xref: /titanic_50/usr/src/cmd/dcs/sparc/sun4u/ri_init.c (revision d379c830a798d7a1d6833f58a35467893e5201b4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Implementation of ri_init routine for obtaining mapping
28  * of system board attachment points to physical devices and to
29  * the Reconfiguration Coordination Manager (RCM) client usage
30  * of these devices.
31  */
32 #include <string.h>
33 #include <stdlib.h>
34 #include <unistd.h>
35 #include <kstat.h>
36 #include <sys/param.h>
37 #include <sys/sbd_ioctl.h>
38 #include "rsrc_info_impl.h"
39 
40 /*
41  * Occupant types exported by cfgadm sbd plugin via
42  * config_admin(3CFGADM).
43  */
44 #define	SBD_CM_CPU	"cpu"
45 #define	SBD_CM_MEM	"memory"
46 #define	SBD_CM_IO	"io"
47 
48 /*
49  * RCM abstract resource names.
50  */
51 #define	RCM_MEM_ALL	"SUNW_memory"
52 #define	RCM_CPU_ALL	"SUNW_cpu"
53 #define	RCM_CPU		RCM_CPU_ALL"/cpu"
54 
55 #define	KBYTE		1024
56 #define	MBYTE		1048576
57 #define	USAGE_ALLOC_SIZE	128
58 
59 /*
60  * define to allow io_cm_info to return NODE is NULL to ri_init,
61  * in order to skip over nodes w/unattached drivers
62  */
63 #define	RI_NODE_NIL	1
64 
65 /*
66  * This code is CMP aware as it parses the
67  * cfgadm info field for individual cpuids.
68  */
69 #define	CPUID_SEP	","
70 #define	CPU_INFO_FMT	"cpuid=%s speed=%d ecache=%d"
71 
72 typedef struct {
73 	cfga_list_data_t *cfga_list_data;
74 	int		nlist;
75 } apd_t;
76 
77 typedef struct {
78 	long		pagesize;
79 	long		syspages;
80 	long		sysmb;
81 } mem_stat_t;
82 
83 #define	ms_syspages	m_stat.syspages
84 #define	ms_pagesize	m_stat.pagesize
85 #define	ms_sysmb	m_stat.sysmb
86 
87 typedef int32_t		cpuid_t;
88 
89 typedef struct {
90 	int	cpuid_max;	/* maximum cpuid value */
91 	int	ecache_curr;	/* cached during tree walk */
92 	int	*ecache_sizes;	/* indexed by cpuid */
93 } ecache_info_t;
94 
95 typedef struct {
96 	rcm_handle_t	*hdl;
97 	rcm_info_t	*offline_query_info;
98 	char		**rlist;
99 	int		nrlist;
100 	cpuid_t		*cpus;
101 	int		ncpus;
102 	int		ndevs;
103 	uint_t		query_pages;
104 	mem_stat_t	m_stat;
105 	ecache_info_t	ecache_info;
106 } rcmd_t;
107 
108 typedef struct {
109 	const char	*rsrc;
110 	const char	*info;
111 } usage_t;
112 
113 /* Lookup table entry for matching IO devices to RCM resource usage */
114 typedef struct {
115 	int		index;		/* index into the table array */
116 	di_node_t	node;		/* associated devinfo node */
117 	char		*name;		/* device full path name */
118 	int		n_usage;
119 	usage_t		*usage;
120 } lookup_entry_t;
121 
122 typedef struct {
123 	int		n_entries;
124 	int		n_slots;
125 	lookup_entry_t	*table;
126 } lookup_table_t;
127 
128 typedef struct {
129 	int			err;
130 	di_node_t		node;
131 	char			*pathbuf;
132 	lookup_table_t		*table;
133 	di_devlink_handle_t	linkhd;
134 } devinfo_arg_t;
135 
136 static int dyn_ap_ids(char *, cfga_list_data_t **, int *);
137 static int rcm_init(rcmd_t *, apd_t [], int, int);
138 static void rcm_fini(rcmd_t *);
139 static int rcm_query_init(rcmd_t *, apd_t [], int);
140 static int cap_request(ri_hdl_t *, rcmd_t *);
141 static int syscpus(cpuid_t **, int *);
142 static int cpu_cap_request(ri_hdl_t *, rcmd_t *);
143 static int mem_cap_request(ri_hdl_t *, rcmd_t *);
144 static int (*cm_rcm_qpass_func(cfga_type_t))(cfga_list_data_t *, rcmd_t *);
145 static int cpu_rcm_qpass(cfga_list_data_t *, rcmd_t *);
146 static int mem_rcm_qpass(cfga_list_data_t *, rcmd_t *);
147 static int io_rcm_qpass(cfga_list_data_t *, rcmd_t *);
148 static int (*cm_info_func(cfga_type_t))(ri_ap_t *, cfga_list_data_t *, int,
149     rcmd_t *);
150 static int cpu_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
151 static int i_cpu_cm_info(processorid_t, int, int, ri_ap_t *, rcmd_t *);
152 static int mem_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
153 static int io_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
154 static int ident_leaf(di_node_t);
155 static int mk_drv_inst(di_node_t, char [], char *);
156 static int devinfo_node_walk(di_node_t, void *);
157 static int devinfo_minor_walk(di_node_t, di_minor_t, void *);
158 static int devinfo_devlink_walk(di_devlink_t, void *);
159 static int add_rcm_clients(ri_client_t **, rcmd_t *, rcm_info_t *, int, int *);
160 static int rcm_ignore(char *, char *);
161 static int add_query_state(rcmd_t *, ri_client_t *, const char *, const char *);
162 static int state2query(int);
163 static void dev_list_append(ri_dev_t **, ri_dev_t *);
164 static void dev_list_cpu_insert(ri_dev_t **, ri_dev_t *, processorid_t);
165 static rcm_info_tuple_t *tuple_lookup(rcmd_t *, const char *, const char *);
166 static ri_ap_t *ri_ap_alloc(char *, ri_hdl_t *);
167 static ri_dev_t *ri_dev_alloc(void);
168 static ri_dev_t *io_dev_alloc(char *);
169 static ri_client_t *ri_client_alloc(char *, char *);
170 static void apd_tbl_free(apd_t [], int);
171 static char *pstate2str(int);
172 static int ecache_info_init(ecache_info_t *);
173 static int find_cpu_nodes(di_node_t, void *);
174 static int prop_lookup_int(di_node_t, di_prom_handle_t, char *, int **);
175 static int add_lookup_entry(lookup_table_t *, const char *, di_node_t);
176 static int table_compare_names(const void *, const void *);
177 static int table_compare_indices(const void *, const void *);
178 static lookup_entry_t *lookup(lookup_table_t *table, const char *);
179 static int add_usage(lookup_entry_t *, const char *, rcm_info_tuple_t *);
180 static void empty_table(lookup_table_t *);
181 
182 #ifdef DEBUG
183 static void		dump_apd_tbl(FILE *, apd_t *, int);
184 #endif /* DEBUG */
185 
186 static struct {
187 	char	*type;
188 	int	(*cm_info)(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
189 	int	(*cm_rcm_qpass)(cfga_list_data_t *, rcmd_t *);
190 } cm_ctl[] = {
191 	{SBD_CM_CPU,	cpu_cm_info,	cpu_rcm_qpass},
192 	{SBD_CM_MEM,	mem_cm_info,	mem_rcm_qpass},
193 	{SBD_CM_IO,	io_cm_info,	io_rcm_qpass}
194 };
195 
196 /*
197  * Table of known info string prefixes for RCM modules that do not
198  * represent actual resource usage, but instead provide name translations
199  * or sequencing within the RCM namespace. Since RCM provides no way to
200  * filter these out, we must maintain this hack.
201  */
202 static char *rcm_info_filter[] = {
203 	"Network interface",		/* Network naming module */
204 	NULL
205 };
206 
207 
208 /*
209  * Allocate snapshot handle.
210  */
211 int
212 ri_init(int n_apids, char **ap_ids, int flags, ri_hdl_t **hdlp)
213 {
214 	int			i, j;
215 	ri_hdl_t		*ri_hdl;
216 	ri_ap_t			*ap_hdl;
217 	rcmd_t			*rcm = NULL;
218 	cfga_list_data_t	*cfga_ldata;
219 	apd_t			*apd, *apd_tbl = NULL;
220 	int			(*cm_info)(ri_ap_t *, cfga_list_data_t *,
221 				    int, rcmd_t *);
222 	int			rv = RI_SUCCESS;
223 	int			cm_info_rv;
224 
225 	if (n_apids <= 0 || ap_ids == NULL || hdlp == NULL)
226 		return (RI_INVAL);
227 
228 	if (flags & ~RI_REQ_MASK)
229 		return (RI_NOTSUP);
230 
231 	*hdlp = NULL;
232 	if ((ri_hdl = calloc(1, sizeof (*ri_hdl))) == NULL ||
233 	    (rcm = calloc(1, sizeof (*rcm))) == NULL ||
234 	    (apd_tbl = calloc(n_apids, sizeof (*apd_tbl))) == NULL) {
235 		dprintf((stderr, "calloc: %s\n", strerror(errno)));
236 		rv = RI_FAILURE;
237 		goto out;
238 	}
239 
240 	/*
241 	 * Create mapping of boards to components.
242 	 */
243 	for (i = 0, apd = apd_tbl; i < n_apids; i++, apd++) {
244 		if (dyn_ap_ids(ap_ids[i], &apd->cfga_list_data,
245 		    &apd->nlist) == -1) {
246 			rv = RI_INVAL;
247 			goto out;
248 		}
249 	}
250 #ifdef DEBUG
251 	dump_apd_tbl(stderr, apd_tbl, n_apids);
252 #endif /* DEBUG */
253 
254 	if (rcm_init(rcm, apd_tbl, n_apids, flags) != 0) {
255 		rv = RI_FAILURE;
256 		goto out;
257 	}
258 
259 	/*
260 	 * Best effort attempt to read cpu ecache sizes from
261 	 * OBP/Solaris device trees. These are later looked up
262 	 * in i_cpu_cm_info().
