xref: /titanic_44/usr/src/uts/sun4v/os/error.c (revision 9584cebb1c69707f4c67306b661c2ed47d8676f1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/machsystm.h>
28 #include <sys/sysmacros.h>
29 #include <sys/cpuvar.h>
30 #include <sys/async.h>
31 #include <sys/ontrap.h>
32 #include <sys/ddifm.h>
33 #include <sys/hypervisor_api.h>
34 #include <sys/errorq.h>
35 #include <sys/promif.h>
36 #include <sys/prom_plat.h>
37 #include <sys/x_call.h>
38 #include <sys/error.h>
39 #include <sys/fm/util.h>
40 #include <sys/ivintr.h>
41 #include <sys/archsystm.h>
42 
43 #define	MAX_CE_FLTS		10
44 #define	MAX_ASYNC_FLTS		6
45 
46 errorq_t *ue_queue;			/* queue of uncorrectable errors */
47 errorq_t *ce_queue;			/* queue of correctable errors */
48 errorq_t *errh_queue;			/* queue of sun4v error reports  */
49 
50 /*
51  * Being used by memory test driver.
52  * ce_verbose_memory - covers CEs in DIMMs
53  * ce_verbose_other - covers "others" (ecache, IO, etc.)
54  *
55  * If the value is 0, nothing is logged.
56  * If the value is 1, the error is logged to the log file, but not console.
57  * If the value is 2, the error is logged to the log file and console.
58  */
59 int	ce_verbose_memory = 1;
60 int	ce_verbose_other = 1;
61 
62 int	ce_show_data = 0;
63 int	ce_debug = 0;
64 int	ue_debug = 0;
65 int	reset_debug = 0;
66 
67 /*
68  * Tunables for controlling the handling of asynchronous faults (AFTs). Setting
69  * these to non-default values on a non-DEBUG kernel is NOT supported.
70  */
71 int	aft_verbose = 0;	/* log AFT messages > 1 to log only */
72 int	aft_panic = 0;		/* panic (not reboot) on fatal usermode AFLT */
73 int	aft_testfatal = 0;	/* force all AFTs to panic immediately */
74 
75 /*
76  * Used for vbsc hostshutdown (power-off button)
77  */
78 int	err_shutdown_triggered = 0;	/* only once */
79 uint64_t err_shutdown_inum = 0;	/* used to pull the trigger */
80 
81 /*
82  * Used to print NRE/RE via system variable or kmdb
83  */
84 int		printerrh = 0;		/* see /etc/system */
85 static void	errh_er_print(errh_er_t *, const char *);
86 kmutex_t	errh_print_lock;
87 
88 /*
89  * Defined in bus_func.c but initialised in error_init
90  */
91 extern kmutex_t bfd_lock;
92 
93 static uint32_t rq_overflow_count = 0;		/* counter for rq overflow */
94 
95 static void cpu_queue_one_event(errh_async_flt_t *);
96 static uint32_t count_entries_on_queue(uint64_t, uint64_t, uint32_t);
97 static void errh_page_retire(errh_async_flt_t *, uchar_t);
98 static int errh_error_protected(struct regs *, struct async_flt *, int *);
99 static void errh_rq_full(struct async_flt *);
100 static void ue_drain(void *, struct async_flt *, errorq_elem_t *);
101 static void ce_drain(void *, struct async_flt *, errorq_elem_t *);
102 static void errh_drain(void *, errh_er_t *, errorq_elem_t *);
103 static void errh_handle_attr(errh_async_flt_t *);
104 static void errh_handle_asr(errh_async_flt_t *);
105 static void errh_handle_sp(errh_er_t *);
106 static void sp_ereport_post(uint8_t);
107 
108 /*ARGSUSED*/
109 void
110 process_resumable_error(struct regs *rp, uint32_t head_offset,
111     uint32_t tail_offset)
112 {
113 	struct machcpu *mcpup;
114 	struct async_flt *aflt;
115 	errh_async_flt_t errh_flt;
116 	errh_er_t *head_va;
117 
118 	mcpup = &(CPU->cpu_m);
119 
120 	while (head_offset != tail_offset) {
121 		/* kernel buffer starts right after the resumable queue */
122 		head_va = (errh_er_t *)(mcpup->cpu_rq_va + head_offset +
123 		    CPU_RQ_SIZE);
124 		/* Copy the error report to local buffer */
125 		bzero(&errh_flt, sizeof (errh_async_flt_t));
126 		bcopy((char *)head_va, &(errh_flt.errh_er),
127 		    sizeof (errh_er_t));
128 
129 		mcpup->cpu_rq_lastre = head_va;
130 		if (printerrh)
131 			errh_er_print(&errh_flt.errh_er, "RQ");
132 
133 		/* Increment the queue head */
134 		head_offset += Q_ENTRY_SIZE;
135 		/* Wrap around */
136 		head_offset &= (CPU_RQ_SIZE - 1);
137 
138 		/* set error handle to zero so it can hold new error report */
139 		head_va->ehdl = 0;
140 
141 		switch (errh_flt.errh_er.desc) {
142 		case ERRH_DESC_UCOR_RE:
143 			/*
144 			 * Check error attribute, handle individual error
145 			 * if it is needed.
