xref: /titanic_44/usr/src/uts/sun4v/os/mach_cpu_states.c (revision 0cc8ae8667155d352d327b5c92b62899a7e05bcd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/archsystm.h>
31 #include <sys/t_lock.h>
32 #include <sys/uadmin.h>
33 #include <sys/panic.h>
34 #include <sys/reboot.h>
35 #include <sys/autoconf.h>
36 #include <sys/machsystm.h>
37 #include <sys/promif.h>
38 #include <sys/membar.h>
39 #include <vm/hat_sfmmu.h>
40 #include <sys/cpu_module.h>
41 #include <sys/cpu_sgnblk_defs.h>
42 #include <sys/intreg.h>
43 #include <sys/consdev.h>
44 #include <sys/kdi_impl.h>
45 #include <sys/traptrace.h>
46 #include <sys/hypervisor_api.h>
47 #include <sys/vmsystm.h>
48 #include <sys/dtrace.h>
49 #include <sys/xc_impl.h>
50 #include <sys/callb.h>
51 #include <sys/mdesc.h>
52 #include <sys/mach_descrip.h>
53 #include <sys/wdt.h>
54 
55 /*
56  * hvdump_buf_va is a pointer to the currently-configured hvdump_buf.
57  * A value of NULL indicates that this area is not configured.
58  * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX.
59  */
60 
61 caddr_t hvdump_buf_va;
62 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT;
63 static uint64_t hvdump_buf_pa;
64 
65 u_longlong_t panic_tick;
66 
67 extern u_longlong_t gettick();
68 static void reboot_machine(char *);
69 static void update_hvdump_buffer(void);
70 
71 /*
72  * For xt_sync synchronization.
73  */
74 extern uint64_t xc_tick_limit;
75 extern uint64_t xc_tick_jump_limit;
76 
77 /*
78  * We keep our own copies, used for cache flushing, because we can be called
79  * before cpu_fiximpl().
80  */
81 static int kdi_dcache_size;
82 static int kdi_dcache_linesize;
83 static int kdi_icache_size;
84 static int kdi_icache_linesize;
85 
86 /*
87  * Assembly support for generic modules in sun4v/ml/mach_xc.s
88  */
89 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2);
90 extern void kdi_flush_idcache(int, int, int, int);
91 extern uint64_t get_cpuaddr(uint64_t, uint64_t);
92 
93 /*
94  * Machine dependent code to reboot.
95  * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
96  * to a string to be used as the argument string when rebooting.
97  *
98  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
99  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
100  * we are in a normal shutdown sequence (interrupts are not blocked, the
101  * system is not panic'ing or being suspended).
102  */
103 /*ARGSUSED*/
104 void
105 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb)
106 {
107 	extern void pm_cfb_check_and_powerup(void);
108 
109 	/*
110 	 * XXX - rconsvp is set to NULL to ensure that output messages
111 	 * are sent to the underlying "hardware" device using the
112 	 * monitor's printf routine since we are in the process of
113 	 * either rebooting or halting the machine.
114 	 */
115 	rconsvp = NULL;
116 
117 	/*
118 	 * At a high interrupt level we can't:
119 	 *	1) bring up the console
120 	 * or
121 	 *	2) wait for pending interrupts prior to redistribution
122 	 *	   to the current CPU
123 	 *
124 	 * so we do them now.
125 	 */
126 	pm_cfb_check_and_powerup();
127 
128 	/* make sure there are no more changes to the device tree */
129 	devtree_freeze();
130 
131 	if (invoke_cb)
132 		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
133 
134 	/*
135 	 * Clear any unresolved UEs from memory.
136 	 */
137 	if (memsegs != NULL)
138 		page_retire_hunt(page_retire_mdboot_cb);
139 
140 	/*
141 	 * stop other cpus which also raise our priority. since there is only
142 	 * one active cpu after this, and our priority will be too high
143 	 * for us to be preempted, we're essentially single threaded
144 	 * from here on out.