263 	 */
264 	(void) ecache_info_init(&rcm->ecache_info);
265 
266 	for (i = 0, apd = apd_tbl; i < n_apids; i++, apd++) {
267 		if ((ap_hdl = ri_ap_alloc(ap_ids[i], ri_hdl)) == NULL) {
268 			rv = RI_FAILURE;
269 			goto out;
270 		}
271 
272 		/*
273 		 * Add component info based on occupant type. Note all
274 		 * passes through the apd table skip over the first
275 		 * cfgadm_list_data entry, which is the static system board
276 		 * attachment point.
277 		 */
278 		for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
279 		    j < apd->nlist; j++, cfga_ldata++) {
280 			if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
281 				continue;
282 			}
283 
284 			if ((cm_info =
285 			    cm_info_func(cfga_ldata->ap_type)) != NULL) {
286 				cm_info_rv =
287 				    (*cm_info)(ap_hdl, cfga_ldata, flags, rcm);
288 				if (cm_info_rv != 0) {
289 					/*
290 					 * If we cannot obtain info for the ap,
291 					 * skip it and do not fail the entire
292 					 * operation.  This case occurs when the
293 					 * driver for a device is not attached:
294 					 * di_init() returns failed back to
295 					 * io_cm_info().
296 					 */
297 					if (cm_info_rv == RI_NODE_NIL)
298 						continue;
299 					else {
300 						rv = RI_FAILURE;
301 						goto out;
302 					}
303 				}
304 			}
305 		}
306 	}
307 
308 	if ((flags & RI_INCLUDE_QUERY) && cap_request(ri_hdl, rcm) != 0)
309 		rv = RI_FAILURE;
310 
311 out:
312 	if (apd_tbl != NULL)
313 		apd_tbl_free(apd_tbl, n_apids);
314 	if (rcm != NULL)
315 		rcm_fini(rcm);
316 
317 	if (rv == RI_SUCCESS)
318 		*hdlp = ri_hdl;
319 	else
320 		ri_fini(ri_hdl);
321 
322 	return (rv);
323 }
324 
325 /*
326  * Map static board attachment point to dynamic attachment points (components).
327  */
328 static int
329 dyn_ap_ids(char *ap_id, cfga_list_data_t **ap_id_list, int *nlist)
330 {
331 	cfga_err_t	cfga_err;
332 	char		*errstr;
333 	char		*opts = "parsable";
334 	char		*listops = "class=sbd";
335 
336 	cfga_err = config_list_ext(1, &ap_id, ap_id_list, nlist,
337 	    opts, listops, &errstr, CFGA_FLAG_LIST_ALL);
338 	if (cfga_err != CFGA_OK) {
339 		dprintf((stderr, "config_list_ext: %s\n",
340 		    config_strerror(cfga_err)));
341 		return (-1);
342 	}
343 
344 	return (0);
345 }
346 
347 /*
348  * Initialize rcm handle, memory stats. Cache query result if necessary.
349  */
350 static int
351 rcm_init(rcmd_t *rcm, apd_t apd_tbl[], int napds, int flags)
352 {
353 	longlong_t	ii;
354 	int		rv = 0;
355 
356 	rcm->offline_query_info = NULL;
357 	rcm->rlist = NULL;
358 	rcm->cpus = NULL;
359 
360 	if (rcm_alloc_handle(NULL, RCM_NOPID, NULL, &rcm->hdl) != RCM_SUCCESS) {
361 		dprintf((stderr, "rcm_alloc_handle (errno=%d)\n", errno));
362 		return (-1);
363 	}
364 
365 	if ((rcm->ms_pagesize = sysconf(_SC_PAGE_SIZE)) == -1 ||
366 	    (rcm->ms_syspages = sysconf(_SC_PHYS_PAGES)) == -1) {
367 		dprintf((stderr, "sysconf: %s\n", strerror(errno)));
368 		return (-1);
369 	}
370 	ii = (longlong_t)rcm->ms_pagesize * rcm->ms_syspages;
371 	rcm->ms_sysmb = (int)((ii+MBYTE-1) / MBYTE);
372 
373 	if (flags & RI_INCLUDE_QUERY)
374 		rv = rcm_query_init(rcm, apd_tbl, napds);
375 
376 	return (rv);
377 }
378 
379 static void
380 rcm_fini(rcmd_t *rcm)
381 {
382 	char	**cpp;
383 
384 	assert(rcm != NULL);
385 
386 	if (rcm->offline_query_info != NULL)
387 		rcm_free_info(rcm->offline_query_info);
388 	if (rcm->hdl != NULL)
389 		rcm_free_handle(rcm->hdl);
390 
391 	if (rcm->rlist != NULL) {
392 		for (cpp = rcm->rlist; *cpp != NULL; cpp++)
393 			s_free(*cpp);
394 		free(rcm->rlist);
395 	}
396 
397 	s_free(rcm->cpus);
398 	free(rcm);
399 }
400 
401 #define	NODENAME_CMP		"cmp"
402 #define	NODENAME_SSM		"ssm"
403 #define	PROP_CPUID		"cpuid"
404 #define	PROP_DEVICE_TYPE	"device-type"
405 #define	PROP_ECACHE_SIZE	"ecache-size"
406 #define	PROP_L2_CACHE_SIZE	"l2-cache-size"
407 #define	PROP_L3_CACHE_SIZE	"l3-cache-size"
408 
409 typedef struct {
410 	di_node_t		root;
411 	di_prom_handle_t	ph;
412 	ecache_info_t		*ecache_info;
413 } di_arg_t;
414 
415 /*
416  * The ecache sizes for individual cpus are read from the
417  * OBP/Solaris device trees. This info cannot be derived
418  * from the cfgadm_sbd cpu attachment point ecache info,
419  * which may be a sum of multiple cores for CMP.
420  */
421 static int
422 ecache_info_init(ecache_info_t *ec)
423 {
424 	di_arg_t	di_arg;
425 	di_prom_handle_t ph = DI_PROM_HANDLE_NIL;
426 	di_node_t	root = DI_NODE_NIL;
427 	int		cpuid_max, rv = 0;
428 
429 	assert(ec != NULL && ec->cpuid_max == 0 && ec->ecache_sizes == NULL);
430 
431 	if ((cpuid_max = sysconf(_SC_CPUID_MAX)) == -1) {
432 		dprintf((stderr, "sysconf fail: %s\n", strerror(errno)));
433 		rv = -1;
434 		goto done;
435 	}
436 
437 	if ((root = di_init("/", DINFOCPYALL)) == DI_NODE_NIL) {
438 		dprintf((stderr, "di_init fail: %s\n", strerror(errno)));
439 		rv = -1;
440 		goto done;
441 	}
442 
443 	if ((ph = di_prom_init()) == DI_PROM_HANDLE_NIL) {
444 		dprintf((stderr, "di_prom_init fail: %s\n", strerror(errno)));
445 		rv = -1;
446 		goto done;
447 	}
448 
449 	if ((ec->ecache_sizes = calloc(cpuid_max + 1, sizeof (int))) == NULL) {
450 		dprintf((stderr, "calloc fail: %s\n", strerror(errno)));
451 		rv = -1;
452 		goto done;
453 	}
454 	ec->cpuid_max = cpuid_max;
455 
456 	dprintf((stderr, "cpuid_max is set to %d\n", ec->cpuid_max));
457 
458 	di_arg.ph = ph;
459 	di_arg.root = root;
460 	di_arg.ecache_info = ec;
461 
462 	if (di_walk_node(root, DI_WALK_CLDFIRST, (void *)&di_arg,
463 	    find_cpu_nodes) != 0) {
464 		dprintf((stderr, "di_walk_node fail: %s\n", strerror(errno)));
465 		rv = -1;
466 	}
467 
468 done:
469 	if (root != DI_NODE_NIL)
470 		di_fini(root);
471 	if (ph != DI_PROM_HANDLE_NIL)
472 		di_prom_fini(ph);
473 
474 	return (rv);
475 }
476 
477 /*
478  * Libdevinfo node walk callback for reading ecache size
479  * properties for cpu device nodes. Subtrees not containing
480  * cpu nodes are filtered out.
481  */
482 static int
483 find_cpu_nodes(di_node_t node, void *arg)
484 {
485 	char			*name;
486 	int			*cpuid, *ecache;
487 	di_arg_t		*di_arg = (di_arg_t *)arg;
488 	ecache_info_t		*ec = di_arg->ecache_info;
489 	di_prom_handle_t	ph = di_arg->ph;
490 	int			walk_child = 0;
491 
492 	if (node == DI_NODE_NIL) {
493 		return (DI_WALK_TERMINATE);
494 	}
495 
496 	if (node == di_arg->root) {
497 		return (DI_WALK_CONTINUE);
498 	}
499 
500 	if (di_nodeid(node) == DI_PSEUDO_NODEID) {
501 		return (DI_WALK_PRUNECHILD);
502 	}
503 
504 	name = di_node_name(node);
505 	if (name != NULL) {
506 		/*
507 		 * CMP nodes will be the parent of cpu nodes. On some platforms,
508 		 * cpu nodes will be under the ssm node. In either case,
509 		 * continue searching this subtree.
510 		 */
511 		if (strncmp(name, NODENAME_SSM, strlen(NODENAME_SSM)) == 0 ||
512 		    strncmp(name, NODENAME_CMP, strlen(NODENAME_CMP)) == 0) {
513 			return (DI_WALK_CONTINUE);
514 		}
515 	}
516 
517 	dprintf((stderr, "find_cpu_nodes: node=%p, name=%s, binding_name=%s\n",
518 	    node, di_node_name(node), di_binding_name(node)));
519 
520 	/*
521 	 * Ecache size property name differs with processor implementation.
522 	 * Panther has both L2 and L3, so check for L3 first to differentiate
523 	 * from Jaguar, which has only L2.
524 	 */
525 	if (prop_lookup_int(node, ph, PROP_ECACHE_SIZE, &ecache) == 0 ||
526 	    prop_lookup_int(node, ph, PROP_L3_CACHE_SIZE, &ecache) == 0 ||
527 	    prop_lookup_int(node, ph, PROP_L2_CACHE_SIZE, &ecache) == 0) {
528 		/*
529 		 * On some platforms the cache property is in the core
530 		 * node while the cpuid is in the child cpu node.  It may
531 		 * be needed while processing this node or a child node.