146 			 */
147 			errh_handle_attr(&errh_flt);
148 			break;
149 
150 		case ERRH_DESC_WARN_RE:
151 			/*
152 			 * Power-off requested, but handle it one time only.
153 			 */
154 			if (!err_shutdown_triggered) {
155 				setsoftint(err_shutdown_inum);
156 				++err_shutdown_triggered;
157 			}
158 			continue;
159 
160 		case ERRH_DESC_SP:
161 			/*
162 			 * The state of the SP has changed.
163 			 */
164 			errorq_dispatch(errh_queue, &errh_flt.errh_er,
165 			    sizeof (errh_er_t), ERRORQ_ASYNC);
166 			continue;
167 
168 		default:
169 			cmn_err(CE_WARN, "Error Descriptor 0x%llx "
170 			    " invalid in resumable error handler",
171 			    (long long) errh_flt.errh_er.desc);
172 			continue;
173 		}
174 
175 		aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt);
176 		aflt->flt_id = gethrtime();
177 		aflt->flt_bus_id = getprocessorid();
178 		aflt->flt_class = CPU_FAULT;
179 		aflt->flt_prot = AFLT_PROT_NONE;
180 		aflt->flt_priv = (((errh_flt.errh_er.attr & ERRH_MODE_MASK)
181 		    >> ERRH_MODE_SHIFT) == ERRH_MODE_PRIV);
182 
183 		if (errh_flt.errh_er.attr & ERRH_ATTR_CPU)
184 			/* If it is an error on other cpu */
185 			aflt->flt_panic = 1;
186 		else
187 			aflt->flt_panic = 0;
188 
189 		/*
190 		 * Handle resumable queue full case.
191 		 */
192 		if (errh_flt.errh_er.attr & ERRH_ATTR_RQF) {
193 			(void) errh_rq_full(aflt);
194 		}
195 
196 		/*
197 		 * Queue the error on ce or ue queue depend on flt_panic.
198 		 * Even if flt_panic is set, the code still keep processing
199 		 * the rest element on rq until the panic starts.
200 		 */
201 		(void) cpu_queue_one_event(&errh_flt);
202 
203 		/*
204 		 * Panic here if aflt->flt_panic has been set.
205 		 * Enqueued errors will be logged as part of the panic flow.
206 		 */
207 		if (aflt->flt_panic) {
208 			fm_panic("Unrecoverable error on another CPU");
209 		}
210 	}
211 }
212 
213 void
214 process_nonresumable_error(struct regs *rp, uint64_t flags,
215     uint32_t head_offset, uint32_t tail_offset)
216 {
217 	struct machcpu *mcpup;
218 	struct async_flt *aflt;
219 	errh_async_flt_t errh_flt;
220 	errh_er_t *head_va;
221 	int trampolined = 0;
222 	int expected = DDI_FM_ERR_UNEXPECTED;
223 	uint64_t exec_mode;
224 	uint8_t u_spill_fill;
225 
226 	mcpup = &(CPU->cpu_m);
227 
228 	while (head_offset != tail_offset) {
229 		/* kernel buffer starts right after the nonresumable queue */
230 		head_va = (errh_er_t *)(mcpup->cpu_nrq_va + head_offset +
231 		    CPU_NRQ_SIZE);
232 
233 		/* Copy the error report to local buffer */
234 		bzero(&errh_flt, sizeof (errh_async_flt_t));
235 
236 		bcopy((char *)head_va, &(errh_flt.errh_er),
237 		    sizeof (errh_er_t));
238 
239 		mcpup->cpu_nrq_lastnre = head_va;
240 		if (printerrh)
241 			errh_er_print(&errh_flt.errh_er, "NRQ");
242 
243 		/* Increment the queue head */
244 		head_offset += Q_ENTRY_SIZE;
245 		/* Wrap around */
246 		head_offset &= (CPU_NRQ_SIZE - 1);
247 
248 		/* set error handle to zero so it can hold new error report */
249 		head_va->ehdl = 0;
250 
251 		aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt);
252 
253 		trampolined = 0;
254 
255 		if (errh_flt.errh_er.attr & ERRH_ATTR_PIO)
