xref: /titanic_44/usr/src/uts/sun4v/io/vds.c (revision da2e3ebdc1edfbc5028edf1354e7dd2fa69a7968)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/mdeg.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sdt.h>
45 #include <sys/sunddi.h>
46 #include <sys/sunldi.h>
47 #include <sys/sysmacros.h>
48 #include <sys/vio_common.h>
49 #include <sys/vdsk_mailbox.h>
50 #include <sys/vdsk_common.h>
51 #include <sys/vtoc.h>
52 #include <sys/vfs.h>
53 #include <sys/stat.h>
54 #include <sys/scsi/impl/uscsi.h>
55 #include <vm/seg_map.h>
56 
57 /* Virtual disk server initialization flags */
58 #define	VDS_LDI			0x01
59 #define	VDS_MDEG		0x02
60 
61 /* Virtual disk server tunable parameters */
62 #define	VDS_RETRIES		5
63 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
64 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
65 #define	VDS_NCHAINS		32
66 
67 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
68 #define	VDS_NAME		"virtual-disk-server"
69 
70 #define	VD_NAME			"vd"
71 #define	VD_VOLUME_NAME		"vdisk"
72 #define	VD_ASCIILABEL		"Virtual Disk"
73 
74 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
75 #define	VD_ID_PROP		"id"
76 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
77 #define	VD_REG_PROP		"reg"
78 
79 /* Virtual disk initialization flags */
80 #define	VD_DISK_READY		0x01
81 #define	VD_LOCKING		0x02
82 #define	VD_LDC			0x04
83 #define	VD_DRING		0x08
84 #define	VD_SID			0x10
85 #define	VD_SEQ_NUM		0x20
86 
87 /* Flags for opening/closing backing devices via LDI */
88 #define	VD_OPEN_FLAGS		(FEXCL | FREAD | FWRITE)
89 
90 /* Flags for writing to a vdisk which is a file */
91 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
92 
93 /* Number of backup labels */
94 #define	VD_FILE_NUM_BACKUP	5
95 
96 /* Timeout for SCSI I/O */
97 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
98 
99 /*
100  * By Solaris convention, slice/partition 2 represents the entire disk;
101  * unfortunately, this convention does not appear to be codified.
102  */
103 #define	VD_ENTIRE_DISK_SLICE	2
104 
105 /* Return a cpp token as a string */
106 #define	STRINGIZE(token)	#token
107 
108 /*
109  * Print a message prefixed with the current function name to the message log
110  * (and optionally to the console for verbose boots); these macros use cpp's
111  * concatenation of string literals and C99 variable-length-argument-list
112  * macros
113  */
114 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
115 #define	_PRN(format, ...)					\
116 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
117 
118 /* Return a pointer to the "i"th vdisk dring element */
119 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
120 	    (vd->dring + (i)*vd->descriptor_size))
121 
122 /* Return the virtual disk client's type as a string (for use in messages) */
123 #define	VD_CLIENT(vd)							\
124 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
125 	    (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" :	\
126 		(((vd)->xfer_mode == 0) ? "null client" :		\
127 		    "unsupported client")))
128 
129 /* Read disk label from a disk on file */
130 #define	VD_FILE_LABEL_READ(vd, labelp) \
131 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
132 	    0, sizeof (struct dk_label))
133 
134 /* Write disk label to a disk on file */
135 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
136 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
137 	    0, sizeof (struct dk_label))
138 
139 /*
140  * Specification of an MD node passed to the MDEG to filter any
141  * 'vport' nodes that do not belong to the specified node. This
142  * template is copied for each vds instance and filled in with
143  * the appropriate 'cfg-handle' value before being passed to the MDEG.
144  */
145 static mdeg_prop_spec_t	vds_prop_template[] = {
146 	{ MDET_PROP_STR,	"name",		VDS_NAME },
147 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
148 	{ MDET_LIST_END,	NULL, 		NULL }
149 };
150 
151 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
152 
153 /*
154  * Matching criteria passed to the MDEG to register interest
155  * in changes to 'virtual-device-port' nodes identified by their
156  * 'id' property.
157  */
158 static md_prop_match_t	vd_prop_match[] = {
159 	{ MDET_PROP_VAL,	VD_ID_PROP },
160 	{ MDET_LIST_END,	NULL }
161 };
162 
163 static mdeg_node_match_t vd_match = {"virtual-device-port",
164 				    vd_prop_match};
165 
166 /* Debugging macros */
167 #ifdef DEBUG
168 
169 static int	vd_msglevel = 0;
170 
171 #define	PR0 if (vd_msglevel > 0)	PRN
172 #define	PR1 if (vd_msglevel > 1)	PRN
173 #define	PR2 if (vd_msglevel > 2)	PRN
174 
175 #define	VD_DUMP_DRING_ELEM(elem)					\
176 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
177 	    elem->hdr.dstate,						\
178 	    elem->payload.operation,					\
179 	    elem->payload.status,					\
180 	    elem->payload.nbytes,					\
181 	    elem->payload.addr,						\
182 	    elem->payload.ncookies);
183 
184 char *
185 vd_decode_state(int state)
186 {
187 	char *str;
188 
189 #define	CASE_STATE(_s)	case _s: str = #_s; break;
190 
191 	switch (state) {
192 	CASE_STATE(VD_STATE_INIT)
193 	CASE_STATE(VD_STATE_VER)
194 	CASE_STATE(VD_STATE_ATTR)
195 	CASE_STATE(VD_STATE_DRING)
196 	CASE_STATE(VD_STATE_RDX)
197 	CASE_STATE(VD_STATE_DATA)
198 	default: str = "unknown"; break;
199 	}
200 
201 #undef CASE_STATE
202 
203 	return (str);
204 }
205 
206 void
207 vd_decode_tag(vio_msg_t *msg)
208 {
209 	char *tstr, *sstr, *estr;
210 
211 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
212 
213 	switch (msg->tag.vio_msgtype) {
214 	CASE_TYPE(VIO_TYPE_CTRL)
215 	CASE_TYPE(VIO_TYPE_DATA)
216 	CASE_TYPE(VIO_TYPE_ERR)
217 	default: tstr = "unknown"; break;
218 	}
219 
220 #undef CASE_TYPE
221 
222 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
223 
224 	switch (msg->tag.vio_subtype) {
225 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
226 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
227 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
228 	default: sstr = "unknown"; break;
229 	}
230 
231 #undef CASE_SUBTYPE
232 
233 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
234 
235 	switch (msg->tag.vio_subtype_env) {
236 	CASE_ENV(VIO_VER_INFO)
237 	CASE_ENV(VIO_ATTR_INFO)
238 	CASE_ENV(VIO_DRING_REG)
239 	CASE_ENV(VIO_DRING_UNREG)
240 	CASE_ENV(VIO_RDX)
241 	CASE_ENV(VIO_PKT_DATA)
242 	CASE_ENV(VIO_DESC_DATA)
243 	CASE_ENV(VIO_DRING_DATA)
244 	default: estr = "unknown"; break;
245 	}
246 
247 #undef CASE_ENV
248 
249 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
250 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
251 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
252 }
253 
254 #else	/* !DEBUG */
255 
256 #define	PR0(...)
257 #define	PR1(...)
258 #define	PR2(...)
259 
260 #define	VD_DUMP_DRING_ELEM(elem)
261 
262 #define	vd_decode_state(_s)	(NULL)
263 #define	vd_decode_tag(_s)	(NULL)
264 
265 #endif	/* DEBUG */
266 
267 
268 /*
269  * Soft state structure for a vds instance
270  */
271 typedef struct vds {
272 	uint_t		initialized;	/* driver inst initialization flags */
273 	dev_info_t	*dip;		/* driver inst devinfo pointer */
274 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
275 	mod_hash_t	*vd_table;	/* table of virtual disks served */
276 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
277 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
278 } vds_t;
279 
280 /*
281  * Types of descriptor-processing tasks
282  */
283 typedef enum vd_task_type {
284 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
285 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
286 } vd_task_type_t;
287 
288 /*
289  * Structure describing the task for processing a descriptor
290  */
291 typedef struct vd_task {
292 	struct vd		*vd;		/* vd instance task is for */
293 	vd_task_type_t		type;		/* type of descriptor task */
294 	int			index;		/* dring elem index for task */
295 	vio_msg_t		*msg;		/* VIO message task is for */
296 	size_t			msglen;		/* length of message content */
297 	vd_dring_payload_t	*request;	/* request task will perform */
298 	struct buf		buf;		/* buf(9s) for I/O request */
299 	ldc_mem_handle_t	mhdl;		/* task memory handle */
300 	int			status;		/* status of processing task */
301 	int	(*completef)(struct vd_task *task); /* completion func ptr */
302 } vd_task_t;
303 
304 /*
305  * Soft state structure for a virtual disk instance
306  */
307 typedef struct vd {
308 	uint_t			initialized;	/* vdisk initialization flags */
309 	vds_t			*vds;		/* server for this vdisk */
310 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
311 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
312 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
313 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
314 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
315 	uint_t			nslices;	/* number of slices */
316 	size_t			vdisk_size;	/* number of blocks in vdisk */
317 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
318 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
319 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
320 	boolean_t		pseudo;		/* underlying pseudo dev */
321 	boolean_t		file;		/* underlying file */
322 	vnode_t			*file_vnode;	/* file vnode */
323 	size_t			file_size;	/* file size */
324 	ddi_devid_t		file_devid;	/* devid for disk image */
325 	struct dk_efi		dk_efi;		/* synthetic for slice type */
326 	struct dk_geom		dk_geom;	/* synthetic for slice type */
327 	struct vtoc		vtoc;		/* synthetic for slice type */
328 	ldc_status_t		ldc_state;	/* LDC connection state */
329 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
330 	size_t			max_msglen;	/* largest LDC message len */
331 	vd_state_t		state;		/* client handshake state */
332 	uint8_t			xfer_mode;	/* transfer mode with client */
333 	uint32_t		sid;		/* client's session ID */
334 	uint64_t		seq_num;	/* message sequence number */
335 	uint64_t		dring_ident;	/* identifier of dring */
336 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
337 	uint32_t		descriptor_size;	/* num bytes in desc */
338 	uint32_t		dring_len;	/* number of dring elements */
339 	caddr_t			dring;		/* address of dring */
340 	caddr_t			vio_msgp;	/* vio msg staging buffer */
341 	vd_task_t		inband_task;	/* task for inband descriptor */
342 	vd_task_t		*dring_task;	/* tasks dring elements */
343 
344 	kmutex_t		lock;		/* protects variables below */
345 	boolean_t		enabled;	/* is vdisk enabled? */
346 	boolean_t		reset_state;	/* reset connection state? */
347 	boolean_t		reset_ldc;	/* reset LDC channel? */
348 } vd_t;
349 
350 typedef struct vds_operation {
351 	char	*namep;
352 	uint8_t	operation;
353 	int	(*start)(vd_task_t *task);
354 	int	(*complete)(vd_task_t *task);
355 } vds_operation_t;
356 
357 typedef struct vd_ioctl {
358 	uint8_t		operation;		/* vdisk operation */
359 	const char	*operation_name;	/* vdisk operation name */
360 	size_t		nbytes;			/* size of operation buffer */
361 	int		cmd;			/* corresponding ioctl cmd */
362 	const char	*cmd_name;		/* ioctl cmd name */
363 	void		*arg;			/* ioctl cmd argument */
364 	/* convert input vd_buf to output ioctl_arg */
365 	void		(*copyin)(void *vd_buf, void *ioctl_arg);
366 	/* convert input ioctl_arg to output vd_buf */
367 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
368 } vd_ioctl_t;
369 
370 /* Define trivial copyin/copyout conversion function flag */
371 #define	VD_IDENTITY	((void (*)(void *, void *))-1)
372 
373 
374 static int	vds_ldc_retries = VDS_RETRIES;
375 static int	vds_ldc_delay = VDS_LDC_DELAY;
376 static int	vds_dev_retries = VDS_RETRIES;
377 static int	vds_dev_delay = VDS_DEV_DELAY;
378 static void	*vds_state;
379 static uint64_t	vds_operations;	/* see vds_operation[] definition below */
380 
381 static int	vd_open_flags = VD_OPEN_FLAGS;
382 
383 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
384 
385 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
386 
387 /*
388  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
389  *
390  * Each supported major version should appear only once, paired with (and only
391  * with) its highest supported minor version number (as the protocol requires
392  * supporting all lower minor version numbers as well)
393  */
394 static const vio_ver_t	vds_version[] = {{1, 0}};
395 static const size_t	vds_num_versions =
396     sizeof (vds_version)/sizeof (vds_version[0]);
397 
398 static void vd_free_dring_task(vd_t *vdp);
399 static int vd_setup_vd(vd_t *vd);
400 static boolean_t vd_enabled(vd_t *vd);
401 
402 /*
403  * Function:
404  *	vd_file_rw
405  *
406  * Description:
407  * 	Read or write to a disk on file.
408  *
409  * Parameters:
410  *	vd		- disk on which the operation is performed.
411  *	slice		- slice on which the operation is performed,
412  *			  VD_SLICE_NONE indicates that the operation
413  *			  is done using an absolute disk offset.
414  *	operation	- operation to execute: read (VD_OP_BREAD) or
415  *			  write (VD_OP_BWRITE).
416  *	data		- buffer where data are read to or written from.
417  *	blk		- starting block for the operation.
418  *	len		- number of bytes to read or write.
419  *
420  * Return Code:
421  *	n >= 0		- success, n indicates the number of bytes read
422  *			  or written.
423  *	-1		- error.
424  */
425 static ssize_t
426 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
427     size_t len)
428 {
429 	caddr_t	maddr;
430 	size_t offset, maxlen, moffset, mlen, n;
431 	uint_t smflags;
432 	enum seg_rw srw;
433 
434 	ASSERT(vd->file);
435 	ASSERT(len > 0);
436 
437 	if (slice == VD_SLICE_NONE) {
438 		/* raw disk access */
439 		offset = blk * DEV_BSIZE;
440 	} else {
441 		ASSERT(slice >= 0 && slice < V_NUMPAR);
442 		if (blk >= vd->vtoc.v_part[slice].p_size) {
443 			/* address past the end of the slice */
444 			PR0("req_addr (0x%lx) > psize (0x%lx)",
445 			    blk, vd->vtoc.v_part[slice].p_size);
446 			return (0);
447 		}
448 
449 		offset = (vd->vtoc.v_part[slice].p_start + blk) * DEV_BSIZE;
450 
451 		/*
452 		 * If the requested size is greater than the size
453 		 * of the partition, truncate the read/write.
454 		 */
455 		maxlen = (vd->vtoc.v_part[slice].p_size - blk) * DEV_BSIZE;
456 
457 		if (len > maxlen) {
458 			PR0("I/O size truncated to %lu bytes from %lu bytes",
459 			    maxlen, len);
460 			len = maxlen;
461 		}
462 	}
463 
464 	/*
465 	 * We have to ensure that we are reading/writing into the mmap
466 	 * range. If we have a partial disk image (e.g. an image of
467 	 * s0 instead s2) the system can try to access slices that
468 	 * are not included into the disk image.
469 	 */
470 	if ((offset + len) >= vd->file_size) {
471 		PR0("offset + nbytes (0x%lx + 0x%lx) >= "
472 		    "file_size (0x%lx)", offset, len, vd->file_size);
473 		return (-1);
474 	}
475 
476 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
477 	smflags = (operation == VD_OP_BREAD)? 0 :
478 	    (SM_WRITE | vd_file_write_flags);
479 	n = len;
480 
481 	do {
482 		/*
483 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
484 		 * MAXBSIZE aligned.
485 		 */
486 		moffset = offset & MAXBOFFSET;
487 		mlen = MIN(MAXBSIZE - moffset, n);
488 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
489 		    mlen, 1, srw);
490 		/*
491 		 * Fault in the pages so we can check for error and ensure
492 		 * that we can safely used the mapped address.
493 		 */
494 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
495 		    F_SOFTLOCK, srw) != 0) {
496 			(void) segmap_release(segkmap, maddr, 0);
497 			return (-1);
498 		}
499 
500 		if (operation == VD_OP_BREAD)
501 			bcopy(maddr + moffset, data, mlen);
502 		else
503 			bcopy(data, maddr + moffset, mlen);
504 
505 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
506 		    F_SOFTUNLOCK, srw) != 0) {
507 			(void) segmap_release(segkmap, maddr, 0);
508 			return (-1);
509 		}
510 		if (segmap_release(segkmap, maddr, smflags) != 0)
511 			return (-1);
512 		n -= mlen;
513 		offset += mlen;
514 		data += mlen;
515 
516 	} while (n > 0);
517 
518 	return (len);
519 }
520 
521 /*
522  * Function:
523  *	vd_file_set_vtoc
524  *
525  * Description:
526  *	Set the vtoc of a disk image by writing the label and backup
527  *	labels into the disk image backend.
528  *
529  * Parameters:
530  *	vd		- disk on which the operation is performed.
531  *	label		- the data to be written.
532  *
533  * Return Code:
534  *	0		- success.
535  *	n > 0		- error, n indicates the errno code.
536  */
537 static int
538 vd_file_set_vtoc(vd_t *vd, struct dk_label *label)
539 {
540 	int blk, sec, cyl, head, cnt;
541 
542 	ASSERT(vd->file);
543 
544 	if (VD_FILE_LABEL_WRITE(vd, label) < 0) {
545 		PR0("fail to write disk label");
546 		return (EIO);
547 	}
548 
549 	/*
550 	 * Backup labels are on the last alternate cylinder's
551 	 * first five odd sectors.
552 	 */
553 	if (label->dkl_acyl == 0) {
554 		PR0("no alternate cylinder, can not store backup labels");
555 		return (0);
556 	}
557 
558 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
559 	head = label->dkl_nhead - 1;
560 
561 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
562 	    (head * label->dkl_nsect);
563 
564 	/*
565 	 * Write the backup labels. Make sure we don't try to write past
566 	 * the last cylinder.
567 	 */
568 	sec = 1;
569 
570 	for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) {
571 
572 		if (sec >= label->dkl_nsect) {
573 			PR0("not enough sector to store all backup labels");
574 			return (0);
575 		}
576 
577 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label,
578 		    blk + sec, sizeof (struct dk_label)) < 0) {
579 			PR0("error writing backup label at block %d\n",
580 			    blk + sec);
581 			return (EIO);
582 		}
583 
584 		PR1("wrote backup label at block %d\n", blk + sec);
585 
586 		sec += 2;
587 	}
588 
589 	return (0);
590 }
591 
592 /*
593  * Function:
594  *	vd_file_get_devid_block
595  *
596  * Description:
597  *	Return the block number where the device id is stored.
