xref: /titanic_44/usr/src/uts/sun4v/io/vdc.c (revision afbc45417fe46ac092547adfe04ef4966809b862)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * LDoms virtual disk client (vdc) device driver
31  *
32  * This driver runs on a guest logical domain and communicates with the virtual
33  * disk server (vds) driver running on the service domain which is exporting
34  * virtualized "disks" to the guest logical domain.
35  *
36  * The driver can be divided into four sections:
37  *
38  * 1) generic device driver housekeeping
39  *	_init, _fini, attach, detach, ops structures, etc.
40  *
41  * 2) communication channel setup
42  *	Setup the communications link over the LDC channel that vdc uses to
43  *	talk to the vDisk server. Initialise the descriptor ring which
44  *	allows the LDC clients to transfer data via memory mappings.
45  *
46  * 3) Support exported to upper layers (filesystems, etc)
47  *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
48  *	ioctl calls. vdc will copy the data to be written to the descriptor
49  *	ring or maps the buffer to store the data read by the vDisk
50  *	server into the descriptor ring. It then sends a message to the
51  *	vDisk server requesting it to complete the operation.
52  *
53  * 4) Handling responses from vDisk server.
54  *	The vDisk server will ACK some or all of the messages vdc sends to it
55  *	(this is configured during the handshake). Upon receipt of an ACK
56  *	vdc will check the descriptor ring and signal to the upper layer
57  *	code waiting on the IO.
58  */
59 
60 #include <sys/atomic.h>
61 #include <sys/conf.h>
62 #include <sys/disp.h>
63 #include <sys/ddi.h>
64 #include <sys/dkio.h>
65 #include <sys/efi_partition.h>
66 #include <sys/fcntl.h>
67 #include <sys/file.h>
68 #include <sys/kstat.h>
69 #include <sys/mach_descrip.h>
70 #include <sys/modctl.h>
71 #include <sys/mdeg.h>
72 #include <sys/note.h>
73 #include <sys/open.h>
74 #include <sys/sdt.h>
75 #include <sys/stat.h>
76 #include <sys/sunddi.h>
77 #include <sys/types.h>
78 #include <sys/promif.h>
79 #include <sys/var.h>
80 #include <sys/vtoc.h>
81 #include <sys/archsystm.h>
82 #include <sys/sysmacros.h>
83 
84 #include <sys/cdio.h>
85 #include <sys/dktp/fdisk.h>
86 #include <sys/dktp/dadkio.h>
87 #include <sys/mhd.h>
88 #include <sys/scsi/generic/sense.h>
89 #include <sys/scsi/impl/uscsi.h>
90 #include <sys/scsi/impl/services.h>
91 #include <sys/scsi/targets/sddef.h>
92 
93 #include <sys/ldoms.h>
94 #include <sys/ldc.h>
95 #include <sys/vio_common.h>
96 #include <sys/vio_mailbox.h>
97 #include <sys/vio_util.h>
98 #include <sys/vdsk_common.h>
99 #include <sys/vdsk_mailbox.h>
100 #include <sys/vdc.h>
101 
102 /*
103  * function prototypes
104  */
105 
106 /* standard driver functions */
107 static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
108 static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
109 static int	vdc_strategy(struct buf *buf);
110 static int	vdc_print(dev_t dev, char *str);
111 static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
112 static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
113 static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
114 static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
115 			cred_t *credp, int *rvalp);
116 static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
117 static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
118 
119 static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
120 			void *arg, void **resultp);
121 static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
122 static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
123 static int	vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
124 		    int mod_flags, char *name, caddr_t valuep, int *lengthp);
125 
126 /* setup */
127 static void	vdc_min(struct buf *bufp);
128 static int	vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen);
129 static int	vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr);
130 static int	vdc_start_ldc_connection(vdc_t *vdc);
131 static int	vdc_create_device_nodes(vdc_t *vdc);
132 static int	vdc_create_device_nodes_efi(vdc_t *vdc);
133 static int	vdc_create_device_nodes_vtoc(vdc_t *vdc);
134 static void	vdc_create_io_kstats(vdc_t *vdc);
135 static void	vdc_create_err_kstats(vdc_t *vdc);
136 static void	vdc_set_err_kstats(vdc_t *vdc);
137 static int	vdc_get_md_node(dev_info_t *dip, md_t **mdpp,
138 		    mde_cookie_t *vd_nodep);
139 static int	vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep);
140 static void	vdc_fini_ports(vdc_t *vdc);
141 static void	vdc_switch_server(vdc_t *vdcp);
142 static int	vdc_do_ldc_up(vdc_t *vdc);
143 static void	vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr);
144 static int	vdc_init_descriptor_ring(vdc_t *vdc);
145 static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
146 static int	vdc_setup_devid(vdc_t *vdc);
147 static void	vdc_store_label_efi(vdc_t *, efi_gpt_t *, efi_gpe_t *);
148 static void	vdc_store_label_vtoc(vdc_t *, struct dk_geom *, struct vtoc *);
149 static void	vdc_store_label_unk(vdc_t *vdc);
150 static boolean_t vdc_is_opened(vdc_t *vdc);
151 
152 /* handshake with vds */
153 static int		vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver);
154 static int		vdc_ver_negotiation(vdc_t *vdcp);
155 static int		vdc_init_attr_negotiation(vdc_t *vdc);
156 static int		vdc_attr_negotiation(vdc_t *vdcp);
157 static int		vdc_init_dring_negotiate(vdc_t *vdc);
158 static int		vdc_dring_negotiation(vdc_t *vdcp);
159 static int		vdc_send_rdx(vdc_t *vdcp);
160 static int		vdc_rdx_exchange(vdc_t *vdcp);
161 static boolean_t	vdc_is_supported_version(vio_ver_msg_t *ver_msg);
162 
163 /* processing incoming messages from vDisk server */
164 static void	vdc_process_msg_thread(vdc_t *vdc);
165 static int	vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp);
166 
167 static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
168 static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t *msg);
169 static int	vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg);
170 static int	vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg);
171 static int	vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg);
172 static int 	vdc_send_request(vdc_t *vdcp, int operation,
173 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
174 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
175 static int	vdc_map_to_shared_dring(vdc_t *vdcp, int idx);
176 static int 	vdc_populate_descriptor(vdc_t *vdcp, int operation,
177 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
178 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
179 static int 	vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr,
180 		    size_t nbytes, int slice, diskaddr_t offset, int cb_type,
181 		    void *cb_arg, vio_desc_direction_t dir, boolean_t);
182 
183 static int	vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp);
184 static int	vdc_drain_response(vdc_t *vdcp);
185 static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
186 static int	vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep);
187 static int	vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg);
188 
189 /* dkio */
190 static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode,
191 		    int *rvalp);
192 static int	vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg);
193 static void	vdc_create_fake_geometry(vdc_t *vdc);
194 static int	vdc_validate_geometry(vdc_t *vdc);
195 static void	vdc_validate(vdc_t *vdc);
196 static void	vdc_validate_task(void *arg);
197 static int	vdc_null_copy_func(vdc_t *vdc, void *from, void *to,
198 		    int mode, int dir);
199 static int	vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
200 		    int mode, int dir);
201 static int	vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
202 		    int mode, int dir);
203 static int	vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to,
204 		    int mode, int dir);
205 static int	vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to,
206 		    int mode, int dir);
207 static int	vdc_get_geom_convert(vdc_t *vdc, void *from, void *to,
208 		    int mode, int dir);
209 static int	vdc_set_geom_convert(vdc_t *vdc, void *from, void *to,
210 		    int mode, int dir);
211 static int	vdc_get_efi_convert(vdc_t *vdc, void *from, void *to,
212 		    int mode, int dir);
213 static int	vdc_set_efi_convert(vdc_t *vdc, void *from, void *to,
214 		    int mode, int dir);
215 
216 static void 	vdc_ownership_update(vdc_t *vdc, int ownership_flags);
217 static int	vdc_access_set(vdc_t *vdc, uint64_t flags, int mode);
218 static vdc_io_t	*vdc_failfast_io_queue(vdc_t *vdc, struct buf *buf);
219 static int	vdc_failfast_check_resv(vdc_t *vdc);
220 
221 /*
222  * Module variables
223  */
224 
225 /*
226  * Tunable variables to control how long vdc waits before timing out on
227  * various operations
228  */
229 static int	vdc_hshake_retries = 3;
230 
231 static int	vdc_timeout = 0; /* units: seconds */
232 static int 	vdc_ldcup_timeout = 1; /* units: seconds */
233 
234 static uint64_t vdc_hz_min_ldc_delay;
235 static uint64_t vdc_min_timeout_ldc = 1 * MILLISEC;
236 static uint64_t vdc_hz_max_ldc_delay;
237 static uint64_t vdc_max_timeout_ldc = 100 * MILLISEC;
238 
239 static uint64_t vdc_ldc_read_init_delay = 1 * MILLISEC;
240 static uint64_t vdc_ldc_read_max_delay = 100 * MILLISEC;
241 
242 /* values for dumping - need to run in a tighter loop */
243 static uint64_t	vdc_usec_timeout_dump = 100 * MILLISEC;	/* 0.1s units: ns */
244 static int	vdc_dump_retries = 100;
245 
246 static uint16_t	vdc_scsi_timeout = 60;	/* 60s units: seconds  */
247 
248 static uint64_t vdc_ownership_delay = 6 * MICROSEC; /* 6s units: usec */
249 
250 /* Count of the number of vdc instances attached */
251 static volatile uint32_t	vdc_instance_count = 0;
252 
253 /* Tunable to log all SCSI errors */
254 static boolean_t vdc_scsi_log_error = B_FALSE;
255 
256 /* Soft state pointer */
257 static void	*vdc_state;
258 
259 /*
260  * Controlling the verbosity of the error/debug messages
261  *
262  * vdc_msglevel - controls level of messages
263  * vdc_matchinst - 64-bit variable where each bit corresponds
264  *                 to the vdc instance the vdc_msglevel applies.
265  */
266 int		vdc_msglevel = 0x0;
267 uint64_t	vdc_matchinst = 0ull;
268 
269 /*
270  * Supported vDisk protocol version pairs.
271  *
272  * The first array entry is the latest and preferred version.
273  */
274 static const vio_ver_t	vdc_version[] = {{1, 1}};
275 
276 static struct cb_ops vdc_cb_ops = {
277 	vdc_open,	/* cb_open */
278 	vdc_close,	/* cb_close */
279 	vdc_strategy,	/* cb_strategy */
280 	vdc_print,	/* cb_print */
281 	vdc_dump,	/* cb_dump */
282 	vdc_read,	/* cb_read */
283 	vdc_write,	/* cb_write */
284 	vdc_ioctl,	/* cb_ioctl */
285 	nodev,		/* cb_devmap */
286 	nodev,		/* cb_mmap */
287 	nodev,		/* cb_segmap */
288 	nochpoll,	/* cb_chpoll */
289 	vdc_prop_op,	/* cb_prop_op */
290 	NULL,		/* cb_str */
291 	D_MP | D_64BIT,	/* cb_flag */
292 	CB_REV,		/* cb_rev */
293 	vdc_aread,	/* cb_aread */
294 	vdc_awrite	/* cb_awrite */
295 };
296 
297 static struct dev_ops vdc_ops = {
298 	DEVO_REV,	/* devo_rev */
299 	0,		/* devo_refcnt */
300 	vdc_getinfo,	/* devo_getinfo */
301 	nulldev,	/* devo_identify */
302 	nulldev,	/* devo_probe */
303 	vdc_attach,	/* devo_attach */
304 	vdc_detach,	/* devo_detach */
305 	nodev,		/* devo_reset */
306 	&vdc_cb_ops,	/* devo_cb_ops */
307 	NULL,		/* devo_bus_ops */
308 	nulldev		/* devo_power */
309 };
310 
311 static struct modldrv modldrv = {
312 	&mod_driverops,
313 	"virtual disk client",
314 	&vdc_ops,
315 };
316 
317 static struct modlinkage modlinkage = {
318 	MODREV_1,
319 	&modldrv,
320 	NULL
321 };
322 
323 /* -------------------------------------------------------------------------- */
324 
325 /*
326  * Device Driver housekeeping and setup
327  */
328 
329 int
330 _init(void)
331 {
332 	int	status;
333 
334 	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
335 		return (status);
336 	if ((status = mod_install(&modlinkage)) != 0)
337 		ddi_soft_state_fini(&vdc_state);
338 	return (status);
339 }
340 
341 int
342 _info(struct modinfo *modinfop)
343 {
344 	return (mod_info(&modlinkage, modinfop));
345 }
346 
347 int
348 _fini(void)
349 {
350 	int	status;
351 
352 	if ((status = mod_remove(&modlinkage)) != 0)
353 		return (status);
354 	ddi_soft_state_fini(&vdc_state);
355 	return (0);
356 }
357 
358 static int
359 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
360 {
361 	_NOTE(ARGUNUSED(dip))
362 
363 	int	instance = VDCUNIT((dev_t)arg);
364 	vdc_t	*vdc = NULL;
365 
366 	switch (cmd) {
367 	case DDI_INFO_DEVT2DEVINFO:
368 		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
369 			*resultp = NULL;
370 			return (DDI_FAILURE);
371 		}
372 		*resultp = vdc->dip;
373 		return (DDI_SUCCESS);
374 	case DDI_INFO_DEVT2INSTANCE:
375 		*resultp = (void *)(uintptr_t)instance;
376 		return (DDI_SUCCESS);
377 	default:
378 		*resultp = NULL;
379 		return (DDI_FAILURE);
380 	}
381 }
382 
383 static int
384 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
385 {
386 	kt_did_t failfast_tid, ownership_tid;
387 	int	instance;
388 	int	rv;
389 	vdc_t	*vdc = NULL;
390 
391 	switch (cmd) {
392 	case DDI_DETACH:
393 		/* the real work happens below */
394 		break;
395 	case DDI_SUSPEND:
396 		/* nothing to do for this non-device */
397 		return (DDI_SUCCESS);
398 	default:
399 		return (DDI_FAILURE);
400 	}
401 
402 	ASSERT(cmd == DDI_DETACH);
403 	instance = ddi_get_instance(dip);
404 	DMSGX(1, "[%d] Entered\n", instance);
405 
406 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
407 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
408 		return (DDI_FAILURE);
409 	}
410 
411 	/*
412 	 * This function is called when vdc is detached or if it has failed to
413 	 * attach. In that case, the attach may have fail before the vdisk type
414 	 * has been set so we can't call vdc_is_opened(). However as the attach
415 	 * has failed, we know that the vdisk is not opened and we can safely
416 	 * detach.
417 	 */
418 	if (vdc->vdisk_type != VD_DISK_TYPE_UNK && vdc_is_opened(vdc)) {
419 		DMSG(vdc, 0, "[%d] Cannot detach: device is open", instance);
420 		return (DDI_FAILURE);
421 	}
422 
423 	if (vdc->dkio_flush_pending) {
424 		DMSG(vdc, 0,
425 		    "[%d] Cannot detach: %d outstanding DKIO flushes\n",
426 		    instance, vdc->dkio_flush_pending);
427 		return (DDI_FAILURE);
428 	}
429 
430 	if (vdc->validate_pending) {
431 		DMSG(vdc, 0,
432 		    "[%d] Cannot detach: %d outstanding validate request\n",
433 		    instance, vdc->validate_pending);
434 		return (DDI_FAILURE);
435 	}
436 
437 	DMSG(vdc, 0, "[%d] proceeding...\n", instance);
438 
439 	/* If we took ownership, release ownership */
440 	mutex_enter(&vdc->ownership_lock);
441 	if (vdc->ownership & VDC_OWNERSHIP_GRANTED) {
442 		rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR, FKIOCTL);
443 		if (rv == 0) {
444 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
445 		}
446 	}
447 	mutex_exit(&vdc->ownership_lock);
448 
449 	/* mark instance as detaching */
450 	vdc->lifecycle	= VDC_LC_DETACHING;
451 
452 	/*
453 	 * try and disable callbacks to prevent another handshake
454 	 */
455 	if (vdc->curr_server != NULL) {
456 		rv = ldc_set_cb_mode(vdc->curr_server->ldc_handle,
457 		    LDC_CB_DISABLE);
458 		DMSG(vdc, 0, "callback disabled (rv=%d)\n", rv);
459 	}
460 
461 	if (vdc->initialized & VDC_THREAD) {
462 		mutex_enter(&vdc->read_lock);
463 		if ((vdc->read_state == VDC_READ_WAITING) ||
464 		    (vdc->read_state == VDC_READ_RESET)) {
465 			vdc->read_state = VDC_READ_RESET;
466 			cv_signal(&vdc->read_cv);
467 		}
468 
469 		mutex_exit(&vdc->read_lock);
470 
471 		/* wake up any thread waiting for connection to come online */
472 		mutex_enter(&vdc->lock);
473 		if (vdc->state == VDC_STATE_INIT_WAITING) {
474 			DMSG(vdc, 0,
475 			    "[%d] write reset - move to resetting state...\n",
476 			    instance);
477 			vdc->state = VDC_STATE_RESETTING;
478 			cv_signal(&vdc->initwait_cv);
479 		}
480 		mutex_exit(&vdc->lock);
481 
482 		/* now wait until state transitions to VDC_STATE_DETACH */
483 		thread_join(vdc->msg_proc_thr->t_did);
484 		ASSERT(vdc->state == VDC_STATE_DETACH);
485 		DMSG(vdc, 0, "[%d] Reset thread exit and join ..\n",
486 		    vdc->instance);
487 	}
488 
489 	mutex_enter(&vdc->lock);
490 
491 	if (vdc->initialized & VDC_DRING)
492 		vdc_destroy_descriptor_ring(vdc);
493 
494 	vdc_fini_ports(vdc);
495 
496 	if (vdc->failfast_thread) {
497 		failfast_tid = vdc->failfast_thread->t_did;
498 		vdc->failfast_interval = 0;
499 		cv_signal(&vdc->failfast_cv);
500 	} else {
501 		failfast_tid = 0;
502 	}
503 
504 	if (vdc->ownership & VDC_OWNERSHIP_WANTED) {
505 		ownership_tid = vdc->ownership_thread->t_did;
506 		vdc->ownership = VDC_OWNERSHIP_NONE;
507 		cv_signal(&vdc->ownership_cv);
508 	} else {
509 		ownership_tid = 0;
510 	}
511 
512 	mutex_exit(&vdc->lock);
513 
514 	if (failfast_tid != 0)
515 		thread_join(failfast_tid);
516 
517 	if (ownership_tid != 0)
518 		thread_join(ownership_tid);
519 
520 	if (vdc->initialized & VDC_MINOR)
521 		ddi_remove_minor_node(dip, NULL);
522 
523 	if (vdc->io_stats) {
524 		kstat_delete(vdc->io_stats);
525 		vdc->io_stats = NULL;
526 	}
527 
528 	if (vdc->err_stats) {
529 		kstat_delete(vdc->err_stats);
530 		vdc->err_stats = NULL;
531 	}
532 
533 	if (vdc->initialized & VDC_LOCKS) {
534 		mutex_destroy(&vdc->lock);
535 		mutex_destroy(&vdc->read_lock);
536 		mutex_destroy(&vdc->ownership_lock);
537 		cv_destroy(&vdc->initwait_cv);
538 		cv_destroy(&vdc->dring_free_cv);
539 		cv_destroy(&vdc->membind_cv);
540 		cv_destroy(&vdc->sync_pending_cv);
541 		cv_destroy(&vdc->sync_blocked_cv);
542 		cv_destroy(&vdc->read_cv);
543 		cv_destroy(&vdc->running_cv);
544 		cv_destroy(&vdc->ownership_cv);
545 		cv_destroy(&vdc->failfast_cv);
546 		cv_destroy(&vdc->failfast_io_cv);
547 	}
548 
549 	if (vdc->minfo)
550 		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
551 
552 	if (vdc->cinfo)
553 		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
554 
555 	if (vdc->vtoc)
556 		kmem_free(vdc->vtoc, sizeof (struct vtoc));
557 
558 	if (vdc->geom)
559 		kmem_free(vdc->geom, sizeof (struct dk_geom));
560 
561 	if (vdc->devid) {
562 		ddi_devid_unregister(dip);
563 		ddi_devid_free(vdc->devid);
564 	}
565 
566 	if (vdc->initialized & VDC_SOFT_STATE)
567 		ddi_soft_state_free(vdc_state, instance);
568 
569 	DMSG(vdc, 0, "[%d] End %p\n", instance, (void *)vdc);
570 
571 	return (DDI_SUCCESS);
572 }
573 
574 
575 static int
576 vdc_do_attach(dev_info_t *dip)
577 {
578 	int		instance;
579 	vdc_t		*vdc = NULL;
580 	int		status;
581 	md_t		*mdp;
582 	mde_cookie_t	vd_node;
583 
584 	ASSERT(dip != NULL);
585 
586 	instance = ddi_get_instance(dip);
587 	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
588 		cmn_err(CE_NOTE, "[%d] Couldn't alloc state structure",
589 		    instance);
590 		return (DDI_FAILURE);
591 	}
592 
593 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
594 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
595 		return (DDI_FAILURE);
596 	}
597 
598 	/*
599 	 * We assign the value to initialized in this case to zero out the
600 	 * variable and then set bits in it to indicate what has been done
601 	 */
602 	vdc->initialized = VDC_SOFT_STATE;
603 
604 	vdc_hz_min_ldc_delay = drv_usectohz(vdc_min_timeout_ldc);
605 	vdc_hz_max_ldc_delay = drv_usectohz(vdc_max_timeout_ldc);
606 
607 	vdc->dip	= dip;
608 	vdc->instance	= instance;
609 	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
610 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
611 	vdc->state	= VDC_STATE_INIT;
612 	vdc->lifecycle	= VDC_LC_ATTACHING;
613 	vdc->session_id = 0;
614 	vdc->block_size = DEV_BSIZE;
615 	vdc->max_xfer_sz = maxphys / DEV_BSIZE;
616 
617 	/*
618 	 * We assume, for now, that the vDisk server will export 'read'
619 	 * operations to us at a minimum (this is needed because of checks
620 	 * in vdc for supported operations early in the handshake process).
621 	 * The vDisk server will return ENOTSUP if this is not the case.
622 	 * The value will be overwritten during the attribute exchange with
623 	 * the bitmask of operations exported by server.
624 	 */
625 	vdc->operations = VD_OP_MASK_READ;
626 
627 	vdc->vtoc = NULL;
628 	vdc->geom = NULL;
629 	vdc->cinfo = NULL;
630 	vdc->minfo = NULL;
631 
632 	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
633 	cv_init(&vdc->initwait_cv, NULL, CV_DRIVER, NULL);
634 	cv_init(&vdc->dring_free_cv, NULL, CV_DRIVER, NULL);
635 	cv_init(&vdc->membind_cv, NULL, CV_DRIVER, NULL);
636 	cv_init(&vdc->running_cv, NULL, CV_DRIVER, NULL);
637 
638 	vdc->threads_pending = 0;
639 	vdc->sync_op_pending = B_FALSE;
640 	vdc->sync_op_blocked = B_FALSE;
641 	cv_init(&vdc->sync_pending_cv, NULL, CV_DRIVER, NULL);
642 	cv_init(&vdc->sync_blocked_cv, NULL, CV_DRIVER, NULL);
643 
644 	mutex_init(&vdc->ownership_lock, NULL, MUTEX_DRIVER, NULL);
645 	cv_init(&vdc->ownership_cv, NULL, CV_DRIVER, NULL);
646 	cv_init(&vdc->failfast_cv, NULL, CV_DRIVER, NULL);
647 	cv_init(&vdc->failfast_io_cv, NULL, CV_DRIVER, NULL);
648 
649 	/* init blocking msg read functionality */
650 	mutex_init(&vdc->read_lock, NULL, MUTEX_DRIVER, NULL);
651 	cv_init(&vdc->read_cv, NULL, CV_DRIVER, NULL);
652 	vdc->read_state = VDC_READ_IDLE;
653 
654 	vdc->initialized |= VDC_LOCKS;
655 
656 	/* get device and port MD node for this disk instance */
657 	if (vdc_get_md_node(dip, &mdp, &vd_node) != 0) {
658 		cmn_err(CE_NOTE, "[%d] Could not get machine description node",
659 		    instance);
660 		return (DDI_FAILURE);
661 	}
662 
663 	if (vdc_init_ports(vdc, mdp, vd_node) != 0) {
664 		cmn_err(CE_NOTE, "[%d] Error initialising ports", instance);
665 		return (DDI_FAILURE);
666 	}
667 
668 	(void) md_fini_handle(mdp);
669 
670 	/* initialize the thread responsible for managing state with server */
671 	vdc->msg_proc_thr = thread_create(NULL, 0, vdc_process_msg_thread,
672 	    vdc, 0, &p0, TS_RUN, minclsyspri);
673 	if (vdc->msg_proc_thr == NULL) {
674 		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
675 		    instance);
676 		return (DDI_FAILURE);
677 	}
678 
679 	vdc->initialized |= VDC_THREAD;
680 
681 	/* Create the kstats for saving the I/O statistics used by iostat(1M) */
682 	vdc_create_io_kstats(vdc);
683 	vdc_create_err_kstats(vdc);
684 
685 	atomic_inc_32(&vdc_instance_count);
686 
687 	/*
688 	 * Check the disk label. This will send requests and do the handshake.
689 	 * We don't really care about the disk label now. What we really need is
690 	 * the handshake do be done so that we know the type of the disk (slice
691 	 * or full disk) and the appropriate device nodes can be created.
