xref: /titanic_50/usr/src/cmd/cmd-inet/usr.lib/mdnsd/DNSDigest.c (revision 5c5f137104b2d56181283389fa902220f2023809)
1 /* -*- Mode: C; tab-width: 4 -*-
2  *
3  * Copyright (c) 2002-2011 Apple Computer, Inc. All rights reserved.
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *     http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 
19 #ifdef __cplusplus
20 extern "C" {
21 #endif
22 
23 #include "mDNSEmbeddedAPI.h"
24 #include "DNSCommon.h"
25 
26 // Disable certain benign warnings with Microsoft compilers
27 #if (defined(_MSC_VER))
28 // Disable "conditional expression is constant" warning for debug macros.
29 // Otherwise, this generates warnings for the perfectly natural construct "while(1)"
30 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
31     #pragma warning(disable:4127)
32 #endif
33 
34 
35 // ***************************************************************************
36 #if COMPILER_LIKES_PRAGMA_MARK
37 #pragma mark - Byte Swapping Functions
38 #endif
39 
40 mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes)
41 {
42     return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]);
43 }
44 
45 mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes)
46 {
47     return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]);
48 }
49 
50 // ***************************************************************************
51 #if COMPILER_LIKES_PRAGMA_MARK
52 #pragma mark - MD5 Hash Functions
53 #endif
54 
55 
56 /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h.
57  * The following changes have been made to the original sources:
58  *    replaced CC_LONG w/ mDNSu32
59  *    replaced CC_MD5* with MD5*
60  *    replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h
61  *    removed extern decls for MD5_Init/Update/Final from CommonDigest.h
62  *    removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h
63  *
64  * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code
65  * to aid in platform-specific optimizations and debugging.
66  * Sources originally distributed under the following license headers:
67  * CommonDigest.h - APSL
68  *
69  * md32_Common.h
70  * ====================================================================
71  * Copyright (c) 1999-2002 The OpenSSL Project.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  *
77  * 1. Redistributions of source code must retain the above copyright
78  *    notice, this list of conditions and the following disclaimer.
79  *
80  * 2. Redistributions in binary form must reproduce the above copyright
81  *    notice, this list of conditions and the following disclaimer in
82  *    the documentation and/or other materials provided with the
83  *    distribution.
84  *
85  * 3. All advertising materials mentioning features or use of this
86  *    software must display the following acknowledgment:
87  *    "This product includes software developed by the OpenSSL Project
88  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
89  *
90  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
91  *    endorse or promote products derived from this software without
92  *    prior written permission. For written permission, please contact
93  *    licensing@OpenSSL.org.
94  *
95  * 5. Products derived from this software may not be called "OpenSSL"
96  *    nor may "OpenSSL" appear in their names without prior written
97  *    permission of the OpenSSL Project.
98  *
99  * 6. Redistributions of any form whatsoever must retain the following
100  *    acknowledgment:
101  *    "This product includes software developed by the OpenSSL Project
102  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
103  *
104  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
105  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
106  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
107  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
108  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
109  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
110  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
111  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
112  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
113  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
114  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
115  * OF THE POSSIBILITY OF SUCH DAMAGE.
116  *
117  *
118  * md5_dgst.c, md5_locl.h
119  * ====================================================================
120  *
121  * This product includes cryptographic software written by Eric Young
122  * (eay@cryptsoft.com).  This product includes software written by Tim
123  * Hudson (tjh@cryptsoft.com).
124  *
125  * Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
126  * All rights reserved.
127  *
128  * This package is an SSL implementation written
129  * by Eric Young (eay@cryptsoft.com).
130  * The implementation was written so as to conform with Netscapes SSL.
131  *
132  * This library is free for commercial and non-commercial use as long as
133  * the following conditions are aheared to.  The following conditions
134  * apply to all code found in this distribution, be it the RC4, RSA,
135  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
136  * included with this distribution is covered by the same copyright terms
137  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
138  *
139  * Copyright remains Eric Young's, and as such any Copyright notices in
140  * the code are not to be removed.
141  * If this package is used in a product, Eric Young should be given attribution
142  * as the author of the parts of the library used.
143  * This can be in the form of a textual message at program startup or
144  * in documentation (online or textual) provided with the package.
145  *
146  * Redistribution and use in source and binary forms, with or without
147  * modification, are permitted provided that the following conditions
148  * are met:
149  * 1. Redistributions of source code must retain the copyright
150  *    notice, this list of conditions and the following disclaimer.
151  * 2. Redistributions in binary form must reproduce the above copyright
152  *    notice, this list of conditions and the following disclaimer in the
153  *    documentation and/or other materials provided with the distribution.
154  * 3. All advertising materials mentioning features or use of this software
155  *    must display the following acknowledgement:
156  *    "This product includes cryptographic software written by
157  *     Eric Young (eay@cryptsoft.com)"
158  *    The word 'cryptographic' can be left out if the rouines from the library
159  *    being used are not cryptographic related :-).
160  * 4. If you include any Windows specific code (or a derivative thereof) from
161  *    the apps directory (application code) you must include an acknowledgement:
162  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
163  *
164  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
165  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
166  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
167  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
168  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
169  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
170  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
171  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
172  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
173  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
174  * SUCH DAMAGE.
175  *
176  * The licence and distribution terms for any publically available version or
177  * derivative of this code cannot be changed.  i.e. this code cannot simply be
178  * copied and put under another distribution licence
179  * [including the GNU Public Licence.]
180  *
181  */
182 
183 //from CommonDigest.h
184 
185 
186 
187 // from openssl/md5.h
188 
189 #define MD5_CBLOCK  64
190 #define MD5_LBLOCK  (MD5_CBLOCK/4)
191 #define MD5_DIGEST_LENGTH 16
192 
193 void MD5_Transform(MD5_CTX *c, const unsigned char *b);
194 
195 // From md5_locl.h
196 
197 #ifndef MD5_LONG_LOG2
198 #define MD5_LONG_LOG2 2 /* default to 32 bits */
199 #endif
200 
201 #ifdef MD5_ASM
202 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
203 #  define md5_block_host_order md5_block_asm_host_order
204 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
205 void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num);
206 #  define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned
207 # endif
208 #endif
209 
210 void md5_block_host_order (MD5_CTX *c, const void *p,int num);
211 void md5_block_data_order (MD5_CTX *c, const void *p,int num);
212 
213 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
214 /*
215  * *_block_host_order is expected to handle aligned data while
216  * *_block_data_order - unaligned. As algorithm and host (x86)
217  * are in this case of the same "endianness" these two are
218  * otherwise indistinguishable. But normally you don't want to
219  * call the same function because unaligned access in places
220  * where alignment is expected is usually a "Bad Thing". Indeed,
221  * on RISCs you get punished with BUS ERROR signal or *severe*
222  * performance degradation. Intel CPUs are in turn perfectly
223  * capable of loading unaligned data without such drastic side
224  * effect. Yes, they say it's slower than aligned load, but no
225  * exception is generated and therefore performance degradation
226  * is *incomparable* with RISCs. What we should weight here is
227  * costs of unaligned access against costs of aligning data.