145 	 */
146 	stop_other_cpus();
147 
148 	/*
149 	 * try and reset leaf devices.  reset_leaves() should only
150 	 * be called when there are no other threads that could be
151 	 * accessing devices
152 	 */
153 	reset_leaves();
154 
155 	watchdog_clear();
156 
157 	if (fcn == AD_HALT) {
158 		halt((char *)NULL);
159 	} else if (fcn == AD_POWEROFF) {
160 		power_down(NULL);
161 	} else {
162 		if (bootstr == NULL) {
163 			switch (fcn) {
164 
165 			case AD_BOOT:
166 				bootstr = "";
167 				break;
168 
169 			case AD_IBOOT:
170 				bootstr = "-a";
171 				break;
172 
173 			case AD_SBOOT:
174 				bootstr = "-s";
175 				break;
176 
177 			case AD_SIBOOT:
178 				bootstr = "-sa";
179 				break;
180 			default:
181 				cmn_err(CE_WARN,
182 				    "mdboot: invalid function %d", fcn);
183 				bootstr = "";
184 				break;
185 			}
186 		}
187 		reboot_machine(bootstr);
188 	}
189 	/* MAYBE REACHED */
190 }
191 
192 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
193 /*ARGSUSED*/
194 void
195 mdpreboot(int cmd, int fcn, char *bootstr)
196 {
197 }
198 
199 /*
200  * Halt the machine and then reboot with the device
201  * and arguments specified in bootstr.
202  */
203 static void
204 reboot_machine(char *bootstr)
205 {
206 	flush_windows();
207 	stop_other_cpus();		/* send stop signal to other CPUs */
208 	prom_printf("rebooting...\n");
209 	/*
210 	 * For platforms that use CPU signatures, we
211 	 * need to set the signature block to OS and
212 	 * the state to exiting for all the processors.
213 	 */
214 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1);
215 	prom_reboot(bootstr);
216 	/*NOTREACHED*/
217 }
218 
219 /*
220  * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs.
221  * Once in panic_idle() they raise spl, record their location, and spin.
222  */
223 static void
224 panic_idle(void)
225 {
226 	(void) spl7();
227 
228 	debug_flush_windows();
229 	(void) setjmp(&curthread->t_pcb);
230 
231 	CPU->cpu_m.in_prom = 1;
232 	membar_stld();
233 
234 	for (;;);
235 }
236 
237 /*
238  * Force the other CPUs to trap into panic_idle(), and then remove them
239  * from the cpu_ready_set so they will no longer receive cross-calls.
240  */
241 /*ARGSUSED*/
242 void
243 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
244 {
245 	cpuset_t cps;
246 	int i;
247 
248 	(void) splzs();
249 	CPUSET_ALL_BUT(cps, cp->cpu_id);
250 	xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL);
251 
252 	for (i = 0; i < NCPU; i++) {
253 		if (i != cp->cpu_id && CPU_XCALL_READY(i)) {
254 			int ntries = 0x10000;
255 
256 			while (!cpu[i]->cpu_m.in_prom && ntries) {
257 				DELAY(50);
258 				ntries--;
259 			}
260 
261 			if (!cpu[i]->cpu_m.in_prom)
262 				printf("panic: failed to stop cpu%d\n", i);
263 
264 			cpu[i]->cpu_flags &= ~CPU_READY;
265 			cpu[i]->cpu_flags |= CPU_QUIESCED;
266 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
267 		}
268 	}
269 }
270 
271 /*
272  * Platform callback following each entry to panicsys().  If we've panicked at
273  * level 14, we examine t_panic_trap to see if a fatal trap occurred.  If so,
274  * we disable further %tick_cmpr interrupts.  If not, an explicit call to panic
275  * was made and so we re-enqueue an interrupt request structure to allow
276  * further level 14 interrupts to be processed once we lower PIL.  This allows
277  * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic.
278  */
279 void
280 panic_enter_hw(int spl)
281 {
282 	if (!panic_tick) {
283 		panic_tick = gettick();
284 		if (mach_htraptrace_enable) {
285 			uint64_t prev_freeze;
286 
287 			/*  there are no possible error codes for this hcall */
288 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
289 			    &prev_freeze);
290 		}
291 #ifdef TRAPTRACE
292 		TRAPTRACE_FREEZE;
293 #endif
294 	}
295 	if (spl == ipltospl(PIL_14)) {
296 		uint_t opstate = disable_vec_intr();
297 
298 		if (curthread->t_panic_trap != NULL) {
299 			tickcmpr_disable();
300 			intr_dequeue_req(PIL_14, cbe_level14_inum);
301 		} else {
302 			if (!tickcmpr_disabled())
303 				intr_enqueue_req(PIL_14, cbe_level14_inum);
304 			/*
305 			 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT)
306 			 * and SOFTINT<16> (STICK_INT) to indicate
307 			 * that the current level 14 has been serviced.