692 	 */
693 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
694 	vdc->vtoc = kmem_zalloc(sizeof (struct vtoc), KM_SLEEP);
695 	vdc->geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
696 	vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
697 
698 	mutex_enter(&vdc->lock);
699 	(void) vdc_validate_geometry(vdc);
700 	mutex_exit(&vdc->lock);
701 
702 	/*
703 	 * Now that we have the device info we can create the device nodes
704 	 */
705 	status = vdc_create_device_nodes(vdc);
706 	if (status) {
707 		DMSG(vdc, 0, "[%d] Failed to create device nodes",
708 		    instance);
709 		goto return_status;
710 	}
711 
712 	/*
713 	 * Setup devid
714 	 */
715 	if (vdc_setup_devid(vdc)) {
716 		DMSG(vdc, 0, "[%d] No device id available\n", instance);
717 	}
718 
719 	/*
720 	 * Fill in the fields of the error statistics kstat that were not
721 	 * available when creating the kstat
722 	 */
723 	vdc_set_err_kstats(vdc);
724 
725 	ddi_report_dev(dip);
726 	vdc->lifecycle	= VDC_LC_ONLINE;
727 	DMSG(vdc, 0, "[%d] Attach tasks successful\n", instance);
728 
729 return_status:
730 	DMSG(vdc, 0, "[%d] Attach completed\n", instance);
731 	return (status);
732 }
733 
734 static int
735 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
736 {
737 	int	status;
738 
739 	switch (cmd) {
740 	case DDI_ATTACH:
741 		if ((status = vdc_do_attach(dip)) != 0)
742 			(void) vdc_detach(dip, DDI_DETACH);
743 		return (status);
744 	case DDI_RESUME:
745 		/* nothing to do for this non-device */
746 		return (DDI_SUCCESS);
747 	default:
748 		return (DDI_FAILURE);
749 	}
750 }
751 
752 static int
753 vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr)
754 {
755 	int			status = 0;
756 	ldc_status_t		ldc_state;
757 	ldc_attr_t		ldc_attr;
758 
759 	ASSERT(vdc != NULL);
760 	ASSERT(srvr != NULL);
761 
762 	ldc_attr.devclass = LDC_DEV_BLK;
763 	ldc_attr.instance = vdc->instance;
764 	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
765 	ldc_attr.mtu = VD_LDC_MTU;
766 
767 	if ((srvr->state & VDC_LDC_INIT) == 0) {
768 		status = ldc_init(srvr->ldc_id, &ldc_attr,
769 		    &srvr->ldc_handle);
770 		if (status != 0) {
771 			DMSG(vdc, 0, "[%d] ldc_init(chan %ld) returned %d",
772 			    vdc->instance, srvr->ldc_id, status);
773 			return (status);
774 		}
775 		srvr->state |= VDC_LDC_INIT;
776 	}
777 	status = ldc_status(srvr->ldc_handle, &ldc_state);
778 	if (status != 0) {
779 		DMSG(vdc, 0, "[%d] Cannot discover LDC status [err=%d]",
780 		    vdc->instance, status);
781 		goto init_exit;
782 	}
783 	srvr->ldc_state = ldc_state;
784 
785 	if ((srvr->state & VDC_LDC_CB) == 0) {
786 		status = ldc_reg_callback(srvr->ldc_handle, vdc_handle_cb,
787 		    (caddr_t)srvr);
788 		if (status != 0) {
789 			DMSG(vdc, 0, "[%d] LDC callback reg. failed (%d)",
790 			    vdc->instance, status);
791 			goto init_exit;
792 		}
793 		srvr->state |= VDC_LDC_CB;
794 	}
795 
796 	/*
797 	 * At this stage we have initialised LDC, we will now try and open
798 	 * the connection.
799 	 */
800 	if (srvr->ldc_state == LDC_INIT) {
801 		status = ldc_open(srvr->ldc_handle);
802 		if (status != 0) {
803 			DMSG(vdc, 0, "[%d] ldc_open(chan %ld) returned %d",
804 			    vdc->instance, srvr->ldc_id, status);
805 			goto init_exit;
806 		}
807 		srvr->state |= VDC_LDC_OPEN;
808 	}
809 
810 init_exit:
811 	if (status) {
812 		vdc_terminate_ldc(vdc, srvr);
813 	}
814 
815 	return (status);
816 }
817 
818 static int
819 vdc_start_ldc_connection(vdc_t *vdc)
820 {
821 	int		status = 0;
822 
823 	ASSERT(vdc != NULL);
824 
825 	ASSERT(MUTEX_HELD(&vdc->lock));
826 
827 	status = vdc_do_ldc_up(vdc);
828 
829 	DMSG(vdc, 0, "[%d] Finished bringing up LDC\n", vdc->instance);
830 
831 	return (status);
832 }
833 
834 static int
835 vdc_stop_ldc_connection(vdc_t *vdcp)
836 {
837 	int	status;
838 
839 	ASSERT(vdcp != NULL);
840 
841 	ASSERT(MUTEX_HELD(&vdcp->lock));
842 
843 	DMSG(vdcp, 0, ": Resetting connection to vDisk server : state %d\n",
844 	    vdcp->state);
845 
846 	status = ldc_down(vdcp->curr_server->ldc_handle);
847 	DMSG(vdcp, 0, "ldc_down() = %d\n", status);
848 
849 	vdcp->initialized &= ~VDC_HANDSHAKE;
850 	DMSG(vdcp, 0, "initialized=%x\n", vdcp->initialized);
851 
852 	return (status);
853 }
854 
855 static void
856 vdc_create_io_kstats(vdc_t *vdc)
857 {
858 	if (vdc->io_stats != NULL) {
859 		DMSG(vdc, 0, "[%d] I/O kstat already exists\n", vdc->instance);
860 		return;
861 	}
862 
863 	vdc->io_stats = kstat_create(VDC_DRIVER_NAME, vdc->instance, NULL,
864 	    "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
865 	if (vdc->io_stats != NULL) {
866 		vdc->io_stats->ks_lock = &vdc->lock;
867 		kstat_install(vdc->io_stats);
868 	} else {
869 		cmn_err(CE_NOTE, "[%d] Failed to create kstat: I/O statistics"
870 		    " will not be gathered", vdc->instance);
871 	}
872 }
873 
874 static void
875 vdc_create_err_kstats(vdc_t *vdc)
876 {
877 	vd_err_stats_t	*stp;
878 	char	kstatmodule_err[KSTAT_STRLEN];
879 	char	kstatname[KSTAT_STRLEN];
880 	int	ndata = (sizeof (vd_err_stats_t) / sizeof (kstat_named_t));
881 	int	instance = vdc->instance;
882 
883 	if (vdc->err_stats != NULL) {
884 		DMSG(vdc, 0, "[%d] ERR kstat already exists\n", vdc->instance);
885 		return;
886 	}
887 
888 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
889 	    "%serr", VDC_DRIVER_NAME);
890 	(void) snprintf(kstatname, sizeof (kstatname),
891 	    "%s%d,err", VDC_DRIVER_NAME, instance);
892 
893 	vdc->err_stats = kstat_create(kstatmodule_err, instance, kstatname,
894 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
895 
896 	if (vdc->err_stats == NULL) {
897 		cmn_err(CE_NOTE, "[%d] Failed to create kstat: Error statistics"
898 		    " will not be gathered", instance);
899 		return;
900 	}
901 
902 	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
903 	kstat_named_init(&stp->vd_softerrs,	"Soft Errors",
904 	    KSTAT_DATA_UINT32);
905 	kstat_named_init(&stp->vd_transerrs,	"Transport Errors",
906 	    KSTAT_DATA_UINT32);
907 	kstat_named_init(&stp->vd_protoerrs,	"Protocol Errors",
908 	    KSTAT_DATA_UINT32);
909 	kstat_named_init(&stp->vd_vid,		"Vendor",
910 	    KSTAT_DATA_CHAR);
911 	kstat_named_init(&stp->vd_pid,		"Product",
912 	    KSTAT_DATA_CHAR);
913 	kstat_named_init(&stp->vd_capacity,	"Size",
914 	    KSTAT_DATA_ULONGLONG);
915 
916 	vdc->err_stats->ks_update  = nulldev;
917 
918 	kstat_install(vdc->err_stats);
919 }
920 
921 static void
922 vdc_set_err_kstats(vdc_t *vdc)
923 {
924 	vd_err_stats_t  *stp;
925 
926 	if (vdc->err_stats == NULL)
927 		return;
928 
929 	mutex_enter(&vdc->lock);
930 
931 	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
932 	ASSERT(stp != NULL);
933 
934 	stp->vd_capacity.value.ui64 = vdc->vdisk_size * vdc->block_size;
935 	(void) strcpy(stp->vd_vid.value.c, "SUN");
936 	(void) strcpy(stp->vd_pid.value.c, "VDSK");
937 
938 	mutex_exit(&vdc->lock);
939 }
940 
941 static int
942 vdc_create_device_nodes_efi(vdc_t *vdc)
943 {
944 	ddi_remove_minor_node(vdc->dip, "h");
945 	ddi_remove_minor_node(vdc->dip, "h,raw");
946 
947 	if (ddi_create_minor_node(vdc->dip, "wd", S_IFBLK,
948 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
949 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
950 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd'",
951 		    vdc->instance);
952 		return (EIO);
953 	}
954 
955 	/* if any device node is created we set this flag */
956 	vdc->initialized |= VDC_MINOR;
957 
958 	if (ddi_create_minor_node(vdc->dip, "wd,raw", S_IFCHR,
959 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
960 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
961 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd,raw'",
962 		    vdc->instance);
963 		return (EIO);
964 	}
965 
966 	return (0);
967 }
968 
969 static int
970 vdc_create_device_nodes_vtoc(vdc_t *vdc)
971 {
972 	ddi_remove_minor_node(vdc->dip, "wd");
973 	ddi_remove_minor_node(vdc->dip, "wd,raw");
974 
975 	if (ddi_create_minor_node(vdc->dip, "h", S_IFBLK,
976 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
977 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
978 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h'",
979 		    vdc->instance);
980 		return (EIO);
981 	}
982 
983 	/* if any device node is created we set this flag */
984 	vdc->initialized |= VDC_MINOR;
985 
986 	if (ddi_create_minor_node(vdc->dip, "h,raw", S_IFCHR,
987 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
988 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
989 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h,raw'",
990 		    vdc->instance);
991 		return (EIO);
992 	}
993 
994 	return (0);
995 }
996 
997 /*
998  * Function:
999  *	vdc_create_device_nodes
1000  *
1001  * Description:
1002  *	This function creates the block and character device nodes under
1003  *	/devices. It is called as part of the attach(9E) of the instance
1004  *	during the handshake with vds after vds has sent the attributes
1005  *	to vdc.
1006  *
1007  *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
1008  *	of 2 is used in keeping with the Solaris convention that slice 2
1009  *	refers to a whole disk. Slices start at 'a'
1010  *
1011  * Parameters:
1012  *	vdc 		- soft state pointer
1013  *
1014  * Return Values
1015  *	0		- Success
1016  *	EIO		- Failed to create node
1017  *	EINVAL		- Unknown type of disk exported
1018  */
1019 static int
1020 vdc_create_device_nodes(vdc_t *vdc)
1021 {
1022 	char		name[sizeof ("s,raw")];
1023 	dev_info_t	*dip = NULL;
1024 	int		instance, status;
1025 	int		num_slices = 1;
1026 	int		i;
1027 
1028 	ASSERT(vdc != NULL);
1029 
1030 	instance = vdc->instance;
1031 	dip = vdc->dip;
1032 
1033 	switch (vdc->vdisk_type) {
1034 	case VD_DISK_TYPE_DISK:
1035 		num_slices = V_NUMPAR;
1036 		break;
1037 	case VD_DISK_TYPE_SLICE:
1038 		num_slices = 1;
1039 		break;
1040 	case VD_DISK_TYPE_UNK:
1041 	default:
1042 		return (EINVAL);
1043 	}
1044 
1045 	/*
1046 	 * Minor nodes are different for EFI disks: EFI disks do not have
1047 	 * a minor node 'g' for the minor number corresponding to slice
1048 	 * VD_EFI_WD_SLICE (slice 7) instead they have a minor node 'wd'
1049 	 * representing the whole disk.
1050 	 */
1051 	for (i = 0; i < num_slices; i++) {
1052 
1053 		if (i == VD_EFI_WD_SLICE) {
1054 			if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
1055 				status = vdc_create_device_nodes_efi(vdc);
1056 			else
1057 				status = vdc_create_device_nodes_vtoc(vdc);
1058 			if (status != 0)
1059 				return (status);
1060 			continue;
1061 		}
1062 
1063 		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
1064 		if (ddi_create_minor_node(dip, name, S_IFBLK,
1065 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1066 			cmn_err(CE_NOTE, "[%d] Couldn't add block node '%s'",
1067 			    instance, name);
1068 			return (EIO);
1069 		}
1070 
1071 		/* if any device node is created we set this flag */
1072 		vdc->initialized |= VDC_MINOR;
1073 
1074 		(void) snprintf(name, sizeof (name), "%c%s", 'a' + i, ",raw");
1075 
1076 		if (ddi_create_minor_node(dip, name, S_IFCHR,
1077 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1078 			cmn_err(CE_NOTE, "[%d] Couldn't add raw node '%s'",
1079 			    instance, name);
1080 			return (EIO);
1081 		}
1082 	}
1083 
1084 	return (0);
1085 }
1086 
1087 /*
1088  * Driver prop_op(9e) entry point function. Return the number of blocks for
1089  * the partition in question or forward the request to the property facilities.
1090  */
1091 static int
1092 vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1093     char *name, caddr_t valuep, int *lengthp)
1094 {
1095 	int instance = ddi_get_instance(dip);
1096 	vdc_t *vdc;
1097 	uint64_t nblocks;
1098 	uint_t blksize;
1099 
1100 	vdc = ddi_get_soft_state(vdc_state, instance);
1101 
1102 	if (dev == DDI_DEV_T_ANY || vdc == NULL) {
1103 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1104 		    name, valuep, lengthp));
1105 	}
1106 
1107 	mutex_enter(&vdc->lock);
1108 	(void) vdc_validate_geometry(vdc);
1109 	if (vdc->vdisk_label == VD_DISK_LABEL_UNK) {
1110 		mutex_exit(&vdc->lock);
1111 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1112 		    name, valuep, lengthp));
1113 	}
1114 	nblocks = vdc->slice[VDCPART(dev)].nblocks;
1115 	blksize = vdc->block_size;
1116 	mutex_exit(&vdc->lock);
1117 
1118 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
1119 	    name, valuep, lengthp, nblocks, blksize));
1120 }
1121 
1122 /*
1123  * Function:
1124  *	vdc_is_opened
1125  *
1126  * Description:
1127  *	This function checks if any slice of a given virtual disk is
1128  *	currently opened.
1129  *
1130  * Parameters:
1131  *	vdc 		- soft state pointer
1132  *
1133  * Return Values
1134  *	B_TRUE		- at least one slice is opened.
1135  *	B_FALSE		- no slice is opened.
1136  */
1137 static boolean_t
1138 vdc_is_opened(vdc_t *vdc)
1139 {
1140 	int i, nslices;
1141 
1142 	switch (vdc->vdisk_type) {
1143 	case VD_DISK_TYPE_DISK:
1144 		nslices = V_NUMPAR;
1145 		break;
1146 	case VD_DISK_TYPE_SLICE:
1147 		nslices = 1;
1148 		break;
1149 	case VD_DISK_TYPE_UNK:
1150 	default:
1151 		ASSERT(0);
1152 	}
1153 
1154 	/* check if there's any layered open */
1155 	for (i = 0; i < nslices; i++) {
1156 		if (vdc->open_lyr[i] > 0)
1157 			return (B_TRUE);
1158 	}
1159 
1160 	/* check if there is any other kind of open */
1161 	for (i = 0; i < OTYPCNT; i++) {
1162 		if (vdc->open[i] != 0)
1163 			return (B_TRUE);
1164 	}
1165 
1166 	return (B_FALSE);
1167 }
1168 
1169 static int
1170 vdc_mark_opened(vdc_t *vdc, int slice, int flag, int otyp)
1171 {
1172 	uint8_t slicemask;
1173 	int i;
1174 
1175 	ASSERT(otyp < OTYPCNT);
1176 	ASSERT(slice < V_NUMPAR);
1177 	ASSERT(MUTEX_HELD(&vdc->lock));
1178 
1179 	slicemask = 1 << slice;
1180 
1181 	/* check if slice is already exclusively opened */
1182 	if (vdc->open_excl & slicemask)
1183 		return (EBUSY);
1184 
1185 	/* if open exclusive, check if slice is already opened */
1186 	if (flag & FEXCL) {
1187 		if (vdc->open_lyr[slice] > 0)
1188 			return (EBUSY);
1189 		for (i = 0; i < OTYPCNT; i++) {
1190 			if (vdc->open[i] & slicemask)
1191 				return (EBUSY);
1192 		}
1193 		vdc->open_excl |= slicemask;
1194 	}
1195 
1196 	/* mark slice as opened */
1197 	if (otyp == OTYP_LYR) {
1198 		vdc->open_lyr[slice]++;
1199 	} else {
1200 		vdc->open[otyp] |= slicemask;
1201 	}
1202 
1203 	return (0);
1204 }
1205 
1206 static void
1207 vdc_mark_closed(vdc_t *vdc, int slice, int flag, int otyp)
1208 {
1209 	uint8_t slicemask;
1210 
1211 	ASSERT(otyp < OTYPCNT);
1212 	ASSERT(slice < V_NUMPAR);
1213 	ASSERT(MUTEX_HELD(&vdc->lock));
1214 
1215 	slicemask = 1 << slice;
1216 
1217 	if (otyp == OTYP_LYR) {
1218 		ASSERT(vdc->open_lyr[slice] > 0);
1219 		vdc->open_lyr[slice]--;
1220 	} else {
1221 		vdc->open[otyp] &= ~slicemask;
1222 	}
1223 
1224 	if (flag & FEXCL)
1225 		vdc->open_excl &= ~slicemask;
1226 }
1227 
1228 static int
1229 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
1230 {
1231 	_NOTE(ARGUNUSED(cred))
1232 
1233 	int	instance, nodelay;
1234 	int	slice, status = 0;
1235 	vdc_t	*vdc;
1236 
1237 	ASSERT(dev != NULL);
1238 	instance = VDCUNIT(*dev);
1239 
1240 	if (otyp >= OTYPCNT)
1241 		return (EINVAL);
1242 
1243 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1244 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1245 		return (ENXIO);
1246 	}
1247 
1248 	DMSG(vdc, 0, "minor = %d flag = %x, otyp = %x\n",
1249 	    getminor(*dev), flag, otyp);
1250 
1251 	slice = VDCPART(*dev);
1252 
1253 	nodelay = flag & (FNDELAY | FNONBLOCK);
1254 
1255 	if ((flag & FWRITE) && (!nodelay) &&
1256 	    !(VD_OP_SUPPORTED(vdc->operations, VD_OP_BWRITE))) {
1257 		return (EROFS);
1258 	}
1259 
1260 	mutex_enter(&vdc->lock);
1261 
1262 	status = vdc_mark_opened(vdc, slice, flag, otyp);
1263 
1264 	if (status != 0) {
1265 		mutex_exit(&vdc->lock);
1266 		return (status);
1267 	}
1268 
1269 	if (nodelay) {
1270 
1271 		/* don't resubmit a validate request if there's already one */
1272 		if (vdc->validate_pending > 0) {
1273 			mutex_exit(&vdc->lock);
1274 			return (0);
1275 		}
1276 
1277 		/* call vdc_validate() asynchronously to avoid blocking */
1278 		if (taskq_dispatch(system_taskq, vdc_validate_task,
1279 		    (void *)vdc, TQ_NOSLEEP) == NULL) {
1280 			vdc_mark_closed(vdc, slice, flag, otyp);
1281 			mutex_exit(&vdc->lock);
1282 			return (ENXIO);
1283 		}
1284 
1285 		vdc->validate_pending++;
1286 		mutex_exit(&vdc->lock);
1287 		return (0);
1288 	}
1289 
1290 	mutex_exit(&vdc->lock);
1291 
1292 	vdc_validate(vdc);
1293 
1294 	mutex_enter(&vdc->lock);
1295 
1296 	if (vdc->vdisk_label == VD_DISK_LABEL_UNK ||
1297 	    vdc->slice[slice].nblocks == 0) {
1298 		vdc_mark_closed(vdc, slice, flag, otyp);
1299 		status = EIO;
1300 	}
1301 
1302 	mutex_exit(&vdc->lock);
1303 
1304 	return (status);
1305 }
1306 
1307 static int
1308 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
1309 {
1310 	_NOTE(ARGUNUSED(cred))
1311 
1312 	int	instance;
1313 	int	slice;
1314 	int	rv, rval;
1315 	vdc_t	*vdc;
1316 
1317 	instance = VDCUNIT(dev);
1318 
1319 	if (otyp >= OTYPCNT)
1320 		return (EINVAL);
1321 
1322 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1323 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1324 		return (ENXIO);
1325 	}
1326 
1327 	DMSG(vdc, 0, "[%d] flag = %x, otyp = %x\n", instance, flag, otyp);
1328 
1329 	slice = VDCPART(dev);
1330 
1331 	/*
1332 	 * Attempt to flush the W$ on a close operation. If this is
1333 	 * not a supported IOCTL command or the backing device is read-only
1334 	 * do not fail the close operation.
1335 	 */
1336 	rv = vd_process_ioctl(dev, DKIOCFLUSHWRITECACHE, NULL, FKIOCTL, &rval);
1337 
1338 	if (rv != 0 && rv != ENOTSUP && rv != ENOTTY && rv != EROFS) {
1339 		DMSG(vdc, 0, "[%d] flush failed with error %d on close\n",
1340 		    instance, rv);
1341 		return (EIO);
1342 	}
1343 
1344 	mutex_enter(&vdc->lock);
1345 	vdc_mark_closed(vdc, slice, flag, otyp);
1346 	mutex_exit(&vdc->lock);
1347 
1348 	return (0);
1349 }
1350 
1351 static int
1352 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1353 {
1354 	_NOTE(ARGUNUSED(credp))
1355 
1356 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode, rvalp));
1357 }
1358 
1359 static int
1360 vdc_print(dev_t dev, char *str)
1361 {
1362 	cmn_err(CE_NOTE, "vdc%d:  %s", VDCUNIT(dev), str);
1363 	return (0);
1364 }
1365 
1366 static int
1367 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1368 {
1369 	int	rv;
1370 	size_t	nbytes = nblk * DEV_BSIZE;
1371 	int	instance = VDCUNIT(dev);
1372 	vdc_t	*vdc = NULL;
1373 
1374 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1375 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1376 		return (ENXIO);
1377 	}
1378 
1379 	DMSG(vdc, 2, "[%d] dump %ld bytes at block 0x%lx : addr=0x%p\n",
1380 	    instance, nbytes, blkno, (void *)addr);
1381 	rv = vdc_send_request(vdc, VD_OP_BWRITE, addr, nbytes,
1382 	    VDCPART(dev), blkno, CB_STRATEGY, 0, VIO_write_dir);
1383 	if (rv) {
1384 		DMSG(vdc, 0, "Failed to do a disk dump (err=%d)\n", rv);
1385 		return (rv);
1386 	}
1387 
1388 	if (ddi_in_panic())
1389 		(void) vdc_drain_response(vdc);
1390 
1391 	DMSG(vdc, 0, "[%d] End\n", instance);
1392 
1393 	return (0);
1394 }
1395 
1396 /* -------------------------------------------------------------------------- */
1397 
1398 /*
1399  * Disk access routines
1400  *
1401  */
1402 
1403 /*
1404  * vdc_strategy()
1405  *
1406  * Return Value:
1407  *	0:	As per strategy(9E), the strategy() function must return 0
1408  *		[ bioerror(9f) sets b_flags to the proper error code ]
1409  */
1410 static int
1411 vdc_strategy(struct buf *buf)
1412 {
1413 	int	rv = -1;
1414 	vdc_t	*vdc = NULL;
1415 	int	instance = VDCUNIT(buf->b_edev);
1416 	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
1417 	int	slice;
1418 
1419 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1420 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1421 		bioerror(buf, ENXIO);
1422 		biodone(buf);
1423 		return (0);
1424 	}
1425 
1426 	DMSG(vdc, 2, "[%d] %s %ld bytes at block %llx : b_addr=0x%p\n",
1427 	    instance, (buf->b_flags & B_READ) ? "Read" : "Write",
1428 	    buf->b_bcount, buf->b_lblkno, (void *)buf->b_un.b_addr);
1429 
1430 	bp_mapin(buf);
1431 
1432 	if ((long)buf->b_private == VD_SLICE_NONE) {
1433 		/* I/O using an absolute disk offset */
1434 		slice = VD_SLICE_NONE;
1435 	} else {
1436 		slice = VDCPART(buf->b_edev);
1437 	}
1438 
1439 	rv = vdc_send_request(vdc, op, (caddr_t)buf->b_un.b_addr,
1440 	    buf->b_bcount, slice, buf->b_lblkno,
1441 	    CB_STRATEGY, buf, (op == VD_OP_BREAD) ? VIO_read_dir :
1442 	    VIO_write_dir);
1443 
1444 	/*
1445 	 * If the request was successfully sent, the strategy call returns and
1446 	 * the ACK handler calls the bioxxx functions when the vDisk server is
1447 	 * done otherwise we handle the error here.
1448 	 */
1449 	if (rv) {
1450 		DMSG(vdc, 0, "Failed to read/write (err=%d)\n", rv);
1451 		bioerror(buf, rv);
1452 		biodone(buf);
1453 	}
1454 
1455 	return (0);
1456 }
1457 
1458 /*
1459  * Function:
1460  *	vdc_min
1461  *
1462  * Description:
1463  *	Routine to limit the size of a data transfer. Used in
1464  *	conjunction with physio(9F).
1465  *
1466  * Arguments:
1467  *	bp - pointer to the indicated buf(9S) struct.
