xref: /titanic_50/usr/src/cmd/fm/eversholt/common/tree.c (revision a9fb0ae8cfc9d2ebdf5f7cded8945fbb649ba24e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * tree.c -- routines for manipulating the prop tree
27  *
28  * the actions in escparse.y call these routines to construct
29  * the parse tree.  these routines, in turn, call the check_X()
30  * routines for semantic checking.
31  */
32 
33 #pragma ident	"%Z%%M%	%I%	%E% SMI"
34 
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <ctype.h>
38 #include <strings.h>
39 #include <alloca.h>
40 #include "alloc.h"
41 #include "out.h"
42 #include "stats.h"
43 #include "stable.h"
44 #include "literals.h"
45 #include "lut.h"
46 #include "esclex.h"
47 #include "tree.h"
48 #include "check.h"
49 #include "ptree.h"
50 
51 static struct node *Root;
52 
53 static char *Newname;
54 
55 static struct stats *Faultcount;
56 static struct stats *Upsetcount;
57 static struct stats *Defectcount;
58 static struct stats *Errorcount;
59 static struct stats *Ereportcount;
60 static struct stats *SERDcount;
61 static struct stats *STATcount;
62 static struct stats *ASRUcount;
63 static struct stats *FRUcount;
64 static struct stats *Configcount;
65 static struct stats *Propcount;
66 static struct stats *Maskcount;
67 static struct stats *Nodecount;
68 static struct stats *Namecount;
69 static struct stats *Nodesize;
70 
71 void
72 tree_init(void)
73 {
74 	Faultcount = stats_new_counter("parser.fault", "fault decls", 1);
75 	Upsetcount = stats_new_counter("parser.upset", "upset decls", 1);
76 	Defectcount = stats_new_counter("parser.defect", "defect decls", 1);
77 	Errorcount = stats_new_counter("parser.error", "error decls", 1);
78 	Ereportcount = stats_new_counter("parser.ereport", "ereport decls", 1);
79 	SERDcount = stats_new_counter("parser.SERD", "SERD engine decls", 1);
80 	STATcount = stats_new_counter("parser.STAT", "STAT engine decls", 1);
81 	ASRUcount = stats_new_counter("parser.ASRU", "ASRU decls", 1);
82 	FRUcount = stats_new_counter("parser.FRU", "FRU decls", 1);
83 	Configcount = stats_new_counter("parser.config", "config stmts", 1);
84 	Propcount = stats_new_counter("parser.prop", "prop stmts", 1);
85 	Maskcount = stats_new_counter("parser.mask", "mask stmts", 1);
86 	Nodecount = stats_new_counter("parser.node", "nodes created", 1);
87 	Namecount = stats_new_counter("parser.name", "names created", 1);
88 	Nodesize =
89 	    stats_new_counter("parser.nodesize", "sizeof(struct node)", 1);
90 	stats_counter_add(Nodesize, sizeof (struct node));
91 }
92 
93 void
94 tree_fini(void)
95 {
96 	stats_delete(Faultcount);
97 	stats_delete(Upsetcount);
98 	stats_delete(Defectcount);
99 	stats_delete(Errorcount);
100 	stats_delete(Ereportcount);
101 	stats_delete(SERDcount);
102 	stats_delete(STATcount);
103 	stats_delete(ASRUcount);
104 	stats_delete(FRUcount);
105 	stats_delete(Configcount);
106 	stats_delete(Propcount);
107 	stats_delete(Maskcount);
108 	stats_delete(Nodecount);
109 	stats_delete(Namecount);
110 	stats_delete(Nodesize);
111 
112 	/* free entire parse tree */
113 	tree_free(Root);
114 
115 	/* free up the luts we keep for decls */
116 	lut_free(Faults, NULL, NULL);
117 	Faults = NULL;
118 	lut_free(Upsets, NULL, NULL);
119 	Upsets = NULL;
120 	lut_free(Defects, NULL, NULL);
121 	Defects = NULL;
122 	lut_free(Errors, NULL, NULL);
123 	Errors = NULL;
124 	lut_free(Ereports, NULL, NULL);
125 	Ereports = NULL;
126 	lut_free(Ereportenames, NULL, NULL);
127 	Ereportenames = NULL;
128 	lut_free(SERDs, NULL, NULL);
129 	SERDs = NULL;
130 	lut_free(STATs, NULL, NULL);
131 	STATs = NULL;
132 	lut_free(ASRUs, NULL, NULL);
133 	ASRUs = NULL;
134 	lut_free(FRUs, NULL, NULL);
135 	FRUs = NULL;
136 	lut_free(Configs, NULL, NULL);
137 	Configs = NULL;
138 
139 	Props = Lastprops = NULL;
140 	Masks = Lastmasks = NULL;
141 	Problems = Lastproblems = NULL;
142 
143 	if (Newname != NULL) {
144 		FREE(Newname);
145 		Newname = NULL;
146 	}
147 }
148 
149 struct node *
150 newnode(enum nodetype t, const char *file, int line)
151 {
152 	struct node *ret = MALLOC(sizeof (*ret));
153 
154 	stats_counter_bump(Nodecount);
155 	bzero(ret, sizeof (*ret));
156 	ret->t = t;
157 	ret->file = (file == NULL) ? "<nofile>" : file;
158 	ret->line = line;
159 
160 	return (ret);
161 }
162 
163 /*ARGSUSED*/
164 void
165 tree_free(struct node *root)
166 {
167 	if (root == NULL)
168 		return;
169 
170 	switch (root->t) {
171 	case T_NAME:
172 		tree_free(root->u.name.child);
173 		tree_free(root->u.name.next);
174 		break;
175 	case T_FUNC:
176 		tree_free(root->u.func.arglist);
177 		break;
178 	case T_AND:
179 	case T_OR:
180 	case T_EQ:
181 	case T_NE:
182 	case T_ADD:
183 	case T_DIV:
184 	case T_MOD:
185 	case T_MUL:
186 	case T_SUB:
187 	case T_LT:
188 	case T_LE:
189 	case T_GT:
190 	case T_GE:
191 	case T_BITAND:
192 	case T_BITOR:
193 	case T_BITXOR:
194 	case T_BITNOT:
195 	case T_LSHIFT:
196 	case T_RSHIFT:
197 	case T_NVPAIR:
198 	case T_ASSIGN:
199 	case T_CONDIF:
200 	case T_CONDELSE:
201 	case T_LIST:
202 		tree_free(root->u.expr.left);
203 		tree_free(root->u.expr.right);
204 		break;
205 	case T_EVENT:
206 		tree_free(root->u.event.ename);
207 		tree_free(root->u.event.epname);
208 		tree_free(root->u.event.eexprlist);
209 		break;
210 	case T_NOT:
211 		tree_free(root->u.expr.left);
212 		break;
213 	case T_ARROW:
214 		tree_free(root->u.arrow.lhs);
215 		tree_free(root->u.arrow.nnp);
216 		tree_free(root->u.arrow.knp);
217 		tree_free(root->u.arrow.rhs);
218 		break;
219 	case T_PROP:
220 	case T_MASK:
221 		tree_free(root->u.stmt.np);
222 		break;
223 	case T_FAULT:
224 	case T_UPSET:
225 	case T_DEFECT:
226 	case T_ERROR:
227 	case T_EREPORT:
228 	case T_ASRU:
229 	case T_FRU:
230 	case T_SERD:
231 	case T_STAT:
232 	case T_CONFIG:
233 		tree_free(root->u.stmt.np);
234 		if (root->u.stmt.nvpairs)
235 			tree_free(root->u.stmt.nvpairs);
236 		if (root->u.stmt.lutp)
237 			lut_free(root->u.stmt.lutp, NULL, NULL);
238 		break;
239 	case T_TIMEVAL:
240 	case T_NUM:
241 	case T_QUOTE:
242 	case T_GLOBID:
243 	case T_NOTHING:
244 		break;
245 	default:
246 		out(O_DIE,
247 		    "internal error: tree_free unexpected nodetype: %d",
248 		    root->t);
249 		/*NOTREACHED*/
250 	}
251 	bzero(root, sizeof (*root));
252 	FREE(root);
253 }
254 
255 static int
256 tree_treecmp(struct node *np1, struct node *np2, enum nodetype t,
257 	    lut_cmp cmp_func)
258 {
259 	if (np1 == NULL || np2 == NULL)
260 		return (0);
261 
262 	if (np1->t != np2->t)
263 		return (1);
264 
265 	ASSERT(cmp_func != NULL);
266 
267 	if (np1->t == t)
268 		return ((*cmp_func)(np1, np2));
269 
270 	switch (np1->t) {
271 	case T_NAME:
272 		if (tree_treecmp(np1->u.name.child, np2->u.name.child, t,
273 				cmp_func))
274 			return (1);
275 		return (tree_treecmp(np1->u.name.next, np2->u.name.next, t,
276 				    cmp_func));
277 		/*NOTREACHED*/
278 		break;
279 	case T_FUNC:
280 		return (tree_treecmp(np1->u.func.arglist, np2->u.func.arglist,
281 				    t, cmp_func));
282 		/*NOTREACHED*/
283 		break;
284 	case T_AND:
285 	case T_OR:
286 	case T_EQ:
287 	case T_NE:
288 	case T_ADD:
289 	case T_DIV:
290 	case T_MOD:
291 	case T_MUL:
292 	case T_SUB:
293 	case T_LT:
294 	case T_LE:
295 	case T_GT:
296 	case T_GE:
297 	case T_BITAND:
298 	case T_BITOR:
299 	case T_BITXOR:
300 	case T_BITNOT:
301 	case T_LSHIFT:
302 	case T_RSHIFT:
303 	case T_NVPAIR:
304 	case T_ASSIGN:
305 	case T_CONDIF:
306 	case T_CONDELSE:
307 	case T_LIST:
308 		if (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t,
309 				cmp_func))
310 			return (1);
311 		return (tree_treecmp(np1->u.expr.right, np2->u.expr.right, t,
312 				    cmp_func));
313 		/*NOTREACHED*/
314 		break;
315 	case T_EVENT:
316 		if (tree_treecmp(np1->u.event.ename, np2->u.event.ename, t,
317 				cmp_func))
318 			return (1);
319 		if (tree_treecmp(np1->u.event.epname, np2->u.event.epname, t,
320 				cmp_func))
321 			return (1);
322 		return (tree_treecmp(np1->u.event.eexprlist,
323 				    np2->u.event.eexprlist, t, cmp_func));
324 		/*NOTREACHED*/
325 		break;
326 	case T_NOT:
327 		return (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t,
328 				    cmp_func));
329 		/*NOTREACHED*/
330 		break;
331 	case T_ARROW:
332 		if (tree_treecmp(np1->u.arrow.lhs, np2->u.arrow.lhs, t,
333 				cmp_func))
334 			return (1);
335 		if (tree_treecmp(np1->u.arrow.nnp, np2->u.arrow.nnp, t,
336 				cmp_func))
337 			return (1);
338 		if (tree_treecmp(np1->u.arrow.knp, np2->u.arrow.knp, t,
339 				cmp_func))
340 			return (1);
341 		return (tree_treecmp(np1->u.arrow.rhs, np2->u.arrow.rhs, t,
342 				    cmp_func));
343 		/*NOTREACHED*/
344 		break;
345 	case T_PROP:
346 	case T_MASK:
347 		return (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t,
348 				    cmp_func));
349 		/*NOTREACHED*/
350 		break;
351 	case T_FAULT:
352 	case T_UPSET:
353 	case T_DEFECT:
354 	case T_ERROR:
355 	case T_EREPORT:
356 	case T_ASRU:
357 	case T_FRU:
358 	case T_SERD:
359 	case T_STAT:
360 		if (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t, cmp_func))
361 			return (1);
362 		return (tree_treecmp(np1->u.stmt.nvpairs, np2->u.stmt.nvpairs,
363 				    t, cmp_func));
364 		/*NOTREACHED*/
365 		break;
366 	case T_TIMEVAL:
367 	case T_NUM:
368 	case T_QUOTE:
369 	case T_GLOBID:
370 	case T_NOTHING:
371 		break;
372 	default:
373 		out(O_DIE,
374 		    "internal error: tree_treecmp unexpected nodetype: %d",
375 		    np1->t);
376 		/*NOTREACHED*/
377 		break;
378 	}
379 
380 	return (0);
381 }
382 
383 struct node *
384 tree_root(struct node *np)
385 {
386 	if (np)
387 		Root = np;
388 	return (Root);
389 }
390 
391 struct node *
392 tree_nothing(void)
393 {
394 	return (newnode(T_NOTHING, L_nofile, 0));
395 }
396 
397 struct node *
398 tree_expr(enum nodetype t, struct node *left, struct node *right)
399 {
400 	struct node *ret;
401 
402 	ASSERTinfo(left != NULL || right != NULL, ptree_nodetype2str(t));
403 
404 	ret = newnode(t,
405 	    (left) ? left->file : right->file,
406 	    (left) ? left->line : right->line);
407 
408 	ret->u.expr.left = left;
409 	ret->u.expr.right = right;
410 
411 	check_expr(ret);
412 
413 	return (ret);
414 }
415 
416 /*
417  * ename_compress -- convert event class name in to more space-efficient form
418  *
419  * this routine is called after the parser has completed an "ename", which
420  * is that part of an event that contains the class name (like ereport.x.y.z).
421  * after this routine gets done with the ename, two things are true:
422  *   1. the ename uses only a single struct node
423  *   2. ename->u.name.s contains the *complete* class name, dots and all,
424  *      entered into the string table.
425  *
426  * so in addition to saving space by using fewer struct nodes, this routine
427  * allows consumers of the fault tree to assume the ename is a single
428  * string, rather than a linked list of strings.
429  */
430 static struct node *
431 ename_compress(struct node *ename)
432 {
433 	char *buf;
434 	char *cp;
435 	int len = 0;
436 	struct node *np;
437 
438 	if (ename == NULL)
439 		return (ename);
440 
441 	ASSERT(ename->t == T_NAME);
442 
443 	if (ename->u.name.next == NULL)
444 		return (ename);	/* no compression to be applied here */
445 
446 	for (np = ename; np != NULL; np = np->u.name.next) {
447 		ASSERT(np->t == T_NAME);
448 		len++;	/* room for '.' and final '\0' */
449 		len += strlen(np->u.name.s);
450 	}
451 	cp = buf = alloca(len);
452 	for (np = ename; np != NULL; np = np->u.name.next) {
453 		ASSERT(np->t == T_NAME);
454 		if (np != ename)
455 			*cp++ = '.';
456 		(void) strcpy(cp, np->u.name.s);
457 		cp += strlen(cp);
458 	}
459 
460 	ename->u.name.s = stable(buf);
461 	tree_free(ename->u.name.next);
462 	ename->u.name.next = NULL;
463 	ename->u.name.last = ename;
464 	return (ename);
465 }
466 
467 struct node *
468 tree_event(struct node *ename, struct node *epname, struct node *eexprlist)
469 {
470 	struct node *ret;
471 
472 	ASSERT(ename != NULL);
473 
474 	ret = newnode(T_EVENT, ename->file, ename->line);
475 
476 	ret->u.event.ename = ename_compress(ename);
477 	ret->u.event.epname = epname;
478 	ret->u.event.eexprlist = eexprlist;
479 
480 	check_event(ret);
481 
482 	return (ret);
483 }
484 
485 struct node *
486 tree_name(const char *s, enum itertype it, const char *file, int line)
487 {
488 	struct node *ret = newnode(T_NAME, file, line);
489 
490 	ASSERT(s != NULL);
491 
492 	stats_counter_bump(Namecount);
493 	ret->u.name.t = N_UNSPEC;
494 	ret->u.name.s = stable(s);
495 	ret->u.name.it = it;
496 	ret->u.name.last = ret;
497 
498 	if (it == IT_ENAME) {
499 		/* PHASE2, possible optimization: convert to table driven */
500 		if (s == L_fault)
501 			ret->u.name.t = N_FAULT;
502 		else if (s == L_upset)
503 			ret->u.name.t = N_UPSET;
504 		else if (s == L_defect)
505 			ret->u.name.t = N_DEFECT;
506 		else if (s == L_error)
507 			ret->u.name.t = N_ERROR;
508 		else if (s == L_ereport)
509 			ret->u.name.t = N_EREPORT;
510 		else if (s == L_serd)
511 			ret->u.name.t = N_SERD;
512 		else if (s == L_stat)
513 			ret->u.name.t = N_STAT;
514 		else
515 			outfl(O_ERR, file, line, "unknown class: %s", s);
516 	}
517 	return (ret);
518 }
519 
520 struct node *
521 tree_iname(const char *s, const char *file, int line)
522 {
523 	struct node *ret;
524 	char *ss;
525 	char *ptr;
526 
527 	ASSERT(s != NULL && *s != '\0');
528 
529 	ss = STRDUP(s);
530 
531 	ptr = &ss[strlen(ss) - 1];
532 	if (!isdigit(*ptr)) {
533 		outfl(O_ERR, file, line,
534 		    "instanced name expected (i.e. \"x0/y1\")");
535 		FREE(ss);
536 		return (tree_name(s, IT_NONE, file, line));
537 	}
538 	while (ptr > ss && isdigit(*(ptr - 1)))
539 		ptr--;
540 
541 	ret = newnode(T_NAME, file, line);
542 	stats_counter_bump(Namecount);
543 	ret->u.name.child = tree_num(ptr, file, line);
544 	*ptr = '\0';
545 	ret->u.name.t = N_UNSPEC;
546 	ret->u.name.s = stable(ss);
547 	ret->u.name.it = IT_NONE;
548 	ret->u.name.last = ret;
549 	FREE(ss);
550 
551 	return (ret);
552 }
553 
554 struct node *
555 tree_globid(const char *s, const char *file, int line)
556 {
557 	struct node *ret = newnode(T_GLOBID, file, line);
558 
559 	ASSERT(s != NULL);
560 
561 	ret->u.globid.s = stable(s);
562 
563 	return (ret);
564 }
565 
566 struct node *
567 tree_name_append(struct node *np1, struct node *np2)
568 {
569 	ASSERT(np1 != NULL && np2 != NULL);
570 
571 	if (np1->t != T_NAME)
572 		outfl(O_DIE, np1->file, np1->line,
573 		    "tree_name_append: internal error (np1 type %d)", np1->t);
574 	if (np2->t != T_NAME)
575 		outfl(O_DIE, np2->file, np2->line,
576 		    "tree_name_append: internal error (np2 type %d)", np2->t);
577 
578 	ASSERT(np1->u.name.last != NULL);
579 
580 	np1->u.name.last->u.name.next = np2;
581 	np1->u.name.last = np2;
582 	return (np1);
583 }
584 
585 /*
586  * tree_name_repairdash -- repair a class name that contained a dash
587  *
588  * this routine is called by the parser when a dash is encountered
589  * in a class name.  the event protocol allows the dashes but our
590  * lexer considers them a separate token (arithmetic minus).  an extra
591  * rule in the parser catches this case and calls this routine to fixup
592  * the last component of the class name (so far) by constructing the
593  * new stable entry for a name including the dash.
594  */
595 struct node *
596 tree_name_repairdash(struct node *np, const char *s)
597 {
598 	int len;
599 	char *buf;
600 
601 	ASSERT(np != NULL && s != NULL);
602 
603 	if (np->t != T_NAME)
604 		outfl(O_DIE, np->file, np->line,
605 		    "tree_name_repairdash: internal error (np type %d)",
606 		    np->t);
607 
608 	ASSERT(np->u.name.last != NULL);
609 
610 	len = strlen(np->u.name.last->u.name.s) + 1 + strlen(s) + 1;
611 	buf = MALLOC(len);
612 	(void) snprintf(buf, len, "%s-%s", np->u.name.last->u.name.s, s);
613 	np->u.name.last->u.name.s = stable(buf);
614 	FREE(buf);
615 	return (np);
616 }
617 
618 struct node *
619 tree_name_iterator(struct node *np1, struct node *np2)
620 {
621 	ASSERT(np1 != NULL);
622 	ASSERT(np2 != NULL);
623 	ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t));
624 
625 	np1->u.name.child = np2;
626 
627 	check_name_iterator(np1);
628 
629 	return (np1);
630 }
631 
632 struct node *
633 tree_timeval(const char *s, const char *suffix, const char *file, int line)
634 {
635 	struct node *ret = newnode(T_TIMEVAL, file, line);
636 	const unsigned long long *ullp;
637 
638 	ASSERT(s != NULL);
639 	ASSERT(suffix != NULL);
640 
641 	if ((ullp = lex_s2ullp_lut_lookup(Timesuffixlut, suffix)) == NULL) {
642 		outfl(O_ERR, file, line,
643 		    "unrecognized number suffix: %s", suffix);
644 		/* still construct a valid timeval node so parsing continues */
645 		ret->u.ull = 1;
646 	} else {
647 		ret->u.ull = (unsigned long long)strtoul(s, NULL, 0) * *ullp;
648 	}
649 
650 	return (ret);
651 }
652 
653 struct node *
654 tree_num(const char *s, const char *file, int line)
655 {
656 	struct node *ret = newnode(T_NUM, file, line);
657 
658 	ret->u.ull = (unsigned long long)strtoul(s, NULL, 0);
659 	return (ret);
660 }
661 
662 struct node *
663 tree_quote(const char *s, const char *file, int line)
664 {
665 	struct node *ret = newnode(T_QUOTE, file, line);
666 
667 	ret->u.quote.s = stable(s);
668 	return (ret);
669 }
670 
671 struct node *
672 tree_func(const char *s, struct node *np, const char *file, int line)
673 {
674 	struct node *ret = newnode(T_FUNC, file, line);
675 
676 	ret->u.func.s = s;
677 	ret->u.func.arglist = np;
678 
679 	check_func(ret);
680 
681 	return (ret);
682 }
683 
684 /*
685  * given a list from a prop or mask statement or a function argument,
686  * convert all iterators to explicit iterators by inventing appropriate
687  * iterator names.
688  */
689 static void
690 make_explicit(struct node *np, int eventonly)
691 {
692 	struct node *pnp;	/* component of pathname */
693 	struct node *pnp2;
694 	int count;
695 	static size_t namesz;
696 
697 	if (Newname == NULL) {
698 		namesz = 200;
699 		Newname = MALLOC(namesz);
700 	}
701 
702 	if (np == NULL)
703 		return;		/* all done */
704 
705 	switch (np->t) {
706 		case T_ASSIGN:
707 		case T_CONDIF:
708 		case T_CONDELSE:
709 		case T_NE:
710 		case T_EQ:
711 		case T_LT:
712 		case T_LE:
713 		case T_GT:
714 		case T_GE:
715 		case T_BITAND:
716 		case T_BITOR:
717 		case T_BITXOR:
718 		case T_BITNOT:
719 		case T_LSHIFT:
720 		case T_RSHIFT:
721 		case T_LIST:
722 		case T_AND:
723 		case T_OR:
724 		case T_NOT:
725 		case T_ADD:
726 		case T_SUB:
727 		case T_MUL:
728 		case T_DIV:
729 		case T_MOD:
730 			make_explicit(np->u.expr.left, eventonly);
731 			make_explicit(np->u.expr.right, eventonly);
732 			break;
733 
734 		case T_EVENT:
735 			make_explicit(np->u.event.epname, 0);
736 			make_explicit(np->u.event.eexprlist, 1);
737 			break;
738 
739 		case T_FUNC:
740 			make_explicit(np->u.func.arglist, eventonly);
741 			break;
742 
743 		case T_NAME:
744 			if (eventonly)
745 				return;
746 			for (pnp = np; pnp != NULL; pnp = pnp->u.name.next)
747 				if (pnp->u.name.child == NULL) {
748 					/*
749 					 * found implicit iterator.  convert
750 					 * it to an explicit iterator by
751 					 * using the name of the component
752 					 * appended with '#' and the number
753 					 * of times we've seen this same
754 					 * component name in this path so far.
755 					 */
756 					count = 0;
757 					for (pnp2 = np; pnp2 != NULL;
758 					    pnp2 = pnp2->u.name.next)
759 						if (pnp2 == pnp)
760 							break;
761 						else if (pnp2->u.name.s ==
762 						    pnp->u.name.s)
763 							count++;
764 
765 					if (namesz < strlen(pnp->u.name.s) +
766 					    100) {
767 						namesz = strlen(pnp->u.name.s) +
768 						    100;
769 						FREE(Newname);
770 						Newname = MALLOC(namesz);
771 					}
772 					/*
773 					 * made up interator name is:
774 					 *	name#ordinal
775 					 * or
776 					 *	name##ordinal
777 					 * the first one is used for vertical
778 					 * expansion, the second for horizontal.
779 					 * either way, the '#' embedded in
780 					 * the name makes it impossible to
781 					 * collide with an actual iterator
782 					 * given to us in the eversholt file.
783 					 */
784 					(void) snprintf(Newname, namesz,
785 					    "%s#%s%d", pnp->u.name.s,
786 					    (pnp->u.name.it == IT_HORIZONTAL) ?
787 					    "#" : "", count);
788 
789 					pnp->u.name.child = tree_name(Newname,
790 					    IT_NONE, pnp->file, pnp->line);
791 					pnp->u.name.childgen = 1;
792 				}
793 			break;
794 	}
795 }
796 
797 struct node *
798 tree_pname(struct node *np)
799 {
800 	make_explicit(np, 0);
801 	return (np);
802 }
803 
804 struct node *
805 tree_arrow(struct node *lhs, struct node *nnp, struct node *knp,
806     struct node *rhs)
807 {
808 	struct node *ret;
809 
810 	ASSERT(lhs != NULL || rhs != NULL);
811 
812 	ret = newnode(T_ARROW,
813 	    (lhs) ? lhs->file : rhs->file,
814 	    (lhs) ? lhs->line : rhs->line);
815 
816 	ret->u.arrow.lhs = lhs;
817 	ret->u.arrow.nnp = nnp;
818 	ret->u.arrow.knp = knp;
819 	ret->u.arrow.rhs = rhs;
820 
821 	make_explicit(lhs, 0);
822 	make_explicit(rhs, 0);
823 
824 	check_arrow(ret);
825 
826 	return (ret);
827 }
828 
829 static struct lut *
830 nvpair2lut(struct node *np, struct lut *lutp, enum nodetype t)
831 {
832 	if (np) {
833 		if (np->t == T_NVPAIR) {
834 			ASSERTeq(np->u.expr.left->t, T_NAME,
835 			    ptree_nodetype2str);
836 			check_stmt_allowed_properties(t, np, lutp);
837 			lutp = tree_s2np_lut_add(lutp,
838 			    np->u.expr.left->u.name.s, np->u.expr.right);
839 		} else if (np->t == T_LIST) {
840 			lutp = nvpair2lut(np->u.expr.left, lutp, t);
841 			lutp = nvpair2lut(np->u.expr.right, lutp, t);
842 		} else
843 			outfl(O_DIE, np->file, np->line,
844 			    "internal error: nvpair2lut type %s",
845 			    ptree_nodetype2str(np->t));
846 	}
847 
848 	return (lutp);
849 }
850 
851 struct lut *
852 tree_s2np_lut_add(struct lut *root, const char *s, struct node *np)
853 {
854 	return (lut_add(root, (void *)s, (void *)np, NULL));
855 }
856 
857 struct node *
858 tree_s2np_lut_lookup(struct lut *root, const char *s)
859 {
860 	return (struct node *)lut_lookup(root, (void *)s, NULL);
861 }
862 
863 struct lut *
864 tree_name2np_lut_add(struct lut *root, struct node *namep, struct node *np)
865 {
866 	return (lut_add(root, (void *)namep, (void *)np,
867 	    (lut_cmp)tree_namecmp));
868 }
869 
870 struct node *
871 tree_name2np_lut_lookup(struct lut *root, struct node *namep)
872 {
873 	return (struct node *)
874 	    lut_lookup(root, (void *)namep, (lut_cmp)tree_namecmp);
875 }
876 
877 struct node *
878 tree_name2np_lut_lookup_name(struct lut *root, struct node *namep)
879 {
880 	return (struct node *)
881 	    lut_lookup_lhs(root, (void *)namep, (lut_cmp)tree_namecmp);
882 }
883 
884 struct lut *
885 tree_event2np_lut_add(struct lut *root, struct node *enp, struct node *np)
886 {
887 	return (lut_add(root, (void *)enp, (void *)np, (lut_cmp)tree_eventcmp));
888 }
889 
890 struct node *
891 tree_event2np_lut_lookup(struct lut *root, struct node *enp)
892 {
893 	return ((struct node *)
894 	    lut_lookup(root, (void *)enp, (lut_cmp)tree_eventcmp));
895 }
896 
897 struct node *
898 tree_event2np_lut_lookup_event(struct lut *root, struct node *enp)
899 {
900 	return ((struct node *)
901 	    lut_lookup_lhs(root, (void *)enp, (lut_cmp)tree_eventcmp));
902 }
903 
904 static struct node *
905 dodecl(enum nodetype t, const char *file, int line,
906     struct node *np, struct node *nvpairs, struct lut **lutpp,
907     struct stats *countp, int justpath)
908 {
909 	struct node *ret;
910 	struct node *decl;
911 
912 	/* allocate parse tree node */
913 	ret = newnode(t, file, line);
914 	ret->u.stmt.np = np;
915 	ret->u.stmt.nvpairs = nvpairs;
916 
917 	/*
918 	 * the global lut pointed to by lutpp (Faults, Defects, Upsets,
919 	 * Errors, Ereports, Serds, FRUs, or ASRUs) keeps the first decl.
920 	 * if this isn't the first declr, we merge the
921 	 * nvpairs into the first decl so we have a
922 	 * merged table to look up properties from.
923 	 * if this is the first time we've seen this fault,
924 	 * we add it to the global lut and start lutp
925 	 * off with any nvpairs from this declaration statement.
926 	 */
927 	if (justpath && (decl = tree_name2np_lut_lookup(*lutpp, np)) == NULL) {
928 		/* this is the first time name is declared */
929 		stats_counter_bump(countp);
930 		*lutpp = tree_name2np_lut_add(*lutpp, np, ret);
931 		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t);
932 	} else if (!justpath &&
933 	    (decl = tree_event2np_lut_lookup(*lutpp, np)) == NULL) {
934 		/* this is the first time event is declared */
935 		stats_counter_bump(countp);
936 		*lutpp = tree_event2np_lut_add(*lutpp, np, ret);
937 		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t);
938 	} else {
939 		/* was declared before, just add new nvpairs to its lutp */
940 		decl->u.stmt.lutp = nvpair2lut(nvpairs, decl->u.stmt.lutp, t);
941 	}
942 
943 	return (ret);
944 }
945 
946 /*ARGSUSED*/
947 static void
948 update_serd_refstmt(void *lhs, void *rhs, void *arg)
949 {
950 	struct node *serd;
951 
952 	ASSERT(rhs != NULL);
953 
954 	serd = tree_s2np_lut_lookup(((struct node *)rhs)->u.stmt.lutp,
955 				    L_engine);
956 	if (serd == NULL)
957 		return;
958 
959 	ASSERT(serd->t == T_EVENT);
960 	if (arg != NULL && tree_eventcmp(serd, (struct node *)arg) != 0)
961 		return;
962 
963 	serd = tree_event2np_lut_lookup(SERDs, serd);
964 	if (serd != NULL)
965 		serd->u.stmt.flags |= STMT_REF;
966 }
967 
968 struct node *
969 tree_decl(enum nodetype t, struct node *np, struct node *nvpairs,
970     const char *file, int line)
971 {
972 	struct node *decl;
973 	struct node *ret;
974 
975 	ASSERT(np != NULL);
976 
977 	check_type_iterator(np);
978 
979 	switch (t) {
980 	case T_EVENT:
981 		/* determine the type of event being declared */
982 		ASSERT(np->u.event.ename->t == T_NAME);
983 		switch (np->u.event.ename->u.name.t) {
984 		case N_FAULT:
985 			ret = dodecl(T_FAULT, file, line, np, nvpairs,
986 			    &Faults, Faultcount, 0);
987 			break;
988 
989 		case N_UPSET:
990 			ret = dodecl(T_UPSET, file, line, np, nvpairs,
991 			    &Upsets, Upsetcount, 0);
992 
993 			/* increment serd statement reference */
994 			decl = tree_event2np_lut_lookup(Upsets, np);
995 			update_serd_refstmt(NULL, decl, NULL);
996 			break;
997 
998 		case N_DEFECT:
999 			ret = dodecl(T_DEFECT, file, line, np, nvpairs,
1000 			    &Defects, Defectcount, 0);
1001 			break;
1002 
1003 		case N_ERROR:
1004 			ret = dodecl(T_ERROR, file, line, np, nvpairs,
1005 			    &Errors, Errorcount, 0);
1006 			break;
1007 
1008 		case N_EREPORT:
1009 			ret = dodecl(T_EREPORT, file, line, np, nvpairs,
1010 			    &Ereports, Ereportcount, 0);
1011 			/*
1012 			 * keep a lut of just the enames, so that the DE
1013 			 * can subscribe to a uniqified list of event
1014 			 * classes.
1015 			 */
1016 			Ereportenames =
1017 			    tree_name2np_lut_add(Ereportenames,
1018 			    np->u.event.ename, np);
1019 			break;
1020 
1021 		default:
1022 			outfl(O_ERR, file, line,
1023 			    "tree_decl: internal error, event name type %s",
1024 			    ptree_nametype2str(np->u.event.ename->u.name.t));
1025 		}
1026 		break;
1027 
1028 	case T_ENGINE:
1029 		/* determine the type of engine being declared */
1030 		ASSERT(np->u.event.ename->t == T_NAME);
1031 		switch (np->u.event.ename->u.name.t) {
1032 		case N_SERD:
1033 			ret = dodecl(T_SERD, file, line, np, nvpairs,
1034 			    &SERDs, SERDcount, 0);
1035 			lut_walk(Upsets, update_serd_refstmt, np);
1036 			break;
1037 
1038 		case N_STAT:
1039 			ret = dodecl(T_STAT, file, line, np, nvpairs,
1040 			    &STATs, STATcount, 0);
1041 			break;
1042 
1043 		default:
1044 			outfl(O_ERR, file, line,
1045 			    "tree_decl: internal error, engine name type %s",
1046 			    ptree_nametype2str(np->u.event.ename->u.name.t));
1047 		}
1048 		break;
1049 	case T_ASRU:
1050 		ret = dodecl(T_ASRU, file, line, np, nvpairs,
1051 		    &ASRUs, ASRUcount, 1);
1052 		break;
1053 
1054 	case T_FRU:
1055 		ret = dodecl(T_FRU, file, line, np, nvpairs,
1056 		    &FRUs, FRUcount, 1);
1057 		break;
1058 
1059 	case T_CONFIG:
1060 		/*
1061 		 * config statements are different from above: they
1062 		 * are not merged at all (until the configuration cache
1063 		 * code does its own style of merging.  and the properties
1064 		 * are a free-for-all -- we don't check for allowed or
1065 		 * required config properties.
1066 		 */
1067 		ret = newnode(T_CONFIG, file, line);
1068 		ret->u.stmt.np = np;
1069 		ret->u.stmt.nvpairs = nvpairs;
1070 		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, T_CONFIG);
1071 
1072 		if (lut_lookup(Configs, np, (lut_cmp)tree_namecmp) == NULL)
1073 			stats_counter_bump(Configcount);
1074 
1075 		Configs = lut_add(Configs, (void *)np, (void *)ret, NULL);
1076 		break;
1077 
1078 	default:
1079 		out(O_DIE, "tree_decl: internal error, type %s",
1080 		    ptree_nodetype2str(t));
1081 	}
1082 
1083 	return (ret);
1084 }
1085 
1086 /* keep backpointers in arrows to the prop they belong to (used for scoping) */
1087 static void
1088 set_arrow_prop(struct node *prop, struct node *np)
1089 {
1090 	if (np == NULL)
1091 		return;
1092 
1093 	if (np->t == T_ARROW) {
1094 		np->u.arrow.prop = prop;
1095 		set_arrow_prop(prop, np->u.arrow.lhs);
1096 		/*
1097 		 * no need to recurse right or handle T_LIST since
1098 		 * T_ARROWs always cascade left and are at the top
1099 		 * of the parse tree.  (you can see this in the rule
1100 		 * for "propbody" in escparse.y.)
1101 		 */
1102 	}
1103 }
1104 
1105 struct node *
1106 tree_stmt(enum nodetype t, struct node *np, const char *file, int line)
1107 {
1108 	struct node *ret = newnode(t, file, line);
1109 	struct node *pp;
1110 	int inlist = 0;
1111 
1112 	ret->u.stmt.np = np;
1113 
1114 	switch (t) {
1115 	case T_PROP:
1116 		check_proplists(t, np);
1117 		check_propnames(t, np, 0, 0);
1118 		check_propscope(np);
1119 		set_arrow_prop(ret, np);
1120 
1121 		for (pp = Props; pp; pp = pp->u.stmt.next) {
1122 			if (tree_treecmp(pp, ret, T_NAME,
1123 					(lut_cmp)tree_namecmp) == 0) {
1124 				inlist = 1;
1125 				break;
1126 			}
1127 		}
1128 		if (inlist == 0)
1129 			stats_counter_bump(Propcount);
1130 
1131 		/* "Props" is a linked list of all prop statements */
1132 		if (Lastprops)
1133 			Lastprops->u.stmt.next = ret;
1134 		else
1135 			Props = ret;
1136 		Lastprops = ret;
1137 		break;
1138 
1139 	case T_MASK:
1140 		check_proplists(t, np);
1141 		check_propnames(t, np, 0, 0);
1142 		check_propscope(np);
1143 		set_arrow_prop(ret, np);
1144 
1145 		for (pp = Masks; pp; pp = pp->u.stmt.next) {
1146 			if (tree_treecmp(pp, ret, T_NAME,
1147 					(lut_cmp)tree_namecmp) == 0) {
1148 				inlist = 1;
1149 				break;
1150 			}
1151 		}
1152 		if (inlist == 0)
1153 			stats_counter_bump(Maskcount);
1154 
1155 		/* "Masks" is a linked list of all mask statements */
1156 		if (Lastmasks)
1157 			Lastmasks->u.stmt.next = ret;
1158 		else
1159 			Masks = ret;
1160 		Lastmasks = ret;
1161 		stats_counter_bump(Maskcount);
1162 		break;
1163 
1164 	default:
1165 		outfl(O_DIE, np->file, np->line,
1166 		    "tree_stmt: internal error (t %d)", t);
1167 	}
1168 
1169 	return (ret);
1170 }
1171 
1172 void
1173 tree_report()
1174 {
1175 	/*
1176 	 * The only declarations with required properties
1177 	 * currently are faults and serds. Make sure the
1178 	 * the declarations have the required properties.
1179 	 */
1180 	lut_walk(Faults, (lut_cb)check_required_props, (void *)T_FAULT);
1181 	lut_walk(Upsets, (lut_cb)check_required_props, (void *)T_UPSET);
1182 	lut_walk(Errors, (lut_cb)check_required_props, (void *)T_ERROR);
1183 	lut_walk(Ereports, (lut_cb)check_required_props, (void *)T_EREPORT);
1184 	lut_walk(SERDs, (lut_cb)check_required_props, (void *)T_SERD);
1185 	lut_walk(STATs, (lut_cb)check_required_props, (void *)T_STAT);
1186 
1187 	/*
1188 	 * we do this now rather than while building the parse
1189 	 * tree because it is inconvenient for the user if we
1190 	 * require SERD engines to be declared before used in
1191 	 * an upset "engine" property.
1192 	 */
1193 	lut_walk(Faults, (lut_cb)check_refcount, (void *)T_FAULT);
1194 	lut_walk(Upsets, (lut_cb)check_upset_engine, (void *)T_UPSET);
1195 	lut_walk(Upsets, (lut_cb)check_refcount, (void *)T_UPSET);
1196 	lut_walk(Errors, (lut_cb)check_refcount, (void *)T_ERROR);
1197 	lut_walk(Ereports, (lut_cb)check_refcount, (void *)T_EREPORT);
1198 	lut_walk(SERDs, (lut_cb)check_refcount, (void *)T_SERD);
1199 
1200 	/* check for cycles */
1201 	lut_walk(Errors, (lut_cb)check_cycle, (void *)0);
1202 }
1203 
1204 /* compare two T_NAMES by only looking at components, not iterators */
1205 int
1206 tree_namecmp(struct node *np1, struct node *np2)
1207 {
1208 	ASSERT(np1 != NULL);
1209 	ASSERT(np2 != NULL);
1210 	ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t));
1211 	ASSERTinfo(np2->t == T_NAME, ptree_nodetype2str(np1->t));
1212 
1213 	while (np1 && np2 && np1->u.name.s == np2->u.name.s) {
1214 		np1 = np1->u.name.next;
1215 		np2 = np2->u.name.next;
1216 	}
1217 	if (np1 == NULL)
1218 		if (np2 == NULL)
1219 			return (0);
1220 		else
1221 			return (-1);
1222 	else if (np2 == NULL)
1223 		return (1);
1224 	else
1225 		return (np2->u.name.s - np1->u.name.s);
1226 }
1227 
1228 int
1229 tree_eventcmp(struct node *np1, struct node *np2)
1230 {
1231 	int ret;
1232 
1233 	ASSERT(np1 != NULL);
1234 	ASSERT(np2 != NULL);
1235 	ASSERTinfo(np1->t == T_EVENT, ptree_nodetype2str(np1->t));
1236 	ASSERTinfo(np2->t == T_EVENT, ptree_nodetype2str(np2->t));
1237 
1238 	if ((ret = tree_namecmp(np1->u.event.ename,
1239 		np2->u.event.ename)) == 0) {
1240 			if (np1->u.event.epname == NULL &&
1241 				np2->u.event.epname == NULL)
1242 				return (0);
1243 			else if (np1->u.event.epname == NULL)
1244 				return (-1);
1245 			else if (np2->u.event.epname == NULL)
1246 				return (1);
1247 			else
1248 				return tree_namecmp(np1->u.event.epname,
1249 					np2->u.event.epname);
1250 	} else
1251 	return (ret);
1252 }
1253