xref: /titanic_44/usr/src/uts/sun4v/io/vds.c (revision 200c5a5a428f15c16e2a526ed69d462af62e8e1a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/mdeg.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sunddi.h>
45 #include <sys/sunldi.h>
46 #include <sys/sysmacros.h>
47 #include <sys/vio_common.h>
48 #include <sys/vdsk_mailbox.h>
49 #include <sys/vdsk_common.h>
50 #include <sys/vtoc.h>
51 #include <sys/vfs.h>
52 #include <sys/stat.h>
53 #include <vm/seg_map.h>
54 
55 /* Virtual disk server initialization flags */
56 #define	VDS_LDI			0x01
57 #define	VDS_MDEG		0x02
58 
59 /* Virtual disk server tunable parameters */
60 #define	VDS_RETRIES		5
61 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
62 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
63 #define	VDS_NCHAINS		32
64 
65 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
66 #define	VDS_NAME		"virtual-disk-server"
67 
68 #define	VD_NAME			"vd"
69 #define	VD_VOLUME_NAME		"vdisk"
70 #define	VD_ASCIILABEL		"Virtual Disk"
71 
72 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
73 #define	VD_ID_PROP		"id"
74 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
75 #define	VD_REG_PROP		"reg"
76 
77 /* Virtual disk initialization flags */
78 #define	VD_DISK_READY		0x01
79 #define	VD_LOCKING		0x02
80 #define	VD_LDC			0x04
81 #define	VD_DRING		0x08
82 #define	VD_SID			0x10
83 #define	VD_SEQ_NUM		0x20
84 
85 /* Flags for opening/closing backing devices via LDI */
86 #define	VD_OPEN_FLAGS		(FEXCL | FREAD | FWRITE)
87 
88 /*
89  * By Solaris convention, slice/partition 2 represents the entire disk;
90  * unfortunately, this convention does not appear to be codified.
91  */
92 #define	VD_ENTIRE_DISK_SLICE	2
93 
94 /* Return a cpp token as a string */
95 #define	STRINGIZE(token)	#token
96 
97 /*
98  * Print a message prefixed with the current function name to the message log
99  * (and optionally to the console for verbose boots); these macros use cpp's
100  * concatenation of string literals and C99 variable-length-argument-list
101  * macros
102  */
103 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
104 #define	_PRN(format, ...)					\
105 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
106 
107 /* Return a pointer to the "i"th vdisk dring element */
108 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
109 	    (vd->dring + (i)*vd->descriptor_size))
110 
111 /* Return the virtual disk client's type as a string (for use in messages) */
112 #define	VD_CLIENT(vd)							\
113 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
114 	    (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" :	\
115 		(((vd)->xfer_mode == 0) ? "null client" :		\
116 		    "unsupported client")))
117 
118 /* For IO to raw disk on file */
119 #define	VD_FILE_SLICE_NONE	-1
120 
121 /* Read disk label from a disk on file */
122 #define	VD_FILE_LABEL_READ(vd, labelp) \
123 	vd_file_rw(vd, VD_FILE_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
124 	    0, sizeof (struct dk_label))
125 
126 /* Write disk label to a disk on file */
127 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
128 	vd_file_rw(vd, VD_FILE_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
129 	    0, sizeof (struct dk_label))
130 
131 /*
132  * Specification of an MD node passed to the MDEG to filter any
133  * 'vport' nodes that do not belong to the specified node. This
134  * template is copied for each vds instance and filled in with
135  * the appropriate 'cfg-handle' value before being passed to the MDEG.
136  */
137 static mdeg_prop_spec_t	vds_prop_template[] = {
138 	{ MDET_PROP_STR,	"name",		VDS_NAME },
139 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
140 	{ MDET_LIST_END,	NULL, 		NULL }
141 };
142 
143 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
144 
145 /*
146  * Matching criteria passed to the MDEG to register interest
147  * in changes to 'virtual-device-port' nodes identified by their
148  * 'id' property.
149  */
150 static md_prop_match_t	vd_prop_match[] = {
151 	{ MDET_PROP_VAL,	VD_ID_PROP },
152 	{ MDET_LIST_END,	NULL }
153 };
154 
155 static mdeg_node_match_t vd_match = {"virtual-device-port",
156 				    vd_prop_match};
157 
158 /* Debugging macros */
159 #ifdef DEBUG
160 
161 static int	vd_msglevel = 0;
162 
163 #define	PR0 if (vd_msglevel > 0)	PRN
164 #define	PR1 if (vd_msglevel > 1)	PRN
165 #define	PR2 if (vd_msglevel > 2)	PRN
166 
167 #define	VD_DUMP_DRING_ELEM(elem)					\
168 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
169 	    elem->hdr.dstate,						\
170 	    elem->payload.operation,					\
171 	    elem->payload.status,					\
172 	    elem->payload.nbytes,					\
173 	    elem->payload.addr,						\
174 	    elem->payload.ncookies);
175 
176 char *
177 vd_decode_state(int state)
178 {
179 	char *str;
180 
181 #define	CASE_STATE(_s)	case _s: str = #_s; break;
182 
183 	switch (state) {
184 	CASE_STATE(VD_STATE_INIT)
185 	CASE_STATE(VD_STATE_VER)
186 	CASE_STATE(VD_STATE_ATTR)
187 	CASE_STATE(VD_STATE_DRING)
188 	CASE_STATE(VD_STATE_RDX)
189 	CASE_STATE(VD_STATE_DATA)
190 	default: str = "unknown"; break;
191 	}
192 
193 #undef CASE_STATE
194 
195 	return (str);
196 }
197 
198 void
199 vd_decode_tag(vio_msg_t *msg)
200 {
201 	char *tstr, *sstr, *estr;
202 
203 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
204 
205 	switch (msg->tag.vio_msgtype) {
206 	CASE_TYPE(VIO_TYPE_CTRL)
207 	CASE_TYPE(VIO_TYPE_DATA)
208 	CASE_TYPE(VIO_TYPE_ERR)
209 	default: tstr = "unknown"; break;
210 	}
211 
212 #undef CASE_TYPE
213 
214 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
215 
216 	switch (msg->tag.vio_subtype) {
217 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
218 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
219 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
220 	default: sstr = "unknown"; break;
221 	}
222 
223 #undef CASE_SUBTYPE
224 
225 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
226 
227 	switch (msg->tag.vio_subtype_env) {
228 	CASE_ENV(VIO_VER_INFO)
229 	CASE_ENV(VIO_ATTR_INFO)
230 	CASE_ENV(VIO_DRING_REG)
231 	CASE_ENV(VIO_DRING_UNREG)
232 	CASE_ENV(VIO_RDX)
233 	CASE_ENV(VIO_PKT_DATA)
234 	CASE_ENV(VIO_DESC_DATA)
235 	CASE_ENV(VIO_DRING_DATA)
236 	default: estr = "unknown"; break;
237 	}
238 
239 #undef CASE_ENV
240 
241 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
242 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
243 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
244 }
245 
246 #else	/* !DEBUG */
247 
248 #define	PR0(...)
249 #define	PR1(...)
250 #define	PR2(...)
251 
252 #define	VD_DUMP_DRING_ELEM(elem)
253 
254 #define	vd_decode_state(_s)	(NULL)
255 #define	vd_decode_tag(_s)	(NULL)
256 
257 #endif	/* DEBUG */
258 
259 
260 /*
261  * Soft state structure for a vds instance
262  */
263 typedef struct vds {
264 	uint_t		initialized;	/* driver inst initialization flags */
265 	dev_info_t	*dip;		/* driver inst devinfo pointer */
266 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
267 	mod_hash_t	*vd_table;	/* table of virtual disks served */
268 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
269 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
270 } vds_t;
271 
272 /*
273  * Types of descriptor-processing tasks
274  */
275 typedef enum vd_task_type {
276 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
277 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
278 } vd_task_type_t;
279 
280 /*
281  * Structure describing the task for processing a descriptor
282  */
283 typedef struct vd_task {
284 	struct vd		*vd;		/* vd instance task is for */
285 	vd_task_type_t		type;		/* type of descriptor task */
286 	int			index;		/* dring elem index for task */
287 	vio_msg_t		*msg;		/* VIO message task is for */
288 	size_t			msglen;		/* length of message content */
289 	vd_dring_payload_t	*request;	/* request task will perform */
290 	struct buf		buf;		/* buf(9s) for I/O request */
291 	ldc_mem_handle_t	mhdl;		/* task memory handle */
292 } vd_task_t;
293 
294 /*
295  * Soft state structure for a virtual disk instance
296  */
297 typedef struct vd {
298 	uint_t			initialized;	/* vdisk initialization flags */
299 	vds_t			*vds;		/* server for this vdisk */
300 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
301 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
302 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
303 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
304 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
305 	uint_t			nslices;	/* number of slices */
306 	size_t			vdisk_size;	/* number of blocks in vdisk */
307 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
308 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
309 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
310 	boolean_t		pseudo;		/* underlying pseudo dev */
311 	boolean_t		file;		/* underlying file */
312 	vnode_t			*file_vnode;	/* file vnode */
313 	size_t			file_size;	/* file size */
314 	struct dk_efi		dk_efi;		/* synthetic for slice type */
315 	struct dk_geom		dk_geom;	/* synthetic for slice type */
316 	struct vtoc		vtoc;		/* synthetic for slice type */
317 	ldc_status_t		ldc_state;	/* LDC connection state */
318 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
319 	size_t			max_msglen;	/* largest LDC message len */
320 	vd_state_t		state;		/* client handshake state */
321 	uint8_t			xfer_mode;	/* transfer mode with client */
322 	uint32_t		sid;		/* client's session ID */
323 	uint64_t		seq_num;	/* message sequence number */
324 	uint64_t		dring_ident;	/* identifier of dring */
325 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
326 	uint32_t		descriptor_size;	/* num bytes in desc */
327 	uint32_t		dring_len;	/* number of dring elements */
328 	caddr_t			dring;		/* address of dring */
329 	caddr_t			vio_msgp;	/* vio msg staging buffer */
330 	vd_task_t		inband_task;	/* task for inband descriptor */
331 	vd_task_t		*dring_task;	/* tasks dring elements */
332 
333 	kmutex_t		lock;		/* protects variables below */
334 	boolean_t		enabled;	/* is vdisk enabled? */
335 	boolean_t		reset_state;	/* reset connection state? */
336 	boolean_t		reset_ldc;	/* reset LDC channel? */
337 } vd_t;
338 
339 typedef struct vds_operation {
340 	char	*namep;
341 	uint8_t	operation;
342 	int	(*start)(vd_task_t *task);
343 	void	(*complete)(void *arg);
344 } vds_operation_t;
345 
346 typedef struct vd_ioctl {
347 	uint8_t		operation;		/* vdisk operation */
348 	const char	*operation_name;	/* vdisk operation name */
349 	size_t		nbytes;			/* size of operation buffer */
350 	int		cmd;			/* corresponding ioctl cmd */
351 	const char	*cmd_name;		/* ioctl cmd name */
352 	void		*arg;			/* ioctl cmd argument */
353 	/* convert input vd_buf to output ioctl_arg */
354 	void		(*copyin)(void *vd_buf, void *ioctl_arg);
355 	/* convert input ioctl_arg to output vd_buf */
356 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
357 } vd_ioctl_t;
358 
359 /* Define trivial copyin/copyout conversion function flag */
360 #define	VD_IDENTITY	((void (*)(void *, void *))-1)
361 
362 
363 static int	vds_ldc_retries = VDS_RETRIES;
364 static int	vds_ldc_delay = VDS_LDC_DELAY;
365 static int	vds_dev_retries = VDS_RETRIES;
366 static int	vds_dev_delay = VDS_DEV_DELAY;
367 static void	*vds_state;
368 static uint64_t	vds_operations;	/* see vds_operation[] definition below */
369 
370 static int	vd_open_flags = VD_OPEN_FLAGS;
371 
372 /*
373  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
374  *
375  * Each supported major version should appear only once, paired with (and only
376  * with) its highest supported minor version number (as the protocol requires
377  * supporting all lower minor version numbers as well)
378  */
379 static const vio_ver_t	vds_version[] = {{1, 0}};
380 static const size_t	vds_num_versions =
381     sizeof (vds_version)/sizeof (vds_version[0]);
382 
383 static void vd_free_dring_task(vd_t *vdp);
384 static int vd_setup_vd(vd_t *vd);
385 static boolean_t vd_enabled(vd_t *vd);
386 
387 /*
388  * Function:
389  *	vd_file_rw
390  *
391  * Description:
392  * 	Read or write to a disk on file.
393  *
394  * Parameters:
395  *	vd		- disk on which the operation is performed.
396  *	slice		- slice on which the operation is performed,
397  *			  VD_FILE_SLICE_NONE indicates that the operation
398  *			  is done on the raw disk.
399  *	operation	- operation to execute: read (VD_OP_BREAD) or
400  *			  write (VD_OP_BWRITE).
401  *	data		- buffer where data are read to or written from.
402  *	blk		- starting block for the operation.
403  *	len		- number of bytes to read or write.
404  *
405  * Return Code:
406  *	n >= 0		- success, n indicates the number of bytes read
407  *			  or written.
408  *	-1		- error.
409  */
410 static ssize_t
411 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
412     size_t len)
413 {
414 	caddr_t	maddr;
415 	size_t offset, maxlen, moffset, mlen, n;
416 	uint_t smflags;
417 	enum seg_rw srw;
418 
419 	ASSERT(vd->file);
420 	ASSERT(len > 0);
421 
422 	if (slice == VD_FILE_SLICE_NONE) {
423 		/* raw disk access */
424 		offset = blk * DEV_BSIZE;
425 	} else {
426 		ASSERT(slice >= 0 && slice < V_NUMPAR);
427 		if (blk >= vd->vtoc.v_part[slice].p_size) {
428 			/* address past the end of the slice */
429 			PR0("req_addr (0x%lx) > psize (0x%lx)",
430 			    blk, vd->vtoc.v_part[slice].p_size);
431 			return (0);
432 		}
433 
434 		offset = (vd->vtoc.v_part[slice].p_start + blk) * DEV_BSIZE;
435 
436 		/*
437 		 * If the requested size is greater than the size
438 		 * of the partition, truncate the read/write.
439 		 */
440 		maxlen = (vd->vtoc.v_part[slice].p_size - blk) * DEV_BSIZE;
441 
442 		if (len > maxlen) {
443 			PR0("I/O size truncated to %lu bytes from %lu bytes",
444 			    maxlen, len);
445 			len = maxlen;
446 		}
447 	}
448 
449 	/*
450 	 * We have to ensure that we are reading/writing into the mmap
451 	 * range. If we have a partial disk image (e.g. an image of
452 	 * s0 instead s2) the system can try to access slices that
453 	 * are not included into the disk image.
454 	 */
455 	if ((offset + len) >= vd->file_size) {
456 		PR0("offset + nbytes (0x%lx + 0x%lx) >= "
457 		    "file_size (0x%lx)", offset, len, vd->file_size);
458 		return (-1);
459 	}
460 
461 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
462 	smflags = (operation == VD_OP_BREAD)? 0 : SM_WRITE;
463 	n = len;
464 
465 	do {
466 		/*
467 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
468 		 * MAXBSIZE aligned.
469 		 */
470 		moffset = offset & MAXBOFFSET;
471 		mlen = MIN(MAXBSIZE - moffset, n);
472 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
473 		    mlen, 1, srw);
474 		/*
475 		 * Fault in the pages so we can check for error and ensure
476 		 * that we can safely used the mapped address.
477 		 */
478 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
479 		    F_SOFTLOCK, srw) != 0) {
480 			(void) segmap_release(segkmap, maddr, 0);
481 			return (-1);
482 		}
483 
484 		if (operation == VD_OP_BREAD)
485 			bcopy(maddr + moffset, data, mlen);
486 		else
487 			bcopy(data, maddr + moffset, mlen);
488 
489 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
490 		    F_SOFTUNLOCK, srw) != 0) {
491 			(void) segmap_release(segkmap, maddr, 0);
492 			return (-1);
493 		}
494 		if (segmap_release(segkmap, maddr, smflags) != 0)
495 			return (-1);
496 		n -= mlen;
497 		offset += mlen;
498 		data += mlen;
499 
500 	} while (n > 0);
501 
502 	return (len);
503 }
504 
505 static int
506 vd_start_bio(vd_task_t *task)
507 {
508 	int			rv, status = 0;
509 	vd_t			*vd		= task->vd;
510 	vd_dring_payload_t	*request	= task->request;
511 	struct buf		*buf		= &task->buf;
512 	uint8_t			mtype;
513 	int 			slice;
514 
515 	ASSERT(vd != NULL);
516 	ASSERT(request != NULL);
517 
518 	slice = request->slice;
519 
520 	ASSERT(slice < vd->nslices);
521 	ASSERT((request->operation == VD_OP_BREAD) ||
522 	    (request->operation == VD_OP_BWRITE));
523 
524 	if (request->nbytes == 0)
525 		return (EINVAL);	/* no service for trivial requests */
526 
527 	PR1("%s %lu bytes at block %lu",
528 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
529 	    request->nbytes, request->addr);
530 
531 	bioinit(buf);
532 	buf->b_flags		= B_BUSY;
533 	buf->b_bcount		= request->nbytes;
534 	buf->b_lblkno		= request->addr;
535 	buf->b_edev		= vd->dev[slice];
536 
537 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
538 
539 	/* Map memory exported by client */
540 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
541 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
542 	    &(buf->b_un.b_addr), NULL);
543 	if (status != 0) {
544 		PR0("ldc_mem_map() returned err %d ", status);
545 		biofini(buf);
546 		return (status);
547 	}
548 
549 	status = ldc_mem_acquire(task->mhdl, 0, buf->b_bcount);
550 	if (status != 0) {
551 		(void) ldc_mem_unmap(task->mhdl);
552 		PR0("ldc_mem_acquire() returned err %d ", status);
553 		biofini(buf);
554 		return (status);
555 	}
556 
557 	buf->b_flags |= (request->operation == VD_OP_BREAD) ? B_READ : B_WRITE;
558 
559 	/* Start the block I/O */
560 	if (vd->file) {
561 		rv = vd_file_rw(vd, slice, request->operation, buf->b_un.b_addr,
562 		    request->addr, request->nbytes);
563 		if (rv < 0) {
564 			request->nbytes = 0;
565 			status = EIO;
566 		} else {
567 			request->nbytes = rv;
568 			status = 0;
569 		}
570 	} else {
571 		status = ldi_strategy(vd->ldi_handle[slice], buf);
572 		if (status == 0)
573 			return (EINPROGRESS); /* will complete on completionq */
574 	}
575 
576 	/* Clean up after error */
577 	rv = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
578 	if (rv) {
579 		PR0("ldc_mem_release() returned err %d ", rv);
580 	}
581 	rv = ldc_mem_unmap(task->mhdl);
582 	if (rv) {
583 		PR0("ldc_mem_unmap() returned err %d ", status);
584 	}
585 
586 	biofini(buf);
587 	return (status);
588 }
589 
590 static int
591 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
592 {
593 	int	status;
594 	size_t	nbytes;
595 
596 	do {
597 		nbytes = msglen;
598 		status = ldc_write(ldc_handle, msg, &nbytes);
599 		if (status != EWOULDBLOCK)
600 			break;
601 		drv_usecwait(vds_ldc_delay);
602 	} while (status == EWOULDBLOCK);
603 
604 	if (status != 0) {
605 		if (status != ECONNRESET)
606 			PR0("ldc_write() returned errno %d", status);
607 		return (status);
608 	} else if (nbytes != msglen) {
609 		PR0("ldc_write() performed only partial write");
610 		return (EIO);
611 	}
612 
613 	PR1("SENT %lu bytes", msglen);
614 	return (0);
615 }
616 
617 static void
618 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
619 {
620 	mutex_enter(&vd->lock);
621 	vd->reset_state	= B_TRUE;
622 	vd->reset_ldc	= reset_ldc;
623 	mutex_exit(&vd->lock);
624 }
625 
626 /*
627  * Reset the state of the connection with a client, if needed; reset the LDC
628  * transport as well, if needed.  This function should only be called from the
629  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
630  */
631 static void
632 vd_reset_if_needed(vd_t *vd)
633 {
634 	int	status = 0;
635 
636 	mutex_enter(&vd->lock);
637 	if (!vd->reset_state) {
638 		ASSERT(!vd->reset_ldc);
639 		mutex_exit(&vd->lock);
640 		return;
641 	}
642 	mutex_exit(&vd->lock);
643 
644 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
645 
646 	/*
647 	 * Let any asynchronous I/O complete before possibly pulling the rug
648 	 * out from under it; defer checking vd->reset_ldc, as one of the
649 	 * asynchronous tasks might set it
650 	 */
651 	ddi_taskq_wait(vd->completionq);
652 
653 	if (vd->file) {
654 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred);
655 		if (status) {
656 			PR0("VOP_FSYNC returned errno %d", status);
657 		}
658 	}
659 
660 	if ((vd->initialized & VD_DRING) &&
661 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
662 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
663 
664 	vd_free_dring_task(vd);
665 
666 	/* Free the staging buffer for msgs */
667 	if (vd->vio_msgp != NULL) {
668 		kmem_free(vd->vio_msgp, vd->max_msglen);
669 		vd->vio_msgp = NULL;
670 	}
671 
672 	/* Free the inband message buffer */
673 	if (vd->inband_task.msg != NULL) {
674 		kmem_free(vd->inband_task.msg, vd->max_msglen);
675 		vd->inband_task.msg = NULL;
676 	}
677 
678 	mutex_enter(&vd->lock);
679 
680 	if (vd->reset_ldc)
681 		PR0("taking down LDC channel");
682 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
683 		PR0("ldc_down() returned errno %d", status);
684 
685 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
686 	vd->state	= VD_STATE_INIT;
687 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
688 
689 	/* Allocate the staging buffer */
690 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
691 
692 	PR0("calling ldc_up\n");
693 	(void) ldc_up(vd->ldc_handle);
694 
695 	vd->reset_state	= B_FALSE;
696 	vd->reset_ldc	= B_FALSE;
697 
698 	mutex_exit(&vd->lock);
699 }
700 
701 static void vd_recv_msg(void *arg);
702 
703 static void
704 vd_mark_in_reset(vd_t *vd)
705 {
706 	int status;
707 
708 	PR0("vd_mark_in_reset: marking vd in reset\n");
709 
710 	vd_need_reset(vd, B_FALSE);
711 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
712 	if (status == DDI_FAILURE) {
713 		PR0("cannot schedule task to recv msg\n");
714 		vd_need_reset(vd, B_TRUE);
715 		return;
716 	}
717 }
718 
719 static int
720 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
721 {
722 	boolean_t		accepted;
723 	int			status;
724 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
725 
726 	if (vd->reset_state)
727 		return (0);
728 
729 	/* Acquire the element */
730 	if (!vd->reset_state &&
731 	    (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
732 		if (status == ECONNRESET) {
733 			vd_mark_in_reset(vd);
734 			return (0);
735 		} else {
736 			PR0("ldc_mem_dring_acquire() returned errno %d",
737 			    status);
738 			return (status);
739 		}
740 	}
741 
742 	/* Set the element's status and mark it done */
743 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
744 	if (accepted) {
745 		elem->payload.nbytes	= elem_nbytes;
746 		elem->payload.status	= elem_status;
747 		elem->hdr.dstate	= VIO_DESC_DONE;
748 	} else {
749 		/* Perhaps client timed out waiting for I/O... */
750 		PR0("element %u no longer \"accepted\"", idx);
751 		VD_DUMP_DRING_ELEM(elem);
752 	}
753 	/* Release the element */
754 	if (!vd->reset_state &&
755 	    (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
756 		if (status == ECONNRESET) {
757 			vd_mark_in_reset(vd);
758 			return (0);
759 		} else {
760 			PR0("ldc_mem_dring_release() returned errno %d",
761 			    status);
762 			return (status);
763 		}
764 	}
765 
766 	return (accepted ? 0 : EINVAL);
767 }
768 
769 static void
770 vd_complete_bio(void *arg)
771 {
772 	int			status		= 0;
773 	vd_task_t		*task		= (vd_task_t *)arg;
774 	vd_t			*vd		= task->vd;
775 	vd_dring_payload_t	*request	= task->request;
776 	struct buf		*buf		= &task->buf;
777 
778 
779 	ASSERT(vd != NULL);
780 	ASSERT(request != NULL);
781 	ASSERT(task->msg != NULL);
782 	ASSERT(task->msglen >= sizeof (*task->msg));
783 	ASSERT(!vd->file);
784 
785 	/* Wait for the I/O to complete */
786 	request->status = biowait(buf);
787 
788 	/* return back the number of bytes read/written */
789 	request->nbytes = buf->b_bcount - buf->b_resid;
790 
791 	/* Release the buffer */
792 	if (!vd->reset_state)
793 		status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
794 	if (status) {
795 		PR0("ldc_mem_release() returned errno %d copying to "
796 		    "client", status);
797 		if (status == ECONNRESET) {
798 			vd_mark_in_reset(vd);
799 		}
800 	}
801 
802 	/* Unmap the memory, even if in reset */
803 	status = ldc_mem_unmap(task->mhdl);
804 	if (status) {
805 		PR0("ldc_mem_unmap() returned errno %d copying to client",
806 		    status);
807 		if (status == ECONNRESET) {
808 			vd_mark_in_reset(vd);
809 		}
810 	}
811 
812 	biofini(buf);
813 
814 	/* Update the dring element for a dring client */
815 	if (!vd->reset_state && (status == 0) &&
816 	    (vd->xfer_mode == VIO_DRING_MODE)) {
817 		status = vd_mark_elem_done(vd, task->index,
818 		    request->status, request->nbytes);
819 		if (status == ECONNRESET)
820 			vd_mark_in_reset(vd);
821 	}
822 
823 	/*
824 	 * If a transport error occurred, arrange to "nack" the message when
825 	 * the final task in the descriptor element range completes
826 	 */
827 	if (status != 0)
828 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
829 
830 	/*
831 	 * Only the final task for a range of elements will respond to and
832 	 * free the message
833 	 */
834 	if (task->type == VD_NONFINAL_RANGE_TASK) {
835 		return;
836 	}
837 
838 	/*
839 	 * Send the "ack" or "nack" back to the client; if sending the message
840 	 * via LDC fails, arrange to reset both the connection state and LDC
841 	 * itself
842 	 */
843 	PR1("Sending %s",
844 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
845 	if (!vd->reset_state) {
846 		status = send_msg(vd->ldc_handle, task->msg, task->msglen);
847 		switch (status) {
848 		case 0:
849 			break;
850 		case ECONNRESET:
851 			vd_mark_in_reset(vd);
852 			break;
853 		default:
854 			PR0("initiating full reset");
855 			vd_need_reset(vd, B_TRUE);
856 			break;
857 		}
858 	}
859 }
860 
861 static void
862 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg)
863 {
864 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
865 }
866 
867 static void
868 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg)
869 {
870 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
871 }
872 
873 static void
874 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
875 {
876 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
877 }
878 
879 static void
880 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
881 {
882 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
883 }
884 
885 static void
886 vd_get_efi_in(void *vd_buf, void *ioctl_arg)
887 {
888 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
889 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
890 
891 	dk_efi->dki_lba = vd_efi->lba;
892 	dk_efi->dki_length = vd_efi->length;
893 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
894 }
895 
896 static void
897 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
898 {
899 	int len;
900 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
901 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
902 
903 	len = vd_efi->length;
904 	DK_EFI2VD_EFI(dk_efi, vd_efi);
905 	kmem_free(dk_efi->dki_data, len);
906 }
907 
908 static void
909 vd_set_efi_in(void *vd_buf, void *ioctl_arg)
910 {
911 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
912 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
913 
914 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
915 	VD_EFI2DK_EFI(vd_efi, dk_efi);
916 }
917 
918 static void
919 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
920 {
921 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
922 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
923 
924 	kmem_free(dk_efi->dki_data, vd_efi->length);
925 }
926 
927 static int
928 vd_read_vtoc(ldi_handle_t handle, struct vtoc *vtoc, vd_disk_label_t *label)
929 {
930 	int status, rval;
931 	struct dk_gpt *efi;
932 	size_t efi_len;
933 
934 	*label = VD_DISK_LABEL_UNK;
935 
936 	status = ldi_ioctl(handle, DKIOCGVTOC, (intptr_t)vtoc,
937 	    (vd_open_flags | FKIOCTL), kcred, &rval);
938 
939 	if (status == 0) {
940 		*label = VD_DISK_LABEL_VTOC;
941 		return (0);
942 	} else if (status != ENOTSUP) {
943 		PR0("ldi_ioctl(DKIOCGVTOC) returned error %d", status);
944 		return (status);
945 	}
946 
947 	status = vds_efi_alloc_and_read(handle, &efi, &efi_len);
948 
949 	if (status) {
950 		PR0("vds_efi_alloc_and_read returned error %d", status);
951 		return (status);
952 	}
953 
954 	*label = VD_DISK_LABEL_EFI;
955 	vd_efi_to_vtoc(efi, vtoc);
956 	vd_efi_free(efi, efi_len);
957 
958 	return (0);
959 }
960 
961 static ushort_t
962 vd_lbl2cksum(struct dk_label *label)
963 {
964 	int	count;
965 	ushort_t sum, *sp;
966 
967 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
968 	sp = (ushort_t *)label;
969 	sum = 0;
970 	while (count--) {
971 		sum ^= *sp++;
972 	}
973 
974 	return (sum);
975 }
976 
977 static int
978 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
979 {
980 	dk_efi_t *dk_ioc;
981 	struct dk_label label;
982 	struct vtoc *vtoc;
983 	int i;
984 
985 	switch (vd->vdisk_label) {
986 
987 	case VD_DISK_LABEL_VTOC:
988 
989 		switch (cmd) {
990 		case DKIOCGGEOM:
991 			ASSERT(ioctl_arg != NULL);
992 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
993 			return (0);
994 		case DKIOCGVTOC:
995 			ASSERT(ioctl_arg != NULL);
996 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
997 			return (0);
998 		case DKIOCSVTOC:
999 			if (!vd->file)
1000 				return (ENOTSUP);
1001 			ASSERT(ioctl_arg != NULL);
1002 			vtoc = (struct vtoc *)ioctl_arg;
1003 
1004 			if (vtoc->v_sanity != VTOC_SANE ||
1005 			    vtoc->v_sectorsz != DEV_BSIZE ||
1006 			    vtoc->v_nparts != V_NUMPAR)
1007 				return (EINVAL);
1008 
1009 			bzero(&label, sizeof (label));
1010 			label.dkl_ncyl = vd->dk_geom.dkg_ncyl;
1011 			label.dkl_acyl = vd->dk_geom.dkg_acyl;
1012 			label.dkl_pcyl = vd->dk_geom.dkg_pcyl;
1013 			label.dkl_nhead = vd->dk_geom.dkg_nhead;
1014 			label.dkl_nsect = vd->dk_geom.dkg_nsect;
1015 			label.dkl_intrlv = vd->dk_geom.dkg_intrlv;
1016 			label.dkl_apc = vd->dk_geom.dkg_apc;
1017 			label.dkl_rpm = vd->dk_geom.dkg_rpm;
1018 			label.dkl_write_reinstruct =
1019 				vd->dk_geom.dkg_write_reinstruct;
1020 			label.dkl_read_reinstruct =
1021 				vd->dk_geom.dkg_read_reinstruct;
1022 
1023 			label.dkl_vtoc.v_nparts = vtoc->v_nparts;
1024 			label.dkl_vtoc.v_sanity = vtoc->v_sanity;
1025 			label.dkl_vtoc.v_version = vtoc->v_version;
1026 			for (i = 0; i < vtoc->v_nparts; i++) {
1027 				label.dkl_vtoc.v_timestamp[i] =
1028 				    vtoc->timestamp[i];
1029 				label.dkl_vtoc.v_part[i].p_tag =
1030 				    vtoc->v_part[i].p_tag;
1031 				label.dkl_vtoc.v_part[i].p_flag =
1032 				    vtoc->v_part[i].p_flag;
1033 				label.dkl_map[i].dkl_cylno =
1034 					vtoc->v_part[i].p_start /
1035 					(label.dkl_nhead * label.dkl_nsect);
1036 				label.dkl_map[i].dkl_nblk =
1037 				    vtoc->v_part[i].p_size;
1038 			}
1039 			bcopy(vtoc->v_asciilabel, label.dkl_asciilabel,
1040 			    LEN_DKL_ASCII);
1041 			bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume,
1042 			    LEN_DKL_VVOL);
1043 			bcopy(vtoc->v_bootinfo, label.dkl_vtoc.v_bootinfo,
1044 			    sizeof (vtoc->v_bootinfo));
1045 
1046 			/* re-compute checksum */
1047 			label.dkl_magic = DKL_MAGIC;
1048 			label.dkl_cksum = vd_lbl2cksum(&label);
1049 
1050 			/* write label to file */
1051 			if (VD_FILE_LABEL_WRITE(vd, &label) < 0)
1052 				return (EIO);
1053 
1054 			/* update the cached vdisk VTOC */
1055 			bcopy(vtoc, &vd->vtoc, sizeof (vd->vtoc));
1056 
1057 			return (0);
1058 		default:
1059 			return (ENOTSUP);
1060 		}
1061 
1062 	case VD_DISK_LABEL_EFI:
1063 
1064 		switch (cmd) {
1065 		case DKIOCGETEFI:
1066 			ASSERT(ioctl_arg != NULL);
1067 			dk_ioc = (dk_efi_t *)ioctl_arg;
1068 			if (dk_ioc->dki_length < vd->dk_efi.dki_length)
1069 				return (EINVAL);
1070 			bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data,
1071 			    vd->dk_efi.dki_length);
1072 			return (0);
1073 		default:
1074 			return (ENOTSUP);
1075 		}
1076 
1077 	default:
1078 		return (ENOTSUP);
1079 	}
1080 }
1081 
1082 static int
1083 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
1084 {
1085 	int	rval = 0, status;
1086 	size_t	nbytes = request->nbytes;	/* modifiable copy */
1087 
1088 
1089 	ASSERT(request->slice < vd->nslices);
1090 	PR0("Performing %s", ioctl->operation_name);
1091 
1092 	/* Get data from client and convert, if necessary */
1093 	if (ioctl->copyin != NULL)  {
1094 		ASSERT(nbytes != 0 && buf != NULL);
1095 		PR1("Getting \"arg\" data from client");
1096 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
1097 			    request->cookie, request->ncookies,
1098 			    LDC_COPY_IN)) != 0) {
1099 			PR0("ldc_mem_copy() returned errno %d "
1100 			    "copying from client", status);
1101 			return (status);
1102 		}
1103 
1104 		/* Convert client's data, if necessary */
1105 		if (ioctl->copyin == VD_IDENTITY)	/* use client buffer */
1106 			ioctl->arg = buf;
1107 		else	/* convert client vdisk operation data to ioctl data */
1108 			(ioctl->copyin)(buf, (void *)ioctl->arg);
1109 	}
1110 
1111 	/*
1112 	 * Handle single-slice block devices internally; otherwise, have the
1113 	 * real driver perform the ioctl()
1114 	 */
1115 	if (vd->file || (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo)) {
1116 		if ((status = vd_do_slice_ioctl(vd, ioctl->cmd,
1117 			    (void *)ioctl->arg)) != 0)
1118 			return (status);
1119 	} else if ((status = ldi_ioctl(vd->ldi_handle[request->slice],
1120 		    ioctl->cmd, (intptr_t)ioctl->arg, (vd_open_flags | FKIOCTL),
1121 		    kcred, &rval)) != 0) {
1122 		PR0("ldi_ioctl(%s) = errno %d", ioctl->cmd_name, status);
1123 		return (status);
1124 	}
1125 #ifdef DEBUG
1126 	if (rval != 0) {
1127 		PR0("%s set rval = %d, which is not being returned to client",
1128 		    ioctl->cmd_name, rval);
1129 	}
1130 #endif /* DEBUG */
1131 
1132 	/* Convert data and send to client, if necessary */
1133 	if (ioctl->copyout != NULL)  {
1134 		ASSERT(nbytes != 0 && buf != NULL);
1135 		PR1("Sending \"arg\" data to client");
1136 
1137 		/* Convert ioctl data to vdisk operation data, if necessary */
1138 		if (ioctl->copyout != VD_IDENTITY)
1139 			(ioctl->copyout)((void *)ioctl->arg, buf);
1140 
1141 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
1142 			    request->cookie, request->ncookies,
1143 			    LDC_COPY_OUT)) != 0) {
1144 			PR0("ldc_mem_copy() returned errno %d "
1145 			    "copying to client", status);
1146 			return (status);
1147 		}
1148 	}
1149 
1150 	return (status);
1151 }
1152 
1153 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
1154 static int
1155 vd_ioctl(vd_task_t *task)
1156 {
1157 	int			i, status, rc;
1158 	void			*buf = NULL;
1159 	struct dk_geom		dk_geom = {0};
1160 	struct vtoc		vtoc = {0};
1161 	struct dk_efi		dk_efi = {0};
1162 	vd_t			*vd		= task->vd;
1163 	vd_dring_payload_t	*request	= task->request;
1164 	vd_ioctl_t		ioctl[] = {
1165 		/* Command (no-copy) operations */
1166 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
1167 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
1168 		    NULL, NULL, NULL},
1169 
1170 		/* "Get" (copy-out) operations */
1171 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
1172 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
1173 		    NULL, VD_IDENTITY, VD_IDENTITY},
1174 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
1175 		    RNDSIZE(vd_geom_t),
1176 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
1177 		    &dk_geom, NULL, dk_geom2vd_geom},
1178 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
1179 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
1180 		    &vtoc, NULL, vtoc2vd_vtoc},
1181 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
1182 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
1183 		    &dk_efi, vd_get_efi_in, vd_get_efi_out},
1184 
1185 		/* "Set" (copy-in) operations */
1186 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
1187 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
1188 		    NULL, VD_IDENTITY, VD_IDENTITY},
1189 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
1190 		    RNDSIZE(vd_geom_t),
1191 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
1192 		    &dk_geom, vd_geom2dk_geom, NULL},
1193 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
1194 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
1195 		    &vtoc, vd_vtoc2vtoc, NULL},
1196 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
1197 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
1198 		    &dk_efi, vd_set_efi_in, vd_set_efi_out},
1199 	};
1200 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
1201 
1202 
1203 	ASSERT(vd != NULL);
1204 	ASSERT(request != NULL);
1205 	ASSERT(request->slice < vd->nslices);
1206 
1207 	/*
1208 	 * Determine ioctl corresponding to caller's "operation" and
1209 	 * validate caller's "nbytes"
1210 	 */
1211 	for (i = 0; i < nioctls; i++) {
1212 		if (request->operation == ioctl[i].operation) {
1213 			/* LDC memory operations require 8-byte multiples */
1214 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
1215 
1216 			if (request->operation == VD_OP_GET_EFI ||
1217 			    request->operation == VD_OP_SET_EFI) {
1218 				if (request->nbytes >= ioctl[i].nbytes)
1219 					break;
1220 				PR0("%s:  Expected at least nbytes = %lu, "
1221 				    "got %lu", ioctl[i].operation_name,
1222 				    ioctl[i].nbytes, request->nbytes);
1223 				return (EINVAL);
1224 			}
1225 
1226 			if (request->nbytes != ioctl[i].nbytes) {
1227 				PR0("%s:  Expected nbytes = %lu, got %lu",
1228 				    ioctl[i].operation_name, ioctl[i].nbytes,
1229 				    request->nbytes);
1230 				return (EINVAL);
1231 			}
1232 
1233 			break;
1234 		}
1235 	}
1236 	ASSERT(i < nioctls);	/* because "operation" already validated */
1237 
1238 	if (request->nbytes)
1239 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
1240 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
1241 	if (request->nbytes)
1242 		kmem_free(buf, request->nbytes);
1243 	if (!vd->file && vd->vdisk_type == VD_DISK_TYPE_DISK &&
1244 	    (request->operation == VD_OP_SET_VTOC ||
1245 	    request->operation == VD_OP_SET_EFI)) {
1246 		/* update disk information */
1247 		rc = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc,
1248 		    &vd->vdisk_label);
1249 		if (rc != 0)
1250 			PR0("vd_read_vtoc return error %d", rc);
1251 	}
1252 	PR0("Returning %d", status);
1253 	return (status);
1254 }
1255 
1256 static int
1257 vd_get_devid(vd_task_t *task)
1258 {
1259 	vd_t *vd = task->vd;
1260 	vd_dring_payload_t *request = task->request;
1261 	vd_devid_t *vd_devid;
1262 	impl_devid_t *devid;
1263 	int status, bufid_len, devid_len, len;
1264 	int bufbytes;
1265 
1266 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
1267 
1268 	if (vd->file) {
1269 		/* no devid for disk on file */
1270 		return (ENOENT);
1271 	}
1272 
1273 	if (ddi_lyr_get_devid(vd->dev[request->slice],
1274 	    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
1275 		/* the most common failure is that no devid is available */
1276 		PR2("No Device ID");
1277 		return (ENOENT);
1278 	}
1279 
1280 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
1281 	devid_len = DEVID_GETLEN(devid);
1282 
1283 	/*
1284 	 * Save the buffer size here for use in deallocation.
1285 	 * The actual number of bytes copied is returned in
1286 	 * the 'nbytes' field of the request structure.
1287 	 */
1288 	bufbytes = request->nbytes;
1289 
1290 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
1291 	vd_devid->length = devid_len;
1292 	vd_devid->type = DEVID_GETTYPE(devid);
1293 
1294 	len = (devid_len > bufid_len)? bufid_len : devid_len;
1295 
1296 	bcopy(devid->did_id, vd_devid->id, len);
1297 
1298 	/* LDC memory operations require 8-byte multiples */
1299 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
1300 
1301 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
1302 	    &request->nbytes, request->cookie, request->ncookies,
1303 	    LDC_COPY_OUT)) != 0) {
1304 		PR0("ldc_mem_copy() returned errno %d copying to client",
1305 		    status);
1306 	}
1307 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
1308 
1309 	kmem_free(vd_devid, bufbytes);
1310 	ddi_devid_free((ddi_devid_t)devid);
1311 
1312 	return (status);
1313 }
1314 
1315 /*
1316  * Define the supported operations once the functions for performing them have
1317  * been defined
1318  */
1319 static const vds_operation_t	vds_operation[] = {
1320 #define	X(_s)	#_s, _s
1321 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
1322 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
1323 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
1324 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
1325 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
1326 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
1327 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
1328 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
1329 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
1330 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
1331 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
1332 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
1333 #undef	X
1334 };
1335 
1336 static const size_t	vds_noperations =
1337 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
1338 
1339 /*
1340  * Process a task specifying a client I/O request
1341  */
1342 static int
1343 vd_process_task(vd_task_t *task)
1344 {
1345 	int			i, status;
1346 	vd_t			*vd		= task->vd;
1347 	vd_dring_payload_t	*request	= task->request;
1348 
1349 
1350 	ASSERT(vd != NULL);
1351 	ASSERT(request != NULL);
1352 
1353 	/* Find the requested operation */
1354 	for (i = 0; i < vds_noperations; i++)
1355 		if (request->operation == vds_operation[i].operation)
1356 			break;
1357 	if (i == vds_noperations) {
1358 		PR0("Unsupported operation %u", request->operation);
1359 		return (ENOTSUP);
1360 	}
1361 
1362 	/* Handle client using absolute disk offsets */
1363 	if ((vd->vdisk_type == VD_DISK_TYPE_DISK) &&
1364 	    (request->slice == UINT8_MAX))
1365 		request->slice = VD_ENTIRE_DISK_SLICE;
1366 
1367 	/* Range-check slice */
1368 	if (request->slice >= vd->nslices) {
1369 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
1370 		    request->slice, (vd->nslices - 1));
1371 		return (EINVAL);
1372 	}
1373 
1374 	PR1("operation : %s", vds_operation[i].namep);
1375 
1376 	/* Start the operation */
1377 	if ((status = vds_operation[i].start(task)) != EINPROGRESS) {
1378 		PR0("operation : %s returned status %d",
1379 			vds_operation[i].namep, status);
1380 		request->status = status;	/* op succeeded or failed */
1381 		return (0);			/* but request completed */
1382 	}
1383 
1384 	ASSERT(vds_operation[i].complete != NULL);	/* debug case */
1385 	if (vds_operation[i].complete == NULL) {	/* non-debug case */
1386 		PR0("Unexpected return of EINPROGRESS "
1387 		    "with no I/O completion handler");
1388 		request->status = EIO;	/* operation failed */
1389 		return (0);		/* but request completed */
1390 	}
1391 
1392 	PR1("operation : kick off taskq entry for %s", vds_operation[i].namep);
1393 
1394 	/* Queue a task to complete the operation */
1395 	status = ddi_taskq_dispatch(vd->completionq, vds_operation[i].complete,
1396 	    task, DDI_SLEEP);
1397 	/* ddi_taskq_dispatch(9f) guarantees success with DDI_SLEEP */
1398 	ASSERT(status == DDI_SUCCESS);
1399 
1400 	PR1("Operation in progress");
1401 	return (EINPROGRESS);	/* completion handler will finish request */
1402 }
1403 
1404 /*
1405  * Return true if the "type", "subtype", and "env" fields of the "tag" first
1406  * argument match the corresponding remaining arguments; otherwise, return false
1407  */
1408 boolean_t
1409 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
1410 {
1411 	return ((tag->vio_msgtype == type) &&
1412 		(tag->vio_subtype == subtype) &&
1413 		(tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
1414 }
1415 
1416 /*
1417  * Check whether the major/minor version specified in "ver_msg" is supported
1418  * by this server.
1419  */
1420 static boolean_t
1421 vds_supported_version(vio_ver_msg_t *ver_msg)
1422 {
1423 	for (int i = 0; i < vds_num_versions; i++) {
1424 		ASSERT(vds_version[i].major > 0);
1425 		ASSERT((i == 0) ||
1426 		    (vds_version[i].major < vds_version[i-1].major));
1427 
1428 		/*
1429 		 * If the major versions match, adjust the minor version, if
1430 		 * necessary, down to the highest value supported by this
1431 		 * server and return true so this message will get "ack"ed;
1432 		 * the client should also support all minor versions lower
1433 		 * than the value it sent
1434 		 */
1435 		if (ver_msg->ver_major == vds_version[i].major) {
1436 			if (ver_msg->ver_minor > vds_version[i].minor) {
1437 				PR0("Adjusting minor version from %u to %u",
1438 				    ver_msg->ver_minor, vds_version[i].minor);
1439 				ver_msg->ver_minor = vds_version[i].minor;
1440 			}
1441 			return (B_TRUE);
1442 		}
1443 
1444 		/*
1445 		 * If the message contains a higher major version number, set
1446 		 * the message's major/minor versions to the current values
1447 		 * and return false, so this message will get "nack"ed with
1448 		 * these values, and the client will potentially try again
1449 		 * with the same or a lower version
1450 		 */
1451 		if (ver_msg->ver_major > vds_version[i].major) {
1452 			ver_msg->ver_major = vds_version[i].major;
1453 			ver_msg->ver_minor = vds_version[i].minor;
1454 			return (B_FALSE);
1455 		}
1456 
1457 		/*
1458 		 * Otherwise, the message's major version is less than the
1459 		 * current major version, so continue the loop to the next
1460 		 * (lower) supported version
1461 		 */
1462 	}
1463 
1464 	/*
1465 	 * No common version was found; "ground" the version pair in the
1466 	 * message to terminate negotiation
1467 	 */
1468 	ver_msg->ver_major = 0;
1469 	ver_msg->ver_minor = 0;
1470 	return (B_FALSE);
1471 }
1472 
1473 /*
1474  * Process a version message from a client.  vds expects to receive version
1475  * messages from clients seeking service, but never issues version messages
1476  * itself; therefore, vds can ACK or NACK client version messages, but does
1477  * not expect to receive version-message ACKs or NACKs (and will treat such
1478  * messages as invalid).
1479  */
1480 static int
1481 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1482 {
1483 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
1484 
1485 
1486 	ASSERT(msglen >= sizeof (msg->tag));
1487 
1488 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1489 		VIO_VER_INFO)) {
1490 		return (ENOMSG);	/* not a version message */
1491 	}
1492 
1493 	if (msglen != sizeof (*ver_msg)) {
1494 		PR0("Expected %lu-byte version message; "
1495 		    "received %lu bytes", sizeof (*ver_msg), msglen);
1496 		return (EBADMSG);
1497 	}
1498 
1499 	if (ver_msg->dev_class != VDEV_DISK) {
1500 		PR0("Expected device class %u (disk); received %u",
1501 		    VDEV_DISK, ver_msg->dev_class);
1502 		return (EBADMSG);
1503 	}
1504 
1505 	/*
1506 	 * We're talking to the expected kind of client; set our device class
1507 	 * for "ack/nack" back to the client
1508 	 */
1509 	ver_msg->dev_class = VDEV_DISK_SERVER;
1510 
1511 	/*
1512 	 * Check whether the (valid) version message specifies a version
1513 	 * supported by this server.  If the version is not supported, return
1514 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
1515 	 * will have updated the message with a supported version for the
1516 	 * client to consider
1517 	 */
1518 	if (!vds_supported_version(ver_msg))
1519 		return (EBADMSG);
1520 
1521 
1522 	/*
1523 	 * A version has been agreed upon; use the client's SID for
1524 	 * communication on this channel now
1525 	 */
1526 	ASSERT(!(vd->initialized & VD_SID));
1527 	vd->sid = ver_msg->tag.vio_sid;
1528 	vd->initialized |= VD_SID;
1529 
1530 	/*
1531 	 * When multiple versions are supported, this function should store
1532 	 * the negotiated major and minor version values in the "vd" data
1533 	 * structure to govern further communication; in particular, note that
1534 	 * the client might have specified a lower minor version for the
1535 	 * agreed major version than specifed in the vds_version[] array.  The
1536 	 * following assertions should help remind future maintainers to make
1537 	 * the appropriate changes to support multiple versions.
1538 	 */
1539 	ASSERT(vds_num_versions == 1);
1540 	ASSERT(ver_msg->ver_major == vds_version[0].major);
1541 	ASSERT(ver_msg->ver_minor == vds_version[0].minor);
1542 
1543 	PR0("Using major version %u, minor version %u",
1544 	    ver_msg->ver_major, ver_msg->ver_minor);
1545 	return (0);
1546 }
1547 
1548 static int
1549 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1550 {
1551 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
1552 	int		status, retry = 0;
1553 
1554 
1555 	ASSERT(msglen >= sizeof (msg->tag));
1556 
1557 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1558 		VIO_ATTR_INFO)) {
1559 		PR0("Message is not an attribute message");
1560 		return (ENOMSG);
1561 	}
1562 
1563 	if (msglen != sizeof (*attr_msg)) {
1564 		PR0("Expected %lu-byte attribute message; "
1565 		    "received %lu bytes", sizeof (*attr_msg), msglen);
1566 		return (EBADMSG);
1567 	}
1568 
1569 	if (attr_msg->max_xfer_sz == 0) {
1570 		PR0("Received maximum transfer size of 0 from client");
1571 		return (EBADMSG);
1572 	}
1573 
1574 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
1575 	    (attr_msg->xfer_mode != VIO_DRING_MODE)) {
1576 		PR0("Client requested unsupported transfer mode");
1577 		return (EBADMSG);
1578 	}
1579 
1580 	/*
1581 	 * check if the underlying disk is ready, if not try accessing
1582 	 * the device again. Open the vdisk device and extract info
1583 	 * about it, as this is needed to respond to the attr info msg
1584 	 */
1585 	if ((vd->initialized & VD_DISK_READY) == 0) {
1586 		PR0("Retry setting up disk (%s)", vd->device_path);
1587 		do {
1588 			status = vd_setup_vd(vd);
1589 			if (status != EAGAIN || ++retry > vds_dev_retries)
1590 				break;
1591 
1592 			/* incremental delay */
1593 			delay(drv_usectohz(vds_dev_delay));
1594 
1595 			/* if vdisk is no longer enabled - return error */
1596 			if (!vd_enabled(vd))
1597 				return (ENXIO);
1598 
1599 		} while (status == EAGAIN);
1600 
1601 		if (status)
1602 			return (ENXIO);
1603 
1604 		vd->initialized |= VD_DISK_READY;
1605 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
1606 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
1607 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
1608 		    (vd->pseudo ? "yes" : "no"),
1609 		    (vd->file ? "yes" : "no"),
1610 		    vd->nslices);
1611 	}
1612 
1613 	/* Success:  valid message and transfer mode */
1614 	vd->xfer_mode = attr_msg->xfer_mode;
1615 
1616 	if (vd->xfer_mode == VIO_DESC_MODE) {
1617 
1618 		/*
1619 		 * The vd_dring_inband_msg_t contains one cookie; need room
1620 		 * for up to n-1 more cookies, where "n" is the number of full
1621 		 * pages plus possibly one partial page required to cover
1622 		 * "max_xfer_sz".  Add room for one more cookie if
1623 		 * "max_xfer_sz" isn't an integral multiple of the page size.
1624 		 * Must first get the maximum transfer size in bytes.
1625 		 */
1626 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
1627 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
1628 		    attr_msg->max_xfer_sz;
1629 		size_t	max_inband_msglen =
1630 		    sizeof (vd_dring_inband_msg_t) +
1631 		    ((max_xfer_bytes/PAGESIZE +
1632 			((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
1633 			(sizeof (ldc_mem_cookie_t)));
1634 
1635 		/*
1636 		 * Set the maximum expected message length to
1637 		 * accommodate in-band-descriptor messages with all
1638 		 * their cookies
1639 		 */
1640 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
1641 
1642 		/*
1643 		 * Initialize the data structure for processing in-band I/O
1644 		 * request descriptors
1645 		 */
1646 		vd->inband_task.vd	= vd;
1647 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
1648 		vd->inband_task.index	= 0;
1649 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
1650 	}
1651 
1652 	/* Return the device's block size and max transfer size to the client */
1653 	attr_msg->vdisk_block_size	= DEV_BSIZE;
1654 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
1655 
1656 	attr_msg->vdisk_size = vd->vdisk_size;
1657 	attr_msg->vdisk_type = vd->vdisk_type;
1658 	attr_msg->operations = vds_operations;
1659 	PR0("%s", VD_CLIENT(vd));
1660 
1661 	ASSERT(vd->dring_task == NULL);
1662 
1663 	return (0);
1664 }
1665 
1666 static int
1667 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1668 {
1669 	int			status;
1670 	size_t			expected;
1671 	ldc_mem_info_t		dring_minfo;
1672 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
1673 
1674 
1675 	ASSERT(msglen >= sizeof (msg->tag));
1676 
1677 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1678 		VIO_DRING_REG)) {
1679 		PR0("Message is not a register-dring message");
1680 		return (ENOMSG);
1681 	}
1682 
1683 	if (msglen < sizeof (*reg_msg)) {
1684 		PR0("Expected at least %lu-byte register-dring message; "
1685 		    "received %lu bytes", sizeof (*reg_msg), msglen);
1686 		return (EBADMSG);
1687 	}
1688 
1689 	expected = sizeof (*reg_msg) +
1690 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
1691 	if (msglen != expected) {
1692 		PR0("Expected %lu-byte register-dring message; "
1693 		    "received %lu bytes", expected, msglen);
1694 		return (EBADMSG);
1695 	}
1696 
1697 	if (vd->initialized & VD_DRING) {
1698 		PR0("A dring was previously registered; only support one");
1699 		return (EBADMSG);
1700 	}
1701 
1702 	if (reg_msg->num_descriptors > INT32_MAX) {
1703 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
1704 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
1705 		return (EBADMSG);
1706 	}
1707 
1708 	if (reg_msg->ncookies != 1) {
1709 		/*
1710 		 * In addition to fixing the assertion in the success case
1711 		 * below, supporting drings which require more than one
1712 		 * "cookie" requires increasing the value of vd->max_msglen
1713 		 * somewhere in the code path prior to receiving the message
1714 		 * which results in calling this function.  Note that without
1715 		 * making this change, the larger message size required to
1716 		 * accommodate multiple cookies cannot be successfully
1717 		 * received, so this function will not even get called.
1718 		 * Gracefully accommodating more dring cookies might
1719 		 * reasonably demand exchanging an additional attribute or
1720 		 * making a minor protocol adjustment
1721 		 */
1722 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
1723 		return (EBADMSG);
1724 	}
1725 
1726 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
1727 	    reg_msg->ncookies, reg_msg->num_descriptors,
1728 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
1729 	if (status != 0) {
1730 		PR0("ldc_mem_dring_map() returned errno %d", status);
1731 		return (status);
1732 	}
1733 
1734 	/*
1735 	 * To remove the need for this assertion, must call
1736 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
1737 	 * successful call to ldc_mem_dring_map()
1738 	 */
1739 	ASSERT(reg_msg->ncookies == 1);
1740 
1741 	if ((status =
1742 		ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
1743 		PR0("ldc_mem_dring_info() returned errno %d", status);
1744 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
1745 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
1746 		return (status);
1747 	}
1748 
1749 	if (dring_minfo.vaddr == NULL) {
1750 		PR0("Descriptor ring virtual address is NULL");
1751 		return (ENXIO);
1752 	}
1753 
1754 
1755 	/* Initialize for valid message and mapped dring */
1756 	PR1("descriptor size = %u, dring length = %u",
1757 	    vd->descriptor_size, vd->dring_len);
1758 	vd->initialized |= VD_DRING;
1759 	vd->dring_ident = 1;	/* "There Can Be Only One" */
1760 	vd->dring = dring_minfo.vaddr;
1761 	vd->descriptor_size = reg_msg->descriptor_size;
1762 	vd->dring_len = reg_msg->num_descriptors;
1763 	reg_msg->dring_ident = vd->dring_ident;
1764 
1765 	/*
1766 	 * Allocate and initialize a "shadow" array of data structures for
1767 	 * tasks to process I/O requests in dring elements
1768 	 */
1769 	vd->dring_task =
1770 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
1771 	for (int i = 0; i < vd->dring_len; i++) {
1772 		vd->dring_task[i].vd		= vd;
1773 		vd->dring_task[i].index		= i;
1774 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
1775 
1776 		status = ldc_mem_alloc_handle(vd->ldc_handle,
1777 		    &(vd->dring_task[i].mhdl));
1778 		if (status) {
1779 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
1780 			return (ENXIO);
1781 		}
1782 
1783 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
1784 	}
1785 
1786 	return (0);
1787 }
1788 
1789 static int
1790 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1791 {
1792 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
1793 
1794 
1795 	ASSERT(msglen >= sizeof (msg->tag));
1796 
1797 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1798 		VIO_DRING_UNREG)) {
1799 		PR0("Message is not an unregister-dring message");
1800 		return (ENOMSG);
1801 	}
1802 
1803 	if (msglen != sizeof (*unreg_msg)) {
1804 		PR0("Expected %lu-byte unregister-dring message; "
1805 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
1806 		return (EBADMSG);
1807 	}
1808 
1809 	if (unreg_msg->dring_ident != vd->dring_ident) {
1810 		PR0("Expected dring ident %lu; received %lu",
1811 		    vd->dring_ident, unreg_msg->dring_ident);
1812 		return (EBADMSG);
1813 	}
1814 
1815 	return (0);
1816 }
1817 
1818 static int
1819 process_rdx_msg(vio_msg_t *msg, size_t msglen)
1820 {
1821 	ASSERT(msglen >= sizeof (msg->tag));
1822 
1823 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
1824 		PR0("Message is not an RDX message");
1825 		return (ENOMSG);
1826 	}
1827 
1828 	if (msglen != sizeof (vio_rdx_msg_t)) {
1829 		PR0("Expected %lu-byte RDX message; received %lu bytes",
1830 		    sizeof (vio_rdx_msg_t), msglen);
1831 		return (EBADMSG);
1832 	}
1833 
1834 	PR0("Valid RDX message");
1835 	return (0);
1836 }
1837 
1838 static int
1839 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
1840 {
1841 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
1842 		PR0("Received seq_num %lu; expected %lu",
1843 		    seq_num, (vd->seq_num + 1));
1844 		PR0("initiating soft reset");
1845 		vd_need_reset(vd, B_FALSE);
1846 		return (1);
1847 	}
1848 
1849 	vd->seq_num = seq_num;
1850 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
1851 	return (0);
1852 }
1853 
1854 /*
1855  * Return the expected size of an inband-descriptor message with all the
1856  * cookies it claims to include
1857  */
1858 static size_t
1859 expected_inband_size(vd_dring_inband_msg_t *msg)
1860 {
1861 	return ((sizeof (*msg)) +
1862 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
1863 }
1864 
1865 /*
1866  * Process an in-band descriptor message:  used with clients like OBP, with
1867  * which vds exchanges descriptors within VIO message payloads, rather than
1868  * operating on them within a descriptor ring
1869  */
1870 static int
1871 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1872 {
1873 	size_t			expected;
1874 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
1875 
1876 
1877 	ASSERT(msglen >= sizeof (msg->tag));
1878 
1879 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
1880 		VIO_DESC_DATA)) {
1881 		PR1("Message is not an in-band-descriptor message");
1882 		return (ENOMSG);
1883 	}
1884 
1885 	if (msglen < sizeof (*desc_msg)) {
1886 		PR0("Expected at least %lu-byte descriptor message; "
1887 		    "received %lu bytes", sizeof (*desc_msg), msglen);
1888 		return (EBADMSG);
1889 	}
1890 
1891 	if (msglen != (expected = expected_inband_size(desc_msg))) {
1892 		PR0("Expected %lu-byte descriptor message; "
1893 		    "received %lu bytes", expected, msglen);
1894 		return (EBADMSG);
1895 	}
1896 
1897 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
1898 		return (EBADMSG);
1899 
1900 	/*
1901 	 * Valid message:  Set up the in-band descriptor task and process the
1902 	 * request.  Arrange to acknowledge the client's message, unless an
1903 	 * error processing the descriptor task results in setting
1904 	 * VIO_SUBTYPE_NACK
1905 	 */
1906 	PR1("Valid in-band-descriptor message");
1907 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
1908 
1909 	ASSERT(vd->inband_task.msg != NULL);
1910 
1911 	bcopy(msg, vd->inband_task.msg, msglen);
1912 	vd->inband_task.msglen	= msglen;
1913 
1914 	/*
1915 	 * The task request is now the payload of the message
1916 	 * that was just copied into the body of the task.
1917 	 */
1918 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
1919 	vd->inband_task.request	= &desc_msg->payload;
1920 
1921 	return (vd_process_task(&vd->inband_task));
1922 }
1923 
1924 static int
1925 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
1926     vio_msg_t *msg, size_t msglen)
1927 {
1928 	int			status;
1929 	boolean_t		ready;
1930 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1931 
1932 
1933 	/* Accept the updated dring element */
1934 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1935 		PR0("ldc_mem_dring_acquire() returned errno %d", status);
1936 		return (status);
1937 	}
1938 	ready = (elem->hdr.dstate == VIO_DESC_READY);
1939 	if (ready) {
1940 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
1941 	} else {
1942 		PR0("descriptor %u not ready", idx);
1943 		VD_DUMP_DRING_ELEM(elem);
1944 	}
1945 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1946 		PR0("ldc_mem_dring_release() returned errno %d", status);
1947 		return (status);
1948 	}
1949 	if (!ready)
1950 		return (EBUSY);
1951 
1952 
1953 	/* Initialize a task and process the accepted element */
1954 	PR1("Processing dring element %u", idx);
1955 	vd->dring_task[idx].type	= type;
1956 
1957 	/* duplicate msg buf for cookies etc. */
1958 	bcopy(msg, vd->dring_task[idx].msg, msglen);
1959 
1960 	vd->dring_task[idx].msglen	= msglen;
1961 	if ((status = vd_process_task(&vd->dring_task[idx])) != EINPROGRESS)
1962 		status = vd_mark_elem_done(vd, idx,
1963 		    vd->dring_task[idx].request->status,
1964 		    vd->dring_task[idx].request->nbytes);
1965 
1966 	return (status);
1967 }
1968 
1969 static int
1970 vd_process_element_range(vd_t *vd, int start, int end,
1971     vio_msg_t *msg, size_t msglen)
1972 {
1973 	int		i, n, nelem, status = 0;
1974 	boolean_t	inprogress = B_FALSE;
1975 	vd_task_type_t	type;
1976 
1977 
1978 	ASSERT(start >= 0);
1979 	ASSERT(end >= 0);
1980 
1981 	/*
1982 	 * Arrange to acknowledge the client's message, unless an error
1983 	 * processing one of the dring elements results in setting
1984 	 * VIO_SUBTYPE_NACK
1985 	 */
1986 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
1987 
1988 	/*
1989 	 * Process the dring elements in the range
1990 	 */
1991 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
1992 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
1993 		((vio_dring_msg_t *)msg)->end_idx = i;
1994 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
1995 		status = vd_process_element(vd, type, i, msg, msglen);
1996 		if (status == EINPROGRESS)
1997 			inprogress = B_TRUE;
1998 		else if (status != 0)
1999 			break;
2000 	}
2001 
2002 	/*
2003 	 * If some, but not all, operations of a multi-element range are in
2004 	 * progress, wait for other operations to complete before returning
2005 	 * (which will result in "ack" or "nack" of the message).  Note that
2006 	 * all outstanding operations will need to complete, not just the ones
2007 	 * corresponding to the current range of dring elements; howevever, as
2008 	 * this situation is an error case, performance is less critical.
2009 	 */
2010 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
2011 		ddi_taskq_wait(vd->completionq);
2012 
2013 	return (status);
2014 }
2015 
2016 static int
2017 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2018 {
2019 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
2020 
2021 
2022 	ASSERT(msglen >= sizeof (msg->tag));
2023 
2024 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
2025 		VIO_DRING_DATA)) {
2026 		PR1("Message is not a dring-data message");
2027 		return (ENOMSG);
2028 	}
2029 
2030 	if (msglen != sizeof (*dring_msg)) {
2031 		PR0("Expected %lu-byte dring message; received %lu bytes",
2032 		    sizeof (*dring_msg), msglen);
2033 		return (EBADMSG);
2034 	}
2035 
2036 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
2037 		return (EBADMSG);
2038 
2039 	if (dring_msg->dring_ident != vd->dring_ident) {
2040 		PR0("Expected dring ident %lu; received ident %lu",
2041 		    vd->dring_ident, dring_msg->dring_ident);
2042 		return (EBADMSG);
2043 	}
2044 
2045 	if (dring_msg->start_idx >= vd->dring_len) {
2046 		PR0("\"start_idx\" = %u; must be less than %u",
2047 		    dring_msg->start_idx, vd->dring_len);
2048 		return (EBADMSG);
2049 	}
2050 
2051 	if ((dring_msg->end_idx < 0) ||
2052 	    (dring_msg->end_idx >= vd->dring_len)) {
2053 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
2054 		    dring_msg->end_idx, vd->dring_len);
2055 		return (EBADMSG);
2056 	}
2057 
2058 	/* Valid message; process range of updated dring elements */
2059 	PR1("Processing descriptor range, start = %u, end = %u",
2060 	    dring_msg->start_idx, dring_msg->end_idx);
2061 	return (vd_process_element_range(vd, dring_msg->start_idx,
2062 		dring_msg->end_idx, msg, msglen));
2063 }
2064 
2065 static int
2066 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
2067 {
2068 	int	retry, status;
2069 	size_t	size = *nbytes;
2070 
2071 
2072 	for (retry = 0, status = ETIMEDOUT;
2073 	    retry < vds_ldc_retries && status == ETIMEDOUT;
2074 	    retry++) {
2075 		PR1("ldc_read() attempt %d", (retry + 1));
2076 		*nbytes = size;
2077 		status = ldc_read(ldc_handle, msg, nbytes);
2078 	}
2079 
2080 	if (status) {
2081 		PR0("ldc_read() returned errno %d", status);
2082 		if (status != ECONNRESET)
2083 			return (ENOMSG);
2084 		return (status);
2085 	} else if (*nbytes == 0) {
2086 		PR1("ldc_read() returned 0 and no message read");
2087 		return (ENOMSG);
2088 	}
2089 
2090 	PR1("RCVD %lu-byte message", *nbytes);
2091 	return (0);
2092 }
2093 
2094 static int
2095 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2096 {
2097 	int		status;
2098 
2099 
2100 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
2101 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
2102 #ifdef	DEBUG
2103 	vd_decode_tag(msg);
2104 #endif
2105 
2106 	/*
2107 	 * Validate session ID up front, since it applies to all messages
2108 	 * once set
2109 	 */
2110 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
2111 		PR0("Expected SID %u, received %u", vd->sid,
2112 		    msg->tag.vio_sid);
2113 		return (EBADMSG);
2114 	}
2115 
2116 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
2117 
2118 	/*
2119 	 * Process the received message based on connection state
2120 	 */
2121 	switch (vd->state) {
2122 	case VD_STATE_INIT:	/* expect version message */
2123 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
2124 			return (status);
2125 
2126 		/* Version negotiated, move to that state */
2127 		vd->state = VD_STATE_VER;
2128 		return (0);
2129 
2130 	case VD_STATE_VER:	/* expect attribute message */
2131 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
2132 			return (status);
2133 
2134 		/* Attributes exchanged, move to that state */
2135 		vd->state = VD_STATE_ATTR;
2136 		return (0);
2137 
2138 	case VD_STATE_ATTR:
2139 		switch (vd->xfer_mode) {
2140 		case VIO_DESC_MODE:	/* expect RDX message */
2141 			if ((status = process_rdx_msg(msg, msglen)) != 0)
2142 				return (status);
2143 
2144 			/* Ready to receive in-band descriptors */
2145 			vd->state = VD_STATE_DATA;
2146 			return (0);
2147 
2148 		case VIO_DRING_MODE:	/* expect register-dring message */
2149 			if ((status =
2150 				vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
2151 				return (status);
2152 
2153 			/* One dring negotiated, move to that state */
2154 			vd->state = VD_STATE_DRING;
2155 			return (0);
2156 
2157 		default:
2158 			ASSERT("Unsupported transfer mode");
2159 			PR0("Unsupported transfer mode");
2160 			return (ENOTSUP);
2161 		}
2162 
2163 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
2164 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
2165 			/* Ready to receive data */
2166 			vd->state = VD_STATE_DATA;
2167 			return (0);
2168 		} else if (status != ENOMSG) {
2169 			return (status);
2170 		}
2171 
2172 
2173 		/*
2174 		 * If another register-dring message is received, stay in
2175 		 * dring state in case the client sends RDX; although the
2176 		 * protocol allows multiple drings, this server does not
2177 		 * support using more than one
2178 		 */
2179 		if ((status =
2180 			vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
2181 			return (status);
2182 
2183 		/*
2184 		 * Acknowledge an unregister-dring message, but reset the
2185 		 * connection anyway:  Although the protocol allows
2186 		 * unregistering drings, this server cannot serve a vdisk
2187 		 * without its only dring
2188 		 */
2189 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
2190 		return ((status == 0) ? ENOTSUP : status);
2191 
2192 	case VD_STATE_DATA:
2193 		switch (vd->xfer_mode) {
2194 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
2195 			return (vd_process_desc_msg(vd, msg, msglen));
2196 
2197 		case VIO_DRING_MODE:	/* expect dring-data or unreg-dring */
2198 			/*
2199 			 * Typically expect dring-data messages, so handle
2200 			 * them first
2201 			 */
2202 			if ((status = vd_process_dring_msg(vd, msg,
2203 				    msglen)) != ENOMSG)
2204 				return (status);
2205 
2206 			/*
2207 			 * Acknowledge an unregister-dring message, but reset
2208 			 * the connection anyway:  Although the protocol
2209 			 * allows unregistering drings, this server cannot
2210 			 * serve a vdisk without its only dring
2211 			 */
2212 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
2213 			return ((status == 0) ? ENOTSUP : status);
2214 
2215 		default:
2216 			ASSERT("Unsupported transfer mode");
2217 			PR0("Unsupported transfer mode");
2218 			return (ENOTSUP);
2219 		}
2220 
2221 	default:
2222 		ASSERT("Invalid client connection state");
2223 		PR0("Invalid client connection state");
2224 		return (ENOTSUP);
2225 	}
2226 }
2227 
2228 static int
2229 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2230 {
2231 	int		status;
2232 	boolean_t	reset_ldc = B_FALSE;
2233 
2234 
2235 	/*
2236 	 * Check that the message is at least big enough for a "tag", so that
2237 	 * message processing can proceed based on tag-specified message type
2238 	 */
2239 	if (msglen < sizeof (vio_msg_tag_t)) {
2240 		PR0("Received short (%lu-byte) message", msglen);
2241 		/* Can't "nack" short message, so drop the big hammer */
2242 		PR0("initiating full reset");
2243 		vd_need_reset(vd, B_TRUE);
2244 		return (EBADMSG);
2245 	}
2246 
2247 	/*
2248 	 * Process the message
2249 	 */
2250 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
2251 	case 0:
2252 		/* "ack" valid, successfully-processed messages */
2253 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2254 		break;
2255 
2256 	case EINPROGRESS:
2257 		/* The completion handler will "ack" or "nack" the message */
2258 		return (EINPROGRESS);
2259 	case ENOMSG:
2260 		PR0("Received unexpected message");
2261 		_NOTE(FALLTHROUGH);
2262 	case EBADMSG:
2263 	case ENOTSUP:
2264 		/* "nack" invalid messages */
2265 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2266 		break;
2267 
2268 	default:
2269 		/* "nack" failed messages */
2270 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2271 		/* An LDC error probably occurred, so try resetting it */
2272 		reset_ldc = B_TRUE;
2273 		break;
2274 	}
2275 
2276 	PR1("\tResulting in state %d (%s)", vd->state,
2277 		vd_decode_state(vd->state));
2278 
2279 	/* Send the "ack" or "nack" to the client */
2280 	PR1("Sending %s",
2281 	    (msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2282 	if (send_msg(vd->ldc_handle, msg, msglen) != 0)
2283 		reset_ldc = B_TRUE;
2284 
2285 	/* Arrange to reset the connection for nack'ed or failed messages */
2286 	if ((status != 0) || reset_ldc) {
2287 		PR0("initiating %s reset",
2288 		    (reset_ldc) ? "full" : "soft");
2289 		vd_need_reset(vd, reset_ldc);
2290 	}
2291 
2292 	return (status);
2293 }
2294 
2295 static boolean_t
2296 vd_enabled(vd_t *vd)
2297 {
2298 	boolean_t	enabled;
2299 
2300 
2301 	mutex_enter(&vd->lock);
2302 	enabled = vd->enabled;
2303 	mutex_exit(&vd->lock);
2304 	return (enabled);
2305 }
2306 
2307 static void
2308 vd_recv_msg(void *arg)
2309 {
2310 	vd_t	*vd = (vd_t *)arg;
2311 	int	rv = 0, status = 0;
2312 
2313 	ASSERT(vd != NULL);
2314 
2315 	PR2("New task to receive incoming message(s)");
2316 
2317 
2318 	while (vd_enabled(vd) && status == 0) {
2319 		size_t		msglen, msgsize;
2320 		ldc_status_t	lstatus;
2321 
2322 		/*
2323 		 * Receive and process a message
2324 		 */
2325 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
2326 
2327 		/*
2328 		 * check if channel is UP - else break out of loop
2329 		 */
2330 		status = ldc_status(vd->ldc_handle, &lstatus);
2331 		if (lstatus != LDC_UP) {
2332 			PR0("channel not up (status=%d), exiting recv loop\n",
2333 			    lstatus);
2334 			break;
2335 		}
2336 
2337 		ASSERT(vd->max_msglen != 0);
2338 
2339 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
2340 		msglen	= msgsize;	  /* actual len after recv_msg() */
2341 
2342 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
2343 		switch (status) {
2344 		case 0:
2345 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
2346 				msglen);
2347 			/* check if max_msglen changed */
2348 			if (msgsize != vd->max_msglen) {
2349 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
2350 				    msgsize, vd->max_msglen);
2351 				kmem_free(vd->vio_msgp, msgsize);
2352 				vd->vio_msgp =
2353 					kmem_alloc(vd->max_msglen, KM_SLEEP);
2354 			}
2355 			if (rv == EINPROGRESS)
2356 				continue;
2357 			break;
2358 
2359 		case ENOMSG:
2360 			break;
2361 
2362 		case ECONNRESET:
2363 			PR0("initiating soft reset (ECONNRESET)\n");
2364 			vd_need_reset(vd, B_FALSE);
2365 			status = 0;
2366 			break;
2367 
2368 		default:
2369 			/* Probably an LDC failure; arrange to reset it */
2370 			PR0("initiating full reset (status=0x%x)", status);
2371 			vd_need_reset(vd, B_TRUE);
2372 			break;
2373 		}
2374 	}
2375 
2376 	PR2("Task finished");
2377 }
2378 
2379 static uint_t
2380 vd_handle_ldc_events(uint64_t event, caddr_t arg)
2381 {
2382 	vd_t	*vd = (vd_t *)(void *)arg;
2383 	int	status;
2384 
2385 	ASSERT(vd != NULL);
2386 
2387 	if (!vd_enabled(vd))
2388 		return (LDC_SUCCESS);
2389 
2390 	if (event & LDC_EVT_DOWN) {
2391 		PR0("LDC_EVT_DOWN: LDC channel went down");
2392 
2393 		vd_need_reset(vd, B_TRUE);
2394 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
2395 		    DDI_SLEEP);
2396 		if (status == DDI_FAILURE) {
2397 			PR0("cannot schedule task to recv msg\n");
2398 			vd_need_reset(vd, B_TRUE);
2399 		}
2400 	}
2401 
2402 	if (event & LDC_EVT_RESET) {
2403 		PR0("LDC_EVT_RESET: LDC channel was reset");
2404 
2405 		if (vd->state != VD_STATE_INIT) {
2406 			PR0("scheduling full reset");
2407 			vd_need_reset(vd, B_FALSE);
2408 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
2409 			    vd, DDI_SLEEP);
2410 			if (status == DDI_FAILURE) {
2411 				PR0("cannot schedule task to recv msg\n");
2412 				vd_need_reset(vd, B_TRUE);
2413 			}
2414 
2415 		} else {
2416 			PR0("channel already reset, ignoring...\n");
2417 			PR0("doing ldc up...\n");
2418 			(void) ldc_up(vd->ldc_handle);
2419 		}
2420 
2421 		return (LDC_SUCCESS);
2422 	}
2423 
2424 	if (event & LDC_EVT_UP) {
2425 		PR0("EVT_UP: LDC is up\nResetting client connection state");
2426 		PR0("initiating soft reset");
2427 		vd_need_reset(vd, B_FALSE);
2428 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
2429 		    vd, DDI_SLEEP);
2430 		if (status == DDI_FAILURE) {
2431 			PR0("cannot schedule task to recv msg\n");
2432 			vd_need_reset(vd, B_TRUE);
2433 			return (LDC_SUCCESS);
2434 		}
2435 	}
2436 
2437 	if (event & LDC_EVT_READ) {
2438 		int	status;
2439 
2440 		PR1("New data available");
2441 		/* Queue a task to receive the new data */
2442 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
2443 		    DDI_SLEEP);
2444 
2445 		if (status == DDI_FAILURE) {
2446 			PR0("cannot schedule task to recv msg\n");
2447 			vd_need_reset(vd, B_TRUE);
2448 		}
2449 	}
2450 
2451 	return (LDC_SUCCESS);
2452 }
2453 
2454 static uint_t
2455 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2456 {
2457 	_NOTE(ARGUNUSED(key, val))
2458 	(*((uint_t *)arg))++;
2459 	return (MH_WALK_TERMINATE);
2460 }
2461 
2462 
2463 static int
2464 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2465 {
2466 	uint_t	vd_present = 0;
2467 	minor_t	instance;
2468 	vds_t	*vds;
2469 
2470 
2471 	switch (cmd) {
2472 	case DDI_DETACH:
2473 		/* the real work happens below */
2474 		break;
2475 	case DDI_SUSPEND:
2476 		PR0("No action required for DDI_SUSPEND");
2477 		return (DDI_SUCCESS);
2478 	default:
2479 		PR0("Unrecognized \"cmd\"");
2480 		return (DDI_FAILURE);
2481 	}
2482 
2483 	ASSERT(cmd == DDI_DETACH);
2484 	instance = ddi_get_instance(dip);
2485 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
2486 		PR0("Could not get state for instance %u", instance);
2487 		ddi_soft_state_free(vds_state, instance);
2488 		return (DDI_FAILURE);
2489 	}
2490 
2491 	/* Do no detach when serving any vdisks */
2492 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
2493 	if (vd_present) {
2494 		PR0("Not detaching because serving vdisks");
2495 		return (DDI_FAILURE);
2496 	}
2497 
2498 	PR0("Detaching");
2499 	if (vds->initialized & VDS_MDEG) {
2500 		(void) mdeg_unregister(vds->mdeg);
2501 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
2502 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
2503 		vds->ispecp = NULL;
2504 		vds->mdeg = NULL;
2505 	}
2506 
2507 	if (vds->initialized & VDS_LDI)
2508 		(void) ldi_ident_release(vds->ldi_ident);
2509 	mod_hash_destroy_hash(vds->vd_table);
2510 	ddi_soft_state_free(vds_state, instance);
2511 	return (DDI_SUCCESS);
2512 }
2513 
2514 static boolean_t
2515 is_pseudo_device(dev_info_t *dip)
2516 {
2517 	dev_info_t	*parent, *root = ddi_root_node();
2518 
2519 
2520 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
2521 	    parent = ddi_get_parent(parent)) {
2522 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
2523 			return (B_TRUE);
2524 	}
2525 
2526 	return (B_FALSE);
2527 }
2528 
2529 static int
2530 vd_setup_full_disk(vd_t *vd)
2531 {
2532 	int		rval, status;
2533 	major_t		major = getmajor(vd->dev[0]);
2534 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
2535 	struct dk_minfo	dk_minfo;
2536 
2537 	/*
2538 	 * At this point, vdisk_size is set to the size of partition 2 but
2539 	 * this does not represent the size of the disk because partition 2
2540 	 * may not cover the entire disk and its size does not include reserved
2541 	 * blocks. So we update vdisk_size to be the size of the entire disk.
2542 	 */
2543 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
2544 	    (intptr_t)&dk_minfo, (vd_open_flags | FKIOCTL),
2545 	    kcred, &rval)) != 0) {
2546 		PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
2547 		    status);
2548 		return (status);
2549 	}
2550 	vd->vdisk_size = dk_minfo.dki_capacity;
2551 
2552 	/* Set full-disk parameters */
2553 	vd->vdisk_type	= VD_DISK_TYPE_DISK;
2554 	vd->nslices	= (sizeof (vd->dev))/(sizeof (vd->dev[0]));
2555 
2556 	/* Move dev number and LDI handle to entire-disk-slice array elements */
2557 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
2558 	vd->dev[0]				= 0;
2559 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
2560 	vd->ldi_handle[0]			= NULL;
2561 
2562 	/* Initialize device numbers for remaining slices and open them */
2563 	for (int slice = 0; slice < vd->nslices; slice++) {
2564 		/*
2565 		 * Skip the entire-disk slice, as it's already open and its
2566 		 * device known
2567 		 */
2568 		if (slice == VD_ENTIRE_DISK_SLICE)
2569 			continue;
2570 		ASSERT(vd->dev[slice] == 0);
2571 		ASSERT(vd->ldi_handle[slice] == NULL);
2572 
2573 		/*
2574 		 * Construct the device number for the current slice
2575 		 */
2576 		vd->dev[slice] = makedevice(major, (minor + slice));
2577 
2578 		/*
2579 		 * Open all slices of the disk to serve them to the client.
2580 		 * Slices are opened exclusively to prevent other threads or
2581 		 * processes in the service domain from performing I/O to
2582 		 * slices being accessed by a client.  Failure to open a slice
2583 		 * results in vds not serving this disk, as the client could
2584 		 * attempt (and should be able) to access any slice immediately.
2585 		 * Any slices successfully opened before a failure will get
2586 		 * closed by vds_destroy_vd() as a result of the error returned
2587 		 * by this function.
2588 		 *
2589 		 * We need to do the open with FNDELAY so that opening an empty
2590 		 * slice does not fail.
2591 		 */
2592 		PR0("Opening device major %u, minor %u = slice %u",
2593 		    major, minor, slice);
2594 		if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
2595 		    vd_open_flags | FNDELAY, kcred, &vd->ldi_handle[slice],
2596 		    vd->vds->ldi_ident)) != 0) {
2597 			PRN("ldi_open_by_dev() returned errno %d "
2598 			    "for slice %u", status, slice);
2599 			/* vds_destroy_vd() will close any open slices */
2600 			vd->ldi_handle[slice] = NULL;
2601 			return (status);
2602 		}
2603 	}
2604 
2605 	return (0);
2606 }
2607 
2608 static int
2609 vd_setup_partition_efi(vd_t *vd)
2610 {
2611 	efi_gpt_t *gpt;
2612 	efi_gpe_t *gpe;
2613 	struct uuid uuid = EFI_RESERVED;
2614 	uint32_t crc;
2615 	int length;
2616 
2617 	length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t);
2618 
2619 	gpt = kmem_zalloc(length, KM_SLEEP);
2620 	gpe = (efi_gpe_t *)(gpt + 1);
2621 
2622 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
2623 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
2624 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
2625 	gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL);
2626 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
2627 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
2628 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
2629 
2630 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
2631 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
2632 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
2633 
2634 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
2635 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
2636 
2637 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
2638 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
2639 
2640 	vd->dk_efi.dki_lba = 0;
2641 	vd->dk_efi.dki_length = length;
2642 	vd->dk_efi.dki_data = gpt;
2643 
2644 	return (0);
2645 }
2646 
2647 static int
2648 vd_setup_file(vd_t *vd)
2649 {
2650 	int 		i, rval, status;
2651 	ushort_t	sum;
2652 	vattr_t		vattr;
2653 	dev_t		dev;
2654 	char		*file_path = vd->device_path;
2655 	char		dev_path[MAXPATHLEN + 1];
2656 	ldi_handle_t	lhandle;
2657 	struct dk_cinfo	dk_cinfo;
2658 	struct dk_label label;
2659 
2660 	/* make sure the file is valid */
2661 	if ((status = lookupname(file_path, UIO_SYSSPACE, FOLLOW,
2662 		NULLVPP, &vd->file_vnode)) != 0) {
2663 		PRN("Cannot lookup file(%s) errno %d", file_path, status);
2664 		return (status);
2665 	}
2666 
2667 	if (vd->file_vnode->v_type != VREG) {
2668 		PRN("Invalid file type (%s)\n", file_path);
2669 		VN_RELE(vd->file_vnode);
2670 		return (EBADF);
2671 	}
2672 	VN_RELE(vd->file_vnode);
2673 
2674 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd_open_flags | FOFFMAX,
2675 	    0, &vd->file_vnode, 0, 0)) != 0) {
2676 		PRN("vn_open(%s) = errno %d", file_path, status);
2677 		return (status);
2678 	}
2679 
2680 	/*
2681 	 * We set vd->file now so that vds_destroy_vd will take care of
2682 	 * closing the file and releasing the vnode in case of an error.
2683 	 */
2684 	vd->file = B_TRUE;
2685 	vd->pseudo = B_FALSE;
2686 
2687 	vattr.va_mask = AT_SIZE;
2688 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred)) != 0) {
2689 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
2690 		return (EIO);
2691 	}
2692 
2693 	vd->file_size = vattr.va_size;
2694 	/* size should be at least sizeof(dk_label) */
2695 	if (vd->file_size < sizeof (struct dk_label)) {
2696 		PRN("Size of file has to be at least %ld bytes",
2697 		    sizeof (struct dk_label));
2698 		return (EIO);
2699 	}
2700 
2701 	if (vd->file_vnode->v_flag & VNOMAP) {
2702 		PRN("File %s cannot be mapped", file_path);
2703 		return (EIO);
2704 	}
2705 
2706 	/* read label from file */
2707 	if (VD_FILE_LABEL_READ(vd, &label) < 0) {
2708 		PRN("Can't read label from %s", file_path);
2709 		return (EIO);
2710 	}
2711 
2712 	/* label checksum */
2713 	sum = vd_lbl2cksum(&label);
2714 
2715 	if (label.dkl_magic != DKL_MAGIC || label.dkl_cksum != sum) {
2716 		PR0("%s has an invalid disk label "
2717 		    "(magic=%x cksum=%x (expect %x))",
2718 		    file_path, label.dkl_magic, label.dkl_cksum, sum);
2719 
2720 		/* default label */
2721 		bzero(&label, sizeof (struct dk_label));
2722 
2723 		/*
2724 		 * We must have a resonable number of cylinders and sectors so
2725 		 * that newfs can run using default values.
2726 		 *
2727 		 * if (disk_size < 2MB)
2728 		 * 	phys_cylinders = disk_size / 100K
2729 		 * else
2730 		 * 	phys_cylinders = disk_size / 300K
2731 		 *
2732 		 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
2733 		 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
2734 		 * data_cylinders = phys_cylinders - alt_cylinders
2735 		 *
2736 		 * sectors = disk_size / (phys_cylinders * blk_size)
2737 		 */
2738 		if (vd->file_size < (2 * 1024 * 1024))
2739 			label.dkl_pcyl = vd->file_size / (100 * 1024);
2740 		else
2741 			label.dkl_pcyl = vd->file_size / (300 * 1024);
2742 
2743 		if (label.dkl_pcyl == 0)
2744 			label.dkl_pcyl = 1;
2745 
2746 		if (label.dkl_pcyl > 2)
2747 			label.dkl_acyl = 2;
2748 		else
2749 			label.dkl_acyl = 0;
2750 
2751 		label.dkl_nsect = vd->file_size /
2752 			(DEV_BSIZE * label.dkl_pcyl);
2753 		label.dkl_ncyl = label.dkl_pcyl - label.dkl_acyl;
2754 		label.dkl_nhead = 1;
2755 		label.dkl_write_reinstruct = 0;
2756 		label.dkl_read_reinstruct = 0;
2757 		label.dkl_rpm = 7200;
2758 		label.dkl_apc = 0;
2759 		label.dkl_intrlv = 0;
2760 		label.dkl_magic = DKL_MAGIC;
2761 
2762 		PR0("requested disk size: %ld bytes\n", vd->file_size);
2763 		PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label.dkl_pcyl,
2764 		    label.dkl_nhead, label.dkl_nsect);
2765 		PR0("provided disk size: %ld bytes\n", (uint64_t)
2766 		    (label.dkl_pcyl *
2767 			label.dkl_nhead * label.dkl_nsect * DEV_BSIZE));
2768 
2769 		/*
2770 		 * We must have a correct label name otherwise format(1m) will
2771 		 * not recognized the disk as labeled.
2772 		 */
2773 		(void) snprintf(label.dkl_asciilabel, LEN_DKL_ASCII,
2774 		    "SUNVDSK cyl %d alt %d hd %d sec %d",
2775 		    label.dkl_ncyl, label.dkl_acyl, label.dkl_nhead,
2776 		    label.dkl_nsect);
2777 
2778 		/* default VTOC */
2779 		label.dkl_vtoc.v_version = V_VERSION;
2780 		label.dkl_vtoc.v_nparts = V_NUMPAR;
2781 		label.dkl_vtoc.v_sanity = VTOC_SANE;
2782 		label.dkl_vtoc.v_part[2].p_tag = V_BACKUP;
2783 		label.dkl_map[2].dkl_cylno = 0;
2784 		label.dkl_map[2].dkl_nblk = label.dkl_ncyl *
2785 			label.dkl_nhead * label.dkl_nsect;
2786 		label.dkl_map[0] = label.dkl_map[2];
2787 		label.dkl_map[0] = label.dkl_map[2];
2788 		label.dkl_cksum = vd_lbl2cksum(&label);
2789 
2790 		/* write default label to file */
2791 		if (VD_FILE_LABEL_WRITE(vd, &label) < 0) {
2792 			PRN("Can't write label to %s", file_path);
2793 			return (EIO);
2794 		}
2795 	}
2796 
2797 	vd->nslices = label.dkl_vtoc.v_nparts;
2798 
2799 	/* sector size = block size = DEV_BSIZE */
2800 	vd->vdisk_size = (label.dkl_pcyl *
2801 	    label.dkl_nhead * label.dkl_nsect) / DEV_BSIZE;
2802 	vd->vdisk_type = VD_DISK_TYPE_DISK;
2803 	vd->vdisk_label = VD_DISK_LABEL_VTOC;
2804 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
2805 
2806 	/* Get max_xfer_sz from the device where the file is */
2807 	dev = vd->file_vnode->v_vfsp->vfs_dev;
2808 	dev_path[0] = NULL;
2809 	if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) {
2810 		PR0("underlying device = %s\n", dev_path);
2811 	}
2812 
2813 	if ((status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD,
2814 		kcred, &lhandle, vd->vds->ldi_ident)) != 0) {
2815 		PR0("ldi_open_by_dev() returned errno %d for device %s",
2816 		    status, dev_path);
2817 	} else {
2818 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
2819 		    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
2820 		    &rval)) != 0) {
2821 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
2822 			    status, dev_path);
2823 		} else {
2824 			/*
2825 			 * Store the device's max transfer size for
2826 			 * return to the client
2827 			 */
2828 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
2829 		}
2830 
2831 		PR0("close the device %s", dev_path);
2832 		(void) ldi_close(lhandle, FREAD, kcred);
2833 	}
2834 
2835 	PR0("using for file %s, dev %s, max_xfer = %u blks",
2836 	    file_path, dev_path, vd->max_xfer_sz);
2837 
2838 	vd->dk_geom.dkg_ncyl = label.dkl_ncyl;
2839 	vd->dk_geom.dkg_acyl = label.dkl_acyl;
2840 	vd->dk_geom.dkg_pcyl = label.dkl_pcyl;
2841 	vd->dk_geom.dkg_nhead = label.dkl_nhead;
2842 	vd->dk_geom.dkg_nsect = label.dkl_nsect;
2843 	vd->dk_geom.dkg_intrlv = label.dkl_intrlv;
2844 	vd->dk_geom.dkg_apc = label.dkl_apc;
2845 	vd->dk_geom.dkg_rpm = label.dkl_rpm;
2846 	vd->dk_geom.dkg_write_reinstruct = label.dkl_write_reinstruct;
2847 	vd->dk_geom.dkg_read_reinstruct = label.dkl_read_reinstruct;
2848 
2849 	vd->vtoc.v_sanity = label.dkl_vtoc.v_sanity;
2850 	vd->vtoc.v_version = label.dkl_vtoc.v_version;
2851 	vd->vtoc.v_sectorsz = DEV_BSIZE;
2852 	vd->vtoc.v_nparts = label.dkl_vtoc.v_nparts;
2853 
2854 	bcopy(label.dkl_vtoc.v_volume, vd->vtoc.v_volume,
2855 	    LEN_DKL_VVOL);
2856 	bcopy(label.dkl_asciilabel, vd->vtoc.v_asciilabel,
2857 	    LEN_DKL_ASCII);
2858 
2859 	for (i = 0; i < vd->nslices; i++) {
2860 		vd->vtoc.timestamp[i] = label.dkl_vtoc.v_timestamp[i];
2861 		vd->vtoc.v_part[i].p_tag = label.dkl_vtoc.v_part[i].p_tag;
2862 		vd->vtoc.v_part[i].p_flag = label.dkl_vtoc.v_part[i].p_flag;
2863 		vd->vtoc.v_part[i].p_start = label.dkl_map[i].dkl_cylno *
2864 			label.dkl_nhead * label.dkl_nsect;
2865 		vd->vtoc.v_part[i].p_size = label.dkl_map[i].dkl_nblk;
2866 		vd->ldi_handle[i] = NULL;
2867 		vd->dev[i] = NULL;
2868 	}
2869 
2870 	return (0);
2871 }
2872 
2873 static int
2874 vd_setup_vd(vd_t *vd)
2875 {
2876 	int		rval, status;
2877 	dev_info_t	*dip;
2878 	struct dk_cinfo	dk_cinfo;
2879 	char		*device_path = vd->device_path;
2880 
2881 	/*
2882 	 * We need to open with FNDELAY so that opening an empty partition
2883 	 * does not fail.
2884 	 */
2885 	if ((status = ldi_open_by_name(device_path, vd_open_flags | FNDELAY,
2886 	    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident)) != 0) {
2887 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
2888 		vd->ldi_handle[0] = NULL;
2889 
2890 		/* this may not be a device try opening as a file */
2891 		if (status == ENXIO || status == ENODEV)
2892 			status = vd_setup_file(vd);
2893 		if (status) {
2894 			PRN("Cannot use device/file (%s), errno=%d\n",
2895 			    device_path, status);
2896 			if (status == ENXIO || status == ENODEV ||
2897 			    status == ENOENT) {
2898 				return (EAGAIN);
2899 			}
2900 		}
2901 		return (status);
2902 	}
2903 
2904 	/*
2905 	 * nslices must be updated now so that vds_destroy_vd() will close
2906 	 * the slice we have just opened in case of an error.
2907 	 */
2908 	vd->nslices = 1;
2909 	vd->file = B_FALSE;
2910 
2911 	/* Get device number and size of backing device */
2912 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
2913 		PRN("ldi_get_dev() returned errno %d for %s",
2914 		    status, device_path);
2915 		return (status);
2916 	}
2917 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
2918 		PRN("ldi_get_size() failed for %s", device_path);
2919 		return (EIO);
2920 	}
2921 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
2922 
2923 	/* Verify backing device supports dk_cinfo, dk_geom, and vtoc */
2924 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
2925 		    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
2926 		    &rval)) != 0) {
2927 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
2928 		    status, device_path);
2929 		return (status);
2930 	}
2931 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
2932 		PRN("slice %u >= maximum slice %u for %s",
2933 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
2934 		return (EIO);
2935 	}
2936 
2937 	status = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc, &vd->vdisk_label);
2938 
2939 	if (status != 0) {
2940 		PRN("vd_read_vtoc returned errno %d for %s",
2941 		    status, device_path);
2942 		return (status);
2943 	}
2944 
2945 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
2946 	    (status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
2947 	    (intptr_t)&vd->dk_geom, (vd_open_flags | FKIOCTL),
2948 	    kcred, &rval)) != 0) {
2949 		    PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
2950 			status, device_path);
2951 		    return (status);
2952 	}
2953 
2954 	/* Store the device's max transfer size for return to the client */
2955 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
2956 
2957 	/* Determine if backing device is a pseudo device */
2958 	if ((dip = ddi_hold_devi_by_instance(getmajor(vd->dev[0]),
2959 		    dev_to_instance(vd->dev[0]), 0))  == NULL) {
2960 		PRN("%s is no longer accessible", device_path);
2961 		return (EIO);
2962 	}
2963 	vd->pseudo = is_pseudo_device(dip);
2964 	ddi_release_devi(dip);
2965 	if (vd->pseudo) {
2966 		vd->vdisk_type	= VD_DISK_TYPE_SLICE;
2967 		vd->nslices	= 1;
2968 		return (0);	/* ...and we're done */
2969 	}
2970 
2971 	/* If slice is entire-disk slice, initialize for full disk */
2972 	if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE)
2973 		return (vd_setup_full_disk(vd));
2974 
2975 
2976 	/* Otherwise, we have a non-entire slice of a device */
2977 	vd->vdisk_type	= VD_DISK_TYPE_SLICE;
2978 	vd->nslices	= 1;
2979 
2980 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
2981 		status = vd_setup_partition_efi(vd);
2982 		return (status);
2983 	}
2984 
2985 	/* Initialize dk_geom structure for single-slice device */
2986 	if (vd->dk_geom.dkg_nsect == 0) {
2987 		PRN("%s geometry claims 0 sectors per track", device_path);
2988 		return (EIO);
2989 	}
2990 	if (vd->dk_geom.dkg_nhead == 0) {
2991 		PRN("%s geometry claims 0 heads", device_path);
2992 		return (EIO);
2993 	}
2994 	vd->dk_geom.dkg_ncyl =
2995 	    vd->vdisk_size/vd->dk_geom.dkg_nsect/vd->dk_geom.dkg_nhead;
2996 	vd->dk_geom.dkg_acyl = 0;
2997 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
2998 
2999 
3000 	/* Initialize vtoc structure for single-slice device */
3001 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
3002 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
3003 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
3004 	vd->vtoc.v_nparts = 1;
3005 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
3006 	vd->vtoc.v_part[0].p_flag = 0;
3007 	vd->vtoc.v_part[0].p_start = 0;
3008 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
3009 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
3010 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
3011 
3012 
3013 	return (0);
3014 }
3015 
3016 static int
3017 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id,
3018     vd_t **vdp)
3019 {
3020 	char			tq_name[TASKQ_NAMELEN];
3021 	int			status;
3022 	ddi_iblock_cookie_t	iblock = NULL;
3023 	ldc_attr_t		ldc_attr;
3024 	vd_t			*vd;
3025 
3026 
3027 	ASSERT(vds != NULL);
3028 	ASSERT(device_path != NULL);
3029 	ASSERT(vdp != NULL);
3030 	PR0("Adding vdisk for %s", device_path);
3031 
3032 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
3033 		PRN("No memory for virtual disk");
3034 		return (EAGAIN);
3035 	}
3036 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
3037 	vd->vds = vds;
3038 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
3039 
3040 	/* Open vdisk and initialize parameters */
3041 	if ((status = vd_setup_vd(vd)) == 0) {
3042 		vd->initialized |= VD_DISK_READY;
3043 
3044 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
3045 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
3046 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
3047 		    (vd->pseudo ? "yes" : "no"), (vd->file ? "yes" : "no"),
3048 		    vd->nslices);
3049 	} else {
3050 		if (status != EAGAIN)
3051 			return (status);
3052 	}
3053 
3054 	/* Initialize locking */
3055 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
3056 		&iblock) != DDI_SUCCESS) {
3057 		PRN("Could not get iblock cookie.");
3058 		return (EIO);
3059 	}
3060 
3061 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
3062 	vd->initialized |= VD_LOCKING;
3063 
3064 
3065 	/* Create start and completion task queues for the vdisk */
3066 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
3067 	PR1("tq_name = %s", tq_name);
3068 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
3069 		    TASKQ_DEFAULTPRI, 0)) == NULL) {
3070 		PRN("Could not create task queue");
3071 		return (EIO);
3072 	}
3073 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
3074 	PR1("tq_name = %s", tq_name);
3075 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
3076 		    TASKQ_DEFAULTPRI, 0)) == NULL) {
3077 		PRN("Could not create task queue");
3078 		return (EIO);
3079 	}
3080 	vd->enabled = 1;	/* before callback can dispatch to startq */
3081 
3082 
3083 	/* Bring up LDC */
3084 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
3085 	ldc_attr.instance	= ddi_get_instance(vds->dip);
3086 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
3087 	ldc_attr.mtu		= VD_LDC_MTU;
3088 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
3089 		PRN("Could not initialize LDC channel %lu, "
3090 		    "init failed with error %d", ldc_id, status);
3091 		return (status);
3092 	}
3093 	vd->initialized |= VD_LDC;
3094 
3095 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
3096 		(caddr_t)vd)) != 0) {
3097 		PRN("Could not initialize LDC channel %lu,"
3098 		    "reg_callback failed with error %d", ldc_id, status);
3099 		return (status);
3100 	}
3101 
3102 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
3103 		PRN("Could not initialize LDC channel %lu,"
3104 		    "open failed with error %d", ldc_id, status);
3105 		return (status);
3106 	}
3107 
3108 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
3109 		PR0("ldc_up() returned errno %d", status);
3110 	}
3111 
3112 	/* Allocate the inband task memory handle */
3113 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
3114 	if (status) {
3115 		PRN("Could not initialize LDC channel %lu,"
3116 		    "alloc_handle failed with error %d", ldc_id, status);
3117 		return (ENXIO);
3118 	}
3119 
3120 	/* Add the successfully-initialized vdisk to the server's table */
3121 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
3122 		PRN("Error adding vdisk ID %lu to table", id);
3123 		return (EIO);
3124 	}
3125 
3126 	/* Allocate the staging buffer */
3127 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
3128 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
3129 
3130 	/* store initial state */
3131 	vd->state = VD_STATE_INIT;
3132 
3133 	return (0);
3134 }
3135 
3136 static void
3137 vd_free_dring_task(vd_t *vdp)
3138 {
3139 	if (vdp->dring_task != NULL) {
3140 		ASSERT(vdp->dring_len != 0);
3141 		/* Free all dring_task memory handles */
3142 		for (int i = 0; i < vdp->dring_len; i++) {
3143 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
3144 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
3145 			vdp->dring_task[i].msg = NULL;
3146 		}
3147 		kmem_free(vdp->dring_task,
3148 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
3149 		vdp->dring_task = NULL;
3150 	}
3151 }
3152 
3153 /*
3154  * Destroy the state associated with a virtual disk
3155  */
3156 static void
3157 vds_destroy_vd(void *arg)
3158 {
3159 	vd_t	*vd = (vd_t *)arg;
3160 	int	retry = 0, rv;
3161 
3162 	if (vd == NULL)
3163 		return;
3164 
3165 	PR0("Destroying vdisk state");
3166 
3167 	if (vd->dk_efi.dki_data != NULL)
3168 		kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length);
3169 
3170 	/* Disable queuing requests for the vdisk */
3171 	if (vd->initialized & VD_LOCKING) {
3172 		mutex_enter(&vd->lock);
3173 		vd->enabled = 0;
3174 		mutex_exit(&vd->lock);
3175 	}
3176 
3177 	/* Drain and destroy start queue (*before* destroying completionq) */
3178 	if (vd->startq != NULL)
3179 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
3180 
3181 	/* Drain and destroy completion queue (*before* shutting down LDC) */
3182 	if (vd->completionq != NULL)
3183 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
3184 
3185 	vd_free_dring_task(vd);
3186 
3187 	/* Free the inband task memory handle */
3188 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
3189 
3190 	/* Shut down LDC */
3191 	if (vd->initialized & VD_LDC) {
3192 		/* unmap the dring */
3193 		if (vd->initialized & VD_DRING)
3194 			(void) ldc_mem_dring_unmap(vd->dring_handle);
3195 
3196 		/* close LDC channel - retry on EAGAIN */
3197 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
3198 			if (++retry > vds_ldc_retries) {
3199 				PR0("Timed out closing channel");
3200 				break;
3201 			}
3202 			drv_usecwait(vds_ldc_delay);
3203 		}
3204 		if (rv == 0) {
3205 			(void) ldc_unreg_callback(vd->ldc_handle);
3206 			(void) ldc_fini(vd->ldc_handle);
3207 		} else {
3208 			/*
3209 			 * Closing the LDC channel has failed. Ideally we should
3210 			 * fail here but there is no Zeus level infrastructure
3211 			 * to handle this. The MD has already been changed and
3212 			 * we have to do the close. So we try to do as much
3213 			 * clean up as we can.
3214 			 */
3215 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
3216 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
3217 				drv_usecwait(vds_ldc_delay);
3218 		}
3219 	}
3220 
3221 	/* Free the staging buffer for msgs */
3222 	if (vd->vio_msgp != NULL) {
3223 		kmem_free(vd->vio_msgp, vd->max_msglen);
3224 		vd->vio_msgp = NULL;
3225 	}
3226 
3227 	/* Free the inband message buffer */
3228 	if (vd->inband_task.msg != NULL) {
3229 		kmem_free(vd->inband_task.msg, vd->max_msglen);
3230 		vd->inband_task.msg = NULL;
3231 	}
3232 	if (vd->file) {
3233 		/* Close file */
3234 		(void) VOP_CLOSE(vd->file_vnode, vd_open_flags, 1,
3235 		    0, kcred);
3236 		VN_RELE(vd->file_vnode);
3237 	} else {
3238 		/* Close any open backing-device slices */
3239 		for (uint_t slice = 0; slice < vd->nslices; slice++) {
3240 			if (vd->ldi_handle[slice] != NULL) {
3241 				PR0("Closing slice %u", slice);
3242 				(void) ldi_close(vd->ldi_handle[slice],
3243 				    vd_open_flags | FNDELAY, kcred);
3244 			}
3245 		}
3246 	}
3247 
3248 	/* Free lock */
3249 	if (vd->initialized & VD_LOCKING)
3250 		mutex_destroy(&vd->lock);
3251 
3252 	/* Finally, free the vdisk structure itself */
3253 	kmem_free(vd, sizeof (*vd));
3254 }
3255 
3256 static int
3257 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id)
3258 {
3259 	int	status;
3260 	vd_t	*vd = NULL;
3261 
3262 
3263 	if ((status = vds_do_init_vd(vds, id, device_path, ldc_id, &vd)) != 0)
3264 		vds_destroy_vd(vd);
3265 
3266 	return (status);
3267 }
3268 
3269 static int
3270 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
3271     uint64_t *ldc_id)
3272 {
3273 	int	num_channels;
3274 
3275 
3276 	/* Look for channel endpoint child(ren) of the vdisk MD node */
3277 	if ((num_channels = md_scan_dag(md, vd_node,
3278 		    md_find_name(md, VD_CHANNEL_ENDPOINT),
3279 		    md_find_name(md, "fwd"), channel)) <= 0) {
3280 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
3281 		return (-1);
3282 	}
3283 
3284 	/* Get the "id" value for the first channel endpoint node */
3285 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
3286 		PRN("No \"%s\" property found for \"%s\" of vdisk",
3287 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
3288 		return (-1);
3289 	}
3290 
3291 	if (num_channels > 1) {
3292 		PRN("Using ID of first of multiple channels for this vdisk");
3293 	}
3294 
3295 	return (0);
3296 }
3297 
3298 static int
3299 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
3300 {
3301 	int		num_nodes, status;
3302 	size_t		size;
3303 	mde_cookie_t	*channel;
3304 
3305 
3306 	if ((num_nodes = md_node_count(md)) <= 0) {
3307 		PRN("Invalid node count in Machine Description subtree");
3308 		return (-1);
3309 	}
3310 	size = num_nodes*(sizeof (*channel));
3311 	channel = kmem_zalloc(size, KM_SLEEP);
3312 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
3313 	kmem_free(channel, size);
3314 
3315 	return (status);
3316 }
3317 
3318 static void
3319 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
3320 {
3321 	char		*device_path = NULL;
3322 	uint64_t	id = 0, ldc_id = 0;
3323 
3324 
3325 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
3326 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
3327 		return;
3328 	}
3329 	PR0("Adding vdisk ID %lu", id);
3330 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
3331 		&device_path) != 0) {
3332 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
3333 		return;
3334 	}
3335 
3336 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
3337 		PRN("Error getting LDC ID for vdisk %lu", id);
3338 		return;
3339 	}
3340 
3341 	if (vds_init_vd(vds, id, device_path, ldc_id) != 0) {
3342 		PRN("Failed to add vdisk ID %lu", id);
3343 		return;
3344 	}
3345 }
3346 
3347 static void
3348 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
3349 {
3350 	uint64_t	id = 0;
3351 
3352 
3353 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
3354 		PRN("Unable to get \"%s\" property from vdisk's MD node",
3355 		    VD_ID_PROP);
3356 		return;
3357 	}
3358 	PR0("Removing vdisk ID %lu", id);
3359 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
3360 		PRN("No vdisk entry found for vdisk ID %lu", id);
3361 }
3362 
3363 static void
3364 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
3365     md_t *curr_md, mde_cookie_t curr_vd_node)
3366 {
3367 	char		*curr_dev, *prev_dev;
3368 	uint64_t	curr_id = 0, curr_ldc_id = 0;
3369 	uint64_t	prev_id = 0, prev_ldc_id = 0;
3370 	size_t		len;
3371 
3372 
3373 	/* Validate that vdisk ID has not changed */
3374 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
3375 		PRN("Error getting previous vdisk \"%s\" property",
3376 		    VD_ID_PROP);
3377 		return;
3378 	}
3379 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
3380 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
3381 		return;
3382 	}
3383 	if (curr_id != prev_id) {
3384 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
3385 		    prev_id, curr_id);
3386 		return;
3387 	}
3388 
3389 	/* Validate that LDC ID has not changed */
3390 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
3391 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
3392 		return;
3393 	}
3394 
3395 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
3396 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
3397 		return;
3398 	}
3399 	if (curr_ldc_id != prev_ldc_id) {
3400 		_NOTE(NOTREACHED);	/* lint is confused */
3401 		PRN("Not changing vdisk:  "
3402 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
3403 		return;
3404 	}
3405 
3406 	/* Determine whether device path has changed */
3407 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
3408 		&prev_dev) != 0) {
3409 		PRN("Error getting previous vdisk \"%s\"",
3410 		    VD_BLOCK_DEVICE_PROP);
3411 		return;
3412 	}
3413 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
3414 		&curr_dev) != 0) {
3415 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
3416 		return;
3417 	}
3418 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
3419 	    (strncmp(curr_dev, prev_dev, len) == 0))
3420 		return;	/* no relevant (supported) change */
3421 
3422 	PR0("Changing vdisk ID %lu", prev_id);
3423 
3424 	/* Remove old state, which will close vdisk and reset */
3425 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
3426 		PRN("No entry found for vdisk ID %lu", prev_id);
3427 
3428 	/* Re-initialize vdisk with new state */
3429 	if (vds_init_vd(vds, curr_id, curr_dev, curr_ldc_id) != 0) {
3430 		PRN("Failed to change vdisk ID %lu", curr_id);
3431 		return;
3432 	}
3433 }
3434 
3435 static int
3436 vds_process_md(void *arg, mdeg_result_t *md)
3437 {
3438 	int	i;
3439 	vds_t	*vds = arg;
3440 
3441 
3442 	if (md == NULL)
3443 		return (MDEG_FAILURE);
3444 	ASSERT(vds != NULL);
3445 
3446 	for (i = 0; i < md->removed.nelem; i++)
3447 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
3448 	for (i = 0; i < md->match_curr.nelem; i++)
3449 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
3450 		    md->match_curr.mdp, md->match_curr.mdep[i]);
3451 	for (i = 0; i < md->added.nelem; i++)
3452 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
3453 
3454 	return (MDEG_SUCCESS);
3455 }
3456 
3457 
3458 static int
3459 vds_do_attach(dev_info_t *dip)
3460 {
3461 	int			status, sz;
3462 	int			cfg_handle;
3463 	minor_t			instance = ddi_get_instance(dip);
3464 	vds_t			*vds;
3465 	mdeg_prop_spec_t	*pspecp;
3466 	mdeg_node_spec_t	*ispecp;
3467 
3468 	/*
3469 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
3470 	 * notion of "instance", or unique identifier, for that node; OBP
3471 	 * stores the value of the "cfg-handle" MD property as the value of
3472 	 * the "reg" property on the node in the device tree it builds from
3473 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
3474 	 * "reg" property value to uniquely identify this device instance when
3475 	 * registering with the MD event-generation framework.  If the "reg"
3476 	 * property cannot be found, the device tree state is presumably so
3477 	 * broken that there is no point in continuing.
3478 	 */
3479 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
3480 		VD_REG_PROP)) {
3481 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
3482 		return (DDI_FAILURE);
3483 	}
3484 
3485 	/* Get the MD instance for later MDEG registration */
3486 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
3487 	    VD_REG_PROP, -1);
3488 
3489 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
3490 		PRN("Could not allocate state for instance %u", instance);
3491 		return (DDI_FAILURE);
3492 	}
3493 
3494 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
3495 		PRN("Could not get state for instance %u", instance);
3496 		ddi_soft_state_free(vds_state, instance);
3497 		return (DDI_FAILURE);
3498 	}
3499 
3500 
3501 	vds->dip	= dip;
3502 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
3503 							vds_destroy_vd,
3504 							sizeof (void *));
3505 	ASSERT(vds->vd_table != NULL);
3506 
3507 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
3508 		PRN("ldi_ident_from_dip() returned errno %d", status);
3509 		return (DDI_FAILURE);
3510 	}
3511 	vds->initialized |= VDS_LDI;
3512 
3513 	/* Register for MD updates */
3514 	sz = sizeof (vds_prop_template);
3515 	pspecp = kmem_alloc(sz, KM_SLEEP);
3516 	bcopy(vds_prop_template, pspecp, sz);
3517 
3518 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
3519 
3520 	/* initialize the complete prop spec structure */
3521 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
3522 	ispecp->namep = "virtual-device";
3523 	ispecp->specp = pspecp;
3524 
3525 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
3526 		&vds->mdeg) != MDEG_SUCCESS) {
3527 		PRN("Unable to register for MD updates");
3528 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
3529 		kmem_free(pspecp, sz);
3530 		return (DDI_FAILURE);
3531 	}
3532 
3533 	vds->ispecp = ispecp;
3534 	vds->initialized |= VDS_MDEG;
3535 
3536 	/* Prevent auto-detaching so driver is available whenever MD changes */
3537 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
3538 	    DDI_PROP_SUCCESS) {
3539 		PRN("failed to set \"%s\" property for instance %u",
3540 		    DDI_NO_AUTODETACH, instance);
3541 	}
3542 
3543 	ddi_report_dev(dip);
3544 	return (DDI_SUCCESS);
3545 }
3546 
3547 static int
3548 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3549 {
3550 	int	status;
3551 
3552 	switch (cmd) {
3553 	case DDI_ATTACH:
3554 		PR0("Attaching");
3555 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
3556 			(void) vds_detach(dip, DDI_DETACH);
3557 		return (status);
3558 	case DDI_RESUME:
3559 		PR0("No action required for DDI_RESUME");
3560 		return (DDI_SUCCESS);
3561 	default:
3562 		return (DDI_FAILURE);
3563 	}
3564 }
3565 
3566 static struct dev_ops vds_ops = {
3567 	DEVO_REV,	/* devo_rev */
3568 	0,		/* devo_refcnt */
3569 	ddi_no_info,	/* devo_getinfo */
3570 	nulldev,	/* devo_identify */
3571 	nulldev,	/* devo_probe */
3572 	vds_attach,	/* devo_attach */
3573 	vds_detach,	/* devo_detach */
3574 	nodev,		/* devo_reset */
3575 	NULL,		/* devo_cb_ops */
3576 	NULL,		/* devo_bus_ops */
3577 	nulldev		/* devo_power */
3578 };
3579 
3580 static struct modldrv modldrv = {
3581 	&mod_driverops,
3582 	"virtual disk server v%I%",
3583 	&vds_ops,
3584 };
3585 
3586 static struct modlinkage modlinkage = {
3587 	MODREV_1,
3588 	&modldrv,
3589 	NULL
3590 };
3591 
3592 
3593 int
3594 _init(void)
3595 {
3596 	int		i, status;
3597 
3598 
3599 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
3600 		return (status);
3601 	if ((status = mod_install(&modlinkage)) != 0) {
3602 		ddi_soft_state_fini(&vds_state);
3603 		return (status);
3604 	}
3605 
3606 	/* Fill in the bit-mask of server-supported operations */
3607 	for (i = 0; i < vds_noperations; i++)
3608 		vds_operations |= 1 << (vds_operation[i].operation - 1);
3609 
3610 	return (0);
3611 }
3612 
3613 int
3614 _info(struct modinfo *modinfop)
3615 {
3616 	return (mod_info(&modlinkage, modinfop));
3617 }
3618 
3619 int
3620 _fini(void)
3621 {
3622 	int	status;
3623 
3624 
3625 	if ((status = mod_remove(&modlinkage)) != 0)
3626 		return (status);
3627 	ddi_soft_state_fini(&vds_state);
3628 	return (0);
3629 }
3630