xref: /titanic_50/usr/src/cmd/fm/eversholt/common/tree.c (revision 98892a3058bed9457ab6a22659dcccecfaf05d2a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  * tree.c -- routines for manipulating the prop tree
26  *
27  * the actions in escparse.y call these routines to construct
28  * the parse tree.  these routines, in turn, call the check_X()
29  * routines for semantic checking.
30  */
31 
32 #pragma ident	"%Z%%M%	%I%	%E% SMI"
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <ctype.h>
37 #include <strings.h>
38 #include <alloca.h>
39 #include "alloc.h"
40 #include "out.h"
41 #include "stats.h"
42 #include "stable.h"
43 #include "literals.h"
44 #include "lut.h"
45 #include "esclex.h"
46 #include "tree.h"
47 #include "check.h"
48 #include "ptree.h"
49 
50 static struct node *Root;
51 
52 static char *Newname;
53 
54 static struct stats *Faultcount;
55 static struct stats *Upsetcount;
56 static struct stats *Defectcount;
57 static struct stats *Errorcount;
58 static struct stats *Ereportcount;
59 static struct stats *SERDcount;
60 static struct stats *STATcount;
61 static struct stats *ASRUcount;
62 static struct stats *FRUcount;
63 static struct stats *Configcount;
64 static struct stats *Propcount;
65 static struct stats *Maskcount;
66 static struct stats *Nodecount;
67 static struct stats *Namecount;
68 static struct stats *Nodesize;
69 
70 struct lut *Usedprops;
71 
72 void
73 tree_init(void)
74 {
75 	Faultcount = stats_new_counter("parser.fault", "fault decls", 1);
76 	Upsetcount = stats_new_counter("parser.upset", "upset decls", 1);
77 	Defectcount = stats_new_counter("parser.defect", "defect decls", 1);
78 	Errorcount = stats_new_counter("parser.error", "error decls", 1);
79 	Ereportcount = stats_new_counter("parser.ereport", "ereport decls", 1);
80 	SERDcount = stats_new_counter("parser.SERD", "SERD engine decls", 1);
81 	STATcount = stats_new_counter("parser.STAT", "STAT engine decls", 1);
82 	ASRUcount = stats_new_counter("parser.ASRU", "ASRU decls", 1);
83 	FRUcount = stats_new_counter("parser.FRU", "FRU decls", 1);
84 	Configcount = stats_new_counter("parser.config", "config stmts", 1);
85 	Propcount = stats_new_counter("parser.prop", "prop stmts", 1);
86 	Maskcount = stats_new_counter("parser.mask", "mask stmts", 1);
87 	Nodecount = stats_new_counter("parser.node", "nodes created", 1);
88 	Namecount = stats_new_counter("parser.name", "names created", 1);
89 	Nodesize =
90 	    stats_new_counter("parser.nodesize", "sizeof(struct node)", 1);
91 	stats_counter_add(Nodesize, sizeof (struct node));
92 }
93 
94 void
95 tree_fini(void)
96 {
97 	stats_delete(Faultcount);
98 	stats_delete(Upsetcount);
99 	stats_delete(Defectcount);
100 	stats_delete(Errorcount);
101 	stats_delete(Ereportcount);
102 	stats_delete(SERDcount);
103 	stats_delete(STATcount);
104 	stats_delete(ASRUcount);
105 	stats_delete(FRUcount);
106 	stats_delete(Configcount);
107 	stats_delete(Propcount);
108 	stats_delete(Maskcount);
109 	stats_delete(Nodecount);
110 	stats_delete(Namecount);
111 	stats_delete(Nodesize);
112 
113 	/* free entire parse tree */
114 	tree_free(Root);
115 
116 	/* free up the luts we keep for decls */
117 	lut_free(Faults, NULL, NULL);
118 	Faults = NULL;
119 	lut_free(Upsets, NULL, NULL);
120 	Upsets = NULL;
121 	lut_free(Defects, NULL, NULL);
122 	Defects = NULL;
123 	lut_free(Errors, NULL, NULL);
124 	Errors = NULL;
125 	lut_free(Ereports, NULL, NULL);
126 	Ereports = NULL;
127 	lut_free(Ereportenames, NULL, NULL);
128 	Ereportenames = NULL;
129 	lut_free(SERDs, NULL, NULL);
130 	SERDs = NULL;
131 	lut_free(STATs, NULL, NULL);
132 	STATs = NULL;
133 	lut_free(ASRUs, NULL, NULL);
134 	ASRUs = NULL;
135 	lut_free(FRUs, NULL, NULL);
136 	FRUs = NULL;
137 	lut_free(Configs, NULL, NULL);
138 	Configs = NULL;
139 
140 	Props = Lastprops = NULL;
141 	Masks = Lastmasks = NULL;
142 	Problems = Lastproblems = NULL;
143 
144 	if (Newname != NULL) {
145 		FREE(Newname);
146 		Newname = NULL;
147 	}
148 }
149 
150 /*ARGSUSED*/
151 static int
152 nodesize(enum nodetype t, struct node *ret)
153 {
154 	int size = sizeof (struct node);
155 
156 	switch (t) {
157 	case T_NAME:
158 		size += sizeof (ret->u.name) - sizeof (ret->u);
159 		break;
160 
161 	case T_GLOBID:
162 		size += sizeof (ret->u.globid) - sizeof (ret->u);
163 		break;
164 
165 	case T_TIMEVAL:
166 	case T_NUM:
167 		size += sizeof (ret->u.ull) - sizeof (ret->u);
168 		break;
169 
170 	case T_QUOTE:
171 		size += sizeof (ret->u.quote) - sizeof (ret->u);
172 		break;
173 
174 	case T_FUNC:
175 		size += sizeof (ret->u.func) - sizeof (ret->u);
176 		break;
177 
178 	case T_FAULT:
179 	case T_UPSET:
180 	case T_DEFECT:
181 	case T_ERROR:
182 	case T_EREPORT:
183 	case T_ASRU:
184 	case T_FRU:
185 	case T_SERD:
186 	case T_STAT:
187 	case T_CONFIG:
188 	case T_PROP:
189 	case T_MASK:
190 		size += sizeof (ret->u.stmt) - sizeof (ret->u);
191 		break;
192 
193 	case T_EVENT:
194 		size += sizeof (ret->u.event) - sizeof (ret->u);
195 		break;
196 
197 	case T_ARROW:
198 		size += sizeof (ret->u.arrow) - sizeof (ret->u);
199 		break;
200 
201 	default:
202 		size += sizeof (ret->u.expr) - sizeof (ret->u);
203 		break;
204 	}
205 	return (size);
206 }
207 
208 struct node *
209 newnode(enum nodetype t, const char *file, int line)
210 {
211 	struct node *ret = NULL;
212 	int size = nodesize(t, ret);
213 
214 	ret = alloc_xmalloc(size);
215 	stats_counter_bump(Nodecount);
216 	bzero(ret, size);
217 	ret->t = t;
218 	ret->file = (file == NULL) ? "<nofile>" : file;
219 	ret->line = line;
220 
221 	return (ret);
222 }
223 
224 /*ARGSUSED*/
225 void
226 tree_free(struct node *root)
227 {
228 	if (root == NULL)
229 		return;
230 
231 	switch (root->t) {
232 	case T_NAME:
233 		tree_free(root->u.name.child);
234 		tree_free(root->u.name.next);
235 		break;
236 	case T_FUNC:
237 		tree_free(root->u.func.arglist);
238 		break;
239 	case T_AND:
240 	case T_OR:
241 	case T_EQ:
242 	case T_NE:
243 	case T_ADD:
244 	case T_DIV:
245 	case T_MOD:
246 	case T_MUL:
247 	case T_SUB:
248 	case T_LT:
249 	case T_LE:
250 	case T_GT:
251 	case T_GE:
252 	case T_BITAND:
253 	case T_BITOR:
254 	case T_BITXOR:
255 	case T_BITNOT:
256 	case T_LSHIFT:
257 	case T_RSHIFT:
258 	case T_NVPAIR:
259 	case T_ASSIGN:
260 	case T_CONDIF:
261 	case T_CONDELSE:
262 	case T_LIST:
263 		tree_free(root->u.expr.left);
264 		tree_free(root->u.expr.right);
265 		break;
266 	case T_EVENT:
267 		tree_free(root->u.event.ename);
268 		tree_free(root->u.event.epname);
269 		tree_free(root->u.event.eexprlist);
270 		break;
271 	case T_NOT:
272 		tree_free(root->u.expr.left);
273 		break;
274 	case T_ARROW:
275 		tree_free(root->u.arrow.lhs);
276 		tree_free(root->u.arrow.nnp);
277 		tree_free(root->u.arrow.knp);
278 		tree_free(root->u.arrow.rhs);
279 		break;
280 	case T_PROP:
281 	case T_MASK:
282 		tree_free(root->u.stmt.np);
283 		break;
284 	case T_FAULT:
285 	case T_UPSET:
286 	case T_DEFECT:
287 	case T_ERROR:
288 	case T_EREPORT:
289 	case T_ASRU:
290 	case T_FRU:
291 	case T_SERD:
292 	case T_STAT:
293 	case T_CONFIG:
294 		tree_free(root->u.stmt.np);
295 		if (root->u.stmt.nvpairs)
296 			tree_free(root->u.stmt.nvpairs);
297 		if (root->u.stmt.lutp)
298 			lut_free(root->u.stmt.lutp, NULL, NULL);
299 		break;
300 	case T_TIMEVAL:
301 	case T_NUM:
302 	case T_QUOTE:
303 	case T_GLOBID:
304 	case T_NOTHING:
305 		break;
306 	default:
307 		out(O_DIE,
308 		    "internal error: tree_free unexpected nodetype: %d",
309 		    root->t);
310 		/*NOTREACHED*/
311 	}
312 	alloc_xfree((char *)root, nodesize(root->t, root));
313 }
314 
315 static int
316 tree_treecmp(struct node *np1, struct node *np2, enum nodetype t,
317 	    lut_cmp cmp_func)
318 {
319 	if (np1 == NULL || np2 == NULL)
320 		return (0);
321 
322 	if (np1->t != np2->t)
323 		return (1);
324 
325 	ASSERT(cmp_func != NULL);
326 
327 	if (np1->t == t)
328 		return ((*cmp_func)(np1, np2));
329 
330 	switch (np1->t) {
331 	case T_NAME:
332 		if (tree_treecmp(np1->u.name.child, np2->u.name.child, t,
333 		    cmp_func))
334 			return (1);
335 		return (tree_treecmp(np1->u.name.next, np2->u.name.next, t,
336 		    cmp_func));
337 		/*NOTREACHED*/
338 		break;
339 	case T_FUNC:
340 		return (tree_treecmp(np1->u.func.arglist, np2->u.func.arglist,
341 		    t, cmp_func));
342 		/*NOTREACHED*/
343 		break;
344 	case T_AND:
345 	case T_OR:
346 	case T_EQ:
347 	case T_NE:
348 	case T_ADD:
349 	case T_DIV:
350 	case T_MOD:
351 	case T_MUL:
352 	case T_SUB:
353 	case T_LT:
354 	case T_LE:
355 	case T_GT:
356 	case T_GE:
357 	case T_BITAND:
358 	case T_BITOR:
359 	case T_BITXOR:
360 	case T_BITNOT:
361 	case T_LSHIFT:
362 	case T_RSHIFT:
363 	case T_NVPAIR:
364 	case T_ASSIGN:
365 	case T_CONDIF:
366 	case T_CONDELSE:
367 	case T_LIST:
368 		if (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t,
369 		    cmp_func))
370 			return (1);
371 		return (tree_treecmp(np1->u.expr.right, np2->u.expr.right, t,
372 		    cmp_func));
373 		/*NOTREACHED*/
374 		break;
375 	case T_EVENT:
376 		if (tree_treecmp(np1->u.event.ename, np2->u.event.ename, t,
377 		    cmp_func))
378 			return (1);
379 		if (tree_treecmp(np1->u.event.epname, np2->u.event.epname, t,
380 		    cmp_func))
381 			return (1);
382 		return (tree_treecmp(np1->u.event.eexprlist,