598  *
599  * Parameters:
600  *	vd		- disk on which the operation is performed.
601  *	blkp		- pointer to the block number
602  *
603  * Return Code:
604  *	0		- success
605  *	ENOSPC		- disk has no space to store a device id
606  */
607 static int
608 vd_file_get_devid_block(vd_t *vd, size_t *blkp)
609 {
610 	diskaddr_t spc, head, cyl;
611 
612 	ASSERT(vd->file);
613 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
614 
615 	/* this geometry doesn't allow us to have a devid */
616 	if (vd->dk_geom.dkg_acyl < 2) {
617 		PR0("not enough alternate cylinder available for devid "
618 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
619 		return (ENOSPC);
620 	}
621 
622 	/* the devid is in on the track next to the last cylinder */
623 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
624 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
625 	head = vd->dk_geom.dkg_nhead - 1;
626 
627 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
628 	    (head * vd->dk_geom.dkg_nsect) + 1;
629 
630 	return (0);
631 }
632 
633 /*
634  * Return the checksum of a disk block containing an on-disk devid.
635  */
636 static uint_t
637 vd_dkdevid2cksum(struct dk_devid *dkdevid)
638 {
639 	uint_t chksum, *ip;
640 	int i;
641 
642 	chksum = 0;
643 	ip = (uint_t *)dkdevid;
644 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
645 		chksum ^= ip[i];
646 
647 	return (chksum);
648 }
649 
650 /*
651  * Function:
652  *	vd_file_read_devid
653  *
654  * Description:
655  *	Read the device id stored on a disk image.
656  *
657  * Parameters:
658  *	vd		- disk on which the operation is performed.
659  *	devid		- the return address of the device ID.
660  *
661  * Return Code:
662  *	0		- success
663  *	EIO		- I/O error while trying to access the disk image
664  *	EINVAL		- no valid device id was found
665  *	ENOSPC		- disk has no space to store a device id
666  */
667 static int
668 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid)
669 {
670 	struct dk_devid *dkdevid;
671 	size_t blk;
672 	uint_t chksum;
673 	int status, sz;
674 
675 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
676 		return (status);
677 
678 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
679 
680 	/* get the devid */
681 	if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
682 	    DEV_BSIZE)) < 0) {
683 		PR0("error reading devid block at %lu", blk);
684 		status = EIO;
685 		goto done;
686 	}
687 
688 	/* validate the revision */
689 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
690 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
691 		PR0("invalid devid found at block %lu (bad revision)", blk);
692 		status = EINVAL;
693 		goto done;
694 	}
695 
696 	/* compute checksum */
697 	chksum = vd_dkdevid2cksum(dkdevid);
698 
699 	/* compare the checksums */
700 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
701 		PR0("invalid devid found at block %lu (bad checksum)", blk);
702 		status = EINVAL;
703 		goto done;
704 	}
705 
706 	/* validate the device id */
707 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
708 		PR0("invalid devid found at block %lu", blk);
709 		status = EINVAL;
710 		goto done;
711 	}
712 
713 	PR1("devid read at block %lu", blk);
714 
715 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
716 	*devid = kmem_alloc(sz, KM_SLEEP);
717 	bcopy(&dkdevid->dkd_devid, *devid, sz);
718 
719 done:
720 	kmem_free(dkdevid, DEV_BSIZE);
721 	return (status);
722 
723 }
724 
725 /*
726  * Function:
727  *	vd_file_write_devid
728  *
729  * Description:
730  *	Write a device id into disk image.
731  *
732  * Parameters:
733  *	vd		- disk on which the operation is performed.
734  *	devid		- the device ID to store.
735  *
736  * Return Code:
737  *	0		- success
738  *	EIO		- I/O error while trying to access the disk image
739  *	ENOSPC		- disk has no space to store a device id
740  */
741 static int
742 vd_file_write_devid(vd_t *vd, ddi_devid_t devid)
743 {
744 	struct dk_devid *dkdevid;
745 	uint_t chksum;
746 	size_t blk;
747 	int status;
748 
749 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
750 		return (status);
751 
752 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
753 
754 	/* set revision */
755 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
756 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
757 
758 	/* copy devid */
759 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
760 
761 	/* compute checksum */
762 	chksum = vd_dkdevid2cksum(dkdevid);
763 
764 	/* set checksum */
765 	DKD_FORMCHKSUM(chksum, dkdevid);
766 
767 	/* store the devid */
768 	if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
769 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
770 		PR0("Error writing devid block at %lu", blk);
771 		status = EIO;
772 	} else {
773 		PR1("devid written at block %lu", blk);
774 		status = 0;
775 	}
776 
777 	kmem_free(dkdevid, DEV_BSIZE);
778 	return (status);
779 }
780 
781 /*
782  * Function:
783  *	vd_scsi_rdwr
784  *
785  * Description:
786  * 	Read or write to a SCSI disk using an absolute disk offset.
787  *
788  * Parameters:
789  *	vd		- disk on which the operation is performed.
790  *	operation	- operation to execute: read (VD_OP_BREAD) or
791  *			  write (VD_OP_BWRITE).
792  *	data		- buffer where data are read to or written from.
793  *	blk		- starting block for the operation.
794  *	len		- number of bytes to read or write.
795  *
796  * Return Code:
797  *	0		- success
798  *	n != 0		- error.
799  */
800 static int
801 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
802 {
803 	struct uscsi_cmd ucmd;
804 	union scsi_cdb cdb;
805 	int nsectors, nblk;
806 	int max_sectors;
807 	int status, rval;
808 
809 	ASSERT(!vd->file);
810 
811 	max_sectors = vd->max_xfer_sz;
812 	nblk = (len / DEV_BSIZE);
813 
814 	if (len % DEV_BSIZE != 0)
815 		return (EINVAL);
816 
817 	/*
818 	 * Build and execute the uscsi ioctl.  We build a group0, group1
819 	 * or group4 command as necessary, since some targets
820 	 * do not support group1 commands.
821 	 */
822 	while (nblk) {
823 
824 		bzero(&ucmd, sizeof (ucmd));
825 		bzero(&cdb, sizeof (cdb));
826 
827 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
828 
829 		if (blk < (2 << 20) && nsectors <= 0xff) {
830 			FORMG0ADDR(&cdb, blk);
831 			FORMG0COUNT(&cdb, nsectors);
832 			ucmd.uscsi_cdblen = CDB_GROUP0;
833 		} else if (blk > 0xffffffff) {
834 			FORMG4LONGADDR(&cdb, blk);
835 			FORMG4COUNT(&cdb, nsectors);
836 			ucmd.uscsi_cdblen = CDB_GROUP4;
837 			cdb.scc_cmd |= SCMD_GROUP4;
838 		} else {
839 			FORMG1ADDR(&cdb, blk);
840 			FORMG1COUNT(&cdb, nsectors);
841 			ucmd.uscsi_cdblen = CDB_GROUP1;
842 			cdb.scc_cmd |= SCMD_GROUP1;
843 		}
844 
845 		ucmd.uscsi_cdb = (caddr_t)&cdb;
846 		ucmd.uscsi_bufaddr = data;
847 		ucmd.uscsi_buflen = nsectors * DEV_BSIZE;
848 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
849 		/*
850 		 * Set flags so that the command is isolated from normal
851 		 * commands and no error message is printed.
852 		 */
853 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
854 
855 		if (operation == VD_OP_BREAD) {
856 			cdb.scc_cmd |= SCMD_READ;
857 			ucmd.uscsi_flags |= USCSI_READ;
858 		} else {
859 			cdb.scc_cmd |= SCMD_WRITE;
860 		}
861 
862 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
863 		    USCSICMD, (intptr_t)&ucmd, (vd_open_flags | FKIOCTL),
864 		    kcred, &rval);
865 
866 		if (status == 0)
867 			status = ucmd.uscsi_status;
868 
869 		if (status != 0)
870 			break;
871 
872 		/*
873 		 * Check if partial DMA breakup is required. If so, reduce
874 		 * the request size by half and retry the last request.
875 		 */
876 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
877 			max_sectors >>= 1;
878 			if (max_sectors <= 0) {
879 				status = EIO;
880 				break;
881 			}
882 			continue;
883 		}
884 
885 		if (ucmd.uscsi_resid != 0) {
886 			status = EIO;
887 			break;
888 		}
889 
890 		blk += nsectors;
891 		nblk -= nsectors;
892 		data += nsectors * DEV_BSIZE; /* SECSIZE */
893 	}
894 
895 	return (status);
896 }
897 
898 /*
899  * Return Values
900  *	EINPROGRESS	- operation was successfully started
901  *	EIO		- encountered LDC (aka. task error)
902  *	0		- operation completed successfully
903  *
904  * Side Effect
905  *     sets request->status = <disk operation status>
906  */
907 static int
908 vd_start_bio(vd_task_t *task)
909 {
910 	int			rv, status = 0;
911 	vd_t			*vd		= task->vd;
912 	vd_dring_payload_t	*request	= task->request;
913 	struct buf		*buf		= &task->buf;
914 	uint8_t			mtype;
915 	int 			slice;
916 
917 	ASSERT(vd != NULL);
918 	ASSERT(request != NULL);
919 
920 	slice = request->slice;
921 
922 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
923 	ASSERT((request->operation == VD_OP_BREAD) ||
924 	    (request->operation == VD_OP_BWRITE));
925 
926 	if (request->nbytes == 0) {
927 		/* no service for trivial requests */
928 		request->status = EINVAL;
929 		return (0);
930 	}
931 
932 	PR1("%s %lu bytes at block %lu",
933 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
934 	    request->nbytes, request->addr);
935 
936 	bioinit(buf);
937 	buf->b_flags		= B_BUSY;
938 	buf->b_bcount		= request->nbytes;
939 	buf->b_lblkno		= request->addr;
940 	buf->b_edev = (slice == VD_SLICE_NONE)? NODEV : vd->dev[slice];
941 
942 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
943 
944 	/* Map memory exported by client */
945 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
946 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
947 	    &(buf->b_un.b_addr), NULL);
948 	if (status != 0) {
949 		PR0("ldc_mem_map() returned err %d ", status);
950 		biofini(buf);
951 		return (EIO);
952 	}
953 
954 	status = ldc_mem_acquire(task->mhdl, 0, buf->b_bcount);
955 	if (status != 0) {
956 		(void) ldc_mem_unmap(task->mhdl);
957 		PR0("ldc_mem_acquire() returned err %d ", status);
958 		biofini(buf);
959 		return (EIO);
960 	}
961 
962 	buf->b_flags |= (request->operation == VD_OP_BREAD) ? B_READ : B_WRITE;
963 
964 	/* Start the block I/O */
965 	if (vd->file) {
966 		rv = vd_file_rw(vd, slice, request->operation, buf->b_un.b_addr,
967 		    request->addr, request->nbytes);
968 		if (rv < 0) {
969 			request->nbytes = 0;
970 			request->status = EIO;
971 		} else {
972 			request->nbytes = rv;
973 			request->status = 0;
974 		}
975 	} else {
976 		if (slice == VD_SLICE_NONE) {
977 			/*
978 			 * This is not a disk image so it is a real disk. We
979 			 * assume that the underlying device driver supports
980 			 * USCSICMD ioctls. This is the case of all SCSI devices
981 			 * (sd, ssd...).
982 			 *
983 			 * In the future if we have non-SCSI disks we would need
984 			 * to invoke the appropriate function to do I/O using an
985 			 * absolute disk offset (for example using DKIOCTL_RWCMD
986 			 * for IDE disks).
987 			 */
988 			rv = vd_scsi_rdwr(vd, request->operation,
989 			    buf->b_un.b_addr, request->addr, request->nbytes);
990 			if (rv != 0) {
991 				request->nbytes = 0;
992 				request->status = EIO;
993 			} else {
994 				request->status = 0;
995 			}
996 		} else {
997 			request->status =
998 			    ldi_strategy(vd->ldi_handle[slice], buf);
999 
1000 			/*
1001 			 * This is to indicate to the caller that the request
1002 			 * needs to be finished by vd_complete_bio() by calling
1003 			 * biowait() there and waiting for that to return before
1004 			 * triggering the notification of the vDisk client.
1005 			 *
1006 			 * This is necessary when writing to real disks as
1007 			 * otherwise calls to ldi_strategy() would be serialized
1008 			 * behind the calls to biowait() and performance would
1009 			 * suffer.
1010 			 */
1011 			if (request->status == 0)
1012 				return (EINPROGRESS);
1013 		}
1014 	}
1015 
1016 	/* Clean up after error */
1017 	rv = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
1018 	if (rv) {
1019 		PR0("ldc_mem_release() returned err %d ", rv);
1020 		status = EIO;
1021 	}
1022 	rv = ldc_mem_unmap(task->mhdl);
1023 	if (rv) {
1024 		PR0("ldc_mem_unmap() returned err %d ", rv);
1025 		status = EIO;
1026 	}
1027 
1028 	biofini(buf);
1029 
1030 	return (status);
1031 }
1032 
1033 /*
1034  * This function should only be called from vd_notify to ensure that requests
1035  * are responded to in the order that they are received.
1036  */
1037 static int
1038 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
1039 {
1040 	int	status;
1041 	size_t	nbytes;
1042 
1043 	do {
1044 		nbytes = msglen;
1045 		status = ldc_write(ldc_handle, msg, &nbytes);
1046 		if (status != EWOULDBLOCK)
1047 			break;
1048 		drv_usecwait(vds_ldc_delay);
1049 	} while (status == EWOULDBLOCK);
1050 
1051 	if (status != 0) {
1052 		if (status != ECONNRESET)
1053 			PR0("ldc_write() returned errno %d", status);
1054 		return (status);
1055 	} else if (nbytes != msglen) {
1056 		PR0("ldc_write() performed only partial write");
1057 		return (EIO);
1058 	}
1059 
1060 	PR1("SENT %lu bytes", msglen);
1061 	return (0);
1062 }
1063 
1064 static void
1065 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
1066 {
1067 	mutex_enter(&vd->lock);
1068 	vd->reset_state	= B_TRUE;
1069 	vd->reset_ldc	= reset_ldc;
1070 	mutex_exit(&vd->lock);
1071 }
1072 
1073 /*
1074  * Reset the state of the connection with a client, if needed; reset the LDC
1075  * transport as well, if needed.  This function should only be called from the
1076  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
1077  */
1078 static void
1079 vd_reset_if_needed(vd_t *vd)
1080 {
1081 	int	status = 0;
1082 
1083 	mutex_enter(&vd->lock);
1084 	if (!vd->reset_state) {
1085 		ASSERT(!vd->reset_ldc);
1086 		mutex_exit(&vd->lock);
1087 		return;
1088 	}
1089 	mutex_exit(&vd->lock);
1090 
1091 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
1092 
1093 	/*
1094 	 * Let any asynchronous I/O complete before possibly pulling the rug
1095 	 * out from under it; defer checking vd->reset_ldc, as one of the
1096 	 * asynchronous tasks might set it
1097 	 */
1098 	ddi_taskq_wait(vd->completionq);
1099 
1100 	if (vd->file) {
1101 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred);
1102 		if (status) {
1103 			PR0("VOP_FSYNC returned errno %d", status);
1104 		}
1105 	}
1106 
1107 	if ((vd->initialized & VD_DRING) &&
1108 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
1109 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
1110 
1111 	vd_free_dring_task(vd);
1112 
1113 	/* Free the staging buffer for msgs */
1114 	if (vd->vio_msgp != NULL) {
1115 		kmem_free(vd->vio_msgp, vd->max_msglen);
1116 		vd->vio_msgp = NULL;
1117 	}
1118 
1119 	/* Free the inband message buffer */
1120 	if (vd->inband_task.msg != NULL) {
1121 		kmem_free(vd->inband_task.msg, vd->max_msglen);
1122 		vd->inband_task.msg = NULL;
1123 	}
1124 
1125 	mutex_enter(&vd->lock);
1126 
1127 	if (vd->reset_ldc)
1128 		PR0("taking down LDC channel");
1129 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
1130 		PR0("ldc_down() returned errno %d", status);
1131 
1132 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
1133 	vd->state	= VD_STATE_INIT;
1134 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
1135 
1136 	/* Allocate the staging buffer */
1137 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
1138 
1139 	PR0("calling ldc_up\n");
1140 	(void) ldc_up(vd->ldc_handle);
1141 
1142 	vd->reset_state	= B_FALSE;
1143 	vd->reset_ldc	= B_FALSE;
1144 
1145 	mutex_exit(&vd->lock);
1146 }
1147 
1148 static void vd_recv_msg(void *arg);
1149 
1150 static void
1151 vd_mark_in_reset(vd_t *vd)
1152 {
1153 	int status;
1154 
1155 	PR0("vd_mark_in_reset: marking vd in reset\n");
1156 
1157 	vd_need_reset(vd, B_FALSE);
1158 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
1159 	if (status == DDI_FAILURE) {
1160 		PR0("cannot schedule task to recv msg\n");
1161 		vd_need_reset(vd, B_TRUE);
1162 		return;
1163 	}
1164 }
1165 
1166 static int
1167 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
1168 {
1169 	boolean_t		accepted;
1170 	int			status;
1171 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1172 
1173 	if (vd->reset_state)
1174 		return (0);
1175 
1176 	/* Acquire the element */
1177 	if (!vd->reset_state &&
1178 	    (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1179 		if (status == ECONNRESET) {
1180 			vd_mark_in_reset(vd);
1181 			return (0);
1182 		} else {
1183 			PR0("ldc_mem_dring_acquire() returned errno %d",
1184 			    status);
1185 			return (status);
1186 		}
1187 	}
1188 
1189 	/* Set the element's status and mark it done */
1190 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
1191 	if (accepted) {
1192 		elem->payload.nbytes	= elem_nbytes;
1193 		elem->payload.status	= elem_status;
1194 		elem->hdr.dstate	= VIO_DESC_DONE;
1195 	} else {
1196 		/* Perhaps client timed out waiting for I/O... */
1197 		PR0("element %u no longer \"accepted\"", idx);
1198 		VD_DUMP_DRING_ELEM(elem);
1199 	}
1200 	/* Release the element */
1201 	if (!vd->reset_state &&
1202 	    (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1203 		if (status == ECONNRESET) {
1204 			vd_mark_in_reset(vd);
1205 			return (0);
1206 		} else {
1207 			PR0("ldc_mem_dring_release() returned errno %d",
1208 			    status);
1209 			return (status);
1210 		}
1211 	}
1212 
1213 	return (accepted ? 0 : EINVAL);
1214 }
1215 
1216 /*
1217  * Return Values
1218  *	0	- operation completed successfully
1219  *	EIO	- encountered LDC / task error
1220  *
1221  * Side Effect
1222  *	sets request->status = <disk operation status>
1223  */
1224 static int
1225 vd_complete_bio(vd_task_t *task)
1226 {
1227 	int			status		= 0;
1228 	int			rv		= 0;
1229 	vd_t			*vd		= task->vd;
1230 	vd_dring_payload_t	*request	= task->request;
1231 	struct buf		*buf		= &task->buf;
1232 
1233 
1234 	ASSERT(vd != NULL);
1235 	ASSERT(request != NULL);
1236 	ASSERT(task->msg != NULL);
1237 	ASSERT(task->msglen >= sizeof (*task->msg));
1238 	ASSERT(!vd->file);
1239 	ASSERT(request->slice != VD_SLICE_NONE);
1240 
1241 	/* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */
1242 	request->status = biowait(buf);
1243 
1244 	/* return back the number of bytes read/written */
1245 	request->nbytes = buf->b_bcount - buf->b_resid;
1246 
1247 	/* Release the buffer */
1248 	if (!vd->reset_state)
1249 		status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
1250 	if (status) {
1251 		PR0("ldc_mem_release() returned errno %d copying to "
1252 		    "client", status);
1253 		if (status == ECONNRESET) {
1254 			vd_mark_in_reset(vd);
1255 		}
1256 		rv = EIO;
1257 	}
1258 
1259 	/* Unmap the memory, even if in reset */
1260 	status = ldc_mem_unmap(task->mhdl);
1261 	if (status) {
1262 		PR0("ldc_mem_unmap() returned errno %d copying to client",
1263 		    status);
1264 		if (status == ECONNRESET) {
1265 			vd_mark_in_reset(vd);
1266 		}
1267 		rv = EIO;
1268 	}
1269 
1270 	biofini(buf);
1271 
1272 	return (rv);
1273 }
1274 
1275 /*
1276  * Description:
1277  *	This function is called by the two functions called by a taskq
1278  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
1279  *	message to the client.