256 			aflt->flt_class = BUS_FAULT;
257 		else
258 			aflt->flt_class = CPU_FAULT;
259 
260 		aflt->flt_id = gethrtime();
261 		aflt->flt_bus_id = getprocessorid();
262 		aflt->flt_pc = (caddr_t)rp->r_pc;
263 		exec_mode = (errh_flt.errh_er.attr & ERRH_MODE_MASK)
264 		    >> ERRH_MODE_SHIFT;
265 		aflt->flt_priv = (exec_mode == ERRH_MODE_PRIV ||
266 		    exec_mode == ERRH_MODE_UNKNOWN);
267 		aflt->flt_prot = AFLT_PROT_NONE;
268 		aflt->flt_tl = (uchar_t)(flags & ERRH_TL_MASK);
269 		aflt->flt_panic = ((aflt->flt_tl != 0) ||
270 		    (aft_testfatal != 0));
271 
272 		/*
273 		 * For the first error packet on the queue, check if it
274 		 * happened in user fill/spill trap.
275 		 */
276 		if (flags & ERRH_U_SPILL_FILL) {
277 			u_spill_fill = 1;
278 			/* clear the user fill/spill flag in flags */
279 			flags = (uint64_t)aflt->flt_tl;
280 		} else
281 			u_spill_fill = 0;
282 
283 		switch (errh_flt.errh_er.desc) {
284 		case ERRH_DESC_PR_NRE:
285 			if (u_spill_fill) {
286 				aflt->flt_panic = 0;
287 				break;
288 			}
289 			/*
290 			 * Fall through, precise fault also need to check
291 			 * to see if it was protected.
292 			 */
293 			/*FALLTHRU*/
294 
295 		case ERRH_DESC_DEF_NRE:
296 			/*
297 			 * If the trap occurred in privileged mode at TL=0,
298 			 * we need to check to see if we were executing
299 			 * in kernel under on_trap() or t_lofault
300 			 * protection. If so, and if it was a PIO or MEM
301 			 * error, then modify the saved registers so that
302 			 * we return from the trap to the appropriate
303 			 * trampoline routine.
304 			 */
305 			if (aflt->flt_priv == 1 && aflt->flt_tl == 0 &&
306 			    ((errh_flt.errh_er.attr & ERRH_ATTR_PIO) ||
307 			    (errh_flt.errh_er.attr & ERRH_ATTR_MEM))) {
308 				trampolined =
309 				    errh_error_protected(rp, aflt, &expected);
310 			}
311 
312 			if (!aflt->flt_priv || aflt->flt_prot ==
313 			    AFLT_PROT_COPY) {
314 				aflt->flt_panic |= aft_panic;
315 			} else if (!trampolined &&
316 			    (aflt->flt_class != BUS_FAULT)) {
317 				aflt->flt_panic = 1;
318 			}
319 
320 			/*
321 			 * Check error attribute, handle individual error
322 			 * if it is needed.
323 			 */
324 			errh_handle_attr(&errh_flt);
325 
326 			/*
327 			 * If PIO error, we need to query the bus nexus
328 			 * for fatal errors.
329 			 */
330 			if (aflt->flt_class == BUS_FAULT) {
331 				aflt->flt_addr = errh_flt.errh_er.ra;
332 				errh_cpu_run_bus_error_handlers(aflt,
333 				    expected);
334 			}
335 
336 			break;
337 
338 		case ERRH_DESC_USER_DCORE:
339 			/*
340 			 * User generated panic. Call panic directly
341 			 * since there are no FMA e-reports to
342 			 * display.
343 			 */
344 
345 			panic("Panic - Generated at user request");
346 
347 			break;
348 
349 		default:
350 			cmn_err(CE_WARN, "Panic - Error Descriptor 0x%llx "
351 			    " invalid in non-resumable error handler",
352 			    (long long) errh_flt.errh_er.desc);
353 			aflt->flt_panic = 1;
354 			break;
355 		}
356 
357 		/*
358 		 * Queue the error report for further processing. If
359 		 * flt_panic is set, code still process other errors
360 		 * in the queue until the panic routine stops the
361 		 * kernel.
