * the pthread_cleanup* APIs.  If cancellations have been disabled,
837 	 * fall through to forcing the current thread to exit.  In either case
838 	 * we update mod_error (if zero) to enter the failed state.  Once that
839 	 * is set, further events received by the module will be discarded.
840 	 *
841 	 * We also set the FMD_MOD_FAIL bit, indicating an unrecoverable error.
842 	 * When an auxiliary thread fails, the module is left in a delicate
843 	 * state where it is likely not able to continue execution (even to
844 	 * execute its _fmd_fini() routine) because our caller may hold locks
845 	 * that are private to the module and can no longer be released.  The
846 	 * FMD_MOD_FAIL bit forces fmd_api_module_lock() to abort if any other
847 	 * module threads reach an API call, in an attempt to get them to exit.
848 	 */
849 	if (tid != mp->mod_thread->thr_tid) {
850 		(void) pthread_mutex_lock(&mp->mod_lock);
851 
852 		if (mp->mod_error == 0)
853 			mp->mod_error = err;
854 
855 		mp->mod_flags |= FMD_MOD_FAIL;
856 		(void) pthread_mutex_unlock(&mp->mod_lock);
857 
858 		(void) pthread_cancel(tid);
859 		pthread_exit(NULL);
860 	}
861 
862 	ASSERT(mp->mod_flags & FMD_MOD_BUSY);
863 	longjmp(mp->mod_jmpbuf, err);
864 }
865 
866 void
867 fmd_module_hold(fmd_module_t *mp)
868 {
869 	(void) pthread_mutex_lock(&mp->mod_lock);
870 
871 	TRACE((FMD_DBG_MOD, "hold %p (%s/%u)\n",
872 	    (void *)mp, mp->mod_name, mp->mod_refs));
873 
874 	mp->mod_refs++;
875 	ASSERT(mp->mod_refs != 0);
876 
877 	(void) pthread_mutex_unlock(&mp->mod_lock);
878 }
879 
880 void
881 fmd_module_rele(fmd_module_t *mp)
882 {
883 	(void) pthread_mutex_lock(&mp->mod_lock);
884 
885 	TRACE((FMD_DBG_MOD, "rele %p (%s/%u)\n",
886 	    (void *)mp, mp->mod_name, mp->mod_refs));
887 
888 	ASSERT(mp->mod_refs != 0);
889 
890 	if (--mp->mod_refs == 0)
891 		fmd_module_destroy(mp);
892 	else
893 		(void) pthread_mutex_unlock(&mp->mod_lock);
894 }
895 
896 /*
897  * Wrapper around libdiagcode's fm_dc_opendict() to load module dictionaries.
898  * If the dictionary open is successful, the new dictionary is added to the
899  * mod_dictv[] array and mod_codelen is updated with the new maximum length.
900  */
901 int
902 fmd_module_dc_opendict(fmd_module_t *mp, const char *dict)
903 {
904 	struct fm_dc_handle *dcp, **dcv;
905 	char *dictdir, *dictnam, *p;
906 	size_t len;
907 
908 	ASSERT(fmd_module_locked(mp));
909 
910 	dictnam = alloca(strlen(dict) + 1);
911 	(void) strcpy(dictnam, fmd_strbasename(dict));
912 
913 	if ((p = strrchr(dictnam, '.')) != NULL &&
914 	    strcmp(p, ".dict") == 0)
915 		*p = '\0'; /* eliminate any trailing .dict suffix */
916 
917 	/*
918 	 * If 'dict' is an absolute path, dictdir = $rootdir/`dirname dict`
919 	 * If 'dict' is not an absolute path, dictdir = $dictdir/`dirname dict`
920 	 */
921 	if (dict[0] == '/') {
922 		len = strlen(fmd.d_rootdir) + strlen(dict) + 1;