532 		 */
533 		ec->ecache_curr = *ecache;
534 		walk_child = 1;
535 	}
536 
537 	if (prop_lookup_int(node, ph, PROP_CPUID, &cpuid) == 0) {
538 
539 		assert(ec != NULL && ec->ecache_sizes != NULL &&
540 		    *cpuid <= ec->cpuid_max);
541 
542 		if (ec->ecache_curr != 0) {
543 			ec->ecache_sizes[*cpuid] = ec->ecache_curr;
544 
545 		}
546 	}
547 
548 	return (walk_child ? DI_WALK_CONTINUE : DI_WALK_PRUNECHILD);
549 }
550 
551 /*
552  * Given a di_node_t, call the appropriate int property lookup routine.
553  * Note: This lookup fails if the int property has multiple value entries.
554  */
555 static int
556 prop_lookup_int(di_node_t node, di_prom_handle_t ph, char *propname, int **ival)
557 {
558 	int rv;
559 
560 	rv = (di_nodeid(node) == DI_PROM_NODEID) ?
561 	    di_prom_prop_lookup_ints(ph, node, propname, ival) :
562 	    di_prop_lookup_ints(DDI_DEV_T_ANY, node, propname, ival);
563 
564 	return (rv == 1 ? 0 : -1);
565 }
566 
567 /*
568  * For offline queries, RCM must be given a list of all resources
569  * so modules can have access to the full scope of the operation.
570  * The rcm_get_info calls are made individually in order to map the
571  * returned rcm_info_t's to physical devices. The rcm_request_offline
572  * result is cached so the query state can be looked up as we process
573  * the rcm_get_info calls. This routine also tallies up the amount of
574  * memory going away and creates a list of cpu ids to be used
575  * later for rcm_request_capacity_change.
576  */
577 static int
578 rcm_query_init(rcmd_t *rcm, apd_t apd_tbl[], int napds)
579 {
580 	apd_t			*apd;
581 	int 			i, j;
582 	cfga_list_data_t	*cfga_ldata;
583 	int			(*cm_rcm_qpass)(cfga_list_data_t *, rcmd_t *);
584 #ifdef DEBUG
585 	char			**cpp;
586 #endif /* DEBUG */
587 
588 	/*
589 	 * Initial pass to size cpu and resource name arrays needed to
590 	 * interface with RCM. Attachment point ids for CMP can represent
591 	 * multiple cpus (and resource names). Instead of parsing the
592 	 * cfgadm info field here, use the worse case that all component
593 	 * attachment points are CMP.
594 	 */
595 	rcm->ndevs = 0;
596 	for (i = 0, apd = apd_tbl; i < napds; i++, apd++) {
597 		for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
598 		    j < apd->nlist; j++, cfga_ldata++) {
599 			if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
600 				continue;
601 			}
602 			rcm->ndevs += SBD_MAX_CORES_PER_CMP;
603 		}
604 	}
605 
606 	/* account for trailing NULL in rlist */
607 	if (rcm->ndevs > 0 &&
608 	    ((rcm->cpus = calloc(rcm->ndevs, sizeof (cpuid_t))) == NULL ||
609 	    (rcm->rlist = calloc(rcm->ndevs + 1, sizeof (char *))) == NULL)) {
610 		dprintf((stderr, "calloc: %s\n", strerror(errno)));
611 		return (-1);
612 	}
613 
614 	/*
615 	 * Second pass to fill in the RCM resource and cpu lists.
616 	 */
617 	for (i = 0, apd = apd_tbl; i < napds; i++, apd++) {
618 		for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
619 		    j < apd->nlist; j++, cfga_ldata++) {
620 			if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
621 				continue;
622 			}
623 			if ((cm_rcm_qpass =
624 			    cm_rcm_qpass_func(cfga_ldata->ap_type)) != NULL &&
625 			    (*cm_rcm_qpass)(cfga_ldata, rcm) != 0) {
626 				return (-1);
627 			}
628 		}
629 	}
630 
631 	if (rcm->nrlist == 0)
632 		return (0);
633 
634 	/*
635 	 * Cache query result. Since we are only interested in the
636 	 * set of RCM clients processed and not their request status,
637 	 * the return value is irrelevant.
638 	 */
639 	(void) rcm_request_offline_list(rcm->hdl, rcm->rlist,
640 	    RCM_QUERY|RCM_SCOPE, &rcm->offline_query_info);
641 
642 #ifdef DEBUG
643 	dprintf((stderr, "RCM rlist: nrlist=%d\n", rcm->nrlist));
644 	for (cpp = rcm->rlist, i = 0; *cpp != NULL; cpp++, i++) {
645 		dprintf((stderr, "rlist[%d]=%s\n", i, *cpp));
646 	}
647 #endif /* DEBUG */
648 
649 	return (0);
650 }
651 
652 static int
653 cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
654 {
655 	return (((rcm->ncpus > 0 && cpu_cap_request(ri_hdl, rcm) != 0) ||
656 	    (rcm->query_pages > 0 && mem_cap_request(ri_hdl, rcm) != 0)) ?
657 	    -1 : 0);
658 }
659 
660 /*
661  * RCM capacity change request for cpus.
662  */
663 static int
664 cpu_cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
665 {
666 	cpuid_t		*syscpuids, *newcpuids;
667 	int		sysncpus, newncpus;
668 	rcm_info_t	*rcm_info = NULL;
669 	int		i, j, k;
670 	nvlist_t	*nvl;
671 	int		rv = 0;
672 
673 	/* get all cpus in the system */
674 	if (syscpus(&syscpuids, &sysncpus) == -1)
675 		return (-1);
676 
677 	newncpus = sysncpus - rcm->ncpus;
678 	if ((newcpuids = calloc(newncpus, sizeof (cpuid_t))) == NULL) {
679 		dprintf((stderr, "calloc: %s", strerror(errno)));
680 		rv = -1;
681 		goto out;
682 	}
683 
684 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
685 		dprintf((stderr, "nvlist_alloc fail\n"));
686 		rv = -1;
687 		goto out;
688 	}
689 
690 	/*
691 	 * Construct the new cpu list.
692 	 */
693 	for (i = 0, j = 0; i < sysncpus; i++) {
694 		for (k = 0; k < rcm->ncpus; k++) {
695 			if (rcm->cpus[k] == syscpuids[i]) {
696 				break;
697 			}
698 		}
699 		if (k == rcm->ncpus) {
700 			newcpuids[j++] = syscpuids[i];
701 		}
702 	}
703 
704 	if (nvlist_add_int32(nvl, "old_total", sysncpus) != 0 ||
705 	    nvlist_add_int32(nvl, "new_total", newncpus) != 0 ||
706 	    nvlist_add_int32_array(nvl, "old_cpu_list", syscpuids,
707 	    sysncpus) != 0 ||
708 	    nvlist_add_int32_array(nvl, "new_cpu_list", newcpuids,
709 	    newncpus) != 0) {
710 		dprintf((stderr, "nvlist_add fail\n"));
711 		rv = -1;
712 		goto out;
713 	}
714 
715 #ifdef DEBUG
716 	dprintf((stderr, "old_total=%d\n", sysncpus));
717 	for (i = 0; i < sysncpus; i++) {
718 		dprintf((stderr, "old_cpu_list[%d]=%d\n", i, syscpuids[i]));
719 	}
720 	dprintf((stderr, "new_total=%d\n", newncpus));
721 	for (i = 0; i < newncpus; i++) {
722 		dprintf((stderr, "new_cpu_list[%d]=%d\n", i, newcpuids[i]));
723 	}
724 #endif /* DEBUG */
725 
726 	(void) rcm_request_capacity_change(rcm->hdl, RCM_CPU_ALL,
727 	    RCM_QUERY|RCM_SCOPE, nvl, &rcm_info);
728 
729 	rv = add_rcm_clients(&ri_hdl->cpu_cap_clients, rcm, rcm_info, 0, NULL);
730 
731 out:
732 	s_free(syscpuids);
733 	s_free(newcpuids);
734 	nvlist_free(nvl);
735 	if (rcm_info != NULL)
736 		rcm_free_info(rcm_info);
737 
738 	return (rv);
739 }
740 
741 static int
742 syscpus(cpuid_t **cpuids, int *ncpus)
743 {
744 	kstat_t		*ksp;
745 	kstat_ctl_t	*kc;
746 	cpuid_t		*cp;
747 	int		i;
748 
749 	if ((*ncpus = sysconf(_SC_NPROCESSORS_CONF)) == -1) {
750 		dprintf((stderr, "sysconf: %s\n", errno));
751 		return (-1);
752 	}
753 
754 	if ((kc = kstat_open()) == NULL) {
755 		dprintf((stderr, "kstat_open fail\n"));
756 		return (-1);
757 	}
758 
759 	if ((cp = calloc(*ncpus, sizeof (cpuid_t))) == NULL) {
760 		dprintf((stderr, "calloc: %s\n", errno));
761 		(void) kstat_close(kc);
762 		return (-1);
763 	}
764 
765 	for (i = 0, ksp = kc->kc_chain; ksp != NULL; ksp = ksp->ks_next) {
766 		if (strcmp(ksp->ks_module, "cpu_info") == 0) {
767 			cp[i++] = ksp->ks_instance;
768 		}
769 	}
770 
771 	(void) kstat_close(kc);
772 	*cpuids = cp;
773 
774 	return (0);
775 }
776 
777 /*
778  * RCM capacity change request for memory.