308 			 */
309 			wr_clr_softint((1 << PIL_14) |
310 				TICK_INT_MASK | STICK_INT_MASK);
311 		}
312 
313 		enable_vec_intr(opstate);
314 	}
315 }
316 
317 /*
318  * Miscellaneous hardware-specific code to execute after panicstr is set
319  * by the panic code: we also print and record PTL1 panic information here.
320  */
321 /*ARGSUSED*/
322 void
323 panic_quiesce_hw(panic_data_t *pdp)
324 {
325 	extern uint_t getpstate(void);
326 	extern void setpstate(uint_t);
327 
328 	/*
329 	 * Turn off TRAPTRACE and save the current %tick value in panic_tick.
330 	 */
331 	if (!panic_tick) {
332 		panic_tick = gettick();
333 		if (mach_htraptrace_enable) {
334 			uint64_t prev_freeze;
335 
336 			/*  there are no possible error codes for this hcall */
337 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
338 			    &prev_freeze);
339 		}
340 #ifdef TRAPTRACE
341 		TRAPTRACE_FREEZE;
342 #endif
343 	}
344 	/*
345 	 * For Platforms that use CPU signatures, we
346 	 * need to set the signature block to OS, the state to
347 	 * exiting, and the substate to panic for all the processors.
348 	 */
349 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1);
350 
351 	update_hvdump_buffer();
352 
353 	/*
354 	 * Disable further ECC errors from the bus nexus.
355 	 */
356 	(void) bus_func_invoke(BF_TYPE_ERRDIS);
357 
358 	/*
359 	 * Redirect all interrupts to the current CPU.
360 	 */
361 	intr_redist_all_cpus_shutdown();
362 
363 	/*
364 	 * This call exists solely to support dumps to network
365 	 * devices after sync from OBP.
366 	 *
367 	 * If we came here via the sync callback, then on some
368 	 * platforms, interrupts may have arrived while we were
369 	 * stopped in OBP.  OBP will arrange for those interrupts to
370 	 * be redelivered if you say "go", but not if you invoke a
371 	 * client callback like 'sync'.	 For some dump devices
372 	 * (network swap devices), we need interrupts to be
373 	 * delivered in order to dump, so we have to call the bus
374 	 * nexus driver to reset the interrupt state machines.
375 	 */
376 	(void) bus_func_invoke(BF_TYPE_RESINTR);
377 
378 	setpstate(getpstate() | PSTATE_IE);
379 }
380 
381 /*
382  * Platforms that use CPU signatures need to set the signature block to OS and
383  * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to
384  * write the crash dump, which tells the SSP/SMS to begin a timeout routine to
385  * reboot the machine if the dump never completes.
386  */
387 /*ARGSUSED*/
388 void
389 panic_dump_hw(int spl)
390 {
391 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
392 }
393 
394 /*
395  * for ptl1_panic
396  */
397 void
398 ptl1_init_cpu(struct cpu *cpu)
399 {
400 	ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state;
401 
402 	/*CONSTCOND*/
403 	if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) {
404 		panic("ptl1_init_cpu: not enough space left for ptl1_panic "
405 		    "stack, sizeof (struct cpu) = %lu",
406 		    (unsigned long)sizeof (struct cpu));
407 	}
408 
409 	pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE;
410 	cpu_pa[cpu->cpu_id] = va_to_pa(cpu);
411 }
412 
413 void
414 ptl1_panic_handler(ptl1_state_t *pstate)
415 {
416 	static const char *ptl1_reasons[] = {
417 #ifdef	PTL1_PANIC_DEBUG
418 		"trap for debug purpose",	/* PTL1_BAD_DEBUG */
419 #else
420 		"unknown trap",			/* PTL1_BAD_DEBUG */