1468  *
1469  */
1470 static void
1471 vdc_min(struct buf *bufp)
1472 {
1473 	vdc_t	*vdc = NULL;
1474 	int	instance = VDCUNIT(bufp->b_edev);
1475 
1476 	vdc = ddi_get_soft_state(vdc_state, instance);
1477 	VERIFY(vdc != NULL);
1478 
1479 	if (bufp->b_bcount > (vdc->max_xfer_sz * vdc->block_size)) {
1480 		bufp->b_bcount = vdc->max_xfer_sz * vdc->block_size;
1481 	}
1482 }
1483 
1484 static int
1485 vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1486 {
1487 	_NOTE(ARGUNUSED(cred))
1488 
1489 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1490 	return (physio(vdc_strategy, NULL, dev, B_READ, vdc_min, uio));
1491 }
1492 
1493 static int
1494 vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1495 {
1496 	_NOTE(ARGUNUSED(cred))
1497 
1498 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1499 	return (physio(vdc_strategy, NULL, dev, B_WRITE, vdc_min, uio));
1500 }
1501 
1502 static int
1503 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1504 {
1505 	_NOTE(ARGUNUSED(cred))
1506 
1507 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1508 	return (aphysio(vdc_strategy, anocancel, dev, B_READ, vdc_min, aio));
1509 }
1510 
1511 static int
1512 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1513 {
1514 	_NOTE(ARGUNUSED(cred))
1515 
1516 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1517 	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, vdc_min, aio));
1518 }
1519 
1520 
1521 /* -------------------------------------------------------------------------- */
1522 
1523 /*
1524  * Handshake support
1525  */
1526 
1527 
1528 /*
1529  * Function:
1530  *	vdc_init_ver_negotiation()
1531  *
1532  * Description:
1533  *
1534  * Arguments:
1535  *	vdc	- soft state pointer for this instance of the device driver.
1536  *
1537  * Return Code:
1538  *	0	- Success
1539  */
1540 static int
1541 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver)
1542 {
1543 	vio_ver_msg_t	pkt;
1544 	size_t		msglen = sizeof (pkt);
1545 	int		status = -1;
1546 
1547 	ASSERT(vdc != NULL);
1548 	ASSERT(mutex_owned(&vdc->lock));
1549 
1550 	DMSG(vdc, 0, "[%d] Entered.\n", vdc->instance);
1551 
1552 	/*
1553 	 * set the Session ID to a unique value
1554 	 * (the lower 32 bits of the clock tick)
1555 	 */
1556 	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1557 	DMSG(vdc, 0, "[%d] Set SID to 0x%lx\n", vdc->instance, vdc->session_id);
1558 
1559 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1560 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1561 	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1562 	pkt.tag.vio_sid = vdc->session_id;
1563 	pkt.dev_class = VDEV_DISK;
1564 	pkt.ver_major = ver.major;
1565 	pkt.ver_minor = ver.minor;
1566 
1567 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1568 	DMSG(vdc, 0, "[%d] Ver info sent (status = %d)\n",
1569 	    vdc->instance, status);
1570 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1571 		DMSG(vdc, 0, "[%d] Failed to send Ver negotiation info: "
1572 		    "id(%lx) rv(%d) size(%ld)", vdc->instance,
1573 		    vdc->curr_server->ldc_handle, status, msglen);
1574 		if (msglen != sizeof (vio_ver_msg_t))
1575 			status = ENOMSG;
1576 	}
1577 
1578 	return (status);
1579 }
1580 
1581 /*
1582  * Function:
1583  *	vdc_ver_negotiation()
1584  *
1585  * Description:
1586  *
1587  * Arguments:
1588  *	vdcp	- soft state pointer for this instance of the device driver.
1589  *
1590  * Return Code:
1591  *	0	- Success
1592  */
1593 static int
1594 vdc_ver_negotiation(vdc_t *vdcp)
1595 {
1596 	vio_msg_t vio_msg;
1597 	int status;
1598 
1599 	if (status = vdc_init_ver_negotiation(vdcp, vdc_version[0]))
1600 		return (status);
1601 
1602 	/* release lock and wait for response */
1603 	mutex_exit(&vdcp->lock);
1604 	status = vdc_wait_for_response(vdcp, &vio_msg);
1605 	mutex_enter(&vdcp->lock);
1606 	if (status) {
1607 		DMSG(vdcp, 0,
1608 		    "[%d] Failed waiting for Ver negotiation response, rv(%d)",
1609 		    vdcp->instance, status);
1610 		return (status);
1611 	}
1612 
1613 	/* check type and sub_type ... */
1614 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1615 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1616 		DMSG(vdcp, 0, "[%d] Invalid ver negotiation response\n",
1617 		    vdcp->instance);
1618 		return (EPROTO);
1619 	}
1620 
1621 	return (vdc_handle_ver_msg(vdcp, (vio_ver_msg_t *)&vio_msg));
1622 }
1623 
1624 /*
1625  * Function:
1626  *	vdc_init_attr_negotiation()
1627  *
1628  * Description:
1629  *
1630  * Arguments:
1631  *	vdc	- soft state pointer for this instance of the device driver.
1632  *
1633  * Return Code:
1634  *	0	- Success
1635  */
1636 static int
1637 vdc_init_attr_negotiation(vdc_t *vdc)
1638 {
1639 	vd_attr_msg_t	pkt;
1640 	size_t		msglen = sizeof (pkt);
1641 	int		status;
1642 
1643 	ASSERT(vdc != NULL);
1644 	ASSERT(mutex_owned(&vdc->lock));
1645 
1646 	DMSG(vdc, 0, "[%d] entered\n", vdc->instance);
1647 
1648 	/* fill in tag */
1649 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1650 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1651 	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1652 	pkt.tag.vio_sid = vdc->session_id;
1653 	/* fill in payload */
1654 	pkt.max_xfer_sz = vdc->max_xfer_sz;
1655 	pkt.vdisk_block_size = vdc->block_size;
1656 	pkt.xfer_mode = VIO_DRING_MODE_V1_0;
1657 	pkt.operations = 0;	/* server will set bits of valid operations */
1658 	pkt.vdisk_type = 0;	/* server will set to valid device type */
1659 	pkt.vdisk_media = 0;	/* server will set to valid media type */
1660 	pkt.vdisk_size = 0;	/* server will set to valid size */
1661 
1662 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1663 	DMSG(vdc, 0, "Attr info sent (status = %d)\n", status);
1664 
1665 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1666 		DMSG(vdc, 0, "[%d] Failed to send Attr negotiation info: "
1667 		    "id(%lx) rv(%d) size(%ld)", vdc->instance,
1668 		    vdc->curr_server->ldc_handle, status, msglen);
1669 		if (msglen != sizeof (vio_ver_msg_t))
1670 			status = ENOMSG;
1671 	}
1672 
1673 	return (status);
1674 }
1675 
1676 /*
1677  * Function:
1678  *	vdc_attr_negotiation()
1679  *
1680  * Description:
1681  *
1682  * Arguments:
1683  *	vdc	- soft state pointer for this instance of the device driver.
1684  *
1685  * Return Code:
1686  *	0	- Success
1687  */
1688 static int
1689 vdc_attr_negotiation(vdc_t *vdcp)
1690 {
1691 	int status;
1692 	vio_msg_t vio_msg;
1693 
1694 	if (status = vdc_init_attr_negotiation(vdcp))
1695 		return (status);
1696 
1697 	/* release lock and wait for response */
1698 	mutex_exit(&vdcp->lock);
1699 	status = vdc_wait_for_response(vdcp, &vio_msg);
1700 	mutex_enter(&vdcp->lock);
1701 	if (status) {
1702 		DMSG(vdcp, 0,
1703 		    "[%d] Failed waiting for Attr negotiation response, rv(%d)",
1704 		    vdcp->instance, status);
1705 		return (status);
1706 	}
1707 
1708 	/* check type and sub_type ... */
1709 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1710 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1711 		DMSG(vdcp, 0, "[%d] Invalid attr negotiation response\n",
1712 		    vdcp->instance);
1713 		return (EPROTO);
1714 	}
1715 
1716 	return (vdc_handle_attr_msg(vdcp, (vd_attr_msg_t *)&vio_msg));
1717 }
1718 
1719 
1720 /*
1721  * Function:
1722  *	vdc_init_dring_negotiate()
1723  *
1724  * Description:
1725  *
1726  * Arguments:
1727  *	vdc	- soft state pointer for this instance of the device driver.
1728  *
1729  * Return Code:
1730  *	0	- Success
1731  */
1732 static int
1733 vdc_init_dring_negotiate(vdc_t *vdc)
1734 {
1735 	vio_dring_reg_msg_t	pkt;
1736 	size_t			msglen = sizeof (pkt);
1737 	int			status = -1;
1738 	int			retry;
1739 	int			nretries = 10;
1740 
1741 	ASSERT(vdc != NULL);
1742 	ASSERT(mutex_owned(&vdc->lock));
1743 
1744 	for (retry = 0; retry < nretries; retry++) {
1745 		status = vdc_init_descriptor_ring(vdc);
1746 		if (status != EAGAIN)
1747 			break;
1748 		drv_usecwait(vdc_min_timeout_ldc);
1749 	}
1750 
1751 	if (status != 0) {
1752 		DMSG(vdc, 0, "[%d] Failed to init DRing (status = %d)\n",
1753 		    vdc->instance, status);
1754 		return (status);
1755 	}
1756 
1757 	DMSG(vdc, 0, "[%d] Init of descriptor ring completed (status = %d)\n",
1758 	    vdc->instance, status);
1759 
1760 	/* fill in tag */
1761 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1762 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1763 	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1764 	pkt.tag.vio_sid = vdc->session_id;
1765 	/* fill in payload */
1766 	pkt.dring_ident = 0;
1767 	pkt.num_descriptors = vdc->dring_len;
1768 	pkt.descriptor_size = vdc->dring_entry_size;
1769 	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1770 	pkt.ncookies = vdc->dring_cookie_count;
1771 	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1772 
1773 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1774 	if (status != 0) {
1775 		DMSG(vdc, 0, "[%d] Failed to register DRing (err = %d)",
1776 		    vdc->instance, status);
1777 	}
1778 
1779 	return (status);
1780 }
1781 
1782 
1783 /*
1784  * Function:
1785  *	vdc_dring_negotiation()
1786  *
1787  * Description:
1788  *
1789  * Arguments:
1790  *	vdc	- soft state pointer for this instance of the device driver.
1791  *
1792  * Return Code:
1793  *	0	- Success
1794  */
1795 static int
1796 vdc_dring_negotiation(vdc_t *vdcp)
1797 {
1798 	int status;
1799 	vio_msg_t vio_msg;
1800 
1801 	if (status = vdc_init_dring_negotiate(vdcp))
1802 		return (status);
1803 
1804 	/* release lock and wait for response */
1805 	mutex_exit(&vdcp->lock);
1806 	status = vdc_wait_for_response(vdcp, &vio_msg);
1807 	mutex_enter(&vdcp->lock);
1808 	if (status) {
1809 		DMSG(vdcp, 0,
1810 		    "[%d] Failed waiting for Dring negotiation response,"
1811 		    " rv(%d)", vdcp->instance, status);
1812 		return (status);
1813 	}
1814 
1815 	/* check type and sub_type ... */
1816 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1817 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1818 		DMSG(vdcp, 0, "[%d] Invalid Dring negotiation response\n",
1819 		    vdcp->instance);
1820 		return (EPROTO);
1821 	}
1822 
1823 	return (vdc_handle_dring_reg_msg(vdcp,
1824 	    (vio_dring_reg_msg_t *)&vio_msg));
1825 }
1826 
1827 
1828 /*
1829  * Function:
1830  *	vdc_send_rdx()
1831  *
1832  * Description:
1833  *
1834  * Arguments:
1835  *	vdc	- soft state pointer for this instance of the device driver.
1836  *
1837  * Return Code:
1838  *	0	- Success
1839  */
1840 static int
1841 vdc_send_rdx(vdc_t *vdcp)
1842 {
1843 	vio_msg_t	msg;
1844 	size_t		msglen = sizeof (vio_msg_t);
1845 	int		status;
1846 
1847 	/*
1848 	 * Send an RDX message to vds to indicate we are ready
1849 	 * to send data
1850 	 */
1851 	msg.tag.vio_msgtype = VIO_TYPE_CTRL;
1852 	msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
1853 	msg.tag.vio_subtype_env = VIO_RDX;
1854 	msg.tag.vio_sid = vdcp->session_id;
1855 	status = vdc_send(vdcp, (caddr_t)&msg, &msglen);
1856 	if (status != 0) {
1857 		DMSG(vdcp, 0, "[%d] Failed to send RDX message (%d)",
1858 		    vdcp->instance, status);
1859 	}
1860 
1861 	return (status);
1862 }
1863 
1864 /*
1865  * Function:
1866  *	vdc_handle_rdx()
1867  *
1868  * Description:
1869  *
1870  * Arguments:
1871  *	vdc	- soft state pointer for this instance of the device driver.
1872  *	msgp	- received msg
1873  *
1874  * Return Code:
1875  *	0	- Success
1876  */
1877 static int
1878 vdc_handle_rdx(vdc_t *vdcp, vio_rdx_msg_t *msgp)
1879 {
1880 	_NOTE(ARGUNUSED(vdcp))
1881 	_NOTE(ARGUNUSED(msgp))
1882 
1883 	ASSERT(msgp->tag.vio_msgtype == VIO_TYPE_CTRL);
1884 	ASSERT(msgp->tag.vio_subtype == VIO_SUBTYPE_ACK);
1885 	ASSERT(msgp->tag.vio_subtype_env == VIO_RDX);
1886 
1887 	DMSG(vdcp, 1, "[%d] Got an RDX msg", vdcp->instance);
1888 
1889 	return (0);
1890 }
1891 
1892 /*
1893  * Function:
1894  *	vdc_rdx_exchange()
1895  *
1896  * Description:
1897  *
1898  * Arguments:
1899  *	vdc	- soft state pointer for this instance of the device driver.
1900  *
1901  * Return Code:
1902  *	0	- Success
1903  */
1904 static int
1905 vdc_rdx_exchange(vdc_t *vdcp)
1906 {
1907 	int status;
1908 	vio_msg_t vio_msg;
1909 
1910 	if (status = vdc_send_rdx(vdcp))
1911 		return (status);
1912 
1913 	/* release lock and wait for response */
1914 	mutex_exit(&vdcp->lock);
1915 	status = vdc_wait_for_response(vdcp, &vio_msg);
1916 	mutex_enter(&vdcp->lock);
1917 	if (status) {
1918 		DMSG(vdcp, 0, "[%d] Failed waiting for RDX response, rv(%d)",
1919 		    vdcp->instance, status);
1920 		return (status);
1921 	}
1922 
1923 	/* check type and sub_type ... */
1924 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1925 	    vio_msg.tag.vio_subtype != VIO_SUBTYPE_ACK) {
1926 		DMSG(vdcp, 0, "[%d] Invalid RDX response\n", vdcp->instance);
1927 		return (EPROTO);
1928 	}
1929 
1930 	return (vdc_handle_rdx(vdcp, (vio_rdx_msg_t *)&vio_msg));
1931 }
1932 
1933 
1934 /* -------------------------------------------------------------------------- */
1935 
1936 /*
1937  * LDC helper routines
1938  */
1939 
1940 static int
1941 vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp)
1942 {
1943 	int		status;
1944 	boolean_t	q_has_pkts = B_FALSE;
1945 	uint64_t	delay_time;
1946 	size_t		len;
1947 
1948 	mutex_enter(&vdc->read_lock);
1949 
1950 	if (vdc->read_state == VDC_READ_IDLE)
1951 		vdc->read_state = VDC_READ_WAITING;
1952 
1953 	while (vdc->read_state != VDC_READ_PENDING) {
1954 
1955 		/* detect if the connection has been reset */
1956 		if (vdc->read_state == VDC_READ_RESET) {
1957 			status = ECONNRESET;
1958 			goto done;
1959 		}
1960 
1961 		cv_wait(&vdc->read_cv, &vdc->read_lock);
1962 	}
1963 
1964 	/*
1965 	 * Until we get a blocking ldc read we have to retry
1966 	 * until the entire LDC message has arrived before
1967 	 * ldc_read() will succeed. Note we also bail out if
1968 	 * the channel is reset or goes away.
1969 	 */
1970 	delay_time = vdc_ldc_read_init_delay;
1971 loop:
1972 	len = *nbytesp;
1973 	status = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)msgp, &len);
1974 	switch (status) {
1975 	case EAGAIN:
1976 		delay_time *= 2;
1977 		if (delay_time >= vdc_ldc_read_max_delay)
1978 			delay_time = vdc_ldc_read_max_delay;
1979 		delay(delay_time);
1980 		goto loop;
1981 
1982 	case 0:
1983 		if (len == 0) {
1984 			DMSG(vdc, 1, "[%d] ldc_read returned 0 bytes with "
1985 			    "no error!\n", vdc->instance);
1986 			goto loop;
1987 		}
1988 
1989 		*nbytesp = len;
1990 
1991 		/*
1992 		 * If there are pending messages, leave the
1993 		 * read state as pending. Otherwise, set the state
1994 		 * back to idle.
1995 		 */
1996 		status = ldc_chkq(vdc->curr_server->ldc_handle, &q_has_pkts);
1997 		if (status == 0 && !q_has_pkts)
1998 			vdc->read_state = VDC_READ_IDLE;
1999 
2000 		break;
2001 	default:
2002 		DMSG(vdc, 0, "ldc_read returned %d\n", status);
2003 		break;
2004 	}
2005 
2006 done:
2007 	mutex_exit(&vdc->read_lock);
2008 
2009 	return (status);
2010 }
2011 
2012 
2013 
2014 #ifdef DEBUG
2015 void
2016 vdc_decode_tag(vdc_t *vdcp, vio_msg_t *msg)
2017 {
2018 	char *ms, *ss, *ses;
2019 	switch (msg->tag.vio_msgtype) {
2020 #define	Q(_s)	case _s : ms = #_s; break;
2021 	Q(VIO_TYPE_CTRL)
2022 	Q(VIO_TYPE_DATA)
2023 	Q(VIO_TYPE_ERR)
2024 #undef Q
2025 	default: ms = "unknown"; break;
2026 	}
2027 
2028 	switch (msg->tag.vio_subtype) {
2029 #define	Q(_s)	case _s : ss = #_s; break;
2030 	Q(VIO_SUBTYPE_INFO)
2031 	Q(VIO_SUBTYPE_ACK)
2032 	Q(VIO_SUBTYPE_NACK)
2033 #undef Q
2034 	default: ss = "unknown"; break;
2035 	}
2036 
2037 	switch (msg->tag.vio_subtype_env) {
2038 #define	Q(_s)	case _s : ses = #_s; break;
2039 	Q(VIO_VER_INFO)
2040 	Q(VIO_ATTR_INFO)
2041 	Q(VIO_DRING_REG)
2042 	Q(VIO_DRING_UNREG)
2043 	Q(VIO_RDX)
2044 	Q(VIO_PKT_DATA)
2045 	Q(VIO_DESC_DATA)
2046 	Q(VIO_DRING_DATA)
2047 #undef Q
2048 	default: ses = "unknown"; break;
2049 	}
2050 
2051 	DMSG(vdcp, 3, "(%x/%x/%x) message : (%s/%s/%s)\n",
2052 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
2053 	    msg->tag.vio_subtype_env, ms, ss, ses);
2054 }
2055 #endif
2056 
2057 /*
2058  * Function:
2059  *	vdc_send()
2060  *
2061  * Description:
2062  *	The function encapsulates the call to write a message using LDC.
2063  *	If LDC indicates that the call failed due to the queue being full,
2064  *	we retry the ldc_write(), otherwise we return the error returned by LDC.
2065  *
2066  * Arguments:
2067  *	ldc_handle	- LDC handle for the channel this instance of vdc uses
2068  *	pkt		- address of LDC message to be sent
2069  *	msglen		- the size of the message being sent. When the function
2070  *			  returns, this contains the number of bytes written.
2071  *
2072  * Return Code:
2073  *	0		- Success.
2074  *	EINVAL		- pkt or msglen were NULL
2075  *	ECONNRESET	- The connection was not up.
2076  *	EWOULDBLOCK	- LDC queue is full
2077  *	xxx		- other error codes returned by ldc_write
2078  */
2079 static int
2080 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen)
2081 {
2082 	size_t	size = 0;
2083 	int	status = 0;
2084 	clock_t delay_ticks;
2085 
2086 	ASSERT(vdc != NULL);
2087 	ASSERT(mutex_owned(&vdc->lock));
2088 	ASSERT(msglen != NULL);
2089 	ASSERT(*msglen != 0);
2090 
2091 #ifdef DEBUG
2092 	vdc_decode_tag(vdc, (vio_msg_t *)(uintptr_t)pkt);
2093 #endif
2094 	/*
2095 	 * Wait indefinitely to send if channel
2096 	 * is busy, but bail out if we succeed or
2097 	 * if the channel closes or is reset.
2098 	 */
2099 	delay_ticks = vdc_hz_min_ldc_delay;
2100 	do {
2101 		size = *msglen;
2102 		status = ldc_write(vdc->curr_server->ldc_handle, pkt, &size);
2103 		if (status == EWOULDBLOCK) {
2104 			delay(delay_ticks);
2105 			/* geometric backoff */
2106 			delay_ticks *= 2;
2107 			if (delay_ticks > vdc_hz_max_ldc_delay)
2108 				delay_ticks = vdc_hz_max_ldc_delay;
2109 		}
2110 	} while (status == EWOULDBLOCK);
2111 
2112 	/* if LDC had serious issues --- reset vdc state */
2113 	if (status == EIO || status == ECONNRESET) {
2114 		/* LDC had serious issues --- reset vdc state */
2115 		mutex_enter(&vdc->read_lock);
2116 		if ((vdc->read_state == VDC_READ_WAITING) ||
2117 		    (vdc->read_state == VDC_READ_RESET))
2118 			cv_signal(&vdc->read_cv);
2119 		vdc->read_state = VDC_READ_RESET;
2120 		mutex_exit(&vdc->read_lock);
2121 
2122 		/* wake up any waiters in the reset thread */
2123 		if (vdc->state == VDC_STATE_INIT_WAITING) {
2124 			DMSG(vdc, 0, "[%d] write reset - "
2125 			    "vdc is resetting ..\n", vdc->instance);
2126 			vdc->state = VDC_STATE_RESETTING;
2127 			cv_signal(&vdc->initwait_cv);
2128 		}
2129 
2130 		return (ECONNRESET);
2131 	}
2132 
2133 	/* return the last size written */
2134 	*msglen = size;
2135 
2136 	return (status);
2137 }
2138 
2139 /*
2140  * Function:
2141  *	vdc_get_md_node
2142  *
2143  * Description:
2144  *	Get the MD, the device node for the given disk instance. The
2145  *	caller is responsible for cleaning up the reference to the
2146  *	returned MD (mdpp) by calling md_fini_handle().
2147  *
2148  * Arguments:
2149  *	dip	- dev info pointer for this instance of the device driver.
2150  *	mdpp	- the returned MD.
2151  *	vd_nodep - the returned device node.
2152  *
2153  * Return Code:
2154  *	0	- Success.
2155  *	ENOENT	- Expected node or property did not exist.
2156  *	ENXIO	- Unexpected error communicating with MD framework
2157  */
2158 static int
2159 vdc_get_md_node(dev_info_t *dip, md_t **mdpp, mde_cookie_t *vd_nodep)
2160 {
2161 	int		status = ENOENT;
2162 	char		*node_name = NULL;
2163 	md_t		*mdp = NULL;
2164 	int		num_nodes;
2165 	int		num_vdevs;
2166 	mde_cookie_t	rootnode;
2167 	mde_cookie_t	*listp = NULL;
2168 	boolean_t	found_inst = B_FALSE;
2169 	int		listsz;
2170 	int		idx;
2171 	uint64_t	md_inst;
2172 	int		obp_inst;
2173 	int		instance = ddi_get_instance(dip);
2174 
2175 	/*
2176 	 * Get the OBP instance number for comparison with the MD instance
2177 	 *
2178 	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
2179 	 * notion of "instance", or unique identifier, for that node; OBP
2180 	 * stores the value of the "cfg-handle" MD property as the value of
2181 	 * the "reg" property on the node in the device tree it builds from
2182 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
2183 	 * "reg" property value to uniquely identify this device instance.
2184 	 * If the "reg" property cannot be found, the device tree state is
2185 	 * presumably so broken that there is no point in continuing.
2186 	 */
2187 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
2188 		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
2189 		return (ENOENT);
2190 	}
2191 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2192 	    OBP_REG, -1);
2193 	DMSGX(1, "[%d] OBP inst=%d\n", instance, obp_inst);
2194 
2195 	/*
2196 	 * We now walk the MD nodes to find the node for this vdisk.
2197 	 */
2198 	if ((mdp = md_get_handle()) == NULL) {
2199 		cmn_err(CE_WARN, "unable to init machine description");
2200 		return (ENXIO);
2201 	}
2202 
2203 	num_nodes = md_node_count(mdp);
2204 	ASSERT(num_nodes > 0);
2205 
2206 	listsz = num_nodes * sizeof (mde_cookie_t);
2207 
2208 	/* allocate memory for nodes */
2209 	listp = kmem_zalloc(listsz, KM_SLEEP);
2210 
2211 	rootnode = md_root_node(mdp);
2212 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
2213 
2214 	/*
2215 	 * Search for all the virtual devices, we will then check to see which
2216 	 * ones are disk nodes.
