1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Devfsadm replaces drvconfig, audlinks, disks, tapes, ports, devlinks 31 * as a general purpose device administrative utility. It creates 32 * devices special files in /devices and logical links in /dev, and 33 * coordinates updates to /etc/path_to_instance with the kernel. It 34 * operates in both command line mode to handle user or script invoked 35 * reconfiguration updates, and operates in daemon mode to handle dynamic 36 * reconfiguration for hotplugging support. 37 */ 38 39 #include "devfsadm_impl.h" 40 #include <utime.h> 41 42 /* globals */ 43 44 /* create or remove nodes or links. unset with -n */ 45 static int file_mods = TRUE; 46 47 /* cleanup mode. Set with -C */ 48 static int cleanup = FALSE; 49 50 /* devlinks -d compatibility */ 51 static int devlinks_debug = FALSE; 52 53 /* turn off device allocation with devfsadm -d */ 54 static int devalloc_off = FALSE; 55 56 /* devices to be deallocated with -d */ 57 static char *devalloc[5] = 58 {DDI_NT_AUDIO, DDI_NT_CD, DDI_NT_FD, DDI_NT_TAPE, NULL}; 59 60 /* load a single driver only. set with -i */ 61 static int single_drv = FALSE; 62 static char *driver = NULL; 63 64 /* attempt to load drivers or defer attach nodes */ 65 static int load_attach_drv = TRUE; 66 67 /* set if invoked via /usr/lib/devfsadm/devfsadmd */ 68 static int daemon_mode = FALSE; 69 70 /* output directed to syslog during daemon mode if set */ 71 static int logflag = FALSE; 72 73 /* build links in /dev. -x to turn off */ 74 static int build_dev = TRUE; 75 76 /* build nodes in /devices. -y to turn off */ 77 static int build_devices = TRUE; 78 79 /* -z to turn off */ 80 static int flush_path_to_inst_enable = TRUE; 81 82 /* variables used for path_to_inst flushing */ 83 static int inst_count = 0; 84 static mutex_t count_lock; 85 static cond_t cv; 86 87 /* variables for minor_fini calling system */ 88 static int minor_fini_timeout = MINOR_FINI_TIMEOUT_DEFAULT; 89 static mutex_t minor_fini_mutex; 90 static int minor_fini_thread_created = FALSE; 91 static int minor_fini_delay_restart = FALSE; 92 93 /* single-threads /dev modification */ 94 static sema_t dev_sema; 95 96 /* the program we were invoked as; ie argv[0] */ 97 static char *prog; 98 99 /* pointers to create/remove link lists */ 100 static create_list_t *create_head = NULL; 101 static remove_list_t *remove_head = NULL; 102 103 /* supports the class -c option */ 104 static char **classes = NULL; 105 static int num_classes = 0; 106 107 /* used with verbose option -v or -V */ 108 static int num_verbose = 0; 109 static char **verbose = NULL; 110 111 static struct mperm *minor_perms = NULL; 112 static driver_alias_t *driver_aliases = NULL; 113 114 /* set if -r alternate root given */ 115 static char *root_dir = ""; 116 117 /* /devices or <rootdir>/devices */ 118 static char *devices_dir = DEVICES; 119 120 /* /dev or <rootdir>/dev */ 121 static char *dev_dir = DEV; 122 123 /* /dev for the global zone */ 124 static char *global_dev_dir = DEV; 125 126 /* /etc/path_to_inst unless -p used */ 127 static char *inst_file = INSTANCE_FILE; 128 129 /* /usr/lib/devfsadm/linkmods unless -l used */ 130 static char *module_dirs = MODULE_DIRS; 131 132 /* default uid/gid used if /etc/minor_perm entry not found */ 133 static uid_t root_uid; 134 static gid_t sys_gid; 135 136 /* /etc/devlink.tab unless devlinks -t used */ 137 static char *devlinktab_file = NULL; 138 139 /* set if /dev link is new. speeds up rm_stale_links */ 140 static int linknew = TRUE; 141 142 /* variables for devlink.tab compat processing */ 143 static devlinktab_list_t *devlinktab_list = NULL; 144 static unsigned int devlinktab_line = 0; 145 146 /* cache head for devfsadm_enumerate*() functions */ 147 static numeral_set_t *head_numeral_set = NULL; 148 149 /* list list of devfsadm modules */ 150 static module_t *module_head = NULL; 151 152 /* name_to_major list used in utility function */ 153 static n2m_t *n2m_list = NULL; 154 155 /* cache of some links used for performance */ 156 static linkhead_t *headlinkhead = NULL; 157 158 /* locking variables to prevent multiples writes to /dev */ 159 static int hold_dev_lock = FALSE; 160 static int hold_daemon_lock = FALSE; 161 static int dev_lock_fd; 162 static int daemon_lock_fd; 163 static char dev_lockfile[PATH_MAX + 1]; 164 static char daemon_lockfile[PATH_MAX + 1]; 165 166 /* last devinfo node/minor processed. used for performance */ 167 static di_node_t lnode; 168 static di_minor_t lminor; 169 static char lphy_path[PATH_MAX + 1] = {""}; 170 171 /* Globals used by the link database */ 172 static di_devlink_handle_t devlink_cache; 173 static int update_database = FALSE; 174 static int devlink_door_fd = -1; /* fd of devlink handler door */ 175 176 /* Globals used to set logindev perms */ 177 static struct login_dev *login_dev_cache = NULL; 178 static int login_dev_enable = FALSE; 179 180 /* Global to use devinfo snapshot cache */ 181 static int use_snapshot_cache = FALSE; 182 183 /* Zone-related information */ 184 static int zone_cmd_mode = 0; 185 static mutex_t zone_mutex; /* protects zone registration/unregistration ops */ 186 static struct zone_devinfo *zone_head; /* linked list of zones */ 187 188 /* 189 * Packaged directories - not removed even when empty. 190 * The dirs must be listed in canonical form 191 * i.e. without leading "/dev/" 192 */ 193 static char *packaged_dirs[] = 194 {"dsk", "rdsk", "term", NULL}; 195 196 /* RCM related globals */ 197 static void *librcm_hdl; 198 static rcm_handle_t *rcm_hdl = NULL; 199 static thread_t process_rcm_events_tid; 200 static struct rcm_eventq *volatile rcm_eventq_head = NULL; 201 static struct rcm_eventq *rcm_eventq_tail = NULL; 202 static mutex_t rcm_eventq_lock; 203 static cond_t rcm_eventq_cv; 204 static volatile int need_to_exit_rcm_event_thread = 0; 205 206 static void load_dev_acl(void); 207 static void update_drvconf(major_t); 208 209 210 int 211 main(int argc, char *argv[]) 212 { 213 struct passwd *pw; 214 struct group *gp; 215 pid_t pid; 216 217 (void) setlocale(LC_ALL, ""); 218 (void) textdomain(TEXT_DOMAIN); 219 220 if ((prog = strrchr(argv[0], '/')) == NULL) { 221 prog = argv[0]; 222 } else { 223 prog++; 224 } 225 226 if (getuid() != 0) { 227 err_print(MUST_BE_ROOT); 228 devfsadm_exit(1); 229 } 230 231 /* 232 * Close all files except stdin/stdout/stderr 233 */ 234 closefrom(3); 235 236 if ((pw = getpwnam(DEFAULT_DEV_USER)) != NULL) { 237 root_uid = pw->pw_uid; 238 } else { 239 err_print(CANT_FIND_USER, DEFAULT_DEV_USER); 240 root_uid = (uid_t)0; /* assume 0 is root */ 241 } 242 243 /* the default group is sys */ 244 245 if ((gp = getgrnam(DEFAULT_DEV_GROUP)) != NULL) { 246 sys_gid = gp->gr_gid; 247 } else { 248 err_print(CANT_FIND_GROUP, DEFAULT_DEV_GROUP); 249 sys_gid = (gid_t)3; /* assume 3 is sys */ 250 } 251 252 (void) umask(0); 253 254 parse_args(argc, argv); 255 256 (void) sema_init(&dev_sema, 1, USYNC_THREAD, NULL); 257 258 if (daemon_mode == TRUE) { 259 /* 260 * Build /dev and /devices before daemonizing if 261 * reconfig booting and daemon invoked with alternate 262 * root. This is to support install. 263 */ 264 if (getenv(RECONFIG_BOOT) != NULL && root_dir[0] != '\0') { 265 vprint(INFO_MID, CONFIGURING); 266 load_dev_acl(); 267 update_drvconf((major_t)-1); 268 process_devinfo_tree(); 269 (void) modctl(MODSETMINIROOT); 270 } 271 272 /* 273 * fork before detaching from tty in order to print error 274 * message if unable to acquire file lock. locks not preserved 275 * across forks. Even under debug we want to fork so that 276 * when executed at boot we don't hang. 277 */ 278 if (fork() != 0) { 279 devfsadm_exit(0); 280 } 281 282 /* set directory to / so it coredumps there */ 283 if (chdir("/") == -1) { 284 err_print(CHROOT_FAILED, strerror(errno)); 285 } 286 287 /* only one daemon can run at a time */ 288 if ((pid = enter_daemon_lock()) == getpid()) { 289 thread_t thread; 290 detachfromtty(); 291 (void) cond_init(&cv, USYNC_THREAD, 0); 292 (void) mutex_init(&count_lock, USYNC_THREAD, 0); 293 if (thr_create(NULL, NULL, 294 (void *(*)(void *))instance_flush_thread, 295 NULL, 296 THR_DETACHED, 297 &thread) != 0) { 298 err_print(CANT_CREATE_THREAD, "daemon", 299 strerror(errno)); 300 devfsadm_exit(1); 301 } 302 303 /* 304 * No need for rcm notifications when running 305 * with an alternate root. So initialize rcm only 306 * when devfsadm is running with root dir "/". 307 * Similarly, logindevperms need only be set 308 * in daemon mode and when root dir is "/". 309 */ 310 if (root_dir[0] == '\0') { 311 (void) rcm_init(); 312 login_dev_enable = TRUE; 313 } 314 315 daemon_update(); 316 } else { 317 err_print(DAEMON_RUNNING, pid); 318 devfsadm_exit(1); 319 } 320 exit_daemon_lock(); 321 322 } else { 323 /* not a daemon, so just build /dev and /devices */ 324 process_devinfo_tree(); 325 } 326 return (0); 327 } 328 329 static void 330 update_drvconf(major_t major) 331 { 332 if (modctl(MODLOADDRVCONF, major) != 0) 333 err_print(gettext("update_drvconf failed for major %d\n"), 334 major); 335 } 336 337 338 static void 339 load_dev_acl() 340 { 341 if (load_devpolicy() != 0) 342 err_print(gettext("device policy load failed\n")); 343 load_minor_perm_file(); 344 } 345 346 /* 347 * set_zone_params sets us up to run against a specific zone. It should 348 * only be called from parse_args. 349 */ 350 static int 351 set_zone_params(char *zone_name) 352 { 353 char zpath[MAXPATHLEN]; 354 zone_dochandle_t hdl; 355 void *dlhdl; 356 357 assert(daemon_mode == FALSE); 358 359 if (strcmp(zone_name, GLOBAL_ZONENAME) == 0) { 360 err_print(INVALID_ZONE, zone_name); 361 return (DEVFSADM_FAILURE); 362 } 363 364 if ((dlhdl = dlopen(LIBZONECFG_PATH, RTLD_LAZY)) == NULL) { 365 err_print(ZONE_LIB_MISSING); 366 return (DEVFSADM_FAILURE); 367 } 368 369 if (zone_get_zonepath(zone_name, zpath, sizeof (zpath)) != Z_OK) { 370 err_print(ZONE_ROOTPATH_FAILED, zone_name, strerror(errno)); 371 (void) dlclose(dlhdl); 372 return (DEVFSADM_FAILURE); 373 } 374 set_root_devices_dev_dir(zpath, 1); 375 376 if ((hdl = zonecfg_init_handle()) == NULL) { 377 err_print(ZONE_REP_FAILED, zone_name, strerror(errno)); 378 (void) dlclose(dlhdl); 379 return (DEVFSADM_FAILURE); 380 } 381 382 if ((zonecfg_get_snapshot_handle(zone_name, hdl)) != Z_OK) { 383 err_print(ZONE_REP_FAILED, zone_name, strerror(errno)); 384 zonecfg_fini_handle(hdl); 385 (void) dlclose(dlhdl); 386 return (DEVFSADM_FAILURE); 387 } 388 (void) dlclose(dlhdl); 389 390 zone_head = s_malloc(sizeof (struct zone_devinfo)); 391 zone_head->zone_path = s_strdup(zpath); 392 zone_head->zone_name = s_strdup(zone_name); 393 zone_head->zone_dochdl = hdl; 394 zone_head->zone_next = NULL; 395 zone_cmd_mode = 1; 396 return (DEVFSADM_SUCCESS); 397 } 398 399 /* 400 * Parse arguments for all 6 programs handled from devfsadm. 401 */ 402 static void 403 parse_args(int argc, char *argv[]) 404 { 405 char opt; 406 char get_linkcompat_opts = FALSE; 407 char *compat_class; 408 int num_aliases = 0; 409 int len; 410 int retval; 411 int add_bind = FALSE; 412 struct aliases *ap = NULL; 413 struct aliases *a_head = NULL; 414 struct aliases *a_tail = NULL; 415 struct modconfig mc; 416 417 if (strcmp(prog, DISKS) == 0) { 418 compat_class = "disk"; 419 get_linkcompat_opts = TRUE; 420 421 } else if (strcmp(prog, TAPES) == 0) { 422 compat_class = "tape"; 423 get_linkcompat_opts = TRUE; 424 425 } else if (strcmp(prog, PORTS) == 0) { 426 compat_class = "port"; 427 get_linkcompat_opts = TRUE; 428 429 } else if (strcmp(prog, AUDLINKS) == 0) { 430 compat_class = "audio"; 431 get_linkcompat_opts = TRUE; 432 433 } else if (strcmp(prog, DEVLINKS) == 0) { 434 devlinktab_file = DEVLINKTAB_FILE; 435 436 build_devices = FALSE; 437 load_attach_drv = FALSE; 438 439 while ((opt = getopt(argc, argv, "dnr:st:vV:")) != EOF) { 440 switch (opt) { 441 case 'd': 442 file_mods = FALSE; 443 flush_path_to_inst_enable = FALSE; 444 devlinks_debug = TRUE; 445 break; 446 case 'n': 447 /* prevent driver loading and deferred attach */ 448 load_attach_drv = FALSE; 449 break; 450 case 'r': 451 set_root_devices_dev_dir(optarg, 0); 452 if (zone_pathcheck(root_dir) != 453 DEVFSADM_SUCCESS) 454 devfsadm_exit(1); 455 break; 456 case 's': 457 /* 458 * suppress. don't create/remove links/nodes 459 * useful with -v or -V 460 */ 461 file_mods = FALSE; 462 flush_path_to_inst_enable = FALSE; 463 break; 464 case 't': 465 /* supply a non-default table file */ 466 devlinktab_file = optarg; 467 break; 468 case 'v': 469 /* documented verbose flag */ 470 add_verbose_id(VERBOSE_MID); 471 break; 472 case 'V': 473 /* undocumented for extra verbose levels */ 474 add_verbose_id(optarg); 475 break; 476 default: 477 usage(); 478 break; 479 } 480 } 481 482 if (optind < argc) { 483 usage(); 484 } 485 486 } else if (strcmp(prog, DRVCONFIG) == 0) { 487 build_dev = FALSE; 488 489 while ((opt = 490 getopt(argc, argv, "a:bdc:i:m:np:R:r:svV:")) != EOF) { 491 switch (opt) { 492 case 'a': 493 ap = calloc(sizeof (struct aliases), 1); 494 ap->a_name = dequote(optarg); 495 len = strlen(ap->a_name) + 1; 496 if (len > MAXMODCONFNAME) { 497 err_print(ALIAS_TOO_LONG, 498 MAXMODCONFNAME, ap->a_name); 499 devfsadm_exit(1); 500 } 501 ap->a_len = len; 502 if (a_tail == NULL) { 503 a_head = ap; 504 } else { 505 a_tail->a_next = ap; 506 } 507 a_tail = ap; 508 num_aliases++; 509 add_bind = TRUE; 510 break; 511 case 'b': 512 add_bind = TRUE; 513 break; 514 case 'c': 515 (void) strcpy(mc.drvclass, optarg); 516 break; 517 case 'd': 518 /* 519 * need to keep for compatibility, but 520 * do nothing. 521 */ 522 break; 523 case 'i': 524 single_drv = TRUE; 525 (void) strcpy(mc.drvname, optarg); 526 driver = s_strdup(optarg); 527 break; 528 case 'm': 529 mc.major = atoi(optarg); 530 break; 531 case 'n': 532 /* prevent driver loading and deferred attach */ 533 load_attach_drv = FALSE; 534 break; 535 case 'p': 536 /* specify alternate path_to_inst file */ 537 inst_file = s_strdup(optarg); 538 break; 539 case 'R': 540 /* 541 * Private flag for suninstall to populate 542 * device information on the installed root. 543 */ 544 root_dir = s_strdup(optarg); 545 if (zone_pathcheck(root_dir) != 546 DEVFSADM_SUCCESS) 547 devfsadm_exit(devfsadm_copy()); 548 break; 549 case 'r': 550 devices_dir = s_strdup(optarg); 551 if (zone_pathcheck(devices_dir) != 552 DEVFSADM_SUCCESS) 553 devfsadm_exit(1); 554 break; 555 case 's': 556 /* 557 * suppress. don't create nodes 558 * useful with -v or -V 559 */ 560 file_mods = FALSE; 561 flush_path_to_inst_enable = FALSE; 562 break; 563 case 'v': 564 /* documented verbose flag */ 565 add_verbose_id(VERBOSE_MID); 566 break; 567 case 'V': 568 /* undocumented for extra verbose levels */ 569 add_verbose_id(optarg); 570 break; 571 default: 572 usage(); 573 } 574 } 575 576 if (optind < argc) { 577 usage(); 578 } 579 580 if ((add_bind == TRUE) && (mc.major == -1 || 581 mc.drvname[0] == NULL)) { 582 err_print(MAJOR_AND_B_FLAG); 583 devfsadm_exit(1); 584 } 585 if (add_bind == TRUE) { 586 mc.num_aliases = num_aliases; 587 mc.ap = a_head; 588 retval = modctl(MODADDMAJBIND, NULL, (caddr_t)&mc); 589 if (retval < 0) { 590 err_print(MODCTL_ADDMAJBIND); 591 } 592 devfsadm_exit(retval); 593 } 594 595 } else if ((strcmp(prog, DEVFSADM) == 0) || 596 (strcmp(prog, DEVFSADMD) == 0)) { 597 char *zonename = NULL; 598 enum zreg_op zoneop; 599 int init_drvconf = 0; 600 int init_perm = 0; 601 int public_mode = 0; 602 603 if (strcmp(prog, DEVFSADMD) == 0) { 604 daemon_mode = TRUE; 605 } 606 607 devlinktab_file = DEVLINKTAB_FILE; 608 609 while ((opt = getopt(argc, argv, 610 "Cc:dIi:l:np:PR:r:st:vV:x:z:Z:")) != EOF) { 611 if (opt == 'I' || opt == 'P') { 612 if (public_mode) 613 usage(); 614 } else { 615 if (init_perm || init_drvconf) 616 usage(); 617 public_mode = 1; 618 } 619 switch (opt) { 620 case 'C': 621 cleanup = TRUE; 622 break; 623 case 'c': 624 num_classes++; 625 classes = s_realloc(classes, num_classes * 626 sizeof (char *)); 627 classes[num_classes - 1] = optarg; 628 break; 629 case 'd': 630 if (daemon_mode == FALSE) { 631 devalloc_off = TRUE; 632 build_dev = FALSE; 633 } 634 break; 635 case 'I': /* update kernel driver.conf cache */ 636 if (daemon_mode == TRUE) 637 usage(); 638 init_drvconf = 1; 639 break; 640 case 'i': 641 single_drv = TRUE; 642 driver = s_strdup(optarg); 643 break; 644 case 'l': 645 /* specify an alternate module load path */ 646 module_dirs = s_strdup(optarg); 647 break; 648 case 'n': 649 /* prevent driver loading and deferred attach */ 650 load_attach_drv = FALSE; 651 break; 652 case 'p': 653 /* specify alternate path_to_inst file */ 654 inst_file = s_strdup(optarg); 655 break; 656 case 'P': 657 if (daemon_mode == TRUE) 658 usage(); 659 /* load minor_perm and device_policy */ 660 init_perm = 1; 661 break; 662 case 'R': 663 /* 664 * Private flag for suninstall to populate 665 * device information on the installed root. 666 */ 667 root_dir = s_strdup(optarg); 668 devfsadm_exit(devfsadm_copy()); 669 break; 670 case 'r': 671 set_root_devices_dev_dir(optarg, 0); 672 break; 673 case 's': 674 /* 675 * suppress. don't create/remove links/nodes 676 * useful with -v or -V 677 */ 678 file_mods = FALSE; 679 flush_path_to_inst_enable = FALSE; 680 break; 681 case 't': 682 devlinktab_file = optarg; 683 break; 684 case 'v': 685 /* documented verbose flag */ 686 add_verbose_id(VERBOSE_MID); 687 break; 688 case 'V': 689 /* undocumented: specify verbose lvl */ 690 add_verbose_id(optarg); 691 break; 692 case 'x': 693 /* 694 * x is the "private switch" option. The 695 * goal is to not suck up all the other 696 * option letters. 697 */ 698 if (strcmp(optarg, "update_devlinksdb") == 0) { 699 update_database = TRUE; 700 } else if (strcmp(optarg, "no_dev") == 0) { 701 /* don't build /dev */ 702 build_dev = FALSE; 703 } else if (strcmp(optarg, "no_devices") == 0) { 704 /* don't build /devices */ 705 build_devices = FALSE; 706 } else if (strcmp(optarg, "no_p2i") == 0) { 707 /* don't flush path_to_inst */ 708 flush_path_to_inst_enable = FALSE; 709 } else if (strcmp(optarg, "use_dicache") == 0) { 710 use_snapshot_cache = TRUE; 711 } else { 712 usage(); 713 } 714 break; 715 case 'z': 716 zonename = optarg; 717 zoneop = ZONE_REG; 718 break; 719 case 'Z': 720 zonename = optarg; 721 zoneop = ZONE_UNREG; 722 break; 723 default: 724 usage(); 725 break; 726 } 727 728 } 729 if (optind < argc) { 730 usage(); 731 } 732 733 /* 734 * We're not in zone mode; Check to see if the rootpath 735 * collides with any zonepaths. 736 */ 737 if (zonename == NULL) { 738 if (zone_pathcheck(root_dir) != DEVFSADM_SUCCESS) 739 devfsadm_exit(1); 740 } 741 742 if (zonename != NULL) { 743 /* 744 * -z and -Z cannot be used if we're the daemon. The 745 * daemon always manages all zones. 746 */ 747 if (daemon_mode == TRUE) 748 usage(); 749 750 /* 751 * -z and -Z are private flags, but to be paranoid we 752 * check whether they have been combined with -r. 753 */ 754 if (*root_dir != '\0') 755 usage(); 756 757 if (set_zone_params(optarg) != DEVFSADM_SUCCESS) 758 devfsadm_exit(1); 759 760 call_zone_register(zonename, zoneop); 761 if (zoneop == ZONE_UNREG) 762 devfsadm_exit(0); 763 /* 764 * If we are in ZONE_REG mode we plow on, laying out 765 * devices for this zone. 766 */ 767 } 768 if (init_drvconf || init_perm) { 769 /* 770 * Load minor perm before force-loading drivers 771 * so the correct permissions are picked up. 772 */ 773 if (init_perm) 774 load_dev_acl(); 775 if (init_drvconf) 776 update_drvconf((major_t)-1); 777 devfsadm_exit(0); 778 /* NOTREACHED */ 779 } 780 } 781 782 783 if (get_linkcompat_opts == TRUE) { 784 785 build_devices = FALSE; 786 load_attach_drv = FALSE; 787 num_classes++; 788 classes = s_realloc(classes, num_classes * 789 sizeof (char *)); 790 classes[num_classes - 1] = compat_class; 791 792 while ((opt = getopt(argc, argv, "Cnr:svV:")) != EOF) { 793 switch (opt) { 794 case 'C': 795 cleanup = TRUE; 796 break; 797 case 'n': 798 /* prevent driver loading or deferred attach */ 799 load_attach_drv = FALSE; 800 break; 801 case 'r': 802 set_root_devices_dev_dir(optarg, 0); 803 if (zone_pathcheck(root_dir) != 804 DEVFSADM_SUCCESS) 805 devfsadm_exit(1); 806 break; 807 case 's': 808 /* suppress. don't create/remove links/nodes */ 809 /* useful with -v or -V */ 810 file_mods = FALSE; 811 flush_path_to_inst_enable = FALSE; 812 break; 813 case 'v': 814 /* documented verbose flag */ 815 add_verbose_id(VERBOSE_MID); 816 break; 817 case 'V': 818 /* undocumented for extra verbose levels */ 819 add_verbose_id(optarg); 820 break; 821 default: 822 usage(); 823 } 824 } 825 if (optind < argc) { 826 usage(); 827 } 828 } 829 } 830 831 void 832 usage(void) 833 { 834 if (strcmp(prog, DEVLINKS) == 0) { 835 err_print(DEVLINKS_USAGE); 836 } else if (strcmp(prog, DRVCONFIG) == 0) { 837 err_print(DRVCONFIG_USAGE); 838 } else if ((strcmp(prog, DEVFSADM) == 0) || 839 (strcmp(prog, DEVFSADMD) == 0)) { 840 err_print(DEVFSADM_USAGE); 841 } else { 842 err_print(COMPAT_LINK_USAGE); 843 } 844 845 devfsadm_exit(1); 846 } 847 848 static void 849 devi_tree_walk(struct dca_impl *dcip, int flags, char *ev_subclass) 850 { 851 char *msg, *name; 852 struct mlist mlist = {0}; 853 di_node_t node; 854 855 vprint(CHATTY_MID, "devi_tree_walk: root=%s, minor=%s, driver=%s," 856 " error=%d, flags=%u\n", dcip->dci_root, 857 dcip->dci_minor ? dcip->dci_minor : "<NULL>", 858 dcip->dci_driver ? dcip->dci_driver : "<NULL>", dcip->dci_error, 859 dcip->dci_flags); 860 861 assert(dcip->dci_root); 862 863 if (dcip->dci_flags & DCA_LOAD_DRV) { 864 node = di_init_driver(dcip->dci_driver, flags); 865 msg = DRIVER_FAILURE; 866 name = dcip->dci_driver; 867 } else { 868 node = di_init(dcip->dci_root, flags); 869 msg = DI_INIT_FAILED; 870 name = dcip->dci_root; 871 } 872 873 if (node == DI_NODE_NIL) { 874 dcip->dci_error = errno; 875 /* 876 * Rapid hotplugging (commonly seen during USB testing), 877 * may remove a device before the create event for it 878 * has been processed. To prevent alarming users with 879 * a superfluous message, we suppress error messages 880 * for ENXIO and hotplug. 881 */ 882 if (!(errno == ENXIO && (dcip->dci_flags & DCA_HOT_PLUG))) 883 err_print(msg, name, strerror(dcip->dci_error)); 884 return; 885 } 886 887 if (dcip->dci_flags & DCA_FLUSH_PATHINST) 888 flush_path_to_inst(); 889 890 dcip->dci_arg = &mlist; 891 892 vprint(CHATTY_MID, "walking device tree\n"); 893 894 (void) di_walk_minor(node, NULL, DI_CHECK_ALIAS, dcip, 895 check_minor_type); 896 897 process_deferred_links(dcip, DCA_CREATE_LINK); 898 899 dcip->dci_arg = NULL; 900 901 /* 902 * Finished creating devfs files and dev links. 903 * Log sysevent and notify RCM. 904 */ 905 if (ev_subclass) 906 build_and_log_event(EC_DEV_ADD, ev_subclass, dcip->dci_root, 907 node); 908 909 if ((dcip->dci_flags & DCA_NOTIFY_RCM) && rcm_hdl) 910 (void) notify_rcm(node, dcip->dci_minor); 911 912 di_fini(node); 913 } 914 915 static void 916 process_deferred_links(struct dca_impl *dcip, int flags) 917 { 918 struct mlist *dep; 919 struct minor *mp, *smp; 920 921 vprint(CHATTY_MID, "processing deferred links\n"); 922 923 dep = dcip->dci_arg; 924 925 /* 926 * The list head is not used during the deferred create phase 927 */ 928 dcip->dci_arg = NULL; 929 930 assert(dep); 931 assert((dep->head == NULL) ^ (dep->tail != NULL)); 932 assert(flags == DCA_FREE_LIST || flags == DCA_CREATE_LINK); 933 934 for (smp = NULL, mp = dep->head; mp; mp = mp->next) { 935 if (flags == DCA_CREATE_LINK) 936 (void) check_minor_type(mp->node, mp->minor, dcip); 937 free(smp); 938 smp = mp; 939 } 940 941 free(smp); 942 } 943 944 /* 945 * Called in non-daemon mode to take a snap shot of the devinfo tree. 946 * Then it calls the appropriate functions to build /devices and /dev. 947 * It also flushes path_to_inst. 948 */ 949 void 950 process_devinfo_tree() 951 { 952 uint_t flags = DINFOCPYALL; 953 struct dca_impl dci; 954 char name[MAXNAMELEN]; 955 char *fcn = "process_devinfo_tree: "; 956 957 vprint(CHATTY_MID, "%senter\n", fcn); 958 959 dca_impl_init("/", NULL, &dci); 960 961 lock_dev(); 962 963 /* 964 * Update kernel driver.conf cache when devfsadm/drvconfig 965 * is invoked to build /devices and /dev. 966 */ 967 if (load_attach_drv == TRUE) 968 update_drvconf((major_t)-1); 969 970 if (single_drv == TRUE) { 971 /* 972 * load a single driver, but walk the entire devinfo tree 973 */ 974 if (load_attach_drv == FALSE) 975 err_print(DRV_LOAD_REQD); 976 977 vprint(CHATTY_MID, "%sattaching driver (%s)\n", fcn, driver); 978 979 dci.dci_flags |= DCA_LOAD_DRV; 980 (void) snprintf(name, sizeof (name), "%s", driver); 981 dci.dci_driver = name; 982 983 } else if (load_attach_drv == TRUE) { 984 /* 985 * load and attach all drivers, then walk the entire tree. 986 * If the cache flag is set, use DINFOCACHE to get cached 987 * data. 988 */ 989 if (use_snapshot_cache == TRUE) { 990 flags = DINFOCACHE; 991 vprint(CHATTY_MID, "%susing snapshot cache\n", fcn); 992 } else { 993 vprint(CHATTY_MID, "%sattaching all drivers\n", fcn); 994 flags |= DINFOFORCE; 995 if (cleanup) { 996 /* 997 * remove dangling entries from /etc/devices 998 * files. 999 */ 1000 flags |= DINFOCLEANUP; 1001 } 1002 } 1003 } 1004 1005 if (((load_attach_drv == TRUE) || (single_drv == TRUE)) && 1006 (build_devices == TRUE)) { 1007 dci.dci_flags |= DCA_FLUSH_PATHINST; 1008 } 1009 1010 /* handle pre-cleanup operations desired by the modules. */ 1011 pre_and_post_cleanup(RM_PRE); 1012 1013 devi_tree_walk(&dci, flags, NULL); 1014 1015 if (dci.dci_error) { 1016 devfsadm_exit(1); 1017 } 1018 1019 /* handle post-cleanup operations desired by the modules. */ 1020 pre_and_post_cleanup(RM_POST); 1021 1022 unlock_dev(SYNC_STATE); 1023 } 1024 1025 /*ARGSUSED*/ 1026 static void 1027 print_cache_signal(int signo) 1028 { 1029 1030 if (signal(SIGUSR1, print_cache_signal) == SIG_ERR) { 1031 err_print("signal SIGUSR1 failed: %s\n", strerror(errno)); 1032 devfsadm_exit(1); 1033 } 1034 } 1035 1036 /* 1037 * Register with eventd for messages. Create doors for synchronous 1038 * link creation. 1039 */ 1040 static void 1041 daemon_update(void) 1042 { 1043 int fd; 1044 char *fcn = "daemon_update: "; 1045 char door_file[MAXPATHLEN]; 1046 const char *subclass_list; 1047 sysevent_handle_t *sysevent_hp; 1048 vprint(CHATTY_MID, "%senter\n", fcn); 1049 1050 if (signal(SIGUSR1, print_cache_signal) == SIG_ERR) { 1051 err_print("signal SIGUSR1 failed: %s\n", strerror(errno)); 1052 devfsadm_exit(1); 1053 } 1054 1055 if (snprintf(door_file, sizeof (door_file), 1056 "%s%s", root_dir, DEVFSADM_SERVICE_DOOR) >= sizeof (door_file)) { 1057 err_print("update_daemon failed to open sysevent service " 1058 "door\n"); 1059 devfsadm_exit(1); 1060 } 1061 if ((sysevent_hp = sysevent_open_channel_alt( 1062 door_file)) == NULL) { 1063 err_print(CANT_CREATE_DOOR, 1064 door_file, strerror(errno)); 1065 devfsadm_exit(1); 1066 } 1067 if (sysevent_bind_subscriber(sysevent_hp, event_handler) != 0) { 1068 err_print(CANT_CREATE_DOOR, 1069 door_file, strerror(errno)); 1070 (void) sysevent_close_channel(sysevent_hp); 1071 devfsadm_exit(1); 1072 } 1073 subclass_list = EC_SUB_ALL; 1074 if (sysevent_register_event(sysevent_hp, EC_ALL, &subclass_list, 1) 1075 != 0) { 1076 err_print(CANT_CREATE_DOOR, 1077 door_file, strerror(errno)); 1078 (void) sysevent_unbind_subscriber(sysevent_hp); 1079 (void) sysevent_close_channel(sysevent_hp); 1080 devfsadm_exit(1); 1081 } 1082 1083 if (snprintf(door_file, sizeof (door_file), 1084 "%s/%s", dev_dir, ZONE_REG_DOOR) >= sizeof (door_file)) { 1085 err_print(CANT_CREATE_ZONE_DOOR, door_file, 1086 strerror(ENAMETOOLONG)); 1087 devfsadm_exit(1); 1088 } 1089 (void) s_unlink(door_file); 1090 if ((fd = open(door_file, O_RDWR | O_CREAT, ZONE_DOOR_PERMS)) == -1) { 1091 err_print(CANT_CREATE_ZONE_DOOR, door_file, strerror(errno)); 1092 devfsadm_exit(1); 1093 } 1094 (void) close(fd); 1095 if ((fd = door_create(zone_reg_handler, NULL, 1096 DOOR_REFUSE_DESC | DOOR_NO_CANCEL)) == -1) { 1097 err_print(CANT_CREATE_ZONE_DOOR, door_file, strerror(errno)); 1098 (void) s_unlink(door_file); 1099 devfsadm_exit(1); 1100 } 1101 if (fattach(fd, door_file) == -1) { 1102 err_print(CANT_CREATE_ZONE_DOOR, door_file, strerror(errno)); 1103 (void) s_unlink(door_file); 1104 devfsadm_exit(1); 1105 } 1106 1107 (void) snprintf(door_file, sizeof (door_file), "%s/%s", dev_dir, 1108 DEVFSADM_SYNCH_DOOR); 1109 1110 (void) s_unlink(door_file); 1111 if ((fd = open(door_file, O_RDWR | O_CREAT, SYNCH_DOOR_PERMS)) == -1) { 1112 err_print(CANT_CREATE_DOOR, door_file, strerror(errno)); 1113 devfsadm_exit(1); 1114 } 1115 (void) close(fd); 1116 1117 if ((fd = door_create(sync_handler, NULL, 1118 DOOR_REFUSE_DESC | DOOR_NO_CANCEL)) == -1) { 1119 err_print(CANT_CREATE_DOOR, door_file, strerror(errno)); 1120 (void) s_unlink(door_file); 1121 devfsadm_exit(1); 1122 } 1123 1124 if (fattach(fd, door_file) == -1) { 1125 err_print(CANT_CREATE_DOOR, door_file, strerror(errno)); 1126 (void) s_unlink(door_file); 1127 devfsadm_exit(1); 1128 } 1129 devlink_door_fd = fd; 1130 1131 /* 1132 * Make sure devfsadm is managing any and all configured system zones. 