362 		 */
363 		(void) cpu_queue_one_event(&errh_flt);
364 
365 		/*
366 		 * Panic here if aflt->flt_panic has been set.
367 		 * Enqueued errors will be logged as part of the panic flow.
368 		 */
369 		if (aflt->flt_panic) {
370 			fm_panic("Unrecoverable hardware error");
371 		}
372 
373 		/*
374 		 * Call page_retire() to handle memory errors.
375 		 */
376 		if (errh_flt.errh_er.attr & ERRH_ATTR_MEM)
377 			errh_page_retire(&errh_flt, PR_UE);
378 
379 		/*
380 		 * If we queued an error and the it was in user mode, or
381 		 * protected by t_lofault, or user_spill_fill is set, we
382 		 * set AST flag so the queue will be drained before
383 		 * returning to user mode.
384 		 */
385 		if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY ||
386 		    u_spill_fill) {
387 			int pcb_flag = 0;
388 
389 			if (aflt->flt_class == CPU_FAULT)
390 				pcb_flag |= ASYNC_HWERR;
391 			else if (aflt->flt_class == BUS_FAULT)
392 				pcb_flag |= ASYNC_BERR;
393 
394 			ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
395 			aston(curthread);
396 		}
397 	}
398 }
399 
400 /*
401  * For PIO errors, this routine calls nexus driver's error
402  * callback routines. If the callback routine returns fatal, and
403  * we are in kernel or unknow mode without any error protection,
404  * we need to turn on the panic flag.
405  */
406 void
407 errh_cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
408 {
409 	int status;
410 	ddi_fm_error_t de;
411 
412 	bzero(&de, sizeof (ddi_fm_error_t));
413 
414 	de.fme_version = DDI_FME_VERSION;
415 	de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1);
416 	de.fme_flag = expected;
417 	de.fme_bus_specific = (void *)aflt->flt_addr;
418 	status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
419 
420 	/*
421 	 * If error is protected, it will jump to proper routine
422 	 * to handle the handle; if it is in user level, we just
423 	 * kill the user process; if the driver thinks the error is
424 	 * not fatal, we can drive on. If none of above are true,
425 	 * we panic
426 	 */
427 	if ((aflt->flt_prot == AFLT_PROT_NONE) && (aflt->flt_priv == 1) &&
428 	    (status == DDI_FM_FATAL))
429 		aflt->flt_panic = 1;
430 }
431 
432 /*
433  * This routine checks to see if we are under any error protection when
434  * the error happens. If we are under error protection, we unwind to
435  * the protection and indicate fault.
436  */
437 static int
438 errh_error_protected(struct regs *rp, struct async_flt *aflt, int *expected)
439 {
440 	int trampolined = 0;
441 	ddi_acc_hdl_t *hp;
442 
443 	if (curthread->t_ontrap != NULL) {
444 		on_trap_data_t *otp = curthread->t_ontrap;
445 
446 		if (otp->ot_prot & OT_DATA_EC) {
447 			aflt->flt_prot = AFLT_PROT_EC;
448 			otp->ot_trap |= OT_DATA_EC;
449 			rp->r_pc = otp->ot_trampoline;
450 			rp->r_npc = rp->r_pc +4;
451 			trampolined = 1;
452 		}
453 
454 		if (otp->ot_prot & OT_DATA_ACCESS) {
455 			aflt->flt_prot = AFLT_PROT_ACCESS;
456 			otp->ot_trap |= OT_DATA_ACCESS;
457 			rp->r_pc = otp->ot_trampoline;
458 			rp->r_npc = rp->r_pc + 4;
459 			trampolined = 1;
460 			/*
461 			 * for peek and caut_gets
462 			 * errors are expected
463 			 */
464 			hp = (ddi_acc_hdl_t *)otp->ot_handle;
465 			if (!hp)
466 				*expected = DDI_FM_ERR_PEEK;
467 			else if (hp->ah_acc.devacc_attr_access ==
468 			    DDI_CAUTIOUS_ACC)
469 				*expected = DDI_FM_ERR_EXPECTED;
470 		}
471 	} else if (curthread->t_lofault) {
472 		aflt->flt_prot = AFLT_PROT_COPY;
473 		rp->r_g1 = EFAULT;
474 		rp->r_pc = curthread->t_lofault;
475 		rp->r_npc = rp->r_pc + 4;
476 		trampolined = 1;
477 	}
478 
479 	return (trampolined);
480 }
481 
482 /*
483  * Queue one event.