2217 	 */
2218 	num_vdevs = md_scan_dag(mdp, rootnode,
2219 	    md_find_name(mdp, VDC_MD_VDEV_NAME),
2220 	    md_find_name(mdp, "fwd"), listp);
2221 
2222 	if (num_vdevs <= 0) {
2223 		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
2224 		status = ENOENT;
2225 		goto done;
2226 	}
2227 
2228 	DMSGX(1, "[%d] num_vdevs=%d\n", instance, num_vdevs);
2229 	for (idx = 0; idx < num_vdevs; idx++) {
2230 		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
2231 		if ((status != 0) || (node_name == NULL)) {
2232 			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
2233 			    ": err %d", VDC_MD_VDEV_NAME, status);
2234 			continue;
2235 		}
2236 
2237 		DMSGX(1, "[%d] Found node '%s'\n", instance, node_name);
2238 		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
2239 			status = md_get_prop_val(mdp, listp[idx],
2240 			    VDC_MD_CFG_HDL, &md_inst);
2241 			DMSGX(1, "[%d] vdc inst in MD=%lx\n",
2242 			    instance, md_inst);
2243 			if ((status == 0) && (md_inst == obp_inst)) {
2244 				found_inst = B_TRUE;
2245 				break;
2246 			}
2247 		}
2248 	}
2249 
2250 	if (!found_inst) {
2251 		DMSGX(0, "Unable to find correct '%s' node", VDC_MD_DISK_NAME);
2252 		status = ENOENT;
2253 		goto done;
2254 	}
2255 	DMSGX(0, "[%d] MD inst=%lx\n", instance, md_inst);
2256 
2257 	*vd_nodep = listp[idx];
2258 	*mdpp = mdp;
2259 done:
2260 	kmem_free(listp, listsz);
2261 	return (status);
2262 }
2263 
2264 /*
2265  * Function:
2266  *	vdc_init_ports
2267  *
2268  * Description:
2269  *	Initialize all the ports for this vdisk instance.
2270  *
2271  * Arguments:
2272  *	vdc	- soft state pointer for this instance of the device driver.
2273  *	mdp	- md pointer
2274  *	vd_nodep - device md node.
2275  *
2276  * Return Code:
2277  *	0	- Success.
2278  *	ENOENT	- Expected node or property did not exist.
2279  */
2280 static int
2281 vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep)
2282 {
2283 	int		status = 0;
2284 	int		idx;
2285 	int		num_nodes;
2286 	int		num_vports;
2287 	int		num_chans;
2288 	int		listsz;
2289 	mde_cookie_t	vd_port;
2290 	mde_cookie_t	*chanp = NULL;
2291 	mde_cookie_t	*portp = NULL;
2292 	vdc_server_t	*srvr;
2293 	vdc_server_t	*prev_srvr = NULL;
2294 
2295 	/*
2296 	 * We now walk the MD nodes to find the port nodes for this vdisk.
2297 	 */
2298 	num_nodes = md_node_count(mdp);
2299 	ASSERT(num_nodes > 0);
2300 
2301 	listsz = num_nodes * sizeof (mde_cookie_t);
2302 
2303 	/* allocate memory for nodes */
2304 	portp = kmem_zalloc(listsz, KM_SLEEP);
2305 	chanp = kmem_zalloc(listsz, KM_SLEEP);
2306 
2307 	num_vports = md_scan_dag(mdp, vd_nodep,
2308 	    md_find_name(mdp, VDC_MD_PORT_NAME),
2309 	    md_find_name(mdp, "fwd"), portp);
2310 	if (num_vports == 0) {
2311 		DMSGX(0, "Found no '%s' node for '%s' port\n",
2312 		    VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME);
2313 		status = ENOENT;
2314 		goto done;
2315 	}
2316 
2317 	DMSGX(1, "Found %d '%s' node(s) for '%s' port\n",
2318 	    num_vports, VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME);
2319 
2320 	vdc->num_servers = 0;
2321 	for (idx = 0; idx < num_vports; idx++) {
2322 
2323 		/* initialize this port */
2324 		vd_port = portp[idx];
2325 		srvr = kmem_zalloc(sizeof (vdc_server_t), KM_SLEEP);
2326 		srvr->vdcp = vdc;
2327 
2328 		/* get port id */
2329 		if (md_get_prop_val(mdp, vd_port, VDC_MD_ID, &srvr->id) != 0) {
2330 			cmn_err(CE_NOTE, "vDisk port '%s' property not found",
2331 			    VDC_MD_ID);
2332 			kmem_free(srvr, sizeof (vdc_server_t));
2333 			continue;
2334 		}
2335 
2336 		/* set the connection timeout */
2337 		if (md_get_prop_val(mdp, vd_port, VDC_MD_TIMEOUT,
2338 		    &srvr->ctimeout) != 0) {
2339 			srvr->ctimeout = 0;
2340 		}
2341 
2342 		/* get the ldc id */
2343 		num_chans = md_scan_dag(mdp, vd_port,
2344 		    md_find_name(mdp, VDC_MD_CHAN_NAME),
2345 		    md_find_name(mdp, "fwd"), chanp);
2346 
2347 		/* expecting at least one channel */
2348 		if (num_chans <= 0) {
2349 			cmn_err(CE_NOTE, "No '%s' node for '%s' port",
2350 			    VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
2351 			kmem_free(srvr, sizeof (vdc_server_t));
2352 			continue;
2353 		} else if (num_chans != 1) {
2354 			DMSGX(0, "Expected 1 '%s' node for '%s' port, "
2355 			    "found %d\n", VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
2356 			    num_chans);
2357 		}
2358 
2359 		/*
2360 		 * We use the first channel found (index 0), irrespective of how
2361 		 * many are there in total.
2362 		 */
2363 		if (md_get_prop_val(mdp, chanp[0], VDC_MD_ID,
2364 		    &srvr->ldc_id) != 0) {
2365 			cmn_err(CE_NOTE, "Channel '%s' property not found",
2366 			    VDC_MD_ID);
2367 			kmem_free(srvr, sizeof (vdc_server_t));
2368 			continue;
2369 		}
2370 
2371 		/*
2372 		 * now initialise LDC channel which will be used to
2373 		 * communicate with this server
2374 		 */
2375 		if (vdc_do_ldc_init(vdc, srvr) != 0) {
2376 			kmem_free(srvr, sizeof (vdc_server_t));
2377 			continue;
2378 		}
2379 
2380 		/* add server to list */
2381 		if (prev_srvr) {
2382 			prev_srvr->next = srvr;
2383 		} else {
2384 			vdc->server_list = srvr;
2385 			prev_srvr = srvr;
2386 		}
2387 
2388 		/* inc numbers of servers */
2389 		vdc->num_servers++;
2390 	}
2391 
2392 	/*
2393 	 * Adjust the max number of handshake retries to match
2394 	 * the number of vdisk servers.
2395 	 */
2396 	if (vdc_hshake_retries < vdc->num_servers)
2397 		vdc_hshake_retries = vdc->num_servers;
2398 
2399 	/* pick first server as current server */
2400 	if (vdc->server_list != NULL) {
2401 		vdc->curr_server = vdc->server_list;
2402 		status = 0;
2403 	} else {
2404 		status = ENOENT;
2405 	}
2406 
2407 done:
2408 	kmem_free(chanp, listsz);
2409 	kmem_free(portp, listsz);
2410 	return (status);
2411 }
2412 
2413 
2414 /*
2415  * Function:
2416  *	vdc_do_ldc_up
2417  *
2418  * Description:
2419  *	Bring the channel for the current server up.
2420  *
2421  * Arguments:
2422  *	vdc	- soft state pointer for this instance of the device driver.
2423  *
2424  * Return Code:
2425  *	0		- Success.
2426  *	EINVAL		- Driver is detaching / LDC error
2427  *	ECONNREFUSED	- Other end is not listening
2428  */
2429 static int
2430 vdc_do_ldc_up(vdc_t *vdc)
2431 {
2432 	int		status;
2433 	ldc_status_t	ldc_state;
2434 
2435 	ASSERT(MUTEX_HELD(&vdc->lock));
2436 
2437 	DMSG(vdc, 0, "[%d] Bringing up channel %lx\n",
2438 	    vdc->instance, vdc->curr_server->ldc_id);
2439 
2440 	if (vdc->lifecycle == VDC_LC_DETACHING)
2441 		return (EINVAL);
2442 
2443 	if ((status = ldc_up(vdc->curr_server->ldc_handle)) != 0) {
2444 		switch (status) {
2445 		case ECONNREFUSED:	/* listener not ready at other end */
2446 			DMSG(vdc, 0, "[%d] ldc_up(%lx,...) return %d\n",
2447 			    vdc->instance, vdc->curr_server->ldc_id, status);
2448 			status = 0;
2449 			break;
2450 		default:
2451 			DMSG(vdc, 0, "[%d] Failed to bring up LDC: "
2452 			    "channel=%ld, err=%d", vdc->instance,
2453 			    vdc->curr_server->ldc_id, status);
2454 			break;
2455 		}
2456 	}
2457 
2458 	if (ldc_status(vdc->curr_server->ldc_handle, &ldc_state) == 0) {
2459 		vdc->curr_server->ldc_state = ldc_state;
2460 		if (ldc_state == LDC_UP) {
2461 			DMSG(vdc, 0, "[%d] LDC channel already up\n",
2462 			    vdc->instance);
2463 			vdc->seq_num = 1;
2464 			vdc->seq_num_reply = 0;
2465 		}
2466 	}
2467 
2468 	return (status);
2469 }
2470 
2471 /*
2472  * Function:
2473  *	vdc_terminate_ldc()
2474  *
2475  * Description:
2476  *
2477  * Arguments:
2478  *	vdc	- soft state pointer for this instance of the device driver.
2479  *	srvr	- vdc per-server info structure
2480  *
2481  * Return Code:
2482  *	None
2483  */
2484 static void
2485 vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr)
2486 {
2487 	int	instance = ddi_get_instance(vdc->dip);
2488 
2489 	if (srvr->state & VDC_LDC_OPEN) {
2490 		DMSG(vdc, 0, "[%d] ldc_close()\n", instance);
2491 		(void) ldc_close(srvr->ldc_handle);
2492 	}
2493 	if (srvr->state & VDC_LDC_CB) {
2494 		DMSG(vdc, 0, "[%d] ldc_unreg_callback()\n", instance);
2495 		(void) ldc_unreg_callback(srvr->ldc_handle);
2496 	}
2497 	if (srvr->state & VDC_LDC_INIT) {
2498 		DMSG(vdc, 0, "[%d] ldc_fini()\n", instance);
2499 		(void) ldc_fini(srvr->ldc_handle);
2500 		srvr->ldc_handle = NULL;
2501 	}
2502 
2503 	srvr->state &= ~(VDC_LDC_INIT | VDC_LDC_CB | VDC_LDC_OPEN);
2504 }
2505 
2506 /*
2507  * Function:
2508  *	vdc_fini_ports()
2509  *
2510  * Description:
2511  *	Finalize all ports by closing the channel associated with each
2512  *	port and also freeing the server structure.
2513  *
2514  * Arguments:
2515  *	vdc	- soft state pointer for this instance of the device driver.
2516  *
2517  * Return Code:
2518  *	None
2519  */
2520 static void
2521 vdc_fini_ports(vdc_t *vdc)
2522 {
2523 	int		instance = ddi_get_instance(vdc->dip);
2524 	vdc_server_t	*srvr, *prev_srvr;
2525 
2526 	ASSERT(vdc != NULL);
2527 	ASSERT(mutex_owned(&vdc->lock));
2528 
2529 	DMSG(vdc, 0, "[%d] initialized=%x\n", instance, vdc->initialized);
2530 
2531 	srvr = vdc->server_list;
2532 
2533 	while (srvr) {
2534 
2535 		vdc_terminate_ldc(vdc, srvr);
2536 
2537 		/* next server */
2538 		prev_srvr = srvr;
2539 		srvr = srvr->next;
2540 
2541 		/* free server */
2542 		kmem_free(prev_srvr, sizeof (vdc_server_t));
2543 	}
2544 
2545 	vdc->server_list = NULL;
2546 }
2547 
2548 /* -------------------------------------------------------------------------- */
2549 
2550 /*
2551  * Descriptor Ring helper routines
2552  */
2553 
2554 /*
2555  * Function:
2556  *	vdc_init_descriptor_ring()
2557  *
2558  * Description:
2559  *
2560  * Arguments:
2561  *	vdc	- soft state pointer for this instance of the device driver.
2562  *
2563  * Return Code:
2564  *	0	- Success
2565  */
2566 static int
2567 vdc_init_descriptor_ring(vdc_t *vdc)
2568 {
2569 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
2570 	int	status = 0;
2571 	int	i;
2572 
2573 	DMSG(vdc, 0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized);
2574 
2575 	ASSERT(vdc != NULL);
2576 	ASSERT(mutex_owned(&vdc->lock));
2577 
2578 	/* ensure we have enough room to store max sized block */
2579 	ASSERT(maxphys <= VD_MAX_BLOCK_SIZE);
2580 
2581 	if ((vdc->initialized & VDC_DRING_INIT) == 0) {
2582 		DMSG(vdc, 0, "[%d] ldc_mem_dring_create\n", vdc->instance);
2583 		/*
2584 		 * Calculate the maximum block size we can transmit using one
2585 		 * Descriptor Ring entry from the attributes returned by the
2586 		 * vDisk server. This is subject to a minimum of 'maxphys'
2587 		 * as we do not have the capability to split requests over
2588 		 * multiple DRing entries.
2589 		 */
2590 		if ((vdc->max_xfer_sz * vdc->block_size) < maxphys) {
2591 			DMSG(vdc, 0, "[%d] using minimum DRing size\n",
2592 			    vdc->instance);
2593 			vdc->dring_max_cookies = maxphys / PAGESIZE;
2594 		} else {
2595 			vdc->dring_max_cookies =
2596 			    (vdc->max_xfer_sz * vdc->block_size) / PAGESIZE;
2597 		}
2598 		vdc->dring_entry_size = (sizeof (vd_dring_entry_t) +
2599 		    (sizeof (ldc_mem_cookie_t) *
2600 		    (vdc->dring_max_cookies - 1)));
2601 		vdc->dring_len = VD_DRING_LEN;
2602 
2603 		status = ldc_mem_dring_create(vdc->dring_len,
2604 		    vdc->dring_entry_size, &vdc->dring_hdl);
2605 		if ((vdc->dring_hdl == NULL) || (status != 0)) {
2606 			DMSG(vdc, 0, "[%d] Descriptor ring creation failed",
2607 			    vdc->instance);
2608 			return (status);
2609 		}
2610 		vdc->initialized |= VDC_DRING_INIT;
2611 	}
2612 
2613 	if ((vdc->initialized & VDC_DRING_BOUND) == 0) {
2614 		DMSG(vdc, 0, "[%d] ldc_mem_dring_bind\n", vdc->instance);
2615 		vdc->dring_cookie =
2616 		    kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
2617 
2618 		status = ldc_mem_dring_bind(vdc->curr_server->ldc_handle,
2619 		    vdc->dring_hdl,
2620 		    LDC_SHADOW_MAP|LDC_DIRECT_MAP, LDC_MEM_RW,
2621 		    &vdc->dring_cookie[0],
2622 		    &vdc->dring_cookie_count);
2623 		if (status != 0) {
2624 			DMSG(vdc, 0, "[%d] Failed to bind descriptor ring "
2625 			    "(%lx) to channel (%lx) status=%d\n",
2626 			    vdc->instance, vdc->dring_hdl,
2627 			    vdc->curr_server->ldc_handle, status);
2628 			return (status);
2629 		}
2630 		ASSERT(vdc->dring_cookie_count == 1);
2631 		vdc->initialized |= VDC_DRING_BOUND;
2632 	}
2633 
2634 	status = ldc_mem_dring_info(vdc->dring_hdl, &vdc->dring_mem_info);
2635 	if (status != 0) {
2636 		DMSG(vdc, 0,
2637 		    "[%d] Failed to get info for descriptor ring (%lx)\n",
2638 		    vdc->instance, vdc->dring_hdl);
2639 		return (status);
2640 	}
2641 
2642 	if ((vdc->initialized & VDC_DRING_LOCAL) == 0) {
2643 		DMSG(vdc, 0, "[%d] local dring\n", vdc->instance);
2644 
2645 		/* Allocate the local copy of this dring */
2646 		vdc->local_dring =
2647 		    kmem_zalloc(vdc->dring_len * sizeof (vdc_local_desc_t),
2648 		    KM_SLEEP);
2649 		vdc->initialized |= VDC_DRING_LOCAL;
2650 	}
2651 
2652 	/*
2653 	 * Mark all DRing entries as free and initialize the private
2654 	 * descriptor's memory handles. If any entry is initialized,
2655 	 * we need to free it later so we set the bit in 'initialized'
2656 	 * at the start.
2657 	 */
2658 	vdc->initialized |= VDC_DRING_ENTRY;
2659 	for (i = 0; i < vdc->dring_len; i++) {
2660 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
2661 		dep->hdr.dstate = VIO_DESC_FREE;
2662 
2663 		status = ldc_mem_alloc_handle(vdc->curr_server->ldc_handle,
2664 		    &vdc->local_dring[i].desc_mhdl);
2665 		if (status != 0) {
2666 			DMSG(vdc, 0, "![%d] Failed to alloc mem handle for"
2667 			    " descriptor %d", vdc->instance, i);
2668 			return (status);
2669 		}
2670 		vdc->local_dring[i].is_free = B_TRUE;
2671 		vdc->local_dring[i].dep = dep;
2672 	}
2673 
2674 	/* Initialize the starting index */
2675 	vdc->dring_curr_idx = 0;
2676 
2677 	return (status);
2678 }
2679 
2680 /*
2681  * Function:
2682  *	vdc_destroy_descriptor_ring()
2683  *
2684  * Description:
2685  *
2686  * Arguments:
2687  *	vdc	- soft state pointer for this instance of the device driver.
2688  *
2689  * Return Code:
2690  *	None
2691  */
2692 static void
2693 vdc_destroy_descriptor_ring(vdc_t *vdc)
2694 {
2695 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
2696 	ldc_mem_handle_t	mhdl = NULL;
2697 	ldc_mem_info_t		minfo;
2698 	int			status = -1;
2699 	int			i;	/* loop */
2700 
2701 	ASSERT(vdc != NULL);
2702 	ASSERT(mutex_owned(&vdc->lock));
2703 
2704 	DMSG(vdc, 0, "[%d] Entered\n", vdc->instance);
2705 
2706 	if (vdc->initialized & VDC_DRING_ENTRY) {
2707 		DMSG(vdc, 0,
2708 		    "[%d] Removing Local DRing entries\n", vdc->instance);
2709 		for (i = 0; i < vdc->dring_len; i++) {
2710 			ldep = &vdc->local_dring[i];
2711 			mhdl = ldep->desc_mhdl;
2712 
2713 			if (mhdl == NULL)
2714 				continue;
2715 
2716 			if ((status = ldc_mem_info(mhdl, &minfo)) != 0) {
2717 				DMSG(vdc, 0,
2718 				    "ldc_mem_info returned an error: %d\n",
2719 				    status);
2720 
2721 				/*
2722 				 * This must mean that the mem handle
2723 				 * is not valid. Clear it out so that
2724 				 * no one tries to use it.
2725 				 */
2726 				ldep->desc_mhdl = NULL;
2727 				continue;
2728 			}
2729 
2730 			if (minfo.status == LDC_BOUND) {
2731 				(void) ldc_mem_unbind_handle(mhdl);
2732 			}
2733 
2734 			(void) ldc_mem_free_handle(mhdl);
2735 
2736 			ldep->desc_mhdl = NULL;
2737 		}
2738 		vdc->initialized &= ~VDC_DRING_ENTRY;
2739 	}
2740 
2741 	if (vdc->initialized & VDC_DRING_LOCAL) {
2742 		DMSG(vdc, 0, "[%d] Freeing Local DRing\n", vdc->instance);
2743 		kmem_free(vdc->local_dring,
2744 		    vdc->dring_len * sizeof (vdc_local_desc_t));
2745 		vdc->initialized &= ~VDC_DRING_LOCAL;
2746 	}
2747 
2748 	if (vdc->initialized & VDC_DRING_BOUND) {
2749 		DMSG(vdc, 0, "[%d] Unbinding DRing\n", vdc->instance);
2750 		status = ldc_mem_dring_unbind(vdc->dring_hdl);
2751 		if (status == 0) {
2752 			vdc->initialized &= ~VDC_DRING_BOUND;
2753 		} else {
2754 			DMSG(vdc, 0, "[%d] Error %d unbinding DRing %lx",
2755 			    vdc->instance, status, vdc->dring_hdl);
2756 		}
2757 		kmem_free(vdc->dring_cookie, sizeof (ldc_mem_cookie_t));
2758 	}
2759 
2760 	if (vdc->initialized & VDC_DRING_INIT) {
2761 		DMSG(vdc, 0, "[%d] Destroying DRing\n", vdc->instance);
2762 		status = ldc_mem_dring_destroy(vdc->dring_hdl);
2763 		if (status == 0) {
2764 			vdc->dring_hdl = NULL;
2765 			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
2766 			vdc->initialized &= ~VDC_DRING_INIT;
2767 		} else {
2768 			DMSG(vdc, 0, "[%d] Error %d destroying DRing (%lx)",
2769 			    vdc->instance, status, vdc->dring_hdl);
2770 		}
2771 	}
2772 }
2773 
2774 /*
2775  * Function:
2776  *	vdc_map_to_shared_dring()
2777  *
2778  * Description:
2779  *	Copy contents of the local descriptor to the shared
2780  *	memory descriptor.
2781  *
2782  * Arguments:
2783  *	vdcp	- soft state pointer for this instance of the device driver.
2784  *	idx	- descriptor ring index
2785  *
2786  * Return Code:
2787  *	None
2788  */
2789 static int
2790 vdc_map_to_shared_dring(vdc_t *vdcp, int idx)
2791 {
2792 	vdc_local_desc_t	*ldep;
2793 	vd_dring_entry_t	*dep;
2794 	int			rv;
2795 
2796 	ldep = &(vdcp->local_dring[idx]);
2797 
2798 	/* for now leave in the old pop_mem_hdl stuff */
2799 	if (ldep->nbytes > 0) {
2800 		rv = vdc_populate_mem_hdl(vdcp, ldep);
2801 		if (rv) {
2802 			DMSG(vdcp, 0, "[%d] Cannot populate mem handle\n",
2803 			    vdcp->instance);
2804 			return (rv);
2805 		}
2806 	}
2807 
2808 	/*
2809 	 * fill in the data details into the DRing
2810 	 */
2811 	dep = ldep->dep;
2812 	ASSERT(dep != NULL);
2813 
2814 	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdcp);
2815 	dep->payload.operation = ldep->operation;
2816 	dep->payload.addr = ldep->offset;
2817 	dep->payload.nbytes = ldep->nbytes;
2818 	dep->payload.status = (uint32_t)-1;	/* vds will set valid value */
2819 	dep->payload.slice = ldep->slice;
2820 	dep->hdr.dstate = VIO_DESC_READY;
2821 	dep->hdr.ack = 1;		/* request an ACK for every message */
2822 
2823 	return (0);
2824 }
2825 
2826 /*
2827  * Function:
2828  *	vdc_send_request
2829  *
2830  * Description:
2831  *	This routine writes the data to be transmitted to vds into the
2832  *	descriptor, notifies vds that the ring has been updated and
2833  *	then waits for the request to be processed.
2834  *
2835  * Arguments:
2836  *	vdcp	  - the soft state pointer
2837  *	operation - operation we want vds to perform (VD_OP_XXX)
2838  *	addr	  - address of data buf to be read/written.
2839  *	nbytes	  - number of bytes to read/write
2840  *	slice	  - the disk slice this request is for
2841  *	offset	  - relative disk offset
2842  *	cb_type   - type of call - STRATEGY or SYNC
2843  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2844  *			. mode for ioctl(9e)
2845  *			. LP64 diskaddr_t (block I/O)
2846  *	dir	  - direction of operation (READ/WRITE/BOTH)
2847  *
2848  * Return Codes:
2849  *	0
2850  *	ENXIO
2851  */
2852 static int
2853 vdc_send_request(vdc_t *vdcp, int operation, caddr_t addr,
2854     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2855     void *cb_arg, vio_desc_direction_t dir)
2856 {
2857 	int	rv = 0;
2858 
2859 	ASSERT(vdcp != NULL);
2860 	ASSERT(slice == VD_SLICE_NONE || slice < V_NUMPAR);
2861 
2862 	mutex_enter(&vdcp->lock);
2863 
2864 	/*
2865 	 * If this is a block read/write operation we update the I/O statistics
2866 	 * to indicate that the request is being put on the waitq to be
2867 	 * serviced.
2868 	 *
2869 	 * We do it here (a common routine for both synchronous and strategy
2870 	 * calls) for performance reasons - we are already holding vdc->lock
2871 	 * so there is no extra locking overhead. We would have to explicitly
2872 	 * grab the 'lock' mutex to update the stats if we were to do this
2873 	 * higher up the stack in vdc_strategy() et. al.
2874 	 */
2875 	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2876 		DTRACE_IO1(start, buf_t *, cb_arg);
2877 		VD_KSTAT_WAITQ_ENTER(vdcp);
2878 	}
2879 
2880 	do {
2881 		while (vdcp->state != VDC_STATE_RUNNING) {
2882 
2883 			/* return error if detaching */
2884 			if (vdcp->state == VDC_STATE_DETACH) {
2885 				rv = ENXIO;
2886 				goto done;
2887 			}
2888 
2889 			/* fail request if connection timeout is reached */
2890 			if (vdcp->ctimeout_reached) {
2891 				rv = EIO;
2892 				goto done;
2893 			}
2894 
2895 			/*
2896 			 * If we are panicking and the disk is not ready then
2897 			 * we can't send any request because we can't complete
2898 			 * the handshake now.
2899 			 */
2900 			if (ddi_in_panic()) {
2901 				rv = EIO;
2902 				goto done;
2903 			}
2904 
2905 			cv_wait(&vdcp->running_cv, &vdcp->lock);
2906 		}
2907 
2908 	} while (vdc_populate_descriptor(vdcp, operation, addr,
2909 	    nbytes, slice, offset, cb_type, cb_arg, dir));
2910 
2911 done:
2912 	/*
2913 	 * If this is a block read/write we update the I/O statistics kstat
2914 	 * to indicate that this request has been placed on the queue for
2915 	 * processing (i.e sent to the vDisk server) - iostat(1M) will
2916 	 * report the time waiting for the vDisk server under the %b column
2917 	 * In the case of an error we simply take it off the wait queue.