923 		dictdir = alloca(len);
924 		(void) snprintf(dictdir, len, "%s%s", fmd.d_rootdir, dict);
925 		(void) fmd_strdirname(dictdir);
926 	} else {
927 		(void) fmd_conf_getprop(fmd.d_conf, "dictdir", &p);
928 		len = strlen(fmd.d_rootdir) + strlen(p) + strlen(dict) + 3;
929 		dictdir = alloca(len);
930 		(void) snprintf(dictdir, len,
931 		    "%s/%s/%s", fmd.d_rootdir, p, dict);
932 		(void) fmd_strdirname(dictdir);
933 	}
934 
935 	fmd_dprintf(FMD_DBG_MOD, "module %s opening %s -> %s/%s.dict\n",
936 	    mp->mod_name, dict, dictdir, dictnam);
937 
938 	if ((dcp = fm_dc_opendict(FM_DC_VERSION, dictdir, dictnam)) == NULL)
939 		return (-1); /* errno is set for us */
940 
941 	dcv = fmd_alloc(sizeof (dcp) * (mp->mod_dictc + 1), FMD_SLEEP);
942 	bcopy(mp->mod_dictv, dcv, sizeof (dcp) * mp->mod_dictc);
943 	fmd_free(mp->mod_dictv, sizeof (dcp) * mp->mod_dictc);
944 	mp->mod_dictv = dcv;
945 	mp->mod_dictv[mp->mod_dictc++] = dcp;
946 
947 	len = fm_dc_codelen(dcp);
948 	mp->mod_codelen = MAX(mp->mod_codelen, len);
949 
950 	return (0);
951 }
952 
953 /*
954  * Wrapper around libdiagcode's fm_dc_key2code() that examines all the module's
955  * dictionaries.  We adhere to the libdiagcode return values and semantics.
956  */
957 int
958 fmd_module_dc_key2code(fmd_module_t *mp,
959     char *const keys[], char *code, size_t codelen)
960 {
961 	int i, err;
962 
963 	for (i = 0; i < mp->mod_dictc; i++) {
964 		if ((err = fm_dc_key2code(mp->mod_dictv[i], (const char **)keys,
965 		    code, codelen)) == 0 || errno != ENOMSG)
966 			return (err);
967 	}
968 
969 	return (fmd_set_errno(ENOMSG));
970 }
971 
972 fmd_modhash_t *
973 fmd_modhash_create(void)
974 {
975 	fmd_modhash_t *mhp = fmd_alloc(sizeof (fmd_modhash_t), FMD_SLEEP);
976 
977 	(void) pthread_rwlock_init(&mhp->mh_lock, NULL);
978 	mhp->mh_hashlen = fmd.d_str_buckets;
979 	mhp->mh_hash = fmd_zalloc(sizeof (void *) * mhp->mh_hashlen, FMD_SLEEP);
980 	mhp->mh_nelems = 0;
981 
982 	return (mhp);
983 }
984 
985 void
986 fmd_modhash_destroy(fmd_modhash_t *mhp)
987 {
988 	fmd_module_t *mp, *nmp;
989 	uint_t i;
990 
991 	for (i = 0; i < mhp->mh_hashlen; i++) {
992 		for (mp = mhp->mh_hash[i]; mp != NULL; mp = nmp) {
993 			nmp = mp->mod_next;
994 			mp->mod_next = NULL;
995 			fmd_module_rele(mp);
996 		}
997 	}
998 
999 	fmd_free(mhp->mh_hash, sizeof (void *) * mhp->mh_hashlen);
1000 	(void) pthread_rwlock_destroy(&mhp->mh_lock);
1001 	fmd_free(mhp, sizeof (fmd_modhash_t));
1002 }
1003 
1004 static void
1005 fmd_modhash_loaddir(fmd_modhash_t *mhp, const char *dir,
1006     const fmd_modops_t *ops, const char *suffix)
1007 {
1008 	char path[PATH_MAX];
1009 	struct dirent *dp;
1010 	const char *p;
1011 	DIR *dirp;
1012 
1013 	if ((dirp = opendir(dir)) == NULL)
1014 		return; /* failed to open directory; just skip it */
1015 
1016 	while ((dp = readdir(dirp)) != NULL) {
1017 		if (dp->d_name[0] == '.')