484  */
485 static void
486 cpu_queue_one_event(errh_async_flt_t *errh_fltp)
487 {
488 	struct async_flt *aflt = (struct async_flt *)errh_fltp;
489 	errorq_t *eqp;
490 
491 	if (aflt->flt_panic)
492 		eqp = ue_queue;
493 	else
494 		eqp = ce_queue;
495 
496 	errorq_dispatch(eqp, errh_fltp, sizeof (errh_async_flt_t),
497 	    aflt->flt_panic);
498 }
499 
500 /*
501  * The cpu_async_log_err() function is called by the ce/ue_drain() function to
502  * handle logging for CPU events that are dequeued.  As such, it can be invoked
503  * from softint context, from AST processing in the trap() flow, or from the
504  * panic flow.  We decode the CPU-specific data, and log appropriate messages.
505  */
506 void
507 cpu_async_log_err(void *flt)
508 {
509 	errh_async_flt_t *errh_fltp = (errh_async_flt_t *)flt;
510 	errh_er_t *errh_erp = (errh_er_t *)&errh_fltp->errh_er;
511 
512 	switch (errh_erp->desc) {
513 	case ERRH_DESC_UCOR_RE:
514 		if (errh_erp->attr & ERRH_ATTR_MEM) {
515 			/*
516 			 * Turn on the PR_UE flag. The page will be
517 			 * scrubbed when it is freed.
518 			 */
519 			errh_page_retire(errh_fltp, PR_UE);
520 		}
521 
522 		break;
523 
524 	case ERRH_DESC_PR_NRE:
525 	case ERRH_DESC_DEF_NRE:
526 		if (errh_erp->attr & ERRH_ATTR_MEM) {
527 			/*
528 			 * For non-resumable memory error, retire
529 			 * the page here.
530 			 */
531 			errh_page_retire(errh_fltp, PR_UE);
532 
533 			/*
534 			 * If we are going to panic, scrub the page first
535 			 */
536 			if (errh_fltp->cmn_asyncflt.flt_panic)
537 				mem_scrub(errh_fltp->errh_er.ra,
538 				    errh_fltp->errh_er.sz);
539 		}
540 		break;
541 
542 	default:
543 		break;
544 	}
545 }
546 
547 /*
548  * Called from ce_drain().
549  */
550 void
551 cpu_ce_log_err(struct async_flt *aflt)
552 {
553 	switch (aflt->flt_class) {
554 	case CPU_FAULT:
555 		cpu_async_log_err(aflt);
556 		break;
557 
558 	case BUS_FAULT:
559 		cpu_async_log_err(aflt);
560 		break;
561 
562 	default:
563 		break;
564 	}
565 }
566 
567 /*
568  * Called from ue_drain().
569  */
570 void
571 cpu_ue_log_err(struct async_flt *aflt)
572 {
573 	switch (aflt->flt_class) {
574 	case CPU_FAULT:
575 		cpu_async_log_err(aflt);
576 		break;
577 
578 	case BUS_FAULT:
579 		cpu_async_log_err(aflt);
580 		break;
581 
582 	default:
583 		break;
584 	}
585 }
586 
587 /*
588  * Turn on flag on the error memory region.
589  */
590 static void
591 errh_page_retire(errh_async_flt_t *errh_fltp, uchar_t flag)
592 {
593 	uint64_t flt_real_addr_start = errh_fltp->errh_er.ra;
594 	uint64_t flt_real_addr_end = flt_real_addr_start +
595 	    errh_fltp->errh_er.sz - 1;
596 	int64_t current_addr;
597 
598 	if (errh_fltp->errh_er.sz == 0)
599 		return;
600 
601 	for (current_addr = flt_real_addr_start;
602 	    current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) {
603 		(void) page_retire(current_addr, flag);
604 	}
605 }
606 
607 void
608 mem_scrub(uint64_t paddr, uint64_t len)
609 {
610 	uint64_t pa, length, scrubbed_len;
611 
612 	pa = paddr;
613 	length = len;
614 	scrubbed_len = 0;
615 
616 	while (length > 0) {
617 		if (hv_mem_scrub(pa, length, &scrubbed_len) != H_EOK)
618 			break;
619 
620 		pa += scrubbed_len;
621 		length -= scrubbed_len;
622 	}
623 }
624 
625 /*
626  * Call hypervisor to flush the memory region.
627  * Both va and len must be MMU_PAGESIZE aligned.
628  * Returns the total number of bytes flushed.