1280  *
1281  * Parameters:
1282  *	arg 	- opaque pointer to structure containing task to be completed
1283  *
1284  * Return Values
1285  *	None
1286  */
1287 static void
1288 vd_notify(vd_task_t *task)
1289 {
1290 	int	status;
1291 
1292 	ASSERT(task != NULL);
1293 	ASSERT(task->vd != NULL);
1294 
1295 	if (task->vd->reset_state)
1296 		return;
1297 
1298 	/*
1299 	 * Send the "ack" or "nack" back to the client; if sending the message
1300 	 * via LDC fails, arrange to reset both the connection state and LDC
1301 	 * itself
1302 	 */
1303 	PR2("Sending %s",
1304 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
1305 
1306 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
1307 	switch (status) {
1308 	case 0:
1309 		break;
1310 	case ECONNRESET:
1311 		vd_mark_in_reset(task->vd);
1312 		break;
1313 	default:
1314 		PR0("initiating full reset");
1315 		vd_need_reset(task->vd, B_TRUE);
1316 		break;
1317 	}
1318 
1319 	DTRACE_PROBE1(task__end, vd_task_t *, task);
1320 }
1321 
1322 /*
1323  * Description:
1324  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
1325  *	the vDisk client
1326  *
1327  * Parameters:
1328  *	task 		- structure containing the request sent from client
1329  *
1330  * Return Values
1331  *	None
1332  */
1333 static void
1334 vd_complete_notify(vd_task_t *task)
1335 {
1336 	int			status		= 0;
1337 	vd_t			*vd		= task->vd;
1338 	vd_dring_payload_t	*request	= task->request;
1339 
1340 	/* Update the dring element for a dring client */
1341 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE)) {
1342 		status = vd_mark_elem_done(vd, task->index,
1343 		    request->status, request->nbytes);
1344 		if (status == ECONNRESET)
1345 			vd_mark_in_reset(vd);
1346 	}
1347 
1348 	/*
1349 	 * If a transport error occurred while marking the element done or
1350 	 * previously while executing the task, arrange to "nack" the message
1351 	 * when the final task in the descriptor element range completes
1352 	 */
1353 	if ((status != 0) || (task->status != 0))
1354 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
1355 
1356 	/*
1357 	 * Only the final task for a range of elements will respond to and
1358 	 * free the message
1359 	 */
1360 	if (task->type == VD_NONFINAL_RANGE_TASK) {
1361 		return;
1362 	}
1363 
1364 	vd_notify(task);
1365 }
1366 
1367 /*
1368  * Description:
1369  *	This is the basic completion function called to handle inband data
1370  *	requests and handshake messages. All it needs to do is trigger a
1371  *	message to the client that the request is completed.
1372  *
1373  * Parameters:
1374  *	arg 	- opaque pointer to structure containing task to be completed
1375  *
1376  * Return Values
1377  *	None
1378  */
1379 static void
1380 vd_serial_notify(void *arg)
1381 {
1382 	vd_task_t		*task = (vd_task_t *)arg;
1383 
1384 	ASSERT(task != NULL);
1385 	vd_notify(task);
1386 }
1387 
1388 static void
1389 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg)
1390 {
1391 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
1392 }
1393 
1394 static void
1395 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg)
1396 {
1397 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
1398 }
1399 
1400 static void
1401 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
1402 {
1403 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
1404 }
1405 
1406 static void
1407 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
1408 {
1409 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
1410 }
1411 
1412 static void
1413 vd_get_efi_in(void *vd_buf, void *ioctl_arg)
1414 {
1415 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1416 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1417 
1418 	dk_efi->dki_lba = vd_efi->lba;
1419 	dk_efi->dki_length = vd_efi->length;
1420 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
1421 }
1422 
1423 static void
1424 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
1425 {
1426 	int len;
1427 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1428 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1429 
1430 	len = vd_efi->length;
1431 	DK_EFI2VD_EFI(dk_efi, vd_efi);
1432 	kmem_free(dk_efi->dki_data, len);
1433 }
1434 
1435 static void
1436 vd_set_efi_in(void *vd_buf, void *ioctl_arg)
1437 {
1438 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1439 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1440 
1441 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
1442 	VD_EFI2DK_EFI(vd_efi, dk_efi);
1443 }
1444 
1445 static void
1446 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
1447 {
1448 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1449 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1450 
1451 	kmem_free(dk_efi->dki_data, vd_efi->length);
1452 }
1453 
1454 static int
1455 vd_read_vtoc(ldi_handle_t handle, struct vtoc *vtoc, vd_disk_label_t *label)
1456 {
1457 	int status, rval;
1458 	struct dk_gpt *efi;
1459 	size_t efi_len;
1460 
1461 	*label = VD_DISK_LABEL_UNK;
1462 
1463 	status = ldi_ioctl(handle, DKIOCGVTOC, (intptr_t)vtoc,
1464 	    (vd_open_flags | FKIOCTL), kcred, &rval);
1465 
1466 	if (status == 0) {
1467 		*label = VD_DISK_LABEL_VTOC;
1468 		return (0);
1469 	} else if (status != ENOTSUP) {
1470 		PR0("ldi_ioctl(DKIOCGVTOC) returned error %d", status);
1471 		return (status);
1472 	}
1473 
1474 	status = vds_efi_alloc_and_read(handle, &efi, &efi_len);
1475 
1476 	if (status) {
1477 		PR0("vds_efi_alloc_and_read returned error %d", status);
1478 		return (status);
1479 	}
1480 
1481 	*label = VD_DISK_LABEL_EFI;
1482 	vd_efi_to_vtoc(efi, vtoc);
1483 	vd_efi_free(efi, efi_len);
1484 
1485 	return (0);
1486 }
1487 
1488 static ushort_t
1489 vd_lbl2cksum(struct dk_label *label)
1490 {
1491 	int	count;
1492 	ushort_t sum, *sp;
1493 
1494 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
1495 	sp = (ushort_t *)label;
1496 	sum = 0;
1497 	while (count--) {
1498 		sum ^= *sp++;
1499 	}
1500 
1501 	return (sum);
1502 }
1503 
1504 /*
1505  * Handle ioctls to a disk slice.
1506  *
1507  * Return Values
1508  *	0	- Indicates that there are no errors in disk operations
1509  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
1510  *	EINVAL	- Not enough room to copy the EFI label
1511  *
1512  */
1513 static int
1514 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
1515 {
1516 	dk_efi_t *dk_ioc;
1517 
1518 	switch (vd->vdisk_label) {
1519 
1520 	/* ioctls for a slice from a disk with a VTOC label */
1521 	case VD_DISK_LABEL_VTOC:
1522 
1523 		switch (cmd) {
1524 		case DKIOCGGEOM:
1525 			ASSERT(ioctl_arg != NULL);
1526 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
1527 			return (0);
1528 		case DKIOCGVTOC:
1529 			ASSERT(ioctl_arg != NULL);
1530 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
1531 			return (0);
1532 		default:
1533 			return (ENOTSUP);
1534 		}
1535 
1536 	/* ioctls for a slice from a disk with an EFI label */
1537 	case VD_DISK_LABEL_EFI:
1538 
1539 		switch (cmd) {
1540 		case DKIOCGETEFI:
1541 			ASSERT(ioctl_arg != NULL);
1542 			dk_ioc = (dk_efi_t *)ioctl_arg;
1543 			if (dk_ioc->dki_length < vd->dk_efi.dki_length)
1544 				return (EINVAL);
1545 			bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data,
1546 			    vd->dk_efi.dki_length);
1547 			return (0);
1548 		default:
1549 			return (ENOTSUP);
1550 		}
1551 
1552 	default:
1553 		/* Unknown disk label type */
1554 		return (ENOTSUP);
1555 	}
1556 }
1557 
1558 /*
1559  * Handle ioctls to a disk image (file-based).
1560  *
1561  * Return Values
1562  *	0	- Indicates that there are no errors
1563  *	!= 0	- Disk operation returned an error
1564  */
1565 static int
1566 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
1567 {
1568 	struct dk_label label;
1569 	struct dk_geom *geom;
1570 	struct vtoc *vtoc;
1571 	int i, rc;
1572 
1573 	ASSERT(vd->file);
1574 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1575 
1576 	switch (cmd) {
1577 
1578 	case DKIOCGGEOM:
1579 		ASSERT(ioctl_arg != NULL);
1580 		geom = (struct dk_geom *)ioctl_arg;
1581 
1582 		if (VD_FILE_LABEL_READ(vd, &label) < 0)
1583 			return (EIO);
1584 
1585 		if (label.dkl_magic != DKL_MAGIC ||
1586 		    label.dkl_cksum != vd_lbl2cksum(&label))
1587 			return (EINVAL);
1588 
1589 		bzero(geom, sizeof (struct dk_geom));
1590 		geom->dkg_ncyl = label.dkl_ncyl;
1591 		geom->dkg_acyl = label.dkl_acyl;
1592 		geom->dkg_nhead = label.dkl_nhead;
1593 		geom->dkg_nsect = label.dkl_nsect;
1594 		geom->dkg_intrlv = label.dkl_intrlv;
1595 		geom->dkg_apc = label.dkl_apc;
1596 		geom->dkg_rpm = label.dkl_rpm;
1597 		geom->dkg_pcyl = label.dkl_pcyl;
1598 		geom->dkg_write_reinstruct = label.dkl_write_reinstruct;
1599 		geom->dkg_read_reinstruct = label.dkl_read_reinstruct;
1600 
1601 		return (0);
1602 
1603 	case DKIOCGVTOC:
1604 		ASSERT(ioctl_arg != NULL);
1605 		vtoc = (struct vtoc *)ioctl_arg;
1606 
1607 		if (VD_FILE_LABEL_READ(vd, &label) < 0)
1608 			return (EIO);
1609 
1610 		if (label.dkl_magic != DKL_MAGIC ||
1611 		    label.dkl_cksum != vd_lbl2cksum(&label))
1612 			return (EINVAL);
1613 
1614 		bzero(vtoc, sizeof (struct vtoc));
1615 
1616 		vtoc->v_sanity = label.dkl_vtoc.v_sanity;
1617 		vtoc->v_version = label.dkl_vtoc.v_version;
1618 		vtoc->v_sectorsz = DEV_BSIZE;
1619 		vtoc->v_nparts = label.dkl_vtoc.v_nparts;
1620 
1621 		for (i = 0; i < vtoc->v_nparts; i++) {
1622 			vtoc->v_part[i].p_tag =
1623 			    label.dkl_vtoc.v_part[i].p_tag;
1624 			vtoc->v_part[i].p_flag =
1625 			    label.dkl_vtoc.v_part[i].p_flag;
1626 			vtoc->v_part[i].p_start =
1627 			    label.dkl_map[i].dkl_cylno *
1628 			    (label.dkl_nhead * label.dkl_nsect);
1629 			vtoc->v_part[i].p_size = label.dkl_map[i].dkl_nblk;
1630 			vtoc->timestamp[i] =
1631 			    label.dkl_vtoc.v_timestamp[i];
1632 		}
1633 		/*
1634 		 * The bootinfo array can not be copied with bcopy() because
1635 		 * elements are of type long in vtoc (so 64-bit) and of type
1636 		 * int in dk_vtoc (so 32-bit).
1637 		 */
1638 		vtoc->v_bootinfo[0] = label.dkl_vtoc.v_bootinfo[0];
1639 		vtoc->v_bootinfo[1] = label.dkl_vtoc.v_bootinfo[1];
1640 		vtoc->v_bootinfo[2] = label.dkl_vtoc.v_bootinfo[2];
1641 		bcopy(label.dkl_asciilabel, vtoc->v_asciilabel,
1642 		    LEN_DKL_ASCII);
1643 		bcopy(label.dkl_vtoc.v_volume, vtoc->v_volume,
1644 		    LEN_DKL_VVOL);
1645 
1646 		return (0);
1647 
1648 	case DKIOCSGEOM:
1649 		ASSERT(ioctl_arg != NULL);
1650 		geom = (struct dk_geom *)ioctl_arg;
1651 
1652 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
1653 			return (EINVAL);
1654 
1655 		/*
1656 		 * The current device geometry is not updated, just the driver
1657 		 * "notion" of it. The device geometry will be effectively
1658 		 * updated when a label is written to the device during a next
1659 		 * DKIOCSVTOC.
1660 		 */
1661 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
1662 		return (0);
1663 
1664 	case DKIOCSVTOC:
1665 		ASSERT(ioctl_arg != NULL);
1666 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
1667 		    vd->dk_geom.dkg_nsect != 0);
1668 		vtoc = (struct vtoc *)ioctl_arg;
1669 
1670 		if (vtoc->v_sanity != VTOC_SANE ||
1671 		    vtoc->v_sectorsz != DEV_BSIZE ||
1672 		    vtoc->v_nparts != V_NUMPAR)
1673 			return (EINVAL);
1674 
1675 		bzero(&label, sizeof (label));
1676 		label.dkl_ncyl = vd->dk_geom.dkg_ncyl;
1677 		label.dkl_acyl = vd->dk_geom.dkg_acyl;
1678 		label.dkl_pcyl = vd->dk_geom.dkg_pcyl;
1679 		label.dkl_nhead = vd->dk_geom.dkg_nhead;
1680 		label.dkl_nsect = vd->dk_geom.dkg_nsect;
1681 		label.dkl_intrlv = vd->dk_geom.dkg_intrlv;
1682 		label.dkl_apc = vd->dk_geom.dkg_apc;
1683 		label.dkl_rpm = vd->dk_geom.dkg_rpm;
1684 		label.dkl_write_reinstruct = vd->dk_geom.dkg_write_reinstruct;
1685 		label.dkl_read_reinstruct = vd->dk_geom.dkg_read_reinstruct;
1686 
1687 		label.dkl_vtoc.v_nparts = V_NUMPAR;
1688 		label.dkl_vtoc.v_sanity = VTOC_SANE;
1689 		label.dkl_vtoc.v_version = vtoc->v_version;
1690 		for (i = 0; i < V_NUMPAR; i++) {
1691 			label.dkl_vtoc.v_timestamp[i] =
1692 			    vtoc->timestamp[i];
1693 			label.dkl_vtoc.v_part[i].p_tag =
1694 			    vtoc->v_part[i].p_tag;
1695 			label.dkl_vtoc.v_part[i].p_flag =
1696 			    vtoc->v_part[i].p_flag;
1697 			label.dkl_map[i].dkl_cylno =
1698 			    vtoc->v_part[i].p_start /
1699 			    (label.dkl_nhead * label.dkl_nsect);
1700 			label.dkl_map[i].dkl_nblk =
1701 			    vtoc->v_part[i].p_size;
1702 		}
1703 		/*
1704 		 * The bootinfo array can not be copied with bcopy() because
1705 		 * elements are of type long in vtoc (so 64-bit) and of type
1706 		 * int in dk_vtoc (so 32-bit).
1707 		 */
1708 		label.dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
1709 		label.dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
1710 		label.dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
1711 		bcopy(vtoc->v_asciilabel, label.dkl_asciilabel,
1712 		    LEN_DKL_ASCII);
1713 		bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume,
1714 		    LEN_DKL_VVOL);
1715 
1716 		/* re-compute checksum */
1717 		label.dkl_magic = DKL_MAGIC;
1718 		label.dkl_cksum = vd_lbl2cksum(&label);
1719 
1720 		/* write label to the disk image */
1721 		if ((rc = vd_file_set_vtoc(vd, &label)) != 0)
1722 			return (rc);
1723 
1724 		/* update the cached vdisk VTOC */
1725 		bcopy(vtoc, &vd->vtoc, sizeof (vd->vtoc));
1726 
1727 		/*
1728 		 * The disk geometry may have changed, so we need to write
1729 		 * the devid (if there is one) so that it is stored at the
1730 		 * right location.