383 		    np2->u.event.eexprlist, t, cmp_func));
384 		/*NOTREACHED*/
385 		break;
386 	case T_NOT:
387 		return (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t,
388 		    cmp_func));
389 		/*NOTREACHED*/
390 		break;
391 	case T_ARROW:
392 		if (tree_treecmp(np1->u.arrow.lhs, np2->u.arrow.lhs, t,
393 		    cmp_func))
394 			return (1);
395 		if (tree_treecmp(np1->u.arrow.nnp, np2->u.arrow.nnp, t,
396 		    cmp_func))
397 			return (1);
398 		if (tree_treecmp(np1->u.arrow.knp, np2->u.arrow.knp, t,
399 		    cmp_func))
400 			return (1);
401 		return (tree_treecmp(np1->u.arrow.rhs, np2->u.arrow.rhs, t,
402 		    cmp_func));
403 		/*NOTREACHED*/
404 		break;
405 	case T_PROP:
406 	case T_MASK:
407 		return (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t,
408 		    cmp_func));
409 		/*NOTREACHED*/
410 		break;
411 	case T_FAULT:
412 	case T_UPSET:
413 	case T_DEFECT:
414 	case T_ERROR:
415 	case T_EREPORT:
416 	case T_ASRU:
417 	case T_FRU:
418 	case T_SERD:
419 	case T_STAT:
420 		if (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t, cmp_func))
421 			return (1);
422 		return (tree_treecmp(np1->u.stmt.nvpairs, np2->u.stmt.nvpairs,
423 		    t, cmp_func));
424 		/*NOTREACHED*/
425 		break;
426 	case T_TIMEVAL:
427 	case T_NUM:
428 	case T_QUOTE:
429 	case T_GLOBID:
430 	case T_NOTHING:
431 		break;
432 	default:
433 		out(O_DIE,
434 		    "internal error: tree_treecmp unexpected nodetype: %d",
435 		    np1->t);
436 		/*NOTREACHED*/
437 		break;
438 	}
439 
440 	return (0);
441 }
442 
443 struct node *
444 tree_root(struct node *np)
445 {
446 	if (np)
447 		Root = np;
448 	return (Root);
449 }
450 
451 struct node *
452 tree_nothing(void)
453 {
454 	return (newnode(T_NOTHING, L_nofile, 0));
455 }
456 
457 struct node *
458 tree_expr(enum nodetype t, struct node *left, struct node *right)
459 {
460 	struct node *ret;
461 
462 	ASSERTinfo(left != NULL || right != NULL, ptree_nodetype2str(t));
463 
464 	ret = newnode(t,
465 	    (left) ? left->file : right->file,
466 	    (left) ? left->line : right->line);
467 
468 	ret->u.expr.left = left;
469 	ret->u.expr.right = right;
470 
471 	check_expr(ret);
472 
473 	return (ret);
474 }
475 
476 /*
477  * ename_compress -- convert event class name in to more space-efficient form
478  *
479  * this routine is called after the parser has completed an "ename", which
480  * is that part of an event that contains the class name (like ereport.x.y.z).
481  * after this routine gets done with the ename, two things are true:
482  *   1. the ename uses only a single struct node
483  *   2. ename->u.name.s contains the *complete* class name, dots and all,
484  *      entered into the string table.
485  *
486  * so in addition to saving space by using fewer struct nodes, this routine
487  * allows consumers of the fault tree to assume the ename is a single
488  * string, rather than a linked list of strings.
489  */
490 static struct node *
491 ename_compress(struct node *ename)
492 {
493 	char *buf;
494 	char *cp;
495 	int len = 0;
496 	struct node *np;
497 
498 	if (ename == NULL)
499 		return (ename);
500 
501 	ASSERT(ename->t == T_NAME);
502 
503 	if (ename->u.name.next == NULL)
504 		return (ename);	/* no compression to be applied here */
505 
506 	for (np = ename; np != NULL; np = np->u.name.next) {
507 		ASSERT(np->t == T_NAME);
508 		len++;	/* room for '.' and final '\0' */
509 		len += strlen(np->u.name.s);
510 	}
511 	cp = buf = alloca(len);
512 	for (np = ename; np != NULL; np = np->u.name.next) {
513 		ASSERT(np->t == T_NAME);
514 		if (np != ename)
515 			*cp++ = '.';
516 		(void) strcpy(cp, np->u.name.s);
517 		cp += strlen(cp);
518 	}
519 
520 	ename->u.name.s = stable(buf);
521 	tree_free(ename->u.name.next);
522 	ename->u.name.next = NULL;
523 	ename->u.name.last = ename;
524 	return (ename);
525 }
526 
527 struct node *
528 tree_event(struct node *ename, struct node *epname, struct node *eexprlist)
529 {
530 	struct node *ret;
531 
532 	ASSERT(ename != NULL);
533 
534 	ret = newnode(T_EVENT, ename->file, ename->line);
535 
536 	ret->u.event.ename = ename_compress(ename);
537 	ret->u.event.epname = epname;
538 	ret->u.event.eexprlist = eexprlist;
539 
540 	check_event(ret);
541 
542 	return (ret);
543 }
544 
545 struct node *
546 tree_name(const char *s, enum itertype it, const char *file, int line)
547 {
548 	struct node *ret = newnode(T_NAME, file, line);
549 
550 	ASSERT(s != NULL);
551 
552 	stats_counter_bump(Namecount);
553 	ret->u.name.t = N_UNSPEC;
554 	ret->u.name.s = stable(s);
555 	ret->u.name.it = it;
556 	ret->u.name.last = ret;
557 
558 	if (it == IT_ENAME) {
559 		/* PHASE2, possible optimization: convert to table driven */