779  */
780 static int
781 mem_cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
782 {
783 	nvlist_t	*nvl;
784 	rcm_info_t	*rcm_info = NULL;
785 	long 		newpages;
786 	int		rv = 0;
787 
788 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
789 		dprintf((stderr, "nvlist_alloc fail\n"));
790 		return (-1);
791 	}
792 
793 	newpages = rcm->ms_syspages - rcm->query_pages;
794 	if (nvlist_add_int32(nvl, "page_size", rcm->ms_pagesize) != 0 ||
795 	    nvlist_add_int32(nvl, "old_pages", rcm->ms_syspages) != 0 ||
796 	    nvlist_add_int32(nvl, "new_pages", newpages) != 0) {
797 		dprintf((stderr, "nvlist_add fail\n"));
798 		nvlist_free(nvl);
799 		return (-1);
800 	}
801 
802 	dprintf((stderr, "memory capacity change req: "
803 	    "page_size=%d, old_pages=%d, new_pages=%d\n",
804 	    rcm->ms_pagesize, rcm->ms_syspages, newpages));
805 
806 	(void) rcm_request_capacity_change(rcm->hdl, RCM_MEM_ALL,
807 	    RCM_QUERY|RCM_SCOPE, nvl, &rcm_info);
808 
809 	rv = add_rcm_clients(&ri_hdl->mem_cap_clients, rcm, rcm_info, 0, NULL);
810 
811 	nvlist_free(nvl);
812 	if (rcm_info != NULL)
813 		rcm_free_info(rcm_info);
814 
815 	return (rv);
816 }
817 
818 static int
819 (*cm_rcm_qpass_func(cfga_type_t ap_type))(cfga_list_data_t *, rcmd_t *)
820 {
821 	int i;
822 
823 	for (i = 0; i < sizeof (cm_ctl) / sizeof (cm_ctl[0]); i++) {
824 		if (strcmp(cm_ctl[i].type, ap_type) == 0) {
825 			return (cm_ctl[i].cm_rcm_qpass);
826 		}
827 	}
828 	return (NULL);
829 }
830 
831 /*
832  * Save cpu ids and RCM abstract resource names.
833  * Cpu ids will be used for the capacity change request.
834  * Resource names will be used for the offline query.
835  */
836 static int
837 cpu_rcm_qpass(cfga_list_data_t *cfga_ldata, rcmd_t *rcm)
838 {
839 	processorid_t	cpuid;
840 	char		*cpustr, *lasts, *rsrcname, rbuf[32];
841 	char		cbuf[CFGA_INFO_LEN];
842 	int		speed, ecache;
843 
844 	assert(sscanf(cfga_ldata->ap_info, CPU_INFO_FMT, &cbuf, &speed,
845 	    &ecache) == 3);
846 
847 	for (cpustr = (char *)strtok_r(cbuf, CPUID_SEP, &lasts);
848 	    cpustr != NULL;
849 	    cpustr = (char *)strtok_r(NULL, CPUID_SEP, &lasts)) {
850 		cpuid = atoi(cpustr);
851 
852 		(void) snprintf(rbuf, sizeof (rbuf), "%s%d", RCM_CPU, cpuid);
853 		if ((rsrcname = strdup(rbuf)) == NULL) {
854 			dprintf((stderr, "strdup fail\n"));
855 			return (-1);
856 		}
857 		assert(rcm->nrlist < rcm->ndevs && rcm->ncpus < rcm->ndevs);
858 		rcm->rlist[rcm->nrlist++] = rsrcname;
859 		rcm->cpus[rcm->ncpus++] = (cpuid_t)cpuid;
860 
861 		dprintf((stderr, "cpu_cm_info: cpuid=%d, rsrcname=%s",
862 		    cpuid, rsrcname));
863 	}
864 
865 	return (0);
866 }
867 
868 /*
869  * No RCM resource names for individual memory units, so
870  * just add to offline query page count.
871  */
872 static int
873 mem_rcm_qpass(cfga_list_data_t *cfga, rcmd_t *rcm)
874 {
875 	char		*cp;
876 	uint_t		kbytes;
877 	longlong_t	ii;
878 
879 	if ((cp = strstr(cfga->ap_info, "size")) == NULL ||
880 	    sscanf(cp, "size=%u", &kbytes) != 1) {
881 		dprintf((stderr, "unknown sbd info format: %s\n", cp));
882 		return (-1);
883 	}
884 
885 	ii = (longlong_t)kbytes * KBYTE;
886 	rcm->query_pages += (uint_t)(ii / rcm->ms_pagesize);
887 
888 	dprintf((stderr, "%s: npages=%u\n", cfga->ap_log_id,
889 	    (uint_t)(ii / rcm->ms_pagesize)));
890 
891 	return (0);
892 }
893 
894 /*
895  * Add physical I/O bus name to RCM resource list.
896  */
897 static int
898 io_rcm_qpass(cfga_list_data_t *cfga, rcmd_t *rcm)
899 {
900 	char		path[MAXPATHLEN];
901 	char		buf[MAXPATHLEN];
902 	char		*rsrcname;
903 
904 	if (sscanf(cfga->ap_info, "device=%s", path) != 1) {
905 		dprintf((stderr, "unknown sbd info format: %s\n",
906 		    cfga->ap_info));
907 		return (-1);
908 	}
909 
910 	(void) snprintf(buf, sizeof (buf), "/devices%s", path);
911 	if ((rsrcname = strdup(buf)) == NULL) {
912 		dprintf((stderr, "strdup fail\n"));
913 		return (-1);
914 	}
915 
916 	assert(rcm->nrlist < rcm->ndevs);
917 	rcm->rlist[rcm->nrlist++] = rsrcname;
918 
919 	return (0);
920 }
921 
922 static int
923 (*cm_info_func(cfga_type_t ap_type))(ri_ap_t *, cfga_list_data_t *,
924     int, rcmd_t *)
925 {
926 	int i;
927 
928 	for (i = 0; i < sizeof (cm_ctl) / sizeof (cm_ctl[0]); i++) {
929 		if (strcmp(cm_ctl[i].type, ap_type) == 0) {
930 			return (cm_ctl[i].cm_info);
931 		}
932 	}
933 	return (NULL);
934 }
935 
936 /*
937  * Create cpu handle, adding properties exported by sbd plugin and
938  * RCM client usage.
939  */
940 /* ARGSUSED */
941 static int
942 cpu_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
943 {
944 	processorid_t	cpuid;
945 	int		speed, ecache, rv = 0;
946 	char		buf[CFGA_INFO_LEN], *cpustr, *lasts;
947 
948 	if (sscanf(cfga->ap_info, CPU_INFO_FMT, &buf, &speed, &ecache) != 3) {
949 		dprintf((stderr, "unknown sbd info format: %s\n",
950 		    cfga->ap_info));
951 		return (-1);
952 	}
953 
954 	/* parse cpuids */
955 	for (cpustr = (char *)strtok_r(buf, CPUID_SEP, &lasts);
956 	    cpustr != NULL;
957 	    cpustr = (char *)strtok_r(NULL, CPUID_SEP, &lasts)) {
958 		cpuid = atoi(cpustr);
959 		if ((rv = i_cpu_cm_info(cpuid, speed, ecache, ap, rcm)) != 0) {
960 			break;
961 		}
962 	}
963 
964 	return (rv);
965 }
966 
967 static int
968 i_cpu_cm_info(processorid_t cpuid, int speed, int ecache_cfga, ri_ap_t *ap,
969     rcmd_t *rcm)
970 {
971 	int		ecache_mb = 0;
972 	int		ecache_kb = 0;
973 	char		*state, buf[32];
974 	processor_info_t cpu_info;
975 	ri_dev_t	*cpu = NULL;
976 	rcm_info_t	*rcm_info = NULL;
977 
978 	/*
979 	 * Could have been unconfigured in the interim, so cannot
980 	 * count on processor_info recognizing it.
981 	 */
982 	state = (processor_info(cpuid, &cpu_info) == 0) ?
983 	    pstate2str(cpu_info.pi_state) : "unknown";
984 
985 	if ((cpu = ri_dev_alloc()) == NULL) {
986 		dprintf((stderr, "ri_dev_alloc failed\n"));
987 		return (-1);
988 	}
989 
990 	/*
991 	 * Assume the ecache_info table has the right e-cache size for
992 	 * this CPU.  Use the value found in cfgadm (ecache_cfga) if not.
993 	 */
994 	if (rcm->ecache_info.ecache_sizes != NULL) {
995 		assert(rcm->ecache_info.cpuid_max != 0 &&
996 		    cpuid <= rcm->ecache_info.cpuid_max);
997 		ecache_mb = rcm->ecache_info.ecache_sizes[cpuid] / MBYTE;
998 		ecache_kb = rcm->ecache_info.ecache_sizes[cpuid] / KBYTE;
999 	}
1000 
1001 	if (ecache_mb == 0) {
1002 		ecache_mb = ecache_cfga;
1003 	}
1004 
1005 	dprintf((stderr, "i_cpu_cm_info: cpu(%d) ecache=%d MB\n",
1006 	    cpuid, ecache));
1007 
1008 	if (nvlist_add_int32(cpu->conf_props, RI_CPU_ID, cpuid) != 0 ||
1009 	    nvlist_add_int32(cpu->conf_props, RI_CPU_SPEED, speed) != 0 ||
1010 	    nvlist_add_int32(cpu->conf_props, RI_CPU_ECACHE, ecache_mb) != 0 ||
1011 	    nvlist_add_string(cpu->conf_props, RI_CPU_STATE, state) != 0) {
1012 		dprintf((stderr, "nvlist_add fail\n"));
1013 		ri_dev_free(cpu);
1014 		return (-1);
1015 	}
1016 
1017 	/*
1018 	 * Report cache size in kilobyte units if available.  This info is
1019 	 * added to support processors with cache sizes that are non-integer
1020 	 * megabyte multiples.
1021 	 */
1022 	if (ecache_kb != 0) {
1023 		if (nvlist_add_int32(cpu->conf_props, RI_CPU_ECACHE_KBYTE,
1024 		    ecache_kb) != 0)  {
1025 			dprintf((stderr, "nvlist_add fail: %s\n",
1026 			    RI_CPU_ECACHE_KBYTE));
1027 			ri_dev_free(cpu);
1028 			return (-1);
1029 		}
1030 	}
1031 
1032 	(void) snprintf(buf, sizeof (buf), "%s%d", RCM_CPU, cpuid);
1033 	dprintf((stderr, "rcm_get_info(%s)\n", buf));
1034 	if (rcm_get_info(rcm->hdl, buf, RCM_INCLUDE_DEPENDENT,
1035 	    &rcm_info) != RCM_SUCCESS) {
1036 		dprintf((stderr, "rcm_get_info (errno=%d)\n", errno));
1037 		ri_dev_free(cpu);
1038 		if (rcm_info != NULL)
1039 			rcm_free_info(rcm_info);
1040 		return (-1);
1041 	}
1042 
1043 	dev_list_cpu_insert(&ap->cpus, cpu, cpuid);
1044 
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Create memory handle, adding properties exported by sbd plugin.