2918 	 */
2919 	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2920 		if (rv == 0) {
2921 			VD_KSTAT_WAITQ_TO_RUNQ(vdcp);
2922 			DTRACE_PROBE1(send, buf_t *, cb_arg);
2923 		} else {
2924 			VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
2925 			VD_KSTAT_WAITQ_EXIT(vdcp);
2926 			DTRACE_IO1(done, buf_t *, cb_arg);
2927 		}
2928 	}
2929 
2930 	mutex_exit(&vdcp->lock);
2931 
2932 	return (rv);
2933 }
2934 
2935 
2936 /*
2937  * Function:
2938  *	vdc_populate_descriptor
2939  *
2940  * Description:
2941  *	This routine writes the data to be transmitted to vds into the
2942  *	descriptor, notifies vds that the ring has been updated and
2943  *	then waits for the request to be processed.
2944  *
2945  * Arguments:
2946  *	vdcp	  - the soft state pointer
2947  *	operation - operation we want vds to perform (VD_OP_XXX)
2948  *	addr	  - address of data buf to be read/written.
2949  *	nbytes	  - number of bytes to read/write
2950  *	slice	  - the disk slice this request is for
2951  *	offset	  - relative disk offset
2952  *	cb_type   - type of call - STRATEGY or SYNC
2953  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2954  *			. mode for ioctl(9e)
2955  *			. LP64 diskaddr_t (block I/O)
2956  *	dir	  - direction of operation (READ/WRITE/BOTH)
2957  *
2958  * Return Codes:
2959  *	0
2960  *	EAGAIN
2961  *	ECONNRESET
2962  *	ENXIO
2963  */
2964 static int
2965 vdc_populate_descriptor(vdc_t *vdcp, int operation, caddr_t addr,
2966     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2967     void *cb_arg, vio_desc_direction_t dir)
2968 {
2969 	vdc_local_desc_t	*local_dep = NULL; /* Local Dring Pointer */
2970 	int			idx;		/* Index of DRing entry used */
2971 	int			next_idx;
2972 	vio_dring_msg_t		dmsg;
2973 	size_t			msglen;
2974 	int			rv;
2975 
2976 	ASSERT(MUTEX_HELD(&vdcp->lock));
2977 	vdcp->threads_pending++;
2978 loop:
2979 	DMSG(vdcp, 2, ": dring_curr_idx = %d\n", vdcp->dring_curr_idx);
2980 
2981 	/* Get next available D-Ring entry */
2982 	idx = vdcp->dring_curr_idx;
2983 	local_dep = &(vdcp->local_dring[idx]);
2984 
2985 	if (!local_dep->is_free) {
2986 		DMSG(vdcp, 2, "[%d]: dring full - waiting for space\n",
2987 		    vdcp->instance);
2988 		cv_wait(&vdcp->dring_free_cv, &vdcp->lock);
2989 		if (vdcp->state == VDC_STATE_RUNNING ||
2990 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
2991 			goto loop;
2992 		}
2993 		vdcp->threads_pending--;
2994 		return (ECONNRESET);
2995 	}
2996 
2997 	next_idx = idx + 1;
2998 	if (next_idx >= vdcp->dring_len)
2999 		next_idx = 0;
3000 	vdcp->dring_curr_idx = next_idx;
3001 
3002 	ASSERT(local_dep->is_free);
3003 
3004 	local_dep->operation = operation;
3005 	local_dep->addr = addr;
3006 	local_dep->nbytes = nbytes;
3007 	local_dep->slice = slice;
3008 	local_dep->offset = offset;
3009 	local_dep->cb_type = cb_type;
3010 	local_dep->cb_arg = cb_arg;
3011 	local_dep->dir = dir;
3012 
3013 	local_dep->is_free = B_FALSE;
3014 
3015 	rv = vdc_map_to_shared_dring(vdcp, idx);
3016 	if (rv) {
3017 		DMSG(vdcp, 0, "[%d]: cannot bind memory - waiting ..\n",
3018 		    vdcp->instance);
3019 		/* free the descriptor */
3020 		local_dep->is_free = B_TRUE;
3021 		vdcp->dring_curr_idx = idx;
3022 		cv_wait(&vdcp->membind_cv, &vdcp->lock);
3023 		if (vdcp->state == VDC_STATE_RUNNING ||
3024 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
3025 			goto loop;
3026 		}
3027 		vdcp->threads_pending--;
3028 		return (ECONNRESET);
3029 	}
3030 
3031 	/*
3032 	 * Send a msg with the DRing details to vds
3033 	 */
3034 	VIO_INIT_DRING_DATA_TAG(dmsg);
3035 	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdcp);
3036 	dmsg.dring_ident = vdcp->dring_ident;
3037 	dmsg.start_idx = idx;
3038 	dmsg.end_idx = idx;
3039 	vdcp->seq_num++;
3040 
3041 	DTRACE_PROBE2(populate, int, vdcp->instance,
3042 	    vdc_local_desc_t *, local_dep);
3043 	DMSG(vdcp, 2, "ident=0x%lx, st=%u, end=%u, seq=%ld\n",
3044 	    vdcp->dring_ident, dmsg.start_idx, dmsg.end_idx, dmsg.seq_num);
3045 
3046 	/*
3047 	 * note we're still holding the lock here to
3048 	 * make sure the message goes out in order !!!...
3049 	 */
3050 	msglen = sizeof (dmsg);
3051 	rv = vdc_send(vdcp, (caddr_t)&dmsg, &msglen);
3052 	switch (rv) {
3053 	case ECONNRESET:
3054 		/*
3055 		 * vdc_send initiates the reset on failure.
3056 		 * Since the transaction has already been put
3057 		 * on the local dring, it will automatically get
3058 		 * retried when the channel is reset. Given that,
3059 		 * it is ok to just return success even though the
3060 		 * send failed.
3061 		 */
3062 		rv = 0;
3063 		break;
3064 
3065 	case 0: /* EOK */
3066 		DMSG(vdcp, 1, "sent via LDC: rv=%d\n", rv);
3067 		break;
3068 
3069 	default:
3070 		goto cleanup_and_exit;
3071 	}
3072 
3073 	vdcp->threads_pending--;
3074 	return (rv);
3075 
3076 cleanup_and_exit:
3077 	DMSG(vdcp, 0, "unexpected error, rv=%d\n", rv);
3078 	return (ENXIO);
3079 }
3080 
3081 /*
3082  * Function:
3083  *	vdc_do_sync_op
3084  *
3085  * Description:
3086  * 	Wrapper around vdc_populate_descriptor that blocks until the
3087  * 	response to the message is available.
3088  *
3089  * Arguments:
3090  *	vdcp	  - the soft state pointer
3091  *	operation - operation we want vds to perform (VD_OP_XXX)
3092  *	addr	  - address of data buf to be read/written.
3093  *	nbytes	  - number of bytes to read/write
3094  *	slice	  - the disk slice this request is for
3095  *	offset	  - relative disk offset
3096  *	cb_type   - type of call - STRATEGY or SYNC
3097  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
3098  *			. mode for ioctl(9e)
3099  *			. LP64 diskaddr_t (block I/O)
3100  *	dir	  - direction of operation (READ/WRITE/BOTH)
3101  *	rconflict - check for reservation conflict in case of failure
3102  *
3103  * rconflict should be set to B_TRUE by most callers. Callers invoking the
3104  * VD_OP_SCSICMD operation can set rconflict to B_FALSE if they check the
3105  * result of a successful operation with vd_scsi_status().
3106  *
3107  * Return Codes:
3108  *	0
3109  *	EAGAIN
3110  *	EFAULT
3111  *	ENXIO
3112  *	EIO
3113  */
3114 static int
3115 vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr, size_t nbytes,
3116     int slice, diskaddr_t offset, int cb_type, void *cb_arg,
3117     vio_desc_direction_t dir, boolean_t rconflict)
3118 {
3119 	int status;
3120 	vdc_io_t *vio;
3121 	boolean_t check_resv_conflict = B_FALSE;
3122 
3123 	ASSERT(cb_type == CB_SYNC);
3124 
3125 	/*
3126 	 * Grab the lock, if blocked wait until the server
3127 	 * response causes us to wake up again.
3128 	 */
3129 	mutex_enter(&vdcp->lock);
3130 	vdcp->sync_op_cnt++;
3131 	while (vdcp->sync_op_blocked && vdcp->state != VDC_STATE_DETACH)
3132 		cv_wait(&vdcp->sync_blocked_cv, &vdcp->lock);
3133 
3134 	if (vdcp->state == VDC_STATE_DETACH) {
3135 		cv_broadcast(&vdcp->sync_blocked_cv);
3136 		vdcp->sync_op_cnt--;
3137 		mutex_exit(&vdcp->lock);
3138 		return (ENXIO);
3139 	}
3140 
3141 	/* now block anyone other thread entering after us */
3142 	vdcp->sync_op_blocked = B_TRUE;
3143 	vdcp->sync_op_pending = B_TRUE;
3144 	mutex_exit(&vdcp->lock);
3145 
3146 	status = vdc_send_request(vdcp, operation, addr,
3147 	    nbytes, slice, offset, cb_type, cb_arg, dir);
3148 
3149 	mutex_enter(&vdcp->lock);
3150 
3151 	if (status != 0) {
3152 		vdcp->sync_op_pending = B_FALSE;
3153 	} else {
3154 		/*
3155 		 * block until our transaction completes.
3156 		 * Also anyone else waiting also gets to go next.
3157 		 */
3158 		while (vdcp->sync_op_pending && vdcp->state != VDC_STATE_DETACH)
3159 			cv_wait(&vdcp->sync_pending_cv, &vdcp->lock);
3160 
3161 		DMSG(vdcp, 2, ": operation returned %d\n",
3162 		    vdcp->sync_op_status);
3163 		if (vdcp->state == VDC_STATE_DETACH) {
3164 			vdcp->sync_op_pending = B_FALSE;
3165 			status = ENXIO;
3166 		} else {
3167 			status = vdcp->sync_op_status;
3168 			if (status != 0 && vdcp->failfast_interval != 0) {
3169 				/*
3170 				 * Operation has failed and failfast is enabled.
3171 				 * We need to check if the failure is due to a
3172 				 * reservation conflict if this was requested.
3173 				 */
3174 				check_resv_conflict = rconflict;
3175 			}
3176 
3177 		}
3178 	}
3179 
3180 	vdcp->sync_op_status = 0;
3181 	vdcp->sync_op_blocked = B_FALSE;
3182 	vdcp->sync_op_cnt--;
3183 
3184 	/* signal the next waiting thread */
3185 	cv_signal(&vdcp->sync_blocked_cv);
3186 
3187 	/*
3188 	 * We have to check for reservation conflict after unblocking sync
3189 	 * operations because some sync operations will be used to do this
3190 	 * check.
3191 	 */
3192 	if (check_resv_conflict) {
3193 		vio = vdc_failfast_io_queue(vdcp, NULL);
3194 		while (vio->vio_qtime != 0)
3195 			cv_wait(&vdcp->failfast_io_cv, &vdcp->lock);
3196 		kmem_free(vio, sizeof (vdc_io_t));
3197 	}
3198 
3199 	mutex_exit(&vdcp->lock);
3200 
3201 	return (status);
3202 }
3203 
3204 
3205 /*
3206  * Function:
3207  *	vdc_drain_response()
3208  *
3209  * Description:
3210  * 	When a guest is panicking, the completion of requests needs to be
3211  * 	handled differently because interrupts are disabled and vdc
3212  * 	will not get messages. We have to poll for the messages instead.
3213  *
3214  *	Note: since we don't have a buf_t available we cannot implement
3215  *	the io:::done DTrace probe in this specific case.
3216  *
3217  * Arguments:
3218  *	vdc	- soft state pointer for this instance of the device driver.
3219  *
3220  * Return Code:
3221  *	0	- Success
3222  */
3223 static int
3224 vdc_drain_response(vdc_t *vdc)
3225 {
3226 	int 			rv, idx, retries;
3227 	size_t			msglen;
3228 	vdc_local_desc_t 	*ldep = NULL;	/* Local Dring Entry Pointer */
3229 	vio_dring_msg_t		dmsg;
3230 
3231 	mutex_enter(&vdc->lock);
3232 
3233 	retries = 0;
3234 	for (;;) {
3235 		msglen = sizeof (dmsg);
3236 		rv = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)&dmsg,
3237 		    &msglen);
3238 		if (rv) {
3239 			rv = EINVAL;
3240 			break;
3241 		}
3242 
3243 		/*
3244 		 * if there are no packets wait and check again
3245 		 */
3246 		if ((rv == 0) && (msglen == 0)) {
3247 			if (retries++ > vdc_dump_retries) {
3248 				rv = EAGAIN;
3249 				break;
3250 			}
3251 
3252 			drv_usecwait(vdc_usec_timeout_dump);
3253 			continue;
3254 		}
3255 
3256 		/*
3257 		 * Ignore all messages that are not ACKs/NACKs to
3258 		 * DRing requests.
3259 		 */
3260 		if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
3261 		    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
3262 			DMSG(vdc, 0, "discard pkt: type=%d sub=%d env=%d\n",
3263 			    dmsg.tag.vio_msgtype,
3264 			    dmsg.tag.vio_subtype,
3265 			    dmsg.tag.vio_subtype_env);
3266 			continue;
3267 		}
3268 
3269 		/*
3270 		 * set the appropriate return value for the current request.
3271 		 */
3272 		switch (dmsg.tag.vio_subtype) {
3273 		case VIO_SUBTYPE_ACK:
3274 			rv = 0;
3275 			break;
3276 		case VIO_SUBTYPE_NACK:
3277 			rv = EAGAIN;
3278 			break;
3279 		default:
3280 			continue;
3281 		}
3282 
3283 		idx = dmsg.start_idx;
3284 		if (idx >= vdc->dring_len) {
3285 			DMSG(vdc, 0, "[%d] Bogus ack data : start %d\n",
3286 			    vdc->instance, idx);
3287 			continue;
3288 		}
3289 		ldep = &vdc->local_dring[idx];
3290 		if (ldep->dep->hdr.dstate != VIO_DESC_DONE) {
3291 			DMSG(vdc, 0, "[%d] Entry @ %d - state !DONE %d\n",
3292 			    vdc->instance, idx, ldep->dep->hdr.dstate);
3293 			continue;
3294 		}
3295 
3296 		DMSG(vdc, 1, "[%d] Depopulating idx=%d state=%d\n",
3297 		    vdc->instance, idx, ldep->dep->hdr.dstate);
3298 
3299 		rv = vdc_depopulate_descriptor(vdc, idx);
3300 		if (rv) {
3301 			DMSG(vdc, 0,
3302 			    "[%d] Entry @ %d - depopulate failed ..\n",
3303 			    vdc->instance, idx);
3304 		}
3305 
3306 		/* if this is the last descriptor - break out of loop */
3307 		if ((idx + 1) % vdc->dring_len == vdc->dring_curr_idx)
3308 			break;
3309 	}
3310 
3311 	mutex_exit(&vdc->lock);
3312 	DMSG(vdc, 0, "End idx=%d\n", idx);
3313 
3314 	return (rv);
3315 }
3316 
3317 
3318 /*
3319  * Function:
3320  *	vdc_depopulate_descriptor()
3321  *
3322  * Description:
3323  *
3324  * Arguments:
3325  *	vdc	- soft state pointer for this instance of the device driver.
3326  *	idx	- Index of the Descriptor Ring entry being modified
3327  *
3328  * Return Code:
3329  *	0	- Success
3330  */
3331 static int
3332 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
3333 {
3334 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
3335 	vdc_local_desc_t *ldep = NULL;		/* Local Dring Entry Pointer */
3336 	int		status = ENXIO;
3337 	int		rv = 0;
3338 
3339 	ASSERT(vdc != NULL);
3340 	ASSERT(idx < vdc->dring_len);
3341 	ldep = &vdc->local_dring[idx];
3342 	ASSERT(ldep != NULL);
3343 	ASSERT(MUTEX_HELD(&vdc->lock));
3344 
3345 	DTRACE_PROBE2(depopulate, int, vdc->instance, vdc_local_desc_t *, ldep);
3346 	DMSG(vdc, 2, ": idx = %d\n", idx);
3347 
3348 	dep = ldep->dep;
3349 	ASSERT(dep != NULL);
3350 	ASSERT((dep->hdr.dstate == VIO_DESC_DONE) ||
3351 	    (dep->payload.status == ECANCELED));
3352 
3353 	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
3354 
3355 	ldep->is_free = B_TRUE;
3356 	status = dep->payload.status;
3357 	DMSG(vdc, 2, ": is_free = %d : status = %d\n", ldep->is_free, status);
3358 
3359 	/*
3360 	 * If no buffers were used to transfer information to the server when
3361 	 * populating the descriptor then no memory handles need to be unbound
3362 	 * and we can return now.
3363 	 */
3364 	if (ldep->nbytes == 0) {
3365 		cv_signal(&vdc->dring_free_cv);
3366 		return (status);
3367 	}
3368 
3369 	/*
3370 	 * If the upper layer passed in a misaligned address we copied the
3371 	 * data into an aligned buffer before sending it to LDC - we now
3372 	 * copy it back to the original buffer.
3373 	 */
3374 	if (ldep->align_addr) {
3375 		ASSERT(ldep->addr != NULL);
3376 
3377 		if (dep->payload.nbytes > 0)
3378 			bcopy(ldep->align_addr, ldep->addr,
3379 			    dep->payload.nbytes);
3380 		kmem_free(ldep->align_addr,
3381 		    sizeof (caddr_t) * P2ROUNDUP(ldep->nbytes, 8));
3382 		ldep->align_addr = NULL;
3383 	}
3384 
3385 	rv = ldc_mem_unbind_handle(ldep->desc_mhdl);
3386 	if (rv != 0) {
3387 		DMSG(vdc, 0, "?[%d] unbind mhdl 0x%lx @ idx %d failed (%d)",
3388 		    vdc->instance, ldep->desc_mhdl, idx, rv);
3389 		/*
3390 		 * The error returned by the vDisk server is more informative
3391 		 * and thus has a higher priority but if it isn't set we ensure
3392 		 * that this function returns an error.
3393 		 */
3394 		if (status == 0)
3395 			status = EINVAL;
3396 	}
3397 
3398 	cv_signal(&vdc->membind_cv);
3399 	cv_signal(&vdc->dring_free_cv);
3400 
3401 	return (status);
3402 }
3403 
3404 /*
3405  * Function:
3406  *	vdc_populate_mem_hdl()
3407  *
3408  * Description:
3409  *
3410  * Arguments:
3411  *	vdc	- soft state pointer for this instance of the device driver.
3412  *	idx	- Index of the Descriptor Ring entry being modified
3413  *	addr	- virtual address being mapped in
3414  *	nybtes	- number of bytes in 'addr'
3415  *	operation - the vDisk operation being performed (VD_OP_xxx)
3416  *
3417  * Return Code:
3418  *	0	- Success
3419  */
3420 static int
3421 vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep)
3422 {
3423 	vd_dring_entry_t	*dep = NULL;
3424 	ldc_mem_handle_t	mhdl;
3425 	caddr_t			vaddr;
3426 	size_t			nbytes;
3427 	uint8_t			perm = LDC_MEM_RW;
3428 	uint8_t			maptype;
3429 	int			rv = 0;
3430 	int			i;
3431 
3432 	ASSERT(vdcp != NULL);
3433 
3434 	dep = ldep->dep;
3435 	mhdl = ldep->desc_mhdl;
3436 
3437 	switch (ldep->dir) {
3438 	case VIO_read_dir:
3439 		perm = LDC_MEM_W;
3440 		break;
3441 
3442 	case VIO_write_dir:
3443 		perm = LDC_MEM_R;
3444 		break;
3445 
3446 	case VIO_both_dir:
3447 		perm = LDC_MEM_RW;
3448 		break;
3449 
3450 	default:
3451 		ASSERT(0);	/* catch bad programming in vdc */
3452 	}
3453 
3454 	/*
3455 	 * LDC expects any addresses passed in to be 8-byte aligned. We need
3456 	 * to copy the contents of any misaligned buffers to a newly allocated
3457 	 * buffer and bind it instead (and copy the the contents back to the
3458 	 * original buffer passed in when depopulating the descriptor)
3459 	 */
3460 	vaddr = ldep->addr;
3461 	nbytes = ldep->nbytes;
3462 	if (((uint64_t)vaddr & 0x7) != 0) {
3463 		ASSERT(ldep->align_addr == NULL);
3464 		ldep->align_addr =
3465 		    kmem_alloc(sizeof (caddr_t) *
3466 		    P2ROUNDUP(nbytes, 8), KM_SLEEP);
3467 		DMSG(vdcp, 0, "[%d] Misaligned address %p reallocating "
3468 		    "(buf=%p nb=%ld op=%d)\n",
3469 		    vdcp->instance, (void *)vaddr, (void *)ldep->align_addr,
3470 		    nbytes, ldep->operation);
3471 		if (perm != LDC_MEM_W)
3472 			bcopy(vaddr, ldep->align_addr, nbytes);
3473 		vaddr = ldep->align_addr;
3474 	}
3475 
3476 	maptype = LDC_IO_MAP|LDC_SHADOW_MAP|LDC_DIRECT_MAP;
3477 	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
3478 	    maptype, perm, &dep->payload.cookie[0], &dep->payload.ncookies);
3479 	DMSG(vdcp, 2, "[%d] bound mem handle; ncookies=%d\n",
3480 	    vdcp->instance, dep->payload.ncookies);
3481 	if (rv != 0) {
3482 		DMSG(vdcp, 0, "[%d] Failed to bind LDC memory handle "
3483 		    "(mhdl=%p, buf=%p, err=%d)\n",
3484 		    vdcp->instance, (void *)mhdl, (void *)vaddr, rv);
3485 		if (ldep->align_addr) {
3486 			kmem_free(ldep->align_addr,
3487 			    sizeof (caddr_t) * P2ROUNDUP(nbytes, 8));
3488 			ldep->align_addr = NULL;
3489 		}
3490 		return (EAGAIN);
3491 	}
3492 
3493 	/*
3494 	 * Get the other cookies (if any).
3495 	 */
3496 	for (i = 1; i < dep->payload.ncookies; i++) {
3497 		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
3498 		if (rv != 0) {
3499 			(void) ldc_mem_unbind_handle(mhdl);
3500 			DMSG(vdcp, 0, "?[%d] Failed to get next cookie "
3501 			    "(mhdl=%lx cnum=%d), err=%d",
3502 			    vdcp->instance, mhdl, i, rv);
3503 			if (ldep->align_addr) {
3504 				kmem_free(ldep->align_addr,
3505 				    sizeof (caddr_t) * ldep->nbytes);
3506 				ldep->align_addr = NULL;
3507 			}
3508 			return (EAGAIN);
3509 		}
3510 	}
3511 
3512 	return (rv);
3513 }
3514 
3515 /*
3516  * Interrupt handlers for messages from LDC
3517  */
3518 
3519 /*
3520  * Function:
3521  *	vdc_handle_cb()
3522  *
3523  * Description:
3524  *
3525  * Arguments:
3526  *	event	- Type of event (LDC_EVT_xxx) that triggered the callback
3527  *	arg	- soft state pointer for this instance of the device driver.
3528  *
3529  * Return Code:
3530  *	0	- Success
3531  */
3532 static uint_t
3533 vdc_handle_cb(uint64_t event, caddr_t arg)
3534 {
3535 	ldc_status_t	ldc_state;
3536 	int		rv = 0;
3537 	vdc_server_t	*srvr = (vdc_server_t *)(void *)arg;
3538 	vdc_t		*vdc = srvr->vdcp;
3539 
3540 	ASSERT(vdc != NULL);
3541 
3542 	DMSG(vdc, 1, "evt=%lx seqID=%ld\n", event, vdc->seq_num);
3543 
3544 	/* If callback is not for the current server, ignore it */
3545 	mutex_enter(&vdc->lock);
3546 
3547 	if (vdc->curr_server != srvr) {
3548 		DMSG(vdc, 0, "[%d] Ignoring event 0x%lx for port@%ld\n",
3549 		    vdc->instance, event, srvr->id);
3550 		mutex_exit(&vdc->lock);
3551 		return (LDC_SUCCESS);
3552 	}
3553 
3554 	/*
3555 	 * Depending on the type of event that triggered this callback,
3556 	 * we modify the handshake state or read the data.
3557 	 *
3558 	 * NOTE: not done as a switch() as event could be triggered by
3559 	 * a state change and a read request. Also the ordering	of the
3560 	 * check for the event types is deliberate.
3561 	 */
3562 	if (event & LDC_EVT_UP) {
3563 		DMSG(vdc, 0, "[%d] Received LDC_EVT_UP\n", vdc->instance);
3564 
3565 		/* get LDC state */
3566 		rv = ldc_status(srvr->ldc_handle, &ldc_state);
3567 		if (rv != 0) {
3568 			DMSG(vdc, 0, "[%d] Couldn't get LDC status %d",
3569 			    vdc->instance, rv);
3570 			mutex_exit(&vdc->lock);
3571 			return (LDC_SUCCESS);
3572 		}
3573 		if (srvr->ldc_state != LDC_UP &&
3574 		    ldc_state == LDC_UP) {
3575 			/*
3576 			 * Reset the transaction sequence numbers when
3577 			 * LDC comes up. We then kick off the handshake
3578 			 * negotiation with the vDisk server.