560 		if (s == L_fault)
561 			ret->u.name.t = N_FAULT;
562 		else if (s == L_upset)
563 			ret->u.name.t = N_UPSET;
564 		else if (s == L_defect)
565 			ret->u.name.t = N_DEFECT;
566 		else if (s == L_error)
567 			ret->u.name.t = N_ERROR;
568 		else if (s == L_ereport)
569 			ret->u.name.t = N_EREPORT;
570 		else if (s == L_serd)
571 			ret->u.name.t = N_SERD;
572 		else if (s == L_stat)
573 			ret->u.name.t = N_STAT;
574 		else
575 			outfl(O_ERR, file, line, "unknown class: %s", s);
576 	}
577 	return (ret);
578 }
579 
580 struct node *
581 tree_iname(const char *s, const char *file, int line)
582 {
583 	struct node *ret;
584 	char *ss;
585 	char *ptr;
586 
587 	ASSERT(s != NULL && *s != '\0');
588 
589 	ss = STRDUP(s);
590 
591 	ptr = &ss[strlen(ss) - 1];
592 	if (!isdigit(*ptr)) {
593 		outfl(O_ERR, file, line,
594 		    "instanced name expected (i.e. \"x0/y1\")");
595 		FREE(ss);
596 		return (tree_name(s, IT_NONE, file, line));
597 	}
598 	while (ptr > ss && isdigit(*(ptr - 1)))
599 		ptr--;
600 
601 	ret = newnode(T_NAME, file, line);
602 	stats_counter_bump(Namecount);
603 	ret->u.name.child = tree_num(ptr, file, line);
604 	*ptr = '\0';
605 	ret->u.name.t = N_UNSPEC;
606 	ret->u.name.s = stable(ss);
607 	ret->u.name.it = IT_NONE;
608 	ret->u.name.last = ret;
609 	FREE(ss);
610 
611 	return (ret);
612 }
613 
614 struct node *
615 tree_globid(const char *s, const char *file, int line)
616 {
617 	struct node *ret = newnode(T_GLOBID, file, line);
618 
619 	ASSERT(s != NULL);
620 
621 	ret->u.globid.s = stable(s);
622 
623 	return (ret);
624 }
625 
626 struct node *
627 tree_name_append(struct node *np1, struct node *np2)
628 {
629 	ASSERT(np1 != NULL && np2 != NULL);
630 
631 	if (np1->t != T_NAME)
632 		outfl(O_DIE, np1->file, np1->line,
633 		    "tree_name_append: internal error (np1 type %d)", np1->t);
634 	if (np2->t != T_NAME)
635 		outfl(O_DIE, np2->file, np2->line,
636 		    "tree_name_append: internal error (np2 type %d)", np2->t);
637 
638 	ASSERT(np1->u.name.last != NULL);
639 
640 	np1->u.name.last->u.name.next = np2;
641 	np1->u.name.last = np2;
642 	return (np1);
643 }
644 
645 /*
646  * tree_name_repairdash -- repair a class name that contained a dash
647  *
648  * this routine is called by the parser when a dash is encountered
649  * in a class name.  the event protocol allows the dashes but our
650  * lexer considers them a separate token (arithmetic minus).  an extra
651  * rule in the parser catches this case and calls this routine to fixup
652  * the last component of the class name (so far) by constructing the
653  * new stable entry for a name including the dash.
654  */
655 struct node *
656 tree_name_repairdash(struct node *np, const char *s)
657 {
658 	int len;
659 	char *buf;
660 
661 	ASSERT(np != NULL && s != NULL);
662 
663 	if (np->t != T_NAME)
664 		outfl(O_DIE, np->file, np->line,
665 		    "tree_name_repairdash: internal error (np type %d)",
666 		    np->t);
667 
668 	ASSERT(np->u.name.last != NULL);
669 
670 	len = strlen(np->u.name.last->u.name.s) + 1 + strlen(s) + 1;
671 	buf = MALLOC(len);
672 	(void) snprintf(buf, len, "%s-%s", np->u.name.last->u.name.s, s);
673 	np->u.name.last->u.name.s = stable(buf);
674 	FREE(buf);
675 	return (np);
676 }
677 
678 struct node *
679 tree_name_repairdash2(const char *s, struct node *np)
680 {
681 	int len;
682 	char *buf;
683 
684 	ASSERT(np != NULL && s != NULL);
685 
686 	if (np->t != T_NAME)
687 		outfl(O_DIE, np->file, np->line,
688 		    "tree_name_repairdash: internal error (np type %d)",
689 		    np->t);
690 
691 	ASSERT(np->u.name.last != NULL);
692 
693 	len = strlen(np->u.name.last->u.name.s) + 1 + strlen(s) + 1;
694 	buf = MALLOC(len);
695 	(void) snprintf(buf, len, "%s-%s", s, np->u.name.last->u.name.s);
696 	np->u.name.last->u.name.s = stable(buf);
697 	FREE(buf);
698 	return (np);
699 }
700 
701 struct node *
702 tree_name_iterator(struct node *np1, struct node *np2)
703 {
704 	ASSERT(np1 != NULL);
705 	ASSERT(np2 != NULL);
706 	ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t));
707 
708 	np1->u.name.child = np2;
709 
710 	check_name_iterator(np1);
711 
712 	return (np1);
713 }
714 
715 struct node *
716 tree_timeval(const char *s, const char *suffix, const char *file, int line)
717 {
718 	struct node *ret = newnode(T_TIMEVAL, file, line);
719 	const unsigned long long *ullp;
720 
721 	ASSERT(s != NULL);
722 	ASSERT(suffix != NULL);
723 
724 	if ((ullp = lex_s2ullp_lut_lookup(Timesuffixlut, suffix)) == NULL) {
725 		outfl(O_ERR, file, line,
726 		    "unrecognized number suffix: %s", suffix);
727 		/* still construct a valid timeval node so parsing continues */