1050  * No RCM tuples to be saved unless RCM is modified to export names
1051  * for individual memory units.
1052  */
1053 /* ARGSUSED */
1054 static int
1055 mem_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
1056 {
1057 	ri_dev_t	*mem;
1058 	char		*cp;
1059 	char		*cpval;
1060 	int		len;
1061 	uint64_t	base_addr;				/* required */
1062 	int32_t		size_kb;				/* required */
1063 	int32_t		perm_kb = 0;				/* optional */
1064 	char		target[CFGA_AP_LOG_ID_LEN] = "";	/* optional */
1065 	int32_t		del_kb = 0;				/* optional */
1066 	int32_t		rem_kb = 0;				/* optional */
1067 	char		source[CFGA_AP_LOG_ID_LEN] = "";	/* optional */
1068 
1069 	if (sscanf(cfga->ap_info, "address=0x%llx size=%u", &base_addr,
1070 	    &size_kb) != 2) {
1071 		goto err_fmt;
1072 	}
1073 
1074 	if ((cp = strstr(cfga->ap_info, "permanent")) != NULL &&
1075 	    sscanf(cp, "permanent=%u", &perm_kb) != 1) {
1076 		goto err_fmt;
1077 	}
1078 
1079 	if ((cp = strstr(cfga->ap_info, "target")) != NULL) {
1080 		if ((cpval = strstr(cp, "=")) == NULL) {
1081 			goto err_fmt;
1082 		}
1083 		for (len = 0; cpval[len] != '\0' && cpval[len] != ' '; len++) {
1084 			if (len >= CFGA_AP_LOG_ID_LEN) {
1085 				goto err_fmt;
1086 			}
1087 		}
1088 		if (sscanf(cp, "target=%s deleted=%u remaining=%u", &target,
1089 		    &del_kb, &rem_kb) != 3) {
1090 			goto err_fmt;
1091 		}
1092 	}
1093 
1094 	if ((cp = strstr(cfga->ap_info, "source")) != NULL) {
1095 		if ((cpval = strstr(cp, "=")) == NULL) {
1096 			goto err_fmt;
1097 		}
1098 		for (len = 0; cpval[len] != '\0' && cpval[len] != ' '; len++) {
1099 			if (len >= CFGA_AP_LOG_ID_LEN) {
1100 				goto err_fmt;
1101 			}
1102 		}
1103 		if (sscanf(cp, "source=%s", &source) != 1) {
1104 			goto err_fmt;
1105 		}
1106 	}
1107 
1108 	dprintf((stderr, "%s: base=0x%llx, size=%u, permanent=%u\n",
1109 	    cfga->ap_log_id, base_addr, size_kb, perm_kb));
1110 
1111 	if ((mem = ri_dev_alloc()) == NULL)
1112 		return (-1);
1113 
1114 	/*
1115 	 * Convert memory sizes to MB (truncate).
1116 	 */
1117 	if (nvlist_add_uint64(mem->conf_props, RI_MEM_ADDR, base_addr) != 0 ||
1118 	    nvlist_add_int32(mem->conf_props, RI_MEM_BRD, size_kb/KBYTE) != 0 ||
1119 	    nvlist_add_int32(mem->conf_props, RI_MEM_PERM,
1120 	    perm_kb/KBYTE) != 0) {
1121 		dprintf((stderr, "nvlist_add failure\n"));
1122 		ri_dev_free(mem);
1123 		return (-1);
1124 	}
1125 
1126 	if (target[0] != '\0' &&
1127 	    (nvlist_add_string(mem->conf_props, RI_MEM_TARG, target) != 0 ||
1128 	    nvlist_add_int32(mem->conf_props, RI_MEM_DEL, del_kb/KBYTE) != 0 ||
1129 	    nvlist_add_int32(mem->conf_props, RI_MEM_REMAIN,
1130 	    rem_kb/KBYTE) != 0)) {
1131 		dprintf((stderr, "nvlist_add failure\n"));
1132 		ri_dev_free(mem);
1133 		return (-1);
1134 	}
1135 
1136 	if (source[0] != '\0' &&
1137 	    nvlist_add_string(mem->conf_props, RI_MEM_SRC, source) != 0) {
1138 		dprintf((stderr, "nvlist_add failure\n"));
1139 		ri_dev_free(mem);
1140 		return (-1);
1141 	}
1142 
1143 	/*
1144 	 * XXX - move this property to attachment point hdl?
1145 	 */
1146 	if (nvlist_add_int32(mem->conf_props, RI_MEM_DOMAIN,
1147 	    rcm->ms_sysmb) != 0) {
1148 		dprintf((stderr, "nvlist_add failure\n"));
1149 		ri_dev_free(mem);
1150 		return (-1);
1151 	}
1152 
1153 	dev_list_append(&ap->mems, mem);
1154 	return (0);
1155 
1156 err_fmt:
1157 	dprintf((stderr, "unknown sbd info format: %s\n", cfga->ap_info));
1158 	return (-1);
1159 }
1160 
1161 /*
1162  * Initiate a libdevinfo walk on the IO bus path.
1163  * XXX - investigate performance using two threads here: one thread to do the
1164  * libdevinfo snapshot and treewalk; and one thread to get RCM usage info
1165  */
1166 static int
1167 io_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
1168 {
1169 	int			i;
1170 	int			j;
1171 	int			k;
1172 	int			set_size;
1173 	int			retval = 0;
1174 	int			n_usage;
1175 	devinfo_arg_t		di_arg;
1176 	lookup_table_t		devicetable;
1177 	lookup_entry_t		*deventry;
1178 	lookup_entry_t		*lastdeventry;
1179 	ri_dev_t		*io = NULL;
1180 	ri_client_t		*client;
1181 	ri_client_t		*tmp;
1182 	di_devlink_handle_t	linkhd = NULL;
1183 	di_node_t		root = DI_NODE_NIL;
1184 	di_node_t		node = DI_NODE_NIL;
1185 	rcm_info_tuple_t	*rcm_tuple;
1186 	rcm_info_t		*rcm_info = NULL;
1187 	const char		*rcm_rsrc = NULL;
1188 	char			drv_inst[MAXPATHLEN];
1189 	char			path[MAXPATHLEN];
1190 	char			pathbuf[MAXPATHLEN];
1191 
1192 	dprintf((stderr, "io_cm_info(%s)\n", cfga->ap_log_id));
1193 
1194 	/* Extract devfs path from cfgadm information */
1195 	if (sscanf(cfga->ap_info, "device=%s\n", path) != 1) {
1196 		dprintf((stderr, "unknown sbd info format: %s\n",
1197 		    cfga->ap_info));
1198 		return (-1);
1199 	}
1200 
1201 	/* Initialize empty device lookup table */
1202 	devicetable.n_entries = 0;
1203 	devicetable.n_slots = 0;
1204 	devicetable.table = NULL;
1205 
1206 	/* Get libdevinfo snapshot */
1207 	dprintf((stderr, "di_init(%s)\n", path));
1208 	if ((root = di_init(path, DINFOCPYALL)) == DI_NODE_NIL) {
1209 		dprintf((stderr, "di_init: %s\n", strerror(errno)));
1210 		retval = RI_NODE_NIL; /* tell ri_init to skip this node */
1211 		goto end;
1212 	}
1213 
1214 	/*
1215 	 * Map in devlinks database.
1216 	 * XXX - This could be moved to ri_init() for better performance.
1217 	 */
1218 	dprintf((stderr, "di_devlink_init()\n"));
1219 	if ((linkhd = di_devlink_init(NULL, 0)) == NULL) {
1220 		dprintf((stderr, "di_devlink_init: %s\n", strerror(errno)));
1221 		retval = -1;
1222 		goto end;
1223 	}
1224 
1225 	/* Initialize argument for devinfo treewalk */
1226 	di_arg.err = 0;
1227 	di_arg.node = DI_NODE_NIL;
1228 	di_arg.pathbuf = pathbuf;
1229 	di_arg.table = &devicetable;
1230 	di_arg.linkhd = linkhd;
1231 
1232 	/* Use libdevinfo treewalk to build device lookup table */
1233 	if (di_walk_node(root, DI_WALK_CLDFIRST, (void *)&di_arg,
1234 	    devinfo_node_walk) != 0) {
1235 		dprintf((stderr, "di_walk_node: %s\n", strerror(errno)));
1236 		retval = -1;
1237 		goto end;
1238 	}
1239 	if (di_arg.err != 0) {
1240 		dprintf((stderr, "di_walk_node: device tree walk failed\n"));
1241 		retval = -1;
1242 		goto end;
1243 	}
1244 
1245 	/* Call RCM to gather usage information */
1246 	(void) snprintf(pathbuf, MAXPATHLEN, "/devices%s", path);
1247 	dprintf((stderr, "rcm_get_info(%s)\n", pathbuf));
1248 	if (rcm_get_info(rcm->hdl, pathbuf,
1249 	    RCM_INCLUDE_SUBTREE|RCM_INCLUDE_DEPENDENT, &rcm_info) !=
1250 	    RCM_SUCCESS) {
1251 		dprintf((stderr, "rcm_get_info (errno=%d)\n", errno));
1252 		retval = -1;
1253 		goto end;
1254 	}
1255 
1256 	/* Sort the device table by name (proper order for lookups) */
1257 	qsort(devicetable.table, devicetable.n_entries, sizeof (lookup_entry_t),
1258 	    table_compare_names);
1259 
1260 	/* Perform mappings of RCM usage segments to device table entries */
1261 	lastdeventry = NULL;
1262 	rcm_tuple = NULL;
1263 	while ((rcm_tuple = rcm_info_next(rcm_info, rcm_tuple)) != NULL) {
1264 		if ((rcm_rsrc = rcm_info_rsrc(rcm_tuple)) == NULL)
1265 			continue;
1266 		if (deventry = lookup(&devicetable, rcm_rsrc)) {
1267 			if (add_usage(deventry, rcm_rsrc, rcm_tuple)) {
1268 				retval = -1;
1269 				goto end;
1270 			}
1271 			lastdeventry = deventry;
1272 		} else {
1273 			if (add_usage(lastdeventry, rcm_rsrc, rcm_tuple)) {
1274 				retval = -1;
1275 				goto end;
1276 			}
1277 		}
1278 	}
1279 
1280 	/* Re-sort the device table by index number (original treewalk order) */
1281 	qsort(devicetable.table, devicetable.n_entries, sizeof (lookup_entry_t),
1282 	    table_compare_indices);
1283 
1284 	/*
1285 	 * Use the mapped usage and the device table to construct ri_dev_t's.