1133 */ 1134 if (register_all_zones() != DEVFSADM_SUCCESS) { 1135 err_print(ZONE_LIST_FAILED, strerror(errno)); 1136 } 1137 1138 vprint(CHATTY_MID, "%spausing\n", fcn); 1139 for (;;) { 1140 (void) pause(); 1141 } 1142 } 1143 1144 /*ARGSUSED*/ 1145 static void 1146 sync_handler(void *cookie, char *ap, size_t asize, 1147 door_desc_t *dp, uint_t ndesc) 1148 { 1149 door_cred_t dcred; 1150 struct dca_off *dcp, rdca; 1151 struct dca_impl dci; 1152 1153 /* 1154 * Must be root to make this call 1155 * If caller is not root, don't touch its data. 1156 */ 1157 if (door_cred(&dcred) != 0 || dcred.dc_euid != 0) { 1158 dcp = ⤷ 1159 dcp->dca_error = EPERM; 1160 goto out; 1161 } 1162 1163 assert(ap); 1164 assert(asize == sizeof (*dcp)); 1165 1166 dcp = (void *)ap; 1167 1168 /* 1169 * Root is always present and is the first component of "name" member 1170 */ 1171 assert(dcp->dca_root == 0); 1172 1173 /* 1174 * The structure passed in by the door_client uses offsets 1175 * instead of pointers to work across address space boundaries. 1176 * Now copy the data into a structure (dca_impl) which uses 1177 * pointers. 1178 */ 1179 dci.dci_root = &dcp->dca_name[dcp->dca_root]; 1180 dci.dci_minor = dcp->dca_minor ? &dcp->dca_name[dcp->dca_minor] : NULL; 1181 dci.dci_driver = 1182 dcp->dca_driver ? &dcp->dca_name[dcp->dca_driver] : NULL; 1183 dci.dci_error = 0; 1184 dci.dci_flags = dcp->dca_flags | (dci.dci_driver ? DCA_LOAD_DRV : 0); 1185 dci.dci_arg = NULL; 1186 1187 lock_dev(); 1188 1189 devi_tree_walk(&dci, DINFOCPYALL, NULL); 1190 1191 unlock_dev(CACHE_STATE); 1192 1193 dcp->dca_error = dci.dci_error; 1194 1195 startup_cache_sync_thread(); 1196 1197 out: 1198 (void) door_return((char *)dcp, sizeof (*dcp), NULL, 0); 1199 } 1200 1201 static void 1202 lock_dev(void) 1203 { 1204 vprint(CHATTY_MID, "lock_dev(): entered\n"); 1205 1206 if (build_dev == FALSE) 1207 return; 1208 1209 /* lockout other threads from /dev */ 1210 while (sema_wait(&dev_sema) != 0); 1211 1212 /* 1213 * Lock out other devfsadm processes from /dev. 1214 * If this wasn't the last process to run, 1215 * clear caches 1216 */ 1217 if (enter_dev_lock() != getpid()) { 1218 invalidate_enumerate_cache(); 1219 rm_all_links_from_cache(); 1220 (void) di_devlink_close(&devlink_cache, DI_LINK_ERROR); 1221 devlink_cache = NULL; 1222 } 1223 1224 /* 1225 * (re)load the reverse links database if not 1226 * already cached. 1227 */ 1228 if (devlink_cache == NULL) 1229 devlink_cache = di_devlink_open(root_dir, 0); 1230 1231 1232 /* 1233 * If modules were unloaded, reload them. Also use module status 1234 * as an indication that we should check to see if other binding 1235 * files need to be reloaded. 1236 */ 1237 if (module_head == NULL) { 1238 load_modules(); 1239 read_minor_perm_file(); 1240 read_driver_aliases_file(); 1241 read_devlinktab_file(); 1242 read_logindevperm_file(); 1243 } 1244 1245 if (module_head != NULL) 1246 return; 1247 1248 if (strcmp(prog, DEVLINKS) == 0) { 1249 if (devlinktab_list == NULL) { 1250 err_print(NO_LINKTAB, devlinktab_file); 1251 err_print(NO_MODULES, module_dirs); 1252 err_print(ABORTING); 1253 devfsadm_exit(1); 1254 } 1255 } else { 1256 err_print(NO_MODULES, module_dirs); 1257 if (strcmp(prog, DEVFSADM) == 0) { 1258 err_print(MODIFY_PATH); 1259 } 1260 } 1261 } 1262 1263 static void 1264 unlock_dev(int flag) 1265 { 1266 vprint(CHATTY_MID, "unlock_dev(): entered\n"); 1267 1268 if (build_dev == FALSE) 1269 return; 1270 1271 assert(devlink_cache); 1272 assert(flag == SYNC_STATE || flag == CACHE_STATE); 1273 1274 1275 if (flag == SYNC_STATE) { 1276 unload_modules(); 1277 if (update_database) 1278 (void) di_devlink_update(devlink_cache); 1279 (void) di_devlink_close(&devlink_cache, 0); 1280 devlink_cache = NULL; 1281 } 1282 1283 exit_dev_lock(); 1284 1285 (void) sema_post(&dev_sema); 1286 } 1287 1288 /* 1289 * Contact the daemon to register the identified zone. We do everything with 1290 * zone names, for simplicity. 1291 */ 1292 static void 1293 call_zone_register(char *zone_name, int regop) 1294 { 1295 int doorfd, ret, retries = 0; 1296 door_arg_t arg; 1297 struct zreg z; 1298 char path[MAXPATHLEN]; 1299 1300 assert(regop == ZONE_REG || regop == ZONE_UNREG); 1301 1302 if (strcmp(zone_name, GLOBAL_ZONENAME) == 0) { 1303 err_print(INVALID_ZONE, zone_name); 1304 return; 1305 } 1306 1307 z.zreg_error = 0; 1308 z.zreg_op = regop; 1309 (void) strlcpy(z.zreg_zonename, zone_name, ZONENAME_MAX); 1310 1311 (void) snprintf(path, sizeof (path), "/dev/%s", ZONE_REG_DOOR); 1312 if ((doorfd = open(path, O_RDWR)) == -1) { 1313 return; 1314 } 1315 1316 bzero(&arg, sizeof (arg)); 1317 arg.data_ptr = (char *)&z; 1318 arg.data_size = sizeof (z); 1319 arg.rbuf = (char *)&z; 1320 arg.rsize = sizeof (z); 1321 1322 /* 1323 * If the daemon is running, tell it about the zone. If not, it's 1324 * ok. When it next gets run by the system (because there is 1325 * device-related work to do), it will load the list of zones from 1326 * the kernel. 1327 */ 1328 while (((ret = door_call(doorfd, &arg)) == -1) && retries++ < 3) { 1329 (void) sleep(retries); 1330 } 1331 (void) close(doorfd); 1332 1333 if (ret != 0) { 1334 return; 1335 } 1336 1337 switch (z.zreg_error) { 1338 case ZONE_SUCCESS: 1339 break; 1340 case ZONE_ERR_NOZONE: 1341 err_print(ZONE_REG_FAILED, zone_name, strerror(z.zreg_errno)); 1342 break; 1343 case ZONE_ERR_DOOR: 1344 err_print(ZONE_DOOR_MKFAIL, zone_name, strerror(z.zreg_errno)); 1345 break; 1346 case ZONE_ERR_REPOSITORY: 1347 err_print(ZONE_REP_FAILED, zone_name, strerror(z.zreg_errno)); 1348 break; 1349 case ZONE_ERR_NOLIB: 1350 err_print(ZONE_LIB_MISSING); 1351 break; 1352 default: 1353 err_print(ZONE_REG_FAILED, zone_name, strerror(z.zreg_errno)); 1354 break; 1355 } 1356 } 1357 1358 /* 1359 * The following routines are the daemon-side code for managing the set of 1360 * currently registered zones. 1361 * 1362 * TODO: improve brain-dead list performance--- use libuutil avl tree or hash? 1363 */ 1364 static void 1365 zlist_insert(struct zone_devinfo *newzone) 1366 { 1367 struct zone_devinfo *z; 1368 assert(MUTEX_HELD(&zone_mutex)); 1369 1370 if (zone_head == NULL) { 1371 zone_head = newzone; 1372 return; 1373 } 1374 z = zlist_remove(newzone->zone_name); 1375 if (z != NULL) 1376 delete_zone(z); 1377 newzone->zone_next = zone_head; 1378 zone_head = newzone; 1379 } 1380 1381 static void 1382 delete_zone(struct zone_devinfo *z) { 1383 char door_file[PATH_MAX]; 1384 1385 /* 1386 * Tidy up by withdrawing our door from the zone. 1387 */ 1388 (void) snprintf(door_file, sizeof (door_file), "%s/dev/%s", 1389 z->zone_path, DEVFSADM_SYNCH_DOOR); 1390 (void) s_unlink(door_file); 1391 1392 zonecfg_fini_handle(z->zone_dochdl); 1393 free(z->zone_path); 1394 free(z->zone_name); 1395 free(z); 1396 } 1397 1398 static struct zone_devinfo * 1399 zlist_remove(char *zone_name) 1400 { 1401 struct zone_devinfo *z, *unlinked = NULL, **prevnextp; 1402 assert(MUTEX_HELD(&zone_mutex)); 1403 1404 prevnextp = &zone_head; 1405 for (z = zone_head; z != NULL; z = z->zone_next) { 1406 if (strcmp(zone_name, z->zone_name) == 0) { 1407 unlinked = z; 1408 *prevnextp = z->zone_next; 1409 return (unlinked); 1410 } 1411 prevnextp = &(z->zone_next); 1412 } 1413 return (NULL); 1414 } 1415 1416 /* 1417 * Delete all zones. Note that this should *only* be called in the exit 1418 * path of the daemon, as it does not take the zone_mutex-- this is because 1419 * we could wind up calling devfsadm_exit() with that zone_mutex_held. 1420 */ 1421 static void 1422 zlist_deleteall_unlocked(void) 1423 { 1424 struct zone_devinfo *tofree; 1425 1426 while (zone_head != NULL) { 1427 tofree = zone_head; 1428 zone_head = zone_head->zone_next; 1429 delete_zone(tofree); 1430 } 1431 assert(zone_head == NULL); 1432 } 1433 1434 static int 1435 zone_register(char *zone_name) 1436 { 1437 char door_file[MAXPATHLEN], zpath[MAXPATHLEN]; 1438 int fd; 1439 int need_unlink = 0, error = ZONE_SUCCESS, myerrno = 0; 1440 zone_dochandle_t hdl = NULL; 1441 void *dlhdl = NULL; 1442 struct zone_devinfo *newzone = NULL; 1443 1444 assert(MUTEX_HELD(&zone_mutex)); 1445 1446 if ((dlhdl = dlopen(LIBZONECFG_PATH, RTLD_LAZY)) == NULL) { 1447 error = ZONE_ERR_NOLIB; 1448 goto bad; 1449 } 1450 1451 if (zone_get_zonepath(zone_name, zpath, sizeof (zpath)) != Z_OK) { 1452 error = ZONE_ERR_NOZONE; 1453 myerrno = errno; 1454 goto bad; 1455 } 1456 1457 if (snprintf(door_file, sizeof (door_file), "%s/dev/%s", 1458 zpath, DEVFSADM_SYNCH_DOOR) >= sizeof (door_file)) { 1459 myerrno = ENAMETOOLONG; /* synthesize a reasonable errno */ 1460 error = ZONE_ERR_DOOR; 1461 goto bad; 1462 } 1463 1464 (void) s_unlink(door_file); 1465 if ((fd = open(door_file, O_RDWR | O_CREAT, ZONE_DOOR_PERMS)) == -1) { 1466 myerrno = errno; 1467 error = ZONE_ERR_DOOR; 1468 goto bad; 1469 } 1470 need_unlink = 1; 1471 (void) close(fd); 1472 1473 if (fattach(devlink_door_fd, door_file) == -1) { 1474 error = ZONE_ERR_DOOR; 1475 myerrno = errno; 1476 goto bad; 1477 } 1478 1479 if ((hdl = zonecfg_init_handle()) == NULL) { 1480 error = ZONE_ERR_REPOSITORY; 1481 myerrno = errno; 1482 goto bad; 1483 } 1484 1485 if ((zonecfg_get_snapshot_handle(zone_name, hdl)) != Z_OK) { 1486 error = ZONE_ERR_REPOSITORY; 1487 myerrno = errno; 1488 goto bad; 1489 } 1490 1491 newzone = s_malloc(sizeof (struct zone_devinfo)); 1492 newzone->zone_path = s_strdup(zpath); 1493 newzone->zone_name = s_strdup(zone_name); 1494 newzone->zone_next = NULL; 1495 newzone->zone_dochdl = hdl; 1496 zlist_insert(newzone); 1497 (void) dlclose(dlhdl); 1498 1499 return (ZONE_SUCCESS); 1500 1501 bad: 1502 (void) devfsadm_errprint("%s[%ld]: failed to register zone %s: %s", 1503 prog, getpid(), zone_name, strerror(myerrno)); 1504 1505 assert(newzone == NULL); 1506 if (need_unlink) 1507 (void) s_unlink(door_file); 1508 if (hdl) 1509 zonecfg_fini_handle(hdl); 1510 if (dlhdl) 1511 (void) dlclose(dlhdl); 1512 errno = myerrno; 1513 return (error); 1514 } 1515 1516 static int 1517 zone_unregister(char *zone_name) 1518 { 1519 struct zone_devinfo *z; 1520 1521 assert(MUTEX_HELD(&zone_mutex)); 1522 1523 if ((z = zlist_remove(zone_name)) == NULL) 1524 return (ZONE_ERR_NOZONE); 1525 1526 delete_zone(z); 1527 return (ZONE_SUCCESS); 1528 } 1529 1530 /* 1531 * Called by the daemon when it receives a door call to the zone registration 1532 * door. 1533 */ 1534 /*ARGSUSED*/ 1535 static void 1536 zone_reg_handler(void *cookie, char *ap, size_t asize, door_desc_t *dp, 1537 uint_t ndesc) 1538 { 1539 door_cred_t dcred; 1540 struct zreg *zregp, rzreg; 1541 1542 /* 1543 * We coarsely lock the whole registration process. 1544 */ 1545 (void) mutex_lock(&zone_mutex); 1546 1547 /* 1548 * Must be root to make this call 1549 * If caller is not root, don't touch its data. 1550 */ 1551 if (door_cred(&dcred) != 0 || dcred.dc_euid != 0) { 1552 zregp = &rzreg; 1553 zregp->zreg_error = ZONE_ERR_REPOSITORY; 1554 zregp->zreg_errno = EPERM; 1555 goto out; 1556 } 1557 1558 assert(ap); 1559 assert(asize == sizeof (*zregp)); 1560 1561 zregp = (struct zreg *)(void *)ap; 1562 1563 /* 1564 * Kernel must know about this zone; one way of discovering this 1565 * is by looking up the zone id. 1566 */ 1567 if (getzoneidbyname(zregp->zreg_zonename) == -1) { 1568 zregp->zreg_error = ZONE_ERR_REPOSITORY; 1569 zregp->zreg_errno = errno; 1570 goto out; 1571 } 1572 1573 if (zregp->zreg_op == ZONE_REG) { 1574 zregp->zreg_error = zone_register(zregp->zreg_zonename); 1575 zregp->zreg_errno = errno; 1576 } else { 1577 zregp->zreg_error = zone_unregister(zregp->zreg_zonename); 1578 zregp->zreg_errno = errno; 1579 } 1580 1581 out: 1582 (void) mutex_unlock(&zone_mutex); 1583 (void) door_return((char *)zregp, sizeof (*zregp), NULL, 0); 1584 } 1585 1586 static int 1587 register_all_zones(void) 1588 { 1589 zoneid_t *zids = NULL; 1590 uint_t nzents, nzents_saved; 1591 int i; 1592 1593 (void) mutex_lock(&zone_mutex); 1594 if (zone_list(NULL, &nzents) != 0) 1595 return (DEVFSADM_FAILURE); 1596 1597 again: 1598 assert(zids == NULL); 1599 assert(MUTEX_HELD(&zone_mutex)); 1600 if (nzents == 0) { 1601 (void) mutex_unlock(&zone_mutex); 1602 return (DEVFSADM_SUCCESS); 1603 } 1604 zids = s_zalloc(nzents * sizeof (zoneid_t)); 1605 nzents_saved = nzents; 1606 if (zone_list(zids, &nzents) != 0) { 1607 (void) mutex_unlock(&zone_mutex); 1608 free(zids); 1609 return (DEVFSADM_FAILURE); 1610 } 1611 if (nzents != nzents_saved) { 1612 /* list changed, try again */ 1613 free(zids); 1614 zids = NULL; 1615 goto again; 1616 } 1617 1618 assert(zids != NULL); 1619 for (i = 0; i < nzents; i++) { 1620 char name[ZONENAME_MAX]; 1621 1622 if (zids[i] == GLOBAL_ZONEID) 1623 continue; 1624 if (getzonenamebyid(zids[i], name, sizeof (name)) >= 0) 1625 (void) zone_register(name); 1626 } 1627 1628 (void) mutex_unlock(&zone_mutex); 1629 free(zids); 1630 return (DEVFSADM_SUCCESS); 1631 } 1632 1633 /* 1634 * Check that if -r is set, it is not any part of a zone--- that is, that 1635 * the zonepath is not a substring of the root path. 1636 */ 1637 static int 1638 zone_pathcheck(char *checkpath) 1639 { 1640 void *dlhdl = NULL; 1641 char *name; 1642 char root[MAXPATHLEN]; /* resolved devfsadm root path */ 1643 char zroot[MAXPATHLEN]; /* zone root path */ 1644 char rzroot[MAXPATHLEN]; /* resolved zone root path */ 1645 char tmp[MAXPATHLEN]; 1646 FILE *cookie; 1647 int err = DEVFSADM_SUCCESS; 1648 1649 if (checkpath[0] == '\0') 1650 return (DEVFSADM_SUCCESS); 1651 1652 /* 1653 * Check if zones is available on this system. 1654 */ 1655 if ((dlhdl = dlopen(LIBZONECFG_PATH, RTLD_LAZY)) == NULL) { 1656 return (DEVFSADM_SUCCESS); 1657 } 1658 1659 bzero(root, sizeof (root)); 1660 if (resolvepath(checkpath, root, sizeof (root) - 1) == -1) { 1661 /* 1662 * In this case the user has done 'devfsadm -r' on some path 1663 * which does not yet exist, or we got some other misc. error. 1664 * We punt and don't resolve the path in this case. 1665 */ 1666 (void) strlcpy(root, checkpath, sizeof (root)); 1667 } 1668 1669 if (strlen(root) > 0 && (root[strlen(root) - 1] != '/')) { 1670 (void) snprintf(tmp, sizeof (tmp), "%s/", root); 1671 (void) strlcpy(root, tmp, sizeof (root)); 1672 } 1673 1674 cookie = setzoneent(); 1675 while ((name = getzoneent(cookie)) != NULL) { 1676 /* Skip the global zone */ 1677 if (strcmp(name, GLOBAL_ZONENAME) == 0) { 1678 free(name); 1679 continue; 1680 } 1681 1682 if (zone_get_zonepath(name, zroot, sizeof (zroot)) != Z_OK) { 1683 free(name); 1684 continue; 1685 } 1686 1687 bzero(rzroot, sizeof (rzroot)); 1688 if (resolvepath(zroot, rzroot, sizeof (rzroot) - 1) == -1) { 1689 /* 1690 * Zone path doesn't exist, or other misc error, 1691 * so we try using the non-resolved pathname. 1692 */ 1693 (void) strlcpy(rzroot, zroot, sizeof (rzroot)); 1694 } 1695 if (strlen(rzroot) > 0 && (rzroot[strlen(rzroot) - 1] != '/')) { 1696 (void) snprintf(tmp, sizeof (tmp), "%s/", rzroot); 1697 (void) strlcpy(rzroot, tmp, sizeof (rzroot)); 1698 } 1699 1700 /* 1701 * Finally, the comparison. If the zone root path is a 1702 * leading substring of the root path, fail. 1703 */ 1704 if (strncmp(rzroot, root, strlen(rzroot)) == 0) { 1705 err_print(ZONE_PATHCHECK, root, name); 1706 err = DEVFSADM_FAILURE; 1707 free(name); 1708 break; 1709 } 1710 free(name); 1711 } 1712 endzoneent(cookie); 1713 (void) dlclose(dlhdl); 1714 return (err); 1715 } 1716 1717 /* 1718 * Called by the daemon when it receives an event from the devfsadm SLM 1719 * to syseventd. 1720 * 1721 * The devfsadm SLM uses a private event channel for communication to 1722 * devfsadmd set-up via private libsysevent interfaces. This handler is 1723 * used to bind to the devfsadmd channel for event delivery. 1724 * The devfsadmd SLM insures single calls to this routine as well as 1725 * synchronized event delivery. 1726 * 1727 */ 1728 static void 1729 event_handler(sysevent_t *ev) 1730 { 1731 char *path; 1732 char *minor; 1733 char *subclass; 1734 char *dev_ev_subclass; 1735 char *driver_name; 1736 nvlist_t *attr_list = NULL; 1737 int err = 0; 1738 int instance; 1739 int branch_event = 0; 1740 1741 subclass = sysevent_get_subclass_name(ev); 1742 vprint(EVENT_MID, "event_handler: %s id:0X%llx\n", 1743 subclass, sysevent_get_seq(ev)); 1744 1745 /* Check if event is an instance modification */ 1746 if (strcmp(subclass, ESC_DEVFS_INSTANCE_MOD) == 0) { 1747 devfs_instance_mod(); 1748 return; 1749 } 1750 if (sysevent_get_attr_list(ev, &attr_list) != 0) { 1751 vprint(EVENT_MID, "event_handler: can not get attr list\n"); 1752 return; 1753 } 1754 1755 if (strcmp(subclass, ESC_DEVFS_DEVI_ADD) == 0 || 1756 strcmp(subclass, ESC_DEVFS_DEVI_REMOVE) == 0 || 1757 strcmp(subclass, ESC_DEVFS_MINOR_CREATE) == 0 || 1758 strcmp(subclass, ESC_DEVFS_MINOR_REMOVE) == 0) { 1759 if ((err = nvlist_lookup_string(attr_list, DEVFS_PATHNAME, 1760 &path)) != 0) 1761 goto out; 1762 1763 if (strcmp(subclass, ESC_DEVFS_DEVI_ADD) == 0 || 1764 strcmp(subclass, ESC_DEVFS_DEVI_REMOVE) == 0) { 1765 if (nvlist_lookup_string(attr_list, DEVFS_DEVI_CLASS, 1766 &dev_ev_subclass) != 0) 1767 dev_ev_subclass = NULL; 1768 1769 if (nvlist_lookup_string(attr_list, DEVFS_DRIVER_NAME, 1770 &driver_name) != 0) 1771 driver_name = NULL; 1772 1773 if (nvlist_lookup_int32(attr_list, DEVFS_INSTANCE, 1774 &instance) != 0) 1775 instance = -1; 1776 1777 if (nvlist_lookup_int32(attr_list, DEVFS_BRANCH_EVENT, 1778 &branch_event) != 0) 1779 branch_event = 0; 1780 1781 } else { 1782 if (nvlist_lookup_string(attr_list, DEVFS_MINOR_NAME, 1783 &minor) != 0) 1784 minor = NULL; 1785 } 1786 1787 lock_dev(); 1788 1789 if (strcmp(ESC_DEVFS_DEVI_ADD, subclass) == 0) { 1790 add_minor_pathname(path, NULL, dev_ev_subclass); 1791 if (branch_event) { 1792 build_and_log_event(EC_DEV_BRANCH, 1793 ESC_DEV_BRANCH_ADD, path, DI_NODE_NIL); 1794 } 1795 1796 } else if (strcmp(ESC_DEVFS_MINOR_CREATE, subclass) == 0) { 1797 add_minor_pathname(path, minor, NULL); 1798 1799 } else if (strcmp(ESC_DEVFS_MINOR_REMOVE, subclass) == 0) { 1800 hot_cleanup(path, minor, NULL, NULL, -1); 1801 1802 } else { /* ESC_DEVFS_DEVI_REMOVE */ 1803 hot_cleanup(path, NULL, dev_ev_subclass, 1804 driver_name, instance); 1805 if (branch_event) { 1806 build_and_log_event(EC_DEV_BRANCH, 1807 ESC_DEV_BRANCH_REMOVE, path, DI_NODE_NIL); 1808 } 1809 } 1810 1811 unlock_dev(CACHE_STATE); 1812 startup_cache_sync_thread(); 1813 1814 } else if (strcmp(subclass, ESC_DEVFS_BRANCH_ADD) == 0 || 1815 strcmp(subclass, ESC_DEVFS_BRANCH_REMOVE) == 0) { 1816 if ((err = nvlist_lookup_string(attr_list, 1817 DEVFS_PATHNAME, &path)) != 0) 1818 goto out; 1819 1820 /* just log ESC_DEV_BRANCH... event */ 1821 if (strcmp(subclass, ESC_DEVFS_BRANCH_ADD) == 0) 1822 dev_ev_subclass = ESC_DEV_BRANCH_ADD; 1823 else 1824 dev_ev_subclass = ESC_DEV_BRANCH_REMOVE; 1825 1826 lock_dev(); 1827 build_and_log_event(EC_DEV_BRANCH, dev_ev_subclass, path, 1828 DI_NODE_NIL); 1829 unlock_dev(CACHE_STATE); 1830 startup_cache_sync_thread(); 1831 1832 } else 1833 err_print(UNKNOWN_EVENT, subclass); 1834 1835 out: 1836 if (err) 1837 err_print(EVENT_ATTR_LOOKUP_FAILED, strerror(err)); 1838 nvlist_free(attr_list); 1839 } 1840 1841 static void 1842 dca_impl_init(char *root, char *minor, struct dca_impl *dcip) 1843 { 1844 assert(root); 1845 1846 dcip->dci_root = root; 1847 dcip->dci_minor = minor; 1848 dcip->dci_driver = NULL; 1849 dcip->dci_error = 0; 1850 dcip->dci_flags = 0; 1851 dcip->dci_arg = NULL; 1852 } 1853 1854 /* 1855 * Kernel logs a message when a devinfo node is attached. Try to create 1856 * /dev and /devices for each minor node. minorname can be NULL. 1857 */ 1858 void 1859 add_minor_pathname(char *node, char *minor, char *ev_subclass) 1860 { 1861 struct dca_impl dci; 1862 1863 vprint(CHATTY_MID, "add_minor_pathname: node_path=%s minor=%s\n", 1864 node, minor ? minor : "NULL"); 1865 1866 dca_impl_init(node, minor, &dci); 1867 1868 /* 1869 * Restrict hotplug link creation if daemon 1870 * started with -i option. 1871 */ 1872 if (single_drv == TRUE) { 1873 dci.dci_driver = driver; 1874 } 1875 1876 /* 1877 * We are being invoked in response to a hotplug 1878 * event. Also, notify RCM if nodetype indicates 1879 * a network device has been hotplugged. 1880 */ 1881 dci.dci_flags = DCA_HOT_PLUG | DCA_CHECK_TYPE; 1882 1883 devi_tree_walk(&dci, DINFOPROP|DINFOMINOR, ev_subclass); 1884 } 1885 1886 static di_node_t 1887 find_clone_node() 1888 { 1889 static di_node_t clone_node = DI_NODE_NIL; 1890 1891 if (clone_node == DI_NODE_NIL) 1892 clone_node = di_init("/pseudo/clone@0", DINFOPROP); 1893 return (clone_node); 1894 } 1895 1896 static int 1897 is_descendent_of(di_node_t node, char *driver) 1898 { 1899 while (node != DI_NODE_NIL) { 1900 char *drv = di_driver_name(node); 1901 if (strcmp(drv, driver) == 0) 1902 return (1); 1903 node = di_parent_node(node); 1904 } 1905 return (0); 1906 } 1907 1908 /* 1909 * Checks the minor type. If it is an alias node, then lookup 1910 * the real node/minor first, then call minor_process() to 1911 * do the real work. 1912 */ 1913 static int 1914 check_minor_type(di_node_t node, di_minor_t minor, void *arg) 1915 { 1916 ddi_minor_type minor_type; 1917 di_node_t clone_node; 1918 char *mn; 1919 char *nt; 1920 struct mlist *dep; 1921 struct dca_impl *dcip = arg; 1922 1923 assert(dcip); 1924 1925 dep = dcip->dci_arg; 1926 1927 mn = di_minor_name(minor); 1928 1929 /* 1930 * We match driver here instead of in minor_process 1931 * as we want the actual driver name. This check is 1932 * unnecessary during deferred processing. 1933 */ 1934 if (dep && 1935 ((dcip->dci_driver && !is_descendent_of(node, dcip->dci_driver)) || 1936 (dcip->dci_minor && strcmp(mn, dcip->dci_minor)))) { 1937 return (DI_WALK_CONTINUE); 1938 } 1939 1940 if ((dcip->dci_flags & DCA_CHECK_TYPE) && 1941 (nt = di_minor_nodetype(minor)) && 1942 (strcmp(nt, DDI_NT_NET) == 0)) { 1943 dcip->dci_flags |= DCA_NOTIFY_RCM; 1944 dcip->dci_flags &= ~DCA_CHECK_TYPE; 1945 } 1946 1947 minor_type = di_minor_type(minor); 1948 1949 if (minor_type == DDM_MINOR) { 1950 minor_process(node, minor, dep); 1951 1952 } else if (minor_type == DDM_ALIAS) { 1953 struct mlist *cdep, clone_del = {0}; 1954 1955 clone_node = find_clone_node(); 1956 if (clone_node == DI_NODE_NIL) { 1957 err_print(DI_INIT_FAILED, "clone", strerror(errno)); 1958 return (DI_WALK_CONTINUE); 1959 } 1960 1961 cdep = dep ? &clone_del : NULL; 1962 1963 minor_process(clone_node, minor, cdep); 1964 1965 /* 1966 * cache "alias" minor node and free "clone" minor 1967 */ 1968 if (cdep != NULL && cdep->head != NULL) { 1969 assert(cdep->tail != NULL); 1970 cache_deferred_minor(dep, node, minor); 1971 dcip->dci_arg = cdep; 1972 process_deferred_links(dcip, DCA_FREE_LIST); 1973 dcip->dci_arg = dep; 1974 } 1975 } 1976 1977 return (DI_WALK_CONTINUE); 1978 } 1979 1980 1981 /* 1982 * This is the entry point for each minor node, whether walking 1983 * the entire tree via di_walk_minor() or processing a hotplug event 1984 * for a single devinfo node (via hotplug ndi_devi_online()). 1985 */ 1986 /*ARGSUSED*/ 1987 static void 1988 minor_process(di_node_t node, di_minor_t minor, struct mlist *dep) 1989 { 1990 create_list_t *create; 1991 int defer; 1992 1993 vprint(CHATTY_MID, "minor_process: node=%s, minor=%s\n", 1994 di_node_name(node), di_minor_name(minor)); 1995 1996 if (dep != NULL) { 1997 1998 /* 1999 * Reset /devices node to minor_perm perm/ownership 2000 * if we are here to deactivate device allocation 2001 */ 2002 if (build_devices == TRUE) { 2003 reset_node_permissions(node, minor); 2004 } 2005 2006 if (build_dev == FALSE) { 2007 return; 2008 } 2009 2010 /* 2011 * This function will create any nodes for /etc/devlink.tab. 2012 * If devlink.tab handles link creation, we don't call any 2013 * devfsadm modules since that could cause duplicate caching 2014 * in the enumerate functions if different re strings are 2015 * passed that are logically identical. I'm still not 2016 * convinced this would cause any harm, but better to be safe. 2017 * 2018 * Deferred processing is available only for devlinks 2019 * created through devfsadm modules. 2020 */ 2021 if (process_devlink_compat(minor, node) == TRUE) { 2022 return; 2023 } 2024 } else { 2025 vprint(CHATTY_MID, "minor_process: deferred processing\n"); 2026 } 2027 2028 /* 2029 * look for relevant link create rules in the modules, and 2030 * invoke the link create callback function to build a link 2031 * if there is a match. 2032 */ 2033 defer = 0; 2034 for (create = create_head; create != NULL; create = create->next) { 2035 if ((minor_matches_rule(node, minor, create) == TRUE) && 2036 class_ok(create->create->device_class) == 2037 DEVFSADM_SUCCESS) { 2038 if (call_minor_init(create->modptr) == 2039 DEVFSADM_FAILURE) { 2040 continue; 2041 } 2042 2043 /* 2044 * If NOT doing the deferred creates (i.e. 1st pass) and 2045 * rule requests deferred processing cache the minor 2046 * data. 2047 * 2048 * If deferred processing (2nd pass), create links 2049 * ONLY if rule requests deferred processing. 2050 */ 2051 if (dep && ((create->create->flags & CREATE_MASK) == 2052 CREATE_DEFER)) { 2053 defer = 1; 2054 continue; 2055 } else if (dep == NULL && 2056 ((create->create->flags & CREATE_MASK) != 2057 CREATE_DEFER)) { 2058 continue; 2059 } 2060 2061 if ((*(create->create->callback_fcn)) 2062 (minor, node) == DEVFSADM_TERMINATE) { 2063 break; 2064 } 2065 } 2066 } 2067 2068 if (defer) 2069 cache_deferred_minor(dep, node, minor); 2070 } 2071 2072 2073 /* 2074 * Cache node and minor in defer list. 2075 */ 2076 static void 2077 cache_deferred_minor( 2078 struct mlist *dep, 2079 di_node_t node, 2080 di_minor_t minor) 2081 { 2082 struct minor *mp; 2083 const char *fcn = "cache_deferred_minor"; 2084 2085 vprint(CHATTY_MID, "%s node=%s, minor=%s\n", fcn, 2086 di_node_name(node), di_minor_name(minor)); 2087 2088 if (dep == NULL) { 2089 vprint(CHATTY_MID, "%s: cannot cache during " 2090 "deferred processing. Ignoring minor\n", fcn); 2091 return; 2092 } 2093 2094 mp = (struct minor *)s_zalloc(sizeof (struct minor)); 2095 mp->node = node; 2096 mp->minor = minor; 2097 mp->next = NULL; 2098 2099 assert(dep->head == NULL || dep->tail != NULL); 2100 if (dep->head == NULL) { 2101 dep->head = mp; 2102 } else { 2103 dep->tail->next = mp; 2104 } 2105 dep->tail = mp; 2106 } 2107 2108 /* 2109 * Check to see if "create" link creation rule matches this node/minor. 