228  * According to my measurements allowing unaligned access results
229  * in ~9% performance improvement on Pentium II operating at
230  * 266MHz. I won't be surprised if the difference will be higher
231  * on faster systems:-)
232  *
233  *				<appro@fy.chalmers.se>
234  */
235 #define md5_block_data_order md5_block_host_order
236 #endif
237 
238 #define DATA_ORDER_IS_LITTLE_ENDIAN
239 
240 #define HASH_LONG       mDNSu32
241 #define HASH_LONG_LOG2  MD5_LONG_LOG2
242 #define HASH_CTX        MD5_CTX
243 #define HASH_CBLOCK     MD5_CBLOCK
244 #define HASH_LBLOCK     MD5_LBLOCK
245 
246 #define HASH_UPDATE     MD5_Update
247 #define HASH_TRANSFORM  MD5_Transform
248 #define HASH_FINAL      MD5_Final
249 
250 #define HASH_MAKE_STRING(c,s)   do {    \
251         unsigned long ll;       \
252         ll=(c)->A; HOST_l2c(ll,(s));    \
253         ll=(c)->B; HOST_l2c(ll,(s));    \
254         ll=(c)->C; HOST_l2c(ll,(s));    \
255         ll=(c)->D; HOST_l2c(ll,(s));    \
256 } while (0)
257 #define HASH_BLOCK_HOST_ORDER   md5_block_host_order
258 #if !defined(L_ENDIAN) || defined(md5_block_data_order)
259 #define HASH_BLOCK_DATA_ORDER   md5_block_data_order
260 /*
261  * Little-endians (Intel and Alpha) feel better without this.
262  * It looks like memcpy does better job than generic
263  * md5_block_data_order on copying-n-aligning input data.
264  * But frankly speaking I didn't expect such result on Alpha.
265  * On the other hand I've got this with egcs-1.0.2 and if
266  * program is compiled with another (better?) compiler it
267  * might turn out other way around.
268  *
269  *				<appro@fy.chalmers.se>
270  */
271 #endif
272 
273 
274 // from md32_common.h
275 
276 /*
277  * This is a generic 32 bit "collector" for message digest algorithms.
278  * Whenever needed it collects input character stream into chunks of
279  * 32 bit values and invokes a block function that performs actual hash
280  * calculations.
281  *
282  * Porting guide.
283  *
284  * Obligatory macros:
285  *
286  * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
287  *	this macro defines byte order of input stream.
288  * HASH_CBLOCK
289  *	size of a unit chunk HASH_BLOCK operates on.
290  * HASH_LONG
291  *	has to be at lest 32 bit wide, if it's wider, then
292  *	HASH_LONG_LOG2 *has to* be defined along
293  * HASH_CTX
294  *	context structure that at least contains following
295  *	members:
296  *		typedef struct {
297  *			...
298  *			HASH_LONG	Nl,Nh;
299  *			HASH_LONG	data[HASH_LBLOCK];
300  *			int		num;
301  *			...
302  *			} HASH_CTX;
303  * HASH_UPDATE
304  *	name of "Update" function, implemented here.
305  * HASH_TRANSFORM
306  *	name of "Transform" function, implemented here.
307  * HASH_FINAL
308  *	name of "Final" function, implemented here.
309  * HASH_BLOCK_HOST_ORDER
310  *	name of "block" function treating *aligned* input message
311  *	in host byte order, implemented externally.
312  * HASH_BLOCK_DATA_ORDER
313  *	name of "block" function treating *unaligned* input message
314  *	in original (data) byte order, implemented externally (it
315  *	actually is optional if data and host are of the same
316  *	"endianess").
317  * HASH_MAKE_STRING
318  *	macro convering context variables to an ASCII hash string.
319  *
320  * Optional macros:
321  *
322  * B_ENDIAN or L_ENDIAN
323  *	defines host byte-order.
324  * HASH_LONG_LOG2
325  *	defaults to 2 if not states otherwise.
326  * HASH_LBLOCK
327  *	assumed to be HASH_CBLOCK/4 if not stated otherwise.
328  * HASH_BLOCK_DATA_ORDER_ALIGNED
329  *	alternative "block" function capable of treating
330  *	aligned input message in original (data) order,
331  *	implemented externally.
332  *
333  * MD5 example:
334  *
335  *	#define DATA_ORDER_IS_LITTLE_ENDIAN
336  *
337  *	#define HASH_LONG		mDNSu32
338  *	#define HASH_LONG_LOG2	mDNSu32_LOG2
339  *	#define HASH_CTX		MD5_CTX
340  *	#define HASH_CBLOCK		MD5_CBLOCK
341  *	#define HASH_LBLOCK		MD5_LBLOCK
342  *	#define HASH_UPDATE		MD5_Update
343  *	#define HASH_TRANSFORM		MD5_Transform
344  *	#define HASH_FINAL		MD5_Final
345  *	#define HASH_BLOCK_HOST_ORDER	md5_block_host_order
346  *	#define HASH_BLOCK_DATA_ORDER	md5_block_data_order
347  *
348  *					<appro@fy.chalmers.se>
349  */
350 
351 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
352 #error "DATA_ORDER must be defined!"
353 #endif
354 
355 #ifndef HASH_CBLOCK
356 #error "HASH_CBLOCK must be defined!"
357 #endif
358 #ifndef HASH_LONG
359 #error "HASH_LONG must be defined!"
360 #endif
361 #ifndef HASH_CTX
362 #error "HASH_CTX must be defined!"
363 #endif
364 
365 #ifndef HASH_UPDATE
366 #error "HASH_UPDATE must be defined!"
367 #endif
368 #ifndef HASH_TRANSFORM
369 #error "HASH_TRANSFORM must be defined!"
370 #endif
371 #ifndef HASH_FINAL
372 #error "HASH_FINAL must be defined!"
373 #endif
374 
375 #ifndef HASH_BLOCK_HOST_ORDER
376 #error "HASH_BLOCK_HOST_ORDER must be defined!"
377 #endif
378 
379 #if 0
380 /*
381  * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
382  * isn't defined.
383  */
384 #ifndef HASH_BLOCK_DATA_ORDER
385 #error "HASH_BLOCK_DATA_ORDER must be defined!"
386 #endif
387 #endif
388 
389 #ifndef HASH_LBLOCK
390 #define HASH_LBLOCK (HASH_CBLOCK/4)
391 #endif
392 
393 #ifndef HASH_LONG_LOG2
394 #define HASH_LONG_LOG2  2
395 #endif
396 
397 /*
398  * Engage compiler specific rotate intrinsic function if available.
399  */
400 #undef ROTATE
401 #ifndef PEDANTIC
402 # if 0 /* defined(_MSC_VER) */
403 #  define ROTATE(a,n)   _lrotl(a,n)
404 # elif defined(__MWERKS__)
405 #  if defined(__POWERPC__)
406 #   define ROTATE(a,n)  (unsigned MD32_REG_T)__rlwinm((int)a,n,0,31)
407 #  elif defined(__MC68K__)
408 /* Motorola specific tweak. <appro@fy.chalmers.se> */
409 #   define ROTATE(a,n)  (n<24 ? __rol(a,n) : __ror(a,32-n))
410 #  else
411 #   define ROTATE(a,n)  __rol(a,n)
412 #  endif
413 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
414 /*
415  * Some GNU C inline assembler templates. Note that these are
416  * rotates by *constant* number of bits! But that's exactly
417  * what we need here...
418  *
419  *                  <appro@fy.chalmers.se>
420  */
421 /*
422  * LLVM is more strict about compatibility of types between input & output constraints,
423  * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the
424  * most significant bytes by casting to an unsigned int.
