xref: /titanic_44/usr/src/uts/sun4v/io/vsw.c (revision 1f156c6a7686102f9a1057cb9294c57041f3da68)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/errno.h>
31 #include <sys/debug.h>
32 #include <sys/time.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/user.h>
36 #include <sys/stropts.h>
37 #include <sys/stream.h>
38 #include <sys/strlog.h>
39 #include <sys/strsubr.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu.h>
42 #include <sys/kmem.h>
43 #include <sys/conf.h>
44 #include <sys/ddi.h>
45 #include <sys/sunddi.h>
46 #include <sys/ksynch.h>
47 #include <sys/stat.h>
48 #include <sys/kstat.h>
49 #include <sys/vtrace.h>
50 #include <sys/strsun.h>
51 #include <sys/dlpi.h>
52 #include <sys/ethernet.h>
53 #include <net/if.h>
54 #include <sys/varargs.h>
55 #include <sys/machsystm.h>
56 #include <sys/modctl.h>
57 #include <sys/modhash.h>
58 #include <sys/mac.h>
59 #include <sys/mac_ether.h>
60 #include <sys/taskq.h>
61 #include <sys/note.h>
62 #include <sys/mach_descrip.h>
63 #include <sys/mac.h>
64 #include <sys/mdeg.h>
65 #include <sys/ldc.h>
66 #include <sys/vsw_fdb.h>
67 #include <sys/vsw.h>
68 #include <sys/vio_mailbox.h>
69 #include <sys/vnet_mailbox.h>
70 #include <sys/vnet_common.h>
71 #include <sys/vio_util.h>
72 #include <sys/sdt.h>
73 #include <sys/atomic.h>
74 #include <sys/callb.h>
75 
76 /*
77  * Function prototypes.
78  */
79 static	int vsw_attach(dev_info_t *, ddi_attach_cmd_t);
80 static	int vsw_detach(dev_info_t *, ddi_detach_cmd_t);
81 static	int vsw_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
82 static	int vsw_get_md_physname(vsw_t *, md_t *, mde_cookie_t, char *);
83 static	int vsw_get_md_smodes(vsw_t *, md_t *, mde_cookie_t, uint8_t *, int *);
84 
85 /* MDEG routines */
86 static	int vsw_mdeg_register(vsw_t *vswp);
87 static	void vsw_mdeg_unregister(vsw_t *vswp);
88 static	int vsw_mdeg_cb(void *cb_argp, mdeg_result_t *);
89 static	int vsw_port_mdeg_cb(void *cb_argp, mdeg_result_t *);
90 static	int vsw_get_initial_md_properties(vsw_t *vswp, md_t *, mde_cookie_t);
91 static	void vsw_update_md_prop(vsw_t *, md_t *, mde_cookie_t);
92 static	int vsw_read_mdprops(vsw_t *vswp);
93 static void vsw_save_lmacaddr(vsw_t *vswp, uint64_t macaddr);
94 
95 /* Mac driver related routines */
96 static int vsw_mac_register(vsw_t *);
97 static int vsw_mac_unregister(vsw_t *);
98 static int vsw_m_stat(void *, uint_t, uint64_t *);
99 static void vsw_m_stop(void *arg);
100 static int vsw_m_start(void *arg);
101 static int vsw_m_unicst(void *arg, const uint8_t *);
102 static int vsw_m_multicst(void *arg, boolean_t, const uint8_t *);
103 static int vsw_m_promisc(void *arg, boolean_t);
104 static mblk_t *vsw_m_tx(void *arg, mblk_t *);
105 static uint_t vsw_rx_softintr(caddr_t arg1, caddr_t arg2);
106 void vsw_mac_rx(vsw_t *vswp, int caller, mac_resource_handle_t mrh,
107     mblk_t *mp, mblk_t *mpt, vsw_macrx_flags_t flags);
108 
109 /*
110  * Functions imported from other files.
111  */
112 extern void vsw_setup_switching_timeout(void *arg);
113 extern void vsw_stop_switching_timeout(vsw_t *vswp);
114 extern int vsw_setup_switching(vsw_t *);
115 extern int vsw_add_mcst(vsw_t *, uint8_t, uint64_t, void *);
116 extern int vsw_del_mcst(vsw_t *, uint8_t, uint64_t, void *);
117 extern void vsw_del_mcst_vsw(vsw_t *);
118 extern mcst_addr_t *vsw_del_addr(uint8_t devtype, void *arg, uint64_t addr);
119 extern int vsw_detach_ports(vsw_t *vswp);
120 extern int vsw_port_add(vsw_t *vswp, md_t *mdp, mde_cookie_t *node);
121 extern int vsw_port_detach(vsw_t *vswp, int p_instance);
122 extern	int vsw_port_attach(vsw_t *vswp, int p_instance,
123 	uint64_t *ldcids, int nids, struct ether_addr *macaddr);
124 extern vsw_port_t *vsw_lookup_port(vsw_t *vswp, int p_instance);
125 extern int vsw_mac_attach(vsw_t *vswp);
126 extern void vsw_mac_detach(vsw_t *vswp);
127 extern int vsw_mac_open(vsw_t *vswp);
128 extern void vsw_mac_close(vsw_t *vswp);
129 extern int vsw_set_hw(vsw_t *, vsw_port_t *, int);
130 extern int vsw_unset_hw(vsw_t *, vsw_port_t *, int);
131 extern void vsw_reconfig_hw(vsw_t *);
132 extern void vsw_unset_addrs(vsw_t *vswp);
133 extern void vsw_set_addrs(vsw_t *vswp);
134 
135 
136 /*
137  * Internal tunables.
138  */
139 int	vsw_num_handshakes = VNET_NUM_HANDSHAKES; /* # of handshake attempts */
140 int	vsw_wretries = 100;		/* # of write attempts */
141 int	vsw_desc_delay = 0;		/* delay in us */
142 int	vsw_read_attempts = 5;		/* # of reads of descriptor */
143 int	vsw_mac_open_retries = 20;	/* max # of mac_open() retries */
144 int	vsw_setup_switching_delay = 3;	/* setup sw timeout interval in sec */
145 int	vsw_ldc_tx_delay = 5;		/* delay(ticks) for tx retries */
146 int	vsw_ldc_tx_retries = 10;	/* # of ldc tx retries */
147 int	vsw_ldc_tx_max_failures = 40;	/* Max ldc tx failures */
148 boolean_t vsw_ldc_rxthr_enabled = B_TRUE;	/* LDC Rx thread enabled */
149 boolean_t vsw_ldc_txthr_enabled = B_TRUE;	/* LDC Tx thread enabled */
150 
151 
152 /*
153  * External tunables.
154  */
155 /*
156  * Enable/disable thread per ring. This is a mode selection
157  * that is done a vsw driver attach time.
158  */
159 boolean_t vsw_multi_ring_enable = B_FALSE;
160 int vsw_mac_rx_rings = VSW_MAC_RX_RINGS;
161 
162 /*
163  * Max number of mblks received in one receive operation.
164  */
165 uint32_t vsw_chain_len = (VSW_NUM_MBLKS * 0.6);
166 
167 /*
168  * Tunables for three different pools, that is, the size and
169  * number of mblks for each pool.
170  */
171 uint32_t vsw_mblk_size1 = VSW_MBLK_SZ_128;	/* size=128 for pool1 */
172 uint32_t vsw_mblk_size2 = VSW_MBLK_SZ_256;	/* size=256 for pool2 */
173 uint32_t vsw_mblk_size3 = VSW_MBLK_SZ_2048;	/* size=2048 for pool3 */
174 uint32_t vsw_num_mblks1 = VSW_NUM_MBLKS;	/* number of mblks for pool1 */
175 uint32_t vsw_num_mblks2 = VSW_NUM_MBLKS;	/* number of mblks for pool2 */
176 uint32_t vsw_num_mblks3 = VSW_NUM_MBLKS;	/* number of mblks for pool3 */
177 
178 /*
179  * MAC callbacks
180  */
181 static	mac_callbacks_t	vsw_m_callbacks = {
182 	0,
183 	vsw_m_stat,
184 	vsw_m_start,
185 	vsw_m_stop,
186 	vsw_m_promisc,
187 	vsw_m_multicst,
188 	vsw_m_unicst,
189 	vsw_m_tx,
190 	NULL,
191 	NULL,
192 	NULL
193 };
194 
195 static	struct	cb_ops	vsw_cb_ops = {
196 	nulldev,			/* cb_open */
197 	nulldev,			/* cb_close */
198 	nodev,				/* cb_strategy */
199 	nodev,				/* cb_print */
200 	nodev,				/* cb_dump */
201 	nodev,				/* cb_read */
202 	nodev,				/* cb_write */
203 	nodev,				/* cb_ioctl */
204 	nodev,				/* cb_devmap */
205 	nodev,				/* cb_mmap */
206 	nodev,				/* cb_segmap */
207 	nochpoll,			/* cb_chpoll */
208 	ddi_prop_op,			/* cb_prop_op */
209 	NULL,				/* cb_stream */
210 	D_MP,				/* cb_flag */
211 	CB_REV,				/* rev */
212 	nodev,				/* int (*cb_aread)() */
213 	nodev				/* int (*cb_awrite)() */
214 };
215 
216 static	struct	dev_ops	vsw_ops = {
217 	DEVO_REV,		/* devo_rev */
218 	0,			/* devo_refcnt */
219 	vsw_getinfo,		/* devo_getinfo */
220 	nulldev,		/* devo_identify */
221 	nulldev,		/* devo_probe */
222 	vsw_attach,		/* devo_attach */
223 	vsw_detach,		/* devo_detach */
224 	nodev,			/* devo_reset */
225 	&vsw_cb_ops,		/* devo_cb_ops */
226 	(struct bus_ops *)NULL,	/* devo_bus_ops */
227 	ddi_power		/* devo_power */
228 };
229 
230 extern	struct	mod_ops	mod_driverops;
231 static struct modldrv vswmodldrv = {
232 	&mod_driverops,
233 	"sun4v Virtual Switch",
234 	&vsw_ops,
235 };
236 
237 #define	LDC_ENTER_LOCK(ldcp)	\
238 				mutex_enter(&((ldcp)->ldc_cblock));\
239 				mutex_enter(&((ldcp)->ldc_rxlock));\
240 				mutex_enter(&((ldcp)->ldc_txlock));
241 #define	LDC_EXIT_LOCK(ldcp)	\
242 				mutex_exit(&((ldcp)->ldc_txlock));\
243 				mutex_exit(&((ldcp)->ldc_rxlock));\
244 				mutex_exit(&((ldcp)->ldc_cblock));
245 
246 /* Driver soft state ptr  */
247 static void	*vsw_state;
248 
249 /*
250  * Linked list of "vsw_t" structures - one per instance.