421 #endif
422 		"register window trap",		/* PTL1_BAD_WTRAP */
423 		"kernel MMU miss",		/* PTL1_BAD_KMISS */
424 		"kernel protection fault",	/* PTL1_BAD_KPROT_FAULT */
425 		"ISM MMU miss",			/* PTL1_BAD_ISM */
426 		"kernel MMU trap",		/* PTL1_BAD_MMUTRAP */
427 		"kernel trap handler state",	/* PTL1_BAD_TRAP */
428 		"floating point trap",		/* PTL1_BAD_FPTRAP */
429 #ifdef	DEBUG
430 		"pointer to intr_req",		/* PTL1_BAD_INTR_REQ */
431 #else
432 		"unknown trap",			/* PTL1_BAD_INTR_REQ */
433 #endif
434 #ifdef	TRAPTRACE
435 		"TRACE_PTR state",		/* PTL1_BAD_TRACE_PTR */
436 #else
437 		"unknown trap",			/* PTL1_BAD_TRACE_PTR */
438 #endif
439 		"stack overflow",		/* PTL1_BAD_STACK */
440 		"DTrace flags",			/* PTL1_BAD_DTRACE_FLAGS */
441 		"attempt to steal locked ctx",  /* PTL1_BAD_CTX_STEAL */
442 		"CPU ECC error loop",		/* PTL1_BAD_ECC */
443 		"unexpected error from hypervisor call", /* PTL1_BAD_HCALL */
444 		"unexpected global level(%gl)", /* PTL1_BAD_GL */
445 		"Watchdog Reset", 		/* PTL1_BAD_WATCHDOG */
446 		"unexpected RED mode trap", 	/* PTL1_BAD_RED */
447 		"return value EINVAL from hcall: "\
448 		    "UNMAP_PERM_ADDR",	/* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */
449 		"return value ENOMAP from hcall: "\
450 		    "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */
451 	};
452 
453 	uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1;
454 	uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl;
455 	struct trap_info ti = { 0 };
456 
457 	/*
458 	 * Use trap_info for a place holder to call panic_savetrap() and
459 	 * panic_showtrap() to save and print out ptl1_panic information.
460 	 */
461 	if (curthread->t_panic_trap == NULL)
462 		curthread->t_panic_trap = &ti;
463 
464 	if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0]))
465 		panic("bad %s at TL %u", ptl1_reasons[reason], tl);
466 	else
467 		panic("ptl1_panic reason 0x%x at TL %u", reason, tl);
468 }
469 
470 void
471 clear_watchdog_on_exit(void)
472 {
473 	prom_printf("Debugging requested; hardware watchdog suspended.\n");
474 	(void) watchdog_suspend();
475 }
476 
477 /*
478  * Restore the watchdog timer when returning from a debugger
479  * after a panic or L1-A and resume watchdog pat.
480  */
481 void
482 restore_watchdog_on_entry()
483 {
484 	watchdog_resume();
485 }
486 
487 int
488 kdi_watchdog_disable(void)
489 {
490 	watchdog_suspend();
491 
492 	return (0);
493 }
494 
495 void
496 kdi_watchdog_restore(void)
497 {
498 	watchdog_resume();
499 }
500 
501 void
502 mach_dump_buffer_init(void)
503 {
504 	uint64_t  ret, minsize = 0;
505 
506 	if (hvdump_buf_sz > HVDUMP_SIZE_MAX)
507 		hvdump_buf_sz = HVDUMP_SIZE_MAX;
508 
509 	hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE);
510 	if (hvdump_buf_va == NULL)
511 		return;
512 
513 	hvdump_buf_pa = va_to_pa(hvdump_buf_va);
514 
515 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
516 	    &minsize);
517 
518 	if (ret != H_EOK) {
519 		contig_mem_free(hvdump_buf_va, hvdump_buf_sz);
520 		hvdump_buf_va = NULL;
521 		cmn_err(CE_NOTE, "!Error in setting up hvstate"
522 		    "dump buffer. Error = 0x%lx, size = 0x%lx,"
523 		    "buf_pa = 0x%lx", ret, hvdump_buf_sz,
524 		    hvdump_buf_pa);
525 
526 		if (ret == H_EINVAL) {
527 			cmn_err(CE_NOTE, "!Buffer size too small."