629  */
630 uint64_t
631 mem_sync(caddr_t orig_va, size_t orig_len)
632 {
633 	uint64_t pa, length, flushed;
634 	uint64_t chunk_len = MMU_PAGESIZE;
635 	uint64_t total_flushed = 0;
636 	uint64_t va, len;
637 
638 	if (orig_len == 0)
639 		return (total_flushed);
640 
641 	/* align va */
642 	va = P2ALIGN_TYPED(orig_va, MMU_PAGESIZE, uint64_t);
643 	/* round up len to MMU_PAGESIZE aligned */
644 	len = P2ROUNDUP_TYPED(orig_va + orig_len, MMU_PAGESIZE, uint64_t) - va;
645 
646 	while (len > 0) {
647 		pa = va_to_pa((caddr_t)va);
648 		if (pa == (uint64_t)-1)
649 			return (total_flushed);
650 
651 		length = chunk_len;
652 		flushed = 0;
653 
654 		while (length > 0) {
655 			if (hv_mem_sync(pa, length, &flushed) != H_EOK)
656 				return (total_flushed);
657 
658 			pa += flushed;
659 			length -= flushed;
660 			total_flushed += flushed;
661 		}
662 
663 		va += chunk_len;
664 		len -= chunk_len;
665 	}
666 
667 	return (total_flushed);
668 }
669 
670 /*
671  * If resumable queue is full, we need to check if any cpu is in
672  * error state. If not, we drive on. If yes, we need to panic. The
673  * hypervisor call hv_cpu_state() is being used for checking the
674  * cpu state.  And reset %tick_compr in case tick-compare was lost.
675  */
676 static void
677 errh_rq_full(struct async_flt *afltp)
678 {
679 	processorid_t who;
680 	uint64_t cpu_state;
681 	uint64_t retval;
682 	uint64_t current_tick;
683 
684 	current_tick = (uint64_t)gettick();
685 	tickcmpr_set(current_tick);
686 
687 	for (who = 0; who < NCPU; who++)
688 		if (CPU_IN_SET(cpu_ready_set, who)) {
689 			retval = hv_cpu_state(who, &cpu_state);
690 			if (retval != H_EOK || cpu_state == CPU_STATE_ERROR) {
691 				afltp->flt_panic = 1;
692 				break;
693 			}
694 		}
695 }
696 
697 /*
698  * Return processor specific async error structure
699  * size used.
700  */
701 int
702 cpu_aflt_size(void)
703 {
704 	return (sizeof (errh_async_flt_t));
705 }
706 
707 #define	SZ_TO_ETRS_SHIFT	6
708 
709 /*
710  * Message print out when resumable queue is overflown
711  */
712 /*ARGSUSED*/
713 void
714 rq_overflow(struct regs *rp, uint64_t head_offset,
715     uint64_t tail_offset)
716 {
717 	rq_overflow_count++;
718 }
719 
720 /*
721  * Handler to process a fatal error.  This routine can be called from a
722  * softint, called from trap()'s AST handling, or called from the panic flow.
723  */
724 /*ARGSUSED*/
725 static void
726 ue_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep)
727 {
728 	cpu_ue_log_err(aflt);
729 }
730 
731 /*
732  * Handler to process a correctable error.  This routine can be called from a
733  * softint.  We just call the CPU module's logging routine.
734  */
735 /*ARGSUSED*/
736 static void
737 ce_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep)
738 {
739 	cpu_ce_log_err(aflt);
740 }
741 
742 /*
743  * Handler to process a sun4v errort report via an errorq_t.  This routine
744  * can be called from a softint.
745  *
746  * This is used for sun4v error reports that cannot be processed at high-level
747  * interrupt time.  Currently only error reports indicating an SP state change
748  * are handled in this manner.
749  */
750 /*ARGSUSED*/
751 static void
752 errh_drain(void *ignored, errh_er_t *errh_erp, errorq_elem_t *eqep)
753 {
754 	ASSERT(errh_erp->desc == ERRH_DESC_SP);
755 
756 	errh_handle_sp(errh_erp);
757 }
758 
759 /*
760  * Handler to process vbsc hostshutdown (power-off button).
761  */
762 static int
763 err_shutdown_softintr()
764 {
765 	cmn_err(CE_WARN, "Power-off requested, system will now shutdown.");
766 	do_shutdown();
767 
768 	/*
769 	 * just in case do_shutdown() fails
770 	 */
771 	(void) timeout((void(*)(void *))power_down, NULL, 100 * hz);
772 	return (DDI_INTR_CLAIMED);
773 }
774 
775 /*
776  * Allocate error queue sizes based on max_ncpus.  max_ncpus is set just
777  * after ncpunode has been determined.  ncpus is set in start_other_cpus
778  * which is called after error_init() but may change dynamically.