1286 	 * Construct one for each set of entries in the device table with
1287 	 * matching di_node_t's, if: 1) it has mapped RCM usage, or 2) it is
1288 	 * a leaf node and the caller has requested that unmanaged nodes be
1289 	 * included in the output.
1290 	 */
1291 	i = 0;
1292 	while (i < devicetable.n_entries) {
1293 
1294 		node = devicetable.table[i].node;
1295 
1296 		/* Count how many usage records are mapped to this node's set */
1297 		n_usage = 0;
1298 		set_size = 0;
1299 		while (((i + set_size) < devicetable.n_entries) &&
1300 		    (devicetable.table[i + set_size].node == node)) {
1301 			n_usage += devicetable.table[i + set_size].n_usage;
1302 			set_size += 1;
1303 		}
1304 
1305 		/*
1306 		 * If there's no usage, then the node is unmanaged.  Skip this
1307 		 * set of devicetable entries unless the node is a leaf node
1308 		 * and the caller has requested information on unmanaged leaves.
1309 		 */
1310 		if ((n_usage == 0) &&
1311 		    !((flags & RI_INCLUDE_UNMANAGED) && (ident_leaf(node)))) {
1312 			i += set_size;
1313 			continue;
1314 		}
1315 
1316 		/*
1317 		 * The checks above determined that this node is going in.
1318 		 * So determine its driver/instance name and allocate an
1319 		 * ri_dev_t for this node.
1320 		 */
1321 		if (mk_drv_inst(node, drv_inst, devicetable.table[i].name)) {
1322 			dprintf((stderr, "mk_drv_inst failed\n"));
1323 			retval = -1;
1324 			break;
1325 		}
1326 		if ((io = io_dev_alloc(drv_inst)) == NULL) {
1327 			dprintf((stderr, "io_dev_alloc failed\n"));
1328 			retval = -1;
1329 			break;
1330 		}
1331 
1332 		/* Now add all the RCM usage records (if any) to the ri_dev_t */
1333 		for (j = i; j < (i + set_size); j++) {
1334 			for (k = 0; k < devicetable.table[j].n_usage; k++) {
1335 				/* Create new ri_client_t for basic usage */
1336 				client = ri_client_alloc(
1337 				    (char *)devicetable.table[j].usage[k].rsrc,
1338 				    (char *)devicetable.table[j].usage[k].info);
1339 				if (client == NULL) {
1340 					dprintf((stderr,
1341 					    "ri_client_alloc failed\n"));
1342 					ri_dev_free(io);
1343 					retval = -1;
1344 					goto end;
1345 				}
1346 
1347 				/* Add extra query usage to the ri_client_t */
1348 				if ((flags & RI_INCLUDE_QUERY) &&
1349 				    (add_query_state(rcm, client,
1350 				    devicetable.table[j].usage[k].rsrc,
1351 				    devicetable.table[j].usage[k].info) != 0)) {
1352 					dprintf((stderr,
1353 					    "add_query_state failed\n"));
1354 					ri_dev_free(io);
1355 					ri_client_free(client);
1356 					retval = -1;
1357 					goto end;
1358 				}
1359 
1360 				/* Link new ri_client_t to ri_dev_t */
1361 				if (io->rcm_clients) {
1362 					tmp = io->rcm_clients;
1363 					while (tmp->next)
1364 						tmp = tmp->next;
1365 					tmp->next = client;
1366 				} else {
1367 					io->rcm_clients = client;
1368 				}
1369 			}
1370 		}
1371 
1372 		/* Link the ri_dev_t into the return value */
1373 		dev_list_append(&ap->ios, io);
1374 
1375 		/* Advance to the next node set */
1376 		i += set_size;
1377 	}
1378 
1379 end:
1380 	if (rcm_info != NULL)
1381 		rcm_free_info(rcm_info);
1382 	if (linkhd != NULL)
1383 		di_devlink_fini(&linkhd);
1384 	if (root != DI_NODE_NIL)
1385 		di_fini(root);
1386 	empty_table(&devicetable);
1387 
1388 	dprintf((stderr, "io_cm_info: returning %d\n", retval));
1389 	return (retval);
1390 }
1391 
1392 static int
1393 ident_leaf(di_node_t node)
1394 {
1395 	di_minor_t	minor = DI_MINOR_NIL;
1396 
1397 	return ((minor = di_minor_next(node, minor)) != DI_MINOR_NIL &&
1398 	    di_child_node(node) == DI_NODE_NIL);
1399 }
1400 
1401 /* ARGSUSED */
1402 static int
1403 mk_drv_inst(di_node_t node, char drv_inst[], char *devfs_path)
1404 {
1405 	char	*drv;
1406 	int	inst;
1407 
1408 	if ((drv = di_driver_name(node)) == NULL) {
1409 		dprintf((stderr, "no driver bound to %s\n",
1410 		    devfs_path));
1411 		return (-1);
1412 	}
1413 
1414 	if ((inst = di_instance(node)) == -1) {
1415 		dprintf((stderr, "no instance assigned to %s\n",
1416 		    devfs_path));
1417 		return (-1);
1418 	}
1419 	(void) snprintf(drv_inst, MAXPATHLEN, "%s%d", drv, inst);
1420 
1421 	return (0);
1422 }
1423 
1424 /*
1425  * Libdevinfo walker.
1426  *
1427  * During the tree walk of the attached IO devices, for each node
1428  * and all of its associated minors, the following actions are performed:
1429  *  -  The /devices path of the physical device node or minor
1430  *     is stored in a lookup table along with a reference to the
1431  *     libdevinfo node it represents via add_lookup_entry().
1432  *  -  The device links associated with each device are also
1433  *     stored in the same lookup table along with a reference to
1434  *     the libdevinfo node it represents via the minor walk callback.
1435  *
1436  */
1437 static int
1438 devinfo_node_walk(di_node_t node, void *arg)
1439 {
1440 	char			*devfs_path;
1441 #ifdef DEBUG
1442 	char			*drv;
1443 #endif /* DEBUG */
1444 	devinfo_arg_t		*di_arg = (devinfo_arg_t *)arg;
1445 
1446 	if (node == DI_NODE_NIL) {
1447 		return (DI_WALK_TERMINATE);
1448 	}
1449 
1450 	if (((di_state(node) & DI_DRIVER_DETACHED) == 0) &&
1451 	    ((devfs_path = di_devfs_path(node)) != NULL)) {
1452 
1453 		/* Use the provided path buffer to create full /devices path */
1454 		(void) snprintf(di_arg->pathbuf, MAXPATHLEN, "/devices%s",
1455 		    devfs_path);
1456 
1457 #ifdef DEBUG
1458 		dprintf((stderr, "devinfo_node_walk(%s)\n", di_arg->pathbuf));
1459 		if ((drv = di_driver_name(node)) != NULL)
1460 			dprintf((stderr, " driver name %s instance %d\n", drv,
1461 			    di_instance(node)));
1462 #endif
1463 
1464 		/* Free the devfs_path */
1465 		di_devfs_path_free(devfs_path);
1466 
1467 		/* Add an entry to the lookup table for this physical device */
1468 		if (add_lookup_entry(di_arg->table, di_arg->pathbuf, node)) {
1469 			dprintf((stderr, "add_lookup_entry: %s\n",
1470 			    strerror(errno)));
1471 			di_arg->err = 1;
1472 			return (DI_WALK_TERMINATE);
1473 		}
1474 
1475 		/* Check if this node has minors */
1476 		if ((di_minor_next(node, DI_MINOR_NIL)) != DI_MINOR_NIL) {
1477 			/* Walk this node's minors */
1478 			di_arg->node = node;
1479 			if (di_walk_minor(node, NULL, DI_CHECK_ALIAS, arg,
1480 			    devinfo_minor_walk) != 0) {
1481 				dprintf((stderr, "di_walk_minor: %s\n",
1482 				    strerror(errno)));
1483 				di_arg->err = 1;
1484 				return (DI_WALK_TERMINATE);
1485 			}
1486 		}
1487 	}
1488 
1489 	return (DI_WALK_CONTINUE);
1490 }
1491 
1492 /*
1493  * Use di_devlink_walk to find the /dev link from /devices path for this minor
1494  */
1495 static int
1496 devinfo_minor_walk(di_node_t node, di_minor_t minor, void *arg)
1497 {
1498 	char		*name;
1499 	char		*devfs_path;
1500 	devinfo_arg_t	*di_arg = (devinfo_arg_t *)arg;
1501 	char		pathbuf[MAXPATHLEN];
1502 
1503 #ifdef DEBUG
1504 	dprintf((stderr, "devinfo_minor_walk(%d) %s\n", minor,
1505 	    di_arg->pathbuf));
1506 
1507 	if ((name = di_minor_name(minor)) != NULL) {
1508 		dprintf((stderr, "  minor name %s\n", name));
1509 	}
1510 #endif /* DEBUG */
1511 
1512 	/* Terminate the walk when the device node changes */
1513 	if (node != di_arg->node) {
1514 		return (DI_WALK_TERMINATE);
1515 	}
1516 
1517 	/* Construct full /devices path for this minor */
1518 	if ((name = di_minor_name(minor)) == NULL) {
1519 		return (DI_WALK_CONTINUE);
1520 	}
1521 	(void) snprintf(pathbuf, MAXPATHLEN, "%s:%s", di_arg->pathbuf, name);
1522 
1523 	/* Add lookup entry for this minor node */
1524 	if (add_lookup_entry(di_arg->table, pathbuf, node)) {
1525 		dprintf((stderr, "add_lookup_entry: %s\n", strerror(errno)));
1526 		di_arg->err = 1;
1527 		return (DI_WALK_TERMINATE);
1528 	}
1529 
1530 	/*
1531 	 * Walk the associated device links.