251  */
252 vsw_t		*vsw_head = NULL;
253 krwlock_t	vsw_rw;
254 
255 /*
256  * Property names
257  */
258 static char vdev_propname[] = "virtual-device";
259 static char vsw_propname[] = "virtual-network-switch";
260 static char physdev_propname[] = "vsw-phys-dev";
261 static char smode_propname[] = "vsw-switch-mode";
262 static char macaddr_propname[] = "local-mac-address";
263 static char remaddr_propname[] = "remote-mac-address";
264 static char ldcids_propname[] = "ldc-ids";
265 static char chan_propname[] = "channel-endpoint";
266 static char id_propname[] = "id";
267 static char reg_propname[] = "reg";
268 
269 /*
270  * Matching criteria passed to the MDEG to register interest
271  * in changes to 'virtual-device-port' nodes identified by their
272  * 'id' property.
273  */
274 static md_prop_match_t vport_prop_match[] = {
275 	{ MDET_PROP_VAL,    "id"   },
276 	{ MDET_LIST_END,    NULL    }
277 };
278 
279 static mdeg_node_match_t vport_match = { "virtual-device-port",
280 						vport_prop_match };
281 
282 /*
283  * Matching criteria passed to the MDEG to register interest
284  * in changes to 'virtual-device' nodes (i.e. vsw nodes) identified
285  * by their 'name' and 'cfg-handle' properties.
286  */
287 static md_prop_match_t vdev_prop_match[] = {
288 	{ MDET_PROP_STR,    "name"   },
289 	{ MDET_PROP_VAL,    "cfg-handle" },
290 	{ MDET_LIST_END,    NULL    }
291 };
292 
293 static mdeg_node_match_t vdev_match = { "virtual-device",
294 						vdev_prop_match };
295 
296 
297 /*
298  * Specification of an MD node passed to the MDEG to filter any
299  * 'vport' nodes that do not belong to the specified node. This
300  * template is copied for each vsw instance and filled in with
301  * the appropriate 'cfg-handle' value before being passed to the MDEG.
302  */
303 static mdeg_prop_spec_t vsw_prop_template[] = {
304 	{ MDET_PROP_STR,    "name",		vsw_propname },
305 	{ MDET_PROP_VAL,    "cfg-handle",	NULL	},
306 	{ MDET_LIST_END,    NULL,		NULL	}
307 };
308 
309 #define	VSW_SET_MDEG_PROP_INST(specp, val)	(specp)[1].ps_val = (val);
310 
311 #ifdef	DEBUG
312 /*
313  * Print debug messages - set to 0x1f to enable all msgs
314  * or 0x0 to turn all off.
315  */
316 int vswdbg = 0x0;
317 
318 /*
319  * debug levels:
320  * 0x01:	Function entry/exit tracing
321  * 0x02:	Internal function messages
322  * 0x04:	Verbose internal messages
323  * 0x08:	Warning messages
324  * 0x10:	Error messages
325  */
326 
327 void
328 vswdebug(vsw_t *vswp, const char *fmt, ...)
329 {
330 	char buf[512];
331 	va_list ap;
332 
333 	va_start(ap, fmt);
334 	(void) vsprintf(buf, fmt, ap);
335 	va_end(ap);
336 
337 	if (vswp == NULL)
338 		cmn_err(CE_CONT, "%s\n", buf);
339 	else
340 		cmn_err(CE_CONT, "vsw%d: %s\n", vswp->instance, buf);
341 }
342 
343 #endif	/* DEBUG */
344 
345 static struct modlinkage modlinkage = {
346 	MODREV_1,
347 	&vswmodldrv,
348 	NULL
349 };
350 
351 int
352 _init(void)
353 {
354 	int status;
355 
356 	rw_init(&vsw_rw, NULL, RW_DRIVER, NULL);
357 
358 	status = ddi_soft_state_init(&vsw_state, sizeof (vsw_t), 1);
359 	if (status != 0) {
360 		return (status);
361 	}
362 
363 	mac_init_ops(&vsw_ops, DRV_NAME);
364 	status = mod_install(&modlinkage);
365 	if (status != 0) {
366 		ddi_soft_state_fini(&vsw_state);
367 	}
368 	return (status);
369 }
370 
371 int
372 _fini(void)
373 {
374 	int status;
375 
376 	status = mod_remove(&modlinkage);
377 	if (status != 0)
378 		return (status);
379 	mac_fini_ops(&vsw_ops);
380 	ddi_soft_state_fini(&vsw_state);
381 
382 	rw_destroy(&vsw_rw);
383 
384 	return (status);
385 }
386 
387 int
388 _info(struct modinfo *modinfop)
389 {
390 	return (mod_info(&modlinkage, modinfop));
391 }
392 
393 static int
394 vsw_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
395 {
396 	vsw_t		*vswp;
397 	int		instance;
398 	char		hashname[MAXNAMELEN];
399 	char		qname[TASKQ_NAMELEN];
400 	enum		{ PROG_init = 0x00,
401 				PROG_locks = 0x01,
402 				PROG_readmd = 0x02,
403 				PROG_fdb = 0x04,
404 				PROG_mfdb = 0x08,
405 				PROG_taskq = 0x10,
406 				PROG_rx_softint = 0x20,
407 				PROG_swmode = 0x40,
408 				PROG_macreg = 0x80,
409 				PROG_mdreg = 0x100}
410 			progress;
411 
412 	progress = PROG_init;
413 	int		rv;
414 
415 	switch (cmd) {
416 	case DDI_ATTACH:
417 		break;
418 	case DDI_RESUME:
419 		/* nothing to do for this non-device */
420 		return (DDI_SUCCESS);
421 	case DDI_PM_RESUME:
422 	default:
423 		return (DDI_FAILURE);
424 	}
425 
426 	instance = ddi_get_instance(dip);
427 	if (ddi_soft_state_zalloc(vsw_state, instance) != DDI_SUCCESS) {
428 		DERR(NULL, "vsw%d: ddi_soft_state_zalloc failed", instance);
429 		return (DDI_FAILURE);
430 	}
431 	vswp = ddi_get_soft_state(vsw_state, instance);
432 
433 	if (vswp == NULL) {
434 		DERR(NULL, "vsw%d: ddi_get_soft_state failed", instance);
435 		goto vsw_attach_fail;
436 	}
437 
438 	vswp->dip = dip;
439 	vswp->instance = instance;
440 	ddi_set_driver_private(dip, (caddr_t)vswp);
441 
442 	mutex_init(&vswp->hw_lock, NULL, MUTEX_DRIVER, NULL);
443 	mutex_init(&vswp->mac_lock, NULL, MUTEX_DRIVER, NULL);
444 	mutex_init(&vswp->mca_lock, NULL, MUTEX_DRIVER, NULL);
445 	mutex_init(&vswp->swtmout_lock, NULL, MUTEX_DRIVER, NULL);
446 	rw_init(&vswp->if_lockrw, NULL, RW_DRIVER, NULL);
447 	rw_init(&vswp->mfdbrw, NULL, RW_DRIVER, NULL);
448 	rw_init(&vswp->plist.lockrw, NULL, RW_DRIVER, NULL);
449 
450 	progress |= PROG_locks;
451 
452 	rv = vsw_read_mdprops(vswp);
453 	if (rv != 0)
454 		goto vsw_attach_fail;
455 
456 	progress |= PROG_readmd;
457 
458 	/* setup the unicast forwarding database  */
459 	(void) snprintf(hashname, MAXNAMELEN, "vsw_unicst_table-%d",
460 	    vswp->instance);
461 	D2(vswp, "creating unicast hash table (%s)...", hashname);
462 	vswp->fdb = mod_hash_create_ptrhash(hashname, VSW_NCHAINS,
463 	    mod_hash_null_valdtor, sizeof (void *));
464 
465 	progress |= PROG_fdb;
466 
467 	/* setup the multicast fowarding database */
468 	(void) snprintf(hashname, MAXNAMELEN, "vsw_mcst_table-%d",
469 	    vswp->instance);
470 	D2(vswp, "creating multicast hash table %s)...", hashname);
471 	vswp->mfdb = mod_hash_create_ptrhash(hashname, VSW_NCHAINS,
472 	    mod_hash_null_valdtor, sizeof (void *));
473 
474 	progress |= PROG_mfdb;
475 
476 	/*
477 	 * Create the taskq which will process all the VIO
478 	 * control messages.
479 	 */
480 	(void) snprintf(qname, TASKQ_NAMELEN, "vsw_taskq%d", vswp->instance);
481 	if ((vswp->taskq_p = ddi_taskq_create(vswp->dip, qname, 1,
482 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
483 		cmn_err(CE_WARN, "!vsw%d: Unable to create task queue",
484 		    vswp->instance);
485 		goto vsw_attach_fail;
486 	}
487 
488 	progress |= PROG_taskq;
489 
490 	/*
491 	 * If LDC receive thread is enabled, then we need a
492 	 * soft-interrupt to deliver the packets to the upper layers.
493 	 * This applies only to the packets that need to be sent up
494 	 * the stack, but not to the packets that are sent out via
495 	 * the physical interface.
496 	 */
497 	if (vsw_ldc_rxthr_enabled) {
498 		vswp->rx_mhead = vswp->rx_mtail = NULL;
499 		vswp->soft_pri = PIL_4;
500 		vswp->rx_softint = B_TRUE;
501 
502 		rv = ddi_intr_add_softint(vswp->dip, &vswp->soft_handle,
503 		    vswp->soft_pri, vsw_rx_softintr, (void *)vswp);
504 		if (rv != DDI_SUCCESS) {
505 			cmn_err(CE_WARN, "!vsw%d: add_softint failed rv(%d)",
506 			    vswp->instance, rv);
507 			goto vsw_attach_fail;
508 		}
509 
510 		/*
511 		 * Initialize the soft_lock with the same priority as
512 		 * the soft interrupt to protect from the soft interrupt.