425  */
426 #  if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
427 #   define ROTATE(a,n)  ({ register unsigned int ret;   \
428                            asm (           \
429                                "roll %1,%0"        \
430                                : "=r" (ret)     \
431                                : "I" (n), "0" ((unsigned int)a)  \
432                                : "cc");        \
433                            ret;             \
434                          })
435 #  elif defined(__powerpc) || defined(__ppc)
436 #   define ROTATE(a,n)  ({ register unsigned int ret;   \
437                            asm (           \
438                                "rlwinm %0,%1,%2,0,31"  \
439                                : "=r" (ret)     \
440                                : "r" (a), "I" (n));  \
441                            ret;             \
442                          })
443 #  endif
444 # endif
445 
446 /*
447  * Engage compiler specific "fetch in reverse byte order"
448  * intrinsic function if available.
449  */
450 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
451 /* some GNU C inline assembler templates by <appro@fy.chalmers.se> */
452 #  if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY)
453 #   define BE_FETCH32(a)    ({ register unsigned int l=(a); \
454                                asm (           \
455                                    "bswapl %0"     \
456                                    : "=r" (l) : "0" (l));    \
457                                l;                \
458                              })
459 #  elif defined(__powerpc)
460 #   define LE_FETCH32(a)    ({ register unsigned int l; \
461                                asm (           \
462                                    "lwbrx %0,0,%1"     \
463                                    : "=r" (l)       \
464                                    : "r" (a));      \
465                                l;               \
466                              })
467 
468 #  elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
469 #  define LE_FETCH32(a) ({ register unsigned int l;     \
470                            asm (               \
471                                "lda [%1]#ASI_PRIMARY_LITTLE,%0" \
472                                : "=r" (l)           \
473                                : "r" (a));          \
474                            l;                   \
475                          })
476 #  endif
477 # endif
478 #endif /* PEDANTIC */
479 
480 #if HASH_LONG_LOG2==2   /* Engage only if sizeof(HASH_LONG)== 4 */
481 /* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */
482 #ifdef ROTATE
483 /* 5 instructions with rotate instruction, else 9 */
484 #define REVERSE_FETCH32(a,l)    (                   \
485         l=*(const HASH_LONG *)(a),              \
486         ((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24)))  \
487         )
488 #else
489 /* 6 instructions with rotate instruction, else 8 */
490 #define REVERSE_FETCH32(a,l)    (               \
491         l=*(const HASH_LONG *)(a),          \
492         l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)),    \
493         ROTATE(l,16)                    \
494         )
495 /*
496  * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
497  * It's rewritten as above for two reasons:
498  *	- RISCs aren't good at long constants and have to explicitely
499  *	  compose 'em with several (well, usually 2) instructions in a
500  *	  register before performing the actual operation and (as you
501  *	  already realized:-) having same constant should inspire the
502  *	  compiler to permanently allocate the only register for it;
503  *	- most modern CPUs have two ALUs, but usually only one has
504  *	  circuitry for shifts:-( this minor tweak inspires compiler
505  *	  to schedule shift instructions in a better way...
506  *
507  *				<appro@fy.chalmers.se>
508  */
509 #endif
510 #endif
511 
512 #ifndef ROTATE
513 #define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
514 #endif
515 
516 /*
517  * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
518  * and HASH_BLOCK_HOST_ORDER ought to be the same if input data
519  * and host are of the same "endianess". It's possible to mask
520  * this with blank #define HASH_BLOCK_DATA_ORDER though...
521  *
522  *				<appro@fy.chalmers.se>
523  */
524 #if defined(B_ENDIAN)
525 #  if defined(DATA_ORDER_IS_BIG_ENDIAN)
526 #    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
527 #      define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
528 #    endif
529 #  elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
530 #    ifndef HOST_FETCH32
531 #      ifdef LE_FETCH32
532 #        define HOST_FETCH32(p,l)   LE_FETCH32(p)
533 #      elif defined(REVERSE_FETCH32)
534 #        define HOST_FETCH32(p,l)   REVERSE_FETCH32(p,l)
535 #      endif
536 #    endif
537 #  endif
538 #elif defined(L_ENDIAN)
539 #  if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
540 #    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
541 #      define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
542 #    endif
543 #  elif defined(DATA_ORDER_IS_BIG_ENDIAN)
544 #    ifndef HOST_FETCH32
545 #      ifdef BE_FETCH32
546 #        define HOST_FETCH32(p,l)   BE_FETCH32(p)
547 #      elif defined(REVERSE_FETCH32)
548 #        define HOST_FETCH32(p,l)   REVERSE_FETCH32(p,l)
549 #      endif
550 #    endif
551 #  endif
552 #endif
553 
554 #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
555 #ifndef HASH_BLOCK_DATA_ORDER
556 #error "HASH_BLOCK_DATA_ORDER must be defined!"
557 #endif
558 #endif
559 
560 // None of the invocations of the following macros actually use the result,
561 // so cast them to void to avoid any compiler warnings/errors about not using
562 // the result (e.g. when using clang).
563 // If the resultant values need to be used at some point, these must be changed.
564 #define HOST_c2l(c,l) ((void)_HOST_c2l(c,l))
565 #define HOST_l2c(l,c) ((void)_HOST_l2c(l,c))
566 
567 #if defined(DATA_ORDER_IS_BIG_ENDIAN)
568 
569 #define _HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))<<24),      \
570                          l|=(((unsigned long)(*((c)++)))<<16),      \
571                          l|=(((unsigned long)(*((c)++)))<< 8),      \
572                          l|=(((unsigned long)(*((c)++)))    ),      \
573                          l)
574 #define HOST_p_c2l(c,l,n)   {                   \
575         switch (n) {                    \
576         case 0: l =((unsigned long)(*((c)++)))<<24; \
577         case 1: l|=((unsigned long)(*((c)++)))<<16; \
578         case 2: l|=((unsigned long)(*((c)++)))<< 8; \
579         case 3: l|=((unsigned long)(*((c)++)));     \
580         } }
581 #define HOST_p_c2l_p(c,l,sc,len) {                  \
582         switch (sc) {                   \
583         case 0: l =((unsigned long)(*((c)++)))<<24; \
584             if (--len == 0) break;                                                 \
585         case 1: l|=((unsigned long)(*((c)++)))<<16; \
586             if (--len == 0) break;                                                 \
587         case 2: l|=((unsigned long)(*((c)++)))<< 8; \
588         } }
589 /* NOTE the pointer is not incremented at the end of this */
590 #define HOST_c2l_p(c,l,n)   {                   \
591         l=0; (c)+=n;                    \
592         switch (n) {                    \
593         case 3: l =((unsigned long)(*(--(c))))<< 8; \
594         case 2: l|=((unsigned long)(*(--(c))))<<16; \
595         case 1: l|=((unsigned long)(*(--(c))))<<24; \
596         } }
597 #define _HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)>>24)&0xff),  \
598                          *((c)++)=(unsigned char)(((l)>>16)&0xff),  \
599                          *((c)++)=(unsigned char)(((l)>> 8)&0xff),  \
600                          *((c)++)=(unsigned char)(((l)    )&0xff),  \
601                          l)
602 
603 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
604 
605 #define _HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))    ),      \
606                          l|=(((unsigned long)(*((c)++)))<< 8),      \