728 		ret->u.ull = 1;
729 	} else {
730 		ret->u.ull = (unsigned long long)strtoul(s, NULL, 0) * *ullp;
731 	}
732 
733 	return (ret);
734 }
735 
736 struct node *
737 tree_num(const char *s, const char *file, int line)
738 {
739 	struct node *ret = newnode(T_NUM, file, line);
740 
741 	ret->u.ull = (unsigned long long)strtoul(s, NULL, 0);
742 	return (ret);
743 }
744 
745 struct node *
746 tree_quote(const char *s, const char *file, int line)
747 {
748 	struct node *ret = newnode(T_QUOTE, file, line);
749 
750 	ret->u.quote.s = stable(s);
751 	return (ret);
752 }
753 
754 struct node *
755 tree_func(const char *s, struct node *np, const char *file, int line)
756 {
757 	struct node *ret = newnode(T_FUNC, file, line);
758 	const char *ptr;
759 
760 	ret->u.func.s = s;
761 	ret->u.func.arglist = np;
762 
763 	check_func(ret);
764 
765 	/*
766 	 * keep track of the properties we're interested in so we can ignore the
767 	 * rest
768 	 */
769 	if (strcmp(s, L_confprop) == 0 || strcmp(s, L_confprop_defined) == 0) {
770 		ptr = stable(np->u.expr.right->u.quote.s);
771 		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
772 	} else if (strcmp(s, L_is_connected) == 0) {
773 		ptr = stable("connected");
774 		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
775 		ptr = stable("CONNECTED");
776 		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
777 	} else if (strcmp(s, L_is_type) == 0) {
778 		ptr = stable("type");
779 		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
780 		ptr = stable("TYPE");
781 		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
782 	} else if (strcmp(s, L_is_on) == 0) {
783 		ptr = stable("on");
784 		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
785 		ptr = stable("ON");
786 		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
787 	}
788 
789 	return (ret);
790 }
791 
792 /*
793  * given a list from a prop or mask statement or a function argument,
794  * convert all iterators to explicit iterators by inventing appropriate
795  * iterator names.
796  */
797 static void
798 make_explicit(struct node *np, int eventonly)
799 {
800 	struct node *pnp;	/* component of pathname */
801 	struct node *pnp2;
802 	int count;
803 	static size_t namesz;
804 
805 	if (Newname == NULL) {
806 		namesz = 200;
807 		Newname = MALLOC(namesz);
808 	}
809 
810 	if (np == NULL)
811 		return;		/* all done */
812 
813 	switch (np->t) {
814 		case T_ASSIGN:
815 		case T_CONDIF:
816 		case T_CONDELSE:
817 		case T_NE:
818 		case T_EQ:
819 		case T_LT:
820 		case T_LE:
821 		case T_GT:
822 		case T_GE:
823 		case T_BITAND:
824 		case T_BITOR:
825 		case T_BITXOR:
826 		case T_BITNOT:
827 		case T_LSHIFT:
828 		case T_RSHIFT:
829 		case T_LIST:
830 		case T_AND:
831 		case T_OR:
832 		case T_NOT:
833 		case T_ADD:
834 		case T_SUB:
835 		case T_MUL:
836 		case T_DIV:
837 		case T_MOD:
838 			make_explicit(np->u.expr.left, eventonly);
839 			make_explicit(np->u.expr.right, eventonly);
840 			break;
841 
842 		case T_EVENT:
843 			make_explicit(np->u.event.epname, 0);
844 			make_explicit(np->u.event.eexprlist, 1);
845 			break;
846 
847 		case T_FUNC:
848 			make_explicit(np->u.func.arglist, eventonly);
849 			break;
850 
851 		case T_NAME:
852 			if (eventonly)
853 				return;
854 			for (pnp = np; pnp != NULL; pnp = pnp->u.name.next)
855 				if (pnp->u.name.child == NULL) {
856 					/*
857 					 * found implicit iterator.  convert
858 					 * it to an explicit iterator by
859 					 * using the name of the component
860 					 * appended with '#' and the number
861 					 * of times we've seen this same
862 					 * component name in this path so far.
863 					 */
864 					count = 0;
865 					for (pnp2 = np; pnp2 != NULL;
866 					    pnp2 = pnp2->u.name.next)
867 						if (pnp2 == pnp)
868 							break;
869 						else if (pnp2->u.name.s ==
870 						    pnp->u.name.s)
871 							count++;
872 
873 					if (namesz < strlen(pnp->u.name.s) +
874 					    100) {
875 						namesz = strlen(pnp->u.name.s) +
876 						    100;
877 						FREE(Newname);
878 						Newname = MALLOC(namesz);
879 					}
880 					/*
881 					 * made up interator name is:
882 					 *	name#ordinal
883 					 * or
884 					 *	name##ordinal
885 					 * the first one is used for vertical
886 					 * expansion, the second for horizontal.
887 					 * either way, the '#' embedded in
888 					 * the name makes it impossible to
889 					 * collide with an actual iterator
890 					 * given to us in the eversholt file.
891 					 */
892 					(void) snprintf(Newname, namesz,
893 					    "%s#%s%d", pnp->u.name.s,
894 					    (pnp->u.name.it == IT_HORIZONTAL) ?