2110 * If it does, return TRUE. 2111 */ 2112 static int 2113 minor_matches_rule(di_node_t node, di_minor_t minor, create_list_t *create) 2114 { 2115 char *m_nodetype, *m_drvname; 2116 2117 if (create->create->node_type != NULL) { 2118 2119 m_nodetype = di_minor_nodetype(minor); 2120 assert(m_nodetype != NULL); 2121 2122 switch (create->create->flags & TYPE_MASK) { 2123 case TYPE_EXACT: 2124 if (strcmp(create->create->node_type, m_nodetype) != 2125 0) { 2126 return (FALSE); 2127 } 2128 break; 2129 case TYPE_PARTIAL: 2130 if (strncmp(create->create->node_type, m_nodetype, 2131 strlen(create->create->node_type)) != 0) { 2132 return (FALSE); 2133 } 2134 break; 2135 case TYPE_RE: 2136 if (regexec(&(create->node_type_comp), m_nodetype, 2137 0, NULL, 0) != 0) { 2138 return (FALSE); 2139 } 2140 break; 2141 } 2142 } 2143 2144 if (create->create->drv_name != NULL) { 2145 m_drvname = di_driver_name(node); 2146 switch (create->create->flags & DRV_MASK) { 2147 case DRV_EXACT: 2148 if (strcmp(create->create->drv_name, m_drvname) != 0) { 2149 return (FALSE); 2150 } 2151 break; 2152 case DRV_RE: 2153 if (regexec(&(create->drv_name_comp), m_drvname, 2154 0, NULL, 0) != 0) { 2155 return (FALSE); 2156 } 2157 break; 2158 } 2159 } 2160 2161 return (TRUE); 2162 } 2163 2164 /* 2165 * If no classes were given on the command line, then return DEVFSADM_SUCCESS. 2166 * Otherwise, return DEVFSADM_SUCCESS if the device "class" from the module 2167 * matches one of the device classes given on the command line, 2168 * otherwise, return DEVFSADM_FAILURE. 2169 */ 2170 static int 2171 class_ok(char *class) 2172 { 2173 int i; 2174 2175 if (num_classes == 0) { 2176 return (DEVFSADM_SUCCESS); 2177 } 2178 2179 for (i = 0; i < num_classes; i++) { 2180 if (strcmp(class, classes[i]) == 0) { 2181 return (DEVFSADM_SUCCESS); 2182 } 2183 } 2184 return (DEVFSADM_FAILURE); 2185 } 2186 2187 /* 2188 * call minor_fini on active modules, then unload ALL modules 2189 */ 2190 static void 2191 unload_modules(void) 2192 { 2193 module_t *module_free; 2194 create_list_t *create_free; 2195 remove_list_t *remove_free; 2196 2197 while (create_head != NULL) { 2198 create_free = create_head; 2199 create_head = create_head->next; 2200 2201 if ((create_free->create->flags & TYPE_RE) == TYPE_RE) { 2202 regfree(&(create_free->node_type_comp)); 2203 } 2204 if ((create_free->create->flags & DRV_RE) == DRV_RE) { 2205 regfree(&(create_free->drv_name_comp)); 2206 } 2207 free(create_free); 2208 } 2209 2210 while (remove_head != NULL) { 2211 remove_free = remove_head; 2212 remove_head = remove_head->next; 2213 free(remove_free); 2214 } 2215 2216 while (module_head != NULL) { 2217 2218 if ((module_head->minor_fini != NULL) && 2219 ((module_head->flags & MODULE_ACTIVE) == MODULE_ACTIVE)) { 2220 (void) (*(module_head->minor_fini))(); 2221 } 2222 2223 vprint(MODLOAD_MID, "unloading module %s\n", module_head->name); 2224 free(module_head->name); 2225 (void) dlclose(module_head->dlhandle); 2226 2227 module_free = module_head; 2228 module_head = module_head->next; 2229 free(module_free); 2230 } 2231 } 2232 2233 /* 2234 * Load devfsadm logical link processing modules. 2235 */ 2236 static void 2237 load_modules(void) 2238 { 2239 DIR *mod_dir; 2240 struct dirent *entp; 2241 char cdir[PATH_MAX + 1]; 2242 char *last; 2243 char *mdir = module_dirs; 2244 char *fcn = "load_modules: "; 2245 2246 while (*mdir != '\0') { 2247 2248 while (*mdir == ':') { 2249 mdir++; 2250 } 2251 2252 if (*mdir == '\0') { 2253 continue; 2254 } 2255 2256 last = strchr(mdir, ':'); 2257 2258 if (last == NULL) { 2259 last = mdir + strlen(mdir); 2260 } 2261 2262 (void) strncpy(cdir, mdir, last - mdir); 2263 cdir[last - mdir] = '\0'; 2264 mdir += strlen(cdir); 2265 2266 if ((mod_dir = opendir(cdir)) == NULL) { 2267 vprint(MODLOAD_MID, "%sopendir(%s): %s\n", 2268 fcn, cdir, strerror(errno)); 2269 continue; 2270 } 2271 2272 while ((entp = readdir(mod_dir)) != NULL) { 2273 2274 if ((strcmp(entp->d_name, ".") == 0) || 2275 (strcmp(entp->d_name, "..") == 0)) { 2276 continue; 2277 } 2278 2279 load_module(entp->d_name, cdir); 2280 } 2281 s_closedir(mod_dir); 2282 } 2283 } 2284 2285 static void 2286 load_module(char *mname, char *cdir) 2287 { 2288 _devfsadm_create_reg_t *create_reg; 2289 _devfsadm_remove_reg_t *remove_reg; 2290 create_list_t *create_list_element; 2291 create_list_t **create_list_next; 2292 remove_list_t *remove_list_element; 2293 remove_list_t **remove_list_next; 2294 char epath[PATH_MAX + 1], *end; 2295 char *fcn = "load_module: "; 2296 char *dlerrstr; 2297 void *dlhandle; 2298 module_t *module; 2299 int n; 2300 int i; 2301 2302 /* ignore any file which does not end in '.so' */ 2303 if ((end = strstr(mname, MODULE_SUFFIX)) != NULL) { 2304 if (end[strlen(MODULE_SUFFIX)] != '\0') { 2305 return; 2306 } 2307 } else { 2308 return; 2309 } 2310 2311 (void) snprintf(epath, sizeof (epath), "%s/%s", cdir, mname); 2312 2313 if ((dlhandle = dlopen(epath, RTLD_LAZY)) == NULL) { 2314 dlerrstr = dlerror(); 2315 err_print(DLOPEN_FAILED, epath, 2316 dlerrstr ? dlerrstr : "unknown error"); 2317 return; 2318 } 2319 2320 /* dlsym the _devfsadm_create_reg structure */ 2321 if (NULL == (create_reg = (_devfsadm_create_reg_t *) 2322 dlsym(dlhandle, _DEVFSADM_CREATE_REG))) { 2323 vprint(MODLOAD_MID, "dlsym(%s, %s): symbol not found\n", epath, 2324 _DEVFSADM_CREATE_REG); 2325 } else { 2326 vprint(MODLOAD_MID, "%sdlsym(%s, %s) succeeded\n", 2327 fcn, epath, _DEVFSADM_CREATE_REG); 2328 } 2329 2330 /* dlsym the _devfsadm_remove_reg structure */ 2331 if (NULL == (remove_reg = (_devfsadm_remove_reg_t *) 2332 dlsym(dlhandle, _DEVFSADM_REMOVE_REG))) { 2333 vprint(MODLOAD_MID, "dlsym(%s,\n\t%s): symbol not found\n", 2334 epath, _DEVFSADM_REMOVE_REG); 2335 } else { 2336 vprint(MODLOAD_MID, "dlsym(%s, %s): succeeded\n", 2337 epath, _DEVFSADM_REMOVE_REG); 2338 } 2339 2340 vprint(MODLOAD_MID, "module %s loaded\n", epath); 2341 2342 module = (module_t *)s_malloc(sizeof (module_t)); 2343 module->name = s_strdup(epath); 2344 module->dlhandle = dlhandle; 2345 2346 /* dlsym other module functions, to be called later */ 2347 module->minor_fini = (int (*)())dlsym(dlhandle, MINOR_FINI); 2348 module->minor_init = (int (*)())dlsym(dlhandle, MINOR_INIT); 2349 module->flags = 0; 2350 2351 /* 2352 * put a ptr to each struct devfsadm_create on "create_head" 2353 * list sorted in interpose_lvl. 2354 */ 2355 if (create_reg != NULL) { 2356 for (i = 0; i < create_reg->count; i++) { 2357 int flags = create_reg->tblp[i].flags; 2358 2359 create_list_element = (create_list_t *) 2360 s_malloc(sizeof (create_list_t)); 2361 2362 create_list_element->create = &(create_reg->tblp[i]); 2363 create_list_element->modptr = module; 2364 2365 if (((flags & CREATE_MASK) != 0) && 2366 ((flags & CREATE_MASK) != CREATE_DEFER)) { 2367 free(create_list_element); 2368 err_print("illegal flag combination in " 2369 "module create\n"); 2370 err_print(IGNORING_ENTRY, i, epath); 2371 continue; 2372 } 2373 2374 if (((flags & TYPE_MASK) == 0) ^ 2375 (create_reg->tblp[i].node_type == NULL)) { 2376 free(create_list_element); 2377 err_print("flags value incompatible with " 2378 "node_type value in module create\n"); 2379 err_print(IGNORING_ENTRY, i, epath); 2380 continue; 2381 } 2382 2383 if (((flags & TYPE_MASK) != 0) && 2384 ((flags & TYPE_MASK) != TYPE_EXACT) && 2385 ((flags & TYPE_MASK) != TYPE_RE) && 2386 ((flags & TYPE_MASK) != TYPE_PARTIAL)) { 2387 free(create_list_element); 2388 err_print("illegal TYPE_* flag combination in " 2389 "module create\n"); 2390 err_print(IGNORING_ENTRY, i, epath); 2391 continue; 2392 } 2393 2394 /* precompile regular expression for efficiency */ 2395 if ((flags & TYPE_RE) == TYPE_RE) { 2396 if ((n = regcomp(&(create_list_element-> 2397 node_type_comp), 2398 create_reg->tblp[i].node_type, 2399 REG_EXTENDED)) != 0) { 2400 free(create_list_element); 2401 err_print(REGCOMP_FAILED, 2402 create_reg->tblp[i].node_type, 2403 n); 2404 err_print(IGNORING_ENTRY, i, epath); 2405 continue; 2406 } 2407 } 2408 2409 if (((flags & DRV_MASK) == 0) ^ 2410 (create_reg->tblp[i].drv_name == NULL)) { 2411 if ((flags & TYPE_RE) == TYPE_RE) { 2412 regfree(&(create_list_element-> 2413 node_type_comp)); 2414 } 2415 free(create_list_element); 2416 err_print("flags value incompatible with " 2417 "drv_name value in module create\n"); 2418 err_print(IGNORING_ENTRY, i, epath); 2419 continue; 2420 } 2421 2422 if (((flags & DRV_MASK) != 0) && 2423 ((flags & DRV_MASK) != DRV_EXACT) && 2424 ((flags & DRV_MASK) != DRV_RE)) { 2425 if ((flags & TYPE_RE) == TYPE_RE) { 2426 regfree(&(create_list_element-> 2427 node_type_comp)); 2428 } 2429 free(create_list_element); 2430 err_print("illegal DRV_* flag combination in " 2431 "module create\n"); 2432 err_print(IGNORING_ENTRY, i, epath); 2433 continue; 2434 } 2435 2436 /* precompile regular expression for efficiency */ 2437 if ((create_reg->tblp[i].flags & DRV_RE) == DRV_RE) { 2438 if ((n = regcomp(&(create_list_element-> 2439 drv_name_comp), 2440 create_reg->tblp[i].drv_name, 2441 REG_EXTENDED)) != 0) { 2442 if ((flags & TYPE_RE) == TYPE_RE) { 2443 regfree(&(create_list_element-> 2444 node_type_comp)); 2445 } 2446 free(create_list_element); 2447 err_print(REGCOMP_FAILED, 2448 create_reg->tblp[i].drv_name, 2449 n); 2450 err_print(IGNORING_ENTRY, i, epath); 2451 continue; 2452 } 2453 } 2454 2455 2456 /* add to list sorted by interpose level */ 2457 for (create_list_next = &(create_head); 2458 (*create_list_next != NULL) && 2459 (*create_list_next)->create->interpose_lvl >= 2460 create_list_element->create->interpose_lvl; 2461 create_list_next = 2462 &((*create_list_next)->next)); 2463 create_list_element->next = *create_list_next; 2464 *create_list_next = create_list_element; 2465 } 2466 } 2467 2468 /* 2469 * put a ptr to each struct devfsadm_remove on "remove_head" 2470 * list sorted by interpose_lvl. 2471 */ 2472 if (remove_reg != NULL) { 2473 for (i = 0; i < remove_reg->count; i++) { 2474 2475 remove_list_element = (remove_list_t *) 2476 s_malloc(sizeof (remove_list_t)); 2477 2478 remove_list_element->remove = &(remove_reg->tblp[i]); 2479 remove_list_element->modptr = module; 2480 2481 for (remove_list_next = &(remove_head); 2482 (*remove_list_next != NULL) && 2483 (*remove_list_next)->remove->interpose_lvl >= 2484 remove_list_element->remove->interpose_lvl; 2485 remove_list_next = 2486 &((*remove_list_next)->next)); 2487 remove_list_element->next = *remove_list_next; 2488 *remove_list_next = remove_list_element; 2489 } 2490 } 2491 2492 module->next = module_head; 2493 module_head = module; 2494 } 2495 2496 /* 2497 * Create a thread to call minor_fini after some delay 2498 */ 2499 static void 2500 startup_cache_sync_thread() 2501 { 2502 vprint(INITFINI_MID, "startup_cache_sync_thread\n"); 2503 2504 (void) mutex_lock(&minor_fini_mutex); 2505 2506 minor_fini_delay_restart = TRUE; 2507 2508 if (minor_fini_thread_created == FALSE) { 2509 2510 if (thr_create(NULL, NULL, 2511 (void *(*)(void *))call_minor_fini_thread, NULL, 2512 THR_DETACHED, NULL)) { 2513 err_print(CANT_CREATE_THREAD, "minor_fini", 2514 strerror(errno)); 2515 2516 (void) mutex_unlock(&minor_fini_mutex); 2517 2518 /* 2519 * just sync state here instead of 2520 * giving up 2521 */ 2522 lock_dev(); 2523 unlock_dev(SYNC_STATE); 2524 2525 return; 2526 } 2527 minor_fini_thread_created = TRUE; 2528 } else { 2529 vprint(INITFINI_MID, "restarting delay\n"); 2530 } 2531 2532 (void) mutex_unlock(&minor_fini_mutex); 2533 } 2534 2535 /* 2536 * after not receiving an event for minor_fini_timeout secs, we need 2537 * to call the minor_fini routines 2538 */ 2539 /*ARGSUSED*/ 2540 static void 2541 call_minor_fini_thread(void *arg) 2542 { 2543 int count = 0; 2544 2545 (void) mutex_lock(&minor_fini_mutex); 2546 2547 vprint(INITFINI_MID, "call_minor_fini_thread starting\n"); 2548 2549 do { 2550 minor_fini_delay_restart = FALSE; 2551 2552 (void) mutex_unlock(&minor_fini_mutex); 2553 (void) sleep(minor_fini_timeout); 2554 (void) mutex_lock(&minor_fini_mutex); 2555 2556 /* 2557 * if minor_fini_delay_restart is still false then 2558 * we can call minor fini routines. 2559 * ensure that at least periodically minor_fini gets 2560 * called satisfying link generators depending on fini 2561 * being eventually called 2562 */ 2563 if ((count++ >= FORCE_CALL_MINOR_FINI) || 2564 (minor_fini_delay_restart == FALSE)) { 2565 vprint(INITFINI_MID, 2566 "call_minor_fini starting (%d)\n", count); 2567 (void) mutex_unlock(&minor_fini_mutex); 2568 2569 lock_dev(); 2570 unlock_dev(SYNC_STATE); 2571 2572 vprint(INITFINI_MID, "call_minor_fini done\n"); 2573 2574 /* 2575 * hang around before exiting just in case 2576 * minor_fini_delay_restart is set again 2577 */ 2578 (void) sleep(1); 2579 2580 count = 0; 2581 2582 (void) mutex_lock(&minor_fini_mutex); 2583 } 2584 } while (minor_fini_delay_restart); 2585 2586 minor_fini_thread_created = FALSE; 2587 (void) mutex_unlock(&minor_fini_mutex); 2588 vprint(INITFINI_MID, "call_minor_fini_thread exiting\n"); 2589 } 2590 2591 /* 2592 * Attempt to initialize module, if a minor_init routine exists. Set 2593 * the active flag if the routine exists and succeeds. If it doesn't 2594 * exist, just set the active flag. 2595 */ 2596 static int 2597 call_minor_init(module_t *module) 2598 { 2599 char *fcn = "call_minor_init: "; 2600 2601 if ((module->flags & MODULE_ACTIVE) == MODULE_ACTIVE) { 2602 return (DEVFSADM_SUCCESS); 2603 } 2604 2605 vprint(INITFINI_MID, "%smodule %s. current state: inactive\n", 2606 fcn, module->name); 2607 2608 if (module->minor_init == NULL) { 2609 module->flags |= MODULE_ACTIVE; 2610 vprint(INITFINI_MID, "minor_init not defined\n"); 2611 return (DEVFSADM_SUCCESS); 2612 } 2613 2614 if ((*(module->minor_init))() == DEVFSADM_FAILURE) { 2615 err_print(FAILED_FOR_MODULE, MINOR_INIT, module->name); 2616 return (DEVFSADM_FAILURE); 2617 } 2618 2619 vprint(INITFINI_MID, "minor_init() returns DEVFSADM_SUCCESS. " 2620 "new state: active\n"); 2621 2622 module->flags |= MODULE_ACTIVE; 2623 return (DEVFSADM_SUCCESS); 2624 } 2625 2626 /*ARGSUSED*/ 2627 int 2628 devfsadm_mklink_zone(struct zone_devinfo *z, char *link, di_node_t node, 2629 di_minor_t minor, int flags) 2630 { 2631 char path[PATH_MAX]; 2632 char phy_path[PATH_MAX]; 2633 char *dev_pathp; 2634 char *acontents, *aminor = NULL; 2635 mode_t mode; 2636 uid_t uid; 2637 gid_t gid; 2638 dev_t dev; 2639 struct zone_devtab out_match; 2640 2641 if (zonecfg_match_dev(z->zone_dochdl, link, &out_match) != Z_OK) { 2642 return (DEVFSADM_FAILURE); 2643 } 2644 2645 vprint(ZONE_MID, "zone device match: <device match=\"%s\"> " 2646 "matches /dev/%s\n", out_match.zone_dev_match, link); 2647 2648 /* 2649 * In daemon mode, zone_path will be non-empty. In non-daemon mode 2650 * it will be empty since we've already stuck the zone into dev_dir, 2651 * etc. 2652 */ 2653 (void) snprintf(path, sizeof (path), "%s/dev/%s", z->zone_path, link); 2654 dev = di_minor_devt(minor); 2655 2656 /* 2657 * If this is an alias node (i.e. a clone node), we have to figure 2658 * out the minor name. 2659 */ 2660 if (di_minor_type(minor) == DDM_ALIAS) { 2661 /* use /pseudo/clone@0:<driver> as the phys path */ 2662 (void) snprintf(phy_path, sizeof (phy_path), 2663 "/pseudo/clone@0:%s", 2664 di_driver_name(di_minor_devinfo(minor))); 2665 aminor = di_minor_name(minor); 2666 acontents = phy_path; 2667 } else { 2668 if ((dev_pathp = di_devfs_path(node)) == NULL) { 2669 err_print(DI_DEVFS_PATH_FAILED, strerror(errno)); 2670 devfsadm_exit(1); 2671 } 2672 (void) snprintf(phy_path, sizeof (phy_path), "%s:%s", 2673 dev_pathp, di_minor_name(minor)); 2674 di_devfs_path_free(dev_pathp); 2675 acontents = phy_path; 2676 } 2677 2678 2679 getattr(acontents, aminor, di_minor_spectype(minor), dev, 2680 &mode, &uid, &gid); 2681 vprint(ZONE_MID, "zone getattr(%s, %s, %d, %lu, 0%lo, %lu, %lu)\n", 2682 acontents, aminor ? aminor : "<NULL>", di_minor_spectype(minor), 2683 dev, mode, uid, gid); 2684 2685 /* 2686 * Create the node; if the enclosing directory doesn't exist, 2687 * make it too. 2688 */ 2689 top: 2690 if (mknod(path, di_minor_spectype(minor) | mode, dev) == -1) { 2691 if (errno == ENOENT) { 2692 /* dirpath to node doesn't exist */ 2693 char *hide = strrchr(path, '/'); 2694 *hide = '\0'; 2695 s_mkdirp(path, 2696 S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH); 2697 *hide = '/'; 2698 goto top; 2699 } else if (errno == EEXIST) { 2700 return (DEVFSADM_SUCCESS); 2701 } 2702 err_print(MKNOD_FAILED, path, strerror(errno)); 2703 return (DEVFSADM_FAILURE); 2704 } else { 2705 /* 2706 * If we successfully made the node, then set its owner 2707 * and group. Existing nodes will be unaffected. 2708 */ 2709 (void) chown(path, uid, gid); 2710 } 2711 2712 return (DEVFSADM_SUCCESS); 2713 } 2714 2715 /* 2716 * Creates a symlink 'link' to the physical path of node:minor. 2717 * Construct link contents, then call create_link_common(). 2718 */ 2719 /*ARGSUSED*/ 2720 int 2721 devfsadm_mklink_default(char *link, di_node_t node, di_minor_t minor, int flags) 2722 { 2723 char rcontents[PATH_MAX]; 2724 char devlink[PATH_MAX]; 2725 char phy_path[PATH_MAX]; 2726 char *acontents; 2727 char *dev_path; 2728 int numslashes; 2729 int rv; 2730 int i, link_exists; 2731 int last_was_slash = FALSE; 2732 2733 /* 2734 * try to use devices path 2735 */ 2736 if ((node == lnode) && (minor == lminor)) { 2737 acontents = lphy_path; 2738 } else if (di_minor_type(minor) == DDM_ALIAS) { 2739 /* use /pseudo/clone@0:<driver> as the phys path */ 2740 (void) snprintf(phy_path, sizeof (phy_path), 2741 "/pseudo/clone@0:%s", 2742 di_driver_name(di_minor_devinfo(minor))); 2743 acontents = phy_path; 2744 } else { 2745 if ((dev_path = di_devfs_path(node)) == NULL) { 2746 err_print(DI_DEVFS_PATH_FAILED, strerror(errno)); 2747 devfsadm_exit(1); 2748 } 2749 (void) snprintf(phy_path, sizeof (phy_path), "%s:%s", 2750 dev_path, di_minor_name(minor)); 2751 di_devfs_path_free(dev_path); 2752 acontents = phy_path; 2753 } 2754 2755 /* prepend link with dev_dir contents */ 2756 (void) strlcpy(devlink, dev_dir, sizeof (devlink)); 2757 (void) strlcat(devlink, "/", sizeof (devlink)); 2758 (void) strlcat(devlink, link, sizeof (devlink)); 2759 2760 /* 2761 * Calculate # of ../ to add. Account for double '//' in path. 2762 * Ignore all leading slashes. 2763 */ 2764 for (i = 0; link[i] == '/'; i++) 2765 ; 2766 for (numslashes = 0; link[i] != '\0'; i++) { 2767 if (link[i] == '/') { 2768 if (last_was_slash == FALSE) { 2769 numslashes++; 2770 last_was_slash = TRUE; 2771 } 2772 } else { 2773 last_was_slash = FALSE; 2774 } 2775 } 2776 /* Don't count any trailing '/' */ 2777 if (link[i-1] == '/') { 2778 numslashes--; 2779 } 2780 2781 rcontents[0] = '\0'; 2782 do { 2783 (void) strlcat(rcontents, "../", sizeof (rcontents)); 2784 } while (numslashes-- != 0); 2785 2786 (void) strlcat(rcontents, "devices", sizeof (rcontents)); 2787 (void) strlcat(rcontents, acontents, sizeof (rcontents)); 2788 2789 if (devlinks_debug == TRUE) { 2790 vprint(INFO_MID, "adding link %s ==> %s\n", devlink, rcontents); 2791 } 2792 2793 if ((rv = create_link_common(devlink, rcontents, &link_exists)) 2794 == DEVFSADM_SUCCESS) { 2795 linknew = TRUE; 2796 add_link_to_cache(link, acontents); 2797 } else { 2798 linknew = FALSE; 2799 } 2800 2801 if (link_exists == TRUE) { 2802 /* Link exists or was just created */ 2803 (void) di_devlink_add_link(devlink_cache, link, rcontents, 2804 DI_PRIMARY_LINK); 2805 } 2806 2807 return (rv); 2808 } 2809 2810 int 2811 devfsadm_mklink(char *link, di_node_t node, di_minor_t minor, int flags) 2812 { 2813 struct zone_devinfo *z; 2814 int error; 2815 2816 /* 2817 * If we're in zone mode (also implies !daemon_mode), then the 2818 * zone devinfo list has only one element, the zone we're configuring, 2819 * and we can just use zone_head. 2820 */ 2821 if (zone_cmd_mode) 2822 return (devfsadm_mklink_zone(zone_head, link, node, 2823 minor, flags)); 2824 else if (!daemon_mode) 2825 return (devfsadm_mklink_default(link, node, minor, flags)); 2826 2827 /* 2828 * We're in daemon mode, so we need to make the link in the global 2829 * zone; then, walk the list of zones, creating the corresponding 2830 * mknod'd nodes in each. 2831 */ 2832 error = devfsadm_mklink_default(link, node, minor, flags); 2833 2834 (void) mutex_lock(&zone_mutex); 2835 for (z = zone_head; z != NULL; z = z->zone_next) { 2836 (void) devfsadm_mklink_zone(z, link, node, minor, flags); 2837 } 2838 (void) mutex_unlock(&zone_mutex); 2839 return (error); 2840 } 2841 2842 /* 2843 * Creates a symlink link to primary_link. Calculates relative 2844 * directory offsets, then calls link_common(). 2845 */ 2846 /*ARGSUSED*/ 2847 int 2848 devfsadm_secondary_link(char *link, char *primary_link, int flags) 2849 { 2850 char contents[PATH_MAX + 1]; 2851 char devlink[PATH_MAX + 1]; 2852 int rv, link_exists; 2853 char *fpath; 2854 char *tpath; 2855 char *op; 2856 2857 /* prepend link with dev_dir contents */ 2858 (void) strcpy(devlink, dev_dir); 2859 (void) strcat(devlink, "/"); 2860 (void) strcat(devlink, link); 2861 /* 2862 * building extra link, so use first link as link contents, but first 2863 * make it relative. 2864 */ 2865 fpath = link; 2866 tpath = primary_link; 2867 op = contents; 2868 2869 while (*fpath == *tpath && *fpath != '\0') { 2870 fpath++, tpath++; 2871 } 2872 2873 /* Count directories to go up, if any, and add "../" */ 2874 while (*fpath != '\0') { 2875 if (*fpath == '/') { 2876 (void) strcpy(op, "../"); 2877 op += 3; 2878 } 2879 fpath++; 2880 } 2881 2882 /* 2883 * Back up to the start of the current path component, in 2884 * case in the middle 2885 */ 2886 while (tpath != primary_link && *(tpath-1) != '/') { 2887 tpath--; 2888 } 2889 (void) strcpy(op, tpath); 2890 2891 if (devlinks_debug == TRUE) { 2892 vprint(INFO_MID, "adding extra link %s ==> %s\n", 2893 devlink, contents); 2894 } 2895 2896 if ((rv = create_link_common(devlink, contents, &link_exists)) 2897 == DEVFSADM_SUCCESS) { 2898 /* 2899 * we need to save the ultimate /devices contents, and not the 2900 * secondary link, since hotcleanup only looks at /devices path. 2901 * Since we don't have devices path here, we can try to get it 2902 * by readlink'ing the secondary link. This assumes the primary 2903 * link was created first. 2904 */ 2905 add_link_to_cache(link, lphy_path); 2906 linknew = TRUE; 2907 } else { 2908 linknew = FALSE; 2909 } 2910 2911 /* 2912 * If link exists or was just created, add it to the database 2913 */ 2914 if (link_exists == TRUE) { 2915 (void) di_devlink_add_link(devlink_cache, link, contents, 2916 DI_SECONDARY_LINK); 2917 } 2918 2919 return (rv); 2920 } 2921 2922 /* returns pointer to the devices directory */ 2923 char * 2924 devfsadm_get_devices_dir() 2925 { 2926 return (devices_dir); 2927 } 2928 2929 /* 2930 * Does the actual link creation. VERBOSE_MID only used if there is 2931 * a change. CHATTY_MID used otherwise. 2932 */ 2933 static int 2934 create_link_common(char *devlink, char *contents, int *exists) 2935 { 2936 int try; 2937 int linksize; 2938 int max_tries = 0; 2939 static int prev_link_existed = TRUE; 2940 char checkcontents[PATH_MAX + 1]; 2941 char *hide; 2942 2943 *exists = FALSE; 2944 2945 /* Database is not updated when file_mods == FALSE */ 2946 if (file_mods == FALSE) { 2947 linksize = readlink(devlink, checkcontents, PATH_MAX); 2948 if (linksize > 0) { 2949 checkcontents[linksize] = '\0'; 2950 if (strcmp(checkcontents, contents) != 0) { 2951 vprint(CHATTY_MID, REMOVING_LINK, 2952 devlink, checkcontents); 2953 return (DEVFSADM_SUCCESS); 2954 } else { 2955 vprint(CHATTY_MID, "link exists and is correct:" 2956 " %s -> %s\n", devlink, contents); 2957 /* failure only in that the link existed */ 2958 return (DEVFSADM_FAILURE); 2959 } 2960 } else { 2961 vprint(VERBOSE_MID, CREATING_LINK, devlink, contents); 2962 return (DEVFSADM_SUCCESS); 2963 } 2964 } 2965 2966 /* 2967 * systems calls are expensive, so predict whether to readlink 2968 * or symlink first, based on previous attempt 2969 */ 2970 if (prev_link_existed == FALSE) { 2971 try = CREATE_LINK; 2972 } else { 2973 try = READ_LINK; 2974 } 2975 2976 while (++max_tries <= 3) { 2977 2978 switch (try) { 2979 case CREATE_LINK: 2980 2981 if (symlink(contents, devlink) == 0) { 2982 vprint(VERBOSE_MID, CREATING_LINK, devlink, 2983 contents); 2984 prev_link_existed = FALSE; 2985 /* link successfully created */ 2986 *exists = TRUE; 2987 set_logindev_perms(devlink); 2988 return (DEVFSADM_SUCCESS); 2989 } else { 2990 switch (errno) { 2991 2992 case ENOENT: 2993 /* dirpath to node doesn't exist */ 2994 hide = strrchr(devlink, '/'); 2995 *hide = '\0'; 2996 s_mkdirp(devlink, S_IRWXU|S_IRGRP| 2997 S_IXGRP|S_IROTH|S_IXOTH); 2998 *hide = '/'; 2999 break; 3000 case EEXIST: 3001 try = READ_LINK; 3002 break; 3003 default: 3004 err_print(SYMLINK_FAILED, devlink, 3005 contents, strerror(errno)); 3006 return (DEVFSADM_FAILURE); 3007 } 3008 } 3009 break; 3010 3011 case READ_LINK: 3012 3013 linksize = readlink(devlink, checkcontents, PATH_MAX); 3014 if (linksize >= 0) { 3015 checkcontents[linksize] = '\0'; 3016 if (strcmp(checkcontents, contents) != 0) { 3017 s_unlink(devlink); 3018 vprint(VERBOSE_MID, REMOVING_LINK, 3019 devlink, checkcontents); 3020 try = CREATE_LINK; 3021 } else { 3022 prev_link_existed = TRUE; 3023 vprint(CHATTY_MID, 3024 "link exists and is correct:" 3025 " %s -> %s\n", devlink, 3026 contents); 3027 *exists = TRUE; 3028 /* failure in that the link existed */ 3029 return (DEVFSADM_FAILURE); 3030 } 3031 } else { 3032 switch (errno) { 3033 case EINVAL: 3034 /* not a symlink, remove and create */ 3035 s_unlink(devlink); 3036 default: 3037 /* maybe it didn't exist at all */ 3038 try = CREATE_LINK; 3039 break; 3040 } 3041 } 3042 break; 3043 } 3044 } 3045 err_print(MAX_ATTEMPTS, devlink, contents); 3046 return (DEVFSADM_FAILURE); 3047 } 3048 3049 static void 3050 set_logindev_perms(char *devlink) 3051 { 3052 struct login_dev *newdev; 3053 struct passwd pwd, *resp; 3054 char pwd_buf[PATH_MAX]; 3055 int rv; 3056 struct stat sb; 3057 char *devfs_path = NULL; 3058 3059 /* 3060 * We only want logindev perms to be set when a device is 3061 * hotplugged or an application requests synchronous creates. 3062 * So we enable this only in daemon mode. In addition, 3063 * login(1) only fixes the std. /dev dir. So we don't 3064 * change perms if alternate root is set. 3065 * login_dev_enable is TRUE only in these cases. 3066 */ 3067 if (login_dev_enable != TRUE) 3068 return; 3069 3070 /* 3071 * Normally, /etc/logindevperm has few (8 - 10 entries) which 3072 * may be regular expressions (globs were converted to RE). 3073 * So just do a linear search through the list. 3074 */ 3075 for (newdev = login_dev_cache; newdev; newdev = newdev->ldev_next) { 3076 vprint(FILES_MID, "matching %s with %s\n", devlink, 3077 newdev->ldev_device); 3078 3079 if (regexec(&newdev->ldev_device_regex, devlink, 0, 3080 NULL, 0) == 0) { 3081 vprint(FILES_MID, "matched %s with %s\n", devlink, 3082 newdev->ldev_device); 3083 break; 3084 } 3085 } 3086 3087 if (newdev == NULL) 3088 return; 3089 3090 /* 3091 * we have a match, now find the driver associated with this 3092 * minor node using a snapshot on the physical path 3093 */ 3094 (void) resolve_link(devlink, NULL, NULL, &devfs_path, 0); 3095 if (devfs_path) { 3096 di_node_t node; 3097 char *drv = NULL; 3098 struct driver_list *list; 3099 char *p; 3100 3101 /* truncate on : so we can take a snapshot */ 3102 (void) strcpy(pwd_buf, devfs_path); 3103 p = strrchr(pwd_buf, ':'); 3104 if (p == NULL) { 3105 free(devfs_path); 3106 return; 3107 } 3108 *p = '\0'; 3109 3110 vprint(FILES_MID, "link=%s->physpath=%s\n", 3111 devlink, pwd_buf); 3112 3113 node = di_init(pwd_buf, DINFOMINOR); 3114 3115 if (node) { 3116 drv = di_driver_name(node); 3117 3118 if (drv) { 3119 vprint(FILES_MID, "%s: driver is %s\n", 3120 devlink, drv); 3121 } 3122 di_fini(node); 3123 } 3124 /* search thru the driver list specified in logindevperm */ 3125 list = newdev->ldev_driver_list; 3126 if ((drv != NULL) && (list != NULL)) { 3127 while (list) { 3128 if (strcmp(list->driver_name, 3129 drv) == 0) { 3130 vprint(FILES_MID, 3131 "driver %s match!\n", drv); 3132 break; 3133 } 3134 list = list->next; 3135 } 3136 if (list == NULL) { 3137 vprint(FILES_MID, "no driver match!\n"); 3138 free(devfs_path); 3139 return; 3140 } 3141 } 3142 free(devfs_path); 3143 } else { 3144 return; 3145 } 3146 3147 vprint(FILES_MID, "changing permissions of %s\n", devlink); 3148 3149 /* 3150 * We have a match. We now attempt to determine the 3151 * owner and group of the console user. 3152 * 3153 * stat() the console device newdev->ldev_console 3154 * which will always exist - it will have the right owner but 3155 * not the right group. Use getpwuid_r() to determine group for this 3156 * uid. 3157 * Note, it is safe to use name service here since if name services 3158 * are not available (during boot or in single-user mode), then 3159 * console owner will be root and its gid can be found in 3160 * local files. 3161 */ 3162 if (stat(newdev->ldev_console, &sb) == -1) { 3163 vprint(VERBOSE_MID, STAT_FAILED, newdev->ldev_console, 3164 strerror(errno)); 3165 return; 3166 } 3167 3168 resp = NULL; 3169 rv = getpwuid_r(sb.st_uid, &pwd, pwd_buf, sizeof (pwd_buf), &resp); 3170 if (rv || resp == NULL) { 3171 rv = rv ? rv : EINVAL; 3172 vprint(VERBOSE_MID, GID_FAILED, sb.st_uid, 3173 strerror(rv)); 3174 return; 3175 } 3176 3177 assert(&pwd == resp); 3178 3179 sb.st_gid = resp->pw_gid; 3180 3181 if (chmod(devlink, newdev->ldev_perms) == -1) { 3182 vprint(VERBOSE_MID, CHMOD_FAILED, devlink, 3183 strerror(errno)); 3184 return; 3185 } 3186 3187 if (chown(devlink, sb.st_uid, sb.st_gid) == -1) { 3188 vprint(VERBOSE_MID, CHOWN_FAILED, devlink, 3189 strerror(errno)); 3190 } 3191 } 3192 3193 /* 3194 * Reset /devices node with appropriate permissions and 3195 * ownership as specified in /etc/minor_perm. 3196 */ 3197 static void 3198 reset_node_permissions(di_node_t node, di_minor_t minor) 3199 { 3200 int spectype; 3201 char phy_path[PATH_MAX + 1]; 3202 mode_t mode; 3203 dev_t dev; 3204 uid_t uid; 3205 gid_t gid; 3206 struct stat sb; 3207 char *dev_path, *aminor = NULL; 3208 3209 /* lphy_path starts with / */ 3210 if ((dev_path = di_devfs_path(node)) == NULL) { 3211 err_print(DI_DEVFS_PATH_FAILED, strerror(errno)); 3212 devfsadm_exit(1); 3213 } 3214 (void) strcpy(lphy_path, dev_path); 3215 di_devfs_path_free(dev_path); 3216 3217 (void) strcat(lphy_path, ":"); 3218 if (di_minor_type(minor) == DDM_ALIAS) { 3219 char *driver; 3220 aminor = di_minor_name(minor); 3221 driver = di_driver_name(di_minor_devinfo(minor)); 3222 (void) strcat(lphy_path, driver); 3223 } else 3224 (void) strcat(lphy_path, di_minor_name(minor)); 3225 3226 (void) strcpy(phy_path, devices_dir); 3227 (void) strcat(phy_path, lphy_path); 3228 3229 lnode = node; 3230 lminor = minor; 3231 3232 vprint(CHATTY_MID, "reset_node_permissions: phy_path=%s lphy_path=%s\n", 3233 phy_path, lphy_path); 3234 3235 dev = di_minor_devt(minor); 3236 spectype = di_minor_spectype(minor); /* block or char */ 3237 3238 getattr(phy_path, aminor, spectype, dev, &mode, &uid, &gid); 3239 3240 /* 3241 * compare and set permissions and ownership 3242 * 3243 * Under devfs, a quick insertion and removal of USB devices 3244 * would cause stat of physical path to fail. In this case, 3245 * we emit a verbose message, but don't print errors. 3246 */ 3247 if ((stat(phy_path, &sb) == -1) || (sb.st_rdev != dev)) { 3248 vprint(VERBOSE_MID, NO_DEVFS_NODE, phy_path); 3249 return; 3250 } 3251 3252 /* 3253 * If we are here for deactivating device allocation, set 3254 * default permissions. Otherwise, set default permissions 3255 * only if this is a new device because we want to preserve 3256 * modified user permissions. 3257 * Devfs indicates a new device by faking an access time 3258 * of zero. 3259 */ 3260 if (sb.st_atime != 0) { 3261 int i; 3262 char *nt; 3263 3264 if (devalloc_off == FALSE) 3265 return; 3266 3267 nt = di_minor_nodetype(minor); 3268 if (nt == NULL) 3269 return; 3270 for (i = 0; devalloc[i]; i++) { 3271 if (strcmp(nt, devalloc[i]) == 0) 3272 break; 3273 } 3274 3275 if (devalloc[i] == NULL) 3276 return; 3277 3278 /* One of the types recognized by devalloc, reset perms */ 3279 } 3280 3281 if (file_mods == FALSE) { 3282 /* Nothing more to do if simulating */ 3283 vprint(VERBOSE_MID, PERM_MSG, phy_path, uid, gid, mode); 3284 return; 3285 } 3286 3287 if (sb.st_mode != mode) { 3288 if (chmod(phy_path, mode) == -1) 3289 vprint(VERBOSE_MID, CHMOD_FAILED, 3290 phy_path, strerror(errno)); 3291 } 3292 if (sb.st_uid != uid || sb.st_gid != gid) { 3293 if (chown(phy_path, uid, gid) == -1) 3294 vprint(VERBOSE_MID, CHOWN_FAILED, 3295 phy_path, strerror(errno)); 3296 } 3297 3298 /* Report that we actually did something */ 3299 vprint(VERBOSE_MID, PERM_MSG, phy_path, uid, gid, mode); 3300 } 3301 3302 /* 3303 * Removes logical link and the minor node it refers to. If file is a 3304 * link, we recurse and try to remove the minor node (or link if path is 3305 * a double link) that file's link contents refer to. 3306 */ 3307 static void 3308 devfsadm_rm_work(char *file, int recurse, int file_type) 3309 { 3310 char *fcn = "devfsadm_rm_work: "; 3311 int linksize; 3312 char contents[PATH_MAX + 1]; 3313 char nextfile[PATH_MAX + 1]; 3314 char newfile[PATH_MAX + 1]; 3315 char *ptr; 3316 3317 vprint(REMOVE_MID, "%s%s\n", fcn, file); 3318 3319 /* TYPE_LINK split into multiple if's due to excessive indentations */ 3320 if (file_type == TYPE_LINK) { 3321 (void) strcpy(newfile, dev_dir); 3322 (void) strcat(newfile, "/"); 3323 (void) strcat(newfile, file); 3324 } 3325 3326 if ((file_type == TYPE_LINK) && (recurse == TRUE) && 3327 ((linksize = readlink(newfile, contents, PATH_MAX)) > 0)) { 3328 contents[linksize] = '\0'; 3329 3330 if (is_minor_node(contents, &ptr) == DEVFSADM_TRUE) { 3331 devfsadm_rm_work(++ptr, FALSE, TYPE_DEVICES); 3332 } else { 3333 if (strncmp(contents, DEV "/", strlen(DEV) + 1) == 0) { 3334 devfsadm_rm_work(&contents[strlen(DEV) + 1], 3335 TRUE, TYPE_LINK); 3336 } else { 3337 if ((ptr = strrchr(file, '/')) != NULL) { 3338 *ptr = '\0'; 3339 (void) strcpy(nextfile, file); 3340 *ptr = '/'; 3341 (void) strcat(nextfile, "/"); 3342 } else { 3343 (void) strcpy(nextfile, ""); 3344 } 3345 (void) strcat(nextfile, contents); 3346 devfsadm_rm_work(nextfile, TRUE, TYPE_LINK); 3347 } 3348 } 3349 } 3350 3351 if (file_type == TYPE_LINK) { 3352 vprint(VERBOSE_MID, DEVFSADM_UNLINK, newfile); 3353 if (file_mods == TRUE) { 3354 rm_link_from_cache(file); 3355 s_unlink(newfile); 3356 rm_parent_dir_if_empty(newfile); 3357 invalidate_enumerate_cache(); 3358 (void) di_devlink_rm_link(devlink_cache, file); 3359 } 3360 } 3361 3362 /* 3363 * Note: we don't remove /devices entries because they are 3364 * covered by devfs. 3365 */ 3366 } 3367 3368 void 3369 devfsadm_rm_link(char *file) 3370 { 3371 devfsadm_rm_work(file, FALSE, TYPE_LINK); 3372 } 3373 3374 void 3375 devfsadm_rm_all(char *file) 3376 { 3377 devfsadm_rm_work(file, TRUE, TYPE_LINK); 3378 } 3379 3380 static int 3381 s_rmdir(char *path) 3382 { 3383 int i; 3384 char *rpath, *dir; 3385 const char *fcn = "s_rmdir"; 3386 3387 /* 3388 * Certain directories are created at install time by packages. 3389 * Some of them (listed in packaged_dirs[]) are required by apps 3390 * and need to be present even when empty. 3391 */ 3392 vprint(REMOVE_MID, "%s: checking if %s is packaged\n", fcn, path); 3393 3394 rpath = path + strlen(dev_dir) + 1; 3395 3396 for (i = 0; (dir = packaged_dirs[i]) != NULL; i++) { 3397 if (*rpath == *dir) { 3398 if (strcmp(rpath, dir) == 0) { 3399 vprint(REMOVE_MID, "%s: skipping packaged dir: " 3400 "%s\n", fcn, path); 3401 errno = EEXIST; 3402 return (-1); 3403 } 3404 } 3405 } 3406 3407 return (rmdir(path)); 3408 } 3409 3410 /* 3411 * Try to remove any empty directories up the tree. It is assumed that 3412 * pathname is a file that was removed, so start with its parent, and 3413 * work up the tree. 3414 */ 3415 static void 3416 rm_parent_dir_if_empty(char *pathname) 3417 { 3418 char *ptr, path[PATH_MAX + 1]; 3419 char *fcn = "rm_parent_dir_if_empty: "; 3420 3421 vprint(REMOVE_MID, "%schecking %s if empty\n", fcn, pathname); 3422 3423 (void) strcpy(path, pathname); 3424 3425 /* 3426 * ascend up the dir tree, deleting all empty dirs. 3427 * Return immediately if a dir is not empty. 3428 */ 3429 for (;;) { 3430 3431 if ((ptr = strrchr(path, '/')) == NULL) { 3432 return; 3433 } 3434 3435 *ptr = '\0'; 3436 3437 if (s_rmdir(path) == 0) { 3438 vprint(REMOVE_MID, "%sremoving empty dir %s\n", 3439 fcn, path); 3440 continue; 3441 } 3442 if (errno == EEXIST) { 3443 vprint(REMOVE_MID, "%sdir not empty: %s\n", fcn, path); 3444 return; 3445 } 3446 vprint(REMOVE_MID, "%s can't remove %s: %s\n", fcn, path, 3447 strerror(errno)); 3448 return; 3449 } 3450 } 3451 3452 /* 3453 * This function and all the functions it calls below were added to 3454 * handle the unique problem with world wide names (WWN). The problem is 3455 * that if a WWN device is moved to another address on the same controller 3456 * its logical link will change, while the physical node remains the same. 3457 * The result is that two logical links will point to the same physical path 3458 * in /devices, the valid link and a stale link. This function will 3459 * find all the stale nodes, though at a significant performance cost. 3460 * 3461 * Caching is used to increase performance. 3462 * A cache will be built from disk if the cache tag doesn't already exist. 3463 * The cache tag is a regular expression "dir_re", which selects a 3464 * subset of disks to search from typically something like 3465 * "dev/cXt[0-9]+d[0-9]+s[0-9]+". After the cache is built, consistency must 3466 * be maintained, so entries are added as new links are created, and removed 3467 * as old links are deleted. The whole cache is flushed if we are a daemon, 3468 * and another devfsadm process ran in between. 3469 * 3470 * Once the cache is built, this function finds the cache which matches 3471 * dir_re, and then it searches all links in that cache looking for 3472 * any link whose contents match "valid_link_contents" with a corresponding link 3473 * which does not match "valid_link". Any such matches are stale and removed. 3474 */ 3475 void 3476 devfsadm_rm_stale_links(char *dir_re, char *valid_link, di_node_t node, 3477 di_minor_t minor) 3478 { 3479 link_t *link; 3480 linkhead_t *head; 3481 char phy_path[PATH_MAX + 1]; 3482 char *valid_link_contents; 3483 char *dev_path; 3484 char rmlink[PATH_MAX + 1]; 3485 3486 /* 3487 * try to use devices path 3488 */ 3489 if ((node == lnode) && (minor == lminor)) { 3490 valid_link_contents = lphy_path; 3491 } else { 3492 if ((dev_path = di_devfs_path(node)) == NULL) { 3493 err_print(DI_DEVFS_PATH_FAILED, strerror(errno)); 3494 devfsadm_exit(1); 3495 } 3496 (void) strcpy(phy_path, dev_path); 3497 di_devfs_path_free(dev_path); 3498 3499 (void) strcat(phy_path, ":"); 3500 (void) strcat(phy_path, di_minor_name(minor)); 3501 valid_link_contents = phy_path; 3502 } 3503 3504 /* 3505 * As an optimization, check to make sure the corresponding 3506 * devlink was just created before continuing. 3507 */ 3508 3509 if (linknew == FALSE) { 3510 return; 3511 } 3512 3513 head = get_cached_links(dir_re); 3514 3515 assert(head->nextlink == NULL); 3516 3517 for (link = head->link; link != NULL; link = head->nextlink) { 3518 /* 3519 * See hot_cleanup() for why we do this 3520 */ 3521 head->nextlink = link->next; 3522 if ((strcmp(link->contents, valid_link_contents) == 0) && 3523 (strcmp(link->devlink, valid_link) != 0)) { 3524 vprint(CHATTY_MID, "removing %s -> %s\n" 3525 "valid link is: %s -> %s\n", 3526 link->devlink, link->contents, 3527 valid_link, valid_link_contents); 3528 /* 3529 * Use a copy of the cached link name as the 3530 * cache entry will go away during link removal 3531 */ 3532 (void) snprintf(rmlink, sizeof (rmlink), "%s", 3533 link->devlink); 3534 devfsadm_rm_link(rmlink); 3535 } 3536 } 3537 } 3538 3539 /* 3540 * Return previously created cache, or create cache. 3541 */ 3542 static linkhead_t * 3543 get_cached_links(char *dir_re) 3544 { 3545 recurse_dev_t rd; 3546 linkhead_t *linkhead; 3547 int n; 3548 3549 vprint(BUILDCACHE_MID, "get_cached_links: %s\n", dir_re); 3550 3551 for (linkhead = headlinkhead; linkhead != NULL; 3552 linkhead = linkhead->nexthead) { 3553 if (strcmp(linkhead->dir_re, dir_re) == 0) { 3554 return (linkhead); 3555 } 3556 } 3557 3558 /* 3559 * This tag is not in cache, so add it, along with all its 3560 * matching /dev entries. This is the only time we go to disk. 3561 */ 3562 linkhead = s_malloc(sizeof (linkhead_t)); 3563 linkhead->nexthead = headlinkhead; 3564 headlinkhead = linkhead; 3565 linkhead->dir_re = s_strdup(dir_re); 3566 3567 if ((n = regcomp(&(linkhead->dir_re_compiled), dir_re, 3568 REG_EXTENDED)) != 0) { 3569 err_print(REGCOMP_FAILED, dir_re, n); 3570 } 3571 3572 linkhead->nextlink = NULL; 3573 linkhead->link = NULL; 3574 3575 rd.fcn = build_devlink_list; 3576 rd.data = (void *)linkhead; 3577 3578 vprint(BUILDCACHE_MID, "get_cached_links: calling recurse_dev_re\n"); 3579 3580 /* call build_devlink_list for each directory in the dir_re RE */ 3581 if (dir_re[0] == '/') { 3582 recurse_dev_re("/", &dir_re[1], &rd); 3583 } else { 3584 recurse_dev_re(dev_dir, dir_re, &rd); 3585 } 3586 3587 return (linkhead); 3588 } 3589 3590 static void 3591 build_devlink_list(char *devlink, void *data) 3592 { 3593 char *fcn = "build_devlink_list: "; 3594 char *ptr; 3595 char *r_contents; 3596 char *r_devlink; 3597 char contents[PATH_MAX + 1]; 3598 char newlink[PATH_MAX + 1]; 3599 char stage_link[PATH_MAX + 1]; 3600 int linksize; 3601 linkhead_t *linkhead = (linkhead_t *)data; 3602 link_t *link; 3603 int i = 0; 3604 3605 vprint(BUILDCACHE_MID, "%scheck_link: %s\n", fcn, devlink); 3606 3607 (void) strcpy(newlink, devlink); 3608 3609 do { 3610 linksize = readlink(newlink, contents, PATH_MAX); 3611 if (linksize <= 0) { 3612 /* 3613 * The first pass through the do loop we may readlink() 3614 * non-symlink files(EINVAL) from false regexec matches. 3615 * Suppress error messages in those cases or if the link 3616 * content is the empty string. 3617 */ 3618 if (linksize < 0 && (i || errno != EINVAL)) 3619 err_print(READLINK_FAILED, "build_devlink_list", 3620 newlink, strerror(errno)); 3621 return; 3622 } 3623 contents[linksize] = '\0'; 3624 i = 1; 3625 3626 if (is_minor_node(contents, &r_contents) == DEVFSADM_FALSE) { 3627 /* 3628 * assume that link contents is really a pointer to 3629 * another link, so recurse and read its link contents. 3630 * 3631 * some link contents are absolute: 3632 * /dev/audio -> /dev/sound/0 3633 */ 3634 if (strncmp(contents, DEV "/", 3635 strlen(DEV) + strlen("/")) != 0) { 3636 3637 if ((ptr = strrchr(newlink, '/')) == NULL) { 3638 vprint(REMOVE_MID, "%s%s -> %s invalid " 3639 "link. missing '/'\n", fcn, 3640 newlink, contents); 3641 return; 3642 } 3643 *ptr = '\0'; 3644 (void) strcpy(stage_link, newlink); 3645 *ptr = '/'; 3646 (void) strcat(stage_link, "/"); 3647 (void) strcat(stage_link, contents); 3648 (void) strcpy(newlink, stage_link); 3649 } else { 3650 (void) strcpy(newlink, dev_dir); 3651 (void) strcat(newlink, "/"); 3652 (void) strcat(newlink, 3653 &contents[strlen(DEV) + strlen("/")]); 3654 } 3655 3656 } else { 3657 newlink[0] = '\0'; 3658 } 3659 } while (newlink[0] != '\0'); 3660 3661 if (strncmp(devlink, dev_dir, strlen(dev_dir)) != 0) { 3662 vprint(BUILDCACHE_MID, "%sinvalid link: %s\n", fcn, devlink); 3663 return; 3664 } 3665 3666 r_devlink = devlink + strlen(dev_dir); 3667 3668 if (r_devlink[0] != '/') 3669 return; 3670 3671 link = s_malloc(sizeof (link_t)); 3672 3673 /* don't store the '/' after rootdir/dev */ 3674 r_devlink += 1; 3675 3676 vprint(BUILDCACHE_MID, "%scaching link: %s\n", fcn, r_devlink); 3677 link->devlink = s_strdup(r_devlink); 3678 3679 link->contents = s_strdup(r_contents); 3680 3681 link->next = linkhead->link; 3682 linkhead->link = link; 3683 } 3684 3685 /* 3686 * to be consistent, devlink must not begin with / and must be 3687 * relative to /dev/, whereas physpath must contain / and be 3688 * relative to /devices. 3689 */ 3690 static void 3691 add_link_to_cache(char *devlink, char *physpath) 3692 { 3693 linkhead_t *linkhead; 3694 link_t *link; 3695 int added = 0; 3696 3697 if (file_mods == FALSE) { 3698 return; 3699 } 3700 3701 vprint(CACHE_MID, "add_link_to_cache: %s -> %s ", 3702 devlink, physpath); 3703 3704 for (linkhead = headlinkhead; linkhead != NULL; 3705 linkhead = linkhead->nexthead) { 3706 if (regexec(&(linkhead->dir_re_compiled), devlink, 0, NULL, 3707 0) == 0) { 3708 added++; 3709 link = s_malloc(sizeof (link_t)); 3710 link->devlink = s_strdup(devlink); 3711 link->contents = s_strdup(physpath); 3712 link->next = linkhead->link; 3713 linkhead->link = link; 3714 } 3715 } 3716 3717 vprint(CACHE_MID, 3718 " %d %s\n", added, added == 0 ? "NOT ADDED" : "ADDED"); 3719 } 3720 3721 /* 3722 * Remove devlink from cache. Devlink must be relative to /dev/ and not start 3723 * with /. 3724 */ 3725 static void 3726 rm_link_from_cache(char *devlink) 3727 { 3728 linkhead_t *linkhead; 3729 link_t **linkp; 3730 link_t *save; 3731 3732 vprint(CACHE_MID, "rm_link_from_cache enter: %s\n", devlink); 3733 3734 for (linkhead = headlinkhead; linkhead != NULL; 3735 linkhead = linkhead->nexthead) { 3736 if (regexec(&(linkhead->dir_re_compiled), devlink, 0, NULL, 3737 0) == 0) { 3738 3739 for (linkp = &(linkhead->link); *linkp != NULL; ) { 3740 if ((strcmp((*linkp)->devlink, devlink) == 0)) { 3741 save = *linkp; 3742 *linkp = (*linkp)->next; 3743 /* 3744 * We are removing our caller's 3745 * "next" link. Update the nextlink 3746 * field in the head so that our 3747 * callers accesses the next valid 3748 * link 3749 */ 3750 if (linkhead->nextlink == save) 3751 linkhead->nextlink = *linkp; 3752 free(save->devlink); 3753 free(save->contents); 3754 free(save); 3755 vprint(CACHE_MID, " %s FREED FROM " 3756 "CACHE\n", devlink); 3757 } else { 3758 linkp = &((*linkp)->next); 3759 } 3760 } 3761 } 3762 } 3763 } 3764 3765 static void 3766 rm_all_links_from_cache() 3767 { 3768 linkhead_t *linkhead; 3769 linkhead_t *nextlinkhead; 3770 link_t *link; 3771 link_t *nextlink; 3772 3773 vprint(CACHE_MID, "rm_all_links_from_cache\n"); 3774 3775 for (linkhead = headlinkhead; linkhead != NULL; 3776 linkhead = nextlinkhead) { 3777 3778 nextlinkhead = linkhead->nexthead; 3779 assert(linkhead->nextlink == NULL); 3780 for (link = linkhead->link; link != NULL; link = nextlink) { 3781 nextlink = link->next; 3782 free(link->devlink); 3783 free(link->contents); 3784 free(link); 3785 } 3786 regfree(&(linkhead->dir_re_compiled)); 3787 free(linkhead->dir_re); 3788 free(linkhead); 3789 } 3790 headlinkhead = NULL; 3791 } 3792 3793 /* 3794 * Called when the kernel has modified the incore path_to_inst data. This 3795 * function will schedule a flush of the data to the filesystem. 3796 */ 3797 static void 3798 devfs_instance_mod(void) 3799 { 3800 char *fcn = "devfs_instance_mod: "; 3801 vprint(PATH2INST_MID, "%senter\n", fcn); 3802 3803 /* signal instance thread */ 3804 (void) mutex_lock(&count_lock); 3805 inst_count++; 3806 (void) cond_signal(&cv); 3807 (void) mutex_unlock(&count_lock); 3808 } 3809 3810 static void 3811 instance_flush_thread(void) 3812 { 3813 int i; 3814 int idle; 3815 3816 for (;;) { 3817 3818 (void) mutex_lock(&count_lock); 3819 while (inst_count == 0) { 3820 (void) cond_wait(&cv, &count_lock); 3821 } 3822 inst_count = 0; 3823 3824 vprint(PATH2INST_MID, "signaled to flush path_to_inst." 3825 " Enter delay loop\n"); 3826 /* 3827 * Wait MAX_IDLE_DELAY seconds after getting the last flush 3828 * path_to_inst event before invoking a flush, but never wait 3829 * more than MAX_DELAY seconds after getting the first event. 3830 */ 3831 for (idle = 0, i = 0; i < MAX_DELAY; i++) { 3832 3833 (void) mutex_unlock(&count_lock); 3834 (void) sleep(1); 3835 (void) mutex_lock(&count_lock); 3836 3837 /* shorten the delay if we are idle */ 3838 if (inst_count == 0) { 3839 idle++; 3840 if (idle > MAX_IDLE_DELAY) { 3841 break; 3842 } 3843 } else { 3844 inst_count = idle = 0; 3845 } 3846 } 3847 3848 (void) mutex_unlock(&count_lock); 3849 3850 flush_path_to_inst(); 3851 } 3852 } 3853 3854 /* 3855 * Helper function for flush_path_to_inst() below; this routine calls the 3856 * inst_sync syscall to flush the path_to_inst database to the given file. 3857 */ 3858 static int 3859 do_inst_sync(char *filename) 3860 { 3861 void (*sigsaved)(int); 3862 int err = 0; 3863 3864 vprint(INSTSYNC_MID, "do_inst_sync: about to flush %s\n", filename); 3865 sigsaved = sigset(SIGSYS, SIG_IGN); 3866 if (inst_sync(filename, 0) == -1) 3867 err = errno; 3868 (void) sigset(SIGSYS, sigsaved); 3869 3870 switch (err) { 3871 case 0: 3872 return (DEVFSADM_SUCCESS); 3873 case EALREADY: /* no-op, path_to_inst already up to date */ 3874 return (EALREADY); 3875 case ENOSYS: 3876 err_print(CANT_LOAD_SYSCALL); 3877 break; 3878 case EPERM: 3879 err_print(SUPER_TO_SYNC); 3880 break; 3881 default: 3882 err_print(INSTSYNC_FAILED, filename, strerror(err)); 3883 break; 3884 } 3885 return (DEVFSADM_FAILURE); 3886 } 3887 3888 /* 3889 * Flush the kernel's path_to_inst database to /etc/path_to_inst. To do so 3890 * safely, the database is flushed to a temporary file, then moved into place. 3891 * 3892 * The following files are used during this process: 3893 * /etc/path_to_inst: The path_to_inst file 3894 * /etc/path_to_inst.<pid>: Contains data flushed from the kernel 3895 * /etc/path_to_inst.old: The backup file 3896 * /etc/path_to_inst.old.<pid>: Temp file for creating backup 3897 * 3898 */ 3899 static void 3900 flush_path_to_inst(void) 3901 { 3902 char *new_inst_file = NULL; 3903 char *old_inst_file = NULL; 3904 char *old_inst_file_npid = NULL; 3905 FILE *inst_file_fp = NULL; 3906 FILE *old_inst_file_fp = NULL; 3907 struct stat sb; 3908 int err = 0; 3909 int c; 3910 int inst_strlen; 3911 3912 vprint(PATH2INST_MID, "flush_path_to_inst: %s\n", 3913 (flush_path_to_inst_enable == TRUE) ? "ENABLED" : "DISABLED"); 3914 3915 if (flush_path_to_inst_enable == FALSE) { 3916 return; 3917 } 3918 3919 inst_strlen = strlen(inst_file); 3920 new_inst_file = s_malloc(inst_strlen + PID_STR_LEN + 2); 3921 old_inst_file = s_malloc(inst_strlen + PID_STR_LEN + 6); 3922 old_inst_file_npid = s_malloc(inst_strlen + 3923 sizeof (INSTANCE_FILE_SUFFIX)); 3924 3925 (void) snprintf(new_inst_file, inst_strlen + PID_STR_LEN + 2, 3926 "%s.%ld", inst_file, getpid()); 3927 3928 if (stat(new_inst_file, &sb) == 0) { 3929 s_unlink(new_inst_file); 3930 } 3931 3932 if ((err = do_inst_sync(new_inst_file)) != DEVFSADM_SUCCESS) { 3933 goto out; 3934 /*NOTREACHED*/ 3935 } 3936 3937 /* 3938 * Now we deal with the somewhat tricky updating and renaming 3939 * of this critical piece of kernel state. 3940 */ 3941 3942 /* 3943 * Copy the current instance file into a temporary file. 3944 * Then rename the temporary file into the backup (.old) 3945 * file and rename the newly flushed kernel data into 3946 * the instance file. 3947 * Of course if 'inst_file' doesn't exist, there's much 3948 * less for us to do .. tee hee. 3949 */ 3950 if ((inst_file_fp = fopen(inst_file, "r")) == NULL) { 3951 /* 3952 * No such file. Rename the new onto the old 3953 */ 3954 if ((err = rename(new_inst_file, inst_file)) != 0) 3955 err_print(RENAME_FAILED, inst_file, strerror(errno)); 3956 goto out; 3957 /*NOTREACHED*/ 3958 } 3959 3960 (void) snprintf(old_inst_file, inst_strlen + PID_STR_LEN + 6, 3961 "%s.old.%ld", inst_file, getpid()); 3962 3963 if (stat(old_inst_file, &sb) == 0) { 3964 s_unlink(old_inst_file); 3965 } 3966 3967 if ((old_inst_file_fp = fopen(old_inst_file, "w")) == NULL) { 3968 /* 3969 * Can't open the 'old_inst_file' file for writing. 3970 * This is somewhat strange given that the syscall 3971 * just succeeded to write a file out.. hmm.. maybe 3972 * the fs just filled up or something nasty. 3973 * 3974 * Anyway, abort what we've done so far. 3975 */ 3976 err_print(CANT_UPDATE, old_inst_file); 3977 err = DEVFSADM_FAILURE; 3978 goto out; 3979 /*NOTREACHED*/ 3980 } 3981 3982 /* 3983 * Copy current instance file into the temporary file 3984 */ 3985 err = 0; 3986 while ((c = getc(inst_file_fp)) != EOF) { 3987 if ((err = putc(c, old_inst_file_fp)) == EOF) { 3988 break; 3989 } 3990 } 3991 3992 if (fclose(old_inst_file_fp) == EOF || err == EOF) { 3993 vprint(INFO_MID, CANT_UPDATE, old_inst_file); 3994 err = DEVFSADM_FAILURE; 3995 goto out; 3996 /* NOTREACHED */ 3997 } 3998 3999 /* 4000 * Set permissions to be the same on the backup as 4001 * /etc/path_to_inst. 4002 */ 4003 (void) chmod(old_inst_file, 0444); 4004 4005 /* 4006 * So far, everything we've done is more or less reversible. 4007 * But now we're going to commit ourselves. 4008 */ 4009 4010 (void) snprintf(old_inst_file_npid, 4011 inst_strlen + sizeof (INSTANCE_FILE_SUFFIX), 4012 "%s%s", inst_file, INSTANCE_FILE_SUFFIX); 4013 4014 if ((err = rename(old_inst_file, old_inst_file_npid)) != 0) { 4015 err_print(RENAME_FAILED, old_inst_file_npid, 4016 strerror(errno)); 4017 } else if ((err = rename(new_inst_file, inst_file)) != 0) { 4018 err_print(RENAME_FAILED, inst_file, strerror(errno)); 4019 } 4020 4021 out: 4022 if (inst_file_fp != NULL) { 4023 if (fclose(inst_file_fp) == EOF) { 4024 err_print(FCLOSE_FAILED, inst_file, strerror(errno)); 4025 } 4026 } 4027 4028 if (stat(new_inst_file, &sb) == 0) { 4029 s_unlink(new_inst_file); 4030 } 4031 free(new_inst_file); 4032 4033 if (stat(old_inst_file, &sb) == 0) { 4034 s_unlink(old_inst_file); 4035 } 4036 free(old_inst_file); 4037 4038 free(old_inst_file_npid); 4039 4040 if (err != 0 && err != EALREADY) { 4041 err_print(FAILED_TO_UPDATE, inst_file); 4042 } 4043 } 4044 4045 /* 4046 * detach from tty. For daemon mode. 4047 */ 4048 void 4049 detachfromtty() 4050 { 4051 (void) setsid(); 4052 if (DEVFSADM_DEBUG_ON == TRUE) { 4053 return; 4054 } 4055 4056 (void) close(0); 4057 (void) close(1); 4058 (void) close(2); 4059 (void) open("/dev/null", O_RDWR, 0); 4060 (void) dup(0); 4061 (void) dup(0); 4062 openlog(DEVFSADMD, LOG_PID, LOG_DAEMON); 4063 (void) setlogmask(LOG_UPTO(LOG_INFO)); 4064 logflag = TRUE; 4065 } 4066 4067 /* 4068 * Use an advisory lock to synchronize updates to /dev. If the lock is 4069 * held by another process, block in the fcntl() system call until that 4070 * process drops the lock or exits. The lock file itself is 4071 * DEV_LOCK_FILE. The process id of the current and last process owning 4072 * the lock is kept in the lock file. After acquiring the lock, read the 4073 * process id and return it. It is the process ID which last owned the 4074 * lock, and will be used to determine if caches need to be flushed. 4075 * 4076 * NOTE: if the devlink database is held open by the caller, it may 4077 * be closed by this routine. This is to enforce the following lock ordering: 4078 * 1) /dev lock 2) database open 4079 */ 4080 pid_t 4081 enter_dev_lock() 4082 { 4083 struct flock lock; 4084 int n; 4085 pid_t pid; 4086 pid_t last_owner_pid; 4087 4088 if (file_mods == FALSE) { 4089 return (0); 4090 } 4091 4092 s_mkdirp(dev_dir, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH); 4093 (void) snprintf(dev_lockfile, sizeof (dev_lockfile), 4094 "%s/%s", dev_dir, DEV_LOCK_FILE); 4095 4096 vprint(LOCK_MID, "enter_dev_lock: lock file %s\n", dev_lockfile); 4097 4098 dev_lock_fd = open(dev_lockfile, O_CREAT|O_RDWR, 0644); 4099 if (dev_lock_fd < 0) { 4100 err_print(OPEN_FAILED, dev_lockfile, strerror(errno)); 4101 devfsadm_exit(1); 4102 } 4103 4104 lock.l_type = F_WRLCK; 4105 lock.l_whence = SEEK_SET; 4106 lock.l_start = 0; 4107 lock.l_len = 0; 4108 4109 /* try for the lock, but don't wait */ 4110 if (fcntl(dev_lock_fd, F_SETLK, &lock) == -1) { 4111 if ((errno == EACCES) || (errno == EAGAIN)) { 4112 pid = 0; 4113 n = read(dev_lock_fd, &pid, sizeof (pid_t)); 4114 vprint(LOCK_MID, "waiting for PID %d to complete\n", 4115 (int)pid); 4116 if (lseek(dev_lock_fd, 0, SEEK_SET) == (off_t)-1) { 4117 err_print(LSEEK_FAILED, dev_lockfile, 4118 strerror(errno)); 4119 devfsadm_exit(1); 4120 } 4121 /* 4122 * wait for the dev lock. If we have the database open, 4123 * close it first - the order of lock acquisition should 4124 * always be: 1) dev_lock 2) database 4125 * This is to prevent deadlocks with any locks the 4126 * database code may hold. 4127 */ 4128 (void) di_devlink_close(&devlink_cache, 0); 4129 if (fcntl(dev_lock_fd, F_SETLKW, &lock) == -1) { 4130 err_print(LOCK_FAILED, dev_lockfile, 4131 strerror(errno)); 4132 devfsadm_exit(1); 4133 } 4134 } 4135 } 4136 4137 hold_dev_lock = TRUE; 4138 pid = 0; 4139 n = read(dev_lock_fd, &pid, sizeof (pid_t)); 4140 if (n == sizeof (pid_t) && pid == getpid()) { 4141 return (pid); 4142 } 4143 4144 last_owner_pid = pid; 4145 4146 if (lseek(dev_lock_fd, 0, SEEK_SET) == (off_t)-1) { 4147 err_print(LSEEK_FAILED, dev_lockfile, strerror(errno)); 4148 devfsadm_exit(1); 4149 } 4150 pid = getpid(); 4151 n = write(dev_lock_fd, &pid, sizeof (pid_t)); 4152 if (n != sizeof (pid_t)) { 4153 err_print(WRITE_FAILED, dev_lockfile, strerror(errno)); 4154 devfsadm_exit(1); 4155 } 4156 4157 return (last_owner_pid); 4158 } 4159 4160 /* 4161 * Drop the advisory /dev lock, close lock file. Close and re-open the 4162 * file every time so to ensure a resync if for some reason the lock file 4163 * gets removed. 4164 */ 4165 void 4166 exit_dev_lock() 4167 { 4168 struct flock unlock; 4169 4170 if (hold_dev_lock == FALSE) { 4171 return; 4172 } 4173 4174 vprint(LOCK_MID, "exit_dev_lock: lock file %s\n", dev_lockfile); 4175 4176 unlock.l_type = F_UNLCK; 4177 unlock.l_whence = SEEK_SET; 4178 unlock.l_start = 0; 4179 unlock.l_len = 0; 4180 4181 if (fcntl(dev_lock_fd, F_SETLK, &unlock) == -1) { 4182 err_print(UNLOCK_FAILED, dev_lockfile, strerror(errno)); 4183 } 4184 4185 hold_dev_lock = FALSE; 4186 4187 if (close(dev_lock_fd) == -1) { 4188 err_print(CLOSE_FAILED, dev_lockfile, strerror(errno)); 4189 devfsadm_exit(1); 4190 } 4191 } 4192 4193 /* 4194 * 4195 * Use an advisory lock to ensure that only one daemon process is active 4196 * in the system at any point in time. If the lock is held by another 4197 * process, do not block but return the pid owner of the lock to the 4198 * caller immediately. The lock is cleared if the holding daemon process 4199 * exits for any reason even if the lock file remains, so the daemon can 4200 * be restarted if necessary. The lock file is DAEMON_LOCK_FILE. 4201 */ 4202 pid_t 4203 enter_daemon_lock(void) 4204 { 4205 struct flock lock; 4206 4207 s_mkdirp(dev_dir, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH); 4208 (void) snprintf(daemon_lockfile, sizeof (daemon_lockfile), 4209 "%s/%s", dev_dir, DAEMON_LOCK_FILE); 4210 4211 vprint(LOCK_MID, "enter_daemon_lock: lock file %s\n", daemon_lockfile); 4212 4213 daemon_lock_fd = open(daemon_lockfile, O_CREAT|O_RDWR, 0644); 4214 if (daemon_lock_fd < 0) { 4215 err_print(OPEN_FAILED, daemon_lockfile, strerror(errno)); 4216 devfsadm_exit(1); 4217 } 4218 4219 lock.l_type = F_WRLCK; 4220 lock.l_whence = SEEK_SET; 4221 lock.l_start = 0; 4222 lock.l_len = 0; 4223 4224 if (fcntl(daemon_lock_fd, F_SETLK, &lock) == -1) { 4225 4226 if (errno == EAGAIN || errno == EDEADLK) { 4227 if (fcntl(daemon_lock_fd, F_GETLK, &lock) == -1) { 4228 err_print(LOCK_FAILED, daemon_lockfile, 4229 strerror(errno)); 4230 devfsadm_exit(1); 4231 } 4232 return (lock.l_pid); 4233 } 4234 } 4235 hold_daemon_lock = TRUE; 4236 return (getpid()); 4237 } 4238 4239 /* 4240 * Drop the advisory daemon lock, close lock file 4241 */ 4242 void 4243 exit_daemon_lock(void) 4244 { 4245 struct flock lock; 4246 4247 if (hold_daemon_lock == FALSE) { 4248 return; 4249 } 4250 4251 vprint(LOCK_MID, "exit_daemon_lock: lock file %s\n", daemon_lockfile); 4252 4253 lock.l_type = F_UNLCK; 4254 lock.l_whence = SEEK_SET; 4255 lock.l_start = 0; 4256 lock.l_len = 0; 4257 4258 if (fcntl(daemon_lock_fd, F_SETLK, &lock) == -1) { 4259 err_print(UNLOCK_FAILED, daemon_lockfile, strerror(errno)); 4260 } 4261 4262 if (close(daemon_lock_fd) == -1) { 4263 err_print(CLOSE_FAILED, daemon_lockfile, strerror(errno)); 4264 devfsadm_exit(1); 4265 } 4266 } 4267 4268 /* 4269 * Called to removed danging nodes in two different modes: RM_PRE, RM_POST. 4270 * RM_PRE mode is called before processing the entire devinfo tree, and RM_POST 4271 * is called after processing the entire devinfo tree. 4272 */ 4273 static void 4274 pre_and_post_cleanup(int flags) 4275 { 4276 remove_list_t *rm; 4277 recurse_dev_t rd; 4278 cleanup_data_t cleanup_data; 4279 char *fcn = "pre_and_post_cleanup: "; 4280 4281 if (build_dev == FALSE) 4282 return; 4283 4284 vprint(CHATTY_MID, "attempting %s-cleanup\n", 4285 flags == RM_PRE ? "pre" : "post"); 4286 vprint(REMOVE_MID, "%sflags = %d\n", fcn, flags); 4287 4288 /* 4289 * the generic function recurse_dev_re is shared among different 4290 * functions, so set the method and data that it should use for 4291 * matches. 4292 */ 4293 rd.fcn = matching_dev; 4294 rd.data = (void *)&cleanup_data; 4295 cleanup_data.flags = flags; 4296 4297 for (rm = remove_head; rm != NULL; rm = rm->next) { 4298 if ((flags & rm->remove->flags) == flags) { 4299 cleanup_data.rm = rm; 4300 /* 4301 * If reached this point, RM_PRE or RM_POST cleanup is 4302 * desired. clean_ok() decides whether to clean 4303 * under the given circumstances. 4304 */ 4305 vprint(REMOVE_MID, "%scleanup: PRE or POST\n", fcn); 4306 if (clean_ok(rm->remove) == DEVFSADM_SUCCESS) { 4307 vprint(REMOVE_MID, "cleanup: cleanup OK\n"); 4308 recurse_dev_re(dev_dir, rm->remove-> 4309 dev_dirs_re, &rd); 4310 } 4311 } 4312 } 4313 } 4314 4315 /* 4316 * clean_ok() determines whether cleanup should be done according 4317 * to the following matrix: 4318 * 4319 * command line arguments RM_PRE RM_POST RM_PRE && RM_POST && 4320 * RM_ALWAYS RM_ALWAYS 4321 * ---------------------- ------ ----- --------- ---------- 4322 * 4323 * <neither -c nor -C> - - pre-clean post-clean 4324 * 4325 * -C pre-clean post-clean pre-clean post-clean 4326 * 4327 * -C -c class pre-clean post-clean pre-clean post-clean 4328 * if class if class if class if class 4329 * matches matches matches matches 4330 * 4331 * -c class - - pre-clean post-clean 4332 * if class if class 4333 * matches matches 4334 * 4335 */ 4336 static int 4337 clean_ok(devfsadm_remove_t *remove) 4338 { 4339 int i; 4340 4341 if (single_drv == TRUE) { 4342 /* no cleanup at all when using -i option */ 4343 return (DEVFSADM_FAILURE); 4344 } 4345 4346 /* 4347 * no cleanup if drivers are not loaded. We make an exception 4348 * for the "disks" program however, since disks has a public 4349 * cleanup flag (-C) and disk drivers are usually never 4350 * unloaded. 4351 */ 4352 if (load_attach_drv == FALSE && strcmp(prog, DISKS) != 0) { 4353 return (DEVFSADM_FAILURE); 4354 } 4355 4356 /* if the cleanup flag was not specified, return false */ 4357 if ((cleanup == FALSE) && ((remove->flags & RM_ALWAYS) == 0)) { 4358 return (DEVFSADM_FAILURE); 4359 } 4360 4361 if (num_classes == 0) { 4362 return (DEVFSADM_SUCCESS); 4363 } 4364 4365 /* 4366 * if reached this point, check to see if the class in the given 4367 * remove structure matches a class given on the command line 4368 */ 4369 4370 for (i = 0; i < num_classes; i++) { 4371 if (strcmp(remove->device_class, classes[i]) == 0) { 4372 return (DEVFSADM_SUCCESS); 4373 } 4374 } 4375 4376 return (DEVFSADM_FAILURE); 4377 } 4378 4379 /* 4380 * Called to remove dangling nodes after receiving a hotplug event 4381 * containing the physical node pathname to be removed. 4382 */ 4383 void 4384 hot_cleanup(char *node_path, char *minor_name, char *ev_subclass, 4385 char *driver_name, int instance) 4386 { 4387 link_t *link; 4388 linkhead_t *head; 4389 remove_list_t *rm; 4390 char *fcn = "hot_cleanup: "; 4391 char path[PATH_MAX + 1]; 4392 int path_len; 4393 char rmlink[PATH_MAX + 1]; 4394 nvlist_t *nvl = NULL; 4395 int skip; 4396 4397 /* 4398 * dev links can go away as part of hot cleanup. 4399 * So first build event attributes in order capture dev links. 4400 */ 4401 if (ev_subclass != NULL) 4402 nvl = build_event_attributes(EC_DEV_REMOVE, ev_subclass, 4403 node_path, DI_NODE_NIL, driver_name, instance); 4404 4405 (void) strcpy(path, node_path); 4406 (void) strcat(path, ":"); 4407 (void) strcat(path, minor_name == NULL ? "" : minor_name); 4408 4409 path_len = strlen(path); 4410 4411 vprint(REMOVE_MID, "%spath=%s\n", fcn, path); 4412 4413 for (rm = remove_head; rm != NULL; rm = rm->next) { 4414 if ((RM_HOT & rm->remove->flags) == RM_HOT) { 4415 head = get_cached_links(rm->remove->dev_dirs_re); 4416 assert(head->nextlink == NULL); 4417 for (link = head->link; 4418 link != NULL; link = head->nextlink) { 4419 /* 4420 * The remove callback below may remove 4421 * the current and/or any or all of the 4422 * subsequent links in the list. 4423 * Save the next link in the head. If 4424 * the callback removes the next link 4425 * the saved pointer in the head will be 4426 * updated by the callback to point at 4427 * the next valid link. 4428 */ 4429 head->nextlink = link->next; 4430 if (minor_name) 4431 skip = strcmp(link->contents, path); 4432 else 4433 skip = strncmp(link->contents, path, 4434 path_len); 4435 if (skip || 4436 (call_minor_init(rm->modptr) == 4437 DEVFSADM_FAILURE)) 4438 continue; 4439 4440 vprint(REMOVE_MID, 4441 "%sremoving %s -> %s\n", fcn, 4442 link->devlink, link->contents); 4443 /* 4444 * Use a copy of the cached link name 4445 * as the cache entry will go away 4446 * during link removal 4447 */ 4448 (void) snprintf(rmlink, sizeof (rmlink), 4449 "%s", link->devlink); 4450 (*(rm->remove->callback_fcn))(rmlink); 4451 } 4452 } 4453 } 4454 4455 /* now log an event */ 4456 if (nvl) { 4457 log_event(EC_DEV_REMOVE, ev_subclass, nvl); 4458 free(nvl); 4459 } 4460 } 4461 4462 /* 4463 * Open the dir current_dir. For every file which matches the first dir 4464 * component of path_re, recurse. If there are no more *dir* path 4465 * components left in path_re (ie no more /), then call function rd->fcn. 4466 */ 4467 static void 4468 recurse_dev_re(char *current_dir, char *path_re, recurse_dev_t *rd) 4469 { 4470 regex_t re1; 4471 char *slash; 4472 char new_path[PATH_MAX + 1]; 4473 char *anchored_path_re; 4474 struct dirent *entp; 4475 DIR *dp; 4476 size_t len; 4477 4478 vprint(RECURSEDEV_MID, "recurse_dev_re: curr = %s path=%s\n", 4479 current_dir, path_re); 4480 4481 if ((dp = opendir(current_dir)) == NULL) { 4482 return; 4483 } 4484 4485 len = strlen(path_re); 4486 if ((slash = strchr(path_re, '/')) != NULL) { 4487 len = (slash - path_re); 4488 } 4489 4490 anchored_path_re = s_malloc(len + 3); 4491 (void) sprintf(anchored_path_re, "^%.*s$", len, path_re); 4492 4493 if (regcomp(&re1, anchored_path_re, REG_EXTENDED) != 0) { 4494 free(anchored_path_re); 4495 goto out; 4496 } 4497 4498 free(anchored_path_re); 4499 4500 while ((entp = readdir(dp)) != NULL) { 4501 4502 if (strcmp(entp->d_name, ".") == 0 || 4503 strcmp(entp->d_name, "..") == 0) { 4504 continue; 4505 } 4506 4507 if (regexec(&re1, entp->d_name, 0, NULL, 0) == 0) { 4508 /* match */ 4509 (void) strcpy(new_path, current_dir); 4510 (void) strcat(new_path, "/"); 4511 (void) strcat(new_path, entp->d_name); 4512 4513 vprint(RECURSEDEV_MID, "recurse_dev_re: match, new " 4514 "path = %s\n", new_path); 4515 4516 if (slash != NULL) { 4517 recurse_dev_re(new_path, slash + 1, rd); 4518 } else { 4519 /* reached the leaf component of path_re */ 4520 vprint(RECURSEDEV_MID, 4521 "recurse_dev_re: calling fcn\n"); 4522 (*(rd->fcn))(new_path, rd->data); 4523 } 4524 } 4525 } 4526 4527 regfree(&re1); 4528 4529 out: 4530 s_closedir(dp); 4531 } 4532 4533 /* 4534 * Found a devpath which matches a RE in the remove structure. 4535 * Now check to see if it is dangling. 4536 */ 4537 static void 4538 matching_dev(char *devpath, void *data) 4539 { 4540 cleanup_data_t *cleanup_data = data; 4541 char *fcn = "matching_dev: "; 4542 4543 vprint(RECURSEDEV_MID, "%sexamining devpath = '%s'\n", fcn, 4544 devpath); 4545 4546 if (resolve_link(devpath, NULL, NULL, NULL, 1) == TRUE) { 4547 if (call_minor_init(cleanup_data->rm->modptr) == 4548 DEVFSADM_FAILURE) { 4549 return; 4550 } 4551 4552 devpath += strlen(dev_dir) + strlen("/"); 4553 4554 vprint(RECURSEDEV_MID, "%scalling" 4555 " callback %s\n", fcn, devpath); 4556 (*(cleanup_data->rm->remove->callback_fcn))(devpath); 4557 } 4558 } 4559 4560 int 4561 devfsadm_read_link(char *link, char **devfs_path) 4562 { 4563 char devlink[PATH_MAX]; 4564 4565 *devfs_path = NULL; 4566 4567 /* prepend link with dev_dir contents */ 4568 (void) strcpy(devlink, dev_dir); 4569 (void) strcat(devlink, "/"); 4570 (void) strcat(devlink, link); 4571 4572 /* We *don't* want a stat of the /devices node */ 4573 (void) resolve_link(devlink, NULL, NULL, devfs_path, 0); 4574 4575 return (*devfs_path ? DEVFSADM_SUCCESS : DEVFSADM_FAILURE); 4576 } 4577 4578 int 4579 devfsadm_link_valid(char *link) 4580 { 4581 struct stat sb; 4582 char devlink[PATH_MAX + 1], *contents; 4583 int rv, type; 4584 4585 /* prepend link with dev_dir contents */ 4586 (void) strcpy(devlink, dev_dir); 4587 (void) strcat(devlink, "/"); 4588 (void) strcat(devlink, link); 4589 4590 if (lstat(devlink, &sb) != 0) { 4591 return (DEVFSADM_FALSE); 4592 } 4593 4594 contents = NULL; 4595 type = 0; 4596 if (resolve_link(devlink, &contents, &type, NULL, 1) == TRUE) { 4597 rv = DEVFSADM_FALSE; 4598 } else { 4599 rv = DEVFSADM_TRUE; 4600 } 4601 4602 /* 4603 * The link exists. Add it to the database 4604 */ 4605 (void) di_devlink_add_link(devlink_cache, link, contents, type); 4606 free(contents); 4607 4608 return (rv); 4609 } 4610 4611 /* 4612 * devpath: Absolute path to /dev link 4613 * content_p: Returns malloced string (link content) 4614 * type_p: Returns link type: primary or secondary 4615 * devfs_path: Returns malloced string: /devices path w/out "/devices" 4616 * dangle: if set, check if link is dangling 4617 * Returns: 4618 * TRUE if dangling 4619 * FALSE if not or if caller doesn't care 4620 * Caller is assumed to have initialized pointer contents to NULL 4621 */ 4622 static int 4623 resolve_link(char *devpath, char **content_p, int *type_p, char **devfs_path, 4624 int dangle) 4625 { 4626 char contents[PATH_MAX + 1]; 4627 char stage_link[PATH_MAX + 1]; 4628 char *fcn = "resolve_link: "; 4629 char *ptr; 4630 int linksize; 4631 int rv = TRUE; 4632 struct stat sb; 4633 4634 linksize = readlink(devpath, contents, PATH_MAX); 4635 4636 if (linksize <= 0) { 4637 return (FALSE); 4638 } else { 4639 contents[linksize] = '\0'; 4640 } 4641 vprint(REMOVE_MID, "%s %s -> %s\n", fcn, devpath, contents); 4642 4643 if (content_p) { 4644 *content_p = s_strdup(contents); 4645 } 4646 4647 /* 4648 * Check to see if this is a link pointing to another link in /dev. The 4649 * cheap way to do this is to look for a lack of ../devices/. 4650 */ 4651 4652 if (is_minor_node(contents, &ptr) == DEVFSADM_FALSE) { 4653 4654 if (type_p) { 4655 *type_p = DI_SECONDARY_LINK; 4656 } 4657 4658 /* 4659 * assume that linkcontents is really a pointer to another 4660 * link, and if so recurse and read its link contents. 4661 */ 4662 if (strncmp(contents, DEV "/", strlen(DEV) + 1) == 0) { 4663 (void) strcpy(stage_link, dev_dir); 4664 (void) strcat(stage_link, "/"); 4665 (void) strcpy(stage_link, 4666 &contents[strlen(DEV) + strlen("/")]); 4667 } else { 4668 if ((ptr = strrchr(devpath, '/')) == NULL) { 4669 vprint(REMOVE_MID, "%s%s -> %s invalid link. " 4670 "missing '/'\n", fcn, devpath, 4671 contents); 4672 return (TRUE); 4673 } 4674 *ptr = '\0'; 4675 (void) strcpy(stage_link, devpath); 4676 *ptr = '/'; 4677 (void) strcat(stage_link, "/"); 4678 (void) strcat(stage_link, contents); 4679 } 4680 return (resolve_link(stage_link, NULL, NULL, devfs_path, 4681 dangle)); 4682 } 4683 4684 /* Current link points at a /devices minor node */ 4685 if (type_p) { 4686 *type_p = DI_PRIMARY_LINK; 4687 } 4688 4689 if (devfs_path) 4690 *devfs_path = s_strdup(ptr); 4691 4692 rv = FALSE; 4693 if (dangle) 4694 rv = (stat(ptr - strlen(DEVICES), &sb) == -1); 4695 4696 vprint(REMOVE_MID, "%slink=%s, returning %s\n", fcn, 4697 devpath, ((rv == TRUE) ? "TRUE" : "FALSE")); 4698 4699 return (rv); 4700 } 4701 4702 /* 4703 * Returns the substring of interest, given a path. 4704 */ 4705 static char * 4706 alloc_cmp_str(const char *path, devfsadm_enumerate_t *dep) 4707 { 4708 uint_t match; 4709 char *np, *ap, *mp; 4710 char *cmp_str = NULL; 4711 char at[] = "@"; 4712 char *fcn = "alloc_cmp_str"; 4713 4714 np = ap = mp = NULL; 4715 4716 /* 4717 * extract match flags from the flags argument. 4718 */ 4719 match = (dep->flags & MATCH_MASK); 4720 4721 vprint(ENUM_MID, "%s: enumeration match type: 0x%x" 4722 " path: %s\n", fcn, match, path); 4723 4724 /* 4725 * MATCH_CALLBACK and MATCH_ALL are the only flags 4726 * which may be used if "path" is a /dev path 4727 */ 4728 if (match == MATCH_CALLBACK) { 4729 if (dep->sel_fcn == NULL) { 4730 vprint(ENUM_MID, "%s: invalid enumerate" 4731 " callback: path: %s\n", fcn, path); 4732 return (NULL); 4733 } 4734 cmp_str = dep->sel_fcn(path, dep->cb_arg); 4735 return (cmp_str); 4736 } 4737 4738 cmp_str = s_strdup(path); 4739 4740 if (match == MATCH_ALL) { 4741 return (cmp_str); 4742 } 4743 4744 /* 4745 * The remaining flags make sense only for /devices 4746 * paths 4747 */ 4748 if ((mp = strrchr(cmp_str, ':')) == NULL) { 4749 vprint(ENUM_MID, "%s: invalid path: %s\n", 4750 fcn, path); 4751 goto err; 4752 } 4753 4754 if (match == MATCH_MINOR) { 4755 /* A NULL "match_arg" values implies entire minor */ 4756 if (get_component(mp + 1, dep->match_arg) == NULL) { 4757 vprint(ENUM_MID, "%s: invalid minor component:" 4758 " path: %s\n", fcn, path); 4759 goto err; 4760 } 4761 return (cmp_str); 4762 } 4763 4764 if ((np = strrchr(cmp_str, '/')) == NULL) { 4765 vprint(ENUM_MID, "%s: invalid path: %s\n", fcn, path); 4766 goto err; 4767 } 4768 4769 if (match == MATCH_PARENT) { 4770 if (strcmp(cmp_str, "/") == 0) { 4771 vprint(ENUM_MID, "%s: invalid path: %s\n", 4772 fcn, path); 4773 goto err; 4774 } 4775 4776 if (np == cmp_str) { 4777 *(np + 1) = '\0'; 4778 } else { 4779 *np = '\0'; 4780 } 4781 return (cmp_str); 4782 } 4783 4784 /* ap can be NULL - Leaf address may not exist or be empty string */ 4785 ap = strchr(np+1, '@'); 4786 4787 /* minor is no longer of interest */ 4788 *mp = '\0'; 4789 4790 if (match == MATCH_NODE) { 4791 if (ap) 4792 *ap = '\0'; 4793 return (cmp_str); 4794 } else if (match == MATCH_ADDR) { 4795 /* 4796 * The empty string is a valid address. The only MATCH_ADDR 4797 * allowed in this case is against the whole address or 4798 * the first component of the address (match_arg=NULL/"0"/"1") 4799 * Note that in this case, the path won't have an "@" 4800 * As a result ap will be NULL. We fake up an ap = @'\0' 4801 * so that get_component() will work correctly. 4802 */ 4803 if (ap == NULL) { 4804 ap = at; 4805 } 4806 4807 if (get_component(ap + 1, dep->match_arg) == NULL) { 4808 vprint(ENUM_MID, "%s: invalid leaf addr. component:" 4809 " path: %s\n", fcn, path); 4810 goto err; 4811 } 4812 return (cmp_str); 4813 } 4814 4815 vprint(ENUM_MID, "%s: invalid enumeration flags: 0x%x" 4816 " path: %s\n", fcn, dep->flags, path); 4817 4818 /*FALLTHRU*/ 4819 err: 4820 free(cmp_str); 4821 return (NULL); 4822 } 4823 4824 4825 /* 4826 * "str" is expected to be a string with components separated by ',' 4827 * The terminating null char is considered a separator. 4828 * get_component() will remove the portion of the string beyond 4829 * the component indicated. 4830 * If comp_str is NULL, the entire "str" is returned. 4831 */ 4832 static char * 4833 get_component(char *str, const char *comp_str) 4834 { 4835 long comp; 4836 char *cp; 4837 4838 if (str == NULL) { 4839 return (NULL); 4840 } 4841 4842 if (comp_str == NULL) { 4843 return (str); 4844 } 4845 4846 errno = 0; 4847 comp = strtol(comp_str, &cp, 10); 4848 if (errno != 0 || *cp != '\0' || comp < 0) { 4849 return (NULL); 4850 } 4851 4852 if (comp == 0) 4853 return (str); 4854 4855 for (cp = str; ; cp++) { 4856 if (*cp == ',' || *cp == '\0') 4857 comp--; 4858 if (*cp == '\0' || comp <= 0) { 4859 break; 4860 } 4861 } 4862 4863 if (comp == 0) { 4864 *cp = '\0'; 4865 } else { 4866 str = NULL; 4867 } 4868 4869 return (str); 4870 } 4871 4872 4873 /* 4874 * Enumerate serves as a generic counter as well as a means to determine 4875 * logical unit/controller numbers for such items as disk and tape 4876 * drives. 4877 * 4878 * rules[] is an array of devfsadm_enumerate_t structures which defines 4879 * the enumeration rules to be used for a specified set of links in /dev. 4880 * The set of links is specified through regular expressions (of the flavor 4881 * described in regex(5)). These regular expressions are used to determine 4882 * the set of links in /dev to examine. The last path component in these 4883 * regular expressions MUST contain a parenthesized subexpression surrounding 4884 * the RE which is to be considered the enumerating component. The subexp 4885 * member in a rule is the subexpression number of the enumerating 4886 * component. Subexpressions in the last path component are numbered starting 4887 * from 1. 4888 * 4889 * A cache of current id assignments is built up from existing symlinks and 4890 * new assignments use the lowest unused id. Assignments are based on a 4891 * match of a specified substring of a symlink's contents. If the specified 4892 * component for the devfs_path argument matches the corresponding substring 4893 * for a existing symlink's contents, the cached id is returned. Else, a new 4894 * id is created and returned in *buf. *buf must be freed by the caller. 4895 * 4896 * An id assignment may be governed by a combination of rules, each rule 4897 * applicable to a different subset of links in /dev. For example, controller 4898 * numbers may be determined by a combination of disk symlinks in /dev/[r]dsk 4899 * and controller symlinks in /dev/cfg, with the two sets requiring different 4900 * rules to derive the "substring of interest". In such cases, the rules 4901 * array will have more than one element. 4902 */ 4903 int 4904 devfsadm_enumerate_int(char *devfs_path, int index, char **buf, 4905 devfsadm_enumerate_t rules[], int nrules) 4906 { 4907 return (find_enum_id(rules, nrules, 4908 devfs_path, index, "0", INTEGER, buf, 0)); 4909 } 4910 4911 int 4912 disk_enumerate_int(char *devfs_path, int index, char **buf, 4913 devfsadm_enumerate_t rules[], int nrules) 4914 { 4915 return (find_enum_id(rules, nrules, 4916 devfs_path, index, "0", INTEGER, buf, 1)); 4917 } 4918 4919 /* 4920 * Same as above, but allows a starting value to be specified. 4921 * Private to devfsadm.... used by devlinks. 4922 */ 4923 static int 4924 devfsadm_enumerate_int_start(char *devfs_path, int index, char **buf, 4925 devfsadm_enumerate_t rules[], int nrules, char *start) 4926 { 4927 return (find_enum_id(rules, nrules, 4928 devfs_path, index, start, INTEGER, buf, 0)); 4929 } 4930 4931 /* 4932 * devfsadm_enumerate_char serves as a generic counter returning 4933 * a single letter. 4934 */ 4935 int 4936 devfsadm_enumerate_char(char *devfs_path, int index, char **buf, 4937 devfsadm_enumerate_t rules[], int nrules) 4938 { 4939 return (find_enum_id(rules, nrules, 4940 devfs_path, index, "a", LETTER, buf, 0)); 4941 } 4942 4943 /* 4944 * Same as above, but allows a starting char to be specified. 4945 * Private to devfsadm - used by ports module (port_link.c) 4946 */ 4947 int 4948 devfsadm_enumerate_char_start(char *devfs_path, int index, char **buf, 4949 devfsadm_enumerate_t rules[], int nrules, char *start) 4950 { 4951 return (find_enum_id(rules, nrules, 4952 devfs_path, index, start, LETTER, buf, 0)); 4953 } 4954 4955 4956 /* 4957 * For a given numeral_set (see get_cached_set for desc of numeral_set), 4958 * search all cached entries looking for matches on a specified substring 4959 * of devfs_path. The substring is derived from devfs_path based on the 4960 * rule specified by "index". If a match is found on a cached entry, 4961 * return the enumerated id in buf. Otherwise, create a new id by calling 4962 * new_id, then cache and return that entry. 4963 */ 4964 static int 4965 find_enum_id(devfsadm_enumerate_t rules[], int nrules, 4966 char *devfs_path, int index, char *min, int type, char **buf, 4967 int multiple) 4968 { 4969 numeral_t *matchnp; 4970 numeral_t *numeral; 4971 int matchcount = 0; 4972 char *cmp_str; 4973 char *fcn = "find_enum_id"; 4974 numeral_set_t *set; 4975 4976 if (rules == NULL) { 4977 vprint(ENUM_MID, "%s: no rules. path: %s\n", 4978 fcn, devfs_path ? devfs_path : "<NULL path>"); 4979 return (DEVFSADM_FAILURE); 4980 } 4981 4982 if (devfs_path == NULL) { 4983 vprint(ENUM_MID, "%s: NULL path\n", fcn); 4984 return (DEVFSADM_FAILURE); 4985 } 4986 4987 if (nrules <= 0 || index < 0 || index >= nrules || buf == NULL) { 4988 vprint(ENUM_MID, "%s: invalid arguments. path: %s\n", 4989 fcn, devfs_path); 4990 return (DEVFSADM_FAILURE); 4991 } 4992 4993 *buf = NULL; 4994 4995 4996 cmp_str = alloc_cmp_str(devfs_path, &rules[index]); 4997 if (cmp_str == NULL) { 4998 return (DEVFSADM_FAILURE); 4999 } 5000 5001 if ((set = get_enum_cache(rules, nrules)) == NULL) { 5002 free(cmp_str); 5003 return (DEVFSADM_FAILURE); 5004 } 5005 5006 assert(nrules == set->re_count); 5007 5008 /* 5009 * Check and see if a matching entry is already cached. 5010 */ 5011 matchcount = lookup_enum_cache(set, cmp_str, rules, index, 5012 &matchnp); 5013 5014 if (matchcount < 0 || matchcount > 1) { 5015 free(cmp_str); 5016 if (multiple && matchcount > 1) 5017 return (DEVFSADM_MULTIPLE); 5018 else 5019 return (DEVFSADM_FAILURE); 5020 } 5021 5022 /* if matching entry already cached, return it */ 5023 if (matchcount == 1) { 5024 *buf = s_strdup(matchnp->id); 5025 free(cmp_str); 5026 return (DEVFSADM_SUCCESS); 5027 } 5028 5029 /* 5030 * no cached entry, initialize a numeral struct 5031 * by calling new_id() and cache onto the numeral_set 5032 */ 5033 numeral = s_malloc(sizeof (numeral_t)); 5034 numeral->id = new_id(set->headnumeral, type, min); 5035 numeral->full_path = s_strdup(devfs_path); 5036 numeral->rule_index = index; 5037 numeral->cmp_str = cmp_str; 5038 cmp_str = NULL; 5039 5040 /* insert to head of list for fast lookups */ 5041 numeral->next = set->headnumeral; 5042 set->headnumeral = numeral; 5043 5044 *buf = s_strdup(numeral->id); 5045 return (DEVFSADM_SUCCESS); 5046 } 5047 5048 5049 /* 5050 * Looks up the specified cache for a match with a specified string 5051 * Returns: 5052 * -1 : on error. 5053 * 0/1/2 : Number of matches. 5054 * Returns the matching element only if there is a single match. 5055 * If the "uncached" flag is set, derives the "cmp_str" afresh 5056 * for the match instead of using cached values. 5057 */ 5058 static int 5059 lookup_enum_cache(numeral_set_t *set, char *cmp_str, 5060 devfsadm_enumerate_t rules[], int index, numeral_t **matchnpp) 5061 { 5062 int matchcount = 0, rv = -1; 5063 int uncached; 5064 numeral_t *np; 5065 char *fcn = "lookup_enum_cache"; 5066 char *cp; 5067 5068 *matchnpp = NULL; 5069 5070 assert(index < set->re_count); 5071 5072 if (cmp_str == NULL) { 5073 return (-1); 5074 } 5075 5076 uncached = 0; 5077 if ((rules[index].flags & MATCH_UNCACHED) == MATCH_UNCACHED) { 5078 uncached = 1; 5079 } 5080 5081 /* 5082 * Check and see if a matching entry is already cached. 5083 */ 5084 for (np = set->headnumeral; np != NULL; np = np->next) { 5085 if (np->cmp_str == NULL) { 5086 vprint(ENUM_MID, "%s: invalid entry in enumerate" 5087 " cache. path: %s\n", fcn, np->full_path); 5088 return (-1); 5089 } 5090 5091 if (uncached) { 5092 vprint(CHATTY_MID, "%s: bypassing enumerate cache." 5093 " path: %s\n", fcn, cmp_str); 5094 cp = alloc_cmp_str(np->full_path, 5095 &rules[np->rule_index]); 5096 if (cp == NULL) 5097 return (-1); 5098 rv = strcmp(cmp_str, cp); 5099 free(cp); 5100 } else { 5101 rv = strcmp(cmp_str, np->cmp_str); 5102 } 5103 5104 if (rv == 0) { 5105 if (matchcount++ != 0) { 5106 break; /* more than 1 match. */ 5107 } 5108 *matchnpp = np; 5109 } 5110 } 5111 5112 return (matchcount); 5113 } 5114 5115 #ifdef DEBUG 5116 static void 5117 dump_enum_cache(numeral_set_t *setp) 5118 { 5119 int i; 5120 numeral_t *np; 5121 char *fcn = "dump_enum_cache"; 5122 5123 vprint(ENUM_MID, "%s: re_count = %d\n", fcn, setp->re_count); 5124 for (i = 0; i < setp->re_count; i++) { 5125 vprint(ENUM_MID, "%s: re[%d] = %s\n", fcn, i, setp->re[i]); 5126 } 5127 5128 for (np = setp->headnumeral; np != NULL; np = np->next) { 5129 vprint(ENUM_MID, "%s: id: %s\n", fcn, np->id); 5130 vprint(ENUM_MID, "%s: full_path: %s\n", fcn, np->full_path); 5131 vprint(ENUM_MID, "%s: rule_index: %d\n", fcn, np->rule_index); 5132 vprint(ENUM_MID, "%s: cmp_str: %s\n", fcn, np->cmp_str); 5133 } 5134 } 5135 #endif 5136 5137 /* 5138 * For a given set of regular expressions in rules[], this function returns 5139 * either a previously cached struct numeral_set or it will create and 5140 * cache a new struct numeral_set. There is only one struct numeral_set 5141 * for the combination of REs present in rules[]. Each numeral_set contains 5142 * the regular expressions in rules[] used for cache selection AND a linked 5143 * list of struct numerals, ONE FOR EACH *UNIQUE* numeral or character ID 5144 * selected by the grouping parenthesized subexpression found in the last 5145 * path component of each rules[].re. For example, the RE: "rmt/([0-9]+)" 5146 * selects all the logical nodes of the correct form in dev/rmt/. 5147 * Each rmt/X will store a *single* struct numeral... ie 0, 1, 2 each get a 5148 * single struct numeral. There is no need to store more than a single logical 5149 * node matching X since the information desired in the devfspath would be 5150 * identical for the portion of the devfspath of interest. (the part up to, 5151 * but not including the minor name in this example.) 5152 * 5153 * If the given numeral_set is not yet cached, call enumerate_recurse to 5154 * create it. 5155 */ 5156 static numeral_set_t * 5157 get_enum_cache(devfsadm_enumerate_t rules[], int nrules) 5158 { 5159 /* linked list of numeral sets */ 5160 numeral_set_t *setp; 5161 int i; 5162 char *path_left; 5163 char *fcn = "get_enum_cache"; 5164 5165 /* 5166 * See if we've already cached this numeral set. 5167 */ 5168 for (setp = head_numeral_set; setp != NULL; setp = setp->next) { 5169 /* 5170 * check all regexp's passed in function against 5171 * those in cached set. 5172 */ 5173 if (nrules != setp->re_count) { 5174 continue; 5175 } 5176 5177 for (i = 0; i < nrules; i++) { 5178 if (strcmp(setp->re[i], rules[i].re) != 0) { 5179 break; 5180 } 5181 } 5182 5183 if (i == nrules) { 5184 return (setp); 5185 } 5186 } 5187 5188 /* 5189 * If the MATCH_UNCACHED flag is set, we should not be here. 5190 */ 5191 for (i = 0; i < nrules; i++) { 5192 if ((rules[i].flags & MATCH_UNCACHED) == MATCH_UNCACHED) { 5193 vprint(ENUM_MID, "%s: invalid enumeration flags: " 5194 "0x%x\n", fcn, rules[i].flags); 5195 return (NULL); 5196 } 5197 } 5198 5199 /* 5200 * Since we made it here, we have not yet cached the given set of 5201 * logical nodes matching the passed re. Create a cached entry 5202 * struct numeral_set and populate it with a minimal set of 5203 * logical nodes from /dev. 5204 */ 5205 5206 setp = s_malloc(sizeof (numeral_set_t)); 5207 setp->re = s_malloc(sizeof (char *) * nrules); 5208 for (i = 0; i < nrules; i++) { 5209 setp->re[i] = s_strdup(rules[i].re); 5210 } 5211 setp->re_count = nrules; 5212 setp->headnumeral = NULL; 5213 5214 /* put this new cached set on the cached set list */ 5215 setp->next = head_numeral_set; 5216 head_numeral_set = setp; 5217 5218 /* 5219 * For each RE, search disk and cache any matches on the 5220 * numeral list. We are careful to use global_dev_dir here since 5221 * for zones, we want to use the global zone's enumeration as the 5222 * source for enumeration within the zone. Otherwise, for example, 5223 * controller numbering would be wrong within the zone. 5224 */ 5225 for (i = 0; i < nrules; i++) { 5226 path_left = s_strdup(setp->re[i]); 5227 enumerate_recurse(global_dev_dir, path_left, setp, rules, i); 5228 free(path_left); 5229 } 5230 5231 #ifdef DEBUG 5232 dump_enum_cache(setp); 5233 #endif 5234 5235 return (setp); 5236 } 5237 5238 5239 /* 5240 * This function stats the pathname namebuf. If this is a directory 5241 * entry, we recurse down dname/fname until we find the first symbolic 5242 * link, and then stat and return it. This is valid for the same reason 5243 * that we only need to read a single pathname for multiple matching 5244 * logical ID's... ie, all the logical nodes should contain identical 5245 * physical paths for the parts we are interested. 5246 */ 5247 int 5248 get_stat_info(char *namebuf, struct stat *sb) 5249 { 5250 struct dirent *entp; 5251 DIR *dp; 5252 char *cp; 5253 5254 if (lstat(namebuf, sb) < 0) { 5255 (void) err_print(LSTAT_FAILED, namebuf, strerror(errno)); 5256 return (DEVFSADM_FAILURE); 5257 } 5258 5259 if ((sb->st_mode & S_IFMT) == S_IFLNK) { 5260 return (DEVFSADM_SUCCESS); 5261 } 5262 5263 /* 5264 * If it is a dir, recurse down until we find a link and 5265 * then use the link. 5266 */ 5267 if ((sb->st_mode & S_IFMT) == S_IFDIR) { 5268 5269 if ((dp = opendir(namebuf)) == NULL) { 5270 return (DEVFSADM_FAILURE); 5271 } 5272 5273 /* 5274 * Search each dir entry looking for a symlink. Return 5275 * the first symlink found in namebuf. Recurse dirs. 5276 */ 5277 while ((entp = readdir(dp)) != NULL) { 5278 if (strcmp(entp->d_name, ".") == 0 || 5279 strcmp(entp->d_name, "..") == 0) { 5280 continue; 5281 } 5282 5283 cp = namebuf + strlen(namebuf); 5284 (void) strcat(namebuf, "/"); 5285 (void) strcat(namebuf, entp->d_name); 5286 if (get_stat_info(namebuf, sb) == DEVFSADM_SUCCESS) { 5287 s_closedir(dp); 5288 return (DEVFSADM_SUCCESS); 5289 } 5290 *cp = '\0'; 5291 } 5292 s_closedir(dp); 5293 } 5294 5295 /* no symlink found, so return error */ 5296 return (DEVFSADM_FAILURE); 5297 } 5298 5299 /* 5300 * An existing matching ID was not found, so this function is called to 5301 * create the next lowest ID. In the INTEGER case, return the next 5302 * lowest unused integer. In the case of LETTER, return the next lowest 5303 * unused letter. Return empty string if all 26 are used. 5304 * Only IDs >= min will be returned. 5305 */ 5306 char * 5307 new_id(numeral_t *numeral, int type, char *min) 5308 { 5309 int imin; 5310 temp_t *temp; 5311 temp_t *ptr; 5312 temp_t **previous; 5313 temp_t *head = NULL; 5314 char *retval; 5315 static char tempbuff[8]; 5316 numeral_t *np; 5317 5318 if (type == LETTER) { 5319 5320 char letter[26], i; 5321 5322 if (numeral == NULL) { 5323 return (s_strdup(min)); 5324 } 5325 5326 for (i = 0; i < 26; i++) { 5327 letter[i] = 0; 5328 } 5329 5330 for (np = numeral; np != NULL; np = np->next) { 5331 letter[*np->id - 'a']++; 5332 } 5333 5334 imin = *min - 'a'; 5335 5336 for (i = imin; i < 26; i++) { 5337 if (letter[i] == 0) { 5338 retval = s_malloc(2); 5339 retval[0] = 'a' + i; 5340 retval[1] = '\0'; 5341 return (retval); 5342 } 5343 } 5344 5345 return (s_strdup("")); 5346 } 5347 5348 if (type == INTEGER) { 5349 5350 if (numeral == NULL) { 5351 return (s_strdup(min)); 5352 } 5353 5354 imin = atoi(min); 5355 5356 /* sort list */ 5357 for (np = numeral; np != NULL; np = np->next) { 5358 temp = s_malloc(sizeof (temp_t)); 5359 temp->integer = atoi(np->id); 5360 temp->next = NULL; 5361 5362 previous = &head; 5363 for (ptr = head; ptr != NULL; ptr = ptr->next) { 5364 if (temp->integer < ptr->integer) { 5365 temp->next = ptr; 5366 *previous = temp; 5367 break; 5368 } 5369 previous = &(ptr->next); 5370 } 5371 if (ptr == NULL) { 5372 *previous = temp; 5373 } 5374 } 5375 5376 /* now search sorted list for first hole >= imin */ 5377 for (ptr = head; ptr != NULL; ptr = ptr->next) { 5378 if (imin == ptr->integer) { 5379 imin++; 5380 } else { 5381 if (imin < ptr->integer) { 5382 break; 5383 } 5384 } 5385 5386 } 5387 5388 /* free temp list */ 5389 for (ptr = head; ptr != NULL; ) { 5390 temp = ptr; 5391 ptr = ptr->next; 5392 free(temp); 5393 } 5394 5395 (void) sprintf(tempbuff, "%d", imin); 5396 return (s_strdup(tempbuff)); 5397 } 5398 5399 return (s_strdup("")); 5400 } 5401 5402 /* 5403 * Search current_dir for all files which match the first path component 5404 * of path_left, which is an RE. If a match is found, but there are more 5405 * components of path_left, then recurse, otherwise, if we have reached 5406 * the last component of path_left, call create_cached_numerals for each 5407 * file. At some point, recurse_dev_re() should be rewritten so that this 5408 * function can be eliminated. 5409 */ 5410 static void 5411 enumerate_recurse(char *current_dir, char *path_left, numeral_set_t *setp, 5412 devfsadm_enumerate_t rules[], int index) 5413 { 5414 char *slash; 5415 char *new_path; 5416 char *numeral_id; 5417 struct dirent *entp; 5418 DIR *dp; 5419 5420 if ((dp = opendir(current_dir)) == NULL) { 5421 return; 5422 } 5423 5424 /* get rid of any extra '/' */ 5425 while (*path_left == '/') { 5426 path_left++; 5427 } 5428 5429 if (slash = strchr(path_left, '/')) { 5430 *slash = '\0'; 5431 } 5432 5433 while ((entp = readdir(dp)) != NULL) { 5434 5435 if (strcmp(entp->d_name, ".") == 0 || 5436 strcmp(entp->d_name, "..") == 0) { 5437 continue; 5438 } 5439 5440 /* 5441 * Returns true if path_left matches entp->d_name 5442 * If it is the last path component, pass subexp 5443 * so that it will return the corresponding ID in 5444 * numeral_id. 5445 */ 5446 numeral_id = NULL; 5447 if (match_path_component(path_left, entp->d_name, &numeral_id, 5448 slash ? 0 : rules[index].subexp)) { 5449 5450 new_path = s_malloc(strlen(current_dir) + 5451 strlen(entp->d_name) + 2); 5452 5453 (void) strcpy(new_path, current_dir); 5454 (void) strcat(new_path, "/"); 5455 (void) strcat(new_path, entp->d_name); 5456 5457 if (slash != NULL) { 5458 enumerate_recurse(new_path, slash + 1, 5459 setp, rules, index); 5460 } else { 5461 create_cached_numeral(new_path, setp, 5462 numeral_id, rules, index); 5463 if (numeral_id != NULL) { 5464 free(numeral_id); 5465 } 5466 } 5467 free(new_path); 5468 } 5469 } 5470 5471 if (slash != NULL) { 5472 *slash = '/'; 5473 } 5474 s_closedir(dp); 5475 } 5476 5477 5478 /* 5479 * Returns true if file matches file_re. If subexp is non-zero, it means 5480 * we are searching the last path component and need to return the 5481 * parenthesized subexpression subexp in id. 5482 * 5483 */ 5484 static int 5485 match_path_component(char *file_re, char *file, char **id, int subexp) 5486 { 5487 regex_t re1; 5488 int match = 0; 5489 int nelements; 5490 regmatch_t *pmatch; 5491 5492 if (subexp != 0) { 5493 nelements = subexp + 1; 5494 pmatch = (regmatch_t *) 5495 s_malloc(sizeof (regmatch_t) * nelements); 5496 } else { 5497 pmatch = NULL; 5498 nelements = 0; 5499 } 5500 5501 if (regcomp(&re1, file_re, REG_EXTENDED) != 0) { 5502 if (pmatch != NULL) { 5503 free(pmatch); 5504 } 5505 return (0); 5506 } 5507 5508 if (regexec(&re1, file, nelements, pmatch, 0) == 0) { 5509 match = 1; 5510 } 5511 5512 if ((match != 0) && (subexp != 0)) { 5513 int size = pmatch[subexp].rm_eo - pmatch[subexp].rm_so; 5514 *id = s_malloc(size + 1); 5515 (void) strncpy(*id, &file[pmatch[subexp].rm_so], size); 5516 (*id)[size] = '\0'; 5517 } 5518 5519 if (pmatch != NULL) { 5520 free(pmatch); 5521 } 5522 regfree(&re1); 5523 return (match); 5524 } 5525 5526 /* 5527 * This function is called for every file which matched the leaf 5528 * component of the RE. If the "numeral_id" is not already on the 5529 * numeral set's numeral list, add it and its physical path. 5530 */ 5531 static void 5532 create_cached_numeral(char *path, numeral_set_t *setp, char *numeral_id, 5533 devfsadm_enumerate_t rules[], int index) 5534 { 5535 char linkbuf[PATH_MAX + 1]; 5536 char lpath[PATH_MAX + 1]; 5537 char *linkptr, *cmp_str; 5538 numeral_t *np; 5539 int linksize; 5540 struct stat sb; 5541 const char *fcn = "create_cached_numeral"; 5542 5543 assert(index >= 0 && index < setp->re_count); 5544 assert(strcmp(rules[index].re, setp->re[index]) == 0); 5545 5546 /* 5547 * We found a numeral_id from an entry in /dev which matched 5548 * the re passed in from devfsadm_enumerate. We only need to make sure 5549 * ONE copy of numeral_id exists on the numeral list. We only need 5550 * to store /dev/dsk/cNtod0s0 and no other entries hanging off 5551 * of controller N. 5552 */ 5553 for (np = setp->headnumeral; np != NULL; np = np->next) { 5554 if (strcmp(numeral_id, np->id) == 0) { 5555 return; 5556 } 5557 } 5558 5559 /* NOT on list, so add it */ 5560 5561 (void) strcpy(lpath, path); 5562 /* 5563 * If path is a dir, it is changed to the first symbolic link it find 5564 * if it finds one. 5565 */ 5566 if (get_stat_info(lpath, &sb) == DEVFSADM_FAILURE) { 5567 return; 5568 } 5569 5570 /* If we get here, we found a symlink */ 5571 linksize = readlink(lpath, linkbuf, PATH_MAX); 5572 5573 if (linksize <= 0) { 5574 err_print(READLINK_FAILED, fcn, lpath, strerror(errno)); 5575 return; 5576 } 5577 5578 linkbuf[linksize] = '\0'; 5579 5580 /* 5581 * the following just points linkptr to the root of the /devices 5582 * node if it is a minor node, otherwise, to the first char of 5583 * linkbuf if it is a link. 5584 */ 5585 (void) is_minor_node(linkbuf, &linkptr); 5586 5587 cmp_str = alloc_cmp_str(linkptr, &rules[index]); 5588 if (cmp_str == NULL) { 5589 return; 5590 } 5591 5592 np = s_malloc(sizeof (numeral_t)); 5593 5594 np->id = s_strdup(numeral_id); 5595 np->full_path = s_strdup(linkptr); 5596 np->rule_index = index; 5597 np->cmp_str = cmp_str; 5598 5599 np->next = setp->headnumeral; 5600 setp->headnumeral = np; 5601 } 5602 5603 5604 /* 5605 * This should be called either before or after granting access to a 5606 * command line version of devfsadm running, since it may have changed 5607 * the state of /dev. It forces future enumerate calls to re-build 5608 * cached information from /dev. 5609 */ 5610 void 5611 invalidate_enumerate_cache(void) 5612 { 5613 numeral_set_t *setp; 5614 numeral_set_t *savedsetp; 5615 numeral_t *savednumset; 5616 numeral_t *numset; 5617 int i; 5618 5619 for (setp = head_numeral_set; setp != NULL; ) { 5620 /* 5621 * check all regexp's passed in function against 5622 * those in cached set. 5623 */ 5624 5625 savedsetp = setp; 5626 setp = setp->next; 5627 5628 for (i = 0; i < savedsetp->re_count; i++) { 5629 free(savedsetp->re[i]); 5630 } 5631 free(savedsetp->re); 5632 5633 for (numset = savedsetp->headnumeral; numset != NULL; ) { 5634 savednumset = numset; 5635 numset = numset->next; 5636 assert(savednumset->rule_index < savedsetp->re_count); 5637 free(savednumset->id); 5638 free(savednumset->full_path); 5639 free(savednumset->cmp_str); 5640 free(savednumset); 5641 } 5642 free(savedsetp); 5643 } 5644 head_numeral_set = NULL; 5645 } 5646 5647 /* 5648 * Copies over links from /dev to <root>/dev and device special files in 5649 * /devices to <root>/devices, preserving the existing file modes. If 5650 * the link or special file already exists on <root>, skip the copy. (it 5651 * would exist only if a package hard coded it there, so assume package 5652 * knows best?). Use /etc/name_to_major and <root>/etc/name_to_major to 5653 * make translations for major numbers on device special files. No need to 5654 * make a translation on minor_perm since if the file was created in the 5655 * miniroot then it would presumably have the same minor_perm entry in 5656 * <root>/etc/minor_perm. To be used only by install. 5657 */ 5658 int 5659 devfsadm_copy(void) 5660 { 5661 char filename[PATH_MAX + 1]; 5662 5663 /* load the installed root's name_to_major for translations */ 5664 (void) snprintf(filename, sizeof (filename), "%s%s", root_dir, 5665 NAME_TO_MAJOR); 5666 if (load_n2m_table(filename) == DEVFSADM_FAILURE) { 5667 return (DEVFSADM_FAILURE); 5668 } 5669 5670 /* Copy /dev to target disk. No need to copy /devices with devfs */ 5671 (void) nftw(DEV, devfsadm_copy_file, 20, FTW_PHYS); 5672 5673 /* Let install handle copying over path_to_inst */ 5674 5675 return (DEVFSADM_SUCCESS); 5676 } 5677 5678 /* 5679 * This function copies links, dirs, and device special files. 5680 * Note that it always returns DEVFSADM_SUCCESS, so that nftw doesn't 5681 * abort. 5682 */ 5683 /*ARGSUSED*/ 5684 static int 5685 devfsadm_copy_file(const char *file, const struct stat *stat, 5686 int flags, struct FTW *ftw) 5687 { 5688 struct stat sp; 5689 dev_t newdev; 5690 char newfile[PATH_MAX + 1]; 5691 char linkcontents[PATH_MAX + 1]; 5692 int bytes; 5693 const char *fcn = "devfsadm_copy_file"; 5694 5695 (void) strcpy(newfile, root_dir); 5696 (void) strcat(newfile, "/"); 5697 (void) strcat(newfile, file); 5698 5699 if (lstat(newfile, &sp) == 0) { 5700 /* newfile already exists, so no need to continue */ 5701 return (DEVFSADM_SUCCESS); 5702 } 5703 5704 if (((stat->st_mode & S_IFMT) == S_IFBLK) || 5705 ((stat->st_mode & S_IFMT) == S_IFCHR)) { 5706 if (translate_major(stat->st_rdev, &newdev) == 5707 DEVFSADM_FAILURE) { 5708 return (DEVFSADM_SUCCESS); 5709 } 5710 if (mknod(newfile, stat->st_mode, newdev) == -1) { 5711 err_print(MKNOD_FAILED, newfile, strerror(errno)); 5712 return (DEVFSADM_SUCCESS); 5713 } 5714 } else if ((stat->st_mode & S_IFMT) == S_IFDIR) { 5715 if (mknod(newfile, stat->st_mode, 0) == -1) { 5716 err_print(MKNOD_FAILED, newfile, strerror(errno)); 5717 return (DEVFSADM_SUCCESS); 5718 } 5719 } else if ((stat->st_mode & S_IFMT) == S_IFLNK) { 5720 if ((bytes = readlink(file, linkcontents, PATH_MAX)) == -1) { 5721 err_print(READLINK_FAILED, fcn, file, strerror(errno)); 5722 return (DEVFSADM_SUCCESS); 5723 } 5724 linkcontents[bytes] = '\0'; 5725 if (symlink(linkcontents, newfile) == -1) { 5726 err_print(SYMLINK_FAILED, newfile, newfile, 5727 strerror(errno)); 5728 return (DEVFSADM_SUCCESS); 5729 } 5730 } 5731 5732 (void) lchown(newfile, stat->st_uid, stat->st_gid); 5733 return (DEVFSADM_SUCCESS); 5734 } 5735 5736 /* 5737 * Given a dev_t from the running kernel, return the new_dev_t 5738 * by translating to the major number found on the installed 5739 * target's root name_to_major file. 5740 */ 5741 static int 5742 translate_major(dev_t old_dev, dev_t *new_dev) 5743 { 5744 major_t oldmajor; 5745 major_t newmajor; 5746 minor_t oldminor; 5747 minor_t newminor; 5748 char cdriver[FILENAME_MAX + 1]; 5749 char driver[FILENAME_MAX + 1]; 5750 char *fcn = "translate_major: "; 5751 5752 oldmajor = major(old_dev); 5753 if (modctl(MODGETNAME, driver, sizeof (driver), 5754 &oldmajor) != 0) { 5755 return (DEVFSADM_FAILURE); 5756 } 5757 5758 if (strcmp(driver, "clone") != 0) { 5759 /* non-clone case */ 5760 5761 /* look up major number is target's name2major */ 5762 if (get_major_no(driver, &newmajor) == DEVFSADM_FAILURE) { 5763 return (DEVFSADM_FAILURE); 5764 } 5765 5766 *new_dev = makedev(newmajor, minor(old_dev)); 5767 if (old_dev != *new_dev) { 5768 vprint(CHATTY_MID, "%sdriver: %s old: %lu,%lu " 5769 "new: %lu,%lu\n", fcn, driver, major(old_dev), 5770 minor(old_dev), major(*new_dev), 5771 minor(*new_dev)); 5772 } 5773 return (DEVFSADM_SUCCESS); 5774 } else { 5775 /* 5776 * The clone is a special case. Look at its minor 5777 * number since it is the major number of the real driver. 5778 */ 5779 if (get_major_no(driver, &newmajor) == DEVFSADM_FAILURE) { 5780 return (DEVFSADM_FAILURE); 5781 } 5782 5783 oldminor = minor(old_dev); 5784 if (modctl(MODGETNAME, cdriver, sizeof (cdriver), 5785 &oldminor) != 0) { 5786 err_print(MODGETNAME_FAILED, oldminor); 5787 return (DEVFSADM_FAILURE); 5788 } 5789 5790 if (get_major_no(cdriver, &newminor) == DEVFSADM_FAILURE) { 5791 return (DEVFSADM_FAILURE); 5792 } 5793 5794 *new_dev = makedev(newmajor, newminor); 5795 if (old_dev != *new_dev) { 5796 vprint(CHATTY_MID, "%sdriver: %s old: " 5797 "%lu,%lu new: %lu,%lu\n", fcn, driver, 5798 major(old_dev), minor(old_dev), 5799 major(*new_dev), minor(*new_dev)); 5800 } 5801 return (DEVFSADM_SUCCESS); 5802 } 5803 } 5804 5805 /* 5806 * 5807 * Find the major number for driver, searching the n2m_list that was 5808 * built in load_n2m_table(). 5809 */ 5810 static int 5811 get_major_no(char *driver, major_t *major) 5812 { 5813 n2m_t *ptr; 5814 5815 for (ptr = n2m_list; ptr != NULL; ptr = ptr->next) { 5816 if (strcmp(ptr->driver, driver) == 0) { 5817 *major = ptr->major; 5818 return (DEVFSADM_SUCCESS); 5819 } 5820 } 5821 err_print(FIND_MAJOR_FAILED, driver); 5822 return (DEVFSADM_FAILURE); 5823 } 5824 5825 /* 5826 * Loads a name_to_major table into memory. Used only for suninstall's 5827 * private -R option to devfsadm, to translate major numbers from the 5828 * running to the installed target disk. 5829 */ 5830 static int 5831 load_n2m_table(char *file) 5832 { 5833 FILE *fp; 5834 char line[1024]; 5835 char driver[PATH_MAX + 1]; 5836 major_t major; 5837 n2m_t *ptr; 5838 int ln = 0; 5839 5840 if ((fp = fopen(file, "r")) == NULL) { 5841 err_print(FOPEN_FAILED, file, strerror(errno)); 5842 return (DEVFSADM_FAILURE); 5843 } 5844 5845 while (fgets(line, sizeof (line), fp) != NULL) { 5846 ln++; 5847 if (line[0] == '#') { 5848 continue; 5849 } 5850 if (sscanf(line, "%1024s%lu", driver, &major) != 2) { 5851 err_print(IGNORING_LINE_IN, ln, file); 5852 continue; 5853 } 5854 ptr = (n2m_t *)s_malloc(sizeof (n2m_t)); 5855 ptr->major = major; 5856 ptr->driver = s_strdup(driver); 5857 ptr->next = n2m_list; 5858 n2m_list = ptr; 5859 } 5860 if (fclose(fp) == EOF) { 5861 err_print(FCLOSE_FAILED, file, strerror(errno)); 5862 } 5863 return (DEVFSADM_SUCCESS); 5864 } 5865 5866 /* 5867 * Called at devfsadm startup to read in the devlink.tab file. Creates 5868 * a linked list of devlinktab_list structures which will be 5869 * searched for every minor node. 5870 */ 5871 static void 5872 read_devlinktab_file(void) 5873 { 5874 devlinktab_list_t *headp = NULL; 5875 devlinktab_list_t *entryp; 5876 devlinktab_list_t **previous; 5877 devlinktab_list_t *save; 5878 char line[MAX_DEVLINK_LINE]; 5879 char *selector; 5880 char *p_link; 5881 char *s_link; 5882 FILE *fp; 5883 int i; 5884 static struct stat cached_sb; 5885 struct stat current_sb; 5886 static int cached = FALSE; 5887 5888 if (devlinktab_file == NULL) { 5889 return; 5890 } 5891 5892 (void) stat(devlinktab_file, ¤t_sb); 5893 5894 /* if already cached, check to see if it is still valid */ 5895 if (cached == TRUE) { 5896 5897 if (current_sb.st_mtime == cached_sb.st_mtime) { 5898 vprint(FILES_MID, "%s cache valid\n", devlinktab_file); 5899 return; 5900 } 5901 5902 vprint(FILES_MID, "invalidating %s cache\n", devlinktab_file); 5903 5904 while (devlinktab_list != NULL) { 5905 free_link_list(devlinktab_list->p_link); 5906 free_link_list(devlinktab_list->s_link); 5907 free_selector_list(devlinktab_list->selector); 5908 free(devlinktab_list->selector_pattern); 5909 free(devlinktab_list->p_link_pattern); 5910 if (devlinktab_list->s_link_pattern != NULL) { 5911 free(devlinktab_list->s_link_pattern); 5912 } 5913 save = devlinktab_list; 5914 devlinktab_list = devlinktab_list->next; 5915 free(save); 5916 } 5917 } else { 5918 cached = TRUE; 5919 } 5920 5921 (void) stat(devlinktab_file, &cached_sb); 5922 5923 if ((fp = fopen(devlinktab_file, "r")) == NULL) { 5924 err_print(FOPEN_FAILED, devlinktab_file, strerror(errno)); 5925 return; 5926 } 5927 5928 previous = &headp; 5929 5930 while (fgets(line, sizeof (line), fp) != NULL) { 5931 devlinktab_line++; 5932 i = strlen(line); 5933 if (line[i-1] == NEWLINE) { 5934 line[i-1] = '\0'; 5935 } else if (i == sizeof (line-1)) { 5936 err_print(LINE_TOO_LONG, devlinktab_line, 5937 devlinktab_file, sizeof (line)-1); 5938 while (((i = getc(fp)) != '\n') && (i != EOF)); 5939 continue; 5940 } 5941 5942 if ((line[0] == '#') || (line[0] == '\0')) { 5943 /* Ignore comments and blank lines */ 5944 continue; 5945 } 5946 5947 vprint(DEVLINK_MID, "table: %s line %d: '%s'\n", 5948 devlinktab_file, devlinktab_line, line); 5949 5950 /* break each entry into fields. s_link may be NULL */ 5951 if (split_devlinktab_entry(line, &selector, &p_link, 5952 &s_link) == DEVFSADM_FAILURE) { 5953 vprint(DEVLINK_MID, "split_entry returns failure\n"); 5954 continue; 5955 } else { 5956 vprint(DEVLINK_MID, "split_entry selector='%s' " 5957 "p_link='%s' s_link='%s'\n\n", selector, 5958 p_link, (s_link == NULL) ? "" : s_link); 5959 } 5960 5961 entryp = (devlinktab_list_t *) 5962 s_malloc(sizeof (devlinktab_list_t)); 5963 5964 entryp->line_number = devlinktab_line; 5965 5966 if ((entryp->selector = 5967 create_selector_list(selector)) == NULL) { 5968 free(entryp); 5969 continue; 5970 } 5971 entryp->selector_pattern = s_strdup(selector); 5972 5973 if ((entryp->p_link = create_link_list(p_link)) == NULL) { 5974 free_selector_list(entryp->selector); 5975 free(entryp->selector_pattern); 5976 free(entryp); 5977 continue; 5978 } 5979 5980 entryp->p_link_pattern = s_strdup(p_link); 5981 5982 if (s_link != NULL) { 5983 if ((entryp->s_link = 5984 create_link_list(s_link)) == NULL) { 5985 free_selector_list(entryp->selector); 5986 free_link_list(entryp->p_link); 5987 free(entryp->selector_pattern); 5988 free(entryp->p_link_pattern); 5989 free(entryp); 5990 continue; 5991 } 5992 entryp->s_link_pattern = s_strdup(s_link); 5993 } else { 5994 entryp->s_link = NULL; 5995 entryp->s_link_pattern = NULL; 5996 5997 } 5998 5999 /* append to end of list */ 6000 6001 entryp->next = NULL; 6002 *previous = entryp; 6003 previous = &(entryp->next); 6004 } 6005 if (fclose(fp) == EOF) { 6006 err_print(FCLOSE_FAILED, devlinktab_file, strerror(errno)); 6007 } 6008 devlinktab_list = headp; 6009 } 6010 6011 /* 6012 * 6013 * For a single line entry in devlink.tab, split the line into fields 6014 * selector, p_link, and an optionally s_link. If s_link field is not 6015 * present, then return NULL in s_link (not NULL string). 6016 */ 6017 static int 6018 split_devlinktab_entry(char *entry, char **selector, char **p_link, 6019 char **s_link) 6020 { 6021 char *tab; 6022 6023 *selector = entry; 6024 6025 if ((tab = strchr(entry, TAB)) != NULL) { 6026 *tab = '\0'; 6027 *p_link = ++tab; 6028 } else { 6029 err_print(MISSING_TAB, devlinktab_line, devlinktab_file); 6030 return (DEVFSADM_FAILURE); 6031 } 6032 6033 if (*p_link == '\0') { 6034 err_print(MISSING_DEVNAME, devlinktab_line, devlinktab_file); 6035 return (DEVFSADM_FAILURE); 6036 } 6037 6038 if ((tab = strchr(*p_link, TAB)) != NULL) { 6039 *tab = '\0'; 6040 *s_link = ++tab; 6041 if (strchr(*s_link, TAB) != NULL) { 6042 err_print(TOO_MANY_FIELDS, devlinktab_line, 6043 devlinktab_file); 6044 return (DEVFSADM_FAILURE); 6045 } 6046 } else { 6047 *s_link = NULL; 6048 } 6049 6050 return (DEVFSADM_SUCCESS); 6051 } 6052 6053 /* 6054 * For a given devfs_spec field, for each element in the field, add it to 6055 * a linked list of devfs_spec structures. Return the linked list in 6056 * devfs_spec_list. 6057 */ 6058 static selector_list_t * 6059 create_selector_list(char *selector) 6060 { 6061 char *key; 6062 char *val; 6063 int error = FALSE; 6064 selector_list_t *head_selector_list = NULL; 6065 selector_list_t *selector_list; 6066 6067 /* parse_devfs_spec splits the next field into keyword & value */ 6068 while ((*selector != NULL) && (error == FALSE)) { 6069 if (parse_selector(&selector, &key, 6070 &val) == DEVFSADM_FAILURE) { 6071 error = TRUE; 6072 break; 6073 } else { 6074 selector_list = (selector_list_t *) 6075 s_malloc(sizeof (selector_list_t)); 6076 if (strcmp(NAME_S, key) == 0) { 6077 selector_list->key = NAME; 6078 } else if (strcmp(TYPE_S, key) == 0) { 6079 selector_list->key = TYPE; 6080 } else if (strncmp(ADDR_S, key, ADDR_S_LEN) == 0) { 6081 selector_list->key = ADDR; 6082 if (key[ADDR_S_LEN] == '\0') { 6083 selector_list->arg = 0; 6084 } else if (isdigit(key[ADDR_S_LEN]) != 6085 FALSE) { 6086 selector_list->arg = 6087 atoi(&key[ADDR_S_LEN]); 6088 } else { 6089 error = TRUE; 6090 free(selector_list); 6091 err_print(BADKEYWORD, key, 6092 devlinktab_line, 6093 devlinktab_file); 6094 break; 6095 } 6096 } else if (strncmp(MINOR_S, key, 6097 MINOR_S_LEN) == 0) { 6098 selector_list->key = MINOR; 6099 if (key[MINOR_S_LEN] == '\0') { 6100 selector_list->arg = 0; 6101 } else if (isdigit(key[MINOR_S_LEN]) != 6102 FALSE) { 6103 selector_list->arg = 6104 atoi(&key[MINOR_S_LEN]); 6105 } else { 6106 error = TRUE; 6107 free(selector_list); 6108 err_print(BADKEYWORD, key, 6109 devlinktab_line, 6110 devlinktab_file); 6111 break; 6112 } 6113 vprint(DEVLINK_MID, "MINOR = %s\n", val); 6114 } else { 6115 err_print(UNRECOGNIZED_KEY, key, 6116 devlinktab_line, devlinktab_file); 6117 error = TRUE; 6118 free(selector_list); 6119 break; 6120 } 6121 selector_list->val = s_strdup(val); 6122 selector_list->next = head_selector_list; 6123 head_selector_list = selector_list; 6124 vprint(DEVLINK_MID, "key='%s' val='%s' arg=%d\n", 6125 key, val, selector_list->arg); 6126 } 6127 } 6128 6129 if ((error == FALSE) && (head_selector_list != NULL)) { 6130 return (head_selector_list); 6131 } else { 6132 /* parse failed. Free any allocated structs */ 6133 free_selector_list(head_selector_list); 6134 return (NULL); 6135 } 6136 } 6137 6138 /* 6139 * Takes a semicolon separated list of selector elements and breaks up 6140 * into a keyword-value pair. semicolon and equal characters are 6141 * replaced with NULL's. On success, selector is updated to point to the 6142 * terminating NULL character terminating the keyword-value pair, and the 6143 * function returns DEVFSADM_SUCCESS. If there is a syntax error, 6144 * devfs_spec is not modified and function returns DEVFSADM_FAILURE. 6145 */ 6146 static int 6147 parse_selector(char **selector, char **key, char **val) 6148 { 6149 char *equal; 6150 char *semi_colon; 6151 6152 *key = *selector; 6153 6154 if ((equal = strchr(*key, '=')) != NULL) { 6155 *equal = '\0'; 6156 } else { 6157 err_print(MISSING_EQUAL, devlinktab_line, devlinktab_file); 6158 return (DEVFSADM_FAILURE); 6159 } 6160 6161 *val = ++equal; 6162 if ((semi_colon = strchr(equal, ';')) != NULL) { 6163 *semi_colon = '\0'; 6164 *selector = semi_colon + 1; 6165 } else { 6166 *selector = equal + strlen(equal); 6167 } 6168 return (DEVFSADM_SUCCESS); 6169 } 6170 6171 /* 6172 * link is either the second or third field of devlink.tab. Parse link 6173 * into a linked list of devlink structures and return ptr to list. Each 6174 * list element is either a constant string, or one of the following 6175 * escape sequences: \M, \A, \N, or \D. The first three escape sequences 6176 * take a numerical argument. 6177 */ 6178 static link_list_t * 6179 create_link_list(char *link) 6180 { 6181 int x = 0; 6182 int error = FALSE; 6183 int counter_found = FALSE; 6184 link_list_t *head = NULL; 6185 link_list_t **ptr; 6186 link_list_t *link_list; 6187 char constant[MAX_DEVLINK_LINE]; 6188 char *error_str; 6189 6190 if (link == NULL) { 6191 return (NULL); 6192 } 6193 6194 while ((*link != '\0') && (error == FALSE)) { 6195 link_list = (link_list_t *)s_malloc(sizeof (link_list_t)); 6196 link_list->next = NULL; 6197 6198 while ((*link != '\0') && (*link != '\\')) { 6199 /* a non-escaped string */ 6200 constant[x++] = *(link++); 6201 } 6202 if (x != 0) { 6203 constant[x] = '\0'; 6204 link_list->type = CONSTANT; 6205 link_list->constant = s_strdup(constant); 6206 x = 0; 6207 vprint(DEVLINK_MID, "CONSTANT FOUND %s\n", constant); 6208 } else { 6209 switch (*(++link)) { 6210 case 'M': 6211 link_list->type = MINOR; 6212 break; 6213 case 'A': 6214 link_list->type = ADDR; 6215 break; 6216 case 'N': 6217 if (counter_found == TRUE) { 6218 error = TRUE; 6219 error_str = "multiple counters " 6220 "not permitted"; 6221 free(link_list); 6222 } else { 6223 counter_found = TRUE; 6224 link_list->type = COUNTER; 6225 } 6226 break; 6227 case 'D': 6228 link_list->type = NAME; 6229 break; 6230 default: 6231 error = TRUE; 6232 free(link_list); 6233 error_str = "unrecognized escape sequence"; 6234 break; 6235 } 6236 if (*(link++) != 'D') { 6237 if (isdigit(*link) == FALSE) { 6238 error_str = "escape sequence must be " 6239 "followed by a digit\n"; 6240 error = TRUE; 6241 free(link_list); 6242 } else { 6243 link_list->arg = 6244 (int)strtoul(link, &link, 10); 6245 vprint(DEVLINK_MID, "link_list->arg = " 6246 "%d\n", link_list->arg); 6247 } 6248 } 6249 } 6250 /* append link_list struct to end of list */ 6251 if (error == FALSE) { 6252 for (ptr = &head; *ptr != NULL; ptr = &((*ptr)->next)); 6253 *ptr = link_list; 6254 } 6255 } 6256 6257 if (error == FALSE) { 6258 return (head); 6259 } else { 6260 err_print(CONFIG_INCORRECT, devlinktab_line, devlinktab_file, 6261 error_str); 6262 free_link_list(head); 6263 return (NULL); 6264 } 6265 } 6266 6267 /* 6268 * Called for each minor node devfsadm processes; for each minor node, 6269 * look for matches in the devlinktab_list list which was created on 6270 * startup read_devlinktab_file(). If there is a match, call build_links() 6271 * to build a logical devlink and a possible extra devlink. 6272 */ 6273 static int 6274 process_devlink_compat(di_minor_t minor, di_node_t node) 6275 { 6276 int link_built = FALSE; 6277 devlinktab_list_t *entry; 6278 char *nodetype; 6279 char *dev_path; 6280 6281 if (devlinks_debug == TRUE) { 6282 nodetype = di_minor_nodetype(minor); 6283 assert(nodetype != NULL); 6284 if ((dev_path = di_devfs_path(node)) != NULL) { 6285 vprint(INFO_MID, "'%s' entry: %s:%s\n", nodetype, 6286 dev_path, 6287 di_minor_name(minor) ? di_minor_name(minor) : 6288 ""); 6289 di_devfs_path_free(dev_path); 6290 } 6291 6292 } 6293 6294 6295 /* don't process devlink.tab if devfsadm invoked with -c <class> */ 6296 if (num_classes > 0) { 6297 return (FALSE); 6298 } 6299 6300 for (entry = devlinktab_list; entry != NULL; entry = entry->next) { 6301 if (devlink_matches(entry, minor, node) == DEVFSADM_SUCCESS) { 6302 link_built = TRUE; 6303 (void) build_links(entry, minor, node); 6304 } 6305 } 6306 return (link_built); 6307 } 6308 6309 /* 6310 * For a given devlink.tab devlinktab_list entry, see if the selector 6311 * field matches this minor node. If it does, return DEVFSADM_SUCCESS, 6312 * otherwise DEVFSADM_FAILURE. 6313 */ 6314 static int 6315 devlink_matches(devlinktab_list_t *entry, di_minor_t minor, di_node_t node) 6316 { 6317 selector_list_t *selector = entry->selector; 6318 char *addr; 6319 char *minor_name; 6320 char *node_type; 6321 6322 for (; selector != NULL; selector = selector->next) { 6323 switch (selector->key) { 6324 case NAME: 6325 if (strcmp(di_node_name(node), selector->val) != 0) { 6326 return (DEVFSADM_FAILURE); 6327 } 6328 break; 6329 case TYPE: 6330 node_type = di_minor_nodetype(minor); 6331 assert(node_type != NULL); 6332 if (strcmp(node_type, selector->val) != 0) { 6333 return (DEVFSADM_FAILURE); 6334 } 6335 break; 6336 case ADDR: 6337 if ((addr = di_bus_addr(node)) == NULL) { 6338 return (DEVFSADM_FAILURE); 6339 } 6340 if (selector->arg == 0) { 6341 if (strcmp(addr, selector->val) != 0) { 6342 return (DEVFSADM_FAILURE); 6343 } 6344 } else { 6345 if (compare_field(addr, selector->val, 6346 selector->arg) == DEVFSADM_FAILURE) { 6347 return (DEVFSADM_FAILURE); 6348 } 6349 } 6350 break; 6351 case MINOR: 6352 if ((minor_name = di_minor_name(minor)) == NULL) { 6353 return (DEVFSADM_FAILURE); 6354 } 6355 if (selector->arg == 0) { 6356 if (strcmp(minor_name, selector->val) != 0) { 6357 return (DEVFSADM_FAILURE); 6358 } 6359 } else { 6360 if (compare_field(minor_name, selector->val, 6361 selector->arg) == DEVFSADM_FAILURE) { 6362 return (DEVFSADM_FAILURE); 6363 } 6364 } 6365 break; 6366 default: 6367 return (DEVFSADM_FAILURE); 6368 } 6369 } 6370 6371 return (DEVFSADM_SUCCESS); 6372 } 6373 6374 /* 6375 * For the given minor node and devlinktab_list entry from devlink.tab, 6376 * build a logical dev link and a possible extra devlink. 6377 * Return DEVFSADM_SUCCESS if link is created, otherwise DEVFSADM_FAILURE. 6378 */ 6379 static int 6380 build_links(devlinktab_list_t *entry, di_minor_t minor, di_node_t node) 6381 { 6382 char secondary_link[PATH_MAX + 1]; 6383 char primary_link[PATH_MAX + 1]; 6384 char contents[PATH_MAX + 1]; 6385 char *dev_path; 6386 6387 if ((dev_path = di_devfs_path(node)) == NULL) { 6388 err_print(DI_DEVFS_PATH_FAILED, strerror(errno)); 6389 devfsadm_exit(1); 6390 } 6391 (void) strcpy(contents, dev_path); 6392 di_devfs_path_free(dev_path); 6393 6394 (void) strcat(contents, ":"); 6395 (void) strcat(contents, di_minor_name(minor)); 6396 6397 if (construct_devlink(primary_link, entry->p_link, contents, 6398 minor, node, 6399 entry->p_link_pattern) == DEVFSADM_FAILURE) { 6400 return (DEVFSADM_FAILURE); 6401 } 6402 (void) devfsadm_mklink(primary_link, node, minor, 0); 6403 6404 if (entry->s_link == NULL) { 6405 return (DEVFSADM_SUCCESS); 6406 } 6407 6408 if (construct_devlink(secondary_link, entry->s_link, 6409 primary_link, minor, node, 6410 entry->s_link_pattern) == DEVFSADM_FAILURE) { 6411 return (DEVFSADM_FAILURE); 6412 } 6413 6414 (void) devfsadm_secondary_link(secondary_link, primary_link, 0); 6415 6416 return (DEVFSADM_SUCCESS); 6417 } 6418 6419 /* 6420 * The counter rule for devlink.tab entries is implemented via 6421 * devfsadm_enumerate_int_start(). One of the arguments to this function 6422 * is a path, where each path component is treated as a regular expression. 6423 * For devlink.tab entries, this path regular expression is derived from 6424 * the devlink spec. get_anchored_re() accepts path regular expressions derived 6425 * from devlink.tab entries and inserts the anchors '^' and '$' at the beginning 6426 * and end respectively of each path component. This is done to prevent 6427 * false matches. For example, without anchors, "a/([0-9]+)" will match "ab/c9" 6428 * and incorrect links will be generated. 6429 */ 6430 static int 6431 get_anchored_re(char *link, char *anchored_re, char *pattern) 6432 { 6433 if (*link == '/' || *link == '\0') { 6434 err_print(INVALID_DEVLINK_SPEC, pattern); 6435 return (DEVFSADM_FAILURE); 6436 } 6437 6438 *anchored_re++ = '^'; 6439 for (; *link != '\0'; ) { 6440 if (*link == '/') { 6441 while (*link == '/') 6442 link++; 6443 *anchored_re++ = '$'; 6444 *anchored_re++ = '/'; 6445 if (*link != '\0') { 6446 *anchored_re++ = '^'; 6447 } 6448 } else { 6449 *anchored_re++ = *link++; 6450 if (*link == '\0') { 6451 *anchored_re++ = '$'; 6452 } 6453 } 6454 } 6455 *anchored_re = '\0'; 6456 6457 return (DEVFSADM_SUCCESS); 6458 } 6459 6460 static int 6461 construct_devlink(char *link, link_list_t *link_build, char *contents, 6462 di_minor_t minor, di_node_t node, char *pattern) 6463 { 6464 int counter_offset = -1; 6465 devfsadm_enumerate_t rules[1] = {NULL}; 6466 char templink[PATH_MAX + 1]; 6467 char *buff; 6468 char start[10]; 6469 char *node_path; 6470 char anchored_re[PATH_MAX + 1]; 6471 6472 link[0] = '\0'; 6473 6474 for (; link_build != NULL; link_build = link_build->next) { 6475 switch (link_build->type) { 6476 case NAME: 6477 (void) strcat(link, di_node_name(node)); 6478 break; 6479 case CONSTANT: 6480 (void) strcat(link, link_build->constant); 6481 break; 6482 case ADDR: 6483 if (component_cat(link, di_bus_addr(node), 6484 link_build->arg) == DEVFSADM_FAILURE) { 6485 node_path = di_devfs_path(node); 6486 err_print(CANNOT_BE_USED, pattern, node_path, 6487 di_minor_name(minor)); 6488 di_devfs_path_free(node_path); 6489 return (DEVFSADM_FAILURE); 6490 } 6491 break; 6492 case MINOR: 6493 if (component_cat(link, di_minor_name(minor), 6494 link_build->arg) == DEVFSADM_FAILURE) { 6495 node_path = di_devfs_path(node); 6496 err_print(CANNOT_BE_USED, pattern, node_path, 6497 di_minor_name(minor)); 6498 di_devfs_path_free(node_path); 6499 return (DEVFSADM_FAILURE); 6500 } 6501 break; 6502 case COUNTER: 6503 counter_offset = strlen(link); 6504 (void) strcat(link, "([0-9]+)"); 6505 (void) sprintf(start, "%d", link_build->arg); 6506 break; 6507 default: 6508 return (DEVFSADM_FAILURE); 6509 } 6510 } 6511 6512 if (counter_offset != -1) { 6513 /* 6514 * copy anything appended after "([0-9]+)" into 6515 * templink 6516 */ 6517 6518 (void) strcpy(templink, 6519 &link[counter_offset + strlen("([0-9]+)")]); 6520 if (get_anchored_re(link, anchored_re, pattern) 6521 != DEVFSADM_SUCCESS) { 6522 return (DEVFSADM_FAILURE); 6523 } 6524 rules[0].re = anchored_re; 6525 rules[0].subexp = 1; 6526 rules[0].flags = MATCH_ALL; 6527 if (devfsadm_enumerate_int_start(contents, 0, &buff, 6528 rules, 1, start) == DEVFSADM_FAILURE) { 6529 return (DEVFSADM_FAILURE); 6530 } 6531 (void) strcpy(&link[counter_offset], buff); 6532 free(buff); 6533 (void) strcat(link, templink); 6534 vprint(DEVLINK_MID, "COUNTER is %s\n", link); 6535 } 6536 return (DEVFSADM_SUCCESS); 6537 } 6538 6539 /* 6540 * Compares "field" number of the comma separated list "full_name" with 6541 * field_item. Returns DEVFSADM_SUCCESS for match, 6542 * DEVFSADM_FAILURE for no match. 6543 */ 6544 static int 6545 compare_field(char *full_name, char *field_item, int field) 6546 { 6547 --field; 6548 while ((*full_name != '\0') && (field != 0)) { 6549 if (*(full_name++) == ',') { 6550 field--; 6551 } 6552 } 6553 6554 if (field != 0) { 6555 return (DEVFSADM_FAILURE); 6556 } 6557 6558 while ((*full_name != '\0') && (*field_item != '\0') && 6559 (*full_name != ',')) { 6560 if (*(full_name++) != *(field_item++)) { 6561 return (DEVFSADM_FAILURE); 6562 } 6563 } 6564 6565 if (*field_item != '\0') { 6566 return (DEVFSADM_FAILURE); 6567 } 6568 6569 if ((*full_name == '\0') || (*full_name == ',')) 6570 return (DEVFSADM_SUCCESS); 6571 6572 return (DEVFSADM_FAILURE); 6573 } 6574 6575 /* 6576 * strcat() field # "field" of comma separated list "name" to "link". 6577 * Field 0 is the entire name. 6578 * Return DEVFSADM_SUCCESS or DEVFSADM_FAILURE. 6579 */ 6580 static int 6581 component_cat(char *link, char *name, int field) 6582 { 6583 6584 if (name == NULL) { 6585 return (DEVFSADM_FAILURE); 6586 } 6587 6588 if (field == 0) { 6589 (void) strcat(link, name); 6590 return (DEVFSADM_SUCCESS); 6591 } 6592 6593 while (*link != '\0') { 6594 link++; 6595 } 6596 6597 --field; 6598 while ((*name != '\0') && (field != 0)) { 6599 if (*(name++) == ',') { 6600 --field; 6601 } 6602 } 6603 6604 if (field != 0) { 6605 return (DEVFSADM_FAILURE); 6606 } 6607 6608 while ((*name != '\0') && (*name != ',')) { 6609 *(link++) = *(name++); 6610 } 6611 6612 *link = '\0'; 6613 return (DEVFSADM_SUCCESS); 6614 } 6615 6616 static void 6617 free_selector_list(selector_list_t *head) 6618 { 6619 selector_list_t *temp; 6620 6621 while (head != NULL) { 6622 temp = head; 6623 head = head->next; 6624 free(temp->val); 6625 free(temp); 6626 } 6627 } 6628 6629 static void 6630 free_link_list(link_list_t *head) 6631 { 6632 link_list_t *temp; 6633 6634 while (head != NULL) { 6635 temp = head; 6636 head = head->next; 6637 if (temp->type == CONSTANT) { 6638 free(temp->constant); 6639 } 6640 free(temp); 6641 } 6642 } 6643 6644 /* 6645 * Prints only if level matches one of the debug levels 6646 * given on command line. INFO_MID is always printed. 6647 * 6648 * See devfsadm.h for a listing of globally defined levels and 6649 * meanings. Modules should prefix the level with their 6650 * module name to prevent collisions. 6651 */ 6652 /*PRINTFLIKE2*/ 6653 void 6654 devfsadm_print(char *msgid, char *message, ...) 6655 { 6656 va_list ap; 6657 static int newline = TRUE; 6658 int x; 6659 6660 if (msgid != NULL) { 6661 for (x = 0; x < num_verbose; x++) { 6662 if (strcmp(verbose[x], msgid) == 0) { 6663 break; 6664 } 6665 if (strcmp(verbose[x], ALL_MID) == 0) { 6666 break; 6667 } 6668 } 6669 if (x == num_verbose) { 6670 return; 6671 } 6672 } 6673 6674 va_start(ap, message); 6675 6676 if (msgid == NULL) { 6677 if (logflag == TRUE) { 6678 (void) vsyslog(LOG_NOTICE, message, ap); 6679 } else { 6680 (void) vfprintf(stdout, message, ap); 6681 } 6682 6683 } else { 6684 if (logflag == TRUE) { 6685 (void) syslog(LOG_DEBUG, "%s[%ld]: %s: ", 6686 prog, getpid(), msgid); 6687 (void) vsyslog(LOG_DEBUG, message, ap); 6688 } else { 6689 if (newline == TRUE) { 6690 (void) fprintf(stdout, "%s[%ld]: %s: ", 6691 prog, getpid(), msgid); 6692 } 6693 (void) vfprintf(stdout, message, ap); 6694 } 6695 } 6696 6697 if (message[strlen(message) - 1] == '\n') { 6698 newline = TRUE; 6699 } else { 6700 newline = FALSE; 6701 } 6702 va_end(ap); 6703 } 6704 6705 /* 6706 * print error messages to the terminal or to syslog 6707 */ 6708 /*PRINTFLIKE1*/ 6709 void 6710 devfsadm_errprint(char *message, ...) 6711 { 6712 va_list ap; 6713 6714 va_start(ap, message); 6715 6716 if (logflag == TRUE) { 6717 (void) vsyslog(LOG_ERR, message, ap); 6718 } else { 6719 (void) fprintf(stderr, "%s: ", prog); 6720 (void) vfprintf(stderr, message, ap); 6721 } 6722 va_end(ap); 6723 } 6724 6725 /* 6726 * return noupdate state (-s) 6727 */ 6728 int 6729 devfsadm_noupdate(void) 6730 { 6731 return (file_mods == TRUE ? DEVFSADM_TRUE : DEVFSADM_FALSE); 6732 } 6733 6734 /* 6735 * return current root update path (-r) 6736 */ 6737 const char * 6738 devfsadm_root_path(void) 6739 { 6740 if (root_dir[0] == '\0') { 6741 return ("/"); 6742 } else { 6743 return ((const char *)root_dir); 6744 } 6745 } 6746 6747 /* common exit function which ensures releasing locks */ 6748 static void 6749 devfsadm_exit(int status) 6750 { 6751 if (DEVFSADM_DEBUG_ON) { 6752 vprint(INFO_MID, "exit status = %d\n", status); 6753 } 6754 6755 if (rcm_hdl) { 6756 if (thr_self() != process_rcm_events_tid) { 6757 (void) mutex_lock(&rcm_eventq_lock); 6758 need_to_exit_rcm_event_thread = 1; 6759 (void) cond_broadcast(&rcm_eventq_cv); 6760 (void) mutex_unlock(&rcm_eventq_lock); 6761 6762 /* wait until process_rcm_events() thread exits */ 6763 (void) thr_join(process_rcm_events_tid, NULL, NULL); 6764 } 6765 librcm_free_handle(rcm_hdl); 6766 (void) dlclose(librcm_hdl); 6767 } 6768 6769 zlist_deleteall_unlocked(); /* dispose of all zones */ 6770 6771 exit_dev_lock(); 6772 exit_daemon_lock(); 6773 6774 if (logflag == TRUE) { 6775 closelog(); 6776 } 6777 6778 exit(status); 6779 } 6780 6781 /* 6782 * set root_dir, devices_dir, dev_dir using optarg. zone_mode determines 6783 * whether we're operating on behalf of a zone; in this case, we need to 6784 * reference some things from the global zone. Note that zone mode and 6785 * -R don't get along, but that should be OK since zone mode is not 6786 * a public interface. 6787 */ 6788 static void 6789 set_root_devices_dev_dir(char *dir, int zone_mode) 6790 { 6791 size_t len; 6792 6793 root_dir = s_strdup(dir); 6794 len = strlen(dir) + strlen(DEVICES) + 1; 6795 devices_dir = s_malloc(len); 6796 (void) snprintf(devices_dir, len, "%s%s", root_dir, DEVICES); 6797 len = strlen(root_dir) + strlen(DEV) + 1; 6798 dev_dir = s_malloc(len); 6799 (void) snprintf(dev_dir, len, "%s%s", root_dir, DEV); 6800 if (zone_mode) { 6801 len = strlen(DEV) + 1; 6802 global_dev_dir = s_malloc(len); 6803 (void) snprintf(global_dev_dir, len, "%s", DEV); 6804 } else { 6805 global_dev_dir = s_malloc(len); 6806 (void) snprintf(global_dev_dir, len, "%s%s", root_dir, DEV); 6807 } 6808 } 6809 6810 /* 6811 * Removes quotes. 6812 */ 6813 static char * 6814 dequote(char *src) 6815 { 6816 char *dst; 6817 int len; 6818 6819 len = strlen(src); 6820 dst = s_malloc(len + 1); 6821 if (src[0] == '\"' && src[len - 1] == '\"') { 6822 len -= 2; 6823 (void) strncpy(dst, &src[1], len); 6824 dst[len] = '\0'; 6825 } else { 6826 (void) strcpy(dst, src); 6827 } 6828 return (dst); 6829 } 6830 6831 /* 6832 * For a given physical device pathname and spectype, return the 6833 * ownership and permissions attributes by looking in data from 6834 * /etc/minor_perm. If currently in installation mode, check for 6835 * possible major number translations from the miniroot to the installed 6836 * root's name_to_major table. Note that there can be multiple matches, 6837 * but the last match takes effect. pts seems to rely on this 6838 * implementation behavior. 6839 */ 6840 static void 6841 getattr(char *phy_path, char *aminor, int spectype, dev_t dev, mode_t *mode, 6842 uid_t *uid, gid_t *gid) 6843 { 6844 char devname[PATH_MAX + 1]; 6845 char *node_name; 6846 char *minor_name; 6847 int match = FALSE; 6848 int is_clone; 6849 int mp_drvname_matches_node_name; 6850 int mp_drvname_matches_minor_name; 6851 int mp_drvname_is_clone; 6852 int mp_drvname_matches_drvname; 6853 struct mperm *mp; 6854 major_t major_no; 6855 char driver[PATH_MAX + 1]; 6856 6857 /* 6858 * Get the driver name based on the major number since the name 6859 * in /devices may be generic. Could be running with more major 6860 * numbers than are in /etc/name_to_major, so get it from the kernel 6861 */ 6862 major_no = major(dev); 6863 6864 if (modctl(MODGETNAME, driver, sizeof (driver), &major_no) != 0) { 6865 /* return default values */ 6866 goto use_defaults; 6867 } 6868 6869 (void) strcpy(devname, phy_path); 6870 6871 node_name = strrchr(devname, '/'); /* node name is the last */ 6872 /* component */ 6873 if (node_name == NULL) { 6874 err_print(NO_NODE, devname); 6875 goto use_defaults; 6876 } 6877 6878 minor_name = strchr(++node_name, '@'); /* see if it has address part */ 6879 6880 if (minor_name != NULL) { 6881 *minor_name++ = '\0'; 6882 } else { 6883 minor_name = node_name; 6884 } 6885 6886 minor_name = strchr(minor_name, ':'); /* look for minor name */ 6887 6888 if (minor_name == NULL) { 6889 err_print(NO_MINOR, devname); 6890 goto use_defaults; 6891 } 6892 *minor_name++ = '\0'; 6893 6894 /* 6895 * mp->mp_drvname = device name from minor_perm 6896 * mp->mp_minorname = minor part of device name from 6897 * minor_perm 6898 * drvname = name of driver for this device 6899 */ 6900 6901 is_clone = (strcmp(node_name, "clone") == 0 ? TRUE : FALSE); 6902 for (mp = minor_perms; mp != NULL; mp = mp->mp_next) { 6903 mp_drvname_matches_node_name = 6904 (strcmp(mp->mp_drvname, node_name) == 0 ? TRUE : FALSE); 6905 mp_drvname_matches_minor_name = 6906 (strcmp(mp->mp_drvname, minor_name) == 0 ? TRUE:FALSE); 6907 mp_drvname_is_clone = 6908 (strcmp(mp->mp_drvname, "clone") == 0 ? TRUE : FALSE); 6909 mp_drvname_matches_drvname = 6910 (strcmp(mp->mp_drvname, driver) == 0 ? TRUE : FALSE); 6911 6912 /* 6913 * If one of the following cases is true, then we try to change 6914 * the permissions if a "shell global pattern match" of 6915 * mp_>mp_minorname matches minor_name. 6916 * 6917 * 1. mp->mp_drvname matches driver. 6918 * 6919 * OR 6920 * 6921 * 2. mp->mp_drvname matches node_name and this 6922 * name is an alias of the driver name 6923 * 6924 * OR 6925 * 6926 * 3. /devices entry is the clone device and either 6927 * minor_perm entry is the clone device or matches 6928 * the minor part of the clone device. 6929 */ 6930 6931 if ((mp_drvname_matches_drvname == TRUE)|| 6932 ((mp_drvname_matches_node_name == TRUE) && 6933 (alias(driver, node_name) == TRUE)) || 6934 ((is_clone == TRUE) && 6935 ((mp_drvname_is_clone == TRUE) || 6936 (mp_drvname_matches_minor_name == TRUE)))) { 6937 /* 6938 * Check that the minor part of the 6939 * device name from the minor_perm 6940 * entry matches and if so, set the 6941 * permissions. 6942 * 6943 * Under real devfs, clone minor name is changed 6944 * to match the driver name, but minor_perm may 6945 * not match. We reconcile it here. 6946 */ 6947 if (aminor != NULL) 6948 minor_name = aminor; 6949 6950 if (gmatch(minor_name, mp->mp_minorname) != 0) { 6951 *uid = mp->mp_uid; 6952 *gid = mp->mp_gid; 6953 *mode = spectype | mp->mp_mode; 6954 match = TRUE; 6955 } 6956 } 6957 } 6958 6959 if (match == TRUE) { 6960 return; 6961 } 6962 6963 use_defaults: 6964 /* not found in minor_perm, so just use default values */ 6965 *uid = root_uid; 6966 *gid = sys_gid; 6967 *mode = (spectype | 0600); 6968 } 6969 6970 /* 6971 * Called by devfs_read_minor_perm() to report errors 6972 * key is: 6973 * line number: ignoring line number error 6974 * errno: open/close errors 6975 * size: alloc errors 6976 */ 6977 static void 6978 minorperm_err_cb(minorperm_err_t mp_err, int key) 6979 { 6980 switch (mp_err) { 6981 case MP_FOPEN_ERR: 6982 err_print(FOPEN_FAILED, MINOR_PERM_FILE, strerror(key)); 6983 break; 6984 case MP_FCLOSE_ERR: 6985 err_print(FCLOSE_FAILED, MINOR_PERM_FILE, strerror(key)); 6986 break; 6987 case MP_IGNORING_LINE_ERR: 6988 err_print(IGNORING_LINE_IN, key, MINOR_PERM_FILE); 6989 break; 6990 case MP_ALLOC_ERR: 6991 err_print(MALLOC_FAILED, key); 6992 break; 6993 case MP_NVLIST_ERR: 6994 err_print(NVLIST_ERROR, MINOR_PERM_FILE, strerror(key)); 6995 break; 6996 case MP_CANT_FIND_USER_ERR: 6997 err_print(CANT_FIND_USER, DEFAULT_DEV_USER); 6998 break; 6999 case MP_CANT_FIND_GROUP_ERR: 7000 err_print(CANT_FIND_GROUP, DEFAULT_DEV_GROUP); 7001 break; 7002 } 7003 } 7004 7005 static void 7006 read_minor_perm_file(void) 7007 { 7008 static int cached = FALSE; 7009 static struct stat cached_sb; 7010 struct stat current_sb; 7011 7012 (void) stat(MINOR_PERM_FILE, ¤t_sb); 7013 7014 /* If already cached, check to see if it is still valid */ 7015 if (cached == TRUE) { 7016 7017 if (current_sb.st_mtime == cached_sb.st_mtime) { 7018 vprint(FILES_MID, "%s cache valid\n", MINOR_PERM_FILE); 7019 return; 7020 } 7021 devfs_free_minor_perm(minor_perms); 7022 minor_perms = NULL; 7023 } else { 7024 cached = TRUE; 7025 } 7026 7027 (void) stat(MINOR_PERM_FILE, &cached_sb); 7028 7029 vprint(FILES_MID, "loading binding file: %s\n", MINOR_PERM_FILE); 7030 7031 minor_perms = devfs_read_minor_perm(minorperm_err_cb); 7032 } 7033 7034 static void 7035 load_minor_perm_file(void) 7036 { 7037 read_minor_perm_file(); 7038 if (devfs_load_minor_perm(minor_perms, minorperm_err_cb) != 0) 7039 err_print(gettext("minor_perm load failed\n")); 7040 } 7041 7042 static char * 7043 convert_to_re(char *dev) 7044 { 7045 char *p, *l, *out; 7046 int i; 7047 7048 out = s_malloc(PATH_MAX); 7049 7050 for (l = p = dev, i = 0; (*p != '\0') && (i < (PATH_MAX - 1)); 7051 ++p, i++) { 7052 if ((*p == '*') && ((l != p) && (*l == '/'))) { 7053 out[i++] = '.'; 7054 out[i] = '+'; 7055 } else { 7056 out[i] = *p; 7057 } 7058 l = p; 7059 } 7060 out[i] = '\0'; 7061 p = (char *)s_malloc(strlen(out) + 1); 7062 (void) strlcpy(p, out, strlen(out) + 1); 7063 free(out); 7064 7065 vprint(FILES_MID, "converted %s -> %s\n", dev, p); 7066 7067 return (p); 7068 } 7069 7070 static void 7071 read_logindevperm_file(void) 7072 { 7073 static int cached = FALSE; 7074 static struct stat cached_sb; 7075 struct stat current_sb; 7076 struct login_dev *ldev; 7077 FILE *fp; 7078 char line[MAX_LDEV_LINE]; 7079 int ln, perm, rv; 7080 char *cp, *console, *devlist, *dev; 7081 char *lasts, *devlasts, *permstr, *drv; 7082 struct driver_list *list, *next; 7083 7084 /* Read logindevperm only when enabled */ 7085 if (login_dev_enable != TRUE) 7086 return; 7087 7088 if (cached == TRUE) { 7089 if (stat(LDEV_FILE, ¤t_sb) == 0 && 7090 current_sb.st_mtime == cached_sb.st_mtime) { 7091 vprint(FILES_MID, "%s cache valid\n", LDEV_FILE); 7092 return; 7093 } 7094 vprint(FILES_MID, "invalidating %s cache\n", LDEV_FILE); 7095 while (login_dev_cache != NULL) { 7096 7097 ldev = login_dev_cache; 7098 login_dev_cache = ldev->ldev_next; 7099 free(ldev->ldev_console); 7100 free(ldev->ldev_device); 7101 regfree(&ldev->ldev_device_regex); 7102 list = ldev->ldev_driver_list; 7103 while (list) { 7104 next = list->next; 7105 free(list); 7106 list = next; 7107 } 7108 free(ldev); 7109 } 7110 } else { 7111 cached = TRUE; 7112 } 7113 7114 assert(login_dev_cache == NULL); 7115 7116 if (stat(LDEV_FILE, &cached_sb) != 0) { 7117 cached = FALSE; 7118 return; 7119 } 7120 7121 vprint(FILES_MID, "loading file: %s\n", LDEV_FILE); 7122 7123 if ((fp = fopen(LDEV_FILE, "r")) == NULL) { 7124 /* Not fatal to devfsadm */ 7125 cached = FALSE; 7126 err_print(FOPEN_FAILED, LDEV_FILE, strerror(errno)); 7127 return; 7128 } 7129 7130 ln = 0; 7131 while (fgets(line, MAX_LDEV_LINE, fp) != NULL) { 7132 ln++; 7133 7134 /* Remove comments */ 7135 if ((cp = strchr(line, '#')) != NULL) 7136 *cp = '\0'; 7137 7138 if ((console = strtok_r(line, LDEV_DELIMS, &lasts)) == NULL) 7139 continue; /* Blank line */ 7140 7141 if ((permstr = strtok_r(NULL, LDEV_DELIMS, &lasts)) == NULL) { 7142 err_print(IGNORING_LINE_IN, ln, LDEV_FILE); 7143 continue; /* Malformed line */ 7144 } 7145 7146 /* 7147 * permstr is string in octal format. Convert to int 7148 */ 7149 cp = NULL; 7150 errno = 0; 7151 perm = strtol(permstr, &cp, 8); 7152 if (errno || perm < 0 || perm > 0777 || *cp != '\0') { 7153 err_print(IGNORING_LINE_IN, ln, LDEV_FILE); 7154 continue; 7155 } 7156 7157 if ((devlist = strtok_r(NULL, LDEV_DELIMS, &lasts)) == NULL) { 7158 err_print(IGNORING_LINE_IN, ln, LDEV_FILE); 7159 continue; 7160 } 7161 7162 dev = strtok_r(devlist, LDEV_DEV_DELIM, &devlasts); 7163 while (dev) { 7164 7165 ldev = (struct login_dev *)s_zalloc( 7166 sizeof (struct login_dev)); 7167 ldev->ldev_console = s_strdup(console); 7168 ldev->ldev_perms = perm; 7169 7170 /* 7171 * the logical device name may contain '*' which 7172 * we convert to a regular expression 7173 */ 7174 ldev->ldev_device = convert_to_re(dev); 7175 if (ldev->ldev_device && 7176 (rv = regcomp(&ldev->ldev_device_regex, 7177 ldev->ldev_device, REG_EXTENDED))) { 7178 bzero(&ldev->ldev_device_regex, 7179 sizeof (ldev->ldev_device_regex)); 7180 err_print(REGCOMP_FAILED, 7181 ldev->ldev_device, rv); 7182 } 7183 ldev->ldev_next = login_dev_cache; 7184 login_dev_cache = ldev; 7185 dev = strtok_r(NULL, LDEV_DEV_DELIM, &devlasts); 7186 } 7187 7188 drv = strtok_r(NULL, LDEV_DRVLIST_DELIMS, &lasts); 7189 if (drv) { 7190 if (strcmp(drv, LDEV_DRVLIST_NAME) == 0) { 7191 7192 drv = strtok_r(NULL, LDEV_DRV_DELIMS, 7193 &lasts); 7194 7195 while (drv) { 7196 vprint(FILES_MID, 7197 "logindevperm driver=%s\n", 7198 drv); 7199 7200 /* 7201 * create a linked list of driver 7202 * names 7203 */ 7204 list = (struct driver_list *) 7205 s_zalloc( 7206 sizeof (struct driver_list)); 7207 (void) strlcpy(list->driver_name, drv, 7208 sizeof (list->driver_name)); 7209 list->next = ldev->ldev_driver_list; 7210 ldev->ldev_driver_list = list; 7211 drv = strtok_r(NULL, LDEV_DRV_DELIMS, 7212 &lasts); 7213 } 7214 } 7215 } 7216 } 7217 (void) fclose(fp); 7218 } 7219 7220 /* 7221 * Tokens are separated by ' ', '\t', ':', '=', '&', '|', ';', '\n', or '\0' 7222 * 7223 * Returns DEVFSADM_SUCCESS if token found, DEVFSADM_FAILURE otherwise. 7224 */ 7225 static int 7226 getnexttoken(char *next, char **nextp, char **tokenpp, char *tchar) 7227 { 7228 char *cp; 7229 char *cp1; 7230 char *tokenp; 7231 7232 cp = next; 7233 while (*cp == ' ' || *cp == '\t') { 7234 cp++; /* skip leading spaces */ 7235 } 7236 tokenp = cp; /* start of token */ 7237 while (*cp != '\0' && *cp != '\n' && *cp != ' ' && *cp != '\t' && 7238 *cp != ':' && *cp != '=' && *cp != '&' && 7239 *cp != '|' && *cp != ';') { 7240 cp++; /* point to next character */ 7241 } 7242 /* 7243 * If terminating character is a space or tab, look ahead to see if 7244 * there's another terminator that's not a space or a tab. 7245 * (This code handles trailing spaces.) 7246 */ 7247 if (*cp == ' ' || *cp == '\t') { 7248 cp1 = cp; 7249 while (*++cp1 == ' ' || *cp1 == '\t') 7250 ; 7251 if (*cp1 == '=' || *cp1 == ':' || *cp1 == '&' || *cp1 == '|' || 7252 *cp1 == ';' || *cp1 == '\n' || *cp1 == '\0') { 7253 *cp = NULL; /* terminate token */ 7254 cp = cp1; 7255 } 7256 } 7257 if (tchar != NULL) { 7258 *tchar = *cp; /* save terminating character */ 7259 if (*tchar == '\0') { 7260 *tchar = '\n'; 7261 } 7262 } 7263 *cp++ = '\0'; /* terminate token, point to next */ 7264 *nextp = cp; /* set pointer to next character */ 7265 if (cp - tokenp - 1 == 0) { 7266 return (DEVFSADM_FAILURE); 7267 } 7268 *tokenpp = tokenp; 7269 return (DEVFSADM_SUCCESS); 7270 } 7271 7272 /* 7273 * read or reread the driver aliases file 7274 */ 7275 static void 7276 read_driver_aliases_file(void) 7277 { 7278 7279 driver_alias_t *save; 7280 driver_alias_t *lst_tail; 7281 driver_alias_t *ap; 7282 static int cached = FALSE; 7283 FILE *afd; 7284 char line[256]; 7285 char *cp; 7286 char *p; 7287 char t; 7288 int ln = 0; 7289 static struct stat cached_sb; 7290 struct stat current_sb; 7291 7292 (void) stat(ALIASFILE, ¤t_sb); 7293 7294 /* If already cached, check to see if it is still valid */ 7295 if (cached == TRUE) { 7296 7297 if (current_sb.st_mtime == cached_sb.st_mtime) { 7298 vprint(FILES_MID, "%s cache valid\n", ALIASFILE); 7299 return; 7300 } 7301 7302 vprint(FILES_MID, "invalidating %s cache\n", ALIASFILE); 7303 while (driver_aliases != NULL) { 7304 free(driver_aliases->alias_name); 7305 free(driver_aliases->driver_name); 7306 save = driver_aliases; 7307 driver_aliases = driver_aliases->next; 7308 free(save); 7309 } 7310 } else { 7311 cached = TRUE; 7312 } 7313 7314 (void) stat(ALIASFILE, &cached_sb); 7315 7316 vprint(FILES_MID, "loading binding file: %s\n", ALIASFILE); 7317 7318 if ((afd = fopen(ALIASFILE, "r")) == NULL) { 7319 err_print(FOPEN_FAILED, ALIASFILE, strerror(errno)); 7320 devfsadm_exit(1); 7321 } 7322 7323 while (fgets(line, sizeof (line) - 1, afd) != NULL) { 7324 ln++; 7325 cp = line; 7326 if (getnexttoken(cp, &cp, &p, &t) == DEVFSADM_FAILURE) { 7327 err_print(IGNORING_LINE_IN, ln, ALIASFILE); 7328 continue; 7329 } 7330 if (t == '\n' || t == '\0') { 7331 err_print(DRV_BUT_NO_ALIAS, ln, ALIASFILE); 7332 continue; 7333 } 7334 ap = (struct driver_alias *) 7335 s_zalloc(sizeof (struct driver_alias)); 7336 ap->driver_name = s_strdup(p); 7337 if (getnexttoken(cp, &cp, &p, &t) == DEVFSADM_FAILURE) { 7338 err_print(DRV_BUT_NO_ALIAS, ln, ALIASFILE); 7339 free(ap->driver_name); 7340 free(ap); 7341 continue; 7342 } 7343 if (*p == '"') { 7344 if (p[strlen(p) - 1] == '"') { 7345 p[strlen(p) - 1] = '\0'; 7346 p++; 7347 } 7348 } 7349 ap->alias_name = s_strdup(p); 7350 if (driver_aliases == NULL) { 7351 driver_aliases = ap; 7352 lst_tail = ap; 7353 } else { 7354 lst_tail->next = ap; 7355 lst_tail = ap; 7356 } 7357 } 7358 if (fclose(afd) == EOF) { 7359 err_print(FCLOSE_FAILED, ALIASFILE, strerror(errno)); 7360 } 7361 } 7362 7363 /* 7364 * return TRUE if alias_name is an alias for driver_name, otherwise 7365 * return FALSE. 7366 */ 7367 static int 7368 alias(char *driver_name, char *alias_name) 7369 { 7370 driver_alias_t *alias; 7371 7372 /* 7373 * check for a match 7374 */ 7375 for (alias = driver_aliases; alias != NULL; alias = alias->next) { 7376 if ((strcmp(alias->driver_name, driver_name) == 0) && 7377 (strcmp(alias->alias_name, alias_name) == 0)) { 7378 return (TRUE); 7379 } 7380 } 7381 return (FALSE); 7382 } 7383 7384 /* 7385 * convenience functions 7386 */ 7387 static void * 7388 s_malloc(const size_t size) 7389 { 7390 void *rp; 7391 7392 rp = malloc(size); 7393 if (rp == NULL) { 7394 err_print(MALLOC_FAILED, size); 7395 devfsadm_exit(1); 7396 } 7397 return (rp); 7398 } 7399 7400 /* 7401 * convenience functions 7402 */ 7403 static void * 7404 s_realloc(void *ptr, const size_t size) 7405 { 7406 ptr = realloc(ptr, size); 7407 if (ptr == NULL) { 7408 err_print(REALLOC_FAILED, size); 7409 devfsadm_exit(1); 7410 } 7411 return (ptr); 7412 } 7413 7414 static void * 7415 s_zalloc(const size_t size) 7416 { 7417 void *rp; 7418 7419 rp = calloc(1, size); 7420 if (rp == NULL) { 7421 err_print(CALLOC_FAILED, size); 7422 devfsadm_exit(1); 7423 } 7424 return (rp); 7425 } 7426 7427 char * 7428 s_strdup(const char *ptr) 7429 { 7430 void *rp; 7431 7432 rp = strdup(ptr); 7433 if (rp == NULL) { 7434 err_print(STRDUP_FAILED, ptr); 7435 devfsadm_exit(1); 7436 } 7437 return (rp); 7438 } 7439 7440 static void 7441 s_closedir(DIR *dirp) 7442 { 7443 retry: 7444 if (closedir(dirp) != 0) { 7445 if (errno == EINTR) 7446 goto retry; 7447 err_print(CLOSEDIR_FAILED, strerror(errno)); 7448 } 7449 } 7450 7451 static void 7452 s_mkdirp(const char *path, const mode_t mode) 7453 { 7454 vprint(CHATTY_MID, "mkdirp(%s, 0x%lx)\n", path, mode); 7455 if (mkdirp(path, mode) == -1) { 7456 if (errno != EEXIST) { 7457 err_print(MKDIR_FAILED, path, mode, strerror(errno)); 7458 } 7459 } 7460 } 7461 7462 static void 7463 s_unlink(const char *file) 7464 { 7465 retry: 7466 if (unlink(file) == -1) { 7467 if (errno == EINTR || errno == EAGAIN) 7468 goto retry; 7469 if (errno != ENOENT) { 7470 err_print(UNLINK_FAILED, file, strerror(errno)); 7471 } 7472 } 7473 } 7474 7475 static void 7476 add_verbose_id(char *mid) 7477 { 7478 num_verbose++; 7479 verbose = s_realloc(verbose, num_verbose * sizeof (char *)); 7480 verbose[num_verbose - 1] = mid; 7481 } 7482 7483 /* 7484 * returns DEVFSADM_TRUE if contents is a minor node in /devices. 7485 * If mn_root is not NULL, mn_root is set to: 7486 * if contents is a /dev node, mn_root = contents 7487 * OR 7488 * if contents is a /devices node, mn_root set to the '/' 7489 * following /devices. 7490 */ 7491 static int 7492 is_minor_node(char *contents, char **mn_root) 7493 { 7494 char *ptr; 7495 char device_prefix[100]; 7496 7497 (void) snprintf(device_prefix, sizeof (device_prefix), "../devices/"); 7498 7499 if ((ptr = strstr(contents, device_prefix)) != NULL) { 7500 if (mn_root != NULL) { 7501 /* mn_root should point to the / following /devices */ 7502 *mn_root = ptr += strlen(device_prefix) - 1; 7503 } 7504 return (DEVFSADM_TRUE); 7505 } 7506 7507 (void) snprintf(device_prefix, sizeof (device_prefix), "/devices/"); 7508 7509 if (strncmp(contents, device_prefix, strlen(device_prefix)) == 0) { 7510 if (mn_root != NULL) { 7511 /* mn_root should point to the / following /devices */ 7512 *mn_root = contents + strlen(device_prefix) - 1; 7513 } 7514 return (DEVFSADM_TRUE); 7515 } 7516 7517 if (mn_root != NULL) { 7518 *mn_root = contents; 7519 } 7520 return (DEVFSADM_FALSE); 7521 } 7522 7523 /* 7524 * Lookup nvpair corresponding to the given name and type: 7525 * 7526 * The standard nvlist_lookup functions in libnvpair don't work as our 7527 * nvlist is not allocated with NV_UNIQUE_NAME or NV_UNIQUE_NAME_TYPE. 7528 */ 7529 static nvpair_t * 7530 lookup_nvpair(nvlist_t *nvl, char *name, data_type_t type) 7531 { 7532 nvpair_t *nvp; 7533 7534 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL; 7535 nvp = nvlist_next_nvpair(nvl, nvp)) { 7536 if (strcmp(name, nvpair_name(nvp)) == 0 && 7537 nvpair_type(nvp) == type) 7538 return (nvp); 7539 } 7540 7541 return (NULL); 7542 } 7543 7544 /*ARGSUSED*/ 7545 static void 7546 process_rcm_events(void *arg) 7547 { 7548 struct rcm_eventq *ev, *ev_next; 7549 nvpair_t *nvp; 7550 char *path, *driver; 7551 int instance; 7552 int err; 7553 int need_to_exit; 7554 7555 for (;;) { 7556 (void) mutex_lock(&rcm_eventq_lock); 7557 while (rcm_eventq_head == NULL && 7558 need_to_exit_rcm_event_thread == 0) 7559 (void) cond_wait(&rcm_eventq_cv, &rcm_eventq_lock); 7560 7561 need_to_exit = need_to_exit_rcm_event_thread; 7562 ev = rcm_eventq_head; 7563 rcm_eventq_head = rcm_eventq_tail = NULL; 7564 (void) mutex_unlock(&rcm_eventq_lock); 7565 7566 for (; ev != NULL; ev = ev_next) { 7567 /* 7568 * Private notification interface to RCM: 7569 * Do not retry the RCM notification on an error since 7570 * we do not know whether the failure occurred in 7571 * librcm, rcm_daemon or rcm modules or scripts. 7572 */ 7573 if (librcm_notify_event(rcm_hdl, 7574 RCM_RESOURCE_NETWORK_NEW, 0, ev->nvl, NULL) 7575 != RCM_SUCCESS) { 7576 7577 err = errno; 7578 7579 if (((nvp = lookup_nvpair(ev->nvl, 7580 RCM_NV_DEVFS_PATH, DATA_TYPE_STRING)) 7581 == NULL) || 7582 (nvpair_value_string(nvp, &path) != 0)) 7583 path = "unknown"; 7584 7585 if (((nvp = lookup_nvpair(ev->nvl, 7586 RCM_NV_DRIVER_NAME, DATA_TYPE_STRING)) 7587 == NULL) || 7588 (nvpair_value_string(nvp, &driver) != 0)) 7589 driver = "unknown"; 7590 if (((nvp = lookup_nvpair(ev->nvl, 7591 RCM_NV_INSTANCE, DATA_TYPE_INT32)) 7592 == NULL) || 7593 (nvpair_value_int32(nvp, &instance) != 0)) 7594 instance = -1; 7595 7596 err_print(RCM_NOTIFY_FAILED, path, driver, 7597 instance, strerror(err)); 7598 } 7599 7600 ev_next = ev->next; 7601 nvlist_free(ev->nvl); 7602 free(ev); 7603 } 7604 7605 if (need_to_exit) 7606 return; 7607 } 7608 } 7609 7610 /* 7611 * Initialize rcm related handles and function pointers. 7612 * Since RCM need not present in miniroot, we dlopen librcm. 7613 */ 7614 static int 7615 rcm_init(void) 7616 { 7617 #define LIBRCM_PATH "/usr/lib/librcm.so" 7618 rcm_handle_t *hdl = NULL; 7619 int err; 7620 7621 if ((librcm_hdl = dlopen(LIBRCM_PATH, RTLD_LAZY)) == NULL) { 7622 /* 7623 * don't log an error here, since librcm may not be present 7624 * in miniroot. 7625 */ 7626 return (-1); 7627 } 7628 7629 librcm_alloc_handle = (int (*)())dlsym(librcm_hdl, "rcm_alloc_handle"); 7630 librcm_free_handle = (void (*)())dlsym(librcm_hdl, "rcm_free_handle"); 7631 librcm_notify_event = (int (*)())dlsym(librcm_hdl, "rcm_notify_event"); 7632 7633 if (librcm_alloc_handle == NULL || librcm_notify_event == NULL || 7634 librcm_free_handle == NULL) { 7635 err_print(MISSING_SYMBOLS, LIBRCM_PATH); 7636 goto out; 7637 } 7638 7639 /* Initialize the rcm handle */ 7640 if (librcm_alloc_handle(NULL, 0, NULL, &hdl) != RCM_SUCCESS) { 7641 err_print(RCM_ALLOC_HANDLE_ERROR); 7642 goto out; 7643 } 7644 7645 (void) cond_init(&rcm_eventq_cv, USYNC_THREAD, 0); 7646 (void) mutex_init(&rcm_eventq_lock, USYNC_THREAD, 0); 7647 7648 /* create a thread to notify RCM of events */ 7649 if ((err = thr_create(NULL, 0, (void *(*)(void *))process_rcm_events, 7650 NULL, 0, &process_rcm_events_tid)) != 0) { 7651 err_print(CANT_CREATE_THREAD, "process_rcm_events", 7652 strerror(err)); 7653 goto out; 7654 } 7655 7656 rcm_hdl = hdl; 7657 return (0); 7658 7659 out: 7660 if (hdl) 7661 librcm_free_handle(hdl); 7662 (void) dlclose(librcm_hdl); 7663 return (-1); 7664 } 7665 7666 /* 7667 * Build an nvlist using the minor data. Pack it and add the packed nvlist 7668 * as a byte array to nv_list parameter. 7669 * Return 0 on success, errno on failure. 7670 */ 7671 static int 7672 add_minor_data_to_nvl(nvlist_t *nv_list, di_minor_t minor) 7673 { 7674 nvlist_t *nvl = NULL; 7675 int32_t minor_type; 7676 char *minor_name, *minor_node_type; 7677 int err; 7678 char *buf = NULL; 7679 size_t buflen = 0; 7680 7681 if ((err = nvlist_alloc(&nvl, 0, 0)) != 0) 7682 return (err); 7683 7684 minor_type = (int32_t)di_minor_type(minor); 7685 if ((err = nvlist_add_int32(nvl, RCM_NV_MINOR_TYPE, minor_type)) != 0) 7686 goto error; 7687 7688 minor_name = di_minor_name(minor); 7689 if ((err = nvlist_add_string(nvl, RCM_NV_MINOR_NAME, minor_name)) != 0) 7690 goto error; 7691 7692 if ((minor_node_type = di_minor_nodetype(minor)) == NULL) 7693 minor_node_type = ""; 7694 if ((err = nvlist_add_string(nvl, RCM_NV_MINOR_NODE_TYPE, 7695 minor_node_type)) != 0) 7696 goto error; 7697 7698 if ((err = nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_NATIVE, 0)) != 0) 7699 goto error; 7700 7701 err = nvlist_add_byte_array(nv_list, RCM_NV_MINOR_DATA, 7702 (uchar_t *)(buf), (uint_t)(buflen)); 7703 7704 error: 7705 nvlist_free(nvl); 7706 if (buf) 7707 free(buf); 7708 return (err); 7709 } 7710 7711 static void 7712 enqueue_rcm_event(nvlist_t *nvl) 7713 { 7714 struct rcm_eventq *ev; 7715 7716 ev = (struct rcm_eventq *)s_zalloc(sizeof (struct rcm_eventq)); 7717 ev->nvl = nvl; 7718 7719 (void) mutex_lock(&rcm_eventq_lock); 7720 if (rcm_eventq_head == NULL) 7721 rcm_eventq_head = ev; 7722 else 7723 rcm_eventq_tail->next = ev; 7724 rcm_eventq_tail = ev; 7725 (void) cond_broadcast(&rcm_eventq_cv); 7726 (void) mutex_unlock(&rcm_eventq_lock); 7727 } 7728 7729 /* 7730 * Generate an nvlist using the information given in node and minor_name. 7731 * If minor_name is NULL the nvlist will contain information on 7732 * all minor nodes. Otherwise the nvlist will contain information 7733 * only on the given minor_name. Notify RCM passing the nvlist. 7734 * 7735 * Return 0 upon successfully notifying RCM, errno on failure. 7736 */ 7737 static int 7738 notify_rcm(di_node_t node, char *minor_name) 7739 { 7740 nvlist_t *nvl = NULL; 7741 char *path, *driver_name; 7742 char *node_name; 7743 int err; 7744 int32_t instance; 7745 di_minor_t minor; 7746 7747 if ((driver_name = di_driver_name(node)) == NULL) 7748 driver_name = ""; 7749 7750 instance = (int32_t)di_instance(node); 7751 7752 if ((path = di_devfs_path(node)) == NULL) { 7753 err = errno; 7754 goto error; 7755 } 7756 7757 if ((err = nvlist_alloc(&nvl, 0, 0)) != 0) 7758 goto error; 7759 7760 if ((err = nvlist_add_string(nvl, RCM_NV_DRIVER_NAME, driver_name)) 7761 != 0) 7762 goto error; 7763 7764 if ((err = nvlist_add_int32(nvl, RCM_NV_INSTANCE, instance)) != 0) 7765 goto error; 7766 7767 if ((node_name = di_node_name(node)) == NULL) 7768 node_name = ""; 7769 if ((err = nvlist_add_string(nvl, RCM_NV_NODE_NAME, node_name)) != 0) 7770 goto error; 7771 7772 if ((err = nvlist_add_string(nvl, RCM_NV_DEVFS_PATH, path)) != 0) 7773 goto error; 7774 7775 minor = di_minor_next(node, DI_MINOR_NIL); 7776 while (minor != DI_MINOR_NIL) { 7777 if ((minor_name == NULL) || 7778 (strcmp(minor_name, di_minor_name(minor)) == 0)) { 7779 if ((err = add_minor_data_to_nvl(nvl, minor)) != 0) 7780 goto error; 7781 } 7782 minor = di_minor_next(node, minor); 7783 } 7784 7785 enqueue_rcm_event(nvl); 7786 di_devfs_path_free(path); 7787 return (0); 7788 7789 error: 7790 err_print(RCM_NVLIST_BUILD_ERROR, ((path != NULL) ? path : "unknown"), 7791 driver_name, instance, strerror(err)); 7792 7793 if (path) 7794 di_devfs_path_free(path); 7795 if (nvl) 7796 nvlist_free(nvl); 7797 return (err); 7798 } 7799 7800 /* 7801 * Add the specified property to nvl. 7802 * Returns: 7803 * 0 successfully added 7804 * -1 an error occurred 7805 * 1 could not add the property for reasons not due to errors. 7806 */ 7807 static int 7808 add_property(nvlist_t *nvl, di_prop_t prop) 7809 { 7810 char *name; 7811 char *attr_name; 7812 int n, len; 7813 int32_t *int32p; 7814 int64_t *int64p; 7815 char *str; 7816 char **strarray; 7817 uchar_t *bytep; 7818 int rv = 0; 7819 int i; 7820 7821 if ((name = di_prop_name(prop)) == NULL) 7822 return (-1); 7823 7824 len = sizeof (DEV_PROP_PREFIX) + strlen(name); 7825 if ((attr_name = malloc(len)) == NULL) 7826 return (-1); 7827 7828 (void) strlcpy(attr_name, DEV_PROP_PREFIX, len); 7829 (void) strlcat(attr_name, name, len); 7830 7831 switch (di_prop_type(prop)) { 7832 case DI_PROP_TYPE_BOOLEAN: 7833 if (nvlist_add_boolean(nvl, attr_name) != 0) 7834 goto out; 7835 break; 7836 7837 case DI_PROP_TYPE_INT: 7838 if ((n = di_prop_ints(prop, &int32p)) < 1) 7839 goto out; 7840 7841 if (n <= (PROP_LEN_LIMIT / sizeof (int32_t))) { 7842 if (nvlist_add_int32_array(nvl, attr_name, int32p, 7843 n) != 0) 7844 goto out; 7845 } else 7846 rv = 1; 7847 break; 7848 7849 case DI_PROP_TYPE_INT64: 7850 if ((n = di_prop_int64(prop, &int64p)) < 1) 7851 goto out; 7852 7853 if (n <= (PROP_LEN_LIMIT / sizeof (int64_t))) { 7854 if (nvlist_add_int64_array(nvl, attr_name, int64p, 7855 n) != 0) 7856 goto out; 7857 } else 7858 rv = 1; 7859 break; 7860 7861 case DI_PROP_TYPE_BYTE: 7862 case DI_PROP_TYPE_UNKNOWN: 7863 if ((n = di_prop_bytes(prop, &bytep)) < 1) 7864 goto out; 7865 7866 if (n <= PROP_LEN_LIMIT) { 7867 if (nvlist_add_byte_array(nvl, attr_name, bytep, n) 7868 != 0) 7869 goto out; 7870 } else 7871 rv = 1; 7872 break; 7873 7874 case DI_PROP_TYPE_STRING: 7875 if ((n = di_prop_strings(prop, &str)) < 1) 7876 goto out; 7877 7878 if ((strarray = malloc(n * sizeof (char *))) == NULL) 7879 goto out; 7880 7881 len = 0; 7882 for (i = 0; i < n; i++) { 7883 strarray[i] = str + len; 7884 len += strlen(strarray[i]) + 1; 7885 } 7886 7887 if (len <= PROP_LEN_LIMIT) { 7888 if (nvlist_add_string_array(nvl, attr_name, strarray, 7889 n) != 0) { 7890 free(strarray); 7891 goto out; 7892 } 7893 } else 7894 rv = 1; 7895 free(strarray); 7896 break; 7897 7898 default: 7899 rv = 1; 7900 break; 7901 } 7902 7903 free(attr_name); 7904 return (rv); 7905 7906 out: 7907 free(attr_name); 7908 return (-1); 7909 } 7910 7911 static void 7912 free_dev_names(struct devlink_cb_arg *x) 7913 { 7914 int i; 7915 7916 for (i = 0; i < x->count; i++) { 7917 free(x->dev_names[i]); 7918 free(x->link_contents[i]); 7919 } 7920 } 7921 7922 /* callback function for di_devlink_cache_walk */ 7923 static int 7924 devlink_cb(di_devlink_t dl, void *arg) 7925 { 7926 struct devlink_cb_arg *x = (struct devlink_cb_arg *)arg; 7927 const char *path; 7928 const char *content; 7929 7930 if ((path = di_devlink_path(dl)) == NULL || 7931 (content = di_devlink_content(dl)) == NULL || 7932 (x->dev_names[x->count] = strdup(path)) == NULL) 7933 goto out; 7934 7935 if ((x->link_contents[x->count] = strdup(content)) == NULL) { 7936 free(x->dev_names[x->count]); 7937 goto out; 7938 } 7939 7940 x->count++; 7941 if (x->count >= MAX_DEV_NAME_COUNT) 7942 return (DI_WALK_TERMINATE); 7943 7944 return (DI_WALK_CONTINUE); 7945 7946 out: 7947 x->rv = -1; 7948 free_dev_names(x); 7949 return (DI_WALK_TERMINATE); 7950 } 7951 7952 /* 7953 * Lookup dev name corresponding to the phys_path. 7954 * phys_path is path to a node or minor node. 7955 * Returns: 7956 * 0 with *dev_name set to the dev name 7957 * Lookup succeeded and dev_name found 7958 * 0 with *dev_name set to NULL 7959 * Lookup encountered no errors but dev name not found 7960 * -1 7961 * Lookup failed 7962 */ 7963 static int 7964 lookup_dev_name(char *phys_path, char **dev_name) 7965 { 7966 struct devlink_cb_arg cb_arg; 7967 7968 *dev_name = NULL; 7969 7970 cb_arg.count = 0; 7971 cb_arg.rv = 0; 7972 (void) di_devlink_cache_walk(devlink_cache, NULL, phys_path, 7973 DI_PRIMARY_LINK, &cb_arg, devlink_cb); 7974 7975 if (cb_arg.rv == -1) 7976 return (-1); 7977 7978 if (cb_arg.count > 0) { 7979 *dev_name = strdup(cb_arg.dev_names[0]); 7980 free_dev_names(&cb_arg); 7981 if (*dev_name == NULL) 7982 return (-1); 7983 } 7984 7985 return (0); 7986 } 7987 7988 static char * 7989 lookup_disk_dev_name(char *node_path) 7990 { 7991 struct devlink_cb_arg cb_arg; 7992 char *dev_name = NULL; 7993 int i; 7994 char *p; 7995 int len1, len2; 7996 7997 #define DEV_RDSK "/dev/rdsk/" 7998 #define DISK_RAW_MINOR ",raw" 7999 8000 cb_arg.count = 0; 8001 cb_arg.rv = 0; 8002 (void) di_devlink_cache_walk(devlink_cache, NULL, node_path, 8003 DI_PRIMARY_LINK, &cb_arg, devlink_cb); 8004 8005 if (cb_arg.rv == -1 || cb_arg.count == 0) 8006 return (NULL); 8007 8008 /* first try lookup based on /dev/rdsk name */ 8009 for (i = 0; i < cb_arg.count; i++) { 8010 if (strncmp(cb_arg.dev_names[i], DEV_RDSK, 8011 sizeof (DEV_RDSK) - 1) == 0) { 8012 dev_name = strdup(cb_arg.dev_names[i]); 8013 break; 8014 } 8015 } 8016 8017 if (dev_name == NULL) { 8018 /* now try lookup based on a minor name ending with ",raw" */ 8019 len1 = sizeof (DISK_RAW_MINOR) - 1; 8020 for (i = 0; i < cb_arg.count; i++) { 8021 len2 = strlen(cb_arg.link_contents[i]); 8022 if (len2 >= len1 && 8023 strcmp(cb_arg.link_contents[i] + len2 - len1, 8024 DISK_RAW_MINOR) == 0) { 8025 dev_name = strdup(cb_arg.dev_names[i]); 8026 break; 8027 } 8028 } 8029 } 8030 8031 free_dev_names(&cb_arg); 8032 8033 if (strlen(dev_name) == 0) { 8034 free(dev_name); 8035 return (NULL); 8036 } 8037 8038 /* if the name contains slice or partition number strip it */ 8039 p = dev_name + strlen(dev_name) - 1; 8040 if (isdigit(*p)) { 8041 while (p != dev_name && isdigit(*p)) 8042 p--; 8043 if (*p == 's' || *p == 'p') 8044 *p = '\0'; 8045 } 8046 8047 return (dev_name); 8048 } 8049 8050 static char * 8051 lookup_network_dev_name(char *node_path, char *driver_name) 8052 { 8053 char *dev_name = NULL; 8054 char phys_path[MAXPATHLEN]; 8055 8056 if (lookup_dev_name(node_path, &dev_name) == -1) 8057 return (NULL); 8058 8059 if (dev_name == NULL) { 8060 /* dlpi style-2 only interface */ 8061 (void) snprintf(phys_path, sizeof (phys_path), 8062 "/pseudo/clone@0:%s", driver_name); 8063 if (lookup_dev_name(phys_path, &dev_name) == -1 || 8064 dev_name == NULL) 8065 return (NULL); 8066 } 8067 8068 return (dev_name); 8069 } 8070 8071 /* 8072 * Build an nvlist containing all attributes for devfs events. 8073 * Returns nvlist pointer on success, NULL on failure. 8074 */ 8075 static nvlist_t * 8076 build_event_attributes(char *class, char *subclass, char *node_path, 8077 di_node_t node, char *driver_name, int instance) 8078 { 8079 nvlist_t *nvl; 8080 int err = 0; 8081 di_prop_t prop; 8082 int count; 8083 char *prop_name; 8084 int x; 8085 char *dev_name = NULL; 8086 int dev_name_lookup_err = 0; 8087 8088 if ((err = nvlist_alloc(&nvl, NV_UNIQUE_NAME_TYPE, 0)) != 0) { 8089 nvl = NULL; 8090 goto out; 8091 } 8092 8093 if ((err = nvlist_add_int32(nvl, EV_VERSION, EV_V1)) != 0) 8094 goto out; 8095 8096 if ((err = nvlist_add_string(nvl, DEV_PHYS_PATH, node_path)) != 0) 8097 goto out; 8098 8099 if (strcmp(class, EC_DEV_ADD) != 0 && 8100 strcmp(class, EC_DEV_REMOVE) != 0) 8101 return (nvl); 8102 8103 if (driver_name == NULL || instance == -1) 8104 goto out; 8105 8106 if (strcmp(subclass, ESC_DISK) == 0) { 8107 if ((dev_name = lookup_disk_dev_name(node_path)) == NULL) { 8108 dev_name_lookup_err = 1; 8109 goto out; 8110 } 8111 } else if (strcmp(subclass, ESC_NETWORK) == 0) { 8112 if ((dev_name = lookup_network_dev_name(node_path, driver_name)) 8113 == NULL) { 8114 dev_name_lookup_err = 1; 8115 goto out; 8116 } 8117 } 8118 8119 if (dev_name) { 8120 if ((err = nvlist_add_string(nvl, DEV_NAME, dev_name)) != 0) 8121 goto out; 8122 free(dev_name); 8123 dev_name = NULL; 8124 } 8125 8126 if ((err = nvlist_add_string(nvl, DEV_DRIVER_NAME, driver_name)) != 0) 8127 goto out; 8128 8129 if ((err = nvlist_add_int32(nvl, DEV_INSTANCE, instance)) != 0) 8130 goto out; 8131 8132 if (strcmp(class, EC_DEV_ADD) == 0) { 8133 /* add properties */ 8134 count = 0; 8135 for (prop = di_prop_next(node, DI_PROP_NIL); 8136 prop != DI_PROP_NIL && count < MAX_PROP_COUNT; 8137 prop = di_prop_next(node, prop)) { 8138 8139 if (di_prop_devt(prop) != DDI_DEV_T_NONE) 8140 continue; 8141 8142 if ((x = add_property(nvl, prop)) == 0) 8143 count++; 8144 else if (x == -1) { 8145 if ((prop_name = di_prop_name(prop)) == NULL) 8146 prop_name = ""; 8147 err_print(PROP_ADD_FAILED, prop_name); 8148 goto out; 8149 } 8150 } 8151 } 8152 8153 return (nvl); 8154 8155 out: 8156 if (nvl) 8157 nvlist_free(nvl); 8158 8159 if (dev_name) 8160 free(dev_name); 8161 8162 if (dev_name_lookup_err) 8163 err_print(DEV_NAME_LOOKUP_FAILED, node_path); 8164 else 8165 err_print(BUILD_EVENT_ATTR_FAILED, (err) ? strerror(err) : ""); 8166 return (NULL); 8167 } 8168 8169 static void 8170 log_event(char *class, char *subclass, nvlist_t *nvl) 8171 { 8172 sysevent_id_t eid; 8173 8174 if (sysevent_post_event(class, subclass, "SUNW", DEVFSADMD, 8175 nvl, &eid) != 0) { 8176 err_print(LOG_EVENT_FAILED, strerror(errno)); 8177 } 8178 } 8179 8180 static void 8181 build_and_log_event(char *class, char *subclass, char *node_path, 8182 di_node_t node) 8183 { 8184 nvlist_t *nvl; 8185 8186 if (node != DI_NODE_NIL) 8187 nvl = build_event_attributes(class, subclass, node_path, node, 8188 di_driver_name(node), di_instance(node)); 8189 else 8190 nvl = build_event_attributes(class, subclass, node_path, node, 8191 NULL, -1); 8192 8193 if (nvl) { 8194 log_event(class, subclass, nvl); 8195 nvlist_free(nvl); 8196 } 8197 } 8198