xref: /titanic_50/usr/src/cmd/fm/eversholt/common/tree.c (revision cbcb6089bf49be7bed77b8c9c1727b26f2e9c913)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * tree.c -- routines for manipulating the prop tree
27  *
28  * the actions in escparse.y call these routines to construct
29  * the parse tree.  these routines, in turn, call the check_X()
30  * routines for semantic checking.
31  */
32 
33 #pragma ident	"%Z%%M%	%I%	%E% SMI"
34 
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <ctype.h>
38 #include <strings.h>
39 #include <alloca.h>
40 #include "alloc.h"
41 #include "out.h"
42 #include "stats.h"
43 #include "stable.h"
44 #include "literals.h"
45 #include "lut.h"
46 #include "esclex.h"
47 #include "tree.h"
48 #include "check.h"
49 #include "ptree.h"
50 
51 static struct node *Root;
52 
53 static char *Newname;
54 
55 static struct stats *Faultcount;
56 static struct stats *Upsetcount;
57 static struct stats *Defectcount;
58 static struct stats *Errorcount;
59 static struct stats *Ereportcount;
60 static struct stats *SERDcount;
61 static struct stats *ASRUcount;
62 static struct stats *FRUcount;
63 static struct stats *Configcount;
64 static struct stats *Propcount;
65 static struct stats *Maskcount;
66 static struct stats *Nodecount;
67 static struct stats *Namecount;
68 static struct stats *Nodesize;
69 
70 void
71 tree_init(void)
72 {
73 	Faultcount = stats_new_counter("parser.fault", "fault decls", 1);
74 	Upsetcount = stats_new_counter("parser.upset", "upset decls", 1);
75 	Defectcount = stats_new_counter("parser.defect", "defect decls", 1);
76 	Errorcount = stats_new_counter("parser.error", "error decls", 1);
77 	Ereportcount = stats_new_counter("parser.ereport", "ereport decls", 1);
78 	SERDcount = stats_new_counter("parser.SERD", "SERD engine decls", 1);
79 	ASRUcount = stats_new_counter("parser.ASRU", "ASRU decls", 1);
80 	FRUcount = stats_new_counter("parser.FRU", "FRU decls", 1);
81 	Configcount = stats_new_counter("parser.config", "config stmts", 1);
82 	Propcount = stats_new_counter("parser.prop", "prop stmts", 1);
83 	Maskcount = stats_new_counter("parser.mask", "mask stmts", 1);
84 	Nodecount = stats_new_counter("parser.node", "nodes created", 1);
85 	Namecount = stats_new_counter("parser.name", "names created", 1);
86 	Nodesize =
87 	    stats_new_counter("parser.nodesize", "sizeof(struct node)", 1);
88 	stats_counter_add(Nodesize, sizeof (struct node));
89 }
90 
91 void
92 tree_fini(void)
93 {
94 	stats_delete(Faultcount);
95 	stats_delete(Upsetcount);
96 	stats_delete(Defectcount);
97 	stats_delete(Errorcount);
98 	stats_delete(Ereportcount);
99 	stats_delete(SERDcount);
100 	stats_delete(ASRUcount);
101 	stats_delete(FRUcount);
102 	stats_delete(Configcount);
103 	stats_delete(Propcount);
104 	stats_delete(Maskcount);
105 	stats_delete(Nodecount);
106 	stats_delete(Namecount);
107 	stats_delete(Nodesize);
108 
109 	/* free entire parse tree */
110 	tree_free(Root);
111 
112 	/* free up the luts we keep for decls */
113 	lut_free(Faults, NULL, NULL);
114 	Faults = NULL;
115 	lut_free(Upsets, NULL, NULL);
116 	Upsets = NULL;
117 	lut_free(Defects, NULL, NULL);
118 	Defects = NULL;
119 	lut_free(Errors, NULL, NULL);
120 	Errors = NULL;
121 	lut_free(Ereports, NULL, NULL);
122 	Ereports = NULL;
123 	lut_free(Ereportenames, NULL, NULL);
124 	Ereportenames = NULL;
125 	lut_free(SERDs, NULL, NULL);
126 	SERDs = NULL;
127 	lut_free(ASRUs, NULL, NULL);
128 	ASRUs = NULL;
129 	lut_free(FRUs, NULL, NULL);
130 	FRUs = NULL;
131 	lut_free(Configs, NULL, NULL);
132 	Configs = NULL;
133 
134 	Props = Lastprops = NULL;
135 	Masks = Lastmasks = NULL;
136 	Problems = Lastproblems = NULL;
137 
138 	if (Newname != NULL) {
139 		FREE(Newname);
140 		Newname = NULL;
141 	}
142 }
143 
144 struct node *
145 newnode(enum nodetype t, const char *file, int line)
146 {
147 	struct node *ret = MALLOC(sizeof (*ret));
148 
149 	stats_counter_bump(Nodecount);
150 	bzero(ret, sizeof (*ret));
151 	ret->t = t;
152 	ret->file = (file == NULL) ? "<nofile>" : file;
153 	ret->line = line;
154 
155 	return (ret);
156 }
157 
158 /*ARGSUSED*/
159 void
160 tree_free(struct node *root)
161 {
162 	if (root == NULL)
163 		return;
164 
165 	switch (root->t) {
166 	case T_NAME:
167 		tree_free(root->u.name.child);
168 		tree_free(root->u.name.next);
169 		break;
170 	case T_FUNC:
171 		tree_free(root->u.func.arglist);
172 		if (root->u.func.cachedval != NULL)
173 			FREE(root->u.func.cachedval);
174 		break;
175 	case T_AND:
176 	case T_OR:
177 	case T_EQ:
178 	case T_NE:
179 	case T_ADD:
180 	case T_DIV:
181 	case T_MOD:
182 	case T_MUL:
183 	case T_SUB:
184 	case T_LT:
185 	case T_LE:
186 	case T_GT:
187 	case T_GE:
188 	case T_BITAND:
189 	case T_BITOR:
190 	case T_BITXOR:
191 	case T_BITNOT:
192 	case T_LSHIFT:
193 	case T_RSHIFT:
194 	case T_NVPAIR:
195 	case T_ASSIGN:
196 	case T_CONDIF:
197 	case T_CONDELSE:
198 	case T_LIST:
199 		tree_free(root->u.expr.left);
200 		tree_free(root->u.expr.right);
201 		break;
202 	case T_EVENT:
203 		tree_free(root->u.event.ename);
204 		tree_free(root->u.event.epname);
205 		tree_free(root->u.event.eexprlist);
206 		break;
207 	case T_NOT:
208 		tree_free(root->u.expr.left);
209 		break;
210 	case T_ARROW:
211 		tree_free(root->u.arrow.lhs);
212 		tree_free(root->u.arrow.nnp);
213 		tree_free(root->u.arrow.knp);
214 		tree_free(root->u.arrow.rhs);
215 		break;
216 	case T_PROP:
217 	case T_MASK:
218 		tree_free(root->u.stmt.np);
219 		break;
220 	case T_FAULT:
221 	case T_UPSET:
222 	case T_DEFECT:
223 	case T_ERROR:
224 	case T_EREPORT:
225 	case T_ASRU:
226 	case T_FRU:
227 	case T_SERD:
228 	case T_CONFIG:
229 		tree_free(root->u.stmt.np);
230 		if (root->u.stmt.nvpairs)
231 			tree_free(root->u.stmt.nvpairs);
232 		if (root->u.stmt.lutp)
233 			lut_free(root->u.stmt.lutp, NULL, NULL);
234 		break;
235 	case T_TIMEVAL:
236 	case T_NUM:
237 	case T_QUOTE:
238 	case T_GLOBID:
239 	case T_NOTHING:
240 		break;
241 	default:
242 		out(O_DIE,
243 		    "internal error: tree_free unexpected nodetype: %d",
244 		    root->t);
245 		/*NOTREACHED*/
246 	}
247 	bzero(root, sizeof (*root));
248 	FREE(root);
249 }
250 
251 static int
252 tree_treecmp(struct node *np1, struct node *np2, enum nodetype t,
253 	    lut_cmp cmp_func)
254 {
255 	if (np1 == NULL || np2 == NULL)
256 		return (0);
257 
258 	if (np1->t != np2->t)
259 		return (1);
260 
261 	ASSERT(cmp_func != NULL);
262 
263 	if (np1->t == t)
264 		return ((*cmp_func)(np1, np2));
265 
266 	switch (np1->t) {
267 	case T_NAME:
268 		if (tree_treecmp(np1->u.name.child, np2->u.name.child, t,
269 				cmp_func))
270 			return (1);
271 		return (tree_treecmp(np1->u.name.next, np2->u.name.next, t,
272 				    cmp_func));
273 		/*NOTREACHED*/
274 		break;
275 	case T_FUNC:
276 		return (tree_treecmp(np1->u.func.arglist, np2->u.func.arglist,
277 				    t, cmp_func));
278 		/*NOTREACHED*/
279 		break;
280 	case T_AND:
281 	case T_OR:
282 	case T_EQ:
283 	case T_NE:
284 	case T_ADD:
285 	case T_DIV:
286 	case T_MOD:
287 	case T_MUL:
288 	case T_SUB:
289 	case T_LT:
290 	case T_LE:
291 	case T_GT:
292 	case T_GE:
293 	case T_BITAND:
294 	case T_BITOR:
295 	case T_BITXOR:
296 	case T_BITNOT:
297 	case T_LSHIFT:
298 	case T_RSHIFT:
299 	case T_NVPAIR:
300 	case T_ASSIGN:
301 	case T_CONDIF:
302 	case T_CONDELSE:
303 	case T_LIST:
304 		if (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t,
305 				cmp_func))
306 			return (1);
307 		return (tree_treecmp(np1->u.expr.right, np2->u.expr.right, t,
308 				    cmp_func));
309 		/*NOTREACHED*/
310 		break;
311 	case T_EVENT:
312 		if (tree_treecmp(np1->u.event.ename, np2->u.event.ename, t,
313 				cmp_func))
314 			return (1);
315 		if (tree_treecmp(np1->u.event.epname, np2->u.event.epname, t,
316 				cmp_func))
317 			return (1);
318 		return (tree_treecmp(np1->u.event.eexprlist,
319 				    np2->u.event.eexprlist, t, cmp_func));
320 		/*NOTREACHED*/
321 		break;
322 	case T_NOT:
323 		return (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t,
324 				    cmp_func));
325 		/*NOTREACHED*/
326 		break;
327 	case T_ARROW:
328 		if (tree_treecmp(np1->u.arrow.lhs, np2->u.arrow.lhs, t,
329 				cmp_func))
330 			return (1);
331 		if (tree_treecmp(np1->u.arrow.nnp, np2->u.arrow.nnp, t,
332 				cmp_func))
333 			return (1);
334 		if (tree_treecmp(np1->u.arrow.knp, np2->u.arrow.knp, t,
335 				cmp_func))
336 			return (1);
337 		return (tree_treecmp(np1->u.arrow.rhs, np2->u.arrow.rhs, t,
338 				    cmp_func));
339 		/*NOTREACHED*/
340 		break;
341 	case T_PROP:
342 	case T_MASK:
343 		return (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t,
344 				    cmp_func));
345 		/*NOTREACHED*/
346 		break;
347 	case T_FAULT:
348 	case T_UPSET:
349 	case T_DEFECT:
350 	case T_ERROR:
351 	case T_EREPORT:
352 	case T_ASRU:
353 	case T_FRU:
354 	case T_SERD:
355 		if (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t, cmp_func))
356 			return (1);
357 		return (tree_treecmp(np1->u.stmt.nvpairs, np2->u.stmt.nvpairs,
358 				    t, cmp_func));
359 		/*NOTREACHED*/
360 		break;
361 	case T_TIMEVAL:
362 	case T_NUM:
363 	case T_QUOTE:
364 	case T_GLOBID:
365 	case T_NOTHING:
366 		break;
367 	default:
368 		out(O_DIE,
369 		    "internal error: tree_treecmp unexpected nodetype: %d",
370 		    np1->t);
371 		/*NOTREACHED*/
372 		break;
373 	}
374 
375 	return (0);
376 }
377 
378 struct node *
379 tree_root(struct node *np)
380 {
381 	if (np)
382 		Root = np;
383 	return (Root);
384 }
385 
386 struct node *
387 tree_nothing(void)
388 {
389 	return (newnode(T_NOTHING, L_nofile, 0));
390 }
391 
392 struct node *
393 tree_expr(enum nodetype t, struct node *left, struct node *right)
394 {
395 	struct node *ret;
396 
397 	ASSERTinfo(left != NULL || right != NULL, ptree_nodetype2str(t));
398 
399 	ret = newnode(t,
400 	    (left) ? left->file : right->file,
401 	    (left) ? left->line : right->line);
402 
403 	ret->u.expr.left = left;
404 	ret->u.expr.right = right;
405 
406 	check_expr(ret);
407 
408 	return (ret);
409 }
410 
411 /*
412  * ename_compress -- convert event class name in to more space-efficient form
413  *
414  * this routine is called after the parser has completed an "ename", which
415  * is that part of an event that contains the class name (like ereport.x.y.z).
416  * after this routine gets done with the ename, two things are true:
417  *   1. the ename uses only a single struct node
418  *   2. ename->u.name.s contains the *complete* class name, dots and all,
419  *      entered into the string table.
420  *
421  * so in addition to saving space by using fewer struct nodes, this routine
422  * allows consumers of the fault tree to assume the ename is a single
423  * string, rather than a linked list of strings.
424  */
425 static struct node *
426 ename_compress(struct node *ename)
427 {
428 	char *buf;
429 	char *cp;
430 	int len = 0;
431 	struct node *np;
432 
433 	if (ename == NULL)
434 		return (ename);
435 
436 	ASSERT(ename->t == T_NAME);
437 
438 	if (ename->u.name.next == NULL)
439 		return (ename);	/* no compression to be applied here */
440 
441 	for (np = ename; np != NULL; np = np->u.name.next) {
442 		ASSERT(np->t == T_NAME);
443 		len++;	/* room for '.' and final '\0' */
444 		len += strlen(np->u.name.s);
445 	}
446 	cp = buf = alloca(len);
447 	for (np = ename; np != NULL; np = np->u.name.next) {
448 		ASSERT(np->t == T_NAME);
449 		if (np != ename)
450 			*cp++ = '.';
451 		(void) strcpy(cp, np->u.name.s);
452 		cp += strlen(cp);
453 	}
454 
455 	ename->u.name.s = stable(buf);
456 	tree_free(ename->u.name.next);
457 	ename->u.name.next = NULL;
458 	ename->u.name.last = ename;
459 	return (ename);
460 }
461 
462 struct node *
463 tree_event(struct node *ename, struct node *epname, struct node *eexprlist)
464 {
465 	struct node *ret;
466 
467 	ASSERT(ename != NULL);
468 
469 	ret = newnode(T_EVENT, ename->file, ename->line);
470 
471 	ret->u.event.ename = ename_compress(ename);
472 	ret->u.event.epname = epname;
473 	ret->u.event.eexprlist = eexprlist;
474 
475 	check_event(ret);
476 
477 	return (ret);
478 }
479 
480 struct node *
481 tree_name(const char *s, enum itertype it, const char *file, int line)
482 {
483 	struct node *ret = newnode(T_NAME, file, line);
484 
485 	ASSERT(s != NULL);
486 
487 	stats_counter_bump(Namecount);
488 	ret->u.name.t = N_UNSPEC;
489 	ret->u.name.s = stable(s);
490 	ret->u.name.it = it;
491 	ret->u.name.last = ret;
492 
493 	if (it == IT_ENAME) {
494 		/* PHASE2, possible optimization: convert to table driven */
495 		if (s == L_fault)
496 			ret->u.name.t = N_FAULT;
497 		else if (s == L_upset)
498 			ret->u.name.t = N_UPSET;
499 		else if (s == L_defect)
500 			ret->u.name.t = N_DEFECT;
501 		else if (s == L_error)
502 			ret->u.name.t = N_ERROR;
503 		else if (s == L_ereport)
504 			ret->u.name.t = N_EREPORT;
505 		else if (s == L_serd)
506 			ret->u.name.t = N_SERD;
507 		else
508 			outfl(O_ERR, file, line, "unknown class: %s", s);
509 	}
510 	return (ret);
511 }
512 
513 struct node *
514 tree_iname(const char *s, const char *file, int line)
515 {
516 	struct node *ret;
517 	char *ss;
518 	char *ptr;
519 
520 	ASSERT(s != NULL && *s != '\0');
521 
522 	ss = STRDUP(s);
523 
524 	ptr = &ss[strlen(ss) - 1];
525 	if (!isdigit(*ptr)) {
526 		outfl(O_ERR, file, line,
527 		    "instanced name expected (i.e. \"x0/y1\")");
528 		FREE(ss);
529 		return (tree_name(s, IT_NONE, file, line));
530 	}
531 	while (ptr > ss && isdigit(*(ptr - 1)))
532 		ptr--;
533 
534 	ret = newnode(T_NAME, file, line);
535 	stats_counter_bump(Namecount);
536 	ret->u.name.child = tree_num(ptr, file, line);
537 	*ptr = '\0';
538 	ret->u.name.t = N_UNSPEC;
539 	ret->u.name.s = stable(ss);
540 	ret->u.name.it = IT_NONE;
541 	ret->u.name.last = ret;
542 	FREE(ss);
543 
544 	return (ret);
545 }
546 
547 struct node *
548 tree_globid(const char *s, const char *file, int line)
549 {
550 	struct node *ret = newnode(T_GLOBID, file, line);
551 
552 	ASSERT(s != NULL);
553 
554 	ret->u.globid.s = stable(s);
555 
556 	return (ret);
557 }
558 
559 struct node *
560 tree_name_append(struct node *np1, struct node *np2)
561 {
562 	ASSERT(np1 != NULL && np2 != NULL);
563 
564 	if (np1->t != T_NAME)
565 		outfl(O_DIE, np1->file, np1->line,
566 		    "tree_name_append: internal error (np1 type %d)", np1->t);
567 	if (np2->t != T_NAME)
568 		outfl(O_DIE, np2->file, np2->line,
569 		    "tree_name_append: internal error (np2 type %d)", np2->t);
570 
571 	ASSERT(np1->u.name.last != NULL);
572 
573 	np1->u.name.last->u.name.next = np2;
574 	np1->u.name.last = np2;
575 	return (np1);
576 }
577 
578 /*
579  * tree_name_repairdash -- repair a class name that contained a dash
580  *
581  * this routine is called by the parser when a dash is encountered
582  * in a class name.  the event protocol allows the dashes but our
583  * lexer considers them a separate token (arithmetic minus).  an extra
584  * rule in the parser catches this case and calls this routine to fixup
585  * the last component of the class name (so far) by constructing the
586  * new stable entry for a name including the dash.
587  */
588 struct node *
589 tree_name_repairdash(struct node *np, const char *s)
590 {
591 	int len;
592 	char *buf;
593 
594 	ASSERT(np != NULL && s != NULL);
595 
596 	if (np->t != T_NAME)
597 		outfl(O_DIE, np->file, np->line,
598 		    "tree_name_repairdash: internal error (np type %d)",
599 		    np->t);
600 
601 	ASSERT(np->u.name.last != NULL);
602 
603 	len = strlen(np->u.name.last->u.name.s) + 1 + strlen(s) + 1;
604 	buf = MALLOC(len);
605 	(void) snprintf(buf, len, "%s-%s", np->u.name.last->u.name.s, s);
606 	np->u.name.last->u.name.s = stable(buf);
607 	FREE(buf);
608 	return (np);
609 }
610 
611 struct node *
612 tree_name_iterator(struct node *np1, struct node *np2)
613 {
614 	ASSERT(np1 != NULL);
615 	ASSERT(np2 != NULL);
616 	ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t));
617 
618 	np1->u.name.child = np2;
619 
620 	check_name_iterator(np1);
621 
622 	return (np1);
623 }
624 
625 struct node *
626 tree_timeval(const char *s, const char *suffix, const char *file, int line)
627 {
628 	struct node *ret = newnode(T_TIMEVAL, file, line);
629 	const unsigned long long *ullp;
630 
631 	ASSERT(s != NULL);
632 	ASSERT(suffix != NULL);
633 
634 	if ((ullp = lex_s2ullp_lut_lookup(Timesuffixlut, suffix)) == NULL) {
635 		outfl(O_ERR, file, line,
636 		    "unrecognized number suffix: %s", suffix);
637 		/* still construct a valid timeval node so parsing continues */
638 		ret->u.ull = 1;
639 	} else {
640 		ret->u.ull = (unsigned long long)strtoul(s, NULL, 0) * *ullp;
641 	}
642 
643 	return (ret);
644 }
645 
646 struct node *
647 tree_num(const char *s, const char *file, int line)
648 {
649 	struct node *ret = newnode(T_NUM, file, line);
650 
651 	ret->u.ull = (unsigned long long)strtoul(s, NULL, 0);
652 	return (ret);
653 }
654 
655 struct node *
656 tree_quote(const char *s, const char *file, int line)
657 {
658 	struct node *ret = newnode(T_QUOTE, file, line);
659 
660 	ret->u.quote.s = stable(s);
661 	return (ret);
662 }
663 
664 struct node *
665 tree_func(const char *s, struct node *np, const char *file, int line)
666 {
667 	struct node *ret = newnode(T_FUNC, file, line);
668 
669 	ret->u.func.s = s;
670 	ret->u.func.arglist = np;
671 
672 	check_func(ret);
673 
674 	return (ret);
675 }
676 
677 /*
678  * given a list from a prop or mask statement or a function argument,
679  * convert all iterators to explicit iterators by inventing appropriate
680  * iterator names.
681  */
682 static void
683 make_explicit(struct node *np)
684 {
685 	struct node *pnp;	/* component of pathname */
686 	struct node *pnp2;
687 	int count;
688 	static size_t namesz;
689 
690 	if (Newname == NULL) {
691 		namesz = 200;
692 		Newname = MALLOC(namesz);
693 	}
694 
695 	if (np == NULL)
696 		return;		/* all done */
697 
698 	switch (np->t) {
699 		case T_ARROW:
700 			/* cascaded arrow, already done */
701 			break;
702 
703 		case T_LIST:
704 			make_explicit(np->u.expr.left);
705 			make_explicit(np->u.expr.right);
706 			break;
707 
708 		case T_EVENT:
709 			make_explicit(np->u.event.epname);
710 			break;
711 
712 		case T_NAME:
713 			for (pnp = np; pnp != NULL; pnp = pnp->u.name.next)
714 				if (pnp->u.name.child == NULL) {
715 					/*
716 					 * found implicit iterator.  convert
717 					 * it to an explicit iterator by
718 					 * using the name of the component
719 					 * appended with '#' and the number
720 					 * of times we've seen this same
721 					 * component name in this path so far.
722 					 */
723 					count = 0;
724 					for (pnp2 = np; pnp2 != NULL;
725 					    pnp2 = pnp2->u.name.next)
726 						if (pnp2 == pnp)
727 							break;
728 						else if (pnp2->u.name.s ==
729 						    pnp->u.name.s)
730 							count++;
731 
732 					if (namesz < strlen(pnp->u.name.s) +
733 					    100) {
734 						namesz = strlen(pnp->u.name.s) +
735 						    100;
736 						FREE(Newname);
737 						Newname = MALLOC(namesz);
738 					}
739 					/*
740 					 * made up interator name is:
741 					 *	name#ordinal
742 					 * or
743 					 *	name##ordinal
744 					 * the first one is used for vertical
745 					 * expansion, the second for horizontal.
746 					 * either way, the '#' embedded in
747 					 * the name makes it impossible to
748 					 * collide with an actual iterator
749 					 * given to us in the eversholt file.
750 					 */
751 					(void) snprintf(Newname, namesz,
752 					    "%s#%s%d", pnp->u.name.s,
753 					    (pnp->u.name.it == IT_HORIZONTAL) ?
754 					    "#" : "", count);
755 
756 					pnp->u.name.child = tree_name(Newname,
757 					    IT_NONE, pnp->file, pnp->line);
758 					pnp->u.name.childgen = 1;
759 				}
760 			break;
761 
762 		default:
763 			outfl(O_DIE, np->file, np->line,
764 			    "internal error: make_explicit: "
765 			    "unexpected type: %s",
766 			    ptree_nodetype2str(np->t));
767 	}
768 }
769 
770 struct node *
771 tree_pname(struct node *np)
772 {
773 	make_explicit(np);
774 	return (np);
775 }
776 
777 struct node *
778 tree_arrow(struct node *lhs, struct node *nnp, struct node *knp,
779     struct node *rhs)
780 {
781 	struct node *ret;
782 
783 	ASSERT(lhs != NULL || rhs != NULL);
784 
785 	ret = newnode(T_ARROW,
786 	    (lhs) ? lhs->file : rhs->file,
787 	    (lhs) ? lhs->line : rhs->line);
788 
789 	ret->u.arrow.lhs = lhs;
790 	ret->u.arrow.nnp = nnp;
791 	ret->u.arrow.knp = knp;
792 	ret->u.arrow.rhs = rhs;
793 
794 	make_explicit(lhs);
795 	make_explicit(rhs);
796 
797 	check_arrow(ret);
798 
799 	return (ret);
800 }
801 
802 static struct lut *
803 nvpair2lut(struct node *np, struct lut *lutp, enum nodetype t)
804 {
805 	if (np) {
806 		if (np->t == T_NVPAIR) {
807 			ASSERTeq(np->u.expr.left->t, T_NAME,
808 			    ptree_nodetype2str);
809 			check_stmt_allowed_properties(t, np, lutp);
810 			lutp = tree_s2np_lut_add(lutp,
811 			    np->u.expr.left->u.name.s, np->u.expr.right);
812 		} else if (np->t == T_LIST) {
813 			lutp = nvpair2lut(np->u.expr.left, lutp, t);
814 			lutp = nvpair2lut(np->u.expr.right, lutp, t);
815 		} else
816 			outfl(O_DIE, np->file, np->line,
817 			    "internal error: nvpair2lut type %s",
818 			    ptree_nodetype2str(np->t));
819 	}
820 
821 	return (lutp);
822 }
823 
824 struct lut *
825 tree_s2np_lut_add(struct lut *root, const char *s, struct node *np)
826 {
827 	return (lut_add(root, (void *)s, (void *)np, NULL));
828 }
829 
830 struct node *
831 tree_s2np_lut_lookup(struct lut *root, const char *s)
832 {
833 	return (struct node *)lut_lookup(root, (void *)s, NULL);
834 }
835 
836 struct lut *
837 tree_name2np_lut_add(struct lut *root, struct node *namep, struct node *np)
838 {
839 	return (lut_add(root, (void *)namep, (void *)np,
840 	    (lut_cmp)tree_namecmp));
841 }
842 
843 struct node *
844 tree_name2np_lut_lookup(struct lut *root, struct node *namep)
845 {
846 	return (struct node *)
847 	    lut_lookup(root, (void *)namep, (lut_cmp)tree_namecmp);
848 }
849 
850 struct node *
851 tree_name2np_lut_lookup_name(struct lut *root, struct node *namep)
852 {
853 	return (struct node *)
854 	    lut_lookup_lhs(root, (void *)namep, (lut_cmp)tree_namecmp);
855 }
856 
857 struct lut *
858 tree_event2np_lut_add(struct lut *root, struct node *enp, struct node *np)
859 {
860 	return (lut_add(root, (void *)enp, (void *)np, (lut_cmp)tree_eventcmp));
861 }
862 
863 struct node *
864 tree_event2np_lut_lookup(struct lut *root, struct node *enp)
865 {
866 	return ((struct node *)
867 	    lut_lookup(root, (void *)enp, (lut_cmp)tree_eventcmp));
868 }
869 
870 struct node *
871 tree_event2np_lut_lookup_event(struct lut *root, struct node *enp)
872 {
873 	return ((struct node *)
874 	    lut_lookup_lhs(root, (void *)enp, (lut_cmp)tree_eventcmp));
875 }
876 
877 static struct node *
878 dodecl(enum nodetype t, const char *file, int line,
879     struct node *np, struct node *nvpairs, struct lut **lutpp,
880     struct stats *countp, int justpath)
881 {
882 	struct node *ret;
883 	struct node *decl;
884 
885 	/* allocate parse tree node */
886 	ret = newnode(t, file, line);
887 	ret->u.stmt.np = np;
888 	ret->u.stmt.nvpairs = nvpairs;
889 
890 	/*
891 	 * the global lut pointed to by lutpp (Faults, Defects, Upsets,
892 	 * Errors, Ereports, Serds, FRUs, or ASRUs) keeps the first decl.
893 	 * if this isn't the first declr, we merge the
894 	 * nvpairs into the first decl so we have a
895 	 * merged table to look up properties from.
896 	 * if this is the first time we've seen this fault,
897 	 * we add it to the global lut and start lutp
898 	 * off with any nvpairs from this declaration statement.
899 	 */
900 	if (justpath && (decl = tree_name2np_lut_lookup(*lutpp, np)) == NULL) {
901 		/* this is the first time name is declared */
902 		stats_counter_bump(countp);
903 		*lutpp = tree_name2np_lut_add(*lutpp, np, ret);
904 		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t);
905 	} else if (!justpath &&
906 	    (decl = tree_event2np_lut_lookup(*lutpp, np)) == NULL) {
907 		/* this is the first time event is declared */
908 		stats_counter_bump(countp);
909 		*lutpp = tree_event2np_lut_add(*lutpp, np, ret);
910 		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t);
911 	} else {
912 		/* was declared before, just add new nvpairs to its lutp */
913 		decl->u.stmt.lutp = nvpair2lut(nvpairs, decl->u.stmt.lutp, t);
914 	}
915 
916 	return (ret);
917 }
918 
919 /*ARGSUSED*/
920 static void
921 update_serd_refstmt(void *lhs, void *rhs, void *arg)
922 {
923 	struct node *serd;
924 
925 	ASSERT(rhs != NULL);
926 
927 	serd = tree_s2np_lut_lookup(((struct node *)rhs)->u.stmt.lutp,
928 				    L_engine);
929 	if (serd == NULL)
930 		return;
931 
932 	ASSERT(serd->t == T_EVENT);
933 	if (arg != NULL && tree_eventcmp(serd, (struct node *)arg) != 0)
934 		return;
935 
936 	serd = tree_event2np_lut_lookup(SERDs, serd);
937 	if (serd != NULL)
938 		serd->u.stmt.flags |= STMT_REF;
939 }
940 
941 struct node *
942 tree_decl(enum nodetype t, struct node *np, struct node *nvpairs,
943     const char *file, int line)
944 {
945 	struct node *decl;
946 	struct node *ret;
947 
948 	ASSERT(np != NULL);
949 
950 	check_type_iterator(np);
951 
952 	switch (t) {
953 	case T_EVENT:
954 		/* determine the type of event being declared */
955 		ASSERT(np->u.event.ename->t == T_NAME);
956 		switch (np->u.event.ename->u.name.t) {
957 		case N_FAULT:
958 			ret = dodecl(T_FAULT, file, line, np, nvpairs,
959 			    &Faults, Faultcount, 0);
960 			break;
961 
962 		case N_UPSET:
963 			ret = dodecl(T_UPSET, file, line, np, nvpairs,
964 			    &Upsets, Upsetcount, 0);
965 
966 			/* increment serd statement reference */
967 			decl = tree_event2np_lut_lookup(Upsets, np);
968 			update_serd_refstmt(NULL, decl, NULL);
969 			break;
970 
971 		case N_DEFECT:
972 			ret = dodecl(T_DEFECT, file, line, np, nvpairs,
973 			    &Defects, Defectcount, 0);
974 			break;
975 
976 		case N_ERROR:
977 			ret = dodecl(T_ERROR, file, line, np, nvpairs,
978 			    &Errors, Errorcount, 0);
979 			break;
980 
981 		case N_EREPORT:
982 			ret = dodecl(T_EREPORT, file, line, np, nvpairs,
983 			    &Ereports, Ereportcount, 0);
984 			/*
985 			 * keep a lut of just the enames, so that the DE
986 			 * can subscribe to a uniqified list of event
987 			 * classes.
988 			 */
989 			Ereportenames =
990 			    tree_name2np_lut_add(Ereportenames,
991 			    np->u.event.ename, np);
992 			break;
993 
994 		default:
995 			outfl(O_ERR, file, line,
996 			    "tree_decl: internal error, event name type %s",
997 			    ptree_nametype2str(np->u.event.ename->u.name.t));
998 		}
999 		break;
1000 
1001 	case T_ENGINE:
1002 		/* determine the type of engine being declared */
1003 		ASSERT(np->u.event.ename->t == T_NAME);
1004 		switch (np->u.event.ename->u.name.t) {
1005 		case N_SERD:
1006 			ret = dodecl(T_SERD, file, line, np, nvpairs,
1007 			    &SERDs, SERDcount, 0);
1008 			lut_walk(Upsets, update_serd_refstmt, np);
1009 			break;
1010 
1011 		default:
1012 			outfl(O_ERR, file, line,
1013 			    "tree_decl: internal error, engine name type %s",
1014 			    ptree_nametype2str(np->u.event.ename->u.name.t));
1015 		}
1016 		break;
1017 	case T_ASRU:
1018 		ret = dodecl(T_ASRU, file, line, np, nvpairs,
1019 		    &ASRUs, ASRUcount, 1);
1020 		break;
1021 
1022 	case T_FRU:
1023 		ret = dodecl(T_FRU, file, line, np, nvpairs,
1024 		    &FRUs, FRUcount, 1);
1025 		break;
1026 
1027 	case T_CONFIG:
1028 		/*
1029 		 * config statements are different from above: they
1030 		 * are not merged at all (until the configuration cache
1031 		 * code does its own style of merging.  and the properties
1032 		 * are a free-for-all -- we don't check for allowed or
1033 		 * required config properties.
1034 		 */
1035 		ret = newnode(T_CONFIG, file, line);
1036 		ret->u.stmt.np = np;
1037 		ret->u.stmt.nvpairs = nvpairs;
1038 		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, T_CONFIG);
1039 
1040 		if (lut_lookup(Configs, np, (lut_cmp)tree_namecmp) == NULL)
1041 			stats_counter_bump(Configcount);
1042 
1043 		Configs = lut_add(Configs, (void *)np, (void *)ret, NULL);
1044 		break;
1045 
1046 	default:
1047 		out(O_DIE, "tree_decl: internal error, type %s",
1048 		    ptree_nodetype2str(t));
1049 	}
1050 
1051 	return (ret);
1052 }
1053 
1054 /* keep backpointers in arrows to the prop they belong to (used for scoping) */
1055 static void
1056 set_arrow_prop(struct node *prop, struct node *np)
1057 {
1058 	if (np == NULL)
1059 		return;
1060 
1061 	if (np->t == T_ARROW) {
1062 		np->u.arrow.prop = prop;
1063 		set_arrow_prop(prop, np->u.arrow.lhs);
1064 		/*
1065 		 * no need to recurse right or handle T_LIST since
1066 		 * T_ARROWs always cascade left and are at the top
1067 		 * of the parse tree.  (you can see this in the rule
1068 		 * for "propbody" in escparse.y.)
1069 		 */
1070 	}
1071 }
1072 
1073 struct node *
1074 tree_stmt(enum nodetype t, struct node *np, const char *file, int line)
1075 {
1076 	struct node *ret = newnode(t, file, line);
1077 	struct node *pp;
1078 	int inlist = 0;
1079 
1080 	ret->u.stmt.np = np;
1081 
1082 	switch (t) {
1083 	case T_PROP:
1084 		check_proplists(t, np);
1085 		check_propnames(t, np, 0, 0);
1086 		check_propscope(np);
1087 		set_arrow_prop(ret, np);
1088 
1089 		for (pp = Props; pp; pp = pp->u.stmt.next) {
1090 			if (tree_treecmp(pp, ret, T_NAME,
1091 					(lut_cmp)tree_namecmp) == 0) {
1092 				inlist = 1;
1093 				break;
1094 			}
1095 		}
1096 		if (inlist == 0)
1097 			stats_counter_bump(Propcount);
1098 
1099 		/* "Props" is a linked list of all prop statements */
1100 		if (Lastprops)
1101 			Lastprops->u.stmt.next = ret;
1102 		else
1103 			Props = ret;
1104 		Lastprops = ret;
1105 		break;
1106 
1107 	case T_MASK:
1108 		check_proplists(t, np);
1109 		check_propnames(t, np, 0, 0);
1110 		check_propscope(np);
1111 		set_arrow_prop(ret, np);
1112 
1113 		for (pp = Masks; pp; pp = pp->u.stmt.next) {
1114 			if (tree_treecmp(pp, ret, T_NAME,
1115 					(lut_cmp)tree_namecmp) == 0) {
1116 				inlist = 1;
1117 				break;
1118 			}
1119 		}
1120 		if (inlist == 0)
1121 			stats_counter_bump(Maskcount);
1122 
1123 		/* "Masks" is a linked list of all mask statements */
1124 		if (Lastmasks)
1125 			Lastmasks->u.stmt.next = ret;
1126 		else
1127 			Masks = ret;
1128 		Lastmasks = ret;
1129 		stats_counter_bump(Maskcount);
1130 		break;
1131 
1132 	default:
1133 		outfl(O_DIE, np->file, np->line,
1134 		    "tree_stmt: internal error (t %d)", t);
1135 	}
1136 
1137 	return (ret);
1138 }
1139 
1140 void
1141 tree_report()
1142 {
1143 	/*
1144 	 * The only declarations with required properties
1145 	 * currently are faults and serds. Make sure the
1146 	 * the declarations have the required properties.
1147 	 */
1148 	lut_walk(Faults, (lut_cb)check_required_props, (void *)T_FAULT);
1149 	lut_walk(Upsets, (lut_cb)check_required_props, (void *)T_UPSET);
1150 	lut_walk(Errors, (lut_cb)check_required_props, (void *)T_ERROR);
1151 	lut_walk(Ereports, (lut_cb)check_required_props, (void *)T_EREPORT);
1152 	lut_walk(SERDs, (lut_cb)check_required_props, (void *)T_SERD);
1153 
1154 	/*
1155 	 * we do this now rather than while building the parse
1156 	 * tree because it is inconvenient for the user if we
1157 	 * require SERD engines to be declared before used in
1158 	 * an upset "engine" property.
1159 	 */
1160 	lut_walk(Faults, (lut_cb)check_refcount, (void *)T_FAULT);
1161 	lut_walk(Upsets, (lut_cb)check_upset_engine, (void *)T_UPSET);
1162 	lut_walk(Upsets, (lut_cb)check_refcount, (void *)T_UPSET);
1163 	lut_walk(Errors, (lut_cb)check_refcount, (void *)T_ERROR);
1164 	lut_walk(Ereports, (lut_cb)check_refcount, (void *)T_EREPORT);
1165 	lut_walk(SERDs, (lut_cb)check_refcount, (void *)T_SERD);
1166 
1167 	/* check for cycles */
1168 	lut_walk(Errors, (lut_cb)check_cycle, (void *)0);
1169 }
1170 
1171 /* compare two T_NAMES by only looking at components, not iterators */
1172 int
1173 tree_namecmp(struct node *np1, struct node *np2)
1174 {
1175 	ASSERT(np1 != NULL);
1176 	ASSERT(np2 != NULL);
1177 	ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t));
1178 	ASSERTinfo(np2->t == T_NAME, ptree_nodetype2str(np1->t));
1179 
1180 	while (np1 && np2 && np1->u.name.s == np2->u.name.s) {
1181 		np1 = np1->u.name.next;
1182 		np2 = np2->u.name.next;
1183 	}
1184 	if (np1 == NULL)
1185 		if (np2 == NULL)
1186 			return (0);
1187 		else
1188 			return (-1);
1189 	else if (np2 == NULL)
1190 		return (1);
1191 	else
1192 		return (np2->u.name.s - np1->u.name.s);
1193 }
1194 
1195 int
1196 tree_eventcmp(struct node *np1, struct node *np2)
1197 {
1198 	int ret;
1199 
1200 	ASSERT(np1 != NULL);
1201 	ASSERT(np2 != NULL);
1202 	ASSERTinfo(np1->t == T_EVENT, ptree_nodetype2str(np1->t));
1203 	ASSERTinfo(np2->t == T_EVENT, ptree_nodetype2str(np2->t));
1204 
1205 	if ((ret = tree_namecmp(np1->u.event.ename,
1206 		np2->u.event.ename)) == 0) {
1207 			if (np1->u.event.epname == NULL &&
1208 				np2->u.event.epname == NULL)
1209 				return (0);
1210 			else if (np1->u.event.epname == NULL)
1211 				return (-1);
1212 			else if (np2->u.event.epname == NULL)
1213 				return (1);
1214 			else
1215 				return tree_namecmp(np1->u.event.epname,
1216 					np2->u.event.epname);
1217 	} else
1218 	return (ret);
1219 }
1220