528 			    "Available buffer size = 0x%lx,"
529 			    "Minimum buffer size required = 0x%lx",
530 			    hvdump_buf_sz, minsize);
531 		}
532 	}
533 }
534 
535 
536 static void
537 update_hvdump_buffer(void)
538 {
539 	uint64_t ret, dummy_val;
540 
541 	if (hvdump_buf_va == NULL)
542 		return;
543 
544 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
545 	    &dummy_val);
546 	if (ret != H_EOK) {
547 		cmn_err(CE_NOTE, "!Cannot update hvstate dump"
548 		    "buffer. Error = 0x%lx", ret);
549 	}
550 }
551 
552 
553 static int
554 getintprop(pnode_t node, char *name, int deflt)
555 {
556 	int	value;
557 
558 	switch (prom_getproplen(node, name)) {
559 	case 0:
560 		value = 1;	/* boolean properties */
561 		break;
562 
563 	case sizeof (int):
564 		(void) prom_getprop(node, name, (caddr_t)&value);
565 		break;
566 
567 	default:
568 		value = deflt;
569 		break;
570 	}
571 
572 	return (value);
573 }
574 
575 /*
576  * Called by setcpudelay
577  */
578 void
579 cpu_init_tick_freq(void)
580 {
581 	md_t *mdp;
582 	mde_cookie_t rootnode;
583 	int		listsz;
584 	mde_cookie_t	*listp = NULL;
585 	int	num_nodes;
586 	uint64_t stick_prop;
587 
588 	if (broken_md_flag) {
589 		sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq;
590 		return;
591 	}
592 
593 	if ((mdp = md_get_handle()) == NULL)
594 		panic("stick_frequency property not found in MD");
595 
596 	rootnode = md_root_node(mdp);
597 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
598 
599 	num_nodes = md_node_count(mdp);
600 
601 	ASSERT(num_nodes > 0);
602 	listsz = num_nodes * sizeof (mde_cookie_t);
603 	listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0);
604 
605 	if (listp == NULL)
606 		panic("cannot allocate list for MD properties");
607 
608 	num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"),
609 	    md_find_name(mdp, "fwd"), listp);
610 
611 	ASSERT(num_nodes == 1);
612 
613 	if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0)
614 		panic("stick_frequency property not found in MD");
615 
616 	sys_tick_freq = stick_prop;
617 
618 	prom_free((caddr_t)listp, listsz);
619 	(void) md_fini_handle(mdp);
620 }
621 
622 int shipit(int n, uint64_t cpu_list_ra);
623 extern uint64_t xc_tick_limit;
624 extern uint64_t xc_tick_jump_limit;
625 
626 #ifdef DEBUG
627 #define	SEND_MONDO_STATS	1
628 #endif
629 
630 #ifdef SEND_MONDO_STATS
631 uint32_t x_one_stimes[64];
632 uint32_t x_one_ltimes[16];
633 uint32_t x_set_stimes[64];
634 uint32_t x_set_ltimes[16];
635 uint32_t x_set_cpus[NCPU];
636 #endif
637 
638 void
639 send_one_mondo(int cpuid)
640 {
641 	int retries, stat;
642 	uint64_t starttick, endtick, tick, lasttick;
643 	struct machcpu	*mcpup = &(CPU->cpu_m);
644 
645 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
646 	starttick = lasttick = gettick();
647 	mcpup->cpu_list[0] = (uint16_t)cpuid;
648 	stat = shipit(1, mcpup->cpu_list_ra);
649 	endtick = starttick + xc_tick_limit;
650 	retries = 0;
651 	while (stat != H_EOK) {
652 		if (stat != H_EWOULDBLOCK) {
653 			if (panic_quiesce)
654 				return;
655 			if (stat == H_ECPUERROR)
656 				cmn_err(CE_PANIC, "send_one_mondo: "
657 				    "cpuid: 0x%x has been marked in "
658 				    "error", cpuid);
659 			else
660 				cmn_err(CE_PANIC, "send_one_mondo: "
661 				    "unexpected hypervisor error 0x%x "
662 				    "while sending a mondo to cpuid: "
663 				    "0x%x", stat, cpuid);
664 		}
665 		tick = gettick();
666 		/*
667 		 * If there is a big jump between the current tick
668 		 * count and lasttick, we have probably hit a break
669 		 * point.  Adjust endtick accordingly to avoid panic.