607                          l|=(((unsigned long)(*((c)++)))<<16),      \
608                          l|=(((unsigned long)(*((c)++)))<<24),      \
609                          l)
610 #define HOST_p_c2l(c,l,n)   {                   \
611         switch (n) {                    \
612         case 0: l =((unsigned long)(*((c)++)));     \
613         case 1: l|=((unsigned long)(*((c)++)))<< 8; \
614         case 2: l|=((unsigned long)(*((c)++)))<<16; \
615         case 3: l|=((unsigned long)(*((c)++)))<<24; \
616         } }
617 #define HOST_p_c2l_p(c,l,sc,len) {                  \
618         switch (sc) {                   \
619         case 0: l =((unsigned long)(*((c)++)));     \
620             if (--len == 0) break;                                                 \
621         case 1: l|=((unsigned long)(*((c)++)))<< 8; \
622             if (--len == 0) break;                                                 \
623         case 2: l|=((unsigned long)(*((c)++)))<<16; \
624         } }
625 /* NOTE the pointer is not incremented at the end of this */
626 #define HOST_c2l_p(c,l,n)   {                   \
627         l=0; (c)+=n;                    \
628         switch (n) {                    \
629         case 3: l =((unsigned long)(*(--(c))))<<16; \
630         case 2: l|=((unsigned long)(*(--(c))))<< 8; \
631         case 1: l|=((unsigned long)(*(--(c))));     \
632         } }
633 #define _HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)    )&0xff),  \
634                          *((c)++)=(unsigned char)(((l)>> 8)&0xff),  \
635                          *((c)++)=(unsigned char)(((l)>>16)&0xff),  \
636                          *((c)++)=(unsigned char)(((l)>>24)&0xff),  \
637                          l)
638 
639 #endif
640 
641 /*
642  * Time for some action:-)
643  */
644 
645 int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len)
646 {
647     const unsigned char *data=(const unsigned char *)data_;
648     register HASH_LONG * p;
649     register unsigned long l;
650     int sw,sc,ew,ec;
651 
652     if (len==0) return 1;
653 
654     l=(c->Nl+(len<<3))&0xffffffffL;
655     /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
656      * Wei Dai <weidai@eskimo.com> for pointing it out. */
657     if (l < c->Nl) /* overflow */
658         c->Nh++;
659     c->Nh+=(len>>29);
660     c->Nl=l;
661 
662     if (c->num != 0)
663     {
664         p=c->data;
665         sw=c->num>>2;
666         sc=c->num&0x03;
667 
668         if ((c->num+len) >= HASH_CBLOCK)
669         {
670             l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
671             for (; sw<HASH_LBLOCK; sw++)
672             {
673                 HOST_c2l(data,l); p[sw]=l;
674             }
675             HASH_BLOCK_HOST_ORDER (c,p,1);
676             len-=(HASH_CBLOCK-c->num);
677             c->num=0;
678             /* drop through and do the rest */
679         }
680         else
681         {
682             c->num+=len;
683             if ((sc+len) < 4) /* ugly, add char's to a word */
684             {
685                 l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
686             }
687             else
688             {
689                 ew=(c->num>>2);
690                 ec=(c->num&0x03);
691                 if (sc)
692                     l=p[sw];
693                 HOST_p_c2l(data,l,sc);
694                 p[sw++]=l;
695                 for (; sw < ew; sw++)
696                 {
697                     HOST_c2l(data,l); p[sw]=l;
698                 }
699                 if (ec)
700                 {
701                     HOST_c2l_p(data,l,ec); p[sw]=l;
702                 }
703             }
704             return 1;
705         }
706     }
707 
708     sw=(int)(len/HASH_CBLOCK);
709     if (sw > 0)
710     {
711 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
712         /*
713          * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
714          * only if sizeof(HASH_LONG)==4.
715          */
716         if ((((unsigned long)data)%4) == 0)
717         {
718             /* data is properly aligned so that we can cast it: */
719             HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw);
720             sw*=HASH_CBLOCK;
721             data+=sw;
722             len-=sw;
723         }
724         else
725 #if !defined(HASH_BLOCK_DATA_ORDER)
726             while (sw--)
727             {
728                 mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK);
729                 HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
730                 data+=HASH_CBLOCK;
731                 len-=HASH_CBLOCK;
732             }
733 #endif
734 #endif
735 #if defined(HASH_BLOCK_DATA_ORDER)
736         {
737             HASH_BLOCK_DATA_ORDER(c,data,sw);
738             sw*=HASH_CBLOCK;
739             data+=sw;
740             len-=sw;
741         }
742 #endif
743     }
744 
745     if (len!=0)
746     {
747         p = c->data;
748         c->num = (int)len;
749         ew=(int)(len>>2);   /* words to copy */
750         ec=(int)(len&0x03);
751         for (; ew; ew--,p++)
752         {
753             HOST_c2l(data,l); *p=l;
754         }
755         HOST_c2l_p(data,l,ec);
756         *p=l;
757     }
758     return 1;
759 }
760 
761 
762 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
763 {
764 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
765     if ((((unsigned long)data)%4) == 0)
766         /* data is properly aligned so that we can cast it: */
767         HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1);
768     else
769 #if !defined(HASH_BLOCK_DATA_ORDER)
770     {
771         mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK);
772         HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
773     }
774 #endif
775 #endif
776 #if defined(HASH_BLOCK_DATA_ORDER)
777     HASH_BLOCK_DATA_ORDER (c,data,1);
778 #endif
779 }
780 
781 
782 int HASH_FINAL (unsigned char *md, HASH_CTX *c)
783 {
784     register HASH_LONG *p;
785     register unsigned long l;
786     register int i,j;
787     static const unsigned char end[4]={0x80,0x00,0x00,0x00};
788     const unsigned char *cp=end;
789 
790     /* c->num should definitly have room for at least one more byte. */
791     p=c->data;
792     i=c->num>>2;
793     j=c->num&0x03;
794 
795 #if 0
796     /* purify often complains about the following line as an
797      * Uninitialized Memory Read.  While this can be true, the
798      * following p_c2l macro will reset l when that case is true.
799      * This is because j&0x03 contains the number of 'valid' bytes
800      * already in p[i].  If and only if j&0x03 == 0, the UMR will
801      * occur but this is also the only time p_c2l will do
802      * l= *(cp++) instead of l|= *(cp++)
803      * Many thanks to Alex Tang <altitude@cic.net> for pickup this
804      * 'potential bug' */
805 #ifdef PURIFY
806     if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
807 #endif
808     l=p[i];
809 #else
810     l = (j==0) ? 0 : p[i];
811 #endif
812     HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
813 
814     if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
815     {
816         if (i<HASH_LBLOCK) p[i]=0;
817         HASH_BLOCK_HOST_ORDER (c,p,1);
818         i=0;
819     }
820     for (; i<(HASH_LBLOCK-2); i++)
821         p[i]=0;
822 
823 #if   defined(DATA_ORDER_IS_BIG_ENDIAN)
824     p[HASH_LBLOCK-2]=c->Nh;
825     p[HASH_LBLOCK-1]=c->Nl;
826 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
827     p[HASH_LBLOCK-2]=c->Nl;
828     p[HASH_LBLOCK-1]=c->Nh;
829 #endif
830     HASH_BLOCK_HOST_ORDER (c,p,1);
831 
832 #ifndef HASH_MAKE_STRING
833 #error "HASH_MAKE_STRING must be defined!"
834 #else
835     HASH_MAKE_STRING(c,md);
836 #endif
837 
838     c->num=0;
839     /* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
840      * but I'm not worried :-)
841        OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
842      */
843     return 1;
844 }
845 
846 #ifndef MD32_REG_T
847 #define MD32_REG_T long
848 /*
849  * This comment was originaly written for MD5, which is why it
850  * discusses A-D. But it basically applies to all 32-bit digests,
851  * which is why it was moved to common header file.