895 					    "#" : "", count);
896 
897 					pnp->u.name.child = tree_name(Newname,
898 					    IT_NONE, pnp->file, pnp->line);
899 					pnp->u.name.childgen = 1;
900 				}
901 			break;
902 	}
903 }
904 
905 struct node *
906 tree_pname(struct node *np)
907 {
908 	make_explicit(np, 0);
909 	return (np);
910 }
911 
912 struct node *
913 tree_arrow(struct node *lhs, struct node *nnp, struct node *knp,
914     struct node *rhs)
915 {
916 	struct node *ret;
917 
918 	ASSERT(lhs != NULL || rhs != NULL);
919 
920 	ret = newnode(T_ARROW,
921 	    (lhs) ? lhs->file : rhs->file,
922 	    (lhs) ? lhs->line : rhs->line);
923 
924 	ret->u.arrow.lhs = lhs;
925 	ret->u.arrow.nnp = nnp;
926 	ret->u.arrow.knp = knp;
927 	ret->u.arrow.rhs = rhs;
928 
929 	make_explicit(lhs, 0);
930 	make_explicit(rhs, 0);
931 
932 	check_arrow(ret);
933 
934 	return (ret);
935 }
936 
937 static struct lut *
938 nvpair2lut(struct node *np, struct lut *lutp, enum nodetype t)
939 {
940 	if (np) {
941 		if (np->t == T_NVPAIR) {
942 			ASSERTeq(np->u.expr.left->t, T_NAME,
943 			    ptree_nodetype2str);
944 			check_stmt_allowed_properties(t, np, lutp);
945 			lutp = tree_s2np_lut_add(lutp,
946 			    np->u.expr.left->u.name.s, np->u.expr.right);
947 		} else if (np->t == T_LIST) {
948 			lutp = nvpair2lut(np->u.expr.left, lutp, t);
949 			lutp = nvpair2lut(np->u.expr.right, lutp, t);
950 		} else
951 			outfl(O_DIE, np->file, np->line,
952 			    "internal error: nvpair2lut type %s",
953 			    ptree_nodetype2str(np->t));
954 	}
955 
956 	return (lutp);
957 }
958 
959 struct lut *
960 tree_s2np_lut_add(struct lut *root, const char *s, struct node *np)
961 {
962 	return (lut_add(root, (void *)s, (void *)np, NULL));
963 }
964 
965 struct node *
966 tree_s2np_lut_lookup(struct lut *root, const char *s)
967 {
968 	return (struct node *)lut_lookup(root, (void *)s, NULL);
969 }
970 
971 struct lut *
972 tree_name2np_lut_add(struct lut *root, struct node *namep, struct node *np)
973 {
974 	return (lut_add(root, (void *)namep, (void *)np,
975 	    (lut_cmp)tree_namecmp));
976 }
977 
978 struct node *
979 tree_name2np_lut_lookup(struct lut *root, struct node *namep)
980 {
981 	return (struct node *)
982 	    lut_lookup(root, (void *)namep, (lut_cmp)tree_namecmp);
983 }
984 
985 struct node *
986 tree_name2np_lut_lookup_name(struct lut *root, struct node *namep)
987 {
988 	return (struct node *)
989 	    lut_lookup_lhs(root, (void *)namep, (lut_cmp)tree_namecmp);
990 }
991 
992 struct lut *
993 tree_event2np_lut_add(struct lut *root, struct node *enp, struct node *np)
994 {
995 	return (lut_add(root, (void *)enp, (void *)np, (lut_cmp)tree_eventcmp));
996 }
997 
998 struct node *
999 tree_event2np_lut_lookup(struct lut *root, struct node *enp)
1000 {
1001 	return ((struct node *)
1002 	    lut_lookup(root, (void *)enp, (lut_cmp)tree_eventcmp));
1003 }
1004 
1005 struct node *
1006 tree_event2np_lut_lookup_event(struct lut *root, struct node *enp)
1007 {
1008 	return ((struct node *)
1009 	    lut_lookup_lhs(root, (void *)enp, (lut_cmp)tree_eventcmp));
1010 }
1011 
1012 static struct node *
1013 dodecl(enum nodetype t, const char *file, int line,
1014     struct node *np, struct node *nvpairs, struct lut **lutpp,
1015     struct stats *countp, int justpath)
1016 {
1017 	struct node *ret;
1018 	struct node *decl;
1019 
1020 	/* allocate parse tree node */
1021 	ret = newnode(t, file, line);
1022 	ret->u.stmt.np = np;
1023 	ret->u.stmt.nvpairs = nvpairs;
1024 
1025 	/*
1026 	 * the global lut pointed to by lutpp (Faults, Defects, Upsets,
1027 	 * Errors, Ereports, Serds, FRUs, or ASRUs) keeps the first decl.
1028 	 * if this isn't the first declr, we merge the
1029 	 * nvpairs into the first decl so we have a
1030 	 * merged table to look up properties from.
1031 	 * if this is the first time we've seen this fault,
1032 	 * we add it to the global lut and start lutp
1033 	 * off with any nvpairs from this declaration statement.