779  */
780 void
781 error_init(void)
782 {
783 	char tmp_name[MAXSYSNAME];
784 	pnode_t node;
785 	size_t size = cpu_aflt_size();
786 
787 	/*
788 	 * Initialize the correctable and uncorrectable error queues.
789 	 */
790 	ue_queue = errorq_create("ue_queue", (errorq_func_t)ue_drain, NULL,
791 	    MAX_ASYNC_FLTS * (max_ncpus + 1), size, PIL_2, ERRORQ_VITAL);
792 
793 	ce_queue = errorq_create("ce_queue", (errorq_func_t)ce_drain, NULL,
794 	    MAX_CE_FLTS * (max_ncpus + 1), size, PIL_1, 0);
795 
796 	errh_queue = errorq_create("errh_queue", (errorq_func_t)errh_drain,
797 	    NULL, CPU_RQ_ENTRIES, sizeof (errh_er_t), PIL_1, 0);
798 
799 	if (ue_queue == NULL || ce_queue == NULL || errh_queue == NULL)
800 		panic("failed to create required system error queue");
801 
802 	/*
803 	 * Setup interrupt handler for power-off button.
804 	 */
805 	err_shutdown_inum = add_softintr(PIL_9,
806 	    (softintrfunc)err_shutdown_softintr, NULL, SOFTINT_ST);
807 
808 	/*
809 	 * Initialize the busfunc list mutex.  This must be a PIL_15 spin lock
810 	 * because we will need to acquire it from cpu_async_error().
811 	 */
812 	mutex_init(&bfd_lock, NULL, MUTEX_SPIN, (void *)PIL_15);
813 
814 	/* Only allow one cpu at a time to dump errh errors. */
815 	mutex_init(&errh_print_lock, NULL, MUTEX_SPIN, (void *)PIL_15);
816 
817 	node = prom_rootnode();
818 	if ((node == OBP_NONODE) || (node == OBP_BADNODE)) {
819 		cmn_err(CE_CONT, "error_init: node 0x%x\n", (uint_t)node);
820 		return;
821 	}
822 
823 	if (((size = prom_getproplen(node, "reset-reason")) != -1) &&
824 	    (size <= MAXSYSNAME) &&
825 	    (prom_getprop(node, "reset-reason", tmp_name) != -1)) {
826 		if (reset_debug) {
827 			cmn_err(CE_CONT, "System booting after %s\n", tmp_name);
828 		} else if (strncmp(tmp_name, "FATAL", 5) == 0) {
829 			cmn_err(CE_CONT,
830 			    "System booting after fatal error %s\n", tmp_name);
831 		}
832 	}
833 }
834 
835 /*
836  * Nonresumable queue is full, panic here
837  */
838 /*ARGSUSED*/
839 void
840 nrq_overflow(struct regs *rp)
841 {
842 	fm_panic("Nonresumable queue full");
843 }
844 
845 /*
846  * This is the place for special error handling for individual errors.
847  */
848 static void
849 errh_handle_attr(errh_async_flt_t *errh_fltp)
850 {
851 	switch (errh_fltp->errh_er.attr & ~ERRH_MODE_MASK) {
852 	case ERRH_ATTR_CPU:
853 	case ERRH_ATTR_MEM:
854 	case ERRH_ATTR_PIO:
855 	case ERRH_ATTR_IRF:
856 	case ERRH_ATTR_FRF:
857 	case ERRH_ATTR_SHUT:
858 		break;
859 
860 	case ERRH_ATTR_ASR:
861 		errh_handle_asr(errh_fltp);
862 		break;
863 
864 	case ERRH_ATTR_ASI:
865 	case ERRH_ATTR_PREG:
866 	case ERRH_ATTR_RQF:
867 		break;
868 
869 	default:
870 		break;
871 	}
872 }
873 
874 /*
875  * Handle ASR bit set in ATTR
876  */
877 static void
878 errh_handle_asr(errh_async_flt_t *errh_fltp)
879 {
880 	uint64_t current_tick;
881 
882 	switch (errh_fltp->errh_er.reg) {
883 	case ASR_REG_VALID | ASR_REG_TICK:
884 		/*
885 		 * For Tick Compare Register error, it only happens when
886 		 * the register is being read or compared with the %tick
887 		 * register. Since we lost the contents of the register,
888 		 * we set the %tick_compr in the future. An interrupt will
889 		 * happen when %tick matches the value field of %tick_compr.