852  *
853  * In case you wonder why A-D are declared as long and not
854  * as mDNSu32. Doing so results in slight performance
855  * boost on LP64 architectures. The catch is we don't
856  * really care if 32 MSBs of a 64-bit register get polluted
857  * with eventual overflows as we *save* only 32 LSBs in
858  * *either* case. Now declaring 'em long excuses the compiler
859  * from keeping 32 MSBs zeroed resulting in 13% performance
860  * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
861  * Well, to be honest it should say that this *prevents*
862  * performance degradation.
863  *				<appro@fy.chalmers.se>
864  * Apparently there're LP64 compilers that generate better
865  * code if A-D are declared int. Most notably GCC-x86_64
866  * generates better code.
867  *				<appro@fy.chalmers.se>
868  */
869 #endif
870 
871 
872 // from md5_locl.h (continued)
873 
874 /*
875  #define	F(x,y,z)	(((x) & (y))  |  ((~(x)) & (z)))
876  #define	G(x,y,z)	(((x) & (z))  |  ((y) & (~(z))))
877  */
878 
879 /* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be
880  * simplified to the code below.  Wei attributes these optimizations
881  * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
882  */
883 #define F(b,c,d)    ((((c) ^ (d)) & (b)) ^ (d))
884 #define G(b,c,d)    ((((b) ^ (c)) & (d)) ^ (c))
885 #define H(b,c,d)    ((b) ^ (c) ^ (d))
886 #define I(b,c,d)    (((~(d)) | (b)) ^ (c))
887 
888 #define R0(a,b,c,d,k,s,t) { \
889         a+=((k)+(t)+F((b),(c),(d))); \
890         a=ROTATE(a,s); \
891         a+=b; }; \
892 
893 #define R1(a,b,c,d,k,s,t) { \
894         a+=((k)+(t)+G((b),(c),(d))); \
895         a=ROTATE(a,s); \
896         a+=b; };
897 
898 #define R2(a,b,c,d,k,s,t) { \
899         a+=((k)+(t)+H((b),(c),(d))); \
900         a=ROTATE(a,s); \
901         a+=b; };
902 
903 #define R3(a,b,c,d,k,s,t) { \
904         a+=((k)+(t)+I((b),(c),(d))); \
905         a=ROTATE(a,s); \
906         a+=b; };
907 
908 // from md5_dgst.c
909 
910 
911 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm
912  */
913 
914 #define INIT_DATA_A (unsigned long)0x67452301L
915 #define INIT_DATA_B (unsigned long)0xefcdab89L
916 #define INIT_DATA_C (unsigned long)0x98badcfeL
917 #define INIT_DATA_D (unsigned long)0x10325476L
918 
919 int MD5_Init(MD5_CTX *c)
920 {
921     c->A=INIT_DATA_A;
922     c->B=INIT_DATA_B;
923     c->C=INIT_DATA_C;
924     c->D=INIT_DATA_D;
925     c->Nl=0;
926     c->Nh=0;
927     c->num=0;
928     return 1;
929 }
930 
931 #ifndef md5_block_host_order
932 void md5_block_host_order (MD5_CTX *c, const void *data, int num)
933 {
934     const mDNSu32 *X=(const mDNSu32 *)data;
935     register unsigned MD32_REG_T A,B,C,D;
936 
937     A=c->A;
938     B=c->B;
939     C=c->C;
940     D=c->D;
941 
942     for (; num--; X+=HASH_LBLOCK)
943     {
944         /* Round 0 */
945         R0(A,B,C,D,X[ 0], 7,0xd76aa478L);
946         R0(D,A,B,C,X[ 1],12,0xe8c7b756L);
947         R0(C,D,A,B,X[ 2],17,0x242070dbL);
948         R0(B,C,D,A,X[ 3],22,0xc1bdceeeL);
949         R0(A,B,C,D,X[ 4], 7,0xf57c0fafL);
950         R0(D,A,B,C,X[ 5],12,0x4787c62aL);
951         R0(C,D,A,B,X[ 6],17,0xa8304613L);
952         R0(B,C,D,A,X[ 7],22,0xfd469501L);
953         R0(A,B,C,D,X[ 8], 7,0x698098d8L);
954         R0(D,A,B,C,X[ 9],12,0x8b44f7afL);
955         R0(C,D,A,B,X[10],17,0xffff5bb1L);
956         R0(B,C,D,A,X[11],22,0x895cd7beL);
957         R0(A,B,C,D,X[12], 7,0x6b901122L);
958         R0(D,A,B,C,X[13],12,0xfd987193L);
959         R0(C,D,A,B,X[14],17,0xa679438eL);
960         R0(B,C,D,A,X[15],22,0x49b40821L);
961         /* Round 1 */
962         R1(A,B,C,D,X[ 1], 5,0xf61e2562L);
963         R1(D,A,B,C,X[ 6], 9,0xc040b340L);
964         R1(C,D,A,B,X[11],14,0x265e5a51L);
965         R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL);
966         R1(A,B,C,D,X[ 5], 5,0xd62f105dL);
967         R1(D,A,B,C,X[10], 9,0x02441453L);
968         R1(C,D,A,B,X[15],14,0xd8a1e681L);
969         R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L);
970         R1(A,B,C,D,X[ 9], 5,0x21e1cde6L);
971         R1(D,A,B,C,X[14], 9,0xc33707d6L);
972         R1(C,D,A,B,X[ 3],14,0xf4d50d87L);
973         R1(B,C,D,A,X[ 8],20,0x455a14edL);
974         R1(A,B,C,D,X[13], 5,0xa9e3e905L);
975         R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L);
976         R1(C,D,A,B,X[ 7],14,0x676f02d9L);
977         R1(B,C,D,A,X[12],20,0x8d2a4c8aL);
978         /* Round 2 */
979         R2(A,B,C,D,X[ 5], 4,0xfffa3942L);
980         R2(D,A,B,C,X[ 8],11,0x8771f681L);
981         R2(C,D,A,B,X[11],16,0x6d9d6122L);
982         R2(B,C,D,A,X[14],23,0xfde5380cL);
983         R2(A,B,C,D,X[ 1], 4,0xa4beea44L);
984         R2(D,A,B,C,X[ 4],11,0x4bdecfa9L);
985         R2(C,D,A,B,X[ 7],16,0xf6bb4b60L);
986         R2(B,C,D,A,X[10],23,0xbebfbc70L);
987         R2(A,B,C,D,X[13], 4,0x289b7ec6L);
988         R2(D,A,B,C,X[ 0],11,0xeaa127faL);
989         R2(C,D,A,B,X[ 3],16,0xd4ef3085L);
990         R2(B,C,D,A,X[ 6],23,0x04881d05L);
991         R2(A,B,C,D,X[ 9], 4,0xd9d4d039L);
992         R2(D,A,B,C,X[12],11,0xe6db99e5L);
993         R2(C,D,A,B,X[15],16,0x1fa27cf8L);
994         R2(B,C,D,A,X[ 2],23,0xc4ac5665L);
995         /* Round 3 */
996         R3(A,B,C,D,X[ 0], 6,0xf4292244L);
997         R3(D,A,B,C,X[ 7],10,0x432aff97L);
998         R3(C,D,A,B,X[14],15,0xab9423a7L);
999         R3(B,C,D,A,X[ 5],21,0xfc93a039L);
1000         R3(A,B,C,D,X[12], 6,0x655b59c3L);
1001         R3(D,A,B,C,X[ 3],10,0x8f0ccc92L);
1002         R3(C,D,A,B,X[10],15,0xffeff47dL);
1003         R3(B,C,D,A,X[ 1],21,0x85845dd1L);
1004         R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL);