1532 	 * Note that di_devlink_walk() doesn't want "/devices" in its paths.
1533 	 * Also note that di_devlink_walk() will fail if there are no device
1534 	 * links, which is fine; so ignore if it fails.  Only check for
1535 	 * internal failures during such a walk.
1536 	 */
1537 	devfs_path = &pathbuf[strlen("/devices")];
1538 	(void) di_devlink_walk(di_arg->linkhd, NULL, devfs_path, 0, arg,
1539 	    devinfo_devlink_walk);
1540 	if (di_arg->err != 0) {
1541 		return (DI_WALK_TERMINATE);
1542 	}
1543 
1544 	return (DI_WALK_CONTINUE);
1545 }
1546 
1547 static int
1548 devinfo_devlink_walk(di_devlink_t devlink, void *arg)
1549 {
1550 	const char	*linkpath;
1551 	devinfo_arg_t	*di_arg = (devinfo_arg_t *)arg;
1552 
1553 	/* Get the devlink's path */
1554 	if ((linkpath = di_devlink_path(devlink)) == NULL) {
1555 		dprintf((stderr, "di_devlink_path: %s\n", strerror(errno)));
1556 		di_arg->err = 1;
1557 		return (DI_WALK_TERMINATE);
1558 	}
1559 	dprintf((stderr, "devinfo_devlink_walk: %s\n", linkpath));
1560 
1561 	/* Add lookup entry for this devlink */
1562 	if (add_lookup_entry(di_arg->table, linkpath, di_arg->node)) {
1563 		dprintf((stderr, "add_lookup_entry: %s\n", strerror(errno)));
1564 		di_arg->err = 1;
1565 		return (DI_WALK_TERMINATE);
1566 	}
1567 
1568 	return (DI_WALK_CONTINUE);
1569 }
1570 
1571 /*
1572  * Map rcm_info_t's to ri_client_t's, filtering out "uninteresting" (hack)
1573  * RCM clients. The number of "interesting" ri_client_t's is returned
1574  * in cnt if passed non-NULL.
1575  */
1576 static int
1577 add_rcm_clients(ri_client_t **client_list, rcmd_t *rcm, rcm_info_t *info,
1578     int flags, int *cnt)
1579 {
1580 	rcm_info_tuple_t	*tuple;
1581 	char			*rsrc, *usage;
1582 	ri_client_t		*client, *tmp;
1583 
1584 	assert(client_list != NULL && rcm != NULL);
1585 
1586 	if (info == NULL)
1587 		return (0);
1588 
1589 	if (cnt != NULL)
1590 		*cnt = 0;
1591 
1592 	tuple = NULL;
1593 	while ((tuple = rcm_info_next(info, tuple)) != NULL) {
1594 		if ((rsrc = (char *)rcm_info_rsrc(tuple)) == NULL ||
1595 		    (usage = (char *)rcm_info_info(tuple)) == NULL) {
1596 			continue;
1597 		}
1598 
1599 		if (rcm_ignore(rsrc, usage) == 0)
1600 			continue;
1601 
1602 		if ((client = ri_client_alloc(rsrc, usage)) == NULL)
1603 			return (-1);
1604 
1605 		if ((flags & RI_INCLUDE_QUERY) && add_query_state(rcm, client,
1606 		    rsrc, usage) != 0) {
1607 			ri_client_free(client);
1608 			return (-1);
1609 		}
1610 
1611 		if (cnt != NULL)
1612 			++*cnt;
1613 
1614 		/*
1615 		 * Link in
1616 		 */
1617 		if ((tmp = *client_list) == NULL) {
1618 			*client_list = client;
1619 			continue;
1620 		}
1621 		while (tmp->next != NULL) {
1622 			tmp = tmp->next;
1623 		}
1624 		tmp->next = client;
1625 	}
1626 
1627 	return (0);
1628 }
1629 
1630 /*
1631  * Currently only filtering out based on known info string prefixes.
1632  */
1633 /* ARGSUSED */
1634 static int
1635 rcm_ignore(char *rsrc, char *infostr)
1636 {
1637 	char	**cpp;
1638 
1639 	for (cpp = rcm_info_filter; *cpp != NULL; cpp++) {
1640 		if (strncmp(infostr, *cpp, strlen(*cpp)) == 0) {
1641 			return (0);
1642 		}
1643 	}
1644 	return (-1);
1645 }
1646 
1647 /*
1648  * If this tuple was cached in the offline query pass, add the
1649  * query state and error string to the ri_client_t.
1650  */
1651 static int
1652 add_query_state(rcmd_t *rcm, ri_client_t *client, const char *rsrc,
1653     const char *info)
1654 {
1655 	int			qstate = RI_QUERY_UNKNOWN;
1656 	char			*errstr = NULL;
1657 	rcm_info_tuple_t	*cached_tuple;
1658 
1659 	if ((cached_tuple = tuple_lookup(rcm, rsrc, info)) != NULL) {
1660 		qstate = state2query(rcm_info_state(cached_tuple));
1661 		errstr = (char *)rcm_info_error(cached_tuple);
1662 	}
1663 
1664 	if (nvlist_add_int32(client->usg_props, RI_QUERY_STATE, qstate) != 0 ||
1665 	    (errstr != NULL && nvlist_add_string(client->usg_props,
1666 	    RI_QUERY_ERR, errstr) != 0)) {
1667 		dprintf((stderr, "nvlist_add fail\n"));
1668 		return (-1);
1669 	}
1670 
1671 	return (0);
1672 }
1673 
1674 static int
1675 state2query(int rcm_state)
1676 {
1677 	int	query;
1678 
1679 	switch (rcm_state) {
1680 	case RCM_STATE_OFFLINE_QUERY:
1681 	case RCM_STATE_SUSPEND_QUERY:
1682 		query = RI_QUERY_OK;
1683 		break;
1684 	case RCM_STATE_OFFLINE_QUERY_FAIL:
1685 	case RCM_STATE_SUSPEND_QUERY_FAIL:
1686 		query = RI_QUERY_FAIL;
1687 		break;
1688 	default:
1689 		query = RI_QUERY_UNKNOWN;
1690 		break;
1691 	}
1692 
1693 	return (query);
1694 }
1695 
1696 static void
1697 dev_list_append(ri_dev_t **head, ri_dev_t *dev)
1698 {
1699 	ri_dev_t	*tmp;
1700 
1701 	if ((tmp = *head) == NULL) {
1702 		*head = dev;
1703 		return;
1704 	}
1705 	while (tmp->next != NULL) {
1706 		tmp = tmp->next;
1707 	}
1708 	tmp->next = dev;
1709 }
1710 
1711 /*
1712  * The cpu list is ordered on cpuid since CMP cpuids will not necessarily
1713  * be discovered in sequence.
1714  */
1715 static void
1716 dev_list_cpu_insert(ri_dev_t **listp, ri_dev_t *dev, processorid_t newid)
1717 {
1718 	ri_dev_t	*tmp;
1719 	int32_t		cpuid;
1720 
1721 	while ((tmp = *listp) != NULL &&
1722 	    nvlist_lookup_int32(tmp->conf_props, RI_CPU_ID, &cpuid) == 0 &&
1723 	    cpuid < newid) {
1724 		listp = &tmp->next;
1725 	}
1726 
1727 	dev->next = tmp;
1728 	*listp = dev;
1729 }
1730 
1731 /*
1732  * Linear lookup. Should convert to hash tab.
1733  */
1734 static rcm_info_tuple_t *
1735 tuple_lookup(rcmd_t *rcm, const char *krsrc, const char *kinfo)
1736 {
1737 	rcm_info_tuple_t	*tuple = NULL;
1738 	const char		*rsrc, *info;
1739 
1740 	if ((rcm == NULL) || (krsrc == NULL) || (kinfo == NULL)) {
1741 		return (NULL);
1742 	}
1743 
1744 	while ((tuple = rcm_info_next(rcm->offline_query_info,
1745 	    tuple)) != NULL) {
1746 		if ((rsrc = rcm_info_rsrc(tuple)) == NULL ||
1747 		    (info = rcm_info_info(tuple)) == NULL) {
1748 			continue;
1749 		}
1750 
1751 		if (strcmp(rsrc, krsrc) == 0 && strcmp(info, kinfo) == 0) {
1752 			return (tuple);
1753 		}
1754 	}
1755 	return (NULL);
1756 }
1757 
1758 /*
1759  * Create and link attachment point handle.