3579 			 */
3580 			vdc->seq_num = 1;
3581 			vdc->seq_num_reply = 0;
3582 			srvr->ldc_state = ldc_state;
3583 			cv_signal(&vdc->initwait_cv);
3584 		}
3585 	}
3586 
3587 	if (event & LDC_EVT_READ) {
3588 		DMSG(vdc, 1, "[%d] Received LDC_EVT_READ\n", vdc->instance);
3589 		mutex_enter(&vdc->read_lock);
3590 		cv_signal(&vdc->read_cv);
3591 		vdc->read_state = VDC_READ_PENDING;
3592 		mutex_exit(&vdc->read_lock);
3593 		mutex_exit(&vdc->lock);
3594 
3595 		/* that's all we have to do - no need to handle DOWN/RESET */
3596 		return (LDC_SUCCESS);
3597 	}
3598 
3599 	if (event & (LDC_EVT_RESET|LDC_EVT_DOWN)) {
3600 
3601 		DMSG(vdc, 0, "[%d] Received LDC RESET event\n", vdc->instance);
3602 
3603 		/*
3604 		 * Need to wake up any readers so they will
3605 		 * detect that a reset has occurred.
3606 		 */
3607 		mutex_enter(&vdc->read_lock);
3608 		if ((vdc->read_state == VDC_READ_WAITING) ||
3609 		    (vdc->read_state == VDC_READ_RESET))
3610 			cv_signal(&vdc->read_cv);
3611 		vdc->read_state = VDC_READ_RESET;
3612 		mutex_exit(&vdc->read_lock);
3613 
3614 		/* wake up any threads waiting for connection to come up */
3615 		if (vdc->state == VDC_STATE_INIT_WAITING) {
3616 			vdc->state = VDC_STATE_RESETTING;
3617 			cv_signal(&vdc->initwait_cv);
3618 		}
3619 
3620 	}
3621 
3622 	mutex_exit(&vdc->lock);
3623 
3624 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
3625 		DMSG(vdc, 0, "![%d] Unexpected LDC event (%lx) received",
3626 		    vdc->instance, event);
3627 
3628 	return (LDC_SUCCESS);
3629 }
3630 
3631 /*
3632  * Function:
3633  *	vdc_wait_for_response()
3634  *
3635  * Description:
3636  *	Block waiting for a response from the server. If there is
3637  *	no data the thread block on the read_cv that is signalled
3638  *	by the callback when an EVT_READ occurs.
3639  *
3640  * Arguments:
3641  *	vdcp	- soft state pointer for this instance of the device driver.
3642  *
3643  * Return Code:
3644  *	0	- Success
3645  */
3646 static int
3647 vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp)
3648 {
3649 	size_t		nbytes = sizeof (*msgp);
3650 	int		status;
3651 
3652 	ASSERT(vdcp != NULL);
3653 
3654 	DMSG(vdcp, 1, "[%d] Entered\n", vdcp->instance);
3655 
3656 	status = vdc_recv(vdcp, msgp, &nbytes);
3657 	DMSG(vdcp, 3, "vdc_read() done.. status=0x%x size=0x%x\n",
3658 	    status, (int)nbytes);
3659 	if (status) {
3660 		DMSG(vdcp, 0, "?[%d] Error %d reading LDC msg\n",
3661 		    vdcp->instance, status);
3662 		return (status);
3663 	}
3664 
3665 	if (nbytes < sizeof (vio_msg_tag_t)) {
3666 		DMSG(vdcp, 0, "?[%d] Expect %lu bytes; recv'd %lu\n",
3667 		    vdcp->instance, sizeof (vio_msg_tag_t), nbytes);
3668 		return (ENOMSG);
3669 	}
3670 
3671 	DMSG(vdcp, 2, "[%d] (%x/%x/%x)\n", vdcp->instance,
3672 	    msgp->tag.vio_msgtype,
3673 	    msgp->tag.vio_subtype,
3674 	    msgp->tag.vio_subtype_env);
3675 
3676 	/*
3677 	 * Verify the Session ID of the message
3678 	 *
3679 	 * Every message after the Version has been negotiated should
3680 	 * have the correct session ID set.
3681 	 */
3682 	if ((msgp->tag.vio_sid != vdcp->session_id) &&
3683 	    (msgp->tag.vio_subtype_env != VIO_VER_INFO)) {
3684 		DMSG(vdcp, 0, "[%d] Invalid SID: received 0x%x, "
3685 		    "expected 0x%lx [seq num %lx @ %d]",
3686 		    vdcp->instance, msgp->tag.vio_sid,
3687 		    vdcp->session_id,
3688 		    ((vio_dring_msg_t *)msgp)->seq_num,
3689 		    ((vio_dring_msg_t *)msgp)->start_idx);
3690 		return (ENOMSG);
3691 	}
3692 	return (0);
3693 }
3694 
3695 
3696 /*
3697  * Function:
3698  *	vdc_resubmit_backup_dring()
3699  *
3700  * Description:
3701  *	Resubmit each descriptor in the backed up dring to
3702  * 	vDisk server. The Dring was backed up during connection
3703  *	reset.
3704  *
3705  * Arguments:
3706  *	vdcp	- soft state pointer for this instance of the device driver.
3707  *
3708  * Return Code:
3709  *	0	- Success
3710  */
3711 static int
3712 vdc_resubmit_backup_dring(vdc_t *vdcp)
3713 {
3714 	int		processed = 0;
3715 	int		count;
3716 	int		b_idx;
3717 	int		rv = 0;
3718 	int		dring_size;
3719 	int		op;
3720 	vio_msg_t	vio_msg;
3721 	vdc_local_desc_t	*curr_ldep;
3722 
3723 	ASSERT(MUTEX_NOT_HELD(&vdcp->lock));
3724 	ASSERT(vdcp->state == VDC_STATE_HANDLE_PENDING);
3725 
3726 	if (vdcp->local_dring_backup == NULL) {
3727 		/* the pending requests have already been processed */
3728 		return (0);
3729 	}
3730 
3731 	DMSG(vdcp, 1, "restoring pending dring entries (len=%d, tail=%d)\n",
3732 	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3733 
3734 	/*
3735 	 * Walk the backup copy of the local descriptor ring and
3736 	 * resubmit all the outstanding transactions.
3737 	 */
3738 	b_idx = vdcp->local_dring_backup_tail;
3739 	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3740 
3741 		curr_ldep = &(vdcp->local_dring_backup[b_idx]);
3742 
3743 		/* only resubmit outstanding transactions */
3744 		if (!curr_ldep->is_free) {
3745 			/*
3746 			 * If we are retrying a block read/write operation we
3747 			 * need to update the I/O statistics to indicate that
3748 			 * the request is being put back on the waitq to be
3749 			 * serviced (it will have been taken off after the
3750 			 * error was reported).
3751 			 */
3752 			mutex_enter(&vdcp->lock);
3753 			op = curr_ldep->operation;
3754 			if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
3755 				DTRACE_IO1(start, buf_t *, curr_ldep->cb_arg);
3756 				VD_KSTAT_WAITQ_ENTER(vdcp);
3757 			}
3758 
3759 			DMSG(vdcp, 1, "resubmitting entry idx=%x\n", b_idx);
3760 			rv = vdc_populate_descriptor(vdcp, op,
3761 			    curr_ldep->addr, curr_ldep->nbytes,
3762 			    curr_ldep->slice, curr_ldep->offset,
3763 			    curr_ldep->cb_type, curr_ldep->cb_arg,
3764 			    curr_ldep->dir);
3765 
3766 			if (rv) {
3767 				if (op == VD_OP_BREAD || op == VD_OP_BWRITE) {
3768 					VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
3769 					VD_KSTAT_WAITQ_EXIT(vdcp);
3770 					DTRACE_IO1(done, buf_t *,
3771 					    curr_ldep->cb_arg);
3772 				}
3773 				DMSG(vdcp, 1, "[%d] cannot resubmit entry %d\n",
3774 				    vdcp->instance, b_idx);
3775 				mutex_exit(&vdcp->lock);
3776 				goto done;
3777 			}
3778 
3779 			/*
3780 			 * If this is a block read/write we update the I/O
3781 			 * statistics kstat to indicate that the request
3782 			 * has been sent back to the vDisk server and should
3783 			 * now be put on the run queue.
3784 			 */
3785 			if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
3786 				DTRACE_PROBE1(send, buf_t *, curr_ldep->cb_arg);
3787 				VD_KSTAT_WAITQ_TO_RUNQ(vdcp);
3788 			}
3789 			mutex_exit(&vdcp->lock);
3790 
3791 			/* Wait for the response message. */
3792 			DMSG(vdcp, 1, "waiting for response to idx=%x\n",
3793 			    b_idx);
3794 			rv = vdc_wait_for_response(vdcp, &vio_msg);
3795 			if (rv) {
3796 				/*
3797 				 * If this is a block read/write we update
3798 				 * the I/O statistics kstat to take it
3799 				 * off the run queue.
3800 				 */
3801 				mutex_enter(&vdcp->lock);
3802 				if (op == VD_OP_BREAD || op == VD_OP_BWRITE) {
3803 					VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
3804 					VD_KSTAT_RUNQ_EXIT(vdcp);
3805 					DTRACE_IO1(done, buf_t *,
3806 					    curr_ldep->cb_arg);
3807 				}
3808 				DMSG(vdcp, 1, "[%d] wait_for_response "
3809 				    "returned err=%d\n", vdcp->instance,
3810 				    rv);
3811 				mutex_exit(&vdcp->lock);
3812 				goto done;
3813 			}
3814 
3815 			DMSG(vdcp, 1, "processing msg for idx=%x\n", b_idx);
3816 			rv = vdc_process_data_msg(vdcp, &vio_msg);
3817 			if (rv) {
3818 				DMSG(vdcp, 1, "[%d] process_data_msg "
3819 				    "returned err=%d\n", vdcp->instance,
3820 				    rv);
3821 				goto done;
3822 			}
3823 			/*
3824 			 * Mark this entry as free so that we will not resubmit
3825 			 * this "done" request again, if we were to use the same
3826 			 * backup_dring again in future. This could happen when
3827 			 * a reset happens while processing the backup_dring.
3828 			 */
3829 			curr_ldep->is_free = B_TRUE;
3830 			processed++;
3831 		}
3832 
3833 		/* get the next element to submit */
3834 		if (++b_idx >= vdcp->local_dring_backup_len)
3835 			b_idx = 0;
3836 	}
3837 
3838 	/* all done - now clear up pending dring copy */
3839 	dring_size = vdcp->local_dring_backup_len *
3840 	    sizeof (vdcp->local_dring_backup[0]);
3841 
3842 	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3843 
3844 	vdcp->local_dring_backup = NULL;
3845 
3846 done:
3847 	DTRACE_PROBE2(processed, int, processed, vdc_t *, vdcp);
3848 
3849 	return (rv);
3850 }
3851 
3852 /*
3853  * Function:
3854  *	vdc_cancel_backup_dring
3855  *
3856  * Description:
3857  *	Cancel each descriptor in the backed up dring to vDisk server.
3858  *	The Dring was backed up during connection reset.
3859  *
3860  * Arguments:
3861  *	vdcp	- soft state pointer for this instance of the device driver.
3862  *
3863  * Return Code:
3864  *	None
3865  */
3866 void
3867 vdc_cancel_backup_dring(vdc_t *vdcp)
3868 {
3869 	vdc_local_desc_t *ldep;
3870 	struct buf 	*bufp;
3871 	int		count;
3872 	int		b_idx;
3873 	int		dring_size;
3874 	int		cancelled = 0;
3875 
3876 	ASSERT(MUTEX_HELD(&vdcp->lock));
3877 	ASSERT(vdcp->state == VDC_STATE_INIT ||
3878 	    vdcp->state == VDC_STATE_INIT_WAITING ||
3879 	    vdcp->state == VDC_STATE_NEGOTIATE ||
3880 	    vdcp->state == VDC_STATE_RESETTING);
3881 
3882 	if (vdcp->local_dring_backup == NULL) {
3883 		/* the pending requests have already been processed */
3884 		return;
3885 	}
3886 
3887 	DMSG(vdcp, 1, "cancelling pending dring entries (len=%d, tail=%d)\n",
3888 	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3889 
3890 	/*
3891 	 * Walk the backup copy of the local descriptor ring and
3892 	 * cancel all the outstanding transactions.
3893 	 */
3894 	b_idx = vdcp->local_dring_backup_tail;
3895 	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3896 
3897 		ldep = &(vdcp->local_dring_backup[b_idx]);
3898 
3899 		/* only cancel outstanding transactions */
3900 		if (!ldep->is_free) {
3901 
3902 			DMSG(vdcp, 1, "cancelling entry idx=%x\n", b_idx);
3903 			cancelled++;
3904 
3905 			/*
3906 			 * All requests have already been cleared from the
3907 			 * local descriptor ring and the LDC channel has been
3908 			 * reset so we will never get any reply for these
3909 			 * requests. Now we just have to notify threads waiting
3910 			 * for replies that the request has failed.
3911 			 */
3912 			switch (ldep->cb_type) {
3913 			case CB_SYNC:
3914 				ASSERT(vdcp->sync_op_pending);
3915 				vdcp->sync_op_status = EIO;
3916 				vdcp->sync_op_pending = B_FALSE;
3917 				cv_signal(&vdcp->sync_pending_cv);
3918 				break;
3919 
3920 			case CB_STRATEGY:
3921 				bufp = ldep->cb_arg;
3922 				ASSERT(bufp != NULL);
3923 				bufp->b_resid = bufp->b_bcount;
3924 				VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
3925 				VD_KSTAT_RUNQ_EXIT(vdcp);
3926 				DTRACE_IO1(done, buf_t *, bufp);
3927 				bioerror(bufp, EIO);
3928 				biodone(bufp);
3929 				break;
3930 
3931 			default:
3932 				ASSERT(0);
3933 			}
3934 
3935 		}
3936 
3937 		/* get the next element to cancel */
3938 		if (++b_idx >= vdcp->local_dring_backup_len)
3939 			b_idx = 0;
3940 	}
3941 
3942 	/* all done - now clear up pending dring copy */
3943 	dring_size = vdcp->local_dring_backup_len *
3944 	    sizeof (vdcp->local_dring_backup[0]);
3945 
3946 	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3947 
3948 	vdcp->local_dring_backup = NULL;
3949 
3950 	DTRACE_PROBE2(cancelled, int, cancelled, vdc_t *, vdcp);
3951 }
3952 
3953 /*
3954  * Function:
3955  *	vdc_connection_timeout
3956  *
3957  * Description:
3958  *	This function is invoked if the timeout set to establish the connection
3959  *	with vds expires. This will happen if we spend too much time in the
3960  *	VDC_STATE_INIT_WAITING or VDC_STATE_NEGOTIATE states. Then we will
3961  *	cancel any pending request and mark them as failed.
3962  *
3963  *	If the timeout does not expire, it will be cancelled when we reach the
3964  *	VDC_STATE_HANDLE_PENDING or VDC_STATE_RESETTING state. This function can
3965  *	be invoked while we are in the VDC_STATE_HANDLE_PENDING or
3966  *	VDC_STATE_RESETTING state in which case we do nothing because the
3967  *	timeout is being cancelled.
3968  *
3969  * Arguments:
3970  *	arg	- argument of the timeout function actually a soft state
3971  *		  pointer for the instance of the device driver.
3972  *
3973  * Return Code:
3974  *	None
3975  */
3976 void
3977 vdc_connection_timeout(void *arg)
3978 {
3979 	vdc_t 		*vdcp = (vdc_t *)arg;
3980 
3981 	mutex_enter(&vdcp->lock);
3982 
3983 	if (vdcp->state == VDC_STATE_HANDLE_PENDING ||
3984 	    vdcp->state == VDC_STATE_DETACH) {
3985 		/*
3986 		 * The connection has just been re-established or
3987 		 * we are detaching.
3988 		 */
3989 		vdcp->ctimeout_reached = B_FALSE;
3990 		mutex_exit(&vdcp->lock);
3991 		return;
3992 	}
3993 
3994 	vdcp->ctimeout_reached = B_TRUE;
3995 
3996 	/* notify requests waiting for sending */
3997 	cv_broadcast(&vdcp->running_cv);
3998 
3999 	/* cancel requests waiting for a result */
4000 	vdc_cancel_backup_dring(vdcp);
4001 
4002 	mutex_exit(&vdcp->lock);
4003 
4004 	cmn_err(CE_NOTE, "[%d] connection to service domain timeout",
4005 	    vdcp->instance);
4006 }
4007 
4008 /*
4009  * Function:
4010  *	vdc_backup_local_dring()
4011  *
4012  * Description:
4013  *	Backup the current dring in the event of a reset. The Dring
4014  *	transactions will be resubmitted to the server when the
4015  *	connection is restored.
4016  *
4017  * Arguments:
4018  *	vdcp	- soft state pointer for this instance of the device driver.
4019  *
4020  * Return Code:
4021  *	NONE
4022  */
4023 static void
4024 vdc_backup_local_dring(vdc_t *vdcp)
4025 {
4026 	int dring_size;
4027 
4028 	ASSERT(MUTEX_HELD(&vdcp->lock));
4029 	ASSERT(vdcp->state == VDC_STATE_RESETTING);
4030 
4031 	/*
4032 	 * If the backup dring is stil around, it means
4033 	 * that the last restore did not complete. However,
4034 	 * since we never got back into the running state,
4035 	 * the backup copy we have is still valid.
4036 	 */
4037 	if (vdcp->local_dring_backup != NULL) {
4038 		DMSG(vdcp, 1, "reusing local descriptor ring backup "
4039 		    "(len=%d, tail=%d)\n", vdcp->local_dring_backup_len,
4040 		    vdcp->local_dring_backup_tail);
4041 		return;
4042 	}
4043 
4044 	/*
4045 	 * The backup dring can be NULL and the local dring may not be
4046 	 * initialized. This can happen if we had a reset while establishing
4047 	 * a new connection but after the connection has timed out. In that
4048 	 * case the backup dring is NULL because the requests have been
4049 	 * cancelled and the request occured before the local dring is
4050 	 * initialized.
4051 	 */
4052 	if (!(vdcp->initialized & VDC_DRING_LOCAL))
4053 		return;
4054 
4055 	DMSG(vdcp, 1, "backing up the local descriptor ring (len=%d, "
4056 	    "tail=%d)\n", vdcp->dring_len, vdcp->dring_curr_idx);
4057 
4058 	dring_size = vdcp->dring_len * sizeof (vdcp->local_dring[0]);
4059 
4060 	vdcp->local_dring_backup = kmem_alloc(dring_size, KM_SLEEP);
4061 	bcopy(vdcp->local_dring, vdcp->local_dring_backup, dring_size);
4062 
4063 	vdcp->local_dring_backup_tail = vdcp->dring_curr_idx;
4064 	vdcp->local_dring_backup_len = vdcp->dring_len;
4065 }
4066 
4067 static void
4068 vdc_switch_server(vdc_t *vdcp)
4069 {
4070 	int		rv;
4071 	vdc_server_t 	*curr_server, *new_server;
4072 
4073 	ASSERT(MUTEX_HELD(&vdcp->lock));
4074 
4075 	/* if there is only one server return back */
4076 	if (vdcp->num_servers == 1) {
4077 		return;
4078 	}
4079 
4080 	/* Get current and next server */
4081 	curr_server = vdcp->curr_server;
4082 	new_server =
4083 	    (curr_server->next) ? curr_server->next : vdcp->server_list;
4084 	ASSERT(curr_server != new_server);
4085 
4086 	/* bring current server's channel down */
4087 	rv = ldc_down(curr_server->ldc_handle);
4088 	if (rv) {
4089 		DMSG(vdcp, 0, "[%d] Cannot bring channel down, port %ld\n",
4090 		    vdcp->instance, curr_server->id);
4091 		return;
4092 	}
4093 
4094 	/* switch the server */
4095 	vdcp->curr_server = new_server;
4096 
4097 	cmn_err(CE_NOTE, "Successfully failed over from VDS on port@%ld to "
4098 	    "VDS on port@%ld.\n", curr_server->id, new_server->id);
4099 	DMSG(vdcp, 0, "[%d] Switched to next vdisk server, port@%ld, ldc@%ld\n",
4100 	    vdcp->instance, vdcp->curr_server->id, vdcp->curr_server->ldc_id);
4101 }
4102 
4103 /* -------------------------------------------------------------------------- */
4104 
4105 /*
4106  * The following functions process the incoming messages from vds
4107  */
4108 
4109 /*
4110  * Function:
4111  *      vdc_process_msg_thread()
4112  *
4113  * Description:
4114  *
4115  *	Main VDC message processing thread. Each vDisk instance
4116  * 	consists of a copy of this thread. This thread triggers
4117  * 	all the handshakes and data exchange with the server. It
4118  * 	also handles all channel resets
4119  *
4120  * Arguments:
4121  *      vdc     - soft state pointer for this instance of the device driver.
4122  *
4123  * Return Code:
4124  *      None
4125  */
4126 static void
4127 vdc_process_msg_thread(vdc_t *vdcp)
4128 {
4129 	int		status;
4130 	int		ctimeout;
4131 	timeout_id_t	tmid = 0;
4132 	clock_t		ldcup_timeout = 0;
4133 
4134 	mutex_enter(&vdcp->lock);
4135 
4136 	for (;;) {
4137 
4138 #define	Q(_s)	(vdcp->state == _s) ? #_s :
4139 		DMSG(vdcp, 3, "state = %d (%s)\n", vdcp->state,
4140 		    Q(VDC_STATE_INIT)
4141 		    Q(VDC_STATE_INIT_WAITING)
4142 		    Q(VDC_STATE_NEGOTIATE)
4143 		    Q(VDC_STATE_HANDLE_PENDING)
4144 		    Q(VDC_STATE_RUNNING)
4145 		    Q(VDC_STATE_RESETTING)
4146 		    Q(VDC_STATE_DETACH)
4147 		    "UNKNOWN");
4148 
4149 		switch (vdcp->state) {
4150 		case VDC_STATE_INIT:
4151 
4152 			/*
4153 			 * If requested, start a timeout to check if the
4154 			 * connection with vds is established in the
4155 			 * specified delay. If the timeout expires, we
4156 			 * will cancel any pending request.
4157 			 *
4158 			 * If some reset have occurred while establishing
4159 			 * the connection, we already have a timeout armed
4160 			 * and in that case we don't need to arm a new one.
4161 			 *
4162 			 * The same rule applies when there are multiple vds'.
4163 			 * If either a connection cannot be established or
4164 			 * the handshake times out, the connection thread will
4165 			 * try another server. The 'ctimeout' will report
4166 			 * back an error after it expires irrespective of
4167 			 * whether the vdisk is trying to connect to just
4168 			 * one or multiple servers.
4169 			 */
4170 			ctimeout = (vdc_timeout != 0)?
4171 			    vdc_timeout : vdcp->curr_server->ctimeout;
4172 
4173 			if (ctimeout != 0 && tmid == 0) {
4174 				tmid = timeout(vdc_connection_timeout, vdcp,
4175 				    ctimeout * drv_usectohz(MICROSEC));
4176 			}
4177 
4178 			/* Check if we are re-initializing repeatedly */
4179 			if (vdcp->hshake_cnt > vdc_hshake_retries &&
4180 			    vdcp->lifecycle != VDC_LC_ONLINE) {
4181 
4182 				DMSG(vdcp, 0, "[%d] too many handshakes,cnt=%d",
4183 				    vdcp->instance, vdcp->hshake_cnt);
4184 				cmn_err(CE_NOTE, "[%d] disk access failed.\n",
4185 				    vdcp->instance);
4186 				vdcp->state = VDC_STATE_DETACH;
4187 				break;
4188 			}
4189 
4190 			/* Switch to STATE_DETACH if drv is detaching */
4191 			if (vdcp->lifecycle == VDC_LC_DETACHING) {
4192 				vdcp->state = VDC_STATE_DETACH;
4193 				break;
4194 			}
4195 
4196 			/* Switch server */
4197 			if (vdcp->hshake_cnt > 0)
4198 				vdc_switch_server(vdcp);
4199 			vdcp->hshake_cnt++;
4200 
4201 			/* Bring up connection with vds via LDC */
4202 			status = vdc_start_ldc_connection(vdcp);
4203 			if (status != EINVAL) {
4204 				vdcp->state = VDC_STATE_INIT_WAITING;
4205 			}
4206 			break;
4207 
4208 		case VDC_STATE_INIT_WAITING:
4209 
4210 			/* if channel is UP, start negotiation */
4211 			if (vdcp->curr_server->ldc_state == LDC_UP) {
4212 				vdcp->state = VDC_STATE_NEGOTIATE;
4213 				break;
4214 			}
4215 
4216 			/* check if only one server exists */
4217 			if (vdcp->num_servers == 1) {
4218 				cv_wait(&vdcp->initwait_cv, &vdcp->lock);
4219 			} else {
4220 				/*
4221 				 * wait for LDC_UP, if it times out, switch
4222 				 * to another server.