1005         R3(D,A,B,C,X[15],10,0xfe2ce6e0L);
1006         R3(C,D,A,B,X[ 6],15,0xa3014314L);
1007         R3(B,C,D,A,X[13],21,0x4e0811a1L);
1008         R3(A,B,C,D,X[ 4], 6,0xf7537e82L);
1009         R3(D,A,B,C,X[11],10,0xbd3af235L);
1010         R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL);
1011         R3(B,C,D,A,X[ 9],21,0xeb86d391L);
1012 
1013         A = c->A += A;
1014         B = c->B += B;
1015         C = c->C += C;
1016         D = c->D += D;
1017     }
1018 }
1019 #endif
1020 
1021 #ifndef md5_block_data_order
1022 #ifdef X
1023 #undef X
1024 #endif
1025 void md5_block_data_order (MD5_CTX *c, const void *data_, int num)
1026 {
1027     const unsigned char *data=data_;
1028     register unsigned MD32_REG_T A,B,C,D,l;
1029 #ifndef MD32_XARRAY
1030     /* See comment in crypto/sha/sha_locl.h for details. */
1031     unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
1032                         XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
1033 # define X(i)   XX ## i
1034 #else
1035     mDNSu32 XX[MD5_LBLOCK];
1036 # define X(i)   XX[i]
1037 #endif
1038 
1039     A=c->A;
1040     B=c->B;
1041     C=c->C;
1042     D=c->D;
1043 
1044     for (; num--;)
1045     {
1046         HOST_c2l(data,l); X( 0)=l;      HOST_c2l(data,l); X( 1)=l;
1047         /* Round 0 */
1048         R0(A,B,C,D,X( 0), 7,0xd76aa478L);   HOST_c2l(data,l); X( 2)=l;
1049         R0(D,A,B,C,X( 1),12,0xe8c7b756L);   HOST_c2l(data,l); X( 3)=l;
1050         R0(C,D,A,B,X( 2),17,0x242070dbL);   HOST_c2l(data,l); X( 4)=l;
1051         R0(B,C,D,A,X( 3),22,0xc1bdceeeL);   HOST_c2l(data,l); X( 5)=l;
1052         R0(A,B,C,D,X( 4), 7,0xf57c0fafL);   HOST_c2l(data,l); X( 6)=l;
1053         R0(D,A,B,C,X( 5),12,0x4787c62aL);   HOST_c2l(data,l); X( 7)=l;
1054         R0(C,D,A,B,X( 6),17,0xa8304613L);   HOST_c2l(data,l); X( 8)=l;
1055         R0(B,C,D,A,X( 7),22,0xfd469501L);   HOST_c2l(data,l); X( 9)=l;
1056         R0(A,B,C,D,X( 8), 7,0x698098d8L);   HOST_c2l(data,l); X(10)=l;
1057         R0(D,A,B,C,X( 9),12,0x8b44f7afL);   HOST_c2l(data,l); X(11)=l;
1058         R0(C,D,A,B,X(10),17,0xffff5bb1L);   HOST_c2l(data,l); X(12)=l;
1059         R0(B,C,D,A,X(11),22,0x895cd7beL);   HOST_c2l(data,l); X(13)=l;
1060         R0(A,B,C,D,X(12), 7,0x6b901122L);   HOST_c2l(data,l); X(14)=l;
1061         R0(D,A,B,C,X(13),12,0xfd987193L);   HOST_c2l(data,l); X(15)=l;
1062         R0(C,D,A,B,X(14),17,0xa679438eL);
1063         R0(B,C,D,A,X(15),22,0x49b40821L);
1064         /* Round 1 */
1065         R1(A,B,C,D,X( 1), 5,0xf61e2562L);
1066         R1(D,A,B,C,X( 6), 9,0xc040b340L);
1067         R1(C,D,A,B,X(11),14,0x265e5a51L);
1068         R1(B,C,D,A,X( 0),20,0xe9b6c7aaL);
1069         R1(A,B,C,D,X( 5), 5,0xd62f105dL);
1070         R1(D,A,B,C,X(10), 9,0x02441453L);
1071         R1(C,D,A,B,X(15),14,0xd8a1e681L);
1072         R1(B,C,D,A,X( 4),20,0xe7d3fbc8L);
1073         R1(A,B,C,D,X( 9), 5,0x21e1cde6L);
1074         R1(D,A,B,C,X(14), 9,0xc33707d6L);
1075         R1(C,D,A,B,X( 3),14,0xf4d50d87L);
1076         R1(B,C,D,A,X( 8),20,0x455a14edL);
1077         R1(A,B,C,D,X(13), 5,0xa9e3e905L);
1078         R1(D,A,B,C,X( 2), 9,0xfcefa3f8L);
1079         R1(C,D,A,B,X( 7),14,0x676f02d9L);
1080         R1(B,C,D,A,X(12),20,0x8d2a4c8aL);
1081         /* Round 2 */
1082         R2(A,B,C,D,X( 5), 4,0xfffa3942L);
1083         R2(D,A,B,C,X( 8),11,0x8771f681L);
1084         R2(C,D,A,B,X(11),16,0x6d9d6122L);
1085         R2(B,C,D,A,X(14),23,0xfde5380cL);
1086         R2(A,B,C,D,X( 1), 4,0xa4beea44L);
1087         R2(D,A,B,C,X( 4),11,0x4bdecfa9L);
1088         R2(C,D,A,B,X( 7),16,0xf6bb4b60L);
1089         R2(B,C,D,A,X(10),23,0xbebfbc70L);
1090         R2(A,B,C,D,X(13), 4,0x289b7ec6L);
1091         R2(D,A,B,C,X( 0),11,0xeaa127faL);
1092         R2(C,D,A,B,X( 3),16,0xd4ef3085L);
1093         R2(B,C,D,A,X( 6),23,0x04881d05L);
1094         R2(A,B,C,D,X( 9), 4,0xd9d4d039L);
1095         R2(D,A,B,C,X(12),11,0xe6db99e5L);
1096         R2(C,D,A,B,X(15),16,0x1fa27cf8L);
1097         R2(B,C,D,A,X( 2),23,0xc4ac5665L);
1098         /* Round 3 */
1099         R3(A,B,C,D,X( 0), 6,0xf4292244L);
1100         R3(D,A,B,C,X( 7),10,0x432aff97L);
1101         R3(C,D,A,B,X(14),15,0xab9423a7L);
1102         R3(B,C,D,A,X( 5),21,0xfc93a039L);
1103         R3(A,B,C,D,X(12), 6,0x655b59c3L);
1104         R3(D,A,B,C,X( 3),10,0x8f0ccc92L);
1105         R3(C,D,A,B,X(10),15,0xffeff47dL);
1106         R3(B,C,D,A,X( 1),21,0x85845dd1L);
1107         R3(A,B,C,D,X( 8), 6,0x6fa87e4fL);
1108         R3(D,A,B,C,X(15),10,0xfe2ce6e0L);
1109         R3(C,D,A,B,X( 6),15,0xa3014314L);
1110         R3(B,C,D,A,X(13),21,0x4e0811a1L);
1111         R3(A,B,C,D,X( 4), 6,0xf7537e82L);
1112         R3(D,A,B,C,X(11),10,0xbd3af235L);
1113         R3(C,D,A,B,X( 2),15,0x2ad7d2bbL);
1114         R3(B,C,D,A,X( 9),21,0xeb86d391L);
1115 
1116         A = c->A += A;
1117         B = c->B += B;
1118         C = c->C += C;
1119         D = c->D += D;
1120     }
1121 }
1122 #endif
1123 
1124 
1125 // ***************************************************************************
1126 #if COMPILER_LIKES_PRAGMA_MARK
1127 #pragma mark - base64 -> binary conversion
1128 #endif
1129 
1130 static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
1131 static const char Pad64 = '=';
1132 
1133 
1134 #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ')
1135 
1136 mDNSlocal const char *mDNSstrchr(const char *s, int c)
1137 {
1138     while (1)
1139     {
1140         if (c == *s) return s;
1141         if (!*s) return mDNSNULL;
1142         s++;
1143     }
1144 }
1145 
1146 // skips all whitespace anywhere.
1147 // converts characters, four at a time, starting at (or after)
1148 // src from base - 64 numbers into three 8 bit bytes in the target area.
1149 // it returns the number of data bytes stored at the target, or -1 on error.
1150 // adapted from BIND sources
1151 
1152 mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize)
1153 {
1154     int tarindex, state, ch;
1155     const char *pos;
1156 
1157     state = 0;
1158     tarindex = 0;
1159 
1160     while ((ch = *src++) != '\0') {
1161         if (mDNSisspace(ch))    /* Skip whitespace anywhere. */
1162             continue;
1163 
1164         if (ch == Pad64)
1165             break;
1166 
1167         pos = mDNSstrchr(Base64, ch);
1168         if (pos == 0)       /* A non-base64 character. */
1169             return (-1);
1170 
1171         switch (state) {
1172         case 0:
1173             if (target) {
1174                 if ((mDNSu32)tarindex >= targsize)
1175                     return (-1);
1176                 target[tarindex] = (mDNSu8)((pos - Base64) << 2);
1177             }
1178             state = 1;
1179             break;
1180         case 1:
1181             if (target) {
1182                 if ((mDNSu32)tarindex + 1 >= targsize)
1183                     return (-1);
1184                 target[tarindex]   |=  (pos - Base64) >> 4;
1185                 target[tarindex+1]  = (mDNSu8)(((pos - Base64) & 0x0f) << 4);
1186             }
1187             tarindex++;
1188             state = 2;
1189             break;
1190         case 2:
1191             if (target) {
1192                 if ((mDNSu32)tarindex + 1 >= targsize)
1193                     return (-1);
1194                 target[tarindex]   |=  (pos - Base64) >> 2;
1195                 target[tarindex+1]  = (mDNSu8)(((pos - Base64) & 0x03) << 6);
1196             }
1197             tarindex++;
1198             state = 3;
1199             break;
1200         case 3:
1201             if (target) {
1202                 if ((mDNSu32)tarindex >= targsize)
1203                     return (-1);
1204                 target[tarindex] |= (pos - Base64);
1205             }
1206             tarindex++;
1207             state = 0;
1208             break;
1209         default:
1210             return -1;
1211         }
1212     }
1213 
1214     /*
1215      * We are done decoding Base-64 chars.  Let's see if we ended
1216      * on a byte boundary, and/or with erroneous trailing characters.
1217      */
1218 
1219     if (ch == Pad64) {      /* We got a pad char. */
1220         ch = *src++;        /* Skip it, get next. */
1221         switch (state) {
1222         case 0:     /* Invalid = in first position */
1223         case 1:     /* Invalid = in second position */
1224             return (-1);
1225 
1226         case 2:     /* Valid, means one byte of info */
1227             /* Skip any number of spaces. */
1228             for ((void)mDNSNULL; ch != '\0'; ch = *src++)
1229                 if (!mDNSisspace(ch))
1230                     break;
1231             /* Make sure there is another trailing = sign. */
1232             if (ch != Pad64)
1233                 return (-1);
1234             ch = *src++;        /* Skip the = */
1235         /* Fall through to "single trailing =" case. */
1236         /* FALLTHROUGH */
1237 
1238         case 3:     /* Valid, means two bytes of info */
1239             /*
1240              * We know this char is an =.  Is there anything but
1241              * whitespace after it?
1242              */
1243             for ((void)mDNSNULL; ch != '\0'; ch = *src++)
1244                 if (!mDNSisspace(ch))
1245                     return (-1);
1246 
1247             /*
1248              * Now make sure for cases 2 and 3 that the "extra"
1249              * bits that slopped past the last full byte were
1250              * zeros.  If we don't check them, they become a
1251              * subliminal channel.
1252              */
1253             if (target && target[tarindex] != 0)
1254                 return (-1);
1255         }
1256     } else {
1257         /*
1258          * We ended by seeing the end of the string.  Make sure we
1259          * have no partial bytes lying around.
1260          */
1261         if (state != 0)
1262             return (-1);
1263     }
1264 
1265     return (tarindex);
1266 }
1267 
1268 
1269 // ***************************************************************************
1270 #if COMPILER_LIKES_PRAGMA_MARK
1271 #pragma mark - API exported to mDNS Core
1272 #endif
1273 
1274 // Constants
1275 #define HMAC_IPAD   0x36
1276 #define HMAC_OPAD   0x5c
1277 #define MD5_LEN     16
1278 
1279 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int")
1280 
1281 // Adapted from Appendix, RFC 2104
1282 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len)
1283 {
1284     MD5_CTX k;
1285     mDNSu8 buf[MD5_LEN];
1286     int i;
1287 
1288     // If key is longer than HMAC_LEN reset it to MD5(key)
1289     if (len > HMAC_LEN)
1290     {
1291         MD5_Init(&k);
1292         MD5_Update(&k, key, len);
1293         MD5_Final(buf, &k);
1294         key = buf;
1295         len = MD5_LEN;
1296     }
1297 
1298     // store key in pads
1299     mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN);
1300     mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN);
1301     mDNSPlatformMemCopy(info->keydata_ipad, key, len);
1302     mDNSPlatformMemCopy(info->keydata_opad, key, len);
1303 
1304     // XOR key with ipad and opad values
1305     for (i = 0; i < HMAC_LEN; i++)
1306     {
1307         info->keydata_ipad[i] ^= HMAC_IPAD;
1308         info->keydata_opad[i] ^= HMAC_OPAD;
1309     }
1310 
1311 }
1312 
1313 mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key)
1314 {
1315     mDNSu8 keybuf[1024];
1316     mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf));
1317     if (keylen < 0) return(keylen);
1318     DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen);
1319     return(keylen);
1320 }
1321 
1322 mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode)
1323 {
1324     AuthRecord tsig;
1325     mDNSu8  *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals; // Get existing numAdditionals value
1326     mDNSu32 utc32;
1327     mDNSu8 utc48[6];
1328     mDNSu8 digest[MD5_LEN];
1329     mDNSu8 *ptr = *end;
1330     mDNSu32 len;
1331     mDNSOpaque16 buf;
1332     MD5_CTX c;
1333     mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]);
1334 
1335     // Init MD5 context, digest inner key pad and message
1336     MD5_Init(&c);
1337     MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
1338     MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg));
1339 
1340     // Construct TSIG RR, digesting variables as apporpriate
1341     mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
1342 
1343     // key name
1344     AssignDomainName(&tsig.namestorage, &info->keyname);
1345     MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname));
1346 
1347     // class
1348     tsig.resrec.rrclass = kDNSQClass_ANY;
1349     buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY);
1350     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1351 
1352     // ttl
1353     tsig.resrec.rroriginalttl = 0;
1354     MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl));
1355 
1356     // alg name
1357     AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName);
1358     len = DomainNameLength(&HMAC_MD5_AlgName);
1359     rdata = tsig.resrec.rdata->u.data + len;
1360     MD5_Update(&c, HMAC_MD5_AlgName.c, len);
1361 
1362     // time
1363     // get UTC (universal time), convert to 48-bit unsigned in network byte order
1364     utc32 = (mDNSu32)mDNSPlatformUTC();
1365     if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; }
1366     utc48[0] = 0;
1367     utc48[1] = 0;
1368     utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff);
1369     utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff);
1370     utc48[4] = (mDNSu8)((utc32 >>  8) & 0xff);
1371     utc48[5] = (mDNSu8)( utc32        & 0xff);
1372 
1373     mDNSPlatformMemCopy(rdata, utc48, 6);
1374     rdata += 6;
1375     MD5_Update(&c, utc48, 6);
1376 
1377     // 300 sec is fudge recommended in RFC 2485
1378     rdata[0] = (mDNSu8)((300 >> 8)  & 0xff);
1379     rdata[1] = (mDNSu8)( 300        & 0xff);
1380     MD5_Update(&c, rdata, sizeof(mDNSOpaque16));
1381     rdata += sizeof(mDNSOpaque16);
1382 
1383     // digest error (tcode) and other data len (zero) - we'll add them to the rdata later
1384     buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff);
1385     buf.b[1] = (mDNSu8)( tcode       & 0xff);
1386     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // error
1387     buf.NotAnInteger = 0;
1388     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // other data len
1389 
1390     // finish the message & tsig var hash
1391     MD5_Final(digest, &c);
1392 
1393     // perform outer MD5 (outer key pad, inner digest)
1394     MD5_Init(&c);
1395     MD5_Update(&c, info->keydata_opad, HMAC_LEN);
1396     MD5_Update(&c, digest, MD5_LEN);
1397     MD5_Final(digest, &c);
1398 
1399     // set remaining rdata fields
1400     rdata[0] = (mDNSu8)((MD5_LEN >> 8)  & 0xff);
1401     rdata[1] = (mDNSu8)( MD5_LEN        & 0xff);
1402     rdata += sizeof(mDNSOpaque16);
1403     mDNSPlatformMemCopy(rdata, digest, MD5_LEN);                          // MAC
1404     rdata += MD5_LEN;
1405     rdata[0] = msg->h.id.b[0];                                            // original ID
1406     rdata[1] = msg->h.id.b[1];
1407     rdata[2] = (mDNSu8)((tcode >> 8) & 0xff);
1408     rdata[3] = (mDNSu8)( tcode       & 0xff);
1409     rdata[4] = 0;                                                         // other data len
1410     rdata[5] = 0;
1411     rdata += 6;
1412 
1413     tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data);
1414     *end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0);
1415     if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; }
1416 
1417     // Write back updated numAdditionals value
1418     countPtr[0] = (mDNSu8)(numAdditionals >> 8);
1419     countPtr[1] = (mDNSu8)(numAdditionals &  0xFF);
1420 }
1421 
1422 mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode)
1423 {
1424     mDNSu8          *   ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data;
1425     mDNSs32 now;
1426     mDNSs32 then;
1427     mDNSu8 thisDigest[MD5_LEN];
1428     mDNSu8 thatDigest[MD5_LEN];
1429     mDNSOpaque16 buf;
1430     mDNSu8 utc48[6];
1431     mDNSs32 delta;
1432     mDNSu16 fudge;
1433     domainname      *   algo;
1434     MD5_CTX c;
1435     mDNSBool ok = mDNSfalse;
1436 
1437     // We only support HMAC-MD5 for now
1438 
1439     algo = (domainname*) ptr;
1440 
1441     if (!SameDomainName(algo, &HMAC_MD5_AlgName))
1442     {
1443         LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c);
1444         *rcode = kDNSFlag1_RC_NotAuth;
1445         *tcode = TSIG_ErrBadKey;
1446         ok = mDNSfalse;
1447         goto exit;
1448     }
1449 
1450     ptr += DomainNameLength(algo);
1451 
1452     // Check the times
1453 
1454     now = mDNSPlatformUTC();
1455     if (now == -1)
1456     {
1457         LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1");
1458         *rcode = kDNSFlag1_RC_NotAuth;
1459         *tcode = TSIG_ErrBadTime;
1460         ok = mDNSfalse;
1461         goto exit;
1462     }
1463 
1464     // Get the 48 bit time field, skipping over the first word
1465 
1466     utc48[0] = *ptr++;
1467     utc48[1] = *ptr++;
1468     utc48[2] = *ptr++;
1469     utc48[3] = *ptr++;
1470     utc48[4] = *ptr++;
1471     utc48[5] = *ptr++;
1472 
1473     then  = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16));
1474 
1475     fudge = NToH16(ptr);
1476 
1477     ptr += sizeof(mDNSu16);
1478 
1479     delta = (now > then) ? now - then : then - now;
1480 
1481     if (delta > fudge)
1482     {
1483         LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge);
1484         *rcode = kDNSFlag1_RC_NotAuth;
1485         *tcode = TSIG_ErrBadTime;
1486         ok = mDNSfalse;
1487         goto exit;
1488     }
1489 
1490     // MAC size
1491 
1492     ptr += sizeof(mDNSu16);
1493 
1494     // MAC
1495 
1496     mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN);
1497 
1498     // Init MD5 context, digest inner key pad and message
1499 
1500     MD5_Init(&c);
1501     MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
1502     MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg));
1503 
1504     // Key name
1505 
1506     MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name));
1507 
1508     // Class name
1509 
1510     buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass);
1511     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1512 
1513     // TTL
1514 
1515     MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl));
1516 
1517     // Algorithm
1518 
1519     MD5_Update(&c, algo->c, DomainNameLength(algo));
1520 
1521     // Time
1522 
1523     MD5_Update(&c, utc48, 6);
1524 
1525     // Fudge
1526 
1527     buf = mDNSOpaque16fromIntVal(fudge);
1528     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1529 
1530     // Digest error and other data len (both zero) - we'll add them to the rdata later
1531 
1532     buf.NotAnInteger = 0;
1533     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // error
1534     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // other data len
1535 
1536     // Finish the message & tsig var hash
1537 
1538     MD5_Final(thisDigest, &c);
1539 
1540     // perform outer MD5 (outer key pad, inner digest)
1541 
1542     MD5_Init(&c);
1543     MD5_Update(&c, info->keydata_opad, HMAC_LEN);
1544     MD5_Update(&c, thisDigest, MD5_LEN);
1545     MD5_Final(thisDigest, &c);
1546 
1547     if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN))
1548     {
1549         LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature");
1550         *rcode = kDNSFlag1_RC_NotAuth;
1551         *tcode = TSIG_ErrBadSig;
1552         ok = mDNSfalse;
1553         goto exit;
1554     }
1555 
1556     // set remaining rdata fields
1557     ok = mDNStrue;
1558 
1559 exit:
1560 
1561     return ok;
1562 }
1563 
1564 
1565 #ifdef __cplusplus
1566 }
1567 #endif
1568