1731 		 */
1732 		if (vd->file_devid != NULL &&
1733 		    vd_file_write_devid(vd, vd->file_devid) != 0) {
1734 			PR0("Fail to write devid");
1735 		}
1736 
1737 		return (0);
1738 
1739 	default:
1740 		return (ENOTSUP);
1741 	}
1742 }
1743 
1744 /*
1745  * Description:
1746  *	This is the function that processes the ioctl requests (farming it
1747  *	out to functions that handle slices, files or whole disks)
1748  *
1749  * Return Values
1750  *     0		- ioctl operation completed successfully
1751  *     != 0		- The LDC error value encountered
1752  *			  (propagated back up the call stack as a task error)
1753  *
1754  * Side Effect
1755  *     sets request->status to the return value of the ioctl function.
1756  */
1757 static int
1758 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
1759 {
1760 	int	rval = 0, status = 0;
1761 	size_t	nbytes = request->nbytes;	/* modifiable copy */
1762 
1763 
1764 	ASSERT(request->slice < vd->nslices);
1765 	PR0("Performing %s", ioctl->operation_name);
1766 
1767 	/* Get data from client and convert, if necessary */
1768 	if (ioctl->copyin != NULL)  {
1769 		ASSERT(nbytes != 0 && buf != NULL);
1770 		PR1("Getting \"arg\" data from client");
1771 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
1772 		    request->cookie, request->ncookies,
1773 		    LDC_COPY_IN)) != 0) {
1774 			PR0("ldc_mem_copy() returned errno %d "
1775 			    "copying from client", status);
1776 			return (status);
1777 		}
1778 
1779 		/* Convert client's data, if necessary */
1780 		if (ioctl->copyin == VD_IDENTITY)	/* use client buffer */
1781 			ioctl->arg = buf;
1782 		else	/* convert client vdisk operation data to ioctl data */
1783 			(ioctl->copyin)(buf, (void *)ioctl->arg);
1784 	}
1785 
1786 	/*
1787 	 * Handle single-slice block devices internally; otherwise, have the
1788 	 * real driver perform the ioctl()
1789 	 */
1790 	if (vd->file) {
1791 		request->status =
1792 		    vd_do_file_ioctl(vd, ioctl->cmd, (void *)ioctl->arg);
1793 
1794 	} else if (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo) {
1795 		request->status =
1796 		    vd_do_slice_ioctl(vd, ioctl->cmd, (void *)ioctl->arg);
1797 
1798 	} else {
1799 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
1800 		    ioctl->cmd, (intptr_t)ioctl->arg, (vd_open_flags | FKIOCTL),
1801 		    kcred, &rval);
1802 
1803 #ifdef DEBUG
1804 		if (rval != 0) {
1805 			PR0("%s set rval = %d, which is not being returned to"
1806 			    " client", ioctl->cmd_name, rval);
1807 		}
1808 #endif /* DEBUG */
1809 	}
1810 
1811 	if (request->status != 0) {
1812 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
1813 		return (0);
1814 	}
1815 
1816 	/* Convert data and send to client, if necessary */
1817 	if (ioctl->copyout != NULL)  {
1818 		ASSERT(nbytes != 0 && buf != NULL);
1819 		PR1("Sending \"arg\" data to client");
1820 
1821 		/* Convert ioctl data to vdisk operation data, if necessary */
1822 		if (ioctl->copyout != VD_IDENTITY)
1823 			(ioctl->copyout)((void *)ioctl->arg, buf);
1824 
1825 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
1826 		    request->cookie, request->ncookies,
1827 		    LDC_COPY_OUT)) != 0) {
1828 			PR0("ldc_mem_copy() returned errno %d "
1829 			    "copying to client", status);
1830 			return (status);
1831 		}
1832 	}
1833 
1834 	return (status);
1835 }
1836 
1837 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
1838 
1839 /*
1840  * Description:
1841  *	This generic function is called by the task queue to complete
1842  *	the processing of the tasks. The specific completion function
1843  *	is passed in as a field in the task pointer.
1844  *
1845  * Parameters:
1846  *	arg 	- opaque pointer to structure containing task to be completed
1847  *
1848  * Return Values
1849  *	None
1850  */
1851 static void
1852 vd_complete(void *arg)
1853 {
1854 	vd_task_t	*task = (vd_task_t *)arg;
1855 
1856 	ASSERT(task != NULL);
1857 	ASSERT(task->status == EINPROGRESS);
1858 	ASSERT(task->completef != NULL);
1859 
1860 	task->status = task->completef(task);
1861 	if (task->status)
1862 		PR0("%s: Error %d completing task", __func__, task->status);
1863 
1864 	/* Now notify the vDisk client */
1865 	vd_complete_notify(task);
1866 }
1867 
1868 static int
1869 vd_ioctl(vd_task_t *task)
1870 {
1871 	int			i, status;
1872 	void			*buf = NULL;
1873 	struct dk_geom		dk_geom = {0};
1874 	struct vtoc		vtoc = {0};
1875 	struct dk_efi		dk_efi = {0};
1876 	vd_t			*vd		= task->vd;
1877 	vd_dring_payload_t	*request	= task->request;
1878 	vd_ioctl_t		ioctl[] = {
1879 		/* Command (no-copy) operations */
1880 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
1881 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
1882 		    NULL, NULL, NULL},
1883 
1884 		/* "Get" (copy-out) operations */
1885 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
1886 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
1887 		    NULL, VD_IDENTITY, VD_IDENTITY},
1888 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
1889 		    RNDSIZE(vd_geom_t),
1890 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
1891 		    &dk_geom, NULL, dk_geom2vd_geom},
1892 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
1893 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
1894 		    &vtoc, NULL, vtoc2vd_vtoc},
1895 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
1896 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
1897 		    &dk_efi, vd_get_efi_in, vd_get_efi_out},
1898 
1899 		/* "Set" (copy-in) operations */
1900 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
1901 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
1902 		    NULL, VD_IDENTITY, VD_IDENTITY},
1903 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
1904 		    RNDSIZE(vd_geom_t),
1905 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
1906 		    &dk_geom, vd_geom2dk_geom, NULL},
1907 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
1908 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
1909 		    &vtoc, vd_vtoc2vtoc, NULL},
1910 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
1911 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
1912 		    &dk_efi, vd_set_efi_in, vd_set_efi_out},
1913 	};
1914 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
1915 
1916 
1917 	ASSERT(vd != NULL);
1918 	ASSERT(request != NULL);
1919 	ASSERT(request->slice < vd->nslices);
1920 
1921 	/*
1922 	 * Determine ioctl corresponding to caller's "operation" and
1923 	 * validate caller's "nbytes"
1924 	 */
1925 	for (i = 0; i < nioctls; i++) {
1926 		if (request->operation == ioctl[i].operation) {
1927 			/* LDC memory operations require 8-byte multiples */
1928 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
1929 
1930 			if (request->operation == VD_OP_GET_EFI ||
1931 			    request->operation == VD_OP_SET_EFI) {
1932 				if (request->nbytes >= ioctl[i].nbytes)
1933 					break;
1934 				PR0("%s:  Expected at least nbytes = %lu, "
1935 				    "got %lu", ioctl[i].operation_name,
1936 				    ioctl[i].nbytes, request->nbytes);
1937 				return (EINVAL);
1938 			}
1939 
1940 			if (request->nbytes != ioctl[i].nbytes) {
1941 				PR0("%s:  Expected nbytes = %lu, got %lu",
1942 				    ioctl[i].operation_name, ioctl[i].nbytes,
1943 				    request->nbytes);
1944 				return (EINVAL);
1945 			}
1946 
1947 			break;
1948 		}
1949 	}
1950 	ASSERT(i < nioctls);	/* because "operation" already validated */
1951 
1952 	if (request->nbytes)
1953 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
1954 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
1955 	if (request->nbytes)
1956 		kmem_free(buf, request->nbytes);
1957 
1958 	return (status);
1959 }
1960 
1961 static int
1962 vd_get_devid(vd_task_t *task)
1963 {
1964 	vd_t *vd = task->vd;
1965 	vd_dring_payload_t *request = task->request;
1966 	vd_devid_t *vd_devid;
1967 	impl_devid_t *devid;
1968 	int status, bufid_len, devid_len, len, sz;
1969 	int bufbytes;
1970 
1971 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
1972 
1973 	if (vd->file) {
1974 		if (vd->file_devid == NULL) {
1975 			PR2("No Device ID");
1976 			request->status = ENOENT;
1977 			return (0);
1978 		} else {
1979 			sz = ddi_devid_sizeof(vd->file_devid);
1980 			devid = kmem_alloc(sz, KM_SLEEP);
1981 			bcopy(vd->file_devid, devid, sz);
1982 		}
1983 	} else {
1984 		if (ddi_lyr_get_devid(vd->dev[request->slice],
1985 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
1986 			PR2("No Device ID");
1987 			request->status = ENOENT;
1988 			return (0);
1989 		}
1990 	}
1991 
1992 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
1993 	devid_len = DEVID_GETLEN(devid);
1994 
1995 	/*
1996 	 * Save the buffer size here for use in deallocation.
1997 	 * The actual number of bytes copied is returned in
1998 	 * the 'nbytes' field of the request structure.
1999 	 */
2000 	bufbytes = request->nbytes;
2001 
2002 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
2003 	vd_devid->length = devid_len;
2004 	vd_devid->type = DEVID_GETTYPE(devid);
2005 
2006 	len = (devid_len > bufid_len)? bufid_len : devid_len;
2007 
2008 	bcopy(devid->did_id, vd_devid->id, len);
2009 
2010 	/* LDC memory operations require 8-byte multiples */
2011 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
2012 
2013 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
2014 	    &request->nbytes, request->cookie, request->ncookies,
2015 	    LDC_COPY_OUT)) != 0) {
2016 		PR0("ldc_mem_copy() returned errno %d copying to client",
2017 		    status);
2018 	}
2019 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
2020 
2021 	kmem_free(vd_devid, bufbytes);
2022 	ddi_devid_free((ddi_devid_t)devid);
2023 
2024 	return (status);
2025 }
2026 
2027 /*
2028  * Define the supported operations once the functions for performing them have
2029  * been defined
2030  */
2031 static const vds_operation_t	vds_operation[] = {
2032 #define	X(_s)	#_s, _s
2033 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
2034 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
2035 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
2036 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
2037 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
2038 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
2039 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
2040 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
2041 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
2042 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
2043 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
2044 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
2045 #undef	X
2046 };
2047 
2048 static const size_t	vds_noperations =
2049 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
2050 
2051 /*
2052  * Process a task specifying a client I/O request
2053  *
2054  * Parameters:
2055  *	task 		- structure containing the request sent from client
2056  *
2057  * Return Value
2058  *	0	- success
2059  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
2060  *	EINVAL	- Invalid disk slice
2061  *	!= 0	- some other non-zero return value from start function
2062  */
2063 static int
2064 vd_do_process_task(vd_task_t *task)
2065 {
2066 	int			i;
2067 	vd_t			*vd		= task->vd;
2068 	vd_dring_payload_t	*request	= task->request;
2069 
2070 	ASSERT(vd != NULL);
2071 	ASSERT(request != NULL);
2072 
2073 	/* Find the requested operation */
2074 	for (i = 0; i < vds_noperations; i++) {
2075 		if (request->operation == vds_operation[i].operation) {
2076 			/* all operations should have a start func */
2077 			ASSERT(vds_operation[i].start != NULL);
2078 
2079 			task->completef = vds_operation[i].complete;
2080 			break;
2081 		}
2082 	}
2083 	if (i == vds_noperations) {
2084 		PR0("Unsupported operation %u", request->operation);
2085 		return (ENOTSUP);
2086 	}
2087 
2088 	/* Range-check slice */
2089 	if (request->slice >= vd->nslices &&
2090 	    (vd->vdisk_type != VD_DISK_TYPE_DISK ||
2091 	    request->slice != VD_SLICE_NONE)) {
2092 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
2093 		    request->slice, (vd->nslices - 1));
2094 		return (EINVAL);
2095 	}
2096 
2097 	/*
2098 	 * Call the function pointer that starts the operation.
2099 	 */
2100 	return (vds_operation[i].start(task));
2101 }
2102 
2103 /*
2104  * Description:
2105  *	This function is called by both the in-band and descriptor ring
2106  *	message processing functions paths to actually execute the task
2107  *	requested by the vDisk client. It in turn calls its worker
2108  *	function, vd_do_process_task(), to carry our the request.
2109  *
2110  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
2111  *	saved in the 'status' field of the task and are propagated back
2112  *	up the call stack to trigger a NACK
2113  *
2114  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
2115  *	the 'status' field of the request and result in an ACK being sent
2116  *	by the completion handler.
2117  *
2118  * Parameters:
2119  *	task 		- structure containing the request sent from client
2120  *
2121  * Return Value
2122  *	0		- successful synchronous request.
2123  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
2124  *	EINPROGRESS	- task will be finished in a completion handler
2125  */
2126 static int
2127 vd_process_task(vd_task_t *task)
2128 {
2129 	vd_t	*vd = task->vd;
2130 	int	status;
2131 
2132 	DTRACE_PROBE1(task__start, vd_task_t *, task);
2133 
2134 	task->status =  vd_do_process_task(task);
2135 
2136 	/*
2137 	 * If the task processing function returned EINPROGRESS indicating
2138 	 * that the task needs completing then schedule a taskq entry to
2139 	 * finish it now.
2140 	 *
2141 	 * Otherwise the task processing function returned either zero
2142 	 * indicating that the task was finished in the start function (and we
2143 	 * don't need to wait in a completion function) or the start function
2144 	 * returned an error - in both cases all that needs to happen is the
2145 	 * notification to the vDisk client higher up the call stack.
2146 	 * If the task was using a Descriptor Ring, we need to mark it as done
2147 	 * at this stage.
2148 	 */
2149 	if (task->status == EINPROGRESS) {
2150 		/* Queue a task to complete the operation */
2151 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
2152 		    task, DDI_SLEEP);
2153 
2154 	} else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE)) {
2155 		/* Update the dring element if it's a dring client */
2156 		status = vd_mark_elem_done(vd, task->index,
2157 		    task->request->status, task->request->nbytes);
2158 		if (status == ECONNRESET)
2159 			vd_mark_in_reset(vd);
2160 	}
2161 
2162 	return (task->status);
2163 }
2164 
2165 /*
2166  * Return true if the "type", "subtype", and "env" fields of the "tag" first
2167  * argument match the corresponding remaining arguments; otherwise, return false
2168  */
2169 boolean_t
2170 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
2171 {
2172 	return ((tag->vio_msgtype == type) &&
2173 	    (tag->vio_subtype == subtype) &&
2174 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
2175 }
2176 
2177 /*
2178  * Check whether the major/minor version specified in "ver_msg" is supported
2179  * by this server.
2180  */
2181 static boolean_t
2182 vds_supported_version(vio_ver_msg_t *ver_msg)
2183 {
2184 	for (int i = 0; i < vds_num_versions; i++) {
2185 		ASSERT(vds_version[i].major > 0);
2186 		ASSERT((i == 0) ||
2187 		    (vds_version[i].major < vds_version[i-1].major));
2188 
2189 		/*
2190 		 * If the major versions match, adjust the minor version, if
2191 		 * necessary, down to the highest value supported by this
2192 		 * server and return true so this message will get "ack"ed;
2193 		 * the client should also support all minor versions lower
2194 		 * than the value it sent
2195 		 */
2196 		if (ver_msg->ver_major == vds_version[i].major) {
2197 			if (ver_msg->ver_minor > vds_version[i].minor) {
2198 				PR0("Adjusting minor version from %u to %u",
2199 				    ver_msg->ver_minor, vds_version[i].minor);
2200 				ver_msg->ver_minor = vds_version[i].minor;
2201 			}
2202 			return (B_TRUE);
2203 		}
2204 
2205 		/*
2206 		 * If the message contains a higher major version number, set
2207 		 * the message's major/minor versions to the current values
2208 		 * and return false, so this message will get "nack"ed with
2209 		 * these values, and the client will potentially try again
2210 		 * with the same or a lower version
2211 		 */
2212 		if (ver_msg->ver_major > vds_version[i].major) {
2213 			ver_msg->ver_major = vds_version[i].major;
2214 			ver_msg->ver_minor = vds_version[i].minor;
2215 			return (B_FALSE);
2216 		}
2217 
2218 		/*
2219 		 * Otherwise, the message's major version is less than the
2220 		 * current major version, so continue the loop to the next
2221 		 * (lower) supported version
2222 		 */
2223 	}
2224 
2225 	/*
2226 	 * No common version was found; "ground" the version pair in the
2227 	 * message to terminate negotiation
2228 	 */
2229 	ver_msg->ver_major = 0;
2230 	ver_msg->ver_minor = 0;
2231 	return (B_FALSE);
2232 }
2233 
2234 /*
2235  * Process a version message from a client.  vds expects to receive version
2236  * messages from clients seeking service, but never issues version messages
2237  * itself; therefore, vds can ACK or NACK client version messages, but does
2238  * not expect to receive version-message ACKs or NACKs (and will treat such
2239  * messages as invalid).
2240  */
2241 static int
2242 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2243 {
2244 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
2245 
2246 
2247 	ASSERT(msglen >= sizeof (msg->tag));
2248 
2249 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2250 	    VIO_VER_INFO)) {
2251 		return (ENOMSG);	/* not a version message */
2252 	}
2253 
2254 	if (msglen != sizeof (*ver_msg)) {
2255 		PR0("Expected %lu-byte version message; "
2256 		    "received %lu bytes", sizeof (*ver_msg), msglen);
2257 		return (EBADMSG);
2258 	}
2259 
2260 	if (ver_msg->dev_class != VDEV_DISK) {
2261 		PR0("Expected device class %u (disk); received %u",
2262 		    VDEV_DISK, ver_msg->dev_class);
2263 		return (EBADMSG);
2264 	}
2265 
2266 	/*
2267 	 * We're talking to the expected kind of client; set our device class
2268 	 * for "ack/nack" back to the client
2269 	 */
2270 	ver_msg->dev_class = VDEV_DISK_SERVER;
2271 
2272 	/*
2273 	 * Check whether the (valid) version message specifies a version
2274 	 * supported by this server.  If the version is not supported, return
2275 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
2276 	 * will have updated the message with a supported version for the
2277 	 * client to consider
2278 	 */
2279 	if (!vds_supported_version(ver_msg))
2280 		return (EBADMSG);
2281 
2282 
2283 	/*
2284 	 * A version has been agreed upon; use the client's SID for
2285 	 * communication on this channel now
2286 	 */
2287 	ASSERT(!(vd->initialized & VD_SID));
2288 	vd->sid = ver_msg->tag.vio_sid;
2289 	vd->initialized |= VD_SID;
2290 
2291 	/*
2292 	 * When multiple versions are supported, this function should store
2293 	 * the negotiated major and minor version values in the "vd" data
2294 	 * structure to govern further communication; in particular, note that
2295 	 * the client might have specified a lower minor version for the
2296 	 * agreed major version than specifed in the vds_version[] array.  The
2297 	 * following assertions should help remind future maintainers to make
2298 	 * the appropriate changes to support multiple versions.