670 		 */
671 		if (tick > (lasttick + xc_tick_jump_limit))
672 			endtick += (tick - lasttick);
673 		lasttick = tick;
674 		if (tick > endtick) {
675 			if (panic_quiesce)
676 				return;
677 			cmn_err(CE_PANIC, "send mondo timeout "
678 			    "(target 0x%x) [retries: 0x%x hvstat: 0x%x]",
679 			    cpuid, retries, stat);
680 		}
681 		drv_usecwait(1);
682 		stat = shipit(1, mcpup->cpu_list_ra);
683 		retries++;
684 	}
685 #ifdef SEND_MONDO_STATS
686 	{
687 		uint64_t n = gettick() - starttick;
688 		if (n < 8192)
689 			x_one_stimes[n >> 7]++;
690 		else if (n < 15*8192)
691 			x_one_ltimes[n >> 13]++;
692 		else
693 			x_one_ltimes[0xf]++;
694 	}
695 #endif
696 }
697 
698 void
699 send_mondo_set(cpuset_t set)
700 {
701 	uint64_t starttick, endtick, tick, lasttick;
702 	int shipped = 0;
703 	int retries = 0;
704 	struct machcpu	*mcpup = &(CPU->cpu_m);
705 
706 	ASSERT(!CPUSET_ISNULL(set));
707 	starttick = lasttick = gettick();
708 	endtick = starttick + xc_tick_limit;
709 
710 	do {
711 		int ncpuids = 0;
712 		int i, stat;
713 
714 		/* assemble CPU list for HV argument */
715 		for (i = 0; i < NCPU; i++) {
716 			if (CPU_IN_SET(set, i)) {
717 				mcpup->cpu_list[ncpuids] = (uint16_t)i;
718 				ncpuids++;
719 			}
720 		}
721 
722 		stat = shipit(ncpuids, mcpup->cpu_list_ra);
723 		if (stat == H_EOK) {
724 			shipped += ncpuids;
725 			break;
726 		}
727 
728 		/*
729 		 * Either not all CPU mondos were sent, or an
730 		 * error occurred. CPUs that were sent mondos
731 		 * have their CPU IDs overwritten in cpu_list.
732 		 * Reset the cpuset so that its only members
733 		 * are those CPU IDs that still need to be sent.
734 		 */
735 		CPUSET_ZERO(set);
736 		for (i = 0; i < ncpuids; i++) {
737 			if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) {
738 				shipped++;
739 			} else {
740 				CPUSET_ADD(set, mcpup->cpu_list[i]);
741 			}
742 		}
743 
744 		/*
745 		 * Now handle possible errors returned
746 		 * from hypervisor.
747 		 */
748 		if (stat == H_ECPUERROR) {
749 			cpuset_t error_set;
750 
751 			/*
752 			 * One or more of the CPUs passed to HV is
753 			 * in the error state. Remove those CPUs from
754 			 * set and record them in error_set.
755 			 */
756 			CPUSET_ZERO(error_set);
757 			for (i = 0; i < NCPU; i++) {
758 				if (CPU_IN_SET(set, i)) {
759 					uint64_t state = CPU_STATE_INVALID;
760 					(void) hv_cpu_state(i, &state);
761 					if (state == CPU_STATE_ERROR) {
762 						CPUSET_ADD(error_set, i);
763 						CPUSET_DEL(set, i);
764 					}
765 				}
766 			}
767 
768 			if (!panic_quiesce) {
769 				if (CPUSET_ISNULL(error_set)) {
770 					cmn_err(CE_PANIC, "send_mondo_set: "
771 					    "hypervisor returned "
772 					    "H_ECPUERROR but no CPU in "
773 					    "cpu_list in error state");
774 				}
775 
776 				cmn_err(CE_CONT, "send_mondo_set: cpuid(s) ");
777 				for (i = 0; i < NCPU; i++) {
778 					if (CPU_IN_SET(error_set, i)) {
779 						cmn_err(CE_CONT, "0x%x ", i);
780 					}
781 				}
782 				cmn_err(CE_CONT, "have been marked in "
783 				    "error\n");
784 				cmn_err(CE_PANIC, "send_mondo_set: CPU(s) "
785 				    "in error state");
786 			}
787 		} else if (stat != H_EWOULDBLOCK) {
788 			if (panic_quiesce)
789 				return;
790 			/*
791 			 * For all other errors, panic.
792 			 */
793 			cmn_err(CE_CONT, "send_mondo_set: unexpected "
794 			    "hypervisor error 0x%x while sending a "
795 			    "mondo to cpuid(s):", stat);
796 			for (i = 0; i < NCPU; i++) {
797 				if (CPU_IN_SET(set, i)) {
798 					cmn_err(CE_CONT, " 0x%x", i);
799 				}
800 			}
801 			cmn_err(CE_CONT, "\n");
802 			cmn_err(CE_PANIC, "send_mondo_set: unexpected "
803 			    "hypervisor error");
804 		}
805 
806 		tick = gettick();
807 		/*
808 		 * If there is a big jump between the current tick
809 		 * count and lasttick, we have probably hit a break
810 		 * point.  Adjust endtick accordingly to avoid panic.