890 		 */
891 		current_tick = (uint64_t)gettick();
892 		tickcmpr_set(current_tick);
893 		/* Do not panic */
894 		errh_fltp->cmn_asyncflt.flt_panic = 0;
895 		break;
896 
897 	default:
898 		break;
899 	}
900 }
901 
902 /*
903  * Handle a SP state change.
904  */
905 static void
906 errh_handle_sp(errh_er_t *errh_erp)
907 {
908 	uint8_t		sp_state;
909 
910 	sp_state = (errh_erp->attr & ERRH_SP_MASK) >> ERRH_SP_SHIFT;
911 
912 	sp_ereport_post(sp_state);
913 }
914 
915 /*
916  * Dump the error packet
917  */
918 /*ARGSUSED*/
919 static void
920 errh_er_print(errh_er_t *errh_erp, const char *queue)
921 {
922 	typedef union {
923 		uint64_t w;
924 		uint16_t s[4];
925 	} errhp_t;
926 	errhp_t *p = (errhp_t *)errh_erp;
927 	int i;
928 
929 	mutex_enter(&errh_print_lock);
930 	switch (errh_erp->desc) {
931 	case ERRH_DESC_UCOR_RE:
932 		cmn_err(CE_CONT, "\nResumable Uncorrectable Error ");
933 		break;
934 	case ERRH_DESC_PR_NRE:
935 		cmn_err(CE_CONT, "\nNonresumable Precise Error ");
936 		break;
937 	case ERRH_DESC_DEF_NRE:
938 		cmn_err(CE_CONT, "\nNonresumable Deferred Error ");
939 		break;
940 	default:
941 		cmn_err(CE_CONT, "\nError packet ");
942 		break;
943 	}
944 	cmn_err(CE_CONT, "received on %s\n", queue);
945 
946 	/*
947 	 * Print Q_ENTRY_SIZE bytes of epacket with 8 bytes per line
948 	 */
949 	for (i = Q_ENTRY_SIZE; i > 0; i -= 8, ++p) {
950 		cmn_err(CE_CONT, "%016lx: %04x %04x %04x %04x\n", (uint64_t)p,
951 		    p->s[0], p->s[1], p->s[2], p->s[3]);
952 	}
953 	mutex_exit(&errh_print_lock);
954 }
955 
956 static void
957 sp_ereport_post(uint8_t sp_state)
958 {
959 	nvlist_t	*ereport, *detector;
960 	char		*str = NULL;
961 
962 	switch (sp_state) {
963 	case ERRH_SP_FAULTED:
964 		str = "chassis.sp.unavailable";
965 		break;
966 
967 	case ERRH_SP_NOT_PRESENT:
968 		/*
969 		 * It is expected that removal of the SP will be undertaken
970 		 * in response to an existing service action.  Diagnosing
971 		 * a fault in response to notification that the SP is
972 		 * missing is therefore undesired.  In the future the fault
973 		 * management architecture may be updated to support more
974 		 * appropriate alert events.  When that happens this code
975 		 * should be revisited.
976 		 */
977 		return;
978 
979 	case ERRH_SP_AVAILABLE:
980 		/*
981 		 * Hypervisor does not send an epkt for this case
982 		 * so this should never happen.
983 		 */
984 		cmn_err(CE_WARN, "Received unexpected notification "
985 		    "that the SP is available.");
986 		return;
987 
988 	default:
989 		cmn_err(CE_WARN, "Invalid SP state 0x%x. No ereport posted.\n",
990 		    sp_state);
991 		return;
992 	}
993 
994 	ereport = fm_nvlist_create(NULL);
995 	detector = fm_nvlist_create(NULL);
996 
997 	/*
998 	 * Create an HC-scheme detector FMRI.
999 	 */
1000 	fm_fmri_hc_set(detector, FM_HC_SCHEME_VERSION, NULL, NULL, 1,
1001 	    "chassis", 0);
1002 
1003 	fm_ereport_set(ereport, FM_EREPORT_VERSION, str,
1004 	    fm_ena_generate(0, FM_ENA_FMT1), detector, NULL);
1005 
1006 	(void) fm_ereport_post(ereport, EVCH_TRYHARD);
1007 
1008 	fm_nvlist_destroy(ereport, FM_NVA_FREE);
1009 	fm_nvlist_destroy(detector, FM_NVA_FREE);
1010 }
1011