2299 	 */
2300 	ASSERT(vds_num_versions == 1);
2301 	ASSERT(ver_msg->ver_major == vds_version[0].major);
2302 	ASSERT(ver_msg->ver_minor == vds_version[0].minor);
2303 
2304 	PR0("Using major version %u, minor version %u",
2305 	    ver_msg->ver_major, ver_msg->ver_minor);
2306 	return (0);
2307 }
2308 
2309 static int
2310 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2311 {
2312 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
2313 	int		status, retry = 0;
2314 
2315 
2316 	ASSERT(msglen >= sizeof (msg->tag));
2317 
2318 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2319 	    VIO_ATTR_INFO)) {
2320 		PR0("Message is not an attribute message");
2321 		return (ENOMSG);
2322 	}
2323 
2324 	if (msglen != sizeof (*attr_msg)) {
2325 		PR0("Expected %lu-byte attribute message; "
2326 		    "received %lu bytes", sizeof (*attr_msg), msglen);
2327 		return (EBADMSG);
2328 	}
2329 
2330 	if (attr_msg->max_xfer_sz == 0) {
2331 		PR0("Received maximum transfer size of 0 from client");
2332 		return (EBADMSG);
2333 	}
2334 
2335 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
2336 	    (attr_msg->xfer_mode != VIO_DRING_MODE)) {
2337 		PR0("Client requested unsupported transfer mode");
2338 		return (EBADMSG);
2339 	}
2340 
2341 	/*
2342 	 * check if the underlying disk is ready, if not try accessing
2343 	 * the device again. Open the vdisk device and extract info
2344 	 * about it, as this is needed to respond to the attr info msg
2345 	 */
2346 	if ((vd->initialized & VD_DISK_READY) == 0) {
2347 		PR0("Retry setting up disk (%s)", vd->device_path);
2348 		do {
2349 			status = vd_setup_vd(vd);
2350 			if (status != EAGAIN || ++retry > vds_dev_retries)
2351 				break;
2352 
2353 			/* incremental delay */
2354 			delay(drv_usectohz(vds_dev_delay));
2355 
2356 			/* if vdisk is no longer enabled - return error */
2357 			if (!vd_enabled(vd))
2358 				return (ENXIO);
2359 
2360 		} while (status == EAGAIN);
2361 
2362 		if (status)
2363 			return (ENXIO);
2364 
2365 		vd->initialized |= VD_DISK_READY;
2366 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
2367 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
2368 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
2369 		    (vd->pseudo ? "yes" : "no"),
2370 		    (vd->file ? "yes" : "no"),
2371 		    vd->nslices);
2372 	}
2373 
2374 	/* Success:  valid message and transfer mode */
2375 	vd->xfer_mode = attr_msg->xfer_mode;
2376 
2377 	if (vd->xfer_mode == VIO_DESC_MODE) {
2378 
2379 		/*
2380 		 * The vd_dring_inband_msg_t contains one cookie; need room
2381 		 * for up to n-1 more cookies, where "n" is the number of full
2382 		 * pages plus possibly one partial page required to cover
2383 		 * "max_xfer_sz".  Add room for one more cookie if
2384 		 * "max_xfer_sz" isn't an integral multiple of the page size.
2385 		 * Must first get the maximum transfer size in bytes.
2386 		 */
2387 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
2388 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
2389 		    attr_msg->max_xfer_sz;
2390 		size_t	max_inband_msglen =
2391 		    sizeof (vd_dring_inband_msg_t) +
2392 		    ((max_xfer_bytes/PAGESIZE +
2393 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
2394 		    (sizeof (ldc_mem_cookie_t)));
2395 
2396 		/*
2397 		 * Set the maximum expected message length to
2398 		 * accommodate in-band-descriptor messages with all
2399 		 * their cookies
2400 		 */
2401 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
2402 
2403 		/*
2404 		 * Initialize the data structure for processing in-band I/O
2405 		 * request descriptors
2406 		 */
2407 		vd->inband_task.vd	= vd;
2408 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
2409 		vd->inband_task.index	= 0;
2410 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
2411 	}
2412 
2413 	/* Return the device's block size and max transfer size to the client */
2414 	attr_msg->vdisk_block_size	= DEV_BSIZE;
2415 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
2416 
2417 	attr_msg->vdisk_size = vd->vdisk_size;
2418 	attr_msg->vdisk_type = vd->vdisk_type;
2419 	attr_msg->operations = vds_operations;
2420 	PR0("%s", VD_CLIENT(vd));
2421 
2422 	ASSERT(vd->dring_task == NULL);
2423 
2424 	return (0);
2425 }
2426 
2427 static int
2428 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2429 {
2430 	int			status;
2431 	size_t			expected;
2432 	ldc_mem_info_t		dring_minfo;
2433 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
2434 
2435 
2436 	ASSERT(msglen >= sizeof (msg->tag));
2437 
2438 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2439 	    VIO_DRING_REG)) {
2440 		PR0("Message is not a register-dring message");
2441 		return (ENOMSG);
2442 	}
2443 
2444 	if (msglen < sizeof (*reg_msg)) {
2445 		PR0("Expected at least %lu-byte register-dring message; "
2446 		    "received %lu bytes", sizeof (*reg_msg), msglen);
2447 		return (EBADMSG);
2448 	}
2449 
2450 	expected = sizeof (*reg_msg) +
2451 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
2452 	if (msglen != expected) {
2453 		PR0("Expected %lu-byte register-dring message; "
2454 		    "received %lu bytes", expected, msglen);
2455 		return (EBADMSG);
2456 	}
2457 
2458 	if (vd->initialized & VD_DRING) {
2459 		PR0("A dring was previously registered; only support one");
2460 		return (EBADMSG);
2461 	}
2462 
2463 	if (reg_msg->num_descriptors > INT32_MAX) {
2464 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
2465 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
2466 		return (EBADMSG);
2467 	}
2468 
2469 	if (reg_msg->ncookies != 1) {
2470 		/*
2471 		 * In addition to fixing the assertion in the success case
2472 		 * below, supporting drings which require more than one
2473 		 * "cookie" requires increasing the value of vd->max_msglen
2474 		 * somewhere in the code path prior to receiving the message
2475 		 * which results in calling this function.  Note that without
2476 		 * making this change, the larger message size required to
2477 		 * accommodate multiple cookies cannot be successfully
2478 		 * received, so this function will not even get called.
2479 		 * Gracefully accommodating more dring cookies might
2480 		 * reasonably demand exchanging an additional attribute or
2481 		 * making a minor protocol adjustment
2482 		 */
2483 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
2484 		return (EBADMSG);
2485 	}
2486 
2487 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
2488 	    reg_msg->ncookies, reg_msg->num_descriptors,
2489 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
2490 	if (status != 0) {
2491 		PR0("ldc_mem_dring_map() returned errno %d", status);
2492 		return (status);
2493 	}
2494 
2495 	/*
2496 	 * To remove the need for this assertion, must call
2497 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
2498 	 * successful call to ldc_mem_dring_map()
2499 	 */
2500 	ASSERT(reg_msg->ncookies == 1);
2501 
2502 	if ((status =
2503 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
2504 		PR0("ldc_mem_dring_info() returned errno %d", status);
2505 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
2506 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
2507 		return (status);
2508 	}
2509 
2510 	if (dring_minfo.vaddr == NULL) {
2511 		PR0("Descriptor ring virtual address is NULL");
2512 		return (ENXIO);
2513 	}
2514 
2515 
2516 	/* Initialize for valid message and mapped dring */
2517 	PR1("descriptor size = %u, dring length = %u",
2518 	    vd->descriptor_size, vd->dring_len);
2519 	vd->initialized |= VD_DRING;
2520 	vd->dring_ident = 1;	/* "There Can Be Only One" */
2521 	vd->dring = dring_minfo.vaddr;
2522 	vd->descriptor_size = reg_msg->descriptor_size;
2523 	vd->dring_len = reg_msg->num_descriptors;
2524 	reg_msg->dring_ident = vd->dring_ident;
2525 
2526 	/*
2527 	 * Allocate and initialize a "shadow" array of data structures for
2528 	 * tasks to process I/O requests in dring elements
2529 	 */
2530 	vd->dring_task =
2531 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
2532 	for (int i = 0; i < vd->dring_len; i++) {
2533 		vd->dring_task[i].vd		= vd;
2534 		vd->dring_task[i].index		= i;
2535 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
2536 
2537 		status = ldc_mem_alloc_handle(vd->ldc_handle,
2538 		    &(vd->dring_task[i].mhdl));
2539 		if (status) {
2540 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
2541 			return (ENXIO);
2542 		}
2543 
2544 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
2545 	}
2546 
2547 	return (0);
2548 }
2549 
2550 static int
2551 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2552 {
2553 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
2554 
2555 
2556 	ASSERT(msglen >= sizeof (msg->tag));
2557 
2558 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2559 	    VIO_DRING_UNREG)) {
2560 		PR0("Message is not an unregister-dring message");
2561 		return (ENOMSG);
2562 	}
2563 
2564 	if (msglen != sizeof (*unreg_msg)) {
2565 		PR0("Expected %lu-byte unregister-dring message; "
2566 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
2567 		return (EBADMSG);
2568 	}
2569 
2570 	if (unreg_msg->dring_ident != vd->dring_ident) {
2571 		PR0("Expected dring ident %lu; received %lu",
2572 		    vd->dring_ident, unreg_msg->dring_ident);
2573 		return (EBADMSG);
2574 	}
2575 
2576 	return (0);
2577 }
2578 
2579 static int
2580 process_rdx_msg(vio_msg_t *msg, size_t msglen)
2581 {
2582 	ASSERT(msglen >= sizeof (msg->tag));
2583 
2584 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
2585 		PR0("Message is not an RDX message");
2586 		return (ENOMSG);
2587 	}
2588 
2589 	if (msglen != sizeof (vio_rdx_msg_t)) {
2590 		PR0("Expected %lu-byte RDX message; received %lu bytes",
2591 		    sizeof (vio_rdx_msg_t), msglen);
2592 		return (EBADMSG);
2593 	}
2594 
2595 	PR0("Valid RDX message");
2596 	return (0);
2597 }
2598 
2599 static int
2600 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
2601 {
2602 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
2603 		PR0("Received seq_num %lu; expected %lu",
2604 		    seq_num, (vd->seq_num + 1));
2605 		PR0("initiating soft reset");
2606 		vd_need_reset(vd, B_FALSE);
2607 		return (1);
2608 	}
2609 
2610 	vd->seq_num = seq_num;
2611 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
2612 	return (0);
2613 }
2614 
2615 /*
2616  * Return the expected size of an inband-descriptor message with all the
2617  * cookies it claims to include
2618  */
2619 static size_t
2620 expected_inband_size(vd_dring_inband_msg_t *msg)
2621 {
2622 	return ((sizeof (*msg)) +
2623 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
2624 }
2625 
2626 /*
2627  * Process an in-band descriptor message:  used with clients like OBP, with
2628  * which vds exchanges descriptors within VIO message payloads, rather than
2629  * operating on them within a descriptor ring
2630  */
2631 static int
2632 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2633 {
2634 	size_t			expected;
2635 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
2636 
2637 
2638 	ASSERT(msglen >= sizeof (msg->tag));
2639 
2640 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
2641 	    VIO_DESC_DATA)) {
2642 		PR1("Message is not an in-band-descriptor message");
2643 		return (ENOMSG);
2644 	}
2645 
2646 	if (msglen < sizeof (*desc_msg)) {
2647 		PR0("Expected at least %lu-byte descriptor message; "
2648 		    "received %lu bytes", sizeof (*desc_msg), msglen);
2649 		return (EBADMSG);
2650 	}
2651 
2652 	if (msglen != (expected = expected_inband_size(desc_msg))) {
2653 		PR0("Expected %lu-byte descriptor message; "
2654 		    "received %lu bytes", expected, msglen);
2655 		return (EBADMSG);
2656 	}
2657 
2658 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
2659 		return (EBADMSG);
2660 
2661 	/*
2662 	 * Valid message:  Set up the in-band descriptor task and process the
2663 	 * request.  Arrange to acknowledge the client's message, unless an
2664 	 * error processing the descriptor task results in setting
2665 	 * VIO_SUBTYPE_NACK
2666 	 */
2667 	PR1("Valid in-band-descriptor message");
2668 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2669 
2670 	ASSERT(vd->inband_task.msg != NULL);
2671 
2672 	bcopy(msg, vd->inband_task.msg, msglen);
2673 	vd->inband_task.msglen	= msglen;
2674 
2675 	/*
2676 	 * The task request is now the payload of the message
2677 	 * that was just copied into the body of the task.
2678 	 */
2679 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
2680 	vd->inband_task.request	= &desc_msg->payload;
2681 
2682 	return (vd_process_task(&vd->inband_task));
2683 }
2684 
2685 static int
2686 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
2687     vio_msg_t *msg, size_t msglen)
2688 {
2689 	int			status;
2690 	boolean_t		ready;
2691 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
2692 
2693 
2694 	/* Accept the updated dring element */
2695 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
2696 		PR0("ldc_mem_dring_acquire() returned errno %d", status);
2697 		return (status);
2698 	}
2699 	ready = (elem->hdr.dstate == VIO_DESC_READY);
2700 	if (ready) {
2701 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
2702 	} else {
2703 		PR0("descriptor %u not ready", idx);
2704 		VD_DUMP_DRING_ELEM(elem);
2705 	}
2706 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
2707 		PR0("ldc_mem_dring_release() returned errno %d", status);
2708 		return (status);
2709 	}
2710 	if (!ready)
2711 		return (EBUSY);
2712 
2713 
2714 	/* Initialize a task and process the accepted element */
2715 	PR1("Processing dring element %u", idx);
2716 	vd->dring_task[idx].type	= type;
2717 
2718 	/* duplicate msg buf for cookies etc. */
2719 	bcopy(msg, vd->dring_task[idx].msg, msglen);
2720 
2721 	vd->dring_task[idx].msglen	= msglen;
2722 	return (vd_process_task(&vd->dring_task[idx]));
2723 }
2724 
2725 static int
2726 vd_process_element_range(vd_t *vd, int start, int end,
2727     vio_msg_t *msg, size_t msglen)
2728 {
2729 	int		i, n, nelem, status = 0;
2730 	boolean_t	inprogress = B_FALSE;
2731 	vd_task_type_t	type;
2732 
2733 
2734 	ASSERT(start >= 0);
2735 	ASSERT(end >= 0);
2736 
2737 	/*
2738 	 * Arrange to acknowledge the client's message, unless an error
2739 	 * processing one of the dring elements results in setting
2740 	 * VIO_SUBTYPE_NACK
2741 	 */
2742 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2743 
2744 	/*
2745 	 * Process the dring elements in the range
2746 	 */
2747 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
2748 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
2749 		((vio_dring_msg_t *)msg)->end_idx = i;
2750 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
2751 		status = vd_process_element(vd, type, i, msg, msglen);
2752 		if (status == EINPROGRESS)
2753 			inprogress = B_TRUE;
2754 		else if (status != 0)
2755 			break;
2756 	}
2757 
2758 	/*
2759 	 * If some, but not all, operations of a multi-element range are in
2760 	 * progress, wait for other operations to complete before returning
2761 	 * (which will result in "ack" or "nack" of the message).  Note that
2762 	 * all outstanding operations will need to complete, not just the ones
2763 	 * corresponding to the current range of dring elements; howevever, as
2764 	 * this situation is an error case, performance is less critical.
2765 	 */
2766 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
2767 		ddi_taskq_wait(vd->completionq);
2768 
2769 	return (status);
2770 }
2771 
2772 static int
2773 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2774 {
2775 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
2776 
2777 
2778 	ASSERT(msglen >= sizeof (msg->tag));
2779 
2780 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
2781 	    VIO_DRING_DATA)) {
2782 		PR1("Message is not a dring-data message");
2783 		return (ENOMSG);
2784 	}
2785 
2786 	if (msglen != sizeof (*dring_msg)) {
2787 		PR0("Expected %lu-byte dring message; received %lu bytes",
2788 		    sizeof (*dring_msg), msglen);
2789 		return (EBADMSG);
2790 	}
2791 
2792 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
2793 		return (EBADMSG);
2794 
2795 	if (dring_msg->dring_ident != vd->dring_ident) {
2796 		PR0("Expected dring ident %lu; received ident %lu",
2797 		    vd->dring_ident, dring_msg->dring_ident);
2798 		return (EBADMSG);
2799 	}
2800 
2801 	if (dring_msg->start_idx >= vd->dring_len) {
2802 		PR0("\"start_idx\" = %u; must be less than %u",
2803 		    dring_msg->start_idx, vd->dring_len);
2804 		return (EBADMSG);
2805 	}
2806 
2807 	if ((dring_msg->end_idx < 0) ||
2808 	    (dring_msg->end_idx >= vd->dring_len)) {
2809 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
2810 		    dring_msg->end_idx, vd->dring_len);
2811 		return (EBADMSG);
2812 	}
2813 
2814 	/* Valid message; process range of updated dring elements */
2815 	PR1("Processing descriptor range, start = %u, end = %u",
2816 	    dring_msg->start_idx, dring_msg->end_idx);
2817 	return (vd_process_element_range(vd, dring_msg->start_idx,
2818 	    dring_msg->end_idx, msg, msglen));
2819 }
2820 
2821 static int
2822 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
2823 {
2824 	int	retry, status;
2825 	size_t	size = *nbytes;
2826 
2827 
2828 	for (retry = 0, status = ETIMEDOUT;
2829 	    retry < vds_ldc_retries && status == ETIMEDOUT;
2830 	    retry++) {
2831 		PR1("ldc_read() attempt %d", (retry + 1));
2832 		*nbytes = size;
2833 		status = ldc_read(ldc_handle, msg, nbytes);
2834 	}
2835 
2836 	if (status) {
2837 		PR0("ldc_read() returned errno %d", status);
2838 		if (status != ECONNRESET)
2839 			return (ENOMSG);
2840 		return (status);
2841 	} else if (*nbytes == 0) {
2842 		PR1("ldc_read() returned 0 and no message read");
2843 		return (ENOMSG);
2844 	}
2845 
2846 	PR1("RCVD %lu-byte message", *nbytes);
2847 	return (0);
2848 }
2849 
2850 static int
2851 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2852 {
2853 	int		status;
2854 
2855 
2856 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
2857 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
2858 #ifdef	DEBUG
2859 	vd_decode_tag(msg);
2860 #endif
2861 
2862 	/*
2863 	 * Validate session ID up front, since it applies to all messages
2864 	 * once set
2865 	 */
2866 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
2867 		PR0("Expected SID %u, received %u", vd->sid,
2868 		    msg->tag.vio_sid);
2869 		return (EBADMSG);
2870 	}
2871 
2872 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
2873 
2874 	/*
2875 	 * Process the received message based on connection state
2876 	 */
2877 	switch (vd->state) {
2878 	case VD_STATE_INIT:	/* expect version message */
2879 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
2880 			return (status);
2881 
2882 		/* Version negotiated, move to that state */
2883 		vd->state = VD_STATE_VER;
2884 		return (0);
2885 
2886 	case VD_STATE_VER:	/* expect attribute message */
2887 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
2888 			return (status);
2889 
2890 		/* Attributes exchanged, move to that state */
2891 		vd->state = VD_STATE_ATTR;
2892 		return (0);
2893 
2894 	case VD_STATE_ATTR:
2895 		switch (vd->xfer_mode) {
2896 		case VIO_DESC_MODE:	/* expect RDX message */
2897 			if ((status = process_rdx_msg(msg, msglen)) != 0)
2898 				return (status);
2899 
2900 			/* Ready to receive in-band descriptors */
2901 			vd->state = VD_STATE_DATA;
2902 			return (0);
2903 
2904 		case VIO_DRING_MODE:	/* expect register-dring message */
2905 			if ((status =
2906 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
2907 				return (status);
2908 
2909 			/* One dring negotiated, move to that state */
2910 			vd->state = VD_STATE_DRING;
2911 			return (0);
2912 
2913 		default:
2914 			ASSERT("Unsupported transfer mode");
2915 			PR0("Unsupported transfer mode");
2916 			return (ENOTSUP);
2917 		}
2918 
2919 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
2920 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
2921 			/* Ready to receive data */
2922 			vd->state = VD_STATE_DATA;
2923 			return (0);
2924 		} else if (status != ENOMSG) {
2925 			return (status);
2926 		}
2927 
2928 
2929 		/*
2930 		 * If another register-dring message is received, stay in
2931 		 * dring state in case the client sends RDX; although the
2932 		 * protocol allows multiple drings, this server does not
2933 		 * support using more than one
2934 		 */
2935 		if ((status =
2936 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
2937 			return (status);
2938 
2939 		/*
2940 		 * Acknowledge an unregister-dring message, but reset the
2941 		 * connection anyway:  Although the protocol allows
2942 		 * unregistering drings, this server cannot serve a vdisk
2943 		 * without its only dring
2944 		 */
2945 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
2946 		return ((status == 0) ? ENOTSUP : status);
2947 
2948 	case VD_STATE_DATA:
2949 		switch (vd->xfer_mode) {
2950 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
2951 			return (vd_process_desc_msg(vd, msg, msglen));
2952 
2953 		case VIO_DRING_MODE:	/* expect dring-data or unreg-dring */
2954 			/*
2955 			 * Typically expect dring-data messages, so handle
2956 			 * them first
2957 			 */
2958 			if ((status = vd_process_dring_msg(vd, msg,
2959 			    msglen)) != ENOMSG)
2960 				return (status);
2961 
2962 			/*
2963 			 * Acknowledge an unregister-dring message, but reset
2964 			 * the connection anyway:  Although the protocol
2965 			 * allows unregistering drings, this server cannot
2966 			 * serve a vdisk without its only dring
2967 			 */
2968 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
2969 			return ((status == 0) ? ENOTSUP : status);
2970 
2971 		default:
2972 			ASSERT("Unsupported transfer mode");
2973 			PR0("Unsupported transfer mode");
2974 			return (ENOTSUP);
2975 		}
2976 
2977 	default:
2978 		ASSERT("Invalid client connection state");
2979 		PR0("Invalid client connection state");
2980 		return (ENOTSUP);
2981 	}
2982 }
2983 
2984 static int
2985 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2986 {
2987 	int		status;
2988 	boolean_t	reset_ldc = B_FALSE;
2989 	vd_task_t	task;
2990 
2991 	/*
2992 	 * Check that the message is at least big enough for a "tag", so that
2993 	 * message processing can proceed based on tag-specified message type
2994 	 */
2995 	if (msglen < sizeof (vio_msg_tag_t)) {
2996 		PR0("Received short (%lu-byte) message", msglen);
2997 		/* Can't "nack" short message, so drop the big hammer */
2998 		PR0("initiating full reset");
2999 		vd_need_reset(vd, B_TRUE);
3000 		return (EBADMSG);
3001 	}
3002 
3003 	/*
3004 	 * Process the message
3005 	 */
3006 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
3007 	case 0:
3008 		/* "ack" valid, successfully-processed messages */
3009 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
3010 		break;
3011 
3012 	case EINPROGRESS:
3013 		/* The completion handler will "ack" or "nack" the message */
3014 		return (EINPROGRESS);
3015 	case ENOMSG:
3016 		PR0("Received unexpected message");
3017 		_NOTE(FALLTHROUGH);
3018 	case EBADMSG:
3019 	case ENOTSUP:
3020 		/* "transport" error will cause NACK of invalid messages */
3021 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
3022 		break;
3023 
3024 	default:
3025 		/* "transport" error will cause NACK of invalid messages */
3026 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
3027 		/* An LDC error probably occurred, so try resetting it */
3028 		reset_ldc = B_TRUE;
3029 		break;
3030 	}
3031 
3032 	PR1("\tResulting in state %d (%s)", vd->state,
3033 	    vd_decode_state(vd->state));
3034 
3035 	/* populate the task so we can dispatch it on the taskq */
3036 	task.vd = vd;
3037 	task.msg = msg;
3038 	task.msglen = msglen;
3039 
3040 	/*
3041 	 * Queue a task to send the notification that the operation completed.
3042 	 * We need to ensure that requests are responded to in the correct
3043 	 * order and since the taskq is processed serially this ordering
3044 	 * is maintained.
3045 	 */
3046 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
3047 	    &task, DDI_SLEEP);
3048 
3049 	/*
3050 	 * To ensure handshake negotiations do not happen out of order, such
3051 	 * requests that come through this path should not be done in parallel
3052 	 * so we need to wait here until the response is sent to the client.
3053 	 */
3054 	ddi_taskq_wait(vd->completionq);
3055 
3056 	/* Arrange to reset the connection for nack'ed or failed messages */
3057 	if ((status != 0) || reset_ldc) {
3058 		PR0("initiating %s reset",
3059 		    (reset_ldc) ? "full" : "soft");
3060 		vd_need_reset(vd, reset_ldc);
3061 	}
3062 
3063 	return (status);
3064 }
3065 
3066 static boolean_t
3067 vd_enabled(vd_t *vd)
3068 {
3069 	boolean_t	enabled;
3070 
3071 	mutex_enter(&vd->lock);
3072 	enabled = vd->enabled;
3073 	mutex_exit(&vd->lock);
3074 	return (enabled);
3075 }
3076 
3077 static void
3078 vd_recv_msg(void *arg)
3079 {
3080 	vd_t	*vd = (vd_t *)arg;
3081 	int	rv = 0, status = 0;
3082 
3083 	ASSERT(vd != NULL);
3084 
3085 	PR2("New task to receive incoming message(s)");
3086 
3087 
3088 	while (vd_enabled(vd) && status == 0) {
3089 		size_t		msglen, msgsize;
3090 		ldc_status_t	lstatus;
3091 
3092 		/*
3093 		 * Receive and process a message
3094 		 */
3095 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
3096 
3097 		/*
3098 		 * check if channel is UP - else break out of loop
3099 		 */
3100 		status = ldc_status(vd->ldc_handle, &lstatus);
3101 		if (lstatus != LDC_UP) {
3102 			PR0("channel not up (status=%d), exiting recv loop\n",
3103 			    lstatus);
3104 			break;
3105 		}
3106 
3107 		ASSERT(vd->max_msglen != 0);
3108 
3109 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
3110 		msglen	= msgsize;	  /* actual len after recv_msg() */
3111 
3112 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
3113 		switch (status) {
3114 		case 0:
3115 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
3116 			    msglen);
3117 			/* check if max_msglen changed */
3118 			if (msgsize != vd->max_msglen) {
3119 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
3120 				    msgsize, vd->max_msglen);
3121 				kmem_free(vd->vio_msgp, msgsize);
3122 				vd->vio_msgp =
3123 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
3124 			}
3125 			if (rv == EINPROGRESS)
3126 				continue;
3127 			break;
3128 
3129 		case ENOMSG:
3130 			break;
3131 
3132 		case ECONNRESET:
3133 			PR0("initiating soft reset (ECONNRESET)\n");
3134 			vd_need_reset(vd, B_FALSE);
3135 			status = 0;
3136 			break;
3137 
3138 		default:
3139 			/* Probably an LDC failure; arrange to reset it */
3140 			PR0("initiating full reset (status=0x%x)", status);
3141 			vd_need_reset(vd, B_TRUE);
3142 			break;
3143 		}
3144 	}
3145 
3146 	PR2("Task finished");
3147 }
3148 
3149 static uint_t
3150 vd_handle_ldc_events(uint64_t event, caddr_t arg)
3151 {
3152 	vd_t	*vd = (vd_t *)(void *)arg;
3153 	int	status;
3154 
3155 	ASSERT(vd != NULL);
3156 
3157 	if (!vd_enabled(vd))
3158 		return (LDC_SUCCESS);
3159 
3160 	if (event & LDC_EVT_DOWN) {
3161 		PR0("LDC_EVT_DOWN: LDC channel went down");
3162 
3163 		vd_need_reset(vd, B_TRUE);
3164 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
3165 		    DDI_SLEEP);
3166 		if (status == DDI_FAILURE) {
3167 			PR0("cannot schedule task to recv msg\n");
3168 			vd_need_reset(vd, B_TRUE);
3169 		}
3170 	}
3171 
3172 	if (event & LDC_EVT_RESET) {
3173 		PR0("LDC_EVT_RESET: LDC channel was reset");
3174 
3175 		if (vd->state != VD_STATE_INIT) {
3176 			PR0("scheduling full reset");
3177 			vd_need_reset(vd, B_FALSE);
3178 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
3179 			    vd, DDI_SLEEP);
3180 			if (status == DDI_FAILURE) {
3181 				PR0("cannot schedule task to recv msg\n");
3182 				vd_need_reset(vd, B_TRUE);
3183 			}
3184 
3185 		} else {
3186 			PR0("channel already reset, ignoring...\n");
3187 			PR0("doing ldc up...\n");
3188 			(void) ldc_up(vd->ldc_handle);
3189 		}
3190 
3191 		return (LDC_SUCCESS);
3192 	}
3193 
3194 	if (event & LDC_EVT_UP) {
3195 		PR0("EVT_UP: LDC is up\nResetting client connection state");
3196 		PR0("initiating soft reset");
3197 		vd_need_reset(vd, B_FALSE);
3198 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
3199 		    vd, DDI_SLEEP);
3200 		if (status == DDI_FAILURE) {
3201 			PR0("cannot schedule task to recv msg\n");
3202 			vd_need_reset(vd, B_TRUE);
3203 			return (LDC_SUCCESS);
3204 		}
3205 	}
3206 
3207 	if (event & LDC_EVT_READ) {
3208 		int	status;
3209 
3210 		PR1("New data available");
3211 		/* Queue a task to receive the new data */
3212 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
3213 		    DDI_SLEEP);
3214 
3215 		if (status == DDI_FAILURE) {
3216 			PR0("cannot schedule task to recv msg\n");
3217 			vd_need_reset(vd, B_TRUE);
3218 		}
3219 	}
3220 
3221 	return (LDC_SUCCESS);
3222 }
3223 
3224 static uint_t
3225 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3226 {
3227 	_NOTE(ARGUNUSED(key, val))
3228 	(*((uint_t *)arg))++;
3229 	return (MH_WALK_TERMINATE);
3230 }
3231 
3232 
3233 static int
3234 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3235 {
3236 	uint_t	vd_present = 0;
3237 	minor_t	instance;
3238 	vds_t	*vds;
3239 
3240 
3241 	switch (cmd) {
3242 	case DDI_DETACH:
3243 		/* the real work happens below */
3244 		break;
3245 	case DDI_SUSPEND:
3246 		PR0("No action required for DDI_SUSPEND");
3247 		return (DDI_SUCCESS);
3248 	default:
3249 		PR0("Unrecognized \"cmd\"");
3250 		return (DDI_FAILURE);
3251 	}
3252 
3253 	ASSERT(cmd == DDI_DETACH);
3254 	instance = ddi_get_instance(dip);
3255 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
3256 		PR0("Could not get state for instance %u", instance);
3257 		ddi_soft_state_free(vds_state, instance);
3258 		return (DDI_FAILURE);
3259 	}
3260 
3261 	/* Do no detach when serving any vdisks */
3262 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
3263 	if (vd_present) {
3264 		PR0("Not detaching because serving vdisks");
3265 		return (DDI_FAILURE);
3266 	}
3267 
3268 	PR0("Detaching");
3269 	if (vds->initialized & VDS_MDEG) {
3270 		(void) mdeg_unregister(vds->mdeg);
3271 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
3272 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
3273 		vds->ispecp = NULL;
3274 		vds->mdeg = NULL;
3275 	}
3276 
3277 	if (vds->initialized & VDS_LDI)
3278 		(void) ldi_ident_release(vds->ldi_ident);
3279 	mod_hash_destroy_hash(vds->vd_table);
3280 	ddi_soft_state_free(vds_state, instance);
3281 	return (DDI_SUCCESS);
3282 }
3283 
3284 static boolean_t
3285 is_pseudo_device(dev_info_t *dip)
3286 {
3287 	dev_info_t	*parent, *root = ddi_root_node();
3288 
3289 
3290 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
3291 	    parent = ddi_get_parent(parent)) {
3292 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
3293 			return (B_TRUE);
3294 	}
3295 
3296 	return (B_FALSE);
3297 }
3298 
3299 static int
3300 vd_setup_full_disk(vd_t *vd)
3301 {
3302 	int		rval, status;
3303 	major_t		major = getmajor(vd->dev[0]);
3304 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
3305 	struct dk_minfo	dk_minfo;
3306 
3307 	/*
3308 	 * At this point, vdisk_size is set to the size of partition 2 but
3309 	 * this does not represent the size of the disk because partition 2
3310 	 * may not cover the entire disk and its size does not include reserved
3311 	 * blocks. So we update vdisk_size to be the size of the entire disk.
3312 	 */
3313 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
3314 	    (intptr_t)&dk_minfo, (vd_open_flags | FKIOCTL),
3315 	    kcred, &rval)) != 0) {
3316 		PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
3317 		    status);
3318 		return (status);
3319 	}
3320 	vd->vdisk_size = dk_minfo.dki_capacity;
3321 
3322 	/* Set full-disk parameters */
3323 	vd->vdisk_type	= VD_DISK_TYPE_DISK;
3324 	vd->nslices	= (sizeof (vd->dev))/(sizeof (vd->dev[0]));
3325 
3326 	/* Move dev number and LDI handle to entire-disk-slice array elements */
3327 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
3328 	vd->dev[0]				= 0;
3329 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
3330 	vd->ldi_handle[0]			= NULL;
3331 
3332 	/* Initialize device numbers for remaining slices and open them */
3333 	for (int slice = 0; slice < vd->nslices; slice++) {
3334 		/*
3335 		 * Skip the entire-disk slice, as it's already open and its
3336 		 * device known
3337 		 */
3338 		if (slice == VD_ENTIRE_DISK_SLICE)
3339 			continue;
3340 		ASSERT(vd->dev[slice] == 0);
3341 		ASSERT(vd->ldi_handle[slice] == NULL);
3342 
3343 		/*
3344 		 * Construct the device number for the current slice
3345 		 */
3346 		vd->dev[slice] = makedevice(major, (minor + slice));
3347 
3348 		/*
3349 		 * Open all slices of the disk to serve them to the client.
3350 		 * Slices are opened exclusively to prevent other threads or
3351 		 * processes in the service domain from performing I/O to
3352 		 * slices being accessed by a client.  Failure to open a slice
3353 		 * results in vds not serving this disk, as the client could
3354 		 * attempt (and should be able) to access any slice immediately.
3355 		 * Any slices successfully opened before a failure will get
3356 		 * closed by vds_destroy_vd() as a result of the error returned
3357 		 * by this function.
3358 		 *
3359 		 * We need to do the open with FNDELAY so that opening an empty
3360 		 * slice does not fail.
3361 		 */
3362 		PR0("Opening device major %u, minor %u = slice %u",
3363 		    major, minor, slice);
3364 		if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
3365 		    vd_open_flags | FNDELAY, kcred, &vd->ldi_handle[slice],
3366 		    vd->vds->ldi_ident)) != 0) {
3367 			PRN("ldi_open_by_dev() returned errno %d "
3368 			    "for slice %u", status, slice);
3369 			/* vds_destroy_vd() will close any open slices */
3370 			vd->ldi_handle[slice] = NULL;
3371 			return (status);
3372 		}
3373 	}
3374 
3375 	return (0);
3376 }
3377 
3378 static int
3379 vd_setup_partition_efi(vd_t *vd)
3380 {
3381 	efi_gpt_t *gpt;
3382 	efi_gpe_t *gpe;
3383 	struct uuid uuid = EFI_RESERVED;
3384 	uint32_t crc;
3385 	int length;
3386 
3387 	length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t);
3388 
3389 	gpt = kmem_zalloc(length, KM_SLEEP);
3390 	gpe = (efi_gpe_t *)(gpt + 1);
3391 
3392 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
3393 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
3394 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
3395 	gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL);
3396 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
3397 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
3398 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
3399 
3400 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
3401 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
3402 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
3403 
3404 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
3405 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
3406 
3407 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
3408 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
3409 
3410 	vd->dk_efi.dki_lba = 0;
3411 	vd->dk_efi.dki_length = length;
3412 	vd->dk_efi.dki_data = gpt;
3413 
3414 	return (0);
3415 }
3416 
3417 static int
3418 vd_setup_file(vd_t *vd)
3419 {
3420 	int 		i, rval, status;
3421 	ushort_t	sum;
3422 	vattr_t		vattr;
3423 	dev_t		dev;
3424 	size_t		size;
3425 	char		*file_path = vd->device_path;
3426 	char		dev_path[MAXPATHLEN + 1];
3427 	char		prefix;
3428 	ldi_handle_t	lhandle;
3429 	struct dk_cinfo	dk_cinfo;
3430 	struct dk_label label;
3431 
3432 	/* make sure the file is valid */
3433 	if ((status = lookupname(file_path, UIO_SYSSPACE, FOLLOW,
3434 	    NULLVPP, &vd->file_vnode)) != 0) {
3435 		PRN("Cannot lookup file(%s) errno %d", file_path, status);
3436 		return (status);
3437 	}
3438 
3439 	if (vd->file_vnode->v_type != VREG) {
3440 		PRN("Invalid file type (%s)\n", file_path);
3441 		VN_RELE(vd->file_vnode);
3442 		return (EBADF);
3443 	}
3444 	VN_RELE(vd->file_vnode);
3445 
3446 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd_open_flags | FOFFMAX,
3447 	    0, &vd->file_vnode, 0, 0)) != 0) {
3448 		PRN("vn_open(%s) = errno %d", file_path, status);
3449 		return (status);
3450 	}
3451 
3452 	/*
3453 	 * We set vd->file now so that vds_destroy_vd will take care of
3454 	 * closing the file and releasing the vnode in case of an error.
3455 	 */
3456 	vd->file = B_TRUE;
3457 	vd->pseudo = B_FALSE;
3458 
3459 	vattr.va_mask = AT_SIZE;
3460 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred)) != 0) {
3461 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
3462 		return (EIO);
3463 	}
3464 
3465 	vd->file_size = vattr.va_size;
3466 	/* size should be at least sizeof(dk_label) */
3467 	if (vd->file_size < sizeof (struct dk_label)) {
3468 		PRN("Size of file has to be at least %ld bytes",
3469 		    sizeof (struct dk_label));
3470 		return (EIO);
3471 	}
3472 
3473 	if (vd->file_vnode->v_flag & VNOMAP) {
3474 		PRN("File %s cannot be mapped", file_path);
3475 		return (EIO);
3476 	}
3477 
3478 	/* read label from file */
3479 	if (VD_FILE_LABEL_READ(vd, &label) < 0) {
3480 		PRN("Can't read label from %s", file_path);
3481 		return (EIO);
3482 	}
3483 
3484 	/* label checksum */
3485 	sum = vd_lbl2cksum(&label);
3486 
3487 	if (label.dkl_magic != DKL_MAGIC || label.dkl_cksum != sum) {
3488 		PR0("%s has an invalid disk label "
3489 		    "(magic=%x cksum=%x (expect %x))",
3490 		    file_path, label.dkl_magic, label.dkl_cksum, sum);
3491 
3492 		/* default label */
3493 		bzero(&label, sizeof (struct dk_label));
3494 
3495 		/*
3496 		 * We must have a resonable number of cylinders and sectors so
3497 		 * that newfs can run using default values.
3498 		 *
3499 		 * if (disk_size < 2MB)
3500 		 * 	phys_cylinders = disk_size / 100K
3501 		 * else
3502 		 * 	phys_cylinders = disk_size / 300K
3503 		 *
3504 		 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
3505 		 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
3506 		 * data_cylinders = phys_cylinders - alt_cylinders
3507 		 *
3508 		 * sectors = disk_size / (phys_cylinders * blk_size)
3509 		 */
3510 		if (vd->file_size < (2 * 1024 * 1024))
3511 			label.dkl_pcyl = vd->file_size / (100 * 1024);
3512 		else
3513 			label.dkl_pcyl = vd->file_size / (300 * 1024);
3514 
3515 		if (label.dkl_pcyl == 0)
3516 			label.dkl_pcyl = 1;
3517 
3518 		if (label.dkl_pcyl > 2)
3519 			label.dkl_acyl = 2;
3520 		else
3521 			label.dkl_acyl = 0;
3522 
3523 		label.dkl_nsect = vd->file_size /
3524 		    (DEV_BSIZE * label.dkl_pcyl);
3525 		label.dkl_ncyl = label.dkl_pcyl - label.dkl_acyl;
3526 		label.dkl_nhead = 1;
3527 		label.dkl_write_reinstruct = 0;
3528 		label.dkl_read_reinstruct = 0;
3529 		label.dkl_rpm = 7200;
3530 		label.dkl_apc = 0;
3531 		label.dkl_intrlv = 0;
3532 		label.dkl_magic = DKL_MAGIC;
3533 
3534 		PR0("requested disk size: %ld bytes\n", vd->file_size);
3535 		PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label.dkl_pcyl,
3536 		    label.dkl_nhead, label.dkl_nsect);
3537 		PR0("provided disk size: %ld bytes\n", (uint64_t)
3538 		    (label.dkl_pcyl *
3539 		    label.dkl_nhead * label.dkl_nsect * DEV_BSIZE));
3540 
3541 		if (vd->file_size < (1ULL << 20)) {
3542 			size = vd->file_size >> 10;
3543 			prefix = 'K'; /* Kilobyte */
3544 		} else if (vd->file_size < (1ULL << 30)) {
3545 			size = vd->file_size >> 20;
3546 			prefix = 'M'; /* Megabyte */
3547 		} else if (vd->file_size < (1ULL << 40)) {
3548 			size = vd->file_size >> 30;
3549 			prefix = 'G'; /* Gigabyte */
3550 		} else {
3551 			size = vd->file_size >> 40;
3552 			prefix = 'T'; /* Terabyte */
3553 		}
3554 
3555 		/*
3556 		 * We must have a correct label name otherwise format(1m) will
3557 		 * not recognized the disk as labeled.
3558 		 */
3559 		(void) snprintf(label.dkl_asciilabel, LEN_DKL_ASCII,
3560 		    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
3561 		    size, prefix,
3562 		    label.dkl_ncyl, label.dkl_acyl, label.dkl_nhead,
3563 		    label.dkl_nsect);
3564 
3565 		/* default VTOC */
3566 		label.dkl_vtoc.v_version = V_VERSION;
3567 		label.dkl_vtoc.v_nparts = V_NUMPAR;
3568 		label.dkl_vtoc.v_sanity = VTOC_SANE;
3569 		label.dkl_vtoc.v_part[2].p_tag = V_BACKUP;
3570 		label.dkl_map[2].dkl_cylno = 0;
3571 		label.dkl_map[2].dkl_nblk = label.dkl_ncyl *
3572 		    label.dkl_nhead * label.dkl_nsect;
3573 		label.dkl_map[0] = label.dkl_map[2];
3574 		label.dkl_map[0] = label.dkl_map[2];
3575 		label.dkl_cksum = vd_lbl2cksum(&label);
3576 
3577 		/* write default label to file */
3578 		if ((rval = vd_file_set_vtoc(vd, &label)) != 0) {
3579 			PRN("Can't write label to %s", file_path);
3580 			return (rval);
3581 		}
3582 	}
3583 
3584 	vd->nslices = label.dkl_vtoc.v_nparts;
3585 
3586 	/* sector size = block size = DEV_BSIZE */
3587 	vd->vdisk_size = vd->file_size / DEV_BSIZE;
3588 	vd->vdisk_type = VD_DISK_TYPE_DISK;
3589 	vd->vdisk_label = VD_DISK_LABEL_VTOC;
3590 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
3591 
3592 	/* Get max_xfer_sz from the device where the file is */
3593 	dev = vd->file_vnode->v_vfsp->vfs_dev;
3594 	dev_path[0] = NULL;
3595 	if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) {
3596 		PR0("underlying device = %s\n", dev_path);
3597 	}
3598 
3599 	if ((status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD,
3600 	    kcred, &lhandle, vd->vds->ldi_ident)) != 0) {
3601 		PR0("ldi_open_by_dev() returned errno %d for device %s",
3602 		    status, dev_path);
3603 	} else {
3604 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
3605 		    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
3606 		    &rval)) != 0) {
3607 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
3608 			    status, dev_path);
3609 		} else {
3610 			/*
3611 			 * Store the device's max transfer size for
3612 			 * return to the client
3613 			 */
3614 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
3615 		}
3616 
3617 		PR0("close the device %s", dev_path);
3618 		(void) ldi_close(lhandle, FREAD, kcred);
3619 	}
3620 
3621 	PR0("using file %s, dev %s, max_xfer = %u blks",
3622 	    file_path, dev_path, vd->max_xfer_sz);
3623 
3624 	vd->dk_geom.dkg_ncyl = label.dkl_ncyl;
3625 	vd->dk_geom.dkg_acyl = label.dkl_acyl;
3626 	vd->dk_geom.dkg_pcyl = label.dkl_pcyl;
3627 	vd->dk_geom.dkg_nhead = label.dkl_nhead;
3628 	vd->dk_geom.dkg_nsect = label.dkl_nsect;
3629 	vd->dk_geom.dkg_intrlv = label.dkl_intrlv;
3630 	vd->dk_geom.dkg_apc = label.dkl_apc;
3631 	vd->dk_geom.dkg_rpm = label.dkl_rpm;
3632 	vd->dk_geom.dkg_write_reinstruct = label.dkl_write_reinstruct;
3633 	vd->dk_geom.dkg_read_reinstruct = label.dkl_read_reinstruct;
3634 
3635 	vd->vtoc.v_sanity = label.dkl_vtoc.v_sanity;
3636 	vd->vtoc.v_version = label.dkl_vtoc.v_version;
3637 	vd->vtoc.v_sectorsz = DEV_BSIZE;
3638 	vd->vtoc.v_nparts = label.dkl_vtoc.v_nparts;
3639 
3640 	bcopy(label.dkl_vtoc.v_volume, vd->vtoc.v_volume,
3641 	    LEN_DKL_VVOL);
3642 	bcopy(label.dkl_asciilabel, vd->vtoc.v_asciilabel,
3643 	    LEN_DKL_ASCII);
3644 
3645 	for (i = 0; i < vd->nslices; i++) {
3646 		vd->vtoc.timestamp[i] = label.dkl_vtoc.v_timestamp[i];
3647 		vd->vtoc.v_part[i].p_tag = label.dkl_vtoc.v_part[i].p_tag;
3648 		vd->vtoc.v_part[i].p_flag = label.dkl_vtoc.v_part[i].p_flag;
3649 		vd->vtoc.v_part[i].p_start = label.dkl_map[i].dkl_cylno *
3650 		    label.dkl_nhead * label.dkl_nsect;
3651 		vd->vtoc.v_part[i].p_size = label.dkl_map[i].dkl_nblk;
3652 		vd->ldi_handle[i] = NULL;
3653 		vd->dev[i] = NULL;
3654 	}
3655 
3656 	/* Setup devid for the disk image */
3657 
3658 	status = vd_file_read_devid(vd, &vd->file_devid);
3659 
3660 	if (status == 0) {
3661 		/* a valid devid was found */
3662 		return (0);
3663 	}
3664 
3665 	if (status != EINVAL) {
3666 		/*
3667 		 * There was an error while trying to read the devid. So this
3668 		 * disk image may have a devid but we are unable to read it.
3669 		 */
3670 		PR0("can not read devid for %s", file_path);
3671 		vd->file_devid = NULL;
3672 		return (0);
3673 	}
3674 
3675 	/*
3676 	 * No valid device id was found so we create one. Note that a failure
3677 	 * to create a device id is not fatal and does not prevent the disk
3678 	 * image from being attached.
3679 	 */
3680 	PR1("creating devid for %s", file_path);
3681 
3682 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
3683 	    &vd->file_devid) != DDI_SUCCESS) {
3684 		PR0("fail to create devid for %s", file_path);
3685 		vd->file_devid = NULL;
3686 		return (0);
3687 	}
3688 
3689 	/* write devid to the disk image */
3690 	if (vd_file_write_devid(vd, vd->file_devid) != 0) {
3691 		PR0("fail to write devid for %s", file_path);
3692 		ddi_devid_free(vd->file_devid);
3693 		vd->file_devid = NULL;
3694 	}
3695 
3696 	return (0);
3697 }
3698 
3699 static int
3700 vd_setup_vd(vd_t *vd)
3701 {
3702 	int		rval, status;
3703 	dev_info_t	*dip;
3704 	struct dk_cinfo	dk_cinfo;
3705 	char		*device_path = vd->device_path;
3706 
3707 	/*
3708 	 * We need to open with FNDELAY so that opening an empty partition
3709 	 * does not fail.
3710 	 */
3711 	if ((status = ldi_open_by_name(device_path, vd_open_flags | FNDELAY,
3712 	    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident)) != 0) {
3713 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
3714 		vd->ldi_handle[0] = NULL;
3715 
3716 		/* this may not be a device try opening as a file */
3717 		if (status == ENXIO || status == ENODEV)
3718 			status = vd_setup_file(vd);
3719 		if (status) {
3720 			PRN("Cannot use device/file (%s), errno=%d\n",
3721 			    device_path, status);
3722 			if (status == ENXIO || status == ENODEV ||
3723 			    status == ENOENT) {
3724 				return (EAGAIN);
3725 			}
3726 		}
3727 		return (status);
3728 	}
3729 
3730 	/*
3731 	 * nslices must be updated now so that vds_destroy_vd() will close
3732 	 * the slice we have just opened in case of an error.
3733 	 */
3734 	vd->nslices = 1;
3735 	vd->file = B_FALSE;
3736 
3737 	/* Get device number and size of backing device */
3738 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
3739 		PRN("ldi_get_dev() returned errno %d for %s",
3740 		    status, device_path);
3741 		return (status);
3742 	}
3743 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
3744 		PRN("ldi_get_size() failed for %s", device_path);
3745 		return (EIO);
3746 	}
3747 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
3748 
3749 	/* Verify backing device supports dk_cinfo, dk_geom, and vtoc */
3750 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
3751 	    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
3752 	    &rval)) != 0) {
3753 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
3754 		    status, device_path);
3755 		return (status);
3756 	}
3757 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
3758 		PRN("slice %u >= maximum slice %u for %s",
3759 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
3760 		return (EIO);
3761 	}
3762 
3763 	status = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc, &vd->vdisk_label);
3764 
3765 	if (status != 0) {
3766 		PRN("vd_read_vtoc returned errno %d for %s",
3767 		    status, device_path);
3768 		return (status);
3769 	}
3770 
3771 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
3772 	    (status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
3773 	    (intptr_t)&vd->dk_geom, (vd_open_flags | FKIOCTL),
3774 	    kcred, &rval)) != 0) {
3775 		PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
3776 		    status, device_path);
3777 		return (status);
3778 	}
3779 
3780 	/* Store the device's max transfer size for return to the client */
3781 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
3782 
3783 	/* Determine if backing device is a pseudo device */
3784 	if ((dip = ddi_hold_devi_by_instance(getmajor(vd->dev[0]),
3785 	    dev_to_instance(vd->dev[0]), 0))  == NULL) {
3786 		PRN("%s is no longer accessible", device_path);
3787 		return (EIO);
3788 	}
3789 	vd->pseudo = is_pseudo_device(dip);
3790 	ddi_release_devi(dip);
3791 	if (vd->pseudo) {
3792 		vd->vdisk_type	= VD_DISK_TYPE_SLICE;
3793 		vd->nslices	= 1;
3794 		return (0);	/* ...and we're done */
3795 	}
3796 
3797 	/* If slice is entire-disk slice, initialize for full disk */
3798 	if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE)
3799 		return (vd_setup_full_disk(vd));
3800 
3801 
3802 	/* Otherwise, we have a non-entire slice of a device */
3803 	vd->vdisk_type	= VD_DISK_TYPE_SLICE;
3804 	vd->nslices	= 1;
3805 
3806 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
3807 		status = vd_setup_partition_efi(vd);
3808 		return (status);
3809 	}
3810 
3811 	/* Initialize dk_geom structure for single-slice device */
3812 	if (vd->dk_geom.dkg_nsect == 0) {
3813 		PRN("%s geometry claims 0 sectors per track", device_path);
3814 		return (EIO);
3815 	}
3816 	if (vd->dk_geom.dkg_nhead == 0) {
3817 		PRN("%s geometry claims 0 heads", device_path);
3818 		return (EIO);
3819 	}
3820 	vd->dk_geom.dkg_ncyl =
3821 	    vd->vdisk_size/vd->dk_geom.dkg_nsect/vd->dk_geom.dkg_nhead;
3822 	vd->dk_geom.dkg_acyl = 0;
3823 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
3824 
3825 
3826 	/* Initialize vtoc structure for single-slice device */
3827 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
3828 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
3829 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
3830 	vd->vtoc.v_nparts = 1;
3831 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
3832 	vd->vtoc.v_part[0].p_flag = 0;
3833 	vd->vtoc.v_part[0].p_start = 0;
3834 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
3835 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
3836 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
3837 
3838 
3839 	return (0);
3840 }
3841 
3842 static int
3843 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id,
3844     vd_t **vdp)
3845 {
3846 	char			tq_name[TASKQ_NAMELEN];
3847 	int			status;
3848 	ddi_iblock_cookie_t	iblock = NULL;
3849 	ldc_attr_t		ldc_attr;
3850 	vd_t			*vd;
3851 
3852 
3853 	ASSERT(vds != NULL);
3854 	ASSERT(device_path != NULL);
3855 	ASSERT(vdp != NULL);
3856 	PR0("Adding vdisk for %s", device_path);
3857 
3858 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
3859 		PRN("No memory for virtual disk");
3860 		return (EAGAIN);
3861 	}
3862 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
3863 	vd->vds = vds;
3864 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
3865 
3866 	/* Open vdisk and initialize parameters */
3867 	if ((status = vd_setup_vd(vd)) == 0) {
3868 		vd->initialized |= VD_DISK_READY;
3869 
3870 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
3871 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
3872 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
3873 		    (vd->pseudo ? "yes" : "no"), (vd->file ? "yes" : "no"),
3874 		    vd->nslices);
3875 	} else {
3876 		if (status != EAGAIN)
3877 			return (status);
3878 	}
3879 
3880 	/* Initialize locking */
3881 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
3882 	    &iblock) != DDI_SUCCESS) {
3883 		PRN("Could not get iblock cookie.");
3884 		return (EIO);
3885 	}
3886 
3887 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
3888 	vd->initialized |= VD_LOCKING;
3889 
3890 
3891 	/* Create start and completion task queues for the vdisk */
3892 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
3893 	PR1("tq_name = %s", tq_name);
3894 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
3895 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
3896 		PRN("Could not create task queue");
3897 		return (EIO);
3898 	}
3899 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
3900 	PR1("tq_name = %s", tq_name);
3901 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
3902 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
3903 		PRN("Could not create task queue");
3904 		return (EIO);
3905 	}
3906 	vd->enabled = 1;	/* before callback can dispatch to startq */
3907 
3908 
3909 	/* Bring up LDC */
3910 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
3911 	ldc_attr.instance	= ddi_get_instance(vds->dip);
3912 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
3913 	ldc_attr.mtu		= VD_LDC_MTU;
3914 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
3915 		PRN("Could not initialize LDC channel %lu, "
3916 		    "init failed with error %d", ldc_id, status);
3917 		return (status);
3918 	}
3919 	vd->initialized |= VD_LDC;
3920 
3921 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
3922 	    (caddr_t)vd)) != 0) {
3923 		PRN("Could not initialize LDC channel %lu,"
3924 		    "reg_callback failed with error %d", ldc_id, status);
3925 		return (status);
3926 	}
3927 
3928 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
3929 		PRN("Could not initialize LDC channel %lu,"
3930 		    "open failed with error %d", ldc_id, status);
3931 		return (status);
3932 	}
3933 
3934 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
3935 		PR0("ldc_up() returned errno %d", status);
3936 	}
3937 
3938 	/* Allocate the inband task memory handle */
3939 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
3940 	if (status) {
3941 		PRN("Could not initialize LDC channel %lu,"
3942 		    "alloc_handle failed with error %d", ldc_id, status);
3943 		return (ENXIO);
3944 	}
3945 
3946 	/* Add the successfully-initialized vdisk to the server's table */
3947 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
3948 		PRN("Error adding vdisk ID %lu to table", id);
3949 		return (EIO);
3950 	}
3951 
3952 	/* Allocate the staging buffer */
3953 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
3954 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
3955 
3956 	/* store initial state */
3957 	vd->state = VD_STATE_INIT;
3958 
3959 	return (0);
3960 }
3961 
3962 static void
3963 vd_free_dring_task(vd_t *vdp)
3964 {
3965 	if (vdp->dring_task != NULL) {
3966 		ASSERT(vdp->dring_len != 0);
3967 		/* Free all dring_task memory handles */
3968 		for (int i = 0; i < vdp->dring_len; i++) {
3969 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
3970 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
3971 			vdp->dring_task[i].msg = NULL;
3972 		}
3973 		kmem_free(vdp->dring_task,
3974 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
3975 		vdp->dring_task = NULL;
3976 	}
3977 }
3978 
3979 /*
3980  * Destroy the state associated with a virtual disk
3981  */
3982 static void
3983 vds_destroy_vd(void *arg)
3984 {
3985 	vd_t	*vd = (vd_t *)arg;
3986 	int	retry = 0, rv;
3987 
3988 	if (vd == NULL)
3989 		return;
3990 
3991 	PR0("Destroying vdisk state");
3992 
3993 	if (vd->dk_efi.dki_data != NULL)
3994 		kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length);
3995 
3996 	/* Disable queuing requests for the vdisk */
3997 	if (vd->initialized & VD_LOCKING) {
3998 		mutex_enter(&vd->lock);
3999 		vd->enabled = 0;
4000 		mutex_exit(&vd->lock);
4001 	}
4002 
4003 	/* Drain and destroy start queue (*before* destroying completionq) */
4004 	if (vd->startq != NULL)
4005 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
4006 
4007 	/* Drain and destroy completion queue (*before* shutting down LDC) */
4008 	if (vd->completionq != NULL)
4009 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
4010 
4011 	vd_free_dring_task(vd);
4012 
4013 	/* Free the inband task memory handle */
4014 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
4015 
4016 	/* Shut down LDC */
4017 	if (vd->initialized & VD_LDC) {
4018 		/* unmap the dring */
4019 		if (vd->initialized & VD_DRING)
4020 			(void) ldc_mem_dring_unmap(vd->dring_handle);
4021 
4022 		/* close LDC channel - retry on EAGAIN */
4023 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
4024 			if (++retry > vds_ldc_retries) {
4025 				PR0("Timed out closing channel");
4026 				break;
4027 			}
4028 			drv_usecwait(vds_ldc_delay);
4029 		}
4030 		if (rv == 0) {
4031 			(void) ldc_unreg_callback(vd->ldc_handle);
4032 			(void) ldc_fini(vd->ldc_handle);
4033 		} else {
4034 			/*
4035 			 * Closing the LDC channel has failed. Ideally we should
4036 			 * fail here but there is no Zeus level infrastructure
4037 			 * to handle this. The MD has already been changed and
4038 			 * we have to do the close. So we try to do as much
4039 			 * clean up as we can.
4040 			 */
4041 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
4042 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
4043 				drv_usecwait(vds_ldc_delay);
4044 		}
4045 	}
4046 
4047 	/* Free the staging buffer for msgs */
4048 	if (vd->vio_msgp != NULL) {
4049 		kmem_free(vd->vio_msgp, vd->max_msglen);
4050 		vd->vio_msgp = NULL;
4051 	}
4052 
4053 	/* Free the inband message buffer */
4054 	if (vd->inband_task.msg != NULL) {
4055 		kmem_free(vd->inband_task.msg, vd->max_msglen);
4056 		vd->inband_task.msg = NULL;
4057 	}
4058 	if (vd->file) {
4059 		/* Close file */
4060 		(void) VOP_CLOSE(vd->file_vnode, vd_open_flags, 1,
4061 		    0, kcred);
4062 		VN_RELE(vd->file_vnode);
4063 		if (vd->file_devid != NULL)
4064 			ddi_devid_free(vd->file_devid);
4065 	} else {
4066 		/* Close any open backing-device slices */
4067 		for (uint_t slice = 0; slice < vd->nslices; slice++) {
4068 			if (vd->ldi_handle[slice] != NULL) {
4069 				PR0("Closing slice %u", slice);
4070 				(void) ldi_close(vd->ldi_handle[slice],
4071 				    vd_open_flags | FNDELAY, kcred);
4072 			}
4073 		}
4074 	}
4075 
4076 	/* Free lock */
4077 	if (vd->initialized & VD_LOCKING)
4078 		mutex_destroy(&vd->lock);
4079 
4080 	/* Finally, free the vdisk structure itself */
4081 	kmem_free(vd, sizeof (*vd));
4082 }
4083 
4084 static int
4085 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id)
4086 {
4087 	int	status;
4088 	vd_t	*vd = NULL;
4089 
4090 
4091 	if ((status = vds_do_init_vd(vds, id, device_path, ldc_id, &vd)) != 0)
4092 		vds_destroy_vd(vd);
4093 
4094 	return (status);
4095 }
4096 
4097 static int
4098 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
4099     uint64_t *ldc_id)
4100 {
4101 	int	num_channels;
4102 
4103 
4104 	/* Look for channel endpoint child(ren) of the vdisk MD node */
4105 	if ((num_channels = md_scan_dag(md, vd_node,
4106 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
4107 	    md_find_name(md, "fwd"), channel)) <= 0) {
4108 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
4109 		return (-1);
4110 	}
4111 
4112 	/* Get the "id" value for the first channel endpoint node */
4113 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
4114 		PRN("No \"%s\" property found for \"%s\" of vdisk",
4115 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
4116 		return (-1);
4117 	}
4118 
4119 	if (num_channels > 1) {
4120 		PRN("Using ID of first of multiple channels for this vdisk");
4121 	}
4122 
4123 	return (0);
4124 }
4125 
4126 static int
4127 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
4128 {
4129 	int		num_nodes, status;
4130 	size_t		size;
4131 	mde_cookie_t	*channel;
4132 
4133 
4134 	if ((num_nodes = md_node_count(md)) <= 0) {
4135 		PRN("Invalid node count in Machine Description subtree");
4136 		return (-1);
4137 	}
4138 	size = num_nodes*(sizeof (*channel));
4139 	channel = kmem_zalloc(size, KM_SLEEP);
4140 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
4141 	kmem_free(channel, size);
4142 
4143 	return (status);
4144 }
4145 
4146 static void
4147 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
4148 {
4149 	char		*device_path = NULL;
4150 	uint64_t	id = 0, ldc_id = 0;
4151 
4152 
4153 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
4154 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
4155 		return;
4156 	}
4157 	PR0("Adding vdisk ID %lu", id);
4158 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
4159 	    &device_path) != 0) {
4160 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
4161 		return;
4162 	}
4163 
4164 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
4165 		PRN("Error getting LDC ID for vdisk %lu", id);
4166 		return;
4167 	}
4168 
4169 	if (vds_init_vd(vds, id, device_path, ldc_id) != 0) {
4170 		PRN("Failed to add vdisk ID %lu", id);
4171 		return;
4172 	}
4173 }
4174 
4175 static void
4176 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
4177 {
4178 	uint64_t	id = 0;
4179 
4180 
4181 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
4182 		PRN("Unable to get \"%s\" property from vdisk's MD node",
4183 		    VD_ID_PROP);
4184 		return;
4185 	}
4186 	PR0("Removing vdisk ID %lu", id);
4187 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
4188 		PRN("No vdisk entry found for vdisk ID %lu", id);
4189 }
4190 
4191 static void
4192 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
4193     md_t *curr_md, mde_cookie_t curr_vd_node)
4194 {
4195 	char		*curr_dev, *prev_dev;
4196 	uint64_t	curr_id = 0, curr_ldc_id = 0;
4197 	uint64_t	prev_id = 0, prev_ldc_id = 0;
4198 	size_t		len;
4199 
4200 
4201 	/* Validate that vdisk ID has not changed */
4202 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
4203 		PRN("Error getting previous vdisk \"%s\" property",
4204 		    VD_ID_PROP);
4205 		return;
4206 	}
4207 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
4208 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
4209 		return;
4210 	}
4211 	if (curr_id != prev_id) {
4212 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
4213 		    prev_id, curr_id);
4214 		return;
4215 	}
4216 
4217 	/* Validate that LDC ID has not changed */
4218 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
4219 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
4220 		return;
4221 	}
4222 
4223 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
4224 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
4225 		return;
4226 	}
4227 	if (curr_ldc_id != prev_ldc_id) {
4228 		_NOTE(NOTREACHED);	/* lint is confused */
4229 		PRN("Not changing vdisk:  "
4230 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
4231 		return;
4232 	}
4233 
4234 	/* Determine whether device path has changed */
4235 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
4236 	    &prev_dev) != 0) {
4237 		PRN("Error getting previous vdisk \"%s\"",
4238 		    VD_BLOCK_DEVICE_PROP);
4239 		return;
4240 	}
4241 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
4242 	    &curr_dev) != 0) {
4243 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
4244 		return;
4245 	}
4246 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
4247 	    (strncmp(curr_dev, prev_dev, len) == 0))
4248 		return;	/* no relevant (supported) change */
4249 
4250 	PR0("Changing vdisk ID %lu", prev_id);
4251 
4252 	/* Remove old state, which will close vdisk and reset */
4253 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
4254 		PRN("No entry found for vdisk ID %lu", prev_id);
4255 
4256 	/* Re-initialize vdisk with new state */
4257 	if (vds_init_vd(vds, curr_id, curr_dev, curr_ldc_id) != 0) {
4258 		PRN("Failed to change vdisk ID %lu", curr_id);
4259 		return;
4260 	}
4261 }
4262 
4263 static int
4264 vds_process_md(void *arg, mdeg_result_t *md)
4265 {
4266 	int	i;
4267 	vds_t	*vds = arg;
4268 
4269 
4270 	if (md == NULL)
4271 		return (MDEG_FAILURE);
4272 	ASSERT(vds != NULL);
4273 
4274 	for (i = 0; i < md->removed.nelem; i++)
4275 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
4276 	for (i = 0; i < md->match_curr.nelem; i++)
4277 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
4278 		    md->match_curr.mdp, md->match_curr.mdep[i]);
4279 	for (i = 0; i < md->added.nelem; i++)
4280 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
4281 
4282 	return (MDEG_SUCCESS);
4283 }
4284 
4285 
4286 static int
4287 vds_do_attach(dev_info_t *dip)
4288 {
4289 	int			status, sz;
4290 	int			cfg_handle;
4291 	minor_t			instance = ddi_get_instance(dip);
4292 	vds_t			*vds;
4293 	mdeg_prop_spec_t	*pspecp;
4294 	mdeg_node_spec_t	*ispecp;
4295 
4296 	/*
4297 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
4298 	 * notion of "instance", or unique identifier, for that node; OBP
4299 	 * stores the value of the "cfg-handle" MD property as the value of
4300 	 * the "reg" property on the node in the device tree it builds from
4301 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
4302 	 * "reg" property value to uniquely identify this device instance when
4303 	 * registering with the MD event-generation framework.  If the "reg"
4304 	 * property cannot be found, the device tree state is presumably so
4305 	 * broken that there is no point in continuing.
4306 	 */
4307 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
4308 	    VD_REG_PROP)) {
4309 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
4310 		return (DDI_FAILURE);
4311 	}
4312 
4313 	/* Get the MD instance for later MDEG registration */
4314 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
4315 	    VD_REG_PROP, -1);
4316 
4317 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
4318 		PRN("Could not allocate state for instance %u", instance);
4319 		return (DDI_FAILURE);
4320 	}
4321 
4322 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
4323 		PRN("Could not get state for instance %u", instance);
4324 		ddi_soft_state_free(vds_state, instance);
4325 		return (DDI_FAILURE);
4326 	}
4327 
4328 	vds->dip	= dip;
4329 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
4330 	    vds_destroy_vd, sizeof (void *));
4331 
4332 	ASSERT(vds->vd_table != NULL);
4333 
4334 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
4335 		PRN("ldi_ident_from_dip() returned errno %d", status);
4336 		return (DDI_FAILURE);
4337 	}
4338 	vds->initialized |= VDS_LDI;
4339 
4340 	/* Register for MD updates */
4341 	sz = sizeof (vds_prop_template);
4342 	pspecp = kmem_alloc(sz, KM_SLEEP);
4343 	bcopy(vds_prop_template, pspecp, sz);
4344 
4345 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
4346 
4347 	/* initialize the complete prop spec structure */
4348 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
4349 	ispecp->namep = "virtual-device";
4350 	ispecp->specp = pspecp;
4351 
4352 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
4353 	    &vds->mdeg) != MDEG_SUCCESS) {
4354 		PRN("Unable to register for MD updates");
4355 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
4356 		kmem_free(pspecp, sz);
4357 		return (DDI_FAILURE);
4358 	}
4359 
4360 	vds->ispecp = ispecp;
4361 	vds->initialized |= VDS_MDEG;
4362 
4363 	/* Prevent auto-detaching so driver is available whenever MD changes */
4364 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
4365 	    DDI_PROP_SUCCESS) {
4366 		PRN("failed to set \"%s\" property for instance %u",
4367 		    DDI_NO_AUTODETACH, instance);
4368 	}
4369 
4370 	ddi_report_dev(dip);
4371 	return (DDI_SUCCESS);
4372 }
4373 
4374 static int
4375 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
4376 {
4377 	int	status;
4378 
4379 	switch (cmd) {
4380 	case DDI_ATTACH:
4381 		PR0("Attaching");
4382 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
4383 			(void) vds_detach(dip, DDI_DETACH);
4384 		return (status);
4385 	case DDI_RESUME:
4386 		PR0("No action required for DDI_RESUME");
4387 		return (DDI_SUCCESS);
4388 	default:
4389 		return (DDI_FAILURE);
4390 	}
4391 }
4392 
4393 static struct dev_ops vds_ops = {
4394 	DEVO_REV,	/* devo_rev */
4395 	0,		/* devo_refcnt */
4396 	ddi_no_info,	/* devo_getinfo */
4397 	nulldev,	/* devo_identify */
4398 	nulldev,	/* devo_probe */
4399 	vds_attach,	/* devo_attach */
4400 	vds_detach,	/* devo_detach */
4401 	nodev,		/* devo_reset */
4402 	NULL,		/* devo_cb_ops */
4403 	NULL,		/* devo_bus_ops */
4404 	nulldev		/* devo_power */
4405 };
4406 
4407 static struct modldrv modldrv = {
4408 	&mod_driverops,
4409 	"virtual disk server",
4410 	&vds_ops,
4411 };
4412 
4413 static struct modlinkage modlinkage = {
4414 	MODREV_1,
4415 	&modldrv,
4416 	NULL
4417 };
4418 
4419 
4420 int
4421 _init(void)
4422 {
4423 	int		i, status;
4424 
4425 
4426 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
4427 		return (status);
4428 	if ((status = mod_install(&modlinkage)) != 0) {
4429 		ddi_soft_state_fini(&vds_state);
4430 		return (status);
4431 	}
4432 
4433 	/* Fill in the bit-mask of server-supported operations */
4434 	for (i = 0; i < vds_noperations; i++)
4435 		vds_operations |= 1 << (vds_operation[i].operation - 1);
4436 
4437 	return (0);
4438 }
4439 
4440 int
4441 _info(struct modinfo *modinfop)
4442 {
4443 	return (mod_info(&modlinkage, modinfop));
4444 }
4445 
4446 int
4447 _fini(void)
4448 {
4449 	int	status;
4450 
4451 
4452 	if ((status = mod_remove(&modlinkage)) != 0)
4453 		return (status);
4454 	ddi_soft_state_fini(&vds_state);
4455 	return (0);
4456 }
4457