1018 			continue; /* skip "." and ".." */
1019 
1020 		p = strrchr(dp->d_name, '.');
1021 
1022 		if (p != NULL && strcmp(p, ".conf") == 0)
1023 			continue; /* skip .conf files */
1024 
1025 		if (suffix != NULL && (p == NULL || strcmp(p, suffix) != 0))
1026 			continue; /* skip files with the wrong suffix */
1027 
1028 		(void) snprintf(path, sizeof (path), "%s/%s", dir, dp->d_name);
1029 		(void) fmd_modhash_load(mhp, path, ops);
1030 	}
1031 
1032 	(void) closedir(dirp);
1033 }
1034 
1035 void
1036 fmd_modhash_loadall(fmd_modhash_t *mhp, const fmd_conf_path_t *pap,
1037     const fmd_modops_t *ops, const char *suffix)
1038 {
1039 	int i;
1040 
1041 	for (i = 0; i < pap->cpa_argc; i++)
1042 		fmd_modhash_loaddir(mhp, pap->cpa_argv[i], ops, suffix);
1043 }
1044 
1045 void
1046 fmd_modhash_apply(fmd_modhash_t *mhp, void (*func)(fmd_module_t *))
1047 {
1048 	fmd_module_t *mp, *np;
1049 	uint_t i;
1050 
1051 	(void) pthread_rwlock_rdlock(&mhp->mh_lock);
1052 
1053 	for (i = 0; i < mhp->mh_hashlen; i++) {
1054 		for (mp = mhp->mh_hash[i]; mp != NULL; mp = np) {
1055 			np = mp->mod_next;
1056 			func(mp);
1057 		}
1058 	}
1059 
1060 	(void) pthread_rwlock_unlock(&mhp->mh_lock);
1061 }
1062 
1063 void
1064 fmd_modhash_tryapply(fmd_modhash_t *mhp, void (*func)(fmd_module_t *))
1065 {
1066 	fmd_module_t *mp, *np;
1067 	uint_t i;
1068 
1069 	if (mhp == NULL || pthread_rwlock_tryrdlock(&mhp->mh_lock) != 0)
1070 		return; /* not initialized or couldn't grab lock */
1071 
1072 	for (i = 0; i < mhp->mh_hashlen; i++) {
1073 		for (mp = mhp->mh_hash[i]; mp != NULL; mp = np) {
1074 			np = mp->mod_next;
1075 			func(mp);
1076 		}
1077 	}
1078 
1079 	(void) pthread_rwlock_unlock(&mhp->mh_lock);
1080 }
1081 
1082 void
1083 fmd_modhash_dispatch(fmd_modhash_t *mhp, fmd_event_t *ep)
1084 {
1085 	fmd_module_t *mp;
1086 	uint_t i;
1087 
1088 	fmd_event_hold(ep);
1089 	(void) pthread_rwlock_rdlock(&mhp->mh_lock);
1090 
1091 	for (i = 0; i < mhp->mh_hashlen; i++) {
1092 		for (mp = mhp->mh_hash[i]; mp != NULL; mp = mp->mod_next) {
1093 			/*
1094 			 * If FMD_MOD_INIT is set but MOD_FINI, MOD_QUIT, and
1095 			 * mod_error are all zero, then the module is active:
1096 			 * enqueue the event in the corresponding event queue.
1097 			 */
1098 			(void) pthread_mutex_lock(&mp->mod_lock);
1099 
1100 			if ((mp->mod_flags & (FMD_MOD_INIT | FMD_MOD_FINI |
1101 			    FMD_MOD_QUIT)) == FMD_MOD_INIT && !mp->mod_error)
1102 				fmd_eventq_insert_at_time(mp->mod_queue, ep);
1103 
1104 			(void) pthread_mutex_unlock(&mp->mod_lock);
1105 		}
1106 	}
1107 
1108 	(void) pthread_rwlock_unlock(&mhp->mh_lock);
1109 	fmd_event_rele(ep);
1110 }
1111 
1112 fmd_module_t *
1113 fmd_modhash_lookup(fmd_modhash_t *mhp, const char *name)
1114 {
1115 	fmd_module_t *mp;
1116 	uint_t h;
1117 
1118 	(void) pthread_rwlock_rdlock(&mhp->mh_lock);
1119 	h = fmd_strhash(name) % mhp->mh_hashlen;
1120 
1121 	for (mp = mhp->mh_hash[h]; mp != NULL; mp = mp->mod_next) {
1122 		if (strcmp(name, mp->mod_name) == 0)
1123 			break;
1124 	}
1125 
1126 	if (mp != NULL)
1127 		fmd_module_hold(mp);
1128 	else
1129 		(void) fmd_set_errno(EFMD_MOD_NOMOD);
1130 
1131 	(void) pthread_rwlock_unlock(&mhp->mh_lock);
1132 	return (mp);
1133 }
1134 
1135 fmd_module_t *
1136 fmd_modhash_load(fmd_modhash_t *mhp, const char *path, const fmd_modops_t *ops)
1137 {
1138 	char name[PATH_MAX], *p;
1139 	fmd_module_t *mp;
1140 	int tries = 0;
1141 	uint_t h;
1142 
1143 	(void) strlcpy(name, fmd_strbasename(path), sizeof (name));
1144 	if ((p = strrchr(name, '.')) != NULL && strcmp(p, ".so") == 0)
1145 		*p = '\0'; /* strip trailing .so from any module name */
1146 
1147 	(void) pthread_rwlock_wrlock(&mhp->mh_lock);
1148 	h = fmd_strhash(name) % mhp->mh_hashlen;
1149 
1150 	/*
1151 	 * First check to see if a module is already present in the hash table
1152 	 * for this name.  If so, the module is already loaded: skip it.
1153 	 */
1154 	for (mp = mhp->mh_hash[h]; mp != NULL; mp = mp->mod_next) {
1155 		if (strcmp(name, mp->mod_name) == 0)
1156 			break;
1157 	}
1158 
1159 	if (mp != NULL) {
1160 		(void) pthread_rwlock_unlock(&mhp->mh_lock);
1161 		(void) fmd_set_errno(EFMD_MOD_LOADED);
1162 		return (NULL);
1163 	}
1164 
1165 	/*
1166 	 * fmd_module_create() will return a held (as if by fmd_module_hold())
1167 	 * module.  We leave this hold in place to correspond to the hash-in.
1168 	 */
1169 	while ((mp = fmd_module_create(path, ops)) == NULL) {
1170 		if (tries++ != 0 || errno != EFMD_CKPT_INVAL) {
1171 			(void) pthread_rwlock_unlock(&mhp->mh_lock);
1172 			return (NULL); /* errno is set for us */
1173 		}
1174 	}
1175 
1176 	mp->mod_hash = mhp;
1177 	mp->mod_next = mhp->mh_hash[h];
1178 
1179 	mhp->mh_hash[h] = mp;
1180 	mhp->mh_nelems++;
1181 
1182 	(void) pthread_rwlock_unlock(&mhp->mh_lock);
1183 	return (mp);
1184 }
1185 
1186 int
1187 fmd_modhash_unload(fmd_modhash_t *mhp, const char *name)
1188 {
1189 	fmd_module_t *mp, **pp;
1190 	uint_t h;
1191 
1192 	(void) pthread_rwlock_wrlock(&mhp->mh_lock);
1193 	h = fmd_strhash(name) % mhp->mh_hashlen;
1194 	pp = &mhp->mh_hash[h];
1195 
1196 	for (mp = *pp; mp != NULL; mp = mp->mod_next) {
1197 		if (strcmp(name, mp->mod_name) == 0)
1198 			break;
1199 		else
1200 			pp = &mp->mod_next;
1201 	}
1202 
1203 	if (mp == NULL) {
1204 		(void) pthread_rwlock_unlock(&mhp->mh_lock);
1205 		return (fmd_set_errno(EFMD_MOD_NOMOD));
1206 	}
1207 
1208 	*pp = mp->mod_next;
1209 	mp->mod_next = NULL;
1210 
1211 	ASSERT(mhp->mh_nelems != 0);
1212 	mhp->mh_nelems--;
1213 
1214 	(void) pthread_rwlock_unlock(&mhp->mh_lock);
1215 
1216 	fmd_module_unload(mp);
1217 	fmd_module_rele(mp);
1218 
1219 	return (0);
1220 }
1221 
1222 void
1223 fmd_modstat_publish(fmd_module_t *mp)
1224 {
1225 	(void) pthread_mutex_lock(&mp->mod_lock);
1226 
1227 	ASSERT(mp->mod_flags & FMD_MOD_STSUB);
1228 	mp->mod_flags |= FMD_MOD_STPUB;
1229 	(void) pthread_cond_broadcast(&mp->mod_cv);
1230 
1231 	while (mp->mod_flags & FMD_MOD_STPUB)
1232 		(void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock);
1233 
1234 	(void) pthread_mutex_unlock(&mp->mod_lock);
1235 }
1236 
1237 int
1238 fmd_modstat_snapshot(fmd_module_t *mp, fmd_ustat_snap_t *uss)
1239 {
1240 	fmd_event_t *e;
1241 	int err;
1242 
1243 	/*
1244 	 * Grab the module lock and wait for the STSUB bit to be clear.  Then
1245 	 * set it to indicate we are a subscriber and everyone else must wait.
1246 	 */
1247 	(void) pthread_mutex_lock(&mp->mod_lock);
1248 
1249 	while (mp->mod_error == 0 && (mp->mod_flags & FMD_MOD_STSUB))
1250 		(void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock);
1251 
1252 	if (mp->mod_error != 0) {
1253 		(void) pthread_mutex_unlock(&mp->mod_lock);
1254 		return (fmd_set_errno(EFMD_HDL_ABORT));
1255 	}
1256 
1257 	mp->mod_flags |= FMD_MOD_STSUB;
1258 	(void) pthread_cond_broadcast(&mp->mod_cv);
1259 	(void) pthread_mutex_unlock(&mp->mod_lock);
1260 
1261 	/*
1262 	 * Create a stats pseudo-event and dispatch it to the module, forcing
1263 	 * it to next execute its custom snapshot routine (or the empty one).
1264 	 */
1265 	e = fmd_event_create(FMD_EVT_STATS, FMD_HRT_NOW, NULL, NULL);
1266 	fmd_eventq_insert_at_head(mp->mod_queue, e);
1267 
1268 	/*
1269 	 * Grab the module lock and then wait on mod_cv for STPUB to be set,
1270 	 * indicating the snapshot routine is completed and the module is idle.
1271 	 */
1272 	(void) pthread_mutex_lock(&mp->mod_lock);
1273 
1274 	while (mp->mod_error == 0 && !(mp->mod_flags & FMD_MOD_STPUB))
1275 		(void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock);
1276 
1277 	if (mp->mod_error != 0) {
1278 		(void) pthread_mutex_unlock(&mp->mod_lock);
1279 		return (fmd_set_errno(EFMD_HDL_ABORT));
1280 	}
1281 
1282 	(void) pthread_cond_broadcast(&mp->mod_cv);
1283 	(void) pthread_mutex_unlock(&mp->mod_lock);
1284 
1285 	/*
1286 	 * Update ms_snaptime and take the actual snapshot of the various
1287 	 * statistics while the module is quiescent and waiting for us.
1288 	 */
1289 	(void) pthread_mutex_lock(&mp->mod_stats_lock);
1290 
1291 	if (mp->mod_stats != NULL) {
1292 		mp->mod_stats->ms_snaptime.fmds_value.ui64 = gethrtime();
1293 		err = fmd_ustat_snapshot(mp->mod_ustat, uss);
1294 	} else
1295 		err = fmd_set_errno(EFMD_HDL_ABORT);
1296 
1297 	(void) pthread_mutex_unlock(&mp->mod_stats_lock);
1298 
1299 	/*
1300 	 * With the snapshot complete, grab the module lock and clear both
1301 	 * STSUB and STPUB, permitting everyone to wake up and continue.
1302 	 */
1303 	(void) pthread_mutex_lock(&mp->mod_lock);
1304 
1305 	ASSERT(mp->mod_flags & FMD_MOD_STSUB);
1306 	ASSERT(mp->mod_flags & FMD_MOD_STPUB);
1307 	mp->mod_flags &= ~(FMD_MOD_STSUB | FMD_MOD_STPUB);
1308 
1309 	(void) pthread_cond_broadcast(&mp->mod_cv);
1310 	(void) pthread_mutex_unlock(&mp->mod_lock);
1311 
1312 	return (err);
1313 }
1314