4223 				 */
4224 				ldcup_timeout = ddi_get_lbolt() +
4225 				    (vdc_ldcup_timeout *
4226 				    drv_usectohz(MICROSEC));
4227 				status = cv_timedwait(&vdcp->initwait_cv,
4228 				    &vdcp->lock, ldcup_timeout);
4229 				if (status == -1 &&
4230 				    vdcp->state == VDC_STATE_INIT_WAITING &&
4231 				    vdcp->curr_server->ldc_state != LDC_UP) {
4232 					/* timed out & still waiting */
4233 					vdcp->state = VDC_STATE_INIT;
4234 					break;
4235 				}
4236 			}
4237 
4238 			if (vdcp->state != VDC_STATE_INIT_WAITING) {
4239 				DMSG(vdcp, 0,
4240 				    "state moved to %d out from under us...\n",
4241 				    vdcp->state);
4242 			}
4243 			break;
4244 
4245 		case VDC_STATE_NEGOTIATE:
4246 			switch (status = vdc_ver_negotiation(vdcp)) {
4247 			case 0:
4248 				break;
4249 			default:
4250 				DMSG(vdcp, 0, "ver negotiate failed (%d)..\n",
4251 				    status);
4252 				goto reset;
4253 			}
4254 
4255 			switch (status = vdc_attr_negotiation(vdcp)) {
4256 			case 0:
4257 				break;
4258 			default:
4259 				DMSG(vdcp, 0, "attr negotiate failed (%d)..\n",
4260 				    status);
4261 				goto reset;
4262 			}
4263 
4264 			switch (status = vdc_dring_negotiation(vdcp)) {
4265 			case 0:
4266 				break;
4267 			default:
4268 				DMSG(vdcp, 0, "dring negotiate failed (%d)..\n",
4269 				    status);
4270 				goto reset;
4271 			}
4272 
4273 			switch (status = vdc_rdx_exchange(vdcp)) {
4274 			case 0:
4275 				vdcp->state = VDC_STATE_HANDLE_PENDING;
4276 				goto done;
4277 			default:
4278 				DMSG(vdcp, 0, "RDX xchg failed ..(%d)\n",
4279 				    status);
4280 				goto reset;
4281 			}
4282 reset:
4283 			DMSG(vdcp, 0, "negotiation failed: resetting (%d)\n",
4284 			    status);
4285 			vdcp->state = VDC_STATE_RESETTING;
4286 			vdcp->self_reset = B_TRUE;
4287 done:
4288 			DMSG(vdcp, 0, "negotiation complete (state=0x%x)...\n",
4289 			    vdcp->state);
4290 			break;
4291 
4292 		case VDC_STATE_HANDLE_PENDING:
4293 
4294 			if (vdcp->ctimeout_reached) {
4295 				/*
4296 				 * The connection timeout had been reached so
4297 				 * pending requests have been cancelled. Now
4298 				 * that the connection is back we can reset
4299 				 * the timeout.
4300 				 */
4301 				ASSERT(vdcp->local_dring_backup == NULL);
4302 				ASSERT(tmid != 0);
4303 				tmid = 0;
4304 				vdcp->ctimeout_reached = B_FALSE;
4305 				vdcp->state = VDC_STATE_RUNNING;
4306 				DMSG(vdcp, 0, "[%d] connection to service "
4307 				    "domain is up", vdcp->instance);
4308 				break;
4309 			}
4310 
4311 			mutex_exit(&vdcp->lock);
4312 			if (tmid != 0) {
4313 				(void) untimeout(tmid);
4314 				tmid = 0;
4315 			}
4316 			status = vdc_resubmit_backup_dring(vdcp);
4317 			mutex_enter(&vdcp->lock);
4318 
4319 			if (status)
4320 				vdcp->state = VDC_STATE_RESETTING;
4321 			else
4322 				vdcp->state = VDC_STATE_RUNNING;
4323 
4324 			break;
4325 
4326 		/* enter running state */
4327 		case VDC_STATE_RUNNING:
4328 			/*
4329 			 * Signal anyone waiting for the connection
4330 			 * to come on line.
4331 			 */
4332 			vdcp->hshake_cnt = 0;
4333 			cv_broadcast(&vdcp->running_cv);
4334 
4335 			/* failfast has to been checked after reset */
4336 			cv_signal(&vdcp->failfast_cv);
4337 
4338 			/* ownership is lost during reset */
4339 			if (vdcp->ownership & VDC_OWNERSHIP_WANTED)
4340 				vdcp->ownership |= VDC_OWNERSHIP_RESET;
4341 			cv_signal(&vdcp->ownership_cv);
4342 
4343 			mutex_exit(&vdcp->lock);
4344 
4345 			for (;;) {
4346 				vio_msg_t msg;
4347 				status = vdc_wait_for_response(vdcp, &msg);
4348 				if (status) break;
4349 
4350 				DMSG(vdcp, 1, "[%d] new pkt(s) available\n",
4351 				    vdcp->instance);
4352 				status = vdc_process_data_msg(vdcp, &msg);
4353 				if (status) {
4354 					DMSG(vdcp, 1, "[%d] process_data_msg "
4355 					    "returned err=%d\n", vdcp->instance,
4356 					    status);
4357 					break;
4358 				}
4359 
4360 			}
4361 
4362 			mutex_enter(&vdcp->lock);
4363 
4364 			vdcp->state = VDC_STATE_RESETTING;
4365 			vdcp->self_reset = B_TRUE;
4366 			break;
4367 
4368 		case VDC_STATE_RESETTING:
4369 			/*
4370 			 * When we reach this state, we either come from the
4371 			 * VDC_STATE_RUNNING state and we can have pending
4372 			 * request but no timeout is armed; or we come from
4373 			 * the VDC_STATE_INIT_WAITING, VDC_NEGOTIATE or
4374 			 * VDC_HANDLE_PENDING state and there is no pending
4375 			 * request or pending requests have already been copied
4376 			 * into the backup dring. So we can safely keep the
4377 			 * connection timeout armed while we are in this state.
4378 			 */
4379 
4380 			DMSG(vdcp, 0, "Initiating channel reset "
4381 			    "(pending = %d)\n", (int)vdcp->threads_pending);
4382 
4383 			if (vdcp->self_reset) {
4384 				DMSG(vdcp, 0,
4385 				    "[%d] calling stop_ldc_connection.\n",
4386 				    vdcp->instance);
4387 				status = vdc_stop_ldc_connection(vdcp);
4388 				vdcp->self_reset = B_FALSE;
4389 			}
4390 
4391 			/*
4392 			 * Wait for all threads currently waiting
4393 			 * for a free dring entry to use.
4394 			 */
4395 			while (vdcp->threads_pending) {
4396 				cv_broadcast(&vdcp->membind_cv);
4397 				cv_broadcast(&vdcp->dring_free_cv);
4398 				mutex_exit(&vdcp->lock);
4399 				/* give the waiters enough time to wake up */
4400 				delay(vdc_hz_min_ldc_delay);
4401 				mutex_enter(&vdcp->lock);
4402 			}
4403 
4404 			ASSERT(vdcp->threads_pending == 0);
4405 
4406 			/* Sanity check that no thread is receiving */
4407 			ASSERT(vdcp->read_state != VDC_READ_WAITING);
4408 
4409 			vdcp->read_state = VDC_READ_IDLE;
4410 
4411 			vdc_backup_local_dring(vdcp);
4412 
4413 			/* cleanup the old d-ring */
4414 			vdc_destroy_descriptor_ring(vdcp);
4415 
4416 			/* go and start again */
4417 			vdcp->state = VDC_STATE_INIT;
4418 
4419 			break;
4420 
4421 		case VDC_STATE_DETACH:
4422 			DMSG(vdcp, 0, "[%d] Reset thread exit cleanup ..\n",
4423 			    vdcp->instance);
4424 
4425 			/* cancel any pending timeout */
4426 			mutex_exit(&vdcp->lock);
4427 			if (tmid != 0) {
4428 				(void) untimeout(tmid);
4429 				tmid = 0;
4430 			}
4431 			mutex_enter(&vdcp->lock);
4432 
4433 			/*
4434 			 * Signal anyone waiting for connection
4435 			 * to come online
4436 			 */
4437 			cv_broadcast(&vdcp->running_cv);
4438 
4439 			while (vdcp->sync_op_pending) {
4440 				cv_signal(&vdcp->sync_pending_cv);
4441 				cv_signal(&vdcp->sync_blocked_cv);
4442 				mutex_exit(&vdcp->lock);
4443 				/* give the waiters enough time to wake up */
4444 				delay(vdc_hz_min_ldc_delay);
4445 				mutex_enter(&vdcp->lock);
4446 			}
4447 
4448 			mutex_exit(&vdcp->lock);
4449 
4450 			DMSG(vdcp, 0, "[%d] Msg processing thread exiting ..\n",
4451 			    vdcp->instance);
4452 			thread_exit();
4453 			break;
4454 		}
4455 	}
4456 }
4457 
4458 
4459 /*
4460  * Function:
4461  *	vdc_process_data_msg()
4462  *
4463  * Description:
4464  *	This function is called by the message processing thread each time
4465  *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
4466  *	be an ACK or NACK from vds[1] which vdc handles as follows.
4467  *		ACK	- wake up the waiting thread
4468  *		NACK	- resend any messages necessary
4469  *
4470  *	[1] Although the message format allows it, vds should not send a
4471  *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
4472  *	    some bizarre reason it does, vdc will reset the connection.
4473  *
4474  * Arguments:
4475  *	vdc	- soft state pointer for this instance of the device driver.
4476  *	msg	- the LDC message sent by vds
4477  *
4478  * Return Code:
4479  *	0	- Success.
4480  *	> 0	- error value returned by LDC
4481  */
4482 static int
4483 vdc_process_data_msg(vdc_t *vdcp, vio_msg_t *msg)
4484 {
4485 	int			status = 0;
4486 	vio_dring_msg_t		*dring_msg;
4487 	vdc_local_desc_t	*ldep = NULL;
4488 	int			start, end;
4489 	int			idx;
4490 	int			op;
4491 
4492 	dring_msg = (vio_dring_msg_t *)msg;
4493 
4494 	ASSERT(msg->tag.vio_msgtype == VIO_TYPE_DATA);
4495 	ASSERT(vdcp != NULL);
4496 
4497 	mutex_enter(&vdcp->lock);
4498 
4499 	/*
4500 	 * Check to see if the message has bogus data
4501 	 */
4502 	idx = start = dring_msg->start_idx;
4503 	end = dring_msg->end_idx;
4504 	if ((start >= vdcp->dring_len) ||
4505 	    (end >= vdcp->dring_len) || (end < -1)) {
4506 		/*
4507 		 * Update the I/O statistics to indicate that an error ocurred.
4508 		 * No need to update the wait/run queues as no specific read or
4509 		 * write request is being completed in response to this 'msg'.
4510 		 */
4511 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4512 		DMSG(vdcp, 0, "[%d] Bogus ACK data : start %d, end %d\n",
4513 		    vdcp->instance, start, end);
4514 		mutex_exit(&vdcp->lock);
4515 		return (EINVAL);
4516 	}
4517 
4518 	/*
4519 	 * Verify that the sequence number is what vdc expects.
4520 	 */
4521 	switch (vdc_verify_seq_num(vdcp, dring_msg)) {
4522 	case VDC_SEQ_NUM_TODO:
4523 		break;	/* keep processing this message */
4524 	case VDC_SEQ_NUM_SKIP:
4525 		mutex_exit(&vdcp->lock);
4526 		return (0);
4527 	case VDC_SEQ_NUM_INVALID:
4528 		/*
4529 		 * Update the I/O statistics to indicate that an error ocurred.
4530 		 * No need to update the wait/run queues as no specific read or
4531 		 * write request is being completed in response to this 'msg'.
4532 		 */
4533 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4534 		DMSG(vdcp, 0, "[%d] invalid seqno\n", vdcp->instance);
4535 		mutex_exit(&vdcp->lock);
4536 		return (ENXIO);
4537 	}
4538 
4539 	if (msg->tag.vio_subtype == VIO_SUBTYPE_NACK) {
4540 		/*
4541 		 * Update the I/O statistics to indicate that an error ocurred.
4542 		 *
4543 		 * We need to update the run queue if a read or write request
4544 		 * is being NACKed - otherwise there will appear to be an
4545 		 * indefinite outstanding request and statistics reported by
4546 		 * iostat(1M) will be incorrect. The transaction will be
4547 		 * resubmitted from the backup DRing following the reset
4548 		 * and the wait/run queues will be entered again.
4549 		 */
4550 		ldep = &vdcp->local_dring[idx];
4551 		op = ldep->operation;
4552 		if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
4553 			DTRACE_IO1(done, buf_t *, ldep->cb_arg);
4554 			VD_KSTAT_RUNQ_EXIT(vdcp);
4555 		}
4556 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4557 		VDC_DUMP_DRING_MSG(dring_msg);
4558 		DMSG(vdcp, 0, "[%d] DATA NACK\n", vdcp->instance);
4559 		mutex_exit(&vdcp->lock);
4560 		return (EIO);
4561 
4562 	} else if (msg->tag.vio_subtype == VIO_SUBTYPE_INFO) {
4563 		/*
4564 		 * Update the I/O statistics to indicate that an error occurred.
4565 		 * No need to update the wait/run queues as no specific read or
4566 		 * write request is being completed in response to this 'msg'.
4567 		 */
4568 		VD_UPDATE_ERR_STATS(vdcp, vd_protoerrs);
4569 		mutex_exit(&vdcp->lock);
4570 		return (EPROTO);
4571 	}
4572 
4573 	DMSG(vdcp, 1, ": start %d end %d\n", start, end);
4574 	ASSERT(start == end);
4575 
4576 	ldep = &vdcp->local_dring[idx];
4577 
4578 	DMSG(vdcp, 1, ": state 0x%x - cb_type 0x%x\n",
4579 	    ldep->dep->hdr.dstate, ldep->cb_type);
4580 
4581 	if (ldep->dep->hdr.dstate == VIO_DESC_DONE) {
4582 		struct buf *bufp;
4583 
4584 		switch (ldep->cb_type) {
4585 		case CB_SYNC:
4586 			ASSERT(vdcp->sync_op_pending);
4587 
4588 			status = vdc_depopulate_descriptor(vdcp, idx);
4589 			vdcp->sync_op_status = status;
4590 			vdcp->sync_op_pending = B_FALSE;
4591 			cv_signal(&vdcp->sync_pending_cv);
4592 			break;
4593 
4594 		case CB_STRATEGY:
4595 			bufp = ldep->cb_arg;
4596 			ASSERT(bufp != NULL);
4597 			bufp->b_resid =
4598 			    bufp->b_bcount - ldep->dep->payload.nbytes;
4599 			status = ldep->dep->payload.status; /* Future:ntoh */
4600 			if (status != 0) {
4601 				DMSG(vdcp, 1, "strategy status=%d\n", status);
4602 				VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4603 				bioerror(bufp, status);
4604 			}
4605 
4606 			(void) vdc_depopulate_descriptor(vdcp, idx);
4607 
4608 			DMSG(vdcp, 1,
4609 			    "strategy complete req=%ld bytes resp=%ld bytes\n",
4610 			    bufp->b_bcount, ldep->dep->payload.nbytes);
4611 
4612 			if (status != 0 && vdcp->failfast_interval != 0) {
4613 				/*
4614 				 * The I/O has failed and failfast is enabled.
4615 				 * We need the failfast thread to check if the
4616 				 * failure is due to a reservation conflict.
4617 				 */
4618 				(void) vdc_failfast_io_queue(vdcp, bufp);
4619 			} else {
4620 				if (status == 0) {
4621 					op = (bufp->b_flags & B_READ) ?
4622 					    VD_OP_BREAD : VD_OP_BWRITE;
4623 					VD_UPDATE_IO_STATS(vdcp, op,
4624 					    ldep->dep->payload.nbytes);
4625 				}
4626 				VD_KSTAT_RUNQ_EXIT(vdcp);
4627 				DTRACE_IO1(done, buf_t *, bufp);
4628 				biodone(bufp);
4629 			}
4630 			break;
4631 
4632 		default:
4633 			ASSERT(0);
4634 		}
4635 	}
4636 
4637 	/* let the arrival signal propogate */
4638 	mutex_exit(&vdcp->lock);
4639 
4640 	/* probe gives the count of how many entries were processed */
4641 	DTRACE_PROBE2(processed, int, 1, vdc_t *, vdcp);
4642 
4643 	return (0);
4644 }
4645 
4646 
4647 /*
4648  * Function:
4649  *	vdc_handle_ver_msg()
4650  *
4651  * Description:
4652  *
4653  * Arguments:
4654  *	vdc	- soft state pointer for this instance of the device driver.
4655  *	ver_msg	- LDC message sent by vDisk server
4656  *
4657  * Return Code:
4658  *	0	- Success
4659  */
4660 static int
4661 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg)
4662 {
4663 	int status = 0;
4664 
4665 	ASSERT(vdc != NULL);
4666 	ASSERT(mutex_owned(&vdc->lock));
4667 
4668 	if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) {
4669 		return (EPROTO);
4670 	}
4671 
4672 	if (ver_msg->dev_class != VDEV_DISK_SERVER) {
4673 		return (EINVAL);
4674 	}
4675 
4676 	switch (ver_msg->tag.vio_subtype) {
4677 	case VIO_SUBTYPE_ACK:
4678 		/*
4679 		 * We check to see if the version returned is indeed supported
4680 		 * (The server may have also adjusted the minor number downwards
4681 		 * and if so 'ver_msg' will contain the actual version agreed)
4682 		 */
4683 		if (vdc_is_supported_version(ver_msg)) {
4684 			vdc->ver.major = ver_msg->ver_major;
4685 			vdc->ver.minor = ver_msg->ver_minor;
4686 			ASSERT(vdc->ver.major > 0);
4687 		} else {
4688 			status = EPROTO;
4689 		}
4690 		break;
4691 
4692 	case VIO_SUBTYPE_NACK:
4693 		/*
4694 		 * call vdc_is_supported_version() which will return the next
4695 		 * supported version (if any) in 'ver_msg'
4696 		 */
4697 		(void) vdc_is_supported_version(ver_msg);
4698 		if (ver_msg->ver_major > 0) {
4699 			size_t len = sizeof (*ver_msg);
4700 
4701 			ASSERT(vdc->ver.major > 0);
4702 
4703 			/* reset the necessary fields and resend */
4704 			ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO;
4705 			ver_msg->dev_class = VDEV_DISK;
4706 
4707 			status = vdc_send(vdc, (caddr_t)ver_msg, &len);
4708 			DMSG(vdc, 0, "[%d] Resend VER info (LDC status = %d)\n",
4709 			    vdc->instance, status);
4710 			if (len != sizeof (*ver_msg))
4711 				status = EBADMSG;
4712 		} else {
4713 			DMSG(vdc, 0, "[%d] No common version with vDisk server",
4714 			    vdc->instance);
4715 			status = ENOTSUP;
4716 		}
4717 
4718 		break;
4719 	case VIO_SUBTYPE_INFO:
4720 		/*
4721 		 * Handle the case where vds starts handshake
4722 		 * (for now only vdc is the instigator)
4723 		 */
4724 		status = ENOTSUP;
4725 		break;
4726 
4727 	default:
4728 		status = EINVAL;
4729 		break;
4730 	}
4731 
4732 	return (status);
4733 }
4734 
4735 /*
4736  * Function:
4737  *	vdc_handle_attr_msg()
4738  *
4739  * Description:
4740  *
4741  * Arguments:
4742  *	vdc	- soft state pointer for this instance of the device driver.
4743  *	attr_msg	- LDC message sent by vDisk server
4744  *
4745  * Return Code:
4746  *	0	- Success
4747  */
4748 static int
4749 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg)
4750 {
4751 	int status = 0;
4752 
4753 	ASSERT(vdc != NULL);
4754 	ASSERT(mutex_owned(&vdc->lock));
4755 
4756 	if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) {
4757 		return (EPROTO);
4758 	}
4759 
4760 	switch (attr_msg->tag.vio_subtype) {
4761 	case VIO_SUBTYPE_ACK:
4762 		/*
4763 		 * We now verify the attributes sent by vds.
4764 		 */
4765 		if (attr_msg->vdisk_size == 0) {
4766 			DMSG(vdc, 0, "[%d] Invalid disk size from vds",
4767 			    vdc->instance);
4768 			status = EINVAL;
4769 			break;
4770 		}
4771 
4772 		if (attr_msg->max_xfer_sz == 0) {
4773 			DMSG(vdc, 0, "[%d] Invalid transfer size from vds",
4774 			    vdc->instance);
4775 			status = EINVAL;
4776 			break;
4777 		}
4778 
4779 		if (attr_msg->vdisk_size == VD_SIZE_UNKNOWN) {
4780 			DMSG(vdc, 0, "[%d] Unknown disk size from vds",
4781 			    vdc->instance);
4782 			attr_msg->vdisk_size = 0;
4783 		}
4784 
4785 		/*
4786 		 * If the disk size is already set check that it hasn't changed.
4787 		 */
4788 		if ((vdc->vdisk_size != 0) && (attr_msg->vdisk_size != 0) &&
4789 		    (vdc->vdisk_size != attr_msg->vdisk_size)) {
4790 			DMSG(vdc, 0, "[%d] Different disk size from vds "
4791 			    "(old=0x%lx - new=0x%lx", vdc->instance,
4792 			    vdc->vdisk_size, attr_msg->vdisk_size)
4793 			status = EINVAL;
4794 			break;
4795 		}
4796 
4797 		vdc->vdisk_size = attr_msg->vdisk_size;
4798 		vdc->vdisk_type = attr_msg->vdisk_type;
4799 		vdc->operations = attr_msg->operations;
4800 		if (vio_ver_is_supported(vdc->ver, 1, 1))
4801 			vdc->vdisk_media = attr_msg->vdisk_media;
4802 		else
4803 			vdc->vdisk_media = 0;
4804 
4805 		DMSG(vdc, 0, "[%d] max_xfer_sz: sent %lx acked %lx\n",
4806 		    vdc->instance, vdc->max_xfer_sz, attr_msg->max_xfer_sz);
4807 		DMSG(vdc, 0, "[%d] vdisk_block_size: sent %lx acked %x\n",
4808 		    vdc->instance, vdc->block_size,
4809 		    attr_msg->vdisk_block_size);
4810 
4811 		/*
4812 		 * We don't know at compile time what the vDisk server will
4813 		 * think are good values but we apply a large (arbitrary)
4814 		 * upper bound to prevent memory exhaustion in vdc if it was
4815 		 * allocating a DRing based of huge values sent by the server.
4816 		 * We probably will never exceed this except if the message
4817 		 * was garbage.
4818 		 */
4819 		if ((attr_msg->max_xfer_sz * attr_msg->vdisk_block_size) <=
4820 		    (PAGESIZE * DEV_BSIZE)) {
4821 			vdc->max_xfer_sz = attr_msg->max_xfer_sz;
4822 			vdc->block_size = attr_msg->vdisk_block_size;
4823 		} else {
4824 			DMSG(vdc, 0, "[%d] vds block transfer size too big;"
4825 			    " using max supported by vdc", vdc->instance);
4826 		}
4827 
4828 		if ((attr_msg->xfer_mode != VIO_DRING_MODE_V1_0) ||
4829 		    (attr_msg->vdisk_size > INT64_MAX) ||
4830 		    (attr_msg->operations == 0) ||
4831 		    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
4832 			DMSG(vdc, 0, "[%d] Invalid attributes from vds",
4833 			    vdc->instance);
4834 			status = EINVAL;
4835 			break;
4836 		}
4837 
4838 		/*
4839 		 * Now that we have received all attributes we can create a
4840 		 * fake geometry for the disk.
4841 		 */
4842 		vdc_create_fake_geometry(vdc);
4843 		break;
4844 
4845 	case VIO_SUBTYPE_NACK:
4846 		/*
4847 		 * vds could not handle the attributes we sent so we
4848 		 * stop negotiating.
4849 		 */
4850 		status = EPROTO;
4851 		break;
4852 
4853 	case VIO_SUBTYPE_INFO:
4854 		/*
4855 		 * Handle the case where vds starts the handshake
4856 		 * (for now; vdc is the only supported instigatior)
4857 		 */
4858 		status = ENOTSUP;
4859 		break;
4860 
4861 	default:
4862 		status = ENOTSUP;
4863 		break;
4864 	}
4865 
4866 	return (status);
4867 }
4868 
4869 /*
4870  * Function:
4871  *	vdc_handle_dring_reg_msg()
4872  *
4873  * Description:
4874  *
4875  * Arguments:
4876  *	vdc		- soft state pointer for this instance of the driver.
4877  *	dring_msg	- LDC message sent by vDisk server
4878  *
4879  * Return Code:
4880  *	0	- Success
4881  */
4882 static int
4883 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg)
4884 {
4885 	int		status = 0;
4886 
4887 	ASSERT(vdc != NULL);
4888 	ASSERT(mutex_owned(&vdc->lock));
4889 
4890 	if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) {
4891 		return (EPROTO);
4892 	}
4893 
4894 	switch (dring_msg->tag.vio_subtype) {
4895 	case VIO_SUBTYPE_ACK:
4896 		/* save the received dring_ident */
4897 		vdc->dring_ident = dring_msg->dring_ident;
4898 		DMSG(vdc, 0, "[%d] Received dring ident=0x%lx\n",
4899 		    vdc->instance, vdc->dring_ident);
4900 		break;
4901 
4902 	case VIO_SUBTYPE_NACK:
4903 		/*
4904 		 * vds could not handle the DRing info we sent so we
4905 		 * stop negotiating.
4906 		 */
4907 		DMSG(vdc, 0, "[%d] server could not register DRing\n",
4908 		    vdc->instance);
4909 		status = EPROTO;
4910 		break;
4911 
4912 	case VIO_SUBTYPE_INFO:
4913 		/*
4914 		 * Handle the case where vds starts handshake
4915 		 * (for now only vdc is the instigatior)
4916 		 */
4917 		status = ENOTSUP;
4918 		break;
4919 	default:
4920 		status = ENOTSUP;
4921 	}
4922 
4923 	return (status);
4924 }
4925 
4926 /*
4927  * Function:
4928  *	vdc_verify_seq_num()
4929  *
4930  * Description:
4931  *	This functions verifies that the sequence number sent back by the vDisk
4932  *	server with the latest message is what is expected (i.e. it is greater
4933  *	than the last seq num sent by the vDisk server and less than or equal
4934  *	to the last seq num generated by vdc).
4935  *
4936  *	It then checks the request ID to see if any requests need processing
4937  *	in the DRing.
4938  *
4939  * Arguments:
4940  *	vdc		- soft state pointer for this instance of the driver.