1760  */
1761 static ri_ap_t *
1762 ri_ap_alloc(char *ap_id, ri_hdl_t *hdl)
1763 {
1764 	ri_ap_t		*ap, *tmp;
1765 
1766 	if ((ap = calloc(1, sizeof (*ap))) == NULL) {
1767 		dprintf((stderr, "calloc: %s\n", strerror(errno)));
1768 		return (NULL);
1769 	}
1770 
1771 	if (nvlist_alloc(&ap->conf_props, NV_UNIQUE_NAME, 0) != 0 ||
1772 	    nvlist_add_string(ap->conf_props, RI_AP_REQ_ID, ap_id) != 0) {
1773 		nvlist_free(ap->conf_props);
1774 		free(ap);
1775 		return (NULL);
1776 	}
1777 
1778 	if ((tmp = hdl->aps) == NULL) {
1779 		hdl->aps = ap;
1780 	} else {
1781 		while (tmp->next != NULL) {
1782 			tmp = tmp->next;
1783 		}
1784 		tmp->next = ap;
1785 	}
1786 
1787 	return (ap);
1788 }
1789 
1790 static ri_dev_t *
1791 ri_dev_alloc(void)
1792 {
1793 	ri_dev_t	*dev;
1794 
1795 	if ((dev = calloc(1, sizeof (*dev))) == NULL ||
1796 	    nvlist_alloc(&dev->conf_props, NV_UNIQUE_NAME, 0) != 0) {
1797 		s_free(dev);
1798 	}
1799 	return (dev);
1800 }
1801 
1802 static ri_dev_t *
1803 io_dev_alloc(char *drv_inst)
1804 {
1805 	ri_dev_t	*io;
1806 
1807 	assert(drv_inst != NULL);
1808 
1809 	if ((io = ri_dev_alloc()) == NULL)
1810 		return (NULL);
1811 
1812 	if (nvlist_add_string(io->conf_props, RI_IO_DRV_INST,
1813 	    drv_inst) != 0) {
1814 		dprintf((stderr, "nvlist_add_string fail\n"));
1815 		ri_dev_free(io);
1816 		return (NULL);
1817 	}
1818 
1819 	return (io);
1820 }
1821 
1822 static ri_client_t *
1823 ri_client_alloc(char *rsrc, char *usage)
1824 {
1825 	ri_client_t	*client;
1826 
1827 	assert(rsrc != NULL && usage != NULL);
1828 
1829 	if ((client = calloc(1, sizeof (*client))) == NULL) {
1830 		dprintf((stderr, "calloc: %s\n", strerror(errno)));
1831 		return (NULL);
1832 	}
1833 
1834 	if (nvlist_alloc(&client->usg_props, NV_UNIQUE_NAME, 0) != 0) {
1835 		dprintf((stderr, "nvlist_alloc fail\n"));
1836 		free(client);
1837 		return (NULL);
1838 	}
1839 
1840 	if (nvlist_add_string(client->usg_props, RI_CLIENT_RSRC, rsrc) != 0 ||
1841 	    nvlist_add_string(client->usg_props, RI_CLIENT_USAGE, usage) != 0) {
1842 		dprintf((stderr, "nvlist_add_string fail\n"));
1843 		ri_client_free(client);
1844 		return (NULL);
1845 	}
1846 
1847 	return (client);
1848 }
1849 
1850 static void
1851 apd_tbl_free(apd_t apd_tbl[], int napds)
1852 {
1853 	int	i;
1854 	apd_t	*apd;
1855 
1856 	for (i = 0, apd = apd_tbl; i < napds; i++, apd++)
1857 		s_free(apd->cfga_list_data);
1858 
1859 	free(apd_tbl);
1860 }
1861 
1862 static char *
1863 pstate2str(int pi_state)
1864 {
1865 	char	*state;
1866 
1867 	switch (pi_state) {
1868 	case P_OFFLINE:
1869 		state = PS_OFFLINE;
1870 		break;
1871 	case P_ONLINE:
1872 		state = PS_ONLINE;
1873 		break;
1874 	case P_FAULTED:
1875 		state = PS_FAULTED;
1876 		break;
1877 	case P_POWEROFF:
1878 		state = PS_POWEROFF;
1879 		break;
1880 	case P_NOINTR:
1881 		state = PS_NOINTR;
1882 		break;
1883 	case P_SPARE:
1884 		state = PS_SPARE;
1885 		break;
1886 	default:
1887 		state = "unknown";
1888 		break;
1889 	}
1890 
1891 	return (state);
1892 }
1893 
1894 #ifdef DEBUG
1895 static void
1896 dump_apd_tbl(FILE *fp, apd_t *apds, int n_apds)
1897 {
1898 	int			i, j;
1899 	cfga_list_data_t	*cfga_ldata;
1900 
1901 	for (i = 0; i < n_apds; i++, apds++) {
1902 		dprintf((stderr, "apd_tbl[%d].nlist=%d\n", i, apds->nlist));
1903 		for (j = 0, cfga_ldata = apds->cfga_list_data; j < apds->nlist;
1904 		    j++, cfga_ldata++) {
1905 			dprintf((fp,
1906 			    "apd_tbl[%d].cfga_list_data[%d].ap_log_id=%s\n",
1907 			    i, j, cfga_ldata->ap_log_id));
1908 		}
1909 	}
1910 }
1911 #endif /* DEBUG */
1912 
1913 /*
1914  * The lookup table is a simple array that is grown in chunks
1915  * to optimize memory allocation.
1916  * Indices are assigned to each array entry in-order so that
1917  * the original device tree ordering can be discerned at a later time.
1918  *
1919  * add_lookup_entry is called from the libdevinfo tree traversal callbacks:
1920  * 1) devinfo_node_walk - physical device path for each node in
1921  *    the devinfo tree via di_walk_node(), lookup entry name is
1922  *    /devices/[di_devfs_path]
1923  * 2) devinfo_minor_walk - physical device path plus minor name for
1924  *    each minor associated with a node via di_walk_minor(), lookup entry
1925  *    name is /devices/[di_devfs_path:di_minor_name]
1926  * 3) devinfo_devlink_walk - for each minor's /dev link from its /devices
1927  *    path via di_devlink_walk(), lookup entry name is di_devlink_path()
1928  */
1929 static int
1930 add_lookup_entry(lookup_table_t *table, const char *name, di_node_t node)
1931 {
1932 	size_t		size;
1933 	lookup_entry_t	*new_table;
1934 
1935 
1936 	/* Grow the lookup table by USAGE_ALLOC_SIZE slots if necessary */
1937 	if (table->n_entries == table->n_slots) {
1938 		size = (table->n_slots + USAGE_ALLOC_SIZE) *
1939 		    sizeof (lookup_entry_t);
1940 		new_table = (lookup_entry_t *)realloc(table->table, size);
1941 		if (new_table == NULL) {
1942 			dprintf((stderr, "add_lookup_entry: alloc failed: %s\n",
1943 			    strerror(errno)));
1944 			errno = ENOMEM;
1945 			return (-1);
1946 		}
1947 		table->table = new_table;
1948 		table->n_slots += USAGE_ALLOC_SIZE;
1949 	}
1950 
1951 	dprintf((stderr, "add_lookup_entry[%d]:%s\n", table->n_entries, name));
1952 
1953 	/* Add this name to the next slot */
1954 	if ((table->table[table->n_entries].name = strdup(name)) == NULL) {
1955 		dprintf((stderr, "add_lookup_entry: strdup failed: %s\n",
1956 		    strerror(errno)));
1957 		errno = ENOMEM;
1958 		return (-1);
1959 	}
1960 	table->table[table->n_entries].index = table->n_entries;
1961 	table->table[table->n_entries].node = node;
1962 	table->table[table->n_entries].n_usage = 0;
1963 	table->table[table->n_entries].usage = NULL;
1964 	table->n_entries += 1;
1965 
1966 	return (0);
1967 }
1968 
1969 /*
1970  * lookup table entry names are full pathname strings, all start with /
1971  */
1972 static int
1973 table_compare_names(const void *a, const void *b)
1974 {
1975 	lookup_entry_t *entry1 = (lookup_entry_t *)a;
1976 	lookup_entry_t *entry2 = (lookup_entry_t *)b;
1977 
1978 	return (strcmp(entry1->name, entry2->name));
1979 }
1980 
1981 
1982 /*
1983  * Compare two indices and return -1 for less, 1 for greater, 0 for equal
1984  */
1985 static int
1986 table_compare_indices(const void *a, const void *b)
1987 {
1988 	lookup_entry_t *entry1 = (lookup_entry_t *)a;
1989 	lookup_entry_t *entry2 = (lookup_entry_t *)b;
1990 
1991 	if (entry1->index < entry2->index)
1992 		return (-1);
1993 	if (entry1->index > entry2->index)
1994 		return (1);
1995 	return (0);
1996 }
1997 
1998 /*
1999  * Given a RCM resource name, find the matching entry in the IO device table
2000  */
2001 static lookup_entry_t *
2002 lookup(lookup_table_t *table, const char *rcm_rsrc)
2003 {
2004 	lookup_entry_t	*entry;
2005 	lookup_entry_t	lookup_arg;
2006 
2007 	dprintf((stderr, "lookup:%s\n", rcm_rsrc));
2008 	lookup_arg.name = (char *)rcm_rsrc;
2009 	entry = bsearch(&lookup_arg, table->table, table->n_entries,
2010 	    sizeof (lookup_entry_t), table_compare_names);
2011 
2012 #ifdef DEBUG
2013 	if (entry != NULL) {
2014 		dprintf((stderr, " found entry:%d\n", entry->index));
2015 	}
2016 #endif /* DEBUG */
2017 	return (entry);
2018 }
2019 
2020 /*
2021  * Add RCM usage to the given device table entry.
2022  * Returns -1 on realloc failure.
2023  */
2024 static int
2025 add_usage(lookup_entry_t *entry, const char *rcm_rsrc, rcm_info_tuple_t *tuple)
2026 {
2027 	size_t		size;
2028 	const char	*info;
2029 	usage_t		*new_usage;
2030 
2031 	if ((entry == NULL) ||
2032 	    ((info = rcm_info_info(tuple)) == NULL))
2033 		return (0);
2034 
2035 	if (rcm_ignore((char *)rcm_rsrc, (char *)info) == 0)
2036 		return (0);
2037 
2038 	size = (entry->n_usage + 1) * sizeof (usage_t);
2039 	new_usage = (usage_t *)realloc(entry->usage, size);
2040 	if (new_usage == NULL) {
2041 		dprintf((stderr, "add_usage: alloc failed: %s\n",
2042 		    strerror(errno)));
2043 		return (-1);
2044 	}
2045 	dprintf((stderr, "add_usage: entry %d rsrc: %s info: %s\n",
2046 	    entry->index, rcm_rsrc, info));
2047 
2048 	entry->usage = new_usage;
2049 	entry->usage[entry->n_usage].rsrc = rcm_rsrc;
2050 	entry->usage[entry->n_usage].info = info;
2051 	entry->n_usage += 1;
2052 	return (0);
2053 }
2054 
2055 static void
2056 empty_table(lookup_table_t *table)
2057 {
2058 	int i;
2059 
2060 	if (table) {
2061 		for (i = 0; i < table->n_entries; i++) {
2062 			if (table->table[i].name)
2063 				free(table->table[i].name);
2064 			/*
2065 			 * Note: the strings pointed to from within
2066 			 * usage were freed already by rcm_free_info
2067 			 */
2068 			if (table->table[i].usage)
2069 				free(table->table[i].usage);
2070 		}
2071 		if (table->table)
2072 			free(table->table);
2073 		table->table = NULL;
2074 		table->n_entries = 0;
2075 		table->n_slots = 0;
2076 	}
2077 }
2078