811 		 */
812 		if (tick > (lasttick + xc_tick_jump_limit))
813 			endtick += (tick - lasttick);
814 		lasttick = tick;
815 		if (tick > endtick) {
816 			if (panic_quiesce)
817 				return;
818 			cmn_err(CE_CONT, "send mondo timeout "
819 			    "[retries: 0x%x]  cpuids: ", retries);
820 			for (i = 0; i < NCPU; i++)
821 				if (CPU_IN_SET(set, i))
822 					cmn_err(CE_CONT, " 0x%x", i);
823 			cmn_err(CE_CONT, "\n");
824 			cmn_err(CE_PANIC, "send_mondo_set: timeout");
825 		}
826 
827 		while (gettick() < (tick + sys_clock_mhz))
828 			;
829 		retries++;
830 	} while (!CPUSET_ISNULL(set));
831 
832 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
833 
834 #ifdef SEND_MONDO_STATS
835 	{
836 		uint64_t n = gettick() - starttick;
837 		if (n < 8192)
838 			x_set_stimes[n >> 7]++;
839 		else if (n < 15*8192)
840 			x_set_ltimes[n >> 13]++;
841 		else
842 			x_set_ltimes[0xf]++;
843 	}
844 	x_set_cpus[shipped]++;
845 #endif
846 }
847 
848 void
849 syncfpu(void)
850 {
851 }
852 
853 void
854 cpu_flush_ecache(void)
855 {
856 }
857 
858 void
859 sticksync_slave(void)
860 {}
861 
862 void
863 sticksync_master(void)
864 {}
865 
866 void
867 cpu_init_cache_scrub(void)
868 {}
869 
870 int
871 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
872 {
873 	int ret, watched;
874 
875 	watched = watch_disable_addr((void *)addr, 4, S_WRITE);
876 	ret = dtrace_blksuword32(addr, data, 0);
877 	if (watched)
878 		watch_enable_addr((void *)addr, 4, S_WRITE);
879 
880 	return (ret);
881 }
882 
883 int
884 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
885 {
886 	if (suword32((void *)addr, *data) == -1)
887 		return (tryagain ? dtrace_blksuword32_err(addr, data) : -1);
888 	dtrace_flush_sec(addr);
889 
890 	return (0);
891 }
892 
893 /*ARGSUSED*/
894 void
895 cpu_faulted_enter(struct cpu *cp)
896 {
897 }
898 
899 /*ARGSUSED*/
900 void
901 cpu_faulted_exit(struct cpu *cp)
902 {
903 }
904 
905 static int
906 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg)
907 {
908 	int rc, i;
909 
910 	for (rc = 0, i = 0; i < NCPU; i++) {
911 		if (CPU_IN_SET(cpu_ready_set, i))
912 			rc += cb(i, arg);
913 	}
914 
915 	return (rc);
916 }
917 
918 /*
919  * Sends a cross-call to a specified processor.  The caller assumes
920  * responsibility for repetition of cross-calls, as appropriate (MARSA for
921  * debugging).
922  */
923 static int
924 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1,
925     uintptr_t arg2)
926 {
927 	int stat;
928 	struct machcpu	*mcpup;
929 	uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0;
930 
931 	mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m);
932 
933 	/*
934 	 * if (idsr_busy())
935 	 *	return (KDI_XC_RES_ERR);
936 	 */
937 
938 	init_mondo_nocheck((xcfunc_t *)func, arg1, arg2);
939 
940 	mcpup->cpu_list[0] = (uint16_t)cpuid;
941 	stat = shipit(1, mcpup->cpu_list_ra);
942 
943 	if (stat == 0)
944 		return (KDI_XC_RES_OK);
945 	else
946 		return (KDI_XC_RES_NACK);
947 }
948 
949 static void
950 kdi_tickwait(clock_t nticks)
951 {
952 	clock_t endtick = gettick() + nticks;
953 
954 	while (gettick() < endtick);
955 }
956 
957 static void
958 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size,
959     int icache_linesize)
960 {
961 	kdi_dcache_size = dcache_size;
962 	kdi_dcache_linesize = dcache_linesize;
963 	kdi_icache_size = icache_size;
964 	kdi_icache_linesize = icache_linesize;
965 }
966 
967 /* used directly by kdi_read/write_phys */
968 void
969 kdi_flush_caches(void)
970 {
971 	/* Not required on sun4v architecture. */
972 }
973 
974 /*ARGSUSED*/
975 int
976 kdi_get_stick(uint64_t *stickp)
977 {
978 	return (-1);
979 }
980 
981 void
982 cpu_kdi_init(kdi_t *kdi)
983 {
984 	kdi->kdi_flush_caches = kdi_flush_caches;
985 	kdi->mkdi_cpu_init = kdi_cpu_init;
986 	kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter;
987 	kdi->mkdi_xc_one = kdi_xc_one;
988 	kdi->mkdi_tickwait = kdi_tickwait;
989 	kdi->mkdi_get_stick = kdi_get_stick;
990 }
991 
992 static void
993 sun4v_system_claim(void)
994 {
995 	watchdog_suspend();
996 }
997 
998 static void
999 sun4v_system_release(void)
1000 {
1001 	watchdog_resume();
1002 }
1003 
1004 void
1005 plat_kdi_init(kdi_t *kdi)
1006 {
1007 	kdi->pkdi_system_claim = sun4v_system_claim;
1008 	kdi->pkdi_system_release = sun4v_system_release;
1009 }
1010 
1011 /*
1012  * Routine to return memory information associated
1013  * with a physical address and syndrome.
1014  */
1015 /* ARGSUSED */
1016 int
1017 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1018     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1019     int *segsp, int *banksp, int *mcidp)
1020 {
1021 	return (ENOTSUP);
1022 }
1023 
1024 /*
1025  * This routine returns the size of the kernel's FRU name buffer.
1026  */
1027 size_t
1028 cpu_get_name_bufsize()
1029 {
1030 	return (UNUM_NAMLEN);
1031 }
1032 
1033 /*
1034  * This routine is a more generic interface to cpu_get_mem_unum(),
1035  * that may be used by other modules (e.g. mm).
1036  */
1037 /* ARGSUSED */
1038 int
1039 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1040     char *buf, int buflen, int *lenp)
1041 {
1042 	return (ENOTSUP);
1043 }
1044 
1045 /* ARGSUSED */
1046 int
1047 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
1048 {
1049 	return (ENOTSUP);
1050 }
1051 
1052 /* ARGSUSED */
1053 int
1054 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
1055 {
1056 	return (ENOTSUP);
1057 }
1058 
1059 /*
1060  * xt_sync - wait for previous x-traps to finish
1061  */
1062 void
1063 xt_sync(cpuset_t cpuset)
1064 {
1065 	union {
1066 		uint8_t volatile byte[NCPU];
1067 		uint64_t volatile xword[NCPU / 8];
1068 	} cpu_sync;
1069 	uint64_t starttick, endtick, tick, lasttick;
1070 	int i;
1071 
1072 	kpreempt_disable();
1073 	CPUSET_DEL(cpuset, CPU->cpu_id);
1074 	CPUSET_AND(cpuset, cpu_ready_set);
1075 
1076 	/*
1077 	 * Sun4v uses a queue for receiving mondos. Successful
1078 	 * transmission of a mondo only indicates that the mondo
1079 	 * has been written into the queue.
1080 	 *
1081 	 * We use an array of bytes to let each cpu to signal back
1082 	 * to the cross trap sender that the cross trap has been
1083 	 * executed. Set the byte to 1 before sending the cross trap
1084 	 * and wait until other cpus reset it to 0.
1085 	 */
1086 	bzero((void *)&cpu_sync, NCPU);
1087 	for (i = 0; i < NCPU; i++)
1088 		if (CPU_IN_SET(cpuset, i))
1089 			cpu_sync.byte[i] = 1;
1090 
1091 	xt_some(cpuset, (xcfunc_t *)xt_sync_tl1,
1092 	    (uint64_t)cpu_sync.byte, 0);
1093 
1094 	starttick = lasttick = gettick();
1095 	endtick = starttick + xc_tick_limit;
1096 
1097 	for (i = 0; i < (NCPU / 8); i ++) {
1098 		while (cpu_sync.xword[i] != 0) {
1099 			tick = gettick();
1100 			/*
1101 			 * If there is a big jump between the current tick
1102 			 * count and lasttick, we have probably hit a break
1103 			 * point. Adjust endtick accordingly to avoid panic.
1104 			 */
1105 			if (tick > (lasttick + xc_tick_jump_limit)) {
1106 				endtick += (tick - lasttick);
1107 			}
1108 			lasttick = tick;
1109 			if (tick > endtick) {
1110 				if (panic_quiesce)
1111 					goto out;
1112 				cmn_err(CE_CONT, "Cross trap sync timeout "
1113 				    "at cpu_sync.xword[%d]: 0x%lx\n",
1114 				    i, cpu_sync.xword[i]);
1115 				cmn_err(CE_PANIC, "xt_sync: timeout");
1116 			}
1117 		}
1118 	}
1119 
1120 out:
1121 	kpreempt_enable();
1122 }
1123