4941  *	dring_msg	- pointer to the LDC message sent by vds
4942  *
4943  * Return Code:
4944  *	VDC_SEQ_NUM_TODO	- Message needs to be processed
4945  *	VDC_SEQ_NUM_SKIP	- Message has already been processed
4946  *	VDC_SEQ_NUM_INVALID	- The seq numbers are so out of sync,
4947  *				  vdc cannot deal with them
4948  */
4949 static int
4950 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg)
4951 {
4952 	ASSERT(vdc != NULL);
4953 	ASSERT(dring_msg != NULL);
4954 	ASSERT(mutex_owned(&vdc->lock));
4955 
4956 	/*
4957 	 * Check to see if the messages were responded to in the correct
4958 	 * order by vds.
4959 	 */
4960 	if ((dring_msg->seq_num <= vdc->seq_num_reply) ||
4961 	    (dring_msg->seq_num > vdc->seq_num)) {
4962 		DMSG(vdc, 0, "?[%d] Bogus sequence_number %lu: "
4963 		    "%lu > expected <= %lu (last proc req %lu sent %lu)\n",
4964 		    vdc->instance, dring_msg->seq_num,
4965 		    vdc->seq_num_reply, vdc->seq_num,
4966 		    vdc->req_id_proc, vdc->req_id);
4967 		return (VDC_SEQ_NUM_INVALID);
4968 	}
4969 	vdc->seq_num_reply = dring_msg->seq_num;
4970 
4971 	if (vdc->req_id_proc < vdc->req_id)
4972 		return (VDC_SEQ_NUM_TODO);
4973 	else
4974 		return (VDC_SEQ_NUM_SKIP);
4975 }
4976 
4977 
4978 /*
4979  * Function:
4980  *	vdc_is_supported_version()
4981  *
4982  * Description:
4983  *	This routine checks if the major/minor version numbers specified in
4984  *	'ver_msg' are supported. If not it finds the next version that is
4985  *	in the supported version list 'vdc_version[]' and sets the fields in
4986  *	'ver_msg' to those values
4987  *
4988  * Arguments:
4989  *	ver_msg	- LDC message sent by vDisk server
4990  *
4991  * Return Code:
4992  *	B_TRUE	- Success
4993  *	B_FALSE	- Version not supported
4994  */
4995 static boolean_t
4996 vdc_is_supported_version(vio_ver_msg_t *ver_msg)
4997 {
4998 	int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]);
4999 
5000 	for (int i = 0; i < vdc_num_versions; i++) {
5001 		ASSERT(vdc_version[i].major > 0);
5002 		ASSERT((i == 0) ||
5003 		    (vdc_version[i].major < vdc_version[i-1].major));
5004 
5005 		/*
5006 		 * If the major versions match, adjust the minor version, if
5007 		 * necessary, down to the highest value supported by this
5008 		 * client. The server should support all minor versions lower
5009 		 * than the value it sent
5010 		 */
5011 		if (ver_msg->ver_major == vdc_version[i].major) {
5012 			if (ver_msg->ver_minor > vdc_version[i].minor) {
5013 				DMSGX(0,
5014 				    "Adjusting minor version from %u to %u",
5015 				    ver_msg->ver_minor, vdc_version[i].minor);
5016 				ver_msg->ver_minor = vdc_version[i].minor;
5017 			}
5018 			return (B_TRUE);
5019 		}
5020 
5021 		/*
5022 		 * If the message contains a higher major version number, set
5023 		 * the message's major/minor versions to the current values
5024 		 * and return false, so this message will get resent with
5025 		 * these values, and the server will potentially try again
5026 		 * with the same or a lower version
5027 		 */
5028 		if (ver_msg->ver_major > vdc_version[i].major) {
5029 			ver_msg->ver_major = vdc_version[i].major;
5030 			ver_msg->ver_minor = vdc_version[i].minor;
5031 			DMSGX(0, "Suggesting major/minor (0x%x/0x%x)\n",
5032 			    ver_msg->ver_major, ver_msg->ver_minor);
5033 
5034 			return (B_FALSE);
5035 		}
5036 
5037 		/*
5038 		 * Otherwise, the message's major version is less than the
5039 		 * current major version, so continue the loop to the next
5040 		 * (lower) supported version
5041 		 */
5042 	}
5043 
5044 	/*
5045 	 * No common version was found; "ground" the version pair in the
5046 	 * message to terminate negotiation
5047 	 */
5048 	ver_msg->ver_major = 0;
5049 	ver_msg->ver_minor = 0;
5050 
5051 	return (B_FALSE);
5052 }
5053 /* -------------------------------------------------------------------------- */
5054 
5055 /*
5056  * DKIO(7) support
5057  */
5058 
5059 typedef struct vdc_dk_arg {
5060 	struct dk_callback	dkc;
5061 	int			mode;
5062 	dev_t			dev;
5063 	vdc_t			*vdc;
5064 } vdc_dk_arg_t;
5065 
5066 /*
5067  * Function:
5068  * 	vdc_dkio_flush_cb()
5069  *
5070  * Description:
5071  *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
5072  *	by kernel code.
5073  *
5074  * Arguments:
5075  *	arg	- a pointer to a vdc_dk_arg_t structure.
5076  */
5077 void
5078 vdc_dkio_flush_cb(void *arg)
5079 {
5080 	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
5081 	struct dk_callback	*dkc = NULL;
5082 	vdc_t			*vdc = NULL;
5083 	int			rv;
5084 
5085 	if (dk_arg == NULL) {
5086 		cmn_err(CE_NOTE, "?[Unk] DKIOCFLUSHWRITECACHE arg is NULL\n");
5087 		return;
5088 	}
5089 	dkc = &dk_arg->dkc;
5090 	vdc = dk_arg->vdc;
5091 	ASSERT(vdc != NULL);
5092 
5093 	rv = vdc_do_sync_op(vdc, VD_OP_FLUSH, NULL, 0,
5094 	    VDCPART(dk_arg->dev), 0, CB_SYNC, 0, VIO_both_dir, B_TRUE);
5095 	if (rv != 0) {
5096 		DMSG(vdc, 0, "[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n",
5097 		    vdc->instance, rv,
5098 		    ddi_model_convert_from(dk_arg->mode & FMODELS));
5099 	}
5100 
5101 	/*
5102 	 * Trigger the call back to notify the caller the the ioctl call has
5103 	 * been completed.
5104 	 */
5105 	if ((dk_arg->mode & FKIOCTL) &&
5106 	    (dkc != NULL) &&
5107 	    (dkc->dkc_callback != NULL)) {
5108 		ASSERT(dkc->dkc_cookie != NULL);
5109 		(*dkc->dkc_callback)(dkc->dkc_cookie, rv);
5110 	}
5111 
5112 	/* Indicate that one less DKIO write flush is outstanding */
5113 	mutex_enter(&vdc->lock);
5114 	vdc->dkio_flush_pending--;
5115 	ASSERT(vdc->dkio_flush_pending >= 0);
5116 	mutex_exit(&vdc->lock);
5117 
5118 	/* free the mem that was allocated when the callback was dispatched */
5119 	kmem_free(arg, sizeof (vdc_dk_arg_t));
5120 }
5121 
5122 /*
5123  * Function:
5124  * 	vdc_dkio_gapart()
5125  *
5126  * Description:
5127  *	This function implements the DKIOCGAPART ioctl.
5128  *
5129  * Arguments:
5130  *	vdc	- soft state pointer
5131  *	arg	- a pointer to a dk_map[NDKMAP] or dk_map32[NDKMAP] structure
5132  *	flag	- ioctl flags
5133  */
5134 static int
5135 vdc_dkio_gapart(vdc_t *vdc, caddr_t arg, int flag)
5136 {
5137 	struct dk_geom *geom;
5138 	struct vtoc *vtoc;
5139 	union {
5140 		struct dk_map map[NDKMAP];
5141 		struct dk_map32 map32[NDKMAP];
5142 	} data;
5143 	int i, rv, size;
5144 
5145 	mutex_enter(&vdc->lock);
5146 
5147 	if ((rv = vdc_validate_geometry(vdc)) != 0) {
5148 		mutex_exit(&vdc->lock);
5149 		return (rv);
5150 	}
5151 
5152 	vtoc = vdc->vtoc;
5153 	geom = vdc->geom;
5154 
5155 	if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) {
5156 
5157 		for (i = 0; i < vtoc->v_nparts; i++) {
5158 			data.map32[i].dkl_cylno = vtoc->v_part[i].p_start /
5159 			    (geom->dkg_nhead * geom->dkg_nsect);
5160 			data.map32[i].dkl_nblk = vtoc->v_part[i].p_size;
5161 		}
5162 		size = NDKMAP * sizeof (struct dk_map32);
5163 
5164 	} else {
5165 
5166 		for (i = 0; i < vtoc->v_nparts; i++) {
5167 			data.map[i].dkl_cylno = vtoc->v_part[i].p_start /
5168 			    (geom->dkg_nhead * geom->dkg_nsect);
5169 			data.map[i].dkl_nblk = vtoc->v_part[i].p_size;
5170 		}
5171 		size = NDKMAP * sizeof (struct dk_map);
5172 
5173 	}
5174 
5175 	mutex_exit(&vdc->lock);
5176 
5177 	if (ddi_copyout(&data, arg, size, flag) != 0)
5178 		return (EFAULT);
5179 
5180 	return (0);
5181 }
5182 
5183 /*
5184  * Function:
5185  * 	vdc_dkio_partition()
5186  *
5187  * Description:
5188  *	This function implements the DKIOCPARTITION ioctl.
5189  *
5190  * Arguments:
5191  *	vdc	- soft state pointer
5192  *	arg	- a pointer to a struct partition64 structure
5193  *	flag	- ioctl flags
5194  */
5195 static int
5196 vdc_dkio_partition(vdc_t *vdc, caddr_t arg, int flag)
5197 {
5198 	struct partition64 p64;
5199 	efi_gpt_t *gpt;
5200 	efi_gpe_t *gpe;
5201 	vd_efi_dev_t edev;
5202 	uint_t partno;
5203 	int rv;
5204 
5205 	if (ddi_copyin(arg, &p64, sizeof (struct partition64), flag)) {
5206 		return (EFAULT);
5207 	}
5208 
5209 	VD_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl);
5210 
5211 	if ((rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe)) != 0) {
5212 		return (rv);
5213 	}
5214 
5215 	partno = p64.p_partno;
5216 
5217 	if (partno >= gpt->efi_gpt_NumberOfPartitionEntries) {
5218 		vd_efi_free(&edev, gpt, gpe);
5219 		return (ESRCH);
5220 	}
5221 
5222 	bcopy(&gpe[partno].efi_gpe_PartitionTypeGUID, &p64.p_type,
5223 	    sizeof (struct uuid));
5224 	p64.p_start = gpe[partno].efi_gpe_StartingLBA;
5225 	p64.p_size = gpe[partno].efi_gpe_EndingLBA - p64.p_start + 1;
5226 
5227 	if (ddi_copyout(&p64, arg, sizeof (struct partition64), flag)) {
5228 		vd_efi_free(&edev, gpt, gpe);
5229 		return (EFAULT);
5230 	}
5231 
5232 	vd_efi_free(&edev, gpt, gpe);
5233 	return (0);
5234 }
5235 
5236 /*
5237  * Function:
5238  * 	vdc_dioctl_rwcmd()
5239  *
5240  * Description:
5241  *	This function implements the DIOCTL_RWCMD ioctl. This ioctl is used
5242  *	for DKC_DIRECT disks to read or write at an absolute disk offset.
5243  *
5244  * Arguments:
5245  *	dev	- device
5246  *	arg	- a pointer to a dadkio_rwcmd or dadkio_rwcmd32 structure
5247  *	flag	- ioctl flags
5248  */
5249 static int
5250 vdc_dioctl_rwcmd(dev_t dev, caddr_t arg, int flag)
5251 {
5252 	struct dadkio_rwcmd32 rwcmd32;
5253 	struct dadkio_rwcmd rwcmd;
5254 	struct iovec aiov;
5255 	struct uio auio;
5256 	int rw, status;
5257 	struct buf *buf;
5258 
5259 	if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) {
5260 		if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd32,
5261 		    sizeof (struct dadkio_rwcmd32), flag)) {
5262 			return (EFAULT);
5263 		}
5264 		rwcmd.cmd = rwcmd32.cmd;
5265 		rwcmd.flags = rwcmd32.flags;
5266 		rwcmd.blkaddr = (daddr_t)rwcmd32.blkaddr;
5267 		rwcmd.buflen = rwcmd32.buflen;
5268 		rwcmd.bufaddr = (caddr_t)(uintptr_t)rwcmd32.bufaddr;
5269 	} else {
5270 		if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd,
5271 		    sizeof (struct dadkio_rwcmd), flag)) {
5272 			return (EFAULT);
5273 		}
5274 	}
5275 
5276 	switch (rwcmd.cmd) {
5277 	case DADKIO_RWCMD_READ:
5278 		rw = B_READ;
5279 		break;
5280 	case DADKIO_RWCMD_WRITE:
5281 		rw = B_WRITE;
5282 		break;
5283 	default:
5284 		return (EINVAL);
5285 	}
5286 
5287 	bzero((caddr_t)&aiov, sizeof (struct iovec));
5288 	aiov.iov_base   = rwcmd.bufaddr;
5289 	aiov.iov_len    = rwcmd.buflen;
5290 
5291 	bzero((caddr_t)&auio, sizeof (struct uio));
5292 	auio.uio_iov    = &aiov;
5293 	auio.uio_iovcnt = 1;
5294 	auio.uio_loffset = rwcmd.blkaddr * DEV_BSIZE;
5295 	auio.uio_resid  = rwcmd.buflen;
5296 	auio.uio_segflg = flag & FKIOCTL ? UIO_SYSSPACE : UIO_USERSPACE;
5297 
5298 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
5299 	bioinit(buf);
5300 	/*
5301 	 * We use the private field of buf to specify that this is an
5302 	 * I/O using an absolute offset.
5303 	 */
5304 	buf->b_private = (void *)VD_SLICE_NONE;
5305 
5306 	status = physio(vdc_strategy, buf, dev, rw, vdc_min, &auio);
5307 
5308 	biofini(buf);
5309 	kmem_free(buf, sizeof (buf_t));
5310 
5311 	return (status);
5312 }
5313 
5314 /*
5315  * Allocate a buffer for a VD_OP_SCSICMD operation. The size of the allocated
5316  * buffer is returned in alloc_len.
5317  */
5318 static vd_scsi_t *
5319 vdc_scsi_alloc(int cdb_len, int sense_len, int datain_len, int dataout_len,
5320     int *alloc_len)
5321 {
5322 	vd_scsi_t *vd_scsi;
5323 	int vd_scsi_len = VD_SCSI_SIZE;
5324 
5325 	vd_scsi_len += P2ROUNDUP(cdb_len, sizeof (uint64_t));
5326 	vd_scsi_len += P2ROUNDUP(sense_len, sizeof (uint64_t));
5327 	vd_scsi_len += P2ROUNDUP(datain_len, sizeof (uint64_t));
5328 	vd_scsi_len += P2ROUNDUP(dataout_len, sizeof (uint64_t));
5329 
5330 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
5331 
5332 	vd_scsi = kmem_zalloc(vd_scsi_len, KM_SLEEP);
5333 
5334 	vd_scsi->cdb_len = cdb_len;
5335 	vd_scsi->sense_len = sense_len;
5336 	vd_scsi->datain_len = datain_len;
5337 	vd_scsi->dataout_len = dataout_len;
5338 
5339 	*alloc_len = vd_scsi_len;
5340 
5341 	return (vd_scsi);
5342 }
5343 
5344 /*
5345  * Convert the status of a SCSI command to a Solaris return code.
5346  *
5347  * Arguments:
5348  *	vd_scsi		- The SCSI operation buffer.
5349  *	log_error	- indicate if an error message should be logged.
5350  *
5351  * Note that our SCSI error messages are rather primitive for the moment
5352  * and could be improved by decoding some data like the SCSI command and
5353  * the sense key.
5354  *
5355  * Return value:
5356  *	0		- Status is good.
5357  *	EACCES		- Status reports a reservation conflict.
5358  *	ENOTSUP		- Status reports a check condition and sense key
5359  *			  reports an illegal request.
5360  *	EIO		- Any other status.
5361  */
5362 static int
5363 vdc_scsi_status(vdc_t *vdc, vd_scsi_t *vd_scsi, boolean_t log_error)
5364 {
5365 	int rv;
5366 	char path_str[MAXPATHLEN];
5367 	char panic_str[VDC_RESV_CONFLICT_FMT_LEN + MAXPATHLEN];
5368 	union scsi_cdb *cdb;
5369 	struct scsi_extended_sense *sense;
5370 
5371 	if (vd_scsi->cmd_status == STATUS_GOOD)
5372 		/* no error */
5373 		return (0);
5374 
5375 	/* when the tunable vdc_scsi_log_error is true we log all errors */
5376 	if (vdc_scsi_log_error)
5377 		log_error = B_TRUE;
5378 
5379 	if (log_error) {
5380 		cmn_err(CE_WARN, "%s (vdc%d):\tError for Command: 0x%x)\n",
5381 		    ddi_pathname(vdc->dip, path_str), vdc->instance,
5382 		    GETCMD(VD_SCSI_DATA_CDB(vd_scsi)));
5383 	}
5384 
5385 	/* default returned value */
5386 	rv = EIO;
5387 
5388 	switch (vd_scsi->cmd_status) {
5389 
5390 	case STATUS_CHECK:
5391 	case STATUS_TERMINATED:
5392 		if (log_error)
5393 			cmn_err(CE_CONT, "\tCheck Condition Error\n");
5394 
5395 		/* check sense buffer */
5396 		if (vd_scsi->sense_len == 0 ||
5397 		    vd_scsi->sense_status != STATUS_GOOD) {
5398 			if (log_error)
5399 				cmn_err(CE_CONT, "\tNo Sense Data Available\n");
5400 			break;
5401 		}
5402 
5403 		sense = VD_SCSI_DATA_SENSE(vd_scsi);
5404 
5405 		if (log_error) {
5406 			cmn_err(CE_CONT, "\tSense Key:  0x%x\n"
5407 			    "\tASC: 0x%x, ASCQ: 0x%x\n",
5408 			    scsi_sense_key((uint8_t *)sense),
5409 			    scsi_sense_asc((uint8_t *)sense),
5410 			    scsi_sense_ascq((uint8_t *)sense));
5411 		}
5412 
5413 		if (scsi_sense_key((uint8_t *)sense) == KEY_ILLEGAL_REQUEST)
5414 			rv = ENOTSUP;
5415 		break;
5416 
5417 	case STATUS_BUSY:
5418 		if (log_error)
5419 			cmn_err(CE_NOTE, "\tDevice Busy\n");
5420 		break;
5421 
5422 	case STATUS_RESERVATION_CONFLICT:
5423 		/*
5424 		 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then
5425 		 * reservation conflict could be due to various reasons like
5426 		 * incorrect keys, not registered or not reserved etc. So,
5427 		 * we should not panic in that case.
5428 		 */
5429 		cdb = VD_SCSI_DATA_CDB(vd_scsi);
5430 		if (vdc->failfast_interval != 0 &&
5431 		    cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_IN &&
5432 		    cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_OUT) {
5433 			/* failfast is enabled so we have to panic */
5434 			(void) snprintf(panic_str, sizeof (panic_str),
5435 			    VDC_RESV_CONFLICT_FMT_STR "%s",
5436 			    ddi_pathname(vdc->dip, path_str));
5437 			panic(panic_str);
5438 		}
5439 		if (log_error)
5440 			cmn_err(CE_NOTE, "\tReservation Conflict\n");
5441 		rv = EACCES;
5442 		break;
5443 
5444 	case STATUS_QFULL:
5445 		if (log_error)
5446 			cmn_err(CE_NOTE, "\tQueue Full\n");
5447 		break;
5448 
5449 	case STATUS_MET:
5450 	case STATUS_INTERMEDIATE:
5451 	case STATUS_SCSI2:
5452 	case STATUS_INTERMEDIATE_MET:
5453 	case STATUS_ACA_ACTIVE:
5454 		if (log_error)
5455 			cmn_err(CE_CONT,
5456 			    "\tUnexpected SCSI status received: 0x%x\n",
5457 			    vd_scsi->cmd_status);
5458 		break;
5459 
5460 	default:
5461 		if (log_error)
5462 			cmn_err(CE_CONT,
5463 			    "\tInvalid SCSI status received: 0x%x\n",
5464 			    vd_scsi->cmd_status);
5465 		break;
5466 	}
5467 
5468 	return (rv);
5469 }
5470 
5471 /*
5472  * Implemented the USCSICMD uscsi(7I) ioctl. This ioctl is converted to
5473  * a VD_OP_SCSICMD operation which is sent to the vdisk server. If a SCSI
5474  * reset is requested (i.e. a flag USCSI_RESET* is set) then the ioctl is
5475  * converted to a VD_OP_RESET operation.
5476  */
5477 static int
5478 vdc_uscsi_cmd(vdc_t *vdc, caddr_t arg, int mode)
5479 {
5480 	struct uscsi_cmd 	uscsi;
5481 	struct uscsi_cmd32	uscsi32;
5482 	vd_scsi_t 		*vd_scsi;
5483 	int 			vd_scsi_len;
5484 	union scsi_cdb		*cdb;
5485 	struct scsi_extended_sense *sense;
5486 	char 			*datain, *dataout;
5487 	size_t			cdb_len, datain_len, dataout_len, sense_len;
5488 	int 			rv;
5489 
5490 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5491 		if (ddi_copyin(arg, &uscsi32, sizeof (struct uscsi_cmd32),
5492 		    mode) != 0)
5493 			return (EFAULT);
5494 		uscsi_cmd32touscsi_cmd((&uscsi32), (&uscsi));
5495 	} else {
5496 		if (ddi_copyin(arg, &uscsi, sizeof (struct uscsi_cmd),
5497 		    mode) != 0)
5498 			return (EFAULT);
5499 	}
5500 
5501 	/* a uscsi reset is converted to a VD_OP_RESET operation */
5502 	if (uscsi.uscsi_flags & (USCSI_RESET | USCSI_RESET_LUN |
5503 	    USCSI_RESET_ALL)) {
5504 		rv = vdc_do_sync_op(vdc, VD_OP_RESET, NULL, 0, 0, 0, CB_SYNC,
5505 		    (void *)(uint64_t)mode, VIO_both_dir, B_TRUE);
5506 		return (rv);
5507 	}
5508 
5509 	/* cdb buffer length */
5510 	cdb_len = uscsi.uscsi_cdblen;
5511 
5512 	/* data in and out buffers length */
5513 	if (uscsi.uscsi_flags & USCSI_READ) {
5514 		datain_len = uscsi.uscsi_buflen;
5515 		dataout_len = 0;
5516 	} else {
5517 		datain_len = 0;
5518 		dataout_len = uscsi.uscsi_buflen;
5519 	}
5520 
5521 	/* sense buffer length */
5522 	if (uscsi.uscsi_flags & USCSI_RQENABLE)
5523 		sense_len = uscsi.uscsi_rqlen;
5524 	else
5525 		sense_len = 0;
5526 
5527 	/* allocate buffer for the VD_SCSICMD_OP operation */
5528 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5529 	    &vd_scsi_len);
5530 
5531 	/*
5532 	 * The documentation of USCSI_ISOLATE and USCSI_DIAGNOSE is very vague,
5533 	 * but basically they prevent a SCSI command from being retried in case
5534 	 * of an error.
5535 	 */
5536 	if ((uscsi.uscsi_flags & USCSI_ISOLATE) ||
5537 	    (uscsi.uscsi_flags & USCSI_DIAGNOSE))
5538 		vd_scsi->options |= VD_SCSI_OPT_NORETRY;
5539 
5540 	/* set task attribute */
5541 	if (uscsi.uscsi_flags & USCSI_NOTAG) {
5542 		vd_scsi->task_attribute = 0;
5543 	} else {
5544 		if (uscsi.uscsi_flags & USCSI_HEAD)
5545 			vd_scsi->task_attribute = VD_SCSI_TASK_ACA;
5546 		else if (uscsi.uscsi_flags & USCSI_HTAG)
5547 			vd_scsi->task_attribute = VD_SCSI_TASK_HQUEUE;
5548 		else if (uscsi.uscsi_flags & USCSI_OTAG)
5549 			vd_scsi->task_attribute = VD_SCSI_TASK_ORDERED;
5550 		else
5551 			vd_scsi->task_attribute = 0;
5552 	}
5553 
5554 	/* set timeout */
5555 	vd_scsi->timeout = uscsi.uscsi_timeout;
5556 
5557 	/* copy-in cdb data */
5558 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5559 	if (ddi_copyin(uscsi.uscsi_cdb, cdb, cdb_len, mode) != 0) {
5560 		rv = EFAULT;
5561 		goto done;
5562 	}
5563 
5564 	/* keep a pointer to the sense buffer */
5565 	sense = VD_SCSI_DATA_SENSE(vd_scsi);
5566 
5567 	/* keep a pointer to the data-in buffer */
5568 	datain = (char *)VD_SCSI_DATA_IN(vd_scsi);
5569 
5570 	/* copy-in request data to the data-out buffer */
5571 	dataout = (char *)VD_SCSI_DATA_OUT(vd_scsi);
5572 	if (!(uscsi.uscsi_flags & USCSI_READ)) {
5573 		if (ddi_copyin(uscsi.uscsi_bufaddr, dataout, dataout_len,
5574 		    mode)) {
5575 			rv = EFAULT;
5576 			goto done;
5577 		}
5578 	}
5579 
5580 	/* submit the request */
5581 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5582 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5583 
5584 	if (rv != 0)
5585 		goto done;
5586 
5587 	/* update scsi status */
5588 	uscsi.uscsi_status = vd_scsi->cmd_status;
5589 
5590 	/* update sense data */
5591 	if ((uscsi.uscsi_flags & USCSI_RQENABLE) &&
5592 	    (uscsi.uscsi_status == STATUS_CHECK ||
5593 	    uscsi.uscsi_status == STATUS_TERMINATED)) {
5594 
5595 		uscsