xref: /titanic_44/usr/src/uts/sun4v/os/mpo.c (revision a4aeef46cda1835da2b19f8f62b4526de6521e6c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/sysmacros.h>
29 #include <sys/machsystm.h>
30 #include <sys/machparam.h>
31 #include <sys/cmn_err.h>
32 #include <sys/stat.h>
33 #include <sys/mach_descrip.h>
34 #include <sys/memnode.h>
35 #include <sys/mdesc.h>
36 #include <sys/mpo.h>
37 #include <vm/page.h>
38 #include <vm/vm_dep.h>
39 #include <vm/hat_sfmmu.h>
40 #include <sys/promif.h>
41 
42 /*
43  * MPO and the sun4v memory representation
44  * ---------------------------------------
45  *
46  * Latency groups are defined in the sun4v achitecture by memory-latency-group
47  * nodes in the Machine Description, as specified in FWARC/2007/260.  These
48  * tie together cpu nodes and mblock nodes, and contain mask and match
49  * properties that identify the portion of an mblock that belongs to the
50  * lgroup.  Mask and match are defined in the Physical Address (PA) space,
51  * but an mblock defines Real Addresses (RA).  To translate, the mblock
52  * includes the property address-congruence-offset, hereafter referred to as
53  * ra_to_pa.  A real address ra is a member of an lgroup if
54  *
55  *	(ra + mblock.ra_to_pa) & lgroup.mask == lgroup.match
56  *
57  * The MD is traversed, and information on all mblocks is kept in the array
58  * mpo_mblock[].  Information on all CPUs, including which lgroup they map
59  * to, is kept in the array mpo_cpu[].
60  *
61  * This implementation makes (and verifies) the simplifying assumption that
62  * the mask bits are the same for all defined lgroups, and that all 1 bits in
63  * the mask are contiguous.  Thus the number of lgroups is bounded by the
64  * number of possible mask values, and the lgrp_handle_t is defined as the
65  * mask value, shifted right to eliminate the 0 bit positions in mask.  The
66  * masks and values are also referred to as "home bits" in the code.
67  *
68  * A mem_node is defined to be 1:1 with an lgrp_handle_t, thus each lgroup
69  * has exactly 1 mem_node, and plat_pfn_to_mem_node() must find the mblock
70  * containing a pfn, apply the mblock's ra_to_pa adjustment, and extract the
71  * home bits.  This yields the mem_node.
72  *
73  * Interfaces
74  * ----------
75  *
76  * This file exports the following entry points:
77  *
78  * plat_lgrp_init()
79  * plat_build_mem_nodes()
80  * plat_lgrp_cpu_to_hand()
81  * plat_lgrp_latency()
82  * plat_pfn_to_mem_node()
83  *	These implement the usual platform lgroup interfaces.
84  *
85  * plat_rapfn_to_papfn()
86  *	Recover the PA page coloring bits from an RA.
87  *
88  * plat_mem_node_iterator_init()
89  *	Initialize an iterator to efficiently step through pages in a mem_node.
90  *
91  * plat_mem_node_intersect_range()
92  *	Find the intersection with a mem_node.
93  *
94  * plat_slice_add()
95  * plat_slice_del()
96  *	Platform hooks to add/delete a pfn range.
97  *
98  * Internal Organization
99  * ---------------------
100  *
101  * A number of routines are used both boot/DR code which (re)build
102  * appropriate MPO structures.
103  *
104  * mblock_alloc()
105  *	Allocate memory for mblocks and stripes as
106  *	appropriate for boot or memory DR.
107  *
108  * mblock_free()
109  *	Free memory allocated by mblock_alloc.
110  *
111  * mblock_update()
112  *	Build mblocks based on mblock nodes read from the MD.
113  *
114  * mblock_update_add()
115  *	Rebuild mblocks after a memory DR add operation.
116  *
117  * mblock_update_del()
118  *	Rebuild mblocks after a memory DR delete operation.
119  *
120  * mblock_install()
121  *	Install mblocks as the new configuration.
122  *
123  * mstripe_update()
124  *	Build stripes based on mblocks.
125  *
126  * mnode_update()
127  *	Call memnode layer to add/del a pfn range, based on stripes.
128  *
129  * The platform interfaces allocate all memory required for the
130  * particualar update first, block access to the MPO structures
131  * while they are updated, and free old structures after the update.
132  */
133 
134 int	sun4v_mpo_enable = 1;
135 int	sun4v_mpo_debug = 0;
136 char	sun4v_mpo_status[256] = "";
137 
138 /* Save CPU info from the MD and associate CPUs with lgroups */
139 static	struct cpu_md mpo_cpu[NCPU];
140 
141 /* Save lgroup info from the MD */
142 #define	MAX_MD_LGROUPS 32
143 static	struct	lgrp_md mpo_lgroup[MAX_MD_LGROUPS];
144 static	int	n_lgrpnodes = 0;
145 static	int	n_locality_groups = 0;
146 static	int	max_locality_groups = 0;
147 static	int	szc_mask0 = 0;
148 
149 /* Save mblocks from the MD */
150 #define	SMALL_MBLOCKS_COUNT	8
151 static 	struct	mblock_md *mpo_mblock;
152 static	struct 	mblock_md small_mpo_mblocks[SMALL_MBLOCKS_COUNT];
153 static	int	n_mblocks = 0;
154 
155 /* Save mem_node stripes calculate from mblocks and lgroups. */
156 static mem_stripe_t *mem_stripes;
157 static	mem_stripe_t small_mem_stripes[SMALL_MBLOCKS_COUNT * MAX_MEM_NODES];
158 static	int	n_mem_stripes = 0;
159 static	pfn_t	mnode_stride;	/* distance between stripes, start to start */
160 static	int	stripe_shift;	/* stride/stripes expressed as a shift */
161 static	pfn_t	mnode_pages;	/* mem_node stripe width */
162 
163 /* Save home mask and shift used to calculate lgrp_handle_t values */
164 static	uint64_t home_mask = 0;
165 static	pfn_t	home_mask_pfn = 0;
166 static	int	home_mask_shift = 0;
167 static	uint_t	home_mask_pfn_shift = 0;
168 
169 /* Save lowest and highest latencies found across all lgroups */
170 static	int	lower_latency = 0;
171 static	int	higher_latency = 0;
172 
173 static	pfn_t	base_ra_to_pa_pfn = 0;	/* ra_to_pa for single mblock memory */
174 static	int	mpo_genid;		/* config gen; updated by mem DR */
175 static	mpo_config_t mpo_config;	/* current mblocks and stripes */
176 
177 typedef enum { U_ADD, U_ADD_ALL, U_DEL } update_t;
178 
179 static	int	valid_pages(md_t *md, mde_cookie_t cpu0);
180 static	int	unique_home_mem_lg_count(uint64_t mem_lg_homeset);
181 static	int	fix_interleave(void);
182 
183 static int  mblock_alloc(mpo_config_t *, update_t, int nmblocks);
184 static void mblock_install(mpo_config_t *);
185 static void mblock_free(mpo_config_t *);
186 static void mblock_update(mpo_config_t *, md_t, mde_cookie_t *mblocknodes);
187 static void mblock_update_add(mpo_config_t *);
188 static void mblock_update_del(mpo_config_t *, mpo_config_t *, pfn_t, pfn_t);
189 static void mstripe_update(mpo_config_t *);
190 static void mnode_update(mpo_config_t *, pfn_t, pfn_t, update_t);
191 
192 /* Debug support */
193 #if defined(DEBUG) && !defined(lint)
194 #define	VALIDATE_SLICE(base, end) { 					\
195 	ASSERT(IS_P2ALIGNED(ptob(base), TTEBYTES(TTE256M)));		\
196 	ASSERT(IS_P2ALIGNED(ptob(end - base + 1), TTEBYTES(TTE256M)));	\
197 }
198 #define	MPO_DEBUG(args...) if (sun4v_mpo_debug) printf(args)
199 #else
200 #define	VALIDATE_SLICE(base, end)
201 #define	MPO_DEBUG(...)
202 #endif	/* DEBUG */
203 
204 /* Record status message, viewable from mdb */
205 #define	MPO_STATUS(args...) {						      \
206 	(void) snprintf(sun4v_mpo_status, sizeof (sun4v_mpo_status), args);   \
207 	MPO_DEBUG(sun4v_mpo_status);					      \
208 }
209 
210 /*
211  * The MPO locks are to protect the MPO metadata while that
212  * information is updated as a result of a memory DR operation.
213  * The read lock must be acquired to read the metadata and the
214  * write locks must be acquired to update it.
215  */
216 #define	mpo_rd_lock	kpreempt_disable
217 #define	mpo_rd_unlock	kpreempt_enable
218 
219 static void
220 mpo_wr_lock()
221 {
222 	mutex_enter(&cpu_lock);
223 	pause_cpus(NULL);
224 	mutex_exit(&cpu_lock);
225 }
226 
227 static void
228 mpo_wr_unlock()
229 {
230 	mutex_enter(&cpu_lock);
231 	start_cpus();
232 	mutex_exit(&cpu_lock);
233 }
234 
235 /*
236  * Routine to read a uint64_t from a given md
237  */
238 static	int64_t
239 get_int(md_t md, mde_cookie_t node, char *propname, uint64_t *val)
240 {
241 	int err = md_get_prop_val(md, node, propname, val);
242 	return (err);
243 }
244 
245 static int
246 mblock_cmp(const void *a, const void *b)
247 {
248 	struct mblock_md *m1 = (struct mblock_md *)a;
249 	struct mblock_md *m2 = (struct mblock_md *)b;
250 
251 	if (m1->base < m2->base)
252 		return (-1);
253 	else if (m1->base == m2->base)
254 		return (0);
255 	else
256 		return (1);
257 }
258 
259 static void
260 mblock_sort(struct mblock_md *mblocks, int n)
261 {
262 	extern void qsort(void *, size_t, size_t,
263 	    int (*)(const void *, const void *));
264 
265 	qsort(mblocks, n, sizeof (mblocks[0]), mblock_cmp);
266 }
267 
268 static void
269 mpo_update_tunables(void)
270 {
271 	int i, ncpu_min;
272 
273 	/*
274 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
275 	 * this process is currently running on before considering
276 	 *  expanding threads to another lgroup.
277 	 *
278 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
279 	 *  must be loaded before expanding to it.
280 	 *
281 	 * On sun4v CMT processors, threads share a core pipeline, and
282 	 * at less than 100% utilization, best throughput is obtained by
283 	 * spreading threads across more cores, even if some are in a
284 	 * different lgroup.  Spread threads to a new lgroup if the
285 	 * current group is more than 50% loaded.  Because of virtualization,
286 	 * lgroups may have different numbers of CPUs, but the tunables
287 	 * apply to all lgroups, so find the smallest lgroup and compute
288 	 * 50% loading.
289 	 */
290 
291 	ncpu_min = NCPU;
292 	for (i = 0; i < n_lgrpnodes; i++) {
293 		int ncpu = mpo_lgroup[i].ncpu;
294 		if (ncpu != 0 && ncpu < ncpu_min)
295 			ncpu_min = ncpu;
296 	}
297 	lgrp_expand_proc_thresh = ncpu_min * lgrp_loadavg_max_effect / 2;
298 
299 	/* new home may only be half as loaded as the existing home to use it */
300 	lgrp_expand_proc_diff = lgrp_expand_proc_thresh / 2;
301 
302 	lgrp_loadavg_tolerance = lgrp_loadavg_max_effect;
303 }
304 
305 static mde_cookie_t
306 cpuid_to_cpunode(md_t *md, int cpuid)
307 {
308 	mde_cookie_t    rootnode, foundnode, *cpunodes;
309 	uint64_t	cpuid_prop;
310 	int 	n_cpunodes, i;
311 
312 	if (md == NULL)
313 		return (MDE_INVAL_ELEM_COOKIE);
314 
315 	rootnode = md_root_node(md);
316 	if (rootnode == MDE_INVAL_ELEM_COOKIE)
317 		return (MDE_INVAL_ELEM_COOKIE);
318 
319 	n_cpunodes = md_alloc_scan_dag(md, rootnode, PROP_LG_CPU,
320 	    "fwd", &cpunodes);
321 	if (n_cpunodes <= 0 || n_cpunodes > NCPU)
322 		goto cpuid_fail;
323 
324 	for (i = 0; i < n_cpunodes; i++) {
325 		if (md_get_prop_val(md, cpunodes[i], PROP_LG_CPU_ID,
326 		    &cpuid_prop))
327 			break;
328 		if (cpuid_prop == (uint64_t)cpuid) {
329 			foundnode = cpunodes[i];
330 			md_free_scan_dag(md, &cpunodes);
331 			return (foundnode);
332 		}
333 	}
334 cpuid_fail:
335 	if (n_cpunodes > 0)
336 		md_free_scan_dag(md, &cpunodes);
337 	return (MDE_INVAL_ELEM_COOKIE);
338 }
339 
340 static int
341 mpo_cpu_to_lgroup(md_t *md, mde_cookie_t cpunode)
342 {
343 	mde_cookie_t *nodes;
344 	uint64_t latency, lowest_latency;
345 	uint64_t address_match, lowest_address_match;
346 	int n_lgroups, j, result = 0;
347 
348 	/* Find lgroup nodes reachable from this cpu */
349 	n_lgroups = md_alloc_scan_dag(md, cpunode, PROP_LG_MEM_LG,
350 	    "fwd", &nodes);
351 
352 	lowest_latency = ~(0UL);
353 
354 	/* Find the lgroup node with the smallest latency */
355 	for (j = 0; j < n_lgroups; j++) {
356 		result = get_int(md, nodes[j], PROP_LG_LATENCY,
357 		    &latency);
358 		result |= get_int(md, nodes[j], PROP_LG_MATCH,
359 		    &address_match);
360 		if (result != 0) {
361 			j = -1;
362 			goto to_lgrp_done;
363 		}
364 		if (latency < lowest_latency) {
365 			lowest_latency = latency;
366 			lowest_address_match = address_match;
367 		}
368 	}
369 	for (j = 0; j < n_lgrpnodes; j++) {
370 		if ((mpo_lgroup[j].latency == lowest_latency) &&
371 		    (mpo_lgroup[j].addr_match == lowest_address_match))
372 			break;
373 	}
374 	if (j == n_lgrpnodes)
375 		j = -1;
376 
377 to_lgrp_done:
378 	if (n_lgroups > 0)
379 		md_free_scan_dag(md, &nodes);
380 	return (j);
381 }
382 
383 /* Called when DR'ing in a CPU */
384 void
385 mpo_cpu_add(int cpuid)
386 {
387 	md_t *md;
388 	mde_cookie_t cpunode;
389 
390 	int i;
391 
392 	if (n_lgrpnodes <= 0)
393 		return;
394 
395 	md = md_get_handle();
396 
397 	if (md == NULL)
398 		goto add_fail;
399 
400 	cpunode = cpuid_to_cpunode(md, cpuid);
401 	if (cpunode == MDE_INVAL_ELEM_COOKIE)
402 		goto add_fail;
403 
404 	i = mpo_cpu_to_lgroup(md, cpunode);
405 	if (i == -1)
406 		goto add_fail;
407 
408 	mpo_cpu[cpuid].lgrp_index = i;
409 	mpo_cpu[cpuid].home = mpo_lgroup[i].addr_match >> home_mask_shift;
410 	mpo_lgroup[i].ncpu++;
411 	mpo_update_tunables();
412 	(void) md_fini_handle(md);
413 	return;
414 add_fail:
415 	panic("mpo_cpu_add: Cannot read MD");
416 }
417 
418 /* Called when DR'ing out a CPU */
419 void
420 mpo_cpu_remove(int cpuid)
421 {
422 	int i;
423 
424 	if (n_lgrpnodes <= 0)
425 		return;
426 
427 	i = mpo_cpu[cpuid].lgrp_index;
428 	mpo_lgroup[i].ncpu--;
429 	mpo_cpu[cpuid].home = 0;
430 	mpo_cpu[cpuid].lgrp_index = -1;
431 	mpo_update_tunables();
432 }
433 
434 static mde_cookie_t
435 md_get_root(md_t *md)
436 {
437 	mde_cookie_t root = MDE_INVAL_ELEM_COOKIE;
438 	int n_nodes;
439 
440 	n_nodes = md_node_count(md);
441 
442 	if (n_nodes <= 0) {
443 		MPO_STATUS("md_get_root: No nodes in node count\n");
444 		return (root);
445 	}
446 
447 	root = md_root_node(md);
448 
449 	if (root == MDE_INVAL_ELEM_COOKIE) {
450 		MPO_STATUS("md_get_root: Root node is missing\n");
451 		return (root);
452 	}
453 
454 	MPO_DEBUG("md_get_root: Node Count: %d\n", n_nodes);
455 	MPO_DEBUG("md_get_root: md: %p\n", md);
456 	MPO_DEBUG("md_get_root: root: %lx\n", root);
457 done:
458 	return (root);
459 }
460 
461 static int
462 lgrp_update(md_t *md, mde_cookie_t root)
463 {
464 	int i, j, result;
465 	int ret_val = 0;
466 	int sub_page_fix;
467 	mde_cookie_t *nodes, *lgrpnodes;
468 
469 	n_lgrpnodes = md_alloc_scan_dag(md, root, PROP_LG_MEM_LG,
470 	    "fwd", &lgrpnodes);
471 
472 	if (n_lgrpnodes <= 0 || n_lgrpnodes >= MAX_MD_LGROUPS) {
473 		MPO_STATUS("lgrp_update: No Lgroups\n");
474 		ret_val = -1;
475 		goto fail;
476 	}
477 
478 	MPO_DEBUG("lgrp_update: mem_lgs: %d\n", n_lgrpnodes);
479 
480 	for (i = 0; i < n_lgrpnodes; i++) {
481 		mpo_lgroup[i].node = lgrpnodes[i];
482 		mpo_lgroup[i].id = i;
483 		mpo_lgroup[i].ncpu = 0;
484 		result = get_int(md, lgrpnodes[i], PROP_LG_MASK,
485 		    &mpo_lgroup[i].addr_mask);
486 		result |= get_int(md, lgrpnodes[i], PROP_LG_MATCH,
487 		    &mpo_lgroup[i].addr_match);
488 
489 		/*
490 		 * If either the mask or match properties are missing, set to 0
491 		 */
492 		if (result < 0) {
493 			mpo_lgroup[i].addr_mask = 0;
494 			mpo_lgroup[i].addr_match = 0;
495 		}
496 
497 		/* Set latency to 0 if property not present */
498 
499 		result = get_int(md, lgrpnodes[i], PROP_LG_LATENCY,
500 		    &mpo_lgroup[i].latency);
501 		if (result < 0)
502 			mpo_lgroup[i].latency = 0;
503 	}
504 
505 	/*
506 	 * Sub-page level interleave is not yet supported.  Check for it,
507 	 * and remove sub-page interleaved lgroups from mpo_lgroup and
508 	 * n_lgrpnodes.  If no lgroups are left, return.
509 	 */
510 
511 	sub_page_fix = fix_interleave();
512 	if (n_lgrpnodes == 0) {
513 		ret_val = -1;
514 		goto fail;
515 	}
516 
517 	/* Ensure that all of the addr_mask values are the same */
518 
519 	for (i = 0; i < n_lgrpnodes; i++) {
520 		if (mpo_lgroup[0].addr_mask != mpo_lgroup[i].addr_mask) {
521 			MPO_STATUS("lgrp_update: "
522 			    "addr_mask values are not the same\n");
523 			ret_val = -1;
524 			goto fail;
525 		}
526 	}
527 
528 	/*
529 	 * Ensure that all lgrp nodes see all the mblocks. However, if
530 	 * sub-page interleave is being fixed, they do not, so skip
531 	 * the check.
532 	 */
533 
534 	if (sub_page_fix == 0) {
535 		for (i = 0; i < n_lgrpnodes; i++) {
536 			j = md_alloc_scan_dag(md, mpo_lgroup[i].node,
537 			    PROP_LG_MBLOCK, "fwd", &nodes);
538 			md_free_scan_dag(md, &nodes);
539 			if (j != n_mblocks) {
540 				MPO_STATUS("lgrp_update: "
541 				    "sub-page interleave is being fixed\n");
542 				ret_val = -1;
543 				goto fail;
544 			}
545 		}
546 	}
547 fail:
548 	if (n_lgrpnodes > 0) {
549 		md_free_scan_dag(md, &lgrpnodes);
550 		for (i = 0; i < n_lgrpnodes; i++)
551 			mpo_lgroup[i].node = MDE_INVAL_ELEM_COOKIE;
552 	}
553 
554 	return (ret_val);
555 }
556 
557 /*
558  *
559  * Traverse the MD to determine:
560  *
561  *  Number of CPU nodes, lgrp_nodes, and mblocks
562  *  Then for each lgrp_node, obtain the appropriate data.
563  *  For each CPU, determine its home locality and store it.
564  *  For each mblock, retrieve its data and store it.
565  */
566 static	int
567 lgrp_traverse(md_t *md)
568 {
569 	mde_cookie_t root, *cpunodes, *mblocknodes;
570 	int o;
571 	uint64_t i, k, stripe, stride;
572 	uint64_t mem_lg_homeset = 0;
573 	int ret_val = 0;
574 	int result = 0;
575 	int n_cpunodes = 0;
576 	mpo_config_t new_config;
577 
578 	if ((root = md_get_root(md)) == MDE_INVAL_ELEM_COOKIE) {
579 		ret_val = -1;
580 		goto fail;
581 	}
582 
583 	n_mblocks = md_alloc_scan_dag(md, root, PROP_LG_MBLOCK, "fwd",
584 	    &mblocknodes);
585 	if (n_mblocks <= 0) {
586 		MPO_STATUS("lgrp_traverse: No mblock nodes detected in Machine "
587 		    "Descriptor\n");
588 		ret_val = -1;
589 		goto fail;
590 	}
591 
592 	/*
593 	 * Build the Memory Nodes.  Do this before any possibility of
594 	 * bailing from this routine so we obtain ra_to_pa (needed for page
595 	 * coloring) even when there are no lgroups defined.
596 	 */
597 	if (mblock_alloc(&new_config, U_ADD_ALL, n_mblocks) < 0) {
598 		ret_val = -1;
599 		goto fail;
600 	}
601 
602 	mblock_update(&new_config, md, mblocknodes);
603 	mblock_install(&new_config);
604 
605 	/* Page coloring hook is required so we can iterate through mnodes */
606 	if (&page_next_pfn_for_color_cpu == NULL) {
607 		MPO_STATUS("lgrp_traverse: No page coloring support\n");
608 		ret_val = -1;
609 		goto fail;
610 	}
611 
612 	/* Global enable for mpo */
613 	if (sun4v_mpo_enable == 0) {
614 		MPO_STATUS("lgrp_traverse: MPO feature is not enabled\n");
615 		ret_val = -1;
616 		goto fail;
617 	}
618 
619 	n_cpunodes = md_alloc_scan_dag(md, root, PROP_LG_CPU, "fwd", &cpunodes);
620 
621 	if (n_cpunodes <= 0 || n_cpunodes > NCPU) {
622 		MPO_STATUS("lgrp_traverse: No CPU nodes detected "
623 		    "in MD\n");
624 		ret_val = -1;
625 		goto fail;
626 	}
627 
628 	MPO_DEBUG("lgrp_traverse: cpus: %d\n", n_cpunodes);
629 
630 	if ((ret_val = lgrp_update(md, root)) == -1)
631 		goto fail;
632 
633 	/*
634 	 * Use the address mask from the first lgroup node
635 	 * to establish our home_mask.
636 	 */
637 	home_mask = mpo_lgroup[0].addr_mask;
638 	home_mask_pfn = btop(home_mask);
639 	home_mask_shift = lowbit(home_mask) - 1;
640 	home_mask_pfn_shift = home_mask_shift - PAGESHIFT;
641 	mnode_pages = btop(1ULL << home_mask_shift);
642 
643 	/*
644 	 * How many values are possible in home mask?  Assume the mask
645 	 * bits are contiguous.
646 	 */
647 	max_locality_groups =
648 	    1 << highbit(home_mask_pfn >> home_mask_pfn_shift);
649 
650 	stripe_shift = highbit(max_locality_groups) - 1;
651 	stripe = ptob(mnode_pages);
652 	stride = max_locality_groups * stripe;
653 	mnode_stride = btop(stride);
654 
655 	/* Now verify the home mask bits are contiguous */
656 
657 	if (max_locality_groups - 1 != home_mask_pfn >> home_mask_pfn_shift) {
658 		MPO_STATUS("lgrp_traverse: "
659 		    "home mask bits are not contiguous\n");
660 		ret_val = -1;
661 		goto fail;
662 	}
663 
664 	/* Record all of the home bits */
665 
666 	for (i = 0; i < n_lgrpnodes; i++) {
667 		HOMESET_ADD(mem_lg_homeset,
668 		    mpo_lgroup[i].addr_match >> home_mask_shift);
669 	}
670 
671 	/* Count the number different "home"  mem_lg's we've discovered */
672 
673 	n_locality_groups = unique_home_mem_lg_count(mem_lg_homeset);
674 
675 	/* If we have only 1 locality group then we can exit */
676 	if (n_locality_groups == 1) {
677 		MPO_STATUS("lgrp_traverse: n_locality_groups == 1\n");
678 		ret_val = -1;
679 		goto fail;
680 	}
681 
682 	/*
683 	 * Set the latencies.  A CPU's lgroup is defined by the lowest
684 	 * latency found.  All other memory is considered remote, and the
685 	 * remote latency is represented by the highest latency found.
686 	 * Thus hierarchical lgroups, if any, are approximated by a
687 	 * two level scheme.
688 	 *
689 	 * The Solaris MPO framework by convention wants to see latencies
690 	 * in units of nano-sec/10. In the MD, the units are defined to be
691 	 * pico-seconds.
692 	 */
693 
694 	lower_latency = mpo_lgroup[0].latency;
695 	higher_latency = mpo_lgroup[0].latency;
696 
697 	for (i = 1; i < n_lgrpnodes; i++) {
698 		if (mpo_lgroup[i].latency < lower_latency) {
699 			lower_latency = mpo_lgroup[i].latency;
700 		}
701 		if (mpo_lgroup[i].latency > higher_latency) {
702 			higher_latency = mpo_lgroup[i].latency;
703 		}
704 	}
705 	lower_latency /= 10000;
706 	higher_latency /= 10000;
707 
708 	/* Clear our CPU data */
709 
710 	for (i = 0; i < NCPU; i++) {
711 		mpo_cpu[i].home = 0;
712 		mpo_cpu[i].lgrp_index = -1;
713 	}
714 
715 	/* Build the CPU nodes */
716 	for (i = 0; i < n_cpunodes; i++) {
717 
718 		/* Read in the lgroup nodes */
719 		result = get_int(md, cpunodes[i], PROP_LG_CPU_ID, &k);
720 		if (result < 0) {
721 			MPO_STATUS("lgrp_traverse: PROP_LG_CPU_ID missing\n");
722 			ret_val = -1;
723 			goto fail;
724 		}
725 
726 		o = mpo_cpu_to_lgroup(md, cpunodes[i]);
727 		if (o == -1) {
728 			ret_val = -1;
729 			goto fail;
730 		}
731 		mpo_cpu[k].lgrp_index = o;
732 		mpo_cpu[k].home = mpo_lgroup[o].addr_match >> home_mask_shift;
733 		mpo_lgroup[o].ncpu++;
734 	}
735 	/* Validate that no large pages cross mnode boundaries. */
736 	if (valid_pages(md, cpunodes[0]) == 0) {
737 		ret_val = -1;
738 		goto fail;
739 	}
740 
741 fail:
742 	if (n_cpunodes > 0)
743 		md_free_scan_dag(md, &cpunodes);
744 	if (n_mblocks > 0)
745 		md_free_scan_dag(md, &mblocknodes);
746 	else
747 		panic("lgrp_traverse: No memory blocks found");
748 
749 	if (ret_val == 0) {
750 		MPO_STATUS("MPO feature is enabled.\n");
751 	} else
752 		sun4v_mpo_enable = 0;	/* set this for DR */
753 
754 	return (ret_val);
755 }
756 
757 /*
758  *  Determine the number of unique mem_lg's present in our system
759  */
760 static	int
761 unique_home_mem_lg_count(uint64_t mem_lg_homeset)
762 {
763 	int homeid;
764 	int count = 0;
765 
766 	/*
767 	 * Scan the "home" bits of the mem_lgs, count
768 	 * the number that are unique.
769 	 */
770 
771 	for (homeid = 0; homeid < NLGRPS_MAX; homeid++) {
772 		if (MEM_LG_ISMEMBER(mem_lg_homeset, homeid)) {
773 			count++;
774 		}
775 	}
776 
777 	MPO_DEBUG("unique_home_mem_lg_count: homeset %lx\n",
778 	    mem_lg_homeset);
779 	MPO_DEBUG("unique_home_mem_lg_count: count: %d\n", count);
780 
781 	/* Default must be at least one */
782 	if (count == 0)
783 		count = 1;
784 
785 	return (count);
786 }
787 
788 /*
789  * Platform specific lgroup initialization
790  */
791 void
792 plat_lgrp_init(void)
793 {
794 	md_t *md;
795 	int rc;
796 
797 	/* Get the Machine Descriptor handle */
798 
799 	md = md_get_handle();
800 
801 	/* If not, we cannot continue */
802 
803 	if (md == NULL) {
804 		panic("cannot access machine descriptor\n");
805 	} else {
806 		rc = lgrp_traverse(md);
807 		(void) md_fini_handle(md);
808 	}
809 
810 	/*
811 	 * If we can't process the MD for lgroups then at least let the
812 	 * system try to boot.  Assume we have one lgroup so that
813 	 * when plat_build_mem_nodes is called, it will attempt to init
814 	 * an mnode based on the supplied memory segment.
815 	 */
816 
817 	if (rc == -1) {
818 		home_mask_pfn = 0;
819 		max_locality_groups = 1;
820 		n_locality_groups = 1;
821 		return;
822 	}
823 
824 	mem_node_pfn_shift = 0;
825 	mem_node_physalign = 0;
826 
827 	/* Use lgroup-aware TSB allocations */
828 	tsb_lgrp_affinity = 1;
829 
830 	/* Require that a home lgroup have some memory to be chosen */
831 	lgrp_mem_free_thresh = 1;
832 
833 	/* Standard home-on-next-touch policy */
834 	lgrp_mem_policy_root = LGRP_MEM_POLICY_NEXT;
835 
836 	/* Disable option to choose root lgroup if all leaf lgroups are busy */
837 	lgrp_load_thresh = UINT32_MAX;
838 
839 	mpo_update_tunables();
840 }
841 
842 /*
843  *  Helper routine for debugging calls to mem_node_add_slice()
844  */
845 static	void
846 mpo_mem_node_add_slice(pfn_t basepfn, pfn_t endpfn)
847 {
848 #if defined(DEBUG) && !defined(lint)
849 	static int slice_count = 0;
850 
851 	slice_count++;
852 	MPO_DEBUG("mem_add_slice(%d): basepfn: %lx  endpfn: %lx\n",
853 	    slice_count, basepfn, endpfn);
854 #endif
855 	mem_node_add_slice(basepfn, endpfn);
856 }
857 
858 static	void
859 mpo_mem_node_del_slice(pfn_t basepfn, pfn_t endpfn)
860 {
861 #if defined(DEBUG) && !defined(lint)
862 	static int slice_count = 0;
863 
864 	slice_count++;
865 	MPO_DEBUG("mem_del_slice(%d): basepfn: %lx  endpfn: %lx\n",
866 	    slice_count, basepfn, endpfn);
867 #endif
868 	mem_node_del_slice(basepfn, endpfn);
869 }
870 
871 /*
872  *  Helper routine for debugging calls to plat_assign_lgrphand_to_mem_node()
873  */
874 static	void
875 mpo_plat_assign_lgrphand_to_mem_node(lgrp_handle_t plathand, int mnode)
876 {
877 	MPO_DEBUG("plat_assign_to_mem_nodes: lgroup home %ld, "
878 	    "mnode index: %d\n", plathand, mnode);
879 	plat_assign_lgrphand_to_mem_node(plathand, mnode);
880 }
881 
882 /*
883  * plat_build_mem_nodes()
884  *
885  * Define the mem_nodes based on the modified boot memory list,
886  * or based on info read from the MD in plat_lgrp_init().
887  *
888  * When the home mask lies in the middle of the address bits (as it does on
889  * Victoria Falls), then the memory in one mem_node is no longer contiguous;
890  * it is striped across an mblock in a repeating pattern of contiguous memory
891  * followed by a gap.  The stripe width is the size of the contiguous piece.
892  * The stride is the distance from the start of one contiguous piece to the
893  * start of the next.  The gap is thus stride - stripe_width.
894  *
895  * The stripe of an mnode that falls within an mblock is described by the type
896  * mem_stripe_t, and there is one mem_stripe_t per mnode per mblock.  The
897  * mem_stripe_t's are kept in a global array mem_stripes[].  The index into
898  * this array is predetermined.  The mem_stripe_t that describes mnode m
899  * within mpo_mblock[i] is stored at
900  *	 mem_stripes[ m + i * max_locality_groups ]
901  *
902  * max_locality_groups is the total number of possible locality groups,
903  * as defined by the size of the home mask, even if the memory assigned
904  * to the domain is small and does not cover all the lgroups.  Thus some
905  * mem_stripe_t's may be empty.
906  *
907  * The members of mem_stripe_t are:
908  *	physbase: First valid page in mem_node in the corresponding mblock
909  *	physmax: Last valid page in mem_node in mblock
910  *	offset:  The full stripe width starts at physbase - offset.
911  *	    Thus if offset is non-zero, this mem_node starts in the middle
912  *	    of a stripe width, and the second full stripe starts at
913  *	    physbase - offset + stride.  (even though physmax may fall in the
914  *	    middle of a stripe width, we do not save the ending fragment size
915  *	    in this data structure.)
916  *	exists: Set to 1 if the mblock has memory in this mem_node stripe.
917  *
918  *	The stripe width is kept in the global mnode_pages.
919  *	The stride is kept in the global mnode_stride.
920  *	All the above use pfn's as the unit.
921  *
922  * As an example, the memory layout for a domain with 2 mblocks and 4
923  * mem_nodes 0,1,2,3 could look like this:
924  *
925  *	123012301230 ...	012301230123 ...
926  *	  mblock 0		  mblock 1
927  */
928 
929 /*ARGSUSED*/
930 void
931 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
932 {
933 	int elem;
934 	uint64_t base, len;
935 
936 	/* Pre-reserve space for plat_assign_lgrphand_to_mem_node */
937 	max_mem_nodes = max_locality_groups;
938 
939 	mstripe_update(&mpo_config);
940 
941 	/* Check for non-MPO sun4v platforms */
942 	if (n_locality_groups <= 1) {
943 		mpo_plat_assign_lgrphand_to_mem_node(LGRP_DEFAULT_HANDLE, 0);
944 		for (elem = 0; elem < nelems; list++, elem++) {
945 			base = list->addr;
946 			len = list->size;
947 
948 			mpo_mem_node_add_slice(btop(base),
949 			    btop(base + len - 1));
950 		}
951 		mem_node_pfn_shift = 0;
952 		mem_node_physalign = 0;
953 	} else
954 		mnode_update(&mpo_config, 0, 0, U_ADD_ALL);
955 
956 	/*
957 	 * Indicate to vm_pagelist that the hpm_counters array
958 	 * should be shared because the ranges overlap.
959 	 */
960 	if (max_mem_nodes > 1) {
961 		interleaved_mnodes = 1;
962 	}
963 }
964 
965 /*
966  * Return the locality group value for the supplied processor
967  */
968 lgrp_handle_t
969 plat_lgrp_cpu_to_hand(processorid_t id)
970 {
971 	lgrp_handle_t lgrphand;
972 
973 	mpo_rd_lock();
974 	if (n_locality_groups > 1) {
975 		lgrphand = (lgrp_handle_t)mpo_cpu[(int)id].home;
976 	} else {
977 		lgrphand = (lgrp_handle_t)LGRP_DEFAULT_HANDLE; /* Default */
978 	}
979 	mpo_rd_unlock();
980 
981 	return (lgrphand);
982 }
983 
984 int
985 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
986 {
987 	/*
988 	 * Return min remote latency when there are more than two lgroups
989 	 * (root and child) and getting latency between two different lgroups
990 	 * or root is involved.
991 	 */
992 	if (lgrp_optimizations() && (from != to ||
993 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) {
994 		return ((int)higher_latency);
995 	} else {
996 		return ((int)lower_latency);
997 	}
998 }
999 
1000 int
1001 plat_pfn_to_mem_node(pfn_t pfn)
1002 {
1003 	int i, mnode;
1004 	pfn_t ra_to_pa_pfn;
1005 	struct mblock_md *mb;
1006 
1007 	if (n_locality_groups <= 1)
1008 		return (0);
1009 
1010 	/*
1011 	 * The mnode is defined to be 1:1 with the lgroup handle, which
1012 	 * is taken from from the home bits.  Find the mblock in which
1013 	 * the pfn falls to get the ra_to_pa adjustment, and extract
1014 	 * the home bits.
1015 	 */
1016 	mpo_rd_lock();
1017 	mb = &mpo_mblock[0];
1018 	for (i = 0; i < n_mblocks; i++) {
1019 		if (pfn >= mb->base_pfn && pfn <= mb->end_pfn) {
1020 			ra_to_pa_pfn = btop(mb->ra_to_pa);
1021 			mnode = (((pfn + ra_to_pa_pfn) & home_mask_pfn) >>
1022 			    home_mask_pfn_shift);
1023 			ASSERT(mnode < max_mem_nodes);
1024 			mpo_rd_unlock();
1025 			return (mnode);
1026 		}
1027 		mb++;
1028 	}
1029 
1030 	panic("plat_pfn_to_mem_node() failed to find mblock: pfn=%lx\n", pfn);
1031 	return (pfn);
1032 }
1033 
1034 /*
1035  * plat_rapfn_to_papfn
1036  *
1037  * Convert a pfn in RA space to a pfn in PA space, in which the page coloring
1038  * and home mask bits are correct.  The upper bits do not necessarily
1039  * match the actual PA, however.
1040  */
1041 pfn_t
1042 plat_rapfn_to_papfn(pfn_t pfn)
1043 {
1044 	int i;
1045 	pfn_t ra_to_pa_pfn;
1046 	struct mblock_md *mb;
1047 
1048 	ASSERT(n_mblocks > 0);
1049 	if (n_mblocks == 1)
1050 		return (pfn + base_ra_to_pa_pfn);
1051 
1052 	/*
1053 	 * Find the mblock in which the pfn falls
1054 	 * in order to get the ra_to_pa adjustment.
1055 	 */
1056 	mpo_rd_lock();
1057 	for (mb = &mpo_mblock[0], i = 0; i < n_mblocks; i++, mb++) {
1058 		if (pfn <= mb->end_pfn && pfn >= mb->base_pfn) {
1059 			ra_to_pa_pfn = btop(mb->ra_to_pa);
1060 			mpo_rd_unlock();
1061 			return (pfn + ra_to_pa_pfn);
1062 		}
1063 	}
1064 
1065 	panic("plat_rapfn_to_papfn() failed to find mblock: pfn=%lx\n", pfn);
1066 	return (pfn);
1067 }
1068 
1069 /*
1070  * plat_mem_node_iterator_init()
1071  *      Initialize cookie "it" to iterate over pfn's in an mnode.  There is
1072  *      no additional iterator function.  The caller uses the info from
1073  *      the iterator structure directly.
1074  *
1075  *      pfn: starting pfn.
1076  *      mnode: desired mnode.
1077  *	szc: desired page size.
1078  *      init:
1079  *          if 1, start a new traversal, initialize "it", find first
1080  *              mblock containing pfn, and return its starting pfn
1081  *              within the mnode.
1082  *          if 0, continue the previous traversal using passed-in data
1083  *              from "it", advance to the next mblock, and return its
1084  *              starting pfn within the mnode.
1085  *      it: returns readonly data to the caller; see below.
1086  *
1087  *	The input pfn must be aligned for the page size szc.
1088  *
1089  *      Returns: starting pfn for the iteration for the mnode/mblock,
1090  *	    which is aligned according to the page size,
1091  *          or returns (pfn_t)(-1) if the input pfn lies past the last
1092  *          valid pfn of the mnode.
1093  *      Returns misc values in the "it" struct that allows the caller
1094  *          to advance the pfn within an mblock using address arithmetic;
1095  *          see definition of mem_node_iterator_t in vm_dep.h.
1096  *          When the caller calculates a pfn that is greater than the
1097  *          returned value it->mi_mblock_end, the caller should again
1098  *          call plat_mem_node_iterator_init, passing init=0.
1099  *
1100  *          The last mblock in continuation case may be invalid because
1101  *          of memory DR.  To detect this situation mi_genid is checked
1102  *          against mpo_genid which is incremented after a memory DR
1103  *          operation.  See also plat_slice_add()/plat_slice_del().
1104  */
1105 pfn_t
1106 plat_mem_node_iterator_init(pfn_t pfn, int mnode, uchar_t szc,
1107     mem_node_iterator_t *it, int init)
1108 {
1109 	int i;
1110 	pgcnt_t szcpgcnt = PNUM_SIZE(szc);
1111 	struct mblock_md *mblock;
1112 	pfn_t base, end;
1113 	mem_stripe_t *ms;
1114 	uint64_t szcpagesize;
1115 
1116 	ASSERT(it != NULL);
1117 	ASSERT(mnode >= 0 && mnode < max_mem_nodes);
1118 	ASSERT(n_mblocks > 0);
1119 	ASSERT(P2PHASE(pfn, szcpgcnt) == 0);
1120 
1121 	mpo_rd_lock();
1122 
1123 	if (init || (it->mi_genid != mpo_genid)) {
1124 		it->mi_genid = mpo_genid;
1125 		it->mi_last_mblock = 0;
1126 		it->mi_init = 1;
1127 	}
1128 
1129 	/* Check if mpo is not enabled and we only have one mblock */
1130 	if (n_locality_groups == 1 && n_mblocks == 1) {
1131 		if (P2PHASE(base_ra_to_pa_pfn, szcpgcnt)) {
1132 			pfn = (pfn_t)-1;
1133 			goto done;
1134 		}
1135 		it->mi_mnode = mnode;
1136 		it->mi_ra_to_pa = base_ra_to_pa_pfn;
1137 		it->mi_mnode_pfn_mask = 0;
1138 		it->mi_mnode_pfn_shift = 0;
1139 		it->mi_mnode_mask = 0;
1140 		it->mi_mblock_base = mem_node_config[mnode].physbase;
1141 		it->mi_mblock_end = mem_node_config[mnode].physmax;
1142 		if (pfn < it->mi_mblock_base)
1143 			pfn = P2ROUNDUP(it->mi_mblock_base, szcpgcnt);
1144 		if ((pfn + szcpgcnt - 1) > it->mi_mblock_end)
1145 			pfn = (pfn_t)-1;
1146 		goto done;
1147 	}
1148 
1149 	/* init=1 means begin iterator, init=0 means continue */
1150 	if (init == 1) {
1151 		i = 0;
1152 	} else {
1153 		ASSERT(it->mi_last_mblock < n_mblocks);
1154 		i = it->mi_last_mblock;
1155 		ASSERT(pfn >
1156 		    mem_stripes[i * max_locality_groups + mnode].physmax);
1157 		if (++i == n_mblocks) {
1158 			pfn = (pfn_t)-1;
1159 			goto done;
1160 		}
1161 	}
1162 
1163 	/*
1164 	 * Find mblock that contains pfn for mnode's stripe, or first such an
1165 	 * mblock after pfn, else pfn is out of bound and we'll return -1.
1166 	 * mblocks and stripes are sorted in ascending address order.
1167 	 */
1168 	szcpagesize = szcpgcnt << PAGESHIFT;
1169 	for (; i < n_mblocks; i++) {
1170 		if (P2PHASE(mpo_mblock[i].ra_to_pa, szcpagesize))
1171 			continue;
1172 		ms = &mem_stripes[i * max_locality_groups + mnode];
1173 		if (ms->exists && (pfn + szcpgcnt - 1) <= ms->physmax &&
1174 		    (P2ROUNDUP(ms->physbase, szcpgcnt) + szcpgcnt - 1) <=
1175 		    ms->physmax)
1176 			break;
1177 	}
1178 	if (i == n_mblocks) {
1179 		it->mi_last_mblock = i - 1;
1180 		pfn = (pfn_t)-1;
1181 		goto done;
1182 	}
1183 
1184 	it->mi_last_mblock = i;
1185 
1186 	mblock = &mpo_mblock[i];
1187 	base = ms->physbase;
1188 	end = ms->physmax;
1189 
1190 	it->mi_mnode = mnode;
1191 	it->mi_ra_to_pa = btop(mblock->ra_to_pa);
1192 	it->mi_mblock_base = base;
1193 	it->mi_mblock_end = end;
1194 	it->mi_mnode_pfn_mask = home_mask_pfn;	/* is 0 for non-MPO case */
1195 	it->mi_mnode_pfn_shift = home_mask_pfn_shift;
1196 	it->mi_mnode_mask = max_locality_groups - 1;
1197 	if (pfn < base) {
1198 		pfn = P2ROUNDUP(base, szcpgcnt);
1199 		ASSERT(pfn + szcpgcnt - 1 <= end);
1200 	}
1201 	ASSERT((pfn + szcpgcnt - 1) <= mpo_mblock[i].end_pfn);
1202 done:
1203 	mpo_rd_unlock();
1204 	return (pfn);
1205 }
1206 
1207 /*
1208  * plat_mem_node_intersect_range()
1209  *
1210  * Find the intersection between a memnode and a range of pfn's.
1211  */
1212 void
1213 plat_mem_node_intersect_range(pfn_t test_base, pgcnt_t test_len,
1214     int mnode, pgcnt_t *npages_out)
1215 {
1216 	pfn_t offset, len, hole, base, end, test_end, frag;
1217 	pfn_t nearest;
1218 	mem_stripe_t *ms;
1219 	int i, npages;
1220 
1221 	*npages_out = 0;
1222 
1223 	if (!mem_node_config[mnode].exists || test_len == 0)
1224 		return;
1225 
1226 	base = mem_node_config[mnode].physbase;
1227 	end = mem_node_config[mnode].physmax;
1228 
1229 	test_end = test_base + test_len - 1;
1230 	if (end < test_base || base > test_end)
1231 		return;
1232 
1233 	if (n_locality_groups == 1) {
1234 		*npages_out = MIN(test_end, end) - MAX(test_base, base) + 1;
1235 		return;
1236 	}
1237 
1238 	hole = mnode_stride - mnode_pages;
1239 	npages = 0;
1240 
1241 	/*
1242 	 * Iterate over all the stripes for this mnode (one per mblock),
1243 	 * find the intersection with each, and accumulate the intersections.
1244 	 *
1245 	 * Determing the intersection with a stripe is tricky.  If base or end
1246 	 * fall outside the mem_node bounds, round them to physbase/physmax of
1247 	 * mem_node.  If base or end fall in a gap, round them to start of
1248 	 * nearest stripe.  If they fall within a stripe, keep base or end,
1249 	 * but calculate the fragment size that should be excluded from the
1250 	 * stripe.  Calculate how many strides fall in the adjusted range,
1251 	 * multiply by stripe width, and add the start and end fragments.
1252 	 */
1253 
1254 	mpo_rd_lock();
1255 	for (i = mnode; i < n_mem_stripes; i += max_locality_groups) {
1256 		ms = &mem_stripes[i];
1257 		if (ms->exists &&
1258 		    test_base <= (end = ms->physmax) &&
1259 		    test_end >= (base = ms->physbase)) {
1260 
1261 			offset = ms->offset;
1262 
1263 			if (test_base > base) {
1264 				/* Round test_base to next multiple of stride */
1265 				len = P2ROUNDUP(test_base - (base - offset),
1266 				    mnode_stride);
1267 				nearest = base - offset + len;
1268 				/*
1269 				 * Compute distance from test_base to the
1270 				 * stride boundary to see if test_base falls
1271 				 * in the stripe or in the hole.
1272 				 */
1273 				if (nearest - test_base > hole) {
1274 					/*
1275 					 * test_base lies in stripe,
1276 					 * and offset should be excluded.
1277 					 */
1278 					offset = test_base -
1279 					    (nearest - mnode_stride);
1280 					base = test_base;
1281 				} else {
1282 					/* round up to next stripe start */
1283 					offset = 0;
1284 					base = nearest;
1285 					if (base > end)
1286 						continue;
1287 				}
1288 
1289 			}
1290 
1291 			if (test_end < end)
1292 				end = test_end;
1293 			end++;		/* adjust to an exclusive bound */
1294 
1295 			/* Round end to next multiple of stride */
1296 			len = P2ROUNDUP(end - (base - offset), mnode_stride);
1297 			nearest = (base - offset) + len;
1298 			if (nearest - end <= hole) {
1299 				/* end falls in hole, use entire last stripe */
1300 				frag = 0;
1301 			} else {
1302 				/* end falls in stripe, compute fragment */
1303 				frag = nearest - hole - end;
1304 			}
1305 
1306 			len = (len >> stripe_shift) - offset - frag;
1307 			npages += len;
1308 		}
1309 	}
1310 
1311 	*npages_out = npages;
1312 	mpo_rd_unlock();
1313 }
1314 
1315 /*
1316  * valid_pages()
1317  *
1318  * Return 1 if pages are valid and do not cross mnode boundaries
1319  * (which would break page free list assumptions), and 0 otherwise.
1320  */
1321 
1322 #define	MNODE(pa)	\
1323 	((btop(pa) & home_mask_pfn) >> home_mask_pfn_shift)
1324 
1325 static int
1326 valid_pages(md_t *md, mde_cookie_t cpu0)
1327 {
1328 	int i, max_szc;
1329 	uint64_t last_page_base, szc_mask;
1330 	uint64_t max_page_len, max_coalesce_len;
1331 	struct mblock_md *mb = mpo_mblock;
1332 
1333 	/*
1334 	 * Find the smaller of the largest page possible and supported.
1335 	 * mmu_exported_pagesize_mask is not yet initialized, so read
1336 	 * it from the MD.  Apply minimal fixups in case of broken MDs
1337 	 * to get a sane mask.
1338 	 */
1339 
1340 	if (cpu0 == NULL)
1341 		szc_mask = szc_mask0;
1342 	else {
1343 		if (md_get_prop_val(md, cpu0, "mmu-page-size-list", &szc_mask))
1344 			szc_mask = 0;
1345 		/* largest in sun4v default support */
1346 		szc_mask |=  (1 << TTE4M);
1347 		szc_mask0 = szc_mask;
1348 	}
1349 	max_szc = highbit(szc_mask) - 1;
1350 	if (max_szc > TTE256M)
1351 		max_szc = TTE256M;
1352 	max_page_len = TTEBYTES(max_szc);
1353 
1354 	/*
1355 	 * Page coalescing code coalesces all sizes up to 256M on sun4v, even
1356 	 * if mmu-page-size-list does not contain it, so 256M pages must fall
1357 	 * within one mnode to use MPO.
1358 	 */
1359 	max_coalesce_len = TTEBYTES(TTE256M);
1360 	ASSERT(max_coalesce_len >= max_page_len);
1361 
1362 	if (ptob(mnode_pages) < max_coalesce_len) {
1363 		MPO_STATUS("Page too large; MPO disabled: page = %lx, "
1364 		    "mnode slice = %lx\n", max_coalesce_len, ptob(mnode_pages));
1365 		return (0);
1366 	}
1367 
1368 	for (i = 0; i < n_mblocks; i++) {
1369 		uint64_t base = mb->base;
1370 		uint64_t end = mb->base + mb->size - 1;
1371 		uint64_t ra_to_pa = mb->ra_to_pa;
1372 
1373 		/*
1374 		 * If mblock is smaller than the max page size, then
1375 		 * RA = PA mod MAXPAGE is not guaranteed, but it must
1376 		 * not span mnodes.
1377 		 */
1378 		if (mb->size < max_page_len) {
1379 			if (MNODE(base + ra_to_pa) != MNODE(end + ra_to_pa)) {
1380 				MPO_STATUS("Small mblock spans mnodes; "
1381 				    "MPO disabled: base = %lx, end = %lx, "
1382 				    "ra2pa = %lx\n", base, end, ra_to_pa);
1383 				return (0);
1384 			}
1385 		} else {
1386 			/* Verify RA = PA mod MAXPAGE, using coalesce size */
1387 			uint64_t pa_base = base + ra_to_pa;
1388 			if ((base & (max_coalesce_len - 1)) !=
1389 			    (pa_base & (max_coalesce_len - 1))) {
1390 				MPO_STATUS("bad page alignment; MPO disabled: "
1391 				    "ra = %lx, pa = %lx, pagelen = %lx\n",
1392 				    base, pa_base, max_coalesce_len);
1393 				return (0);
1394 			}
1395 		}
1396 
1397 		/*
1398 		 * Find start of last large page in mblock in RA space.
1399 		 * If page extends into the next mblock, verify the
1400 		 * mnode does not change.
1401 		 */
1402 		last_page_base = P2ALIGN(end, max_coalesce_len);
1403 		if (i + 1 < n_mblocks &&
1404 		    last_page_base + max_coalesce_len > mb[1].base &&
1405 		    MNODE(last_page_base + ra_to_pa) !=
1406 		    MNODE(mb[1].base + mb[1].ra_to_pa)) {
1407 			MPO_STATUS("Large page spans mblocks; MPO disabled: "
1408 			    "end = %lx, ra2pa = %lx, base = %lx, ra2pa = %lx, "
1409 			    "pagelen = %lx\n", end, ra_to_pa, mb[1].base,
1410 			    mb[1].ra_to_pa, max_coalesce_len);
1411 			return (0);
1412 		}
1413 
1414 		mb++;
1415 	}
1416 	return (1);
1417 }
1418 
1419 
1420 /*
1421  * fix_interleave() - Find lgroups with sub-page sized memory interleave,
1422  * if any, and remove them.  This yields a config where the "coarse
1423  * grained" lgroups cover all of memory, even though part of that memory
1424  * is fine grain interleaved and does not deliver a purely local memory
1425  * latency.
1426  *
1427  * This function reads and modifies the globals:
1428  *	mpo_lgroup[], n_lgrpnodes
1429  *
1430  * Returns 1 if lgroup nodes were removed, 0 otherwise.
1431  */
1432 
1433 static int
1434 fix_interleave(void)
1435 {
1436 	int i, j;
1437 	uint64_t mask = 0;
1438 
1439 	j = 0;
1440 	for (i = 0; i < n_lgrpnodes; i++) {
1441 		if ((mpo_lgroup[i].addr_mask & PAGEOFFSET) != 0) {
1442 			/* remove this lgroup */
1443 			mask = mpo_lgroup[i].addr_mask;
1444 		} else {
1445 			mpo_lgroup[j++] = mpo_lgroup[i];
1446 		}
1447 	}
1448 	n_lgrpnodes = j;
1449 
1450 	if (mask != 0)
1451 		MPO_STATUS("sub-page interleave %lx found; "
1452 		    "removing lgroup.\n", mask);
1453 
1454 	return (mask != 0);
1455 }
1456 
1457 /*
1458  * mblock_alloc
1459  *
1460  * Allocate memory for mblock an stripe arrays from either static or
1461  * dynamic space depending on utype, and return the result in mc.
1462  * Returns 0 on success and -1 on error.
1463  */
1464 
1465 static int
1466 mblock_alloc(mpo_config_t *mc, update_t utype, int nmblocks)
1467 {
1468 	mblock_md_t *mb = NULL;
1469 	mem_stripe_t *ms = NULL;
1470 	int nstripes = MAX_MEM_NODES * nmblocks;
1471 	size_t mblocksz = nmblocks * sizeof (struct mblock_md);
1472 	size_t mstripesz = nstripes * sizeof (mem_stripe_t);
1473 	size_t allocsz = mmu_ptob(mmu_btopr(mblocksz + mstripesz));
1474 
1475 	/*
1476 	 * Allocate space for mblocks and mstripes.
1477 	 *
1478 	 * For DR allocations, just use kmem_alloc(), and set
1479 	 * mc_alloc_sz to indicate it was used.
1480 	 *
1481 	 * For boot allocation:
1482 	 * If we have a small number of mblocks we will use the space
1483 	 * that we preallocated. Otherwise, we will dynamically
1484 	 * allocate the space from the prom and map it to the
1485 	 * reserved VA at MPOBUF_BASE.
1486 	 */
1487 
1488 	if (utype == U_ADD || utype == U_DEL) {
1489 		mb = (struct mblock_md *)kmem_zalloc(allocsz, KM_SLEEP);
1490 		ms = (mem_stripe_t *)(mb + nmblocks);
1491 		mc->mc_alloc_sz = allocsz;
1492 	} else if (nmblocks <= SMALL_MBLOCKS_COUNT) {
1493 		mb = &small_mpo_mblocks[0];
1494 		ms = &small_mem_stripes[0];
1495 		mc->mc_alloc_sz = 0;
1496 	} else {
1497 		/* Ensure that we dont request more space than reserved */
1498 		if (allocsz > MPOBUF_SIZE) {
1499 			MPO_STATUS("mblock_alloc: Insufficient space "
1500 			    "for mblock structures \n");
1501 			return (-1);
1502 		}
1503 		mb = (struct mblock_md *)
1504 		    prom_alloc((caddr_t)MPOBUF_BASE, allocsz, PAGESIZE);
1505 		if (mb != (struct mblock_md *)MPOBUF_BASE) {
1506 			MPO_STATUS("mblock_alloc: Cannot allocate space "
1507 			    "for mblocks \n");
1508 			return (-1);
1509 		}
1510 		mpo_heap32_buf = (caddr_t)MPOBUF_BASE;
1511 		mpo_heap32_bufsz = MPOBUF_SIZE;
1512 		ms = (mem_stripe_t *)(mb + nmblocks);
1513 		mc->mc_alloc_sz = 0;
1514 	}
1515 	mc->mc_mblocks = mb;
1516 	mc->mc_stripes = ms;
1517 	mc->mc_nmblocks = nmblocks;
1518 	mc->mc_nstripes = nstripes;
1519 	MPO_DEBUG("mblock_alloc: mblocks: %d\n", nmblocks);
1520 	return (0);
1521 }
1522 
1523 /*
1524  * mblock_free
1525  *
1526  * Free memory in mc that was allocated by mblock_alloc.
1527  */
1528 
1529 static void
1530 mblock_free(mpo_config_t *mc)
1531 {
1532 	if (mc->mc_alloc_sz > 0) {
1533 		ASSERT(mc->mc_mblocks != mpo_mblock);
1534 		kmem_free((caddr_t)mc->mc_mblocks, mc->mc_alloc_sz);
1535 	}
1536 	bzero(mc, sizeof (*mc));
1537 }
1538 
1539 /*
1540  * mblock_install
1541  *
1542  * Install mblock config passed in mc as the global configuration.
1543  * May only be called at boot or while holding mpo_wr_lock.
1544  */
1545 
1546 static void
1547 mblock_install(mpo_config_t *mc)
1548 {
1549 	mpo_mblock = mc->mc_mblocks;
1550 	n_mblocks = mc->mc_nmblocks;
1551 	mem_stripes = mc->mc_stripes;
1552 	n_mem_stripes = mc->mc_nstripes;
1553 	base_ra_to_pa_pfn = btop(mc->mc_mblocks[0].ra_to_pa);
1554 	mpo_config = *mc;
1555 }
1556 
1557 /*
1558  * mblock_update
1559  *
1560  * Traverse mblocknodes, read the mblock properties from the MD, and
1561  * save the mblocks in mc.
1562  */
1563 
1564 static void
1565 mblock_update(mpo_config_t *mc, md_t md, mde_cookie_t *mblocknodes)
1566 {
1567 	uint64_t i, j;
1568 	int result = 0;
1569 	mblock_md_t *mblock = mc->mc_mblocks;
1570 
1571 	for (i = 0, j = 0; j < mc->mc_nmblocks; j++) {
1572 
1573 		/* Without a base or size value we will fail */
1574 		result = get_int(md, mblocknodes[j], PROP_LG_BASE,
1575 		    &mblock[i].base);
1576 		if (result < 0) {
1577 			MPO_STATUS("mblock_update: "
1578 			    "PROP_LG_BASE is missing\n");
1579 			mc->mc_nmblocks = 0;
1580 			return;
1581 		}
1582 
1583 		result = get_int(md, mblocknodes[j], PROP_LG_SIZE,
1584 		    &mblock[i].size);
1585 		if (result < 0) {
1586 			MPO_STATUS("mblock_update: "
1587 			    "PROP_LG_SIZE is missing\n");
1588 			mc->mc_nmblocks = 0;
1589 			return;
1590 		}
1591 
1592 		result = get_int(md, mblocknodes[j],
1593 		    PROP_LG_RA_PA_OFFSET, &mblock[i].ra_to_pa);
1594 
1595 		/* If we don't have an ra_pa_offset, just set it to 0 */
1596 		if (result < 0)
1597 			mblock[i].ra_to_pa = 0;
1598 
1599 		MPO_DEBUG("mblock[%ld]: base = %lx, size = %lx, "
1600 		    "ra_to_pa = %lx\n", i,
1601 		    mblock[i].base,
1602 		    mblock[i].size,
1603 		    mblock[i].ra_to_pa);
1604 
1605 		/* check for unsupportable values of base and size */
1606 		if (mblock[i].base > mblock[i].base + mblock[i].size) {
1607 			MPO_STATUS("mblock_update: "
1608 			    "PROP_LG_BASE+PROP_LG_SIZE is invalid: "
1609 			    "base = %lx, size = %lx\n",
1610 			    mblock[i].base, mblock[i].size);
1611 			mc->mc_nmblocks = 0;
1612 			return;
1613 		}
1614 
1615 		/* eliminate size==0 blocks */
1616 		if (mblock[i].size != 0) {
1617 			uint64_t base = mblock[i].base;
1618 			uint64_t end = base + mblock[i].size;
1619 			ASSERT(end > base);
1620 			mblock[i].base_pfn = btop(base);
1621 			mblock[i].end_pfn = btop(end - 1);
1622 			i++;
1623 		}
1624 	}
1625 
1626 	if (i == 0) {
1627 		MPO_STATUS("mblock_update: "
1628 		    "No non-empty mblock nodes were found "
1629 		    "in the Machine Descriptor\n");
1630 		mc->mc_nmblocks = 0;
1631 		return;
1632 	}
1633 	ASSERT(i <= mc->mc_nmblocks);
1634 	mc->mc_nmblocks = i;
1635 
1636 	/* Must sort mblocks by address for mem_node_iterator_init() */
1637 	mblock_sort(mblock, mc->mc_nmblocks);
1638 }
1639 
1640 /*
1641  * mblock_update_add
1642  *
1643  * Update mblock config after a memory DR add.  The added range is not
1644  * needed, as we read *all* mblock nodes from the MD.  Save the mblocks
1645  * in mc.
1646  */
1647 
1648 static void
1649 mblock_update_add(mpo_config_t *mc)
1650 {
1651 	md_t *md;
1652 	mde_cookie_t root, *mblocknodes;
1653 	int nmblocks = 0;
1654 
1655 	if ((md = md_get_handle()) == NULL) {
1656 		MPO_STATUS("Cannot access Machine Descriptor\n");
1657 		goto error;
1658 	}
1659 
1660 	if ((root = md_get_root(md)) == MDE_INVAL_ELEM_COOKIE)
1661 		goto error;
1662 
1663 	nmblocks = md_alloc_scan_dag(md, root, PROP_LG_MBLOCK, "fwd",
1664 	    &mblocknodes);
1665 	if (nmblocks <= 0) {
1666 		MPO_STATUS("No mblock nodes detected in Machine Descriptor\n");
1667 		goto error;
1668 	}
1669 
1670 	if (mblock_alloc(mc, U_ADD, nmblocks) < 0)
1671 		goto error;
1672 
1673 	mblock_update(mc, md, mblocknodes);
1674 	md_free_scan_dag(md, &mblocknodes);
1675 	(void) md_fini_handle(md);
1676 	return;
1677 error:
1678 	panic("mblock_update_add: cannot process mblocks from MD.\n");
1679 }
1680 
1681 /*
1682  * mblock_update_del
1683  *
1684  * Update mblocks after a memory DR deletion of the range (ubase, uend).
1685  * Allocate a new mblock config, copy old config to the new, modify the new
1686  * mblocks to reflect the deletion.   The new mblocks are returned in
1687  * mc_new and are not yet installed as the active config.
1688  */
1689 
1690 static void
1691 mblock_update_del(mpo_config_t *mc_new, mpo_config_t *mc_old, pfn_t ubase,
1692     pfn_t uend)
1693 {
1694 	int i, j;
1695 	pfn_t base, end;
1696 	mblock_md_t *mblock;
1697 	int nmblocks = mc_old->mc_nmblocks;
1698 
1699 	MPO_DEBUG("mblock_update_del(0x%lx, 0x%lx)\n", ubase, uend);
1700 
1701 	/*
1702 	 * Allocate mblocks in mc_new and copy the old to the new.
1703 	 * Allocate one extra in case the deletion splits an mblock.
1704 	 */
1705 	if (mblock_alloc(mc_new, U_DEL, nmblocks + 1) < 0)
1706 		return;
1707 	mblock = mc_new->mc_mblocks;
1708 	bcopy(mc_old->mc_mblocks, mblock, nmblocks * sizeof (mblock_md_t));
1709 
1710 	/*
1711 	 * Find the mblock containing the deleted range and adjust it in
1712 	 * the new config.
1713 	 */
1714 	for (i = 0; i < nmblocks; i++) {
1715 
1716 		base = btop(mblock[i].base);
1717 		end = base + btop(mblock[i].size) - 1;
1718 
1719 		/*
1720 		 * Adjust the mblock based on the subset that was deleted.
1721 		 *
1722 		 * If the entire mblk was deleted, compact the table.
1723 		 *
1724 		 * If the middle of the mblk was deleted, extend
1725 		 * the table.  Space for the new slot was already
1726 		 * allocated.
1727 		 *
1728 		 * The memory to be deleted is a mblock or a subset of
1729 		 * and does not span multiple mblocks.
1730 		 */
1731 		if (base == ubase && end == uend) {
1732 			for (j = i; j < nmblocks - 1; j++)
1733 				mblock[j] = mblock[j + 1];
1734 			nmblocks--;
1735 			bzero(&mblock[nmblocks], sizeof (*mblock));
1736 			break;
1737 		} else if (base < ubase && end > uend) {
1738 			for (j = nmblocks - 1; j >= i; j--)
1739 				mblock[j + 1] = mblock[j];
1740 			mblock[i].size = ptob(ubase - base);
1741 			mblock[i].end_pfn = ubase - 1;
1742 			mblock[i + 1].base = ptob(uend + 1);
1743 			mblock[i + 1].size = ptob(end - uend);
1744 			mblock[i + 1].base_pfn = uend + 1;
1745 			nmblocks++;
1746 			break;
1747 		} else if (base == ubase) {
1748 			MPO_DEBUG("mblock_update_del: shrink>"
1749 			    " i=%d base=0x%lx end=0x%lx", i, base, end);
1750 			mblock[i].base = ptob(uend + 1);
1751 			mblock[i].size -= ptob(uend - ubase + 1);
1752 			base = uend + 1;
1753 			mblock[i].base_pfn = base;
1754 			mblock[i].end_pfn = end;
1755 			MPO_DEBUG(" nbase=0x%lx nend=0x%lx\n", base, end);
1756 			break;
1757 		} else if (end == uend) {
1758 			MPO_DEBUG("mblock_update_del: shrink<"
1759 			    " i=%d base=0x%lx end=0x%lx", i, base, end);
1760 			mblock[i].size -= ptob(uend - ubase + 1);
1761 			end = ubase - 1;
1762 			mblock[i].base_pfn = base;
1763 			mblock[i].end_pfn = end;
1764 			MPO_DEBUG(" nbase=0x%lx nend=0x%lx\n", base, end);
1765 			break;
1766 		}
1767 	}
1768 	mc_new->mc_nmblocks = nmblocks;
1769 	ASSERT(end > base);
1770 }
1771 
1772 /*
1773  * mstripe_update
1774  *
1775  * Read mblocks from mc and update mstripes in mc
1776  */
1777 
1778 static void
1779 mstripe_update(mpo_config_t *mc)
1780 {
1781 	lgrp_handle_t lgrphand, lgrp_start;
1782 	int i, mnode;
1783 	uint64_t offset, stripe_end, base, end, ra_to_pa, stride;
1784 	uint64_t stripe, frag, remove;
1785 	mem_stripe_t *ms;
1786 	mblock_md_t *mblock = mc->mc_mblocks;
1787 	int nmblocks = mc->mc_nmblocks;
1788 	int mstripesz = MAX_MEM_NODES * nmblocks * sizeof (mem_stripe_t);
1789 
1790 	/* Check for non-MPO sun4v platforms or memory DR removal */
1791 	if (n_locality_groups <= 1) {
1792 		ASSERT(n_locality_groups == 1);
1793 		ASSERT(max_locality_groups == 1 && max_mem_nodes == 1);
1794 
1795 		if (nmblocks == 1) {
1796 			mc->mc_nstripes = 0;
1797 		} else {
1798 			mc->mc_nstripes = nmblocks;
1799 			bzero(mc->mc_stripes, mstripesz);
1800 			for (i = 0; i < nmblocks; i++) {
1801 				mc->mc_stripes[i].exists = 1;
1802 				mc->mc_stripes[i].physbase = mblock[i].base_pfn;
1803 				mc->mc_stripes[i].physmax = mblock[i].end_pfn;
1804 			}
1805 		}
1806 		return;
1807 	}
1808 
1809 	bzero(mc->mc_stripes, mstripesz);
1810 	mc->mc_nstripes = max_locality_groups * nmblocks;
1811 	stripe = ptob(mnode_pages);
1812 	stride = max_locality_groups * stripe;
1813 
1814 	for (i = 0; i < nmblocks; i++) {
1815 		base = mblock[i].base;
1816 		end = base + mblock[i].size;
1817 		ra_to_pa = mblock[i].ra_to_pa;
1818 
1819 		/* Find the offset from the prev stripe boundary in PA space. */
1820 		offset = (base + ra_to_pa) & (stripe - 1);
1821 
1822 		/* Set the next stripe boundary. */
1823 		stripe_end = base - offset + stripe;
1824 
1825 		lgrp_start = (((base + ra_to_pa) & home_mask) >>
1826 		    home_mask_shift);
1827 		lgrphand = lgrp_start;
1828 
1829 		/*
1830 		 * Loop over all lgroups covered by the mblock, creating a
1831 		 * stripe for each.  Stop when lgrp_start is visited again.
1832 		 */
1833 		do {
1834 			/* mblock may not span all lgroups */
1835 			if (base >= end)
1836 				break;
1837 
1838 			mnode = lgrphand;
1839 			ASSERT(mnode < max_mem_nodes);
1840 
1841 			/*
1842 			 * Calculate the size of the fragment that does not
1843 			 * belong to the mnode in the last partial stride.
1844 			 */
1845 			frag = (end - (base - offset)) & (stride - 1);
1846 			if (frag == 0) {
1847 				/* remove the gap */
1848 				remove = stride - stripe;
1849 			} else if (frag < stripe) {
1850 				/* fragment fits in stripe; keep it all */
1851 				remove = 0;
1852 			} else {
1853 				/* fragment is large; trim after whole stripe */
1854 				remove = frag - stripe;
1855 			}
1856 
1857 			ms = &mc->mc_stripes[i * max_locality_groups + mnode];
1858 			ms->physbase = btop(base);
1859 			ms->physmax = btop(end - 1 - remove);
1860 			ms->offset = btop(offset);
1861 			ms->exists = 1;
1862 
1863 			base = stripe_end;
1864 			stripe_end += stripe;
1865 			offset = 0;
1866 			lgrphand = (((base + ra_to_pa) & home_mask) >>
1867 			    home_mask_shift);
1868 		} while (lgrphand != lgrp_start);
1869 	}
1870 }
1871 
1872 #define	INTERSECT(a, b, c, d)				\
1873 	if (((a) >= (c) && (a) <= (d)) ||		\
1874 	    ((c) >= (a) && (c) <= (b))) {		\
1875 		(c) = MAX((a), (c));			\
1876 		(d) = MIN((b), (d));			\
1877 	} else {					\
1878 		ASSERT((a) >= (d) || (b) <= (c));	\
1879 		continue;				\
1880 	}						\
1881 
1882 /*
1883  * mnode_update
1884  *
1885  * Read stripes from mc and update mnode extents.  The mnode extents are
1886  * part of the live configuration, so this can only be done at boot time
1887  * or while holding the mpo_wr_lock.
1888  */
1889 
1890 static void
1891 mnode_update(mpo_config_t *mc, pfn_t ubase, pfn_t uend, update_t utype)
1892 {
1893 	int i, j, mnode, found;
1894 	pfn_t base, end;
1895 	mem_stripe_t *ms;
1896 
1897 	MPO_DEBUG("mnode_udpate: basepfn: %lx  endpfn: %lx\n", ubase, uend);
1898 
1899 	if (n_locality_groups <= 1 && mc->mc_nmblocks == 1) {
1900 		if (utype == U_ADD)
1901 			mpo_mem_node_add_slice(ubase, uend);
1902 		else if (utype == U_DEL)
1903 			mpo_mem_node_del_slice(ubase, uend);
1904 		else
1905 			panic("mnode update: %d: invalid\n", utype);
1906 		return;
1907 	}
1908 
1909 	found = 0;
1910 	for (i = 0; i < mc->mc_nmblocks; i++) {
1911 		for (mnode = 0; mnode < max_locality_groups; mnode++) {
1912 
1913 			j = i * max_locality_groups + mnode;
1914 			ms = &mc->mc_stripes[j];
1915 			if (!ms->exists)
1916 				continue;
1917 
1918 			base = ms->physbase;
1919 			end = ms->physmax;
1920 
1921 			/*
1922 			 * Look for the mstripes intersecting this slice.
1923 			 *
1924 			 * The mstripe and slice pairs may not be equal
1925 			 * if a subset of a mblock is added/deleted.
1926 			 */
1927 			switch (utype) {
1928 			case U_ADD:
1929 				INTERSECT(ubase, uend, base, end);
1930 				/*FALLTHROUGH*/
1931 			case U_ADD_ALL:
1932 				if (n_locality_groups > 1)
1933 					mpo_plat_assign_lgrphand_to_mem_node(
1934 					    mnode, mnode);
1935 				mpo_mem_node_add_slice(base, end);
1936 				break;
1937 			case U_DEL:
1938 				INTERSECT(ubase, uend, base, end);
1939 				mpo_mem_node_del_slice(base, end);
1940 				break;
1941 			default:
1942 				panic("mnode_update: %d: invalid\n", utype);
1943 				break;
1944 			}
1945 
1946 			found++;
1947 		}
1948 	}
1949 
1950 	if (!found)
1951 		panic("mnode_update: mstripe not found");
1952 
1953 #ifdef	DEBUG
1954 	if (utype == U_ADD_ALL || utype == U_DEL)
1955 		return;
1956 	found = 0;
1957 	for (i = 0; i < max_mem_nodes; i++) {
1958 		if (!mem_node_config[i].exists)
1959 			continue;
1960 		if (ubase >= mem_node_config[i].physbase &&
1961 		    ubase <= mem_node_config[i].physmax)
1962 			found |= 1;
1963 		if (uend >= mem_node_config[i].physbase &&
1964 		    uend <= mem_node_config[i].physmax)
1965 			found |= 2;
1966 	}
1967 	ASSERT(found == 3);
1968 	{
1969 		pfn_t minpfn, maxpfn;
1970 
1971 		mem_node_max_range(&minpfn, &maxpfn);
1972 		ASSERT(minpfn <= ubase);
1973 		ASSERT(maxpfn >= uend);
1974 	}
1975 #endif
1976 }
1977 
1978 /*
1979  * Plat_slice_add()/plat_slice_del() are the platform hooks
1980  * for adding/deleting a pfn range to/from the system.
1981  *
1982  * Platform_slice_add() is used for both boot/DR cases.
1983  *
1984  * - Zeus has already added the mblocks to the MD, so read the updated
1985  *   MD and allocate all data structures required to manage the new memory
1986  *   configuration.
1987  *
1988  * - Recompute the stripes which are derived from the mblocks.
1989  *
1990  * - Update (expand) the mnode extents and install the modified mblocks as
1991  *   the new mpo config.  This must be done while holding the mpo_wr_lock
1992  *   to guarantee that no other threads access the mpo meta-data.
1993  *
1994  * - Unlock MPO data structures; the new config is live.  Free the old config.
1995  *
1996  * Plat_slice_del() is used for DR only.
1997  *
1998  * - Zeus has not yet modified the MD to reflect the deletion, so copy
1999  *   the old mpo mblocks and delete the range from the copy.
2000  *
2001  * - Recompute the stripes which are derived from the mblocks.
2002  *
2003  * - Update (shrink) the mnode extents and install the modified mblocks as
2004  *   the new mpo config.  This must be done while holding the mpo_wr_lock
2005  *   to guarantee that no other threads access the mpo meta-data.
2006  *
2007  * - Unlock MPO data structures; the new config is live.  Free the old config.
2008  */
2009 
2010 void
2011 plat_slice_add(pfn_t base, pfn_t end)
2012 {
2013 	mpo_config_t old_config = mpo_config;
2014 	mpo_config_t new_config;
2015 
2016 	VALIDATE_SLICE(base, end);
2017 	mblock_update_add(&new_config);
2018 	mstripe_update(&new_config);
2019 	mpo_wr_lock();
2020 	mblock_install(&new_config);
2021 	/* Use new config to add all ranges for mnode_update */
2022 	mnode_update(&new_config, base, end, U_ADD);
2023 	mpo_genid++;
2024 	mpo_wr_unlock();
2025 	mblock_free(&old_config);
2026 }
2027 
2028 void
2029 plat_slice_del(pfn_t base, pfn_t end)
2030 {
2031 	mpo_config_t old_config = mpo_config;
2032 	mpo_config_t new_config;
2033 
2034 	VALIDATE_SLICE(base, end);
2035 	mblock_update_del(&new_config, &old_config, base, end);
2036 	mstripe_update(&new_config);
2037 	mpo_wr_lock();
2038 	/* Use old config to find deleted range for mnode_update */
2039 	mnode_update(&old_config, base, end, U_DEL);
2040 	mblock_install(&new_config);
2041 	mpo_genid++;
2042 	mpo_wr_unlock();
2043 	mblock_free(&old_config);
2044 }
2045