513 		 */
514 		mutex_init(&vswp->soft_lock, NULL, MUTEX_DRIVER,
515 		    DDI_INTR_PRI(vswp->soft_pri));
516 		progress |= PROG_rx_softint;
517 	} else {
518 		vswp->rx_softint = B_FALSE;
519 	}
520 
521 	/* prevent auto-detaching */
522 	if (ddi_prop_update_int(DDI_DEV_T_NONE, vswp->dip,
523 	    DDI_NO_AUTODETACH, 1) != DDI_SUCCESS) {
524 		cmn_err(CE_NOTE, "!Unable to set \"%s\" property for "
525 		    "instance %u", DDI_NO_AUTODETACH, instance);
526 	}
527 
528 	/*
529 	 * Setup the required switching mode,
530 	 * based on the mdprops that we read earlier.
531 	 */
532 	rv = vsw_setup_switching(vswp);
533 	if (rv == EAGAIN) {
534 		/*
535 		 * Unable to setup switching mode;
536 		 * as the error is EAGAIN, schedule a timeout to retry.
537 		 */
538 		mutex_enter(&vswp->swtmout_lock);
539 
540 		vswp->swtmout_enabled = B_TRUE;
541 		vswp->swtmout_id =
542 		    timeout(vsw_setup_switching_timeout, vswp,
543 		    (vsw_setup_switching_delay * drv_usectohz(MICROSEC)));
544 
545 		mutex_exit(&vswp->swtmout_lock);
546 	} else if (rv != 0) {
547 		goto vsw_attach_fail;
548 	}
549 
550 	progress |= PROG_swmode;
551 
552 	/* Register with mac layer as a provider */
553 	rv = vsw_mac_register(vswp);
554 	if (rv != 0)
555 		goto vsw_attach_fail;
556 
557 	progress |= PROG_macreg;
558 
559 	/*
560 	 * Now we have everything setup, register an interest in
561 	 * specific MD nodes.
562 	 *
563 	 * The callback is invoked in 2 cases, firstly if upon mdeg
564 	 * registration there are existing nodes which match our specified
565 	 * criteria, and secondly if the MD is changed (and again, there
566 	 * are nodes which we are interested in present within it. Note
567 	 * that our callback will be invoked even if our specified nodes
568 	 * have not actually changed).
569 	 *
570 	 */
571 	rv = vsw_mdeg_register(vswp);
572 	if (rv != 0)
573 		goto vsw_attach_fail;
574 
575 	progress |= PROG_mdreg;
576 
577 	WRITE_ENTER(&vsw_rw);
578 	vswp->next = vsw_head;
579 	vsw_head = vswp;
580 	RW_EXIT(&vsw_rw);
581 
582 	ddi_report_dev(vswp->dip);
583 	return (DDI_SUCCESS);
584 
585 vsw_attach_fail:
586 	DERR(NULL, "vsw_attach: failed");
587 
588 	if (progress & PROG_rx_softint) {
589 		(void) ddi_intr_remove_softint(vswp->soft_handle);
590 		mutex_destroy(&vswp->soft_lock);
591 	}
592 
593 	if (progress & PROG_mdreg) {
594 		vsw_mdeg_unregister(vswp);
595 		(void) vsw_detach_ports(vswp);
596 	}
597 
598 	if (progress & PROG_macreg)
599 		(void) vsw_mac_unregister(vswp);
600 
601 	if (progress & PROG_swmode) {
602 		vsw_stop_switching_timeout(vswp);
603 		mutex_enter(&vswp->mac_lock);
604 		vsw_mac_detach(vswp);
605 		vsw_mac_close(vswp);
606 		mutex_exit(&vswp->mac_lock);
607 	}
608 
609 	if (progress & PROG_taskq)
610 		ddi_taskq_destroy(vswp->taskq_p);
611 
612 	if (progress & PROG_mfdb)
613 		mod_hash_destroy_hash(vswp->mfdb);
614 
615 	if (progress & PROG_fdb)
616 		mod_hash_destroy_hash(vswp->fdb);
617 
618 	if (progress & PROG_locks) {
619 		rw_destroy(&vswp->plist.lockrw);
620 		rw_destroy(&vswp->mfdbrw);
621 		rw_destroy(&vswp->if_lockrw);
622 		mutex_destroy(&vswp->swtmout_lock);
623 		mutex_destroy(&vswp->mca_lock);
624 		mutex_destroy(&vswp->mac_lock);
625 		mutex_destroy(&vswp->hw_lock);
626 	}
627 
628 	ddi_soft_state_free(vsw_state, instance);
629 	return (DDI_FAILURE);
630 }
631 
632 static int
633 vsw_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
634 {
635 	vio_mblk_pool_t		*poolp, *npoolp;
636 	vsw_t			**vswpp, *vswp;
637 	int 			instance;
638 
639 	instance = ddi_get_instance(dip);
640 	vswp = ddi_get_soft_state(vsw_state, instance);
641 
642 	if (vswp == NULL) {
643 		return (DDI_FAILURE);
644 	}
645 
646 	switch (cmd) {
647 	case DDI_DETACH:
648 		break;
649 	case DDI_SUSPEND:
650 	case DDI_PM_SUSPEND:
651 	default:
652 		return (DDI_FAILURE);
653 	}
654 
655 	D2(vswp, "detaching instance %d", instance);
656 
657 	/* Stop any pending timeout to setup switching mode. */
658 	vsw_stop_switching_timeout(vswp);
659 
660 	if (vswp->if_state & VSW_IF_REG) {
661 		if (vsw_mac_unregister(vswp) != 0) {
662 			cmn_err(CE_WARN, "!vsw%d: Unable to detach from "
663 			    "MAC layer", vswp->instance);
664 			return (DDI_FAILURE);
665 		}
666 	}
667 
668 	/*
669 	 * Destroy/free up the receive thread related structures.
670 	 */
671 	if (vswp->rx_softint == B_TRUE) {
672 		(void) ddi_intr_remove_softint(vswp->soft_handle);
673 		mutex_destroy(&vswp->soft_lock);
674 		if (vswp->rx_mhead != NULL) {
675 			freemsgchain(vswp->rx_mhead);
676 			vswp->rx_mhead = vswp->rx_mtail = NULL;
677 		}
678 	}
679 
680 	vsw_mdeg_unregister(vswp);
681 
682 	/* remove mac layer callback */
683 	mutex_enter(&vswp->mac_lock);
684 	if ((vswp->mh != NULL) && (vswp->mrh != NULL)) {
685 		mac_rx_remove(vswp->mh, vswp->mrh, B_TRUE);
686 		vswp->mrh = NULL;
687 	}
688 	mutex_exit(&vswp->mac_lock);
689 
690 	if (vsw_detach_ports(vswp) != 0) {
691 		cmn_err(CE_WARN, "!vsw%d: Unable to detach ports",
692 		    vswp->instance);
693 		return (DDI_FAILURE);
694 	}
695 
696 	rw_destroy(&vswp->if_lockrw);
697 
698 	mutex_destroy(&vswp->hw_lock);
699 
700 	/*
701 	 * Now that the ports have been deleted, stop and close
702 	 * the physical device.
703 	 */
704 	mutex_enter(&vswp->mac_lock);
705 
706 	vsw_mac_detach(vswp);
707 	vsw_mac_close(vswp);
708 
709 	mutex_exit(&vswp->mac_lock);
710 
711 	mutex_destroy(&vswp->mac_lock);
712 	mutex_destroy(&vswp->swtmout_lock);
713 
714 	/*
715 	 * Destroy any free pools that may still exist.
716 	 */
717 	poolp = vswp->rxh;
718 	while (poolp != NULL) {
719 		npoolp = vswp->rxh = poolp->nextp;
720 		if (vio_destroy_mblks(poolp) != 0) {
721 			vswp->rxh = poolp;
722 			return (DDI_FAILURE);
723 		}
724 		poolp = npoolp;
725 	}
726 
727 	/*
728 	 * Remove this instance from any entries it may be on in
729 	 * the hash table by using the list of addresses maintained
730 	 * in the vsw_t structure.
731 	 */
732 	vsw_del_mcst_vsw(vswp);
733 
734 	vswp->mcap = NULL;
735 	mutex_destroy(&vswp->mca_lock);
736 
737 	/*
738 	 * By now any pending tasks have finished and the underlying
739 	 * ldc's have been destroyed, so its safe to delete the control
740 	 * message taskq.
741 	 */
742 	if (vswp->taskq_p != NULL)
743 		ddi_taskq_destroy(vswp->taskq_p);
744 
745 	/*
746 	 * At this stage all the data pointers in the hash table
747 	 * should be NULL, as all the ports have been removed and will
748 	 * have deleted themselves from the port lists which the data
749 	 * pointers point to. Hence we can destroy the table using the
750 	 * default destructors.
751 	 */
752 	D2(vswp, "vsw_detach: destroying hash tables..");
753 	mod_hash_destroy_hash(vswp->fdb);
754 	vswp->fdb = NULL;
755 
756 	WRITE_ENTER(&vswp->mfdbrw);
757 	mod_hash_destroy_hash(vswp->mfdb);
758 	vswp->mfdb = NULL;
759 	RW_EXIT(&vswp->mfdbrw);
760 	rw_destroy(&vswp->mfdbrw);
761 
762 	ddi_remove_minor_node(dip, NULL);
763 
764 	rw_destroy(&vswp->plist.lockrw);
765 	WRITE_ENTER(&vsw_rw);
766 	for (vswpp = &vsw_head; *vswpp; vswpp = &(*vswpp)->next) {
767 		if (*vswpp == vswp) {
768 			*vswpp = vswp->next;
769 			break;
770 		}
771 	}
772 	RW_EXIT(&vsw_rw);
773 	ddi_soft_state_free(vsw_state, instance);
774 
775 	return (DDI_SUCCESS);
776 }
777 
778 static int
779 vsw_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
780 {
781 	_NOTE(ARGUNUSED(dip))
782 
783 	vsw_t	*vswp = NULL;
784 	dev_t	dev = (dev_t)arg;
785 	int	instance;
786 
787 	instance = getminor(dev);
788 
789 	switch (infocmd) {
790 	case DDI_INFO_DEVT2DEVINFO:
791 		if ((vswp = ddi_get_soft_state(vsw_state, instance)) == NULL) {
792 			*result = NULL;
793 			return (DDI_FAILURE);
794 		}
795 		*result = vswp->dip;
796 		return (DDI_SUCCESS);
797 
798 	case DDI_INFO_DEVT2INSTANCE:
799 		*result = (void *)(uintptr_t)instance;
800 		return (DDI_SUCCESS);
801 
802 	default:
803 		*result = NULL;
804 		return (DDI_FAILURE);
805 	}
806 }
807 
808 /*
809  * Get the value of the "vsw-phys-dev" property in the specified
810  * node. This property is the name of the physical device that
811  * the virtual switch will use to talk to the outside world.
812  *
813  * Note it is valid for this property to be NULL (but the property
814  * itself must exist). Callers of this routine should verify that
815  * the value returned is what they expected (i.e. either NULL or non NULL).
816  *
817  * On success returns value of the property in region pointed to by
818  * the 'name' argument, and with return value of 0. Otherwise returns 1.
819  */
820 static int
821 vsw_get_md_physname(vsw_t *vswp, md_t *mdp, mde_cookie_t node, char *name)
822 {
823 	int	len = 0;
824 	char	*physname = NULL;
825 	char	*dev;
826 
827 	if (md_get_prop_data(mdp, node, physdev_propname,
828 	    (uint8_t **)(&physname), &len) != 0) {
829 		cmn_err(CE_WARN, "!vsw%d: Unable to get name(s) of physical "
830 		    "device(s) from MD", vswp->instance);
831 		return (1);
832 	} else if ((strlen(physname) + 1) > LIFNAMSIZ) {
833 		cmn_err(CE_WARN, "!vsw%d: %s is too long a device name",
834 		    vswp->instance, physname);
835 		return (1);
836 	} else {
837 		(void) strncpy(name, physname, strlen(physname) + 1);
838 		D2(vswp, "%s: using first device specified (%s)",
839 		    __func__, physname);
840 	}
841 
842 #ifdef DEBUG
843 	/*
844 	 * As a temporary measure to aid testing we check to see if there
845 	 * is a vsw.conf file present. If there is we use the value of the
846 	 * vsw_physname property in the file as the name of the physical
847 	 * device, overriding the value from the MD.
848 	 *
849 	 * There may be multiple devices listed, but for the moment
850 	 * we just use the first one.
851 	 */
852 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, vswp->dip, 0,
853 	    "vsw_physname", &dev) == DDI_PROP_SUCCESS) {
854 		if ((strlen(dev) + 1) > LIFNAMSIZ) {
855 			cmn_err(CE_WARN, "vsw%d: %s is too long a device name",
856 			    vswp->instance, dev);
857 			ddi_prop_free(dev);
858 			return (1);
859 		} else {
860 			cmn_err(CE_NOTE, "vsw%d: Using device name (%s) from "
861 			    "config file", vswp->instance, dev);
862 
863 			(void) strncpy(name, dev, strlen(dev) + 1);
864 		}
865 
866 		ddi_prop_free(dev);
867 	}
868 #endif
869 
870 	return (0);
871 }
872 
873 /*
874  * Read the 'vsw-switch-mode' property from the specified MD node.
875  *
876  * Returns 0 on success and the number of modes found in 'found',
877  * otherwise returns 1.
878  */
879 static int
880 vsw_get_md_smodes(vsw_t *vswp, md_t *mdp, mde_cookie_t node,
881 						uint8_t *modes, int *found)
882 {
883 	int		len = 0;
884 	int		smode_num = 0;
885 	char		*smode = NULL;
886 	char		*curr_mode = NULL;
887 
888 	D1(vswp, "%s: enter", __func__);
889 
890 	/*
891 	 * Get the switch-mode property. The modes are listed in
892 	 * decreasing order of preference, i.e. prefered mode is
893 	 * first item in list.
894 	 */
895 	len = 0;
896 	smode_num = 0;
897 	if (md_get_prop_data(mdp, node, smode_propname,
898 	    (uint8_t **)(&smode), &len) != 0) {
899 		/*
900 		 * Unable to get switch-mode property from MD, nothing
901 		 * more we can do.
902 		 */
903 		cmn_err(CE_WARN, "!vsw%d: Unable to get switch mode property"
904 		    " from the MD", vswp->instance);
905 		*found = 0;
906 		return (1);
907 	}
908 
909 	curr_mode = smode;
910 	/*
911 	 * Modes of operation:
912 	 * 'switched'	 - layer 2 switching, underlying HW in
913 	 *			programmed mode.
914 	 * 'promiscuous' - layer 2 switching, underlying HW in
915 	 *			promiscuous mode.
916 	 * 'routed'	 - layer 3 (i.e. IP) routing, underlying HW
917 	 *			in non-promiscuous mode.
918 	 */
919 	while ((curr_mode < (smode + len)) && (smode_num < NUM_SMODES)) {
920 		D2(vswp, "%s: curr_mode = [%s]", __func__, curr_mode);
921 		if (strcmp(curr_mode, "switched") == 0) {
922 			modes[smode_num++] = VSW_LAYER2;
923 		} else if (strcmp(curr_mode, "promiscuous") == 0) {
924 			modes[smode_num++] = VSW_LAYER2_PROMISC;
925 		} else if (strcmp(curr_mode, "routed") == 0) {
926 			modes[smode_num++] = VSW_LAYER3;
927 		} else {
928 			cmn_err(CE_WARN, "!vsw%d: Unknown switch mode %s, "
929 			    "setting to default switched mode",
930 			    vswp->instance, curr_mode);
931 			modes[smode_num++] = VSW_LAYER2;
932 		}
933 		curr_mode += strlen(curr_mode) + 1;
934 	}
935 	*found = smode_num;
936 
937 	D2(vswp, "%s: %d modes found", __func__, smode_num);
938 
939 	D1(vswp, "%s: exit", __func__);
940 
941 	return (0);
942 }
943 
944 /*
945  * Register with the MAC layer as a network device, so we
946  * can be plumbed if necessary.
947  */
948 static int
949 vsw_mac_register(vsw_t *vswp)
950 {
951 	mac_register_t	*macp;
952 	int		rv;
953 
954 	D1(vswp, "%s: enter", __func__);
955 
956 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
957 		return (EINVAL);
958 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
959 	macp->m_driver = vswp;
960 	macp->m_dip = vswp->dip;
961 	macp->m_src_addr = (uint8_t *)&vswp->if_addr;
962 	macp->m_callbacks = &vsw_m_callbacks;
963 	macp->m_min_sdu = 0;
964 	macp->m_max_sdu = ETHERMTU;
965 	rv = mac_register(macp, &vswp->if_mh);
966 	mac_free(macp);
967 	if (rv != 0) {
968 		/*
969 		 * Treat this as a non-fatal error as we may be
970 		 * able to operate in some other mode.
971 		 */
972 		cmn_err(CE_NOTE, "!vsw%d: Unable to register as "
973 		    "a provider with MAC layer", vswp->instance);
974 		return (rv);
975 	}
976 
977 	vswp->if_state |= VSW_IF_REG;
978 
979 	D1(vswp, "%s: exit", __func__);
980 
981 	return (rv);
982 }
983 
984 static int
985 vsw_mac_unregister(vsw_t *vswp)
986 {
987 	int		rv = 0;
988 
989 	D1(vswp, "%s: enter", __func__);
990 
991 	WRITE_ENTER(&vswp->if_lockrw);
992 
993 	if (vswp->if_state & VSW_IF_REG) {
994 		rv = mac_unregister(vswp->if_mh);
995 		if (rv != 0) {
996 			DWARN(vswp, "%s: unable to unregister from MAC "
997 			    "framework", __func__);
998 
999 			RW_EXIT(&vswp->if_lockrw);
1000 			D1(vswp, "%s: fail exit", __func__);
1001 			return (rv);
1002 		}
1003 
1004 		/* mark i/f as down and unregistered */
1005 		vswp->if_state &= ~(VSW_IF_UP | VSW_IF_REG);
1006 	}
1007 	RW_EXIT(&vswp->if_lockrw);
1008 
1009 	D1(vswp, "%s: exit", __func__);
1010 
1011 	return (rv);
1012 }
1013 
1014 static int
1015 vsw_m_stat(void *arg, uint_t stat, uint64_t *val)
1016 {
1017 	vsw_t			*vswp = (vsw_t *)arg;
1018 
1019 	D1(vswp, "%s: enter", __func__);
1020 
1021 	mutex_enter(&vswp->mac_lock);
1022 	if (vswp->mh == NULL) {
1023 		mutex_exit(&vswp->mac_lock);
1024 		return (EINVAL);
1025 	}
1026 
1027 	/* return stats from underlying device */
1028 	*val = mac_stat_get(vswp->mh, stat);
1029 
1030 	mutex_exit(&vswp->mac_lock);
1031 
1032 	return (0);
1033 }
1034 
1035 static void
1036 vsw_m_stop(void *arg)
1037 {
1038 	vsw_t		*vswp = (vsw_t *)arg;
1039 
1040 	D1(vswp, "%s: enter", __func__);
1041 
1042 	WRITE_ENTER(&vswp->if_lockrw);
1043 	vswp->if_state &= ~VSW_IF_UP;
1044 	RW_EXIT(&vswp->if_lockrw);
1045 
1046 	mutex_enter(&vswp->hw_lock);
1047 
1048 	(void) vsw_unset_hw(vswp, NULL, VSW_LOCALDEV);
1049 
1050 	if (vswp->recfg_reqd)
1051 		vsw_reconfig_hw(vswp);
1052 
1053 	mutex_exit(&vswp->hw_lock);
1054 
1055 	D1(vswp, "%s: exit (state = %d)", __func__, vswp->if_state);
1056 }
1057 
1058 static int
1059 vsw_m_start(void *arg)
1060 {
1061 	vsw_t		*vswp = (vsw_t *)arg;
1062 
1063 	D1(vswp, "%s: enter", __func__);
1064 
1065 	WRITE_ENTER(&vswp->if_lockrw);
1066 
1067 	vswp->if_state |= VSW_IF_UP;
1068 
1069 	if (vswp->switching_setup_done == B_FALSE) {
1070 		/*
1071 		 * If the switching mode has not been setup yet, just
1072 		 * return. The unicast address will be programmed
1073 		 * after the physical device is successfully setup by the
1074 		 * timeout handler.
1075 		 */
1076 		RW_EXIT(&vswp->if_lockrw);
1077 		return (0);
1078 	}
1079 
1080 	/* if in layer2 mode, program unicast address. */
1081 	if (vswp->mh != NULL) {
1082 		mutex_enter(&vswp->hw_lock);
1083 		(void) vsw_set_hw(vswp, NULL, VSW_LOCALDEV);
1084 		mutex_exit(&vswp->hw_lock);
1085 	}
1086 
1087 	RW_EXIT(&vswp->if_lockrw);
1088 
1089 	D1(vswp, "%s: exit (state = %d)", __func__, vswp->if_state);
1090 	return (0);
1091 }
1092 
1093 /*
1094  * Change the local interface address.
1095  *
1096  * Note: we don't support this entry point. The local
1097  * mac address of the switch can only be changed via its
1098  * MD node properties.
1099  */
1100 static int
1101 vsw_m_unicst(void *arg, const uint8_t *macaddr)
1102 {
1103 	_NOTE(ARGUNUSED(arg, macaddr))
1104 
1105 	return (DDI_FAILURE);
1106 }
1107 
1108 static int
1109 vsw_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1110 {
1111 	vsw_t		*vswp = (vsw_t *)arg;
1112 	mcst_addr_t	*mcst_p = NULL;
1113 	uint64_t	addr = 0x0;
1114 	int		i, ret = 0;
1115 
1116 	D1(vswp, "%s: enter", __func__);
1117 
1118 	/*
1119 	 * Convert address into form that can be used
1120 	 * as hash table key.
1121 	 */
1122 	for (i = 0; i < ETHERADDRL; i++) {
1123 		addr = (addr << 8) | mca[i];
1124 	}
1125 
1126 	D2(vswp, "%s: addr = 0x%llx", __func__, addr);
1127 
1128 	if (add) {
1129 		D2(vswp, "%s: adding multicast", __func__);
1130 		if (vsw_add_mcst(vswp, VSW_LOCALDEV, addr, NULL) == 0) {
1131 			/*
1132 			 * Update the list of multicast addresses
1133 			 * contained within the vsw_t structure to
1134 			 * include this new one.
1135 			 */
1136 			mcst_p = kmem_zalloc(sizeof (mcst_addr_t), KM_NOSLEEP);
1137 			if (mcst_p == NULL) {
1138 				DERR(vswp, "%s unable to alloc mem", __func__);
1139 				(void) vsw_del_mcst(vswp,
1140 				    VSW_LOCALDEV, addr, NULL);
1141 				return (1);
1142 			}
1143 			mcst_p->addr = addr;
1144 			ether_copy(mca, &mcst_p->mca);
1145 
1146 			/*
1147 			 * Call into the underlying driver to program the
1148 			 * address into HW.
1149 			 */
1150 			mutex_enter(&vswp->mac_lock);
1151 			if (vswp->mh != NULL) {
1152 				ret = mac_multicst_add(vswp->mh, mca);
1153 				if (ret != 0) {
1154 					cmn_err(CE_WARN, "!vsw%d: unable to "
1155 					    "add multicast address",
1156 					    vswp->instance);
1157 					mutex_exit(&vswp->mac_lock);
1158 					(void) vsw_del_mcst(vswp,
1159 					    VSW_LOCALDEV, addr, NULL);
1160 					kmem_free(mcst_p, sizeof (*mcst_p));
1161 					return (ret);
1162 				}
1163 				mcst_p->mac_added = B_TRUE;
1164 			}
1165 			mutex_exit(&vswp->mac_lock);
1166 
1167 			mutex_enter(&vswp->mca_lock);
1168 			mcst_p->nextp = vswp->mcap;
1169 			vswp->mcap = mcst_p;
1170 			mutex_exit(&vswp->mca_lock);
1171 		} else {
1172 			cmn_err(CE_WARN, "!vsw%d: unable to add multicast "
1173 			    "address", vswp->instance);
1174 		}
1175 		return (ret);
1176 	}
1177 
1178 	D2(vswp, "%s: removing multicast", __func__);
1179 	/*
1180 	 * Remove the address from the hash table..
1181 	 */
1182 	if (vsw_del_mcst(vswp, VSW_LOCALDEV, addr, NULL) == 0) {
1183 
1184 		/*
1185 		 * ..and then from the list maintained in the
1186 		 * vsw_t structure.
1187 		 */
1188 		mcst_p = vsw_del_addr(VSW_LOCALDEV, vswp, addr);
1189 		ASSERT(mcst_p != NULL);
1190 
1191 		mutex_enter(&vswp->mac_lock);
1192 		if (vswp->mh != NULL && mcst_p->mac_added) {
1193 			(void) mac_multicst_remove(vswp->mh, mca);
1194 			mcst_p->mac_added = B_FALSE;
1195 		}
1196 		mutex_exit(&vswp->mac_lock);
1197 		kmem_free(mcst_p, sizeof (*mcst_p));
1198 	}
1199 
1200 	D1(vswp, "%s: exit", __func__);
1201 
1202 	return (0);
1203 }
1204 
1205 static int
1206 vsw_m_promisc(void *arg, boolean_t on)
1207 {
1208 	vsw_t		*vswp = (vsw_t *)arg;
1209 
1210 	D1(vswp, "%s: enter", __func__);
1211 
1212 	WRITE_ENTER(&vswp->if_lockrw);
1213 	if (on)
1214 		vswp->if_state |= VSW_IF_PROMISC;
1215 	else
1216 		vswp->if_state &= ~VSW_IF_PROMISC;
1217 	RW_EXIT(&vswp->if_lockrw);
1218 
1219 	D1(vswp, "%s: exit", __func__);
1220 
1221 	return (0);
1222 }
1223 
1224 static mblk_t *
1225 vsw_m_tx(void *arg, mblk_t *mp)
1226 {
1227 	vsw_t		*vswp = (vsw_t *)arg;
1228 
1229 	D1(vswp, "%s: enter", __func__);
1230 
1231 	vswp->vsw_switch_frame(vswp, mp, VSW_LOCALDEV, NULL, NULL);
1232 
1233 	D1(vswp, "%s: exit", __func__);
1234 
1235 	return (NULL);
1236 }
1237 
1238 /*
1239  * Register for machine description (MD) updates.
1240  *
1241  * Returns 0 on success, 1 on failure.
1242  */
1243 static int
1244 vsw_mdeg_register(vsw_t *vswp)
1245 {
1246 	mdeg_prop_spec_t	*pspecp;
1247 	mdeg_node_spec_t	*inst_specp;
1248 	mdeg_handle_t		mdeg_hdl, mdeg_port_hdl;
1249 	size_t			templatesz;
1250 	int			rv;
1251 
1252 	D1(vswp, "%s: enter", __func__);
1253 
1254 	/*
1255 	 * Allocate and initialize a per-instance copy
1256 	 * of the global property spec array that will
1257 	 * uniquely identify this vsw instance.
1258 	 */
1259 	templatesz = sizeof (vsw_prop_template);
1260 	pspecp = kmem_zalloc(templatesz, KM_SLEEP);
1261 
1262 	bcopy(vsw_prop_template, pspecp, templatesz);
1263 
1264 	VSW_SET_MDEG_PROP_INST(pspecp, vswp->regprop);
1265 
1266 	/* initialize the complete prop spec structure */
1267 	inst_specp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
1268 	inst_specp->namep = "virtual-device";
1269 	inst_specp->specp = pspecp;
1270 
1271 	D2(vswp, "%s: instance %d registering with mdeg", __func__,
1272 	    vswp->regprop);
1273 	/*
1274 	 * Register an interest in 'virtual-device' nodes with a
1275 	 * 'name' property of 'virtual-network-switch'
1276 	 */
1277 	rv = mdeg_register(inst_specp, &vdev_match, vsw_mdeg_cb,
1278 	    (void *)vswp, &mdeg_hdl);
1279 	if (rv != MDEG_SUCCESS) {
1280 		DERR(vswp, "%s: mdeg_register failed (%d) for vsw node",
1281 		    __func__, rv);
1282 		goto mdeg_reg_fail;
1283 	}
1284 
1285 	/*
1286 	 * Register an interest in 'vsw-port' nodes.
1287 	 */
1288 	rv = mdeg_register(inst_specp, &vport_match, vsw_port_mdeg_cb,
1289 	    (void *)vswp, &mdeg_port_hdl);
1290 	if (rv != MDEG_SUCCESS) {
1291 		DERR(vswp, "%s: mdeg_register failed (%d)\n", __func__, rv);
1292 		(void) mdeg_unregister(mdeg_hdl);
1293 		goto mdeg_reg_fail;
1294 	}
1295 
1296 	/* save off data that will be needed later */
1297 	vswp->inst_spec = inst_specp;
1298 	vswp->mdeg_hdl = mdeg_hdl;
1299 	vswp->mdeg_port_hdl = mdeg_port_hdl;
1300 
1301 	D1(vswp, "%s: exit", __func__);
1302 	return (0);
1303 
1304 mdeg_reg_fail:
1305 	cmn_err(CE_WARN, "!vsw%d: Unable to register MDEG callbacks",
1306 	    vswp->instance);
1307 	kmem_free(pspecp, templatesz);
1308 	kmem_free(inst_specp, sizeof (mdeg_node_spec_t));
1309 
1310 	vswp->mdeg_hdl = NULL;
1311 	vswp->mdeg_port_hdl = NULL;
1312 
1313 	return (1);
1314 }
1315 
1316 static void
1317 vsw_mdeg_unregister(vsw_t *vswp)
1318 {
1319 	D1(vswp, "vsw_mdeg_unregister: enter");
1320 
1321 	if (vswp->mdeg_hdl != NULL)
1322 		(void) mdeg_unregister(vswp->mdeg_hdl);
1323 
1324 	if (vswp->mdeg_port_hdl != NULL)
1325 		(void) mdeg_unregister(vswp->mdeg_port_hdl);
1326 
1327 	if (vswp->inst_spec != NULL) {
1328 		if (vswp->inst_spec->specp != NULL) {
1329 			(void) kmem_free(vswp->inst_spec->specp,
1330 			    sizeof (vsw_prop_template));
1331 			vswp->inst_spec->specp = NULL;
1332 		}
1333 
1334 		(void) kmem_free(vswp->inst_spec, sizeof (mdeg_node_spec_t));
1335 		vswp->inst_spec = NULL;
1336 	}
1337 
1338 	D1(vswp, "vsw_mdeg_unregister: exit");
1339 }
1340 
1341 /*
1342  * Mdeg callback invoked for the vsw node itself.
1343  */
1344 static int
1345 vsw_mdeg_cb(void *cb_argp, mdeg_result_t *resp)
1346 {
1347 	vsw_t		*vswp;
1348 	md_t		*mdp;
1349 	mde_cookie_t	node;
1350 	uint64_t	inst;
1351 	char		*node_name = NULL;
1352 
1353 	if (resp == NULL)
1354 		return (MDEG_FAILURE);
1355 
1356 	vswp = (vsw_t *)cb_argp;
1357 
1358 	D1(vswp, "%s: added %d : removed %d : curr matched %d"
1359 	    " : prev matched %d", __func__, resp->added.nelem,
1360 	    resp->removed.nelem, resp->match_curr.nelem,
1361 	    resp->match_prev.nelem);
1362 
1363 	/*
1364 	 * We get an initial callback for this node as 'added'
1365 	 * after registering with mdeg. Note that we would have
1366 	 * already gathered information about this vsw node by
1367 	 * walking MD earlier during attach (in vsw_read_mdprops()).
1368 	 * So, there is a window where the properties of this
1369 	 * node might have changed when we get this initial 'added'
1370 	 * callback. We handle this as if an update occured
1371 	 * and invoke the same function which handles updates to
1372 	 * the properties of this vsw-node if any.
1373 	 *
1374 	 * A non-zero 'match' value indicates that the MD has been
1375 	 * updated and that a virtual-network-switch node is
1376 	 * present which may or may not have been updated. It is
1377 	 * up to the clients to examine their own nodes and
1378 	 * determine if they have changed.
1379 	 */
1380 	if (resp->added.nelem != 0) {
1381 
1382 		if (resp->added.nelem != 1) {
1383 			cmn_err(CE_NOTE, "!vsw%d: number of nodes added "
1384 			    "invalid: %d\n", vswp->instance, resp->added.nelem);
1385 			return (MDEG_FAILURE);
1386 		}
1387 
1388 		mdp = resp->added.mdp;
1389 		node = resp->added.mdep[0];
1390 
1391 	} else if (resp->match_curr.nelem != 0) {
1392 
1393 		if (resp->match_curr.nelem != 1) {
1394 			cmn_err(CE_NOTE, "!vsw%d: number of nodes updated "
1395 			    "invalid: %d\n", vswp->instance,
1396 			    resp->match_curr.nelem);
1397 			return (MDEG_FAILURE);
1398 		}
1399 
1400 		mdp = resp->match_curr.mdp;
1401 		node = resp->match_curr.mdep[0];
1402 
1403 	} else {
1404 		return (MDEG_FAILURE);
1405 	}
1406 
1407 	/* Validate name and instance */
1408 	if (md_get_prop_str(mdp, node, "name", &node_name) != 0) {
1409 		DERR(vswp, "%s: unable to get node name\n",  __func__);
1410 		return (MDEG_FAILURE);
1411 	}
1412 
1413 	/* is this a virtual-network-switch? */
1414 	if (strcmp(node_name, vsw_propname) != 0) {
1415 		DERR(vswp, "%s: Invalid node name: %s\n",
1416 		    __func__, node_name);
1417 		return (MDEG_FAILURE);
1418 	}
1419 
1420 	if (md_get_prop_val(mdp, node, "cfg-handle", &inst)) {
1421 		DERR(vswp, "%s: prop(cfg-handle) not found\n",
1422 		    __func__);
1423 		return (MDEG_FAILURE);
1424 	}
1425 
1426 	/* is this the right instance of vsw? */
1427 	if (inst != vswp->regprop) {
1428 		DERR(vswp, "%s: Invalid cfg-handle: %lx\n",
1429 		    __func__, inst);
1430 		return (MDEG_FAILURE);
1431 	}
1432 
1433 	vsw_update_md_prop(vswp, mdp, node);
1434 
1435 	return (MDEG_SUCCESS);
1436 }
1437 
1438 /*
1439  * Mdeg callback invoked for changes to the vsw-port nodes
1440  * under the vsw node.
1441  */
1442 static int
1443 vsw_port_mdeg_cb(void *cb_argp, mdeg_result_t *resp)
1444 {
1445 	vsw_t		*vswp;
1446 	int		idx;
1447 	md_t		*mdp;
1448 	mde_cookie_t	node;
1449 	uint64_t	inst;
1450 
1451 	if ((resp == NULL) || (cb_argp == NULL))
1452 		return (MDEG_FAILURE);
1453 
1454 	vswp = (vsw_t *)cb_argp;
1455 
1456 	D2(vswp, "%s: added %d : removed %d : curr matched %d"
1457 	    " : prev matched %d", __func__, resp->added.nelem,
1458 	    resp->removed.nelem, resp->match_curr.nelem,
1459 	    resp->match_prev.nelem);
1460 
1461 	/* process added ports */
1462 	for (idx = 0; idx < resp->added.nelem; idx++) {
1463 		mdp = resp->added.mdp;
1464 		node = resp->added.mdep[idx];
1465 
1466 		D2(vswp, "%s: adding node(%d) 0x%lx", __func__, idx, node);
1467 
1468 		if (vsw_port_add(vswp, mdp, &node) != 0) {
1469 			cmn_err(CE_WARN, "!vsw%d: Unable to add new port "
1470 			    "(0x%lx)", vswp->instance, node);
1471 		}
1472 	}
1473 
1474 	/* process removed ports */
1475 	for (idx = 0; idx < resp->removed.nelem; idx++) {
1476 		mdp = resp->removed.mdp;
1477 		node = resp->removed.mdep[idx];
1478 
1479 		if (md_get_prop_val(mdp, node, id_propname, &inst)) {
1480 			DERR(vswp, "%s: prop(%s) not found in port(%d)",
1481 			    __func__, id_propname, idx);
1482 			continue;
1483 		}
1484 
1485 		D2(vswp, "%s: removing node(%d) 0x%lx", __func__, idx, node);
1486 
1487 		if (vsw_port_detach(vswp, inst) != 0) {
1488 			cmn_err(CE_WARN, "!vsw%d: Unable to remove port %ld",
1489 			    vswp->instance, inst);
1490 		}
1491 	}
1492 
1493 	/*
1494 	 * Currently no support for updating already active ports.
1495 	 * So, ignore the match_curr and match_priv arrays for now.
1496 	 */
1497 
1498 	D1(vswp, "%s: exit", __func__);
1499 
1500 	return (MDEG_SUCCESS);
1501 }
1502 
1503 /*
1504  * Scan the machine description for this instance of vsw
1505  * and read its properties. Called only from vsw_attach().
1506  * Returns: 0 on success, 1 on failure.
1507  */
1508 static int
1509 vsw_read_mdprops(vsw_t *vswp)
1510 {
1511 	md_t		*mdp = NULL;
1512 	mde_cookie_t	rootnode;
1513 	mde_cookie_t	*listp = NULL;
1514 	uint64_t	inst;
1515 	uint64_t	cfgh;
1516 	char		*name;
1517 	int		rv = 1;
1518 	int		num_nodes = 0;
1519 	int		num_devs = 0;
1520 	int		listsz = 0;
1521 	int		i;
1522 
1523 	/*
1524 	 * In each 'virtual-device' node in the MD there is a
1525 	 * 'cfg-handle' property which is the MD's concept of
1526 	 * an instance number (this may be completely different from
1527 	 * the device drivers instance #). OBP reads that value and
1528 	 * stores it in the 'reg' property of the appropriate node in
1529 	 * the device tree. We first read this reg property and use this
1530 	 * to compare against the 'cfg-handle' property of vsw nodes
1531 	 * in MD to get to this specific vsw instance and then read
1532 	 * other properties that we are interested in.
1533 	 * We also cache the value of 'reg' property and use it later
1534 	 * to register callbacks with mdeg (see vsw_mdeg_register())
1535 	 */
1536 	inst = ddi_prop_get_int(DDI_DEV_T_ANY, vswp->dip,
1537 	    DDI_PROP_DONTPASS, reg_propname, -1);
1538 	if (inst == -1) {
1539 		cmn_err(CE_NOTE, "!vsw%d: Unable to read %s property from "
1540 		    "OBP device tree", vswp->instance, reg_propname);
1541 		return (rv);
1542 	}
1543 
1544 	vswp->regprop = inst;
1545 
1546 	if ((mdp = md_get_handle()) == NULL) {
1547 		DWARN(vswp, "%s: cannot init MD\n", __func__);
1548 		return (rv);
1549 	}
1550 
1551 	num_nodes = md_node_count(mdp);
1552 	ASSERT(num_nodes > 0);
1553 
1554 	listsz = num_nodes * sizeof (mde_cookie_t);
1555 	listp = (mde_cookie_t *)kmem_zalloc(listsz, KM_SLEEP);
1556 
1557 	rootnode = md_root_node(mdp);
1558 
1559 	/* search for all "virtual_device" nodes */
1560 	num_devs = md_scan_dag(mdp, rootnode,
1561 	    md_find_name(mdp, vdev_propname),
1562 	    md_find_name(mdp, "fwd"), listp);
1563 	if (num_devs <= 0) {
1564 		DWARN(vswp, "%s: invalid num_devs:%d\n", __func__, num_devs);
1565 		goto vsw_readmd_exit;
1566 	}
1567 
1568 	/*
1569 	 * Now loop through the list of virtual-devices looking for
1570 	 * devices with name "virtual-network-switch" and for each
1571 	 * such device compare its instance with what we have from
1572 	 * the 'reg' property to find the right node in MD and then
1573 	 * read all its properties.
1574 	 */
1575 	for (i = 0; i < num_devs; i++) {
1576 
1577 		if (md_get_prop_str(mdp, listp[i], "name", &name) != 0) {
1578 			DWARN(vswp, "%s: name property not found\n",
1579 			    __func__);
1580 			goto vsw_readmd_exit;
1581 		}
1582 
1583 		/* is this a virtual-network-switch? */
1584 		if (strcmp(name, vsw_propname) != 0)
1585 			continue;
1586 
1587 		if (md_get_prop_val(mdp, listp[i], "cfg-handle", &cfgh) != 0) {
1588 			DWARN(vswp, "%s: cfg-handle property not found\n",
1589 			    __func__);
1590 			goto vsw_readmd_exit;
1591 		}
1592 
1593 		/* is this the required instance of vsw? */
1594 		if (inst != cfgh)
1595 			continue;
1596 
1597 		/* now read all properties of this vsw instance */
1598 		rv = vsw_get_initial_md_properties(vswp, mdp, listp[i]);
1599 		break;
1600 	}
1601 
1602 vsw_readmd_exit:
1603 
1604 	kmem_free(listp, listsz);
1605 	(void) md_fini_handle(mdp);
1606 	return (rv);
1607 }
1608 
1609 /*
1610  * Read the initial start-of-day values from the specified MD node.
1611  */
1612 static int
1613 vsw_get_initial_md_properties(vsw_t *vswp, md_t *mdp, mde_cookie_t node)
1614 {
1615 	int		i;
1616 	uint64_t 	macaddr = 0;
1617 
1618 	D1(vswp, "%s: enter", __func__);
1619 
1620 	if (vsw_get_md_physname(vswp, mdp, node, vswp->physname) != 0) {
1621 		return (1);
1622 	}
1623 
1624 	/* mac address for vswitch device itself */
1625 	if (md_get_prop_val(mdp, node, macaddr_propname, &macaddr) != 0) {
1626 		cmn_err(CE_WARN, "!vsw%d: Unable to get MAC address from MD",
1627 		    vswp->instance);
1628 		return (1);
1629 	}
1630 
1631 	vsw_save_lmacaddr(vswp, macaddr);
1632 
1633 	if (vsw_get_md_smodes(vswp, mdp, node, vswp->smode, &vswp->smode_num)) {
1634 		cmn_err(CE_WARN, "vsw%d: Unable to read %s property from "
1635 		    "MD, defaulting to programmed mode", vswp->instance,
1636 		    smode_propname);
1637 
1638 		for (i = 0; i < NUM_SMODES; i++)
1639 			vswp->smode[i] = VSW_LAYER2;
1640 
1641 		vswp->smode_num = NUM_SMODES;
1642 	} else {
1643 		ASSERT(vswp->smode_num != 0);
1644 	}
1645 
1646 	D1(vswp, "%s: exit", __func__);
1647 	return (0);
1648 }
1649 
1650 /*
1651  * Check to see if the relevant properties in the specified node have
1652  * changed, and if so take the appropriate action.
1653  *
1654  * If any of the properties are missing or invalid we don't take
1655  * any action, as this function should only be invoked when modifications
1656  * have been made to what we assume is a working configuration, which
1657  * we leave active.
1658  *
1659  * Note it is legal for this routine to be invoked even if none of the
1660  * properties in the port node within the MD have actually changed.
1661  */
1662 static void
1663 vsw_update_md_prop(vsw_t *vswp, md_t *mdp, mde_cookie_t node)
1664 {
1665 	char		physname[LIFNAMSIZ];
1666 	char		drv[LIFNAMSIZ];
1667 	uint_t		ddi_instance;
1668 	uint8_t		new_smode[NUM_SMODES];
1669 	int		i, smode_num = 0;
1670 	uint64_t 	macaddr = 0;
1671 	enum		{MD_init = 0x1,
1672 				MD_physname = 0x2,
1673 				MD_macaddr = 0x4,
1674 				MD_smode = 0x8} updated;
1675 	int		rv;
1676 
1677 	updated = MD_init;
1678 
1679 	D1(vswp, "%s: enter", __func__);
1680 
1681 	/*
1682 	 * Check if name of physical device in MD has changed.
1683 	 */
1684 	if (vsw_get_md_physname(vswp, mdp, node, (char *)&physname) == 0) {
1685 		/*
1686 		 * Do basic sanity check on new device name/instance,
1687 		 * if its non NULL. It is valid for the device name to
1688 		 * have changed from a non NULL to a NULL value, i.e.
1689 		 * the vsw is being changed to 'routed' mode.
1690 		 */
1691 		if ((strlen(physname) != 0) &&
1692 		    (ddi_parse(physname, drv,
1693 		    &ddi_instance) != DDI_SUCCESS)) {
1694 			cmn_err(CE_WARN, "!vsw%d: new device name %s is not"
1695 			    " a valid device name/instance",
1696 			    vswp->instance, physname);
1697 			goto fail_reconf;
1698 		}
1699 
1700 		if (strcmp(physname, vswp->physname)) {
1701 			D2(vswp, "%s: device name changed from %s to %s",
1702 			    __func__, vswp->physname, physname);
1703 
1704 			updated |= MD_physname;
1705 		} else {
1706 			D2(vswp, "%s: device name unchanged at %s",
1707 			    __func__, vswp->physname);
1708 		}
1709 	} else {
1710 		cmn_err(CE_WARN, "!vsw%d: Unable to read name of physical "
1711 		    "device from updated MD.", vswp->instance);
1712 		goto fail_reconf;
1713 	}
1714 
1715 	/*
1716 	 * Check if MAC address has changed.
1717 	 */
1718 	if (md_get_prop_val(mdp, node, macaddr_propname, &macaddr) != 0) {
1719 		cmn_err(CE_WARN, "!vsw%d: Unable to get MAC address from MD",
1720 		    vswp->instance);
1721 		goto fail_reconf;
1722 	} else {
1723 		uint64_t maddr = macaddr;
1724 		READ_ENTER(&vswp->if_lockrw);
1725 		for (i = ETHERADDRL - 1; i >= 0; i--) {
1726 			if (vswp->if_addr.ether_addr_octet[i]
1727 			    != (macaddr & 0xFF)) {
1728 				D2(vswp, "%s: octet[%d] 0x%x != 0x%x",
1729 				    __func__, i,
1730 				    vswp->if_addr.ether_addr_octet[i],
1731 				    (macaddr & 0xFF));
1732 				updated |= MD_macaddr;
1733 				macaddr = maddr;
1734 				break;
1735 			}
1736 			macaddr >>= 8;
1737 		}
1738 		RW_EXIT(&vswp->if_lockrw);
1739 		if (updated & MD_macaddr) {
1740 			vsw_save_lmacaddr(vswp, macaddr);
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * Check if switching modes have changed.
1746 	 */
1747 	if (vsw_get_md_smodes(vswp, mdp, node,
1748 	    new_smode, &smode_num)) {
1749 		cmn_err(CE_WARN, "!vsw%d: Unable to read %s property from MD",
1750 		    vswp->instance, smode_propname);
1751 		goto fail_reconf;
1752 	} else {
1753 		ASSERT(smode_num != 0);
1754 		if (smode_num != vswp->smode_num) {
1755 			D2(vswp, "%s: number of modes changed from %d to %d",
1756 			    __func__, vswp->smode_num, smode_num);
1757 		}
1758 
1759 		for (i = 0; i < smode_num; i++) {
1760 			if (new_smode[i] != vswp->smode[i]) {
1761 				D2(vswp, "%s: mode changed from %d to %d",
1762 				    __func__, vswp->smode[i], new_smode[i]);
1763 				updated |= MD_smode;
1764 				break;
1765 			}
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * Now make any changes which are needed...
1771 	 */
1772 
1773 	if (updated & (MD_physname | MD_smode)) {
1774 
1775 		/*
1776 		 * Stop any pending timeout to setup switching mode.
1777 		 */
1778 		vsw_stop_switching_timeout(vswp);
1779 
1780 		/*
1781 		 * Remove unicst, mcst addrs of vsw interface
1782 		 * and ports from the physdev.
1783 		 */
1784 		vsw_unset_addrs(vswp);
1785 
1786 		/*
1787 		 * Stop, detach and close the old device..
1788 		 */
1789 		mutex_enter(&vswp->mac_lock);
1790 
1791 		vsw_mac_detach(vswp);
1792 		vsw_mac_close(vswp);
1793 
1794 		mutex_exit(&vswp->mac_lock);
1795 
1796 		/*
1797 		 * Update phys name.
1798 		 */
1799 		if (updated & MD_physname) {
1800 			cmn_err(CE_NOTE, "!vsw%d: changing from %s to %s",
1801 			    vswp->instance, vswp->physname, physname);
1802 			(void) strncpy(vswp->physname,
1803 			    physname, strlen(physname) + 1);
1804 		}
1805 
1806 		/*
1807 		 * Update array with the new switch mode values.
1808 		 */
1809 		if (updated & MD_smode) {
1810 			for (i = 0; i < smode_num; i++)
1811 				vswp->smode[i] = new_smode[i];
1812 
1813 			vswp->smode_num = smode_num;
1814 			vswp->smode_idx = 0;
1815 		}
1816 
1817 		/*
1818 		 * ..and attach, start the new device.
1819 		 */
1820 		rv = vsw_setup_switching(vswp);
1821 		if (rv == EAGAIN) {
1822 			/*
1823 			 * Unable to setup switching mode.
1824 			 * As the error is EAGAIN, schedule a timeout to retry
1825 			 * and return. Programming addresses of ports and
1826 			 * vsw interface will be done when the timeout handler
1827 			 * completes successfully.
1828 			 */
1829 			mutex_enter(&vswp->swtmout_lock);
1830 
1831 			vswp->swtmout_enabled = B_TRUE;
1832 			vswp->swtmout_id =
1833 			    timeout(vsw_setup_switching_timeout, vswp,
1834 			    (vsw_setup_switching_delay *
1835 			    drv_usectohz(MICROSEC)));
1836 
1837 			mutex_exit(&vswp->swtmout_lock);
1838 
1839 			return;
1840 
1841 		} else if (rv) {
1842 			goto fail_update;
1843 		}
1844 
1845 		/*
1846 		 * program unicst, mcst addrs of vsw interface
1847 		 * and ports in the physdev.
1848 		 */
1849 		vsw_set_addrs(vswp);
1850 
1851 	} else if (updated & MD_macaddr) {
1852 		/*
1853 		 * We enter here if only MD_macaddr is exclusively updated.
1854 		 * If MD_physname and/or MD_smode are also updated, then
1855 		 * as part of that, we would have implicitly processed
1856 		 * MD_macaddr update (above).
1857 		 */
1858 		cmn_err(CE_NOTE, "!vsw%d: changing mac address to 0x%lx",
1859 		    vswp->instance, macaddr);
1860 
1861 		READ_ENTER(&vswp->if_lockrw);
1862 		if (vswp->if_state & VSW_IF_UP) {
1863 
1864 			mutex_enter(&vswp->hw_lock);
1865 			/*
1866 			 * Remove old mac address of vsw interface
1867 			 * from the physdev
1868 			 */
1869 			(void) vsw_unset_hw(vswp, NULL, VSW_LOCALDEV);
1870 			/*
1871 			 * Program new mac address of vsw interface
1872 			 * in the physdev
1873 			 */
1874 			rv = vsw_set_hw(vswp, NULL, VSW_LOCALDEV);
1875 			mutex_exit(&vswp->hw_lock);
1876 			if (rv != 0) {
1877 				cmn_err(CE_NOTE,
1878 				    "!vsw%d: failed to program interface "
1879 				    "unicast address\n", vswp->instance);
1880 			}
1881 			/*
1882 			 * Notify the MAC layer of the changed address.
1883 			 */
1884 			mac_unicst_update(vswp->if_mh,
1885 			    (uint8_t *)&vswp->if_addr);
1886 
1887 		}
1888 		RW_EXIT(&vswp->if_lockrw);
1889 
1890 	}
1891 
1892 	return;
1893 
1894 fail_reconf:
1895 	cmn_err(CE_WARN, "!vsw%d: configuration unchanged", vswp->instance);
1896 	return;
1897 
1898 fail_update:
1899 	cmn_err(CE_WARN, "!vsw%d: update of configuration failed",
1900 	    vswp->instance);
1901 }
1902 
1903 /*
1904  * Add a new port to the system.
1905  *
1906  * Returns 0 on success, 1 on failure.
1907  */
1908 int
1909 vsw_port_add(vsw_t *vswp, md_t *mdp, mde_cookie_t *node)
1910 {
1911 	uint64_t		ldc_id;
1912 	uint8_t			*addrp;
1913 	int			i, addrsz;
1914 	int			num_nodes = 0, nchan = 0;
1915 	int			listsz = 0;
1916 	mde_cookie_t		*listp = NULL;
1917 	struct ether_addr	ea;
1918 	uint64_t		macaddr;
1919 	uint64_t		inst = 0;
1920 	vsw_port_t		*port;
1921 
1922 	if (md_get_prop_val(mdp, *node, id_propname, &inst)) {
1923 		DWARN(vswp, "%s: prop(%s) not found", __func__,
1924 		    id_propname);
1925 		return (1);
1926 	}
1927 
1928 	/*
1929 	 * Find the channel endpoint node(s) (which should be under this
1930 	 * port node) which contain the channel id(s).
1931 	 */
1932 	if ((num_nodes = md_node_count(mdp)) <= 0) {
1933 		DERR(vswp, "%s: invalid number of nodes found (%d)",
1934 		    __func__, num_nodes);
1935 		return (1);
1936 	}
1937 
1938 	D2(vswp, "%s: %d nodes found", __func__, num_nodes);
1939 
1940 	/* allocate enough space for node list */
1941 	listsz = num_nodes * sizeof (mde_cookie_t);
1942 	listp = kmem_zalloc(listsz, KM_SLEEP);
1943 
1944 	nchan = md_scan_dag(mdp, *node, md_find_name(mdp, chan_propname),
1945 	    md_find_name(mdp, "fwd"), listp);
1946 
1947 	if (nchan <= 0) {
1948 		DWARN(vswp, "%s: no %s nodes found", __func__, chan_propname);
1949 		kmem_free(listp, listsz);
1950 		return (1);
1951 	}
1952 
1953 	D2(vswp, "%s: %d %s nodes found", __func__, nchan, chan_propname);
1954 
1955 	/* use property from first node found */
1956 	if (md_get_prop_val(mdp, listp[0], id_propname, &ldc_id)) {
1957 		DWARN(vswp, "%s: prop(%s) not found\n", __func__,
1958 		    id_propname);
1959 		kmem_free(listp, listsz);
1960 		return (1);
1961 	}
1962 
1963 	/* don't need list any more */
1964 	kmem_free(listp, listsz);
1965 
1966 	D2(vswp, "%s: ldc_id 0x%llx", __func__, ldc_id);
1967 
1968 	/* read mac-address property */
1969 	if (md_get_prop_data(mdp, *node, remaddr_propname,
1970 	    &addrp, &addrsz)) {
1971 		DWARN(vswp, "%s: prop(%s) not found",
1972 		    __func__, remaddr_propname);
1973 		return (1);
1974 	}
1975 
1976 	if (addrsz < ETHERADDRL) {
1977 		DWARN(vswp, "%s: invalid address size", __func__);
1978 		return (1);
1979 	}
1980 
1981 	macaddr = *((uint64_t *)addrp);
1982 	D2(vswp, "%s: remote mac address 0x%llx", __func__, macaddr);
1983 
1984 	for (i = ETHERADDRL - 1; i >= 0; i--) {
1985 		ea.ether_addr_octet[i] = macaddr & 0xFF;
1986 		macaddr >>= 8;
1987 	}
1988 
1989 	if (vsw_port_attach(vswp, (int)inst, &ldc_id, 1, &ea) != 0) {
1990 		DERR(vswp, "%s: failed to attach port", __func__);
1991 		return (1);
1992 	}
1993 
1994 	port = vsw_lookup_port(vswp, (int)inst);
1995 
1996 	/* just successfuly created the port, so it should exist */
1997 	ASSERT(port != NULL);
1998 
1999 	return (0);
2000 }
2001 
2002 /*
2003  * vsw_mac_rx -- A common function to send packets to the interface.
2004  * By default this function check if the interface is UP or not, the
2005  * rest of the behaviour depends on the flags as below:
2006  *
2007  *	VSW_MACRX_PROMISC -- Check if the promisc mode set or not.
2008  *	VSW_MACRX_COPYMSG -- Make a copy of the message(s).
2009  *	VSW_MACRX_FREEMSG -- Free if the messages cannot be sent up the stack.
2010  */
2011 void
2012 vsw_mac_rx(vsw_t *vswp, int caller, mac_resource_handle_t mrh,
2013     mblk_t *mp, mblk_t *mpt, vsw_macrx_flags_t flags)
2014 {
2015 	int trigger = 0;
2016 
2017 	D1(vswp, "%s:enter\n", __func__);
2018 	READ_ENTER(&vswp->if_lockrw);
2019 	/* Check if the interface is up */
2020 	if (!(vswp->if_state & VSW_IF_UP)) {
2021 		RW_EXIT(&vswp->if_lockrw);
2022 		/* Free messages only if FREEMSG flag specified */
2023 		if (flags & VSW_MACRX_FREEMSG) {
2024 			freemsgchain(mp);
2025 		}
2026 		D1(vswp, "%s:exit\n", __func__);
2027 		return;
2028 	}
2029 	/*
2030 	 * If PROMISC flag is passed, then check if
2031 	 * the interface is in the PROMISC mode.
2032 	 * If not, drop the messages.
2033 	 */
2034 	if (flags & VSW_MACRX_PROMISC) {
2035 		if (!(vswp->if_state & VSW_IF_PROMISC)) {
2036 			RW_EXIT(&vswp->if_lockrw);
2037 			/* Free messages only if FREEMSG flag specified */
2038 			if (flags & VSW_MACRX_FREEMSG) {
2039 				freemsgchain(mp);
2040 			}
2041 			D1(vswp, "%s:exit\n", __func__);
2042 			return;
2043 		}
2044 	}
2045 	RW_EXIT(&vswp->if_lockrw);
2046 	/*
2047 	 * If COPYMSG flag is passed, then make a copy
2048 	 * of the message chain and send up the copy.
2049 	 */
2050 	if (flags & VSW_MACRX_COPYMSG) {
2051 		mp = copymsgchain(mp);
2052 		if (mp) {
2053 			mpt = mp;
2054 			/* find the tail */
2055 			while (mpt->b_next != NULL) {
2056 				mpt = mpt->b_next;
2057 			}
2058 		} else {
2059 			D1(vswp, "%s:exit\n", __func__);
2060 			return;
2061 		}
2062 	}
2063 
2064 	/*
2065 	 * If the softint is not enabled or the packets are
2066 	 * passed by the physical device, then the caller
2067 	 * is expected to be at the interrupt context. For
2068 	 * this case, mac_rx() directly.
2069 	 */
2070 	if ((vswp->rx_softint == B_FALSE) || (caller == VSW_PHYSDEV)) {
2071 		ASSERT(servicing_interrupt());
2072 		D3(vswp, "%s: sending up stack", __func__);
2073 		mac_rx(vswp->if_mh, mrh, mp);
2074 		D1(vswp, "%s:exit\n", __func__);
2075 		return;
2076 	}
2077 
2078 	/*
2079 	 * Here we may not be at the interrupt context, so
2080 	 * queue the packets and trigger a softint to post
2081 	 * the packets up the stack.
2082 	 */
2083 	mutex_enter(&vswp->soft_lock);
2084 	if (vswp->rx_mhead == NULL) {
2085 		vswp->rx_mhead = mp;
2086 		vswp->rx_mtail = mpt;
2087 		trigger = 1;
2088 	} else {
2089 		vswp->rx_mtail->b_next = mp;
2090 		vswp->rx_mtail = mpt;
2091 	}
2092 	mutex_exit(&vswp->soft_lock);
2093 	if (trigger) {
2094 		D3(vswp, "%s: triggering the softint", __func__);
2095 		(void) ddi_intr_trigger_softint(vswp->soft_handle, NULL);
2096 	}
2097 	D1(vswp, "%s:exit\n", __func__);
2098 }
2099 
2100 /*
2101  * vsw_rx_softintr -- vsw soft interrupt handler function.
2102  * Its job is to pickup the recieved packets that are queued
2103  * for the interface and send them up.
2104  *
2105  * NOTE: An interrupt handler is being used to handle the upper
2106  * layer(s) requirement to send up only at interrupt context.
2107  */
2108 /* ARGSUSED */
2109 static uint_t
2110 vsw_rx_softintr(caddr_t arg1, caddr_t arg2)
2111 {
2112 	mblk_t *mp;
2113 	vsw_t *vswp = (vsw_t *)arg1;
2114 
2115 	mutex_enter(&vswp->soft_lock);
2116 	mp = vswp->rx_mhead;
2117 	vswp->rx_mhead = vswp->rx_mtail = NULL;
2118 	mutex_exit(&vswp->soft_lock);
2119 	if (mp != NULL) {
2120 		READ_ENTER(&vswp->if_lockrw);
2121 		if (vswp->if_state & VSW_IF_UP) {
2122 			RW_EXIT(&vswp->if_lockrw);
2123 			mac_rx(vswp->if_mh, NULL, mp);
2124 		} else {
2125 			RW_EXIT(&vswp->if_lockrw);
2126 			freemsgchain(mp);
2127 		}
2128 	}
2129 	D1(vswp, "%s:exit\n", __func__);
2130 	return (DDI_INTR_CLAIMED);
2131 }
2132 
2133 /* copy mac address of vsw into soft state structure */
2134 static void
2135 vsw_save_lmacaddr(vsw_t *vswp, uint64_t macaddr)
2136 {
2137 	int	i;
2138 
2139 	WRITE_ENTER(&vswp->if_lockrw);
2140 	for (i = ETHERADDRL - 1; i >= 0; i--) {
2141 		vswp->if_addr.ether_addr_octet[i] = macaddr & 0xFF;
2142 		macaddr >>= 8;
2143 	}
2144 	RW_EXIT(&vswp->if_lockrw);
2145 }
2146