1034 	 */
1035 	if (justpath && (decl = tree_name2np_lut_lookup(*lutpp, np)) == NULL) {
1036 		/* this is the first time name is declared */
1037 		stats_counter_bump(countp);
1038 		*lutpp = tree_name2np_lut_add(*lutpp, np, ret);
1039 		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t);
1040 	} else if (!justpath &&
1041 	    (decl = tree_event2np_lut_lookup(*lutpp, np)) == NULL) {
1042 		/* this is the first time event is declared */
1043 		stats_counter_bump(countp);
1044 		*lutpp = tree_event2np_lut_add(*lutpp, np, ret);
1045 		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t);
1046 	} else {
1047 		/* was declared before, just add new nvpairs to its lutp */
1048 		decl->u.stmt.lutp = nvpair2lut(nvpairs, decl->u.stmt.lutp, t);
1049 	}
1050 
1051 	return (ret);
1052 }
1053 
1054 /*ARGSUSED*/
1055 static void
1056 update_serd_refstmt(void *lhs, void *rhs, void *arg)
1057 {
1058 	struct node *serd;
1059 
1060 	ASSERT(rhs != NULL);
1061 
1062 	serd = tree_s2np_lut_lookup(((struct node *)rhs)->u.stmt.lutp,
1063 	    L_engine);
1064 	if (serd == NULL)
1065 		return;
1066 
1067 	ASSERT(serd->t == T_EVENT);
1068 	if (arg != NULL && tree_eventcmp(serd, (struct node *)arg) != 0)
1069 		return;
1070 
1071 	serd = tree_event2np_lut_lookup(SERDs, serd);
1072 	if (serd != NULL)
1073 		serd->u.stmt.flags |= STMT_REF;
1074 }
1075 
1076 struct node *
1077 tree_decl(enum nodetype t, struct node *np, struct node *nvpairs,
1078     const char *file, int line)
1079 {
1080 	struct node *decl;
1081 	struct node *ret;
1082 
1083 	ASSERT(np != NULL);
1084 
1085 	check_type_iterator(np);
1086 
1087 	switch (t) {
1088 	case T_EVENT:
1089 		/* determine the type of event being declared */
1090 		ASSERT(np->u.event.ename->t == T_NAME);
1091 		switch (np->u.event.ename->u.name.t) {
1092 		case N_FAULT:
1093 			ret = dodecl(T_FAULT, file, line, np, nvpairs,
1094 			    &Faults, Faultcount, 0);
1095 			break;
1096 
1097 		case N_UPSET:
1098 			ret = dodecl(T_UPSET, file, line, np, nvpairs,
1099 			    &Upsets, Upsetcount, 0);
1100 
1101 			/* increment serd statement reference */
1102 			decl = tree_event2np_lut_lookup(Upsets, np);
1103 			update_serd_refstmt(NULL, decl, NULL);
1104 			break;
1105 
1106 		case N_DEFECT:
1107 			ret = dodecl(T_DEFECT, file, line, np, nvpairs,
1108 			    &Defects, Defectcount, 0);
1109 			break;
1110 
1111 		case N_ERROR:
1112 			ret = dodecl(T_ERROR, file, line, np, nvpairs,
1113 			    &Errors, Errorcount, 0);
1114 			break;
1115 
1116 		case N_EREPORT:
1117 			ret = dodecl(T_EREPORT, file, line, np, nvpairs,
1118 			    &Ereports, Ereportcount, 0);
1119 			/*
1120 			 * keep a lut of just the enames, so that the DE
1121 			 * can subscribe to a uniqified list of event
1122 			 * classes.
1123 			 */
1124 			Ereportenames =
1125 			    tree_name2np_lut_add(Ereportenames,
1126 			    np->u.event.ename, np);
1127 			break;
1128 
1129 		default:
1130 			outfl(O_ERR, file, line,
1131 			    "tree_decl: internal error, event name type %s",
1132 			    ptree_nametype2str(np->u.event.ename->u.name.t));
1133 		}
1134 		break;
1135 
1136 	case T_ENGINE:
1137 		/* determine the type of engine being declared */
1138 		ASSERT(np->u.event.ename->t == T_NAME);
1139 		switch (np->u.event.ename->u.name.t) {
1140 		case N_SERD:
1141 			ret = dodecl(T_SERD, file, line, np, nvpairs,
1142 			    &SERDs, SERDcount, 0);
1143 			lut_walk(Upsets, update_serd_refstmt, np);
1144 			break;
1145 
1146 		case N_STAT:
1147 			ret = dodecl(T_STAT, file, line, np, nvpairs,
1148 			    &STATs, STATcount, 0);
1149 			break;
1150 
1151 		default:
1152 			outfl(O_ERR, file, line,
1153 			    "tree_decl: internal error, engine name type %s",
1154 			    ptree_nametype2str(np->u.event.ename->u.name.t));
1155 		}
1156 		break;
1157 	case T_ASRU:
1158 		ret = dodecl(T_ASRU, file, line, np, nvpairs,
1159 		    &ASRUs, ASRUcount, 1);
1160 		break;
1161 
1162 	case T_FRU:
1163 		ret = dodecl(T_FRU, file, line, np, nvpairs,
1164 		    &FRUs, FRUcount, 1);
1165 		break;
1166 
1167 	case T_CONFIG:
1168 		/*
1169 		 * config statements are different from above: they
1170 		 * are not merged at all (until the configuration cache
1171 		 * code does its own style of merging.  and the properties
1172 		 * are a free-for-all -- we don't check for allowed or
1173 		 * required config properties.
1174 		 */
1175 		ret = newnode(T_CONFIG, file, line);
1176 		ret->u.stmt.np = np;
1177 		ret->u.stmt.nvpairs = nvpairs;
1178 		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, T_CONFIG);
1179 
1180 		if (lut_lookup(Configs, np, (lut_cmp)tree_namecmp) == NULL)
1181 			stats_counter_bump(Configcount);
1182 
1183 		Configs = lut_add(Configs, (void *)np, (void *)ret, NULL);
1184 		break;
1185 
1186 	default:
1187 		out(O_DIE, "tree_decl: internal error, type %s",
1188 		    ptree_nodetype2str(t));
1189 	}
1190 
1191 	return (ret);
1192 }
1193 
1194 /* keep backpointers in arrows to the prop they belong to (used for scoping) */
1195 static void
1196 set_arrow_prop(struct node *prop, struct node *np)
1197 {
1198 	if (np == NULL)
1199 		return;
1200 
1201 	if (np->t == T_ARROW) {
1202 		np->u.arrow.prop = prop;
1203 		set_arrow_prop(prop, np->u.arrow.lhs);
1204 		/*
1205 		 * no need to recurse right or handle T_LIST since
1206 		 * T_ARROWs always cascade left and are at the top
1207 		 * of the parse tree.  (you can see this in the rule
1208 		 * for "propbody" in escparse.y.)
1209 		 */
1210 	}
1211 }
1212 
1213 struct node *
1214 tree_stmt(enum nodetype t, struct node *np, const char *file, int line)
1215 {
1216 	struct node *ret = newnode(t, file, line);
1217 	struct node *pp;
1218 	int inlist = 0;
1219 
1220 	ret->u.stmt.np = np;
1221 
1222 	switch (t) {
1223 	case T_PROP:
1224 		check_proplists(t, np);
1225 		check_propnames(t, np, 0, 0);
1226 		check_propscope(np);
1227 		set_arrow_prop(ret, np);
1228 
1229 		for (pp = Props; pp; pp = pp->u.stmt.next) {
1230 			if (tree_treecmp(pp, ret, T_NAME,
1231 			    (lut_cmp)tree_namecmp) == 0) {
1232 				inlist = 1;
1233 				break;
1234 			}
1235 		}
1236 		if (inlist == 0)
1237 			stats_counter_bump(Propcount);
1238 
1239 		/* "Props" is a linked list of all prop statements */
1240 		if (Lastprops)
1241 			Lastprops->u.stmt.next = ret;
1242 		else
1243 			Props = ret;
1244 		Lastprops = ret;
1245 		break;
1246 
1247 	case T_MASK:
1248 		check_proplists(t, np);
1249 		check_propnames(t, np, 0, 0);
1250 		check_propscope(np);
1251 		set_arrow_prop(ret, np);
1252 
1253 		for (pp = Masks; pp; pp = pp->u.stmt.next) {
1254 			if (tree_treecmp(pp, ret, T_NAME,
1255 			    (lut_cmp)tree_namecmp) == 0) {
1256 				inlist = 1;
1257 				break;
1258 			}
1259 		}
1260 		if (inlist == 0)
1261 			stats_counter_bump(Maskcount);
1262 
1263 		/* "Masks" is a linked list of all mask statements */
1264 		if (Lastmasks)
1265 			Lastmasks->u.stmt.next = ret;
1266 		else
1267 			Masks = ret;
1268 		Lastmasks = ret;
1269 		stats_counter_bump(Maskcount);
1270 		break;
1271 
1272 	default:
1273 		outfl(O_DIE, np->file, np->line,
1274 		    "tree_stmt: internal error (t %d)", t);
1275 	}
1276 
1277 	return (ret);
1278 }
1279 
1280 void
1281 tree_report()
1282 {
1283 	/*
1284 	 * The only declarations with required properties
1285 	 * currently are faults and serds. Make sure the
1286 	 * the declarations have the required properties.
1287 	 */
1288 	lut_walk(Faults, (lut_cb)check_required_props, (void *)T_FAULT);
1289 	lut_walk(Upsets, (lut_cb)check_required_props, (void *)T_UPSET);
1290 	lut_walk(Errors, (lut_cb)check_required_props, (void *)T_ERROR);
1291 	lut_walk(Ereports, (lut_cb)check_required_props, (void *)T_EREPORT);
1292 	lut_walk(SERDs, (lut_cb)check_required_props, (void *)T_SERD);
1293 	lut_walk(STATs, (lut_cb)check_required_props, (void *)T_STAT);
1294 
1295 	/*
1296 	 * we do this now rather than while building the parse
1297 	 * tree because it is inconvenient for the user if we
1298 	 * require SERD engines to be declared before used in
1299 	 * an upset "engine" property.
1300 	 */
1301 	lut_walk(Faults, (lut_cb)check_refcount, (void *)T_FAULT);
1302 	lut_walk(Upsets, (lut_cb)check_upset_engine, (void *)T_UPSET);
1303 	lut_walk(Upsets, (lut_cb)check_refcount, (void *)T_UPSET);
1304 	lut_walk(Errors, (lut_cb)check_refcount, (void *)T_ERROR);
1305 	lut_walk(Ereports, (lut_cb)check_refcount, (void *)T_EREPORT);
1306 	lut_walk(SERDs, (lut_cb)check_refcount, (void *)T_SERD);
1307 
1308 	/* check for cycles */
1309 	lut_walk(Errors, (lut_cb)check_cycle, (void *)0);
1310 }
1311 
1312 /* compare two T_NAMES by only looking at components, not iterators */
1313 int
1314 tree_namecmp(struct node *np1, struct node *np2)
1315 {
1316 	ASSERT(np1 != NULL);
1317 	ASSERT(np2 != NULL);
1318 	ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t));
1319 	ASSERTinfo(np2->t == T_NAME, ptree_nodetype2str(np1->t));
1320 
1321 	while (np1 && np2 && np1->u.name.s == np2->u.name.s) {
1322 		np1 = np1->u.name.next;
1323 		np2 = np2->u.name.next;
1324 	}
1325 	if (np1 == NULL)
1326 		if (np2 == NULL)
1327 			return (0);
1328 		else
1329 			return (-1);
1330 	else if (np2 == NULL)
1331 		return (1);
1332 	else
1333 		return (np2->u.name.s - np1->u.name.s);
1334 }
1335 
1336 int
1337 tree_eventcmp(struct node *np1, struct node *np2)
1338 {
1339 	int ret;
1340 
1341 	ASSERT(np1 != NULL);
1342 	ASSERT(np2 != NULL);
1343 	ASSERTinfo(np1->t == T_EVENT, ptree_nodetype2str(np1->t));
1344 	ASSERTinfo(np2->t == T_EVENT, ptree_nodetype2str(np2->t));
1345 
1346 	if ((ret = tree_namecmp(np1->u.event.ename,
1347 	    np2->u.event.ename)) == 0) {
1348 			if (np1->u.event.epname == NULL &&
1349 			    np2->u.event.epname == NULL)
1350 				return (0);
1351 			else if (np1->u.event.epname == NULL)
1352 				return (-1);
1353 			else if (np2->u.event.epname == NULL)
1354 				return (1);
1355 			else
1356 				return tree_namecmp(np1->u.event.epname,
1357 				    np2->u.event.epname);
1358 	} else
1359 	return (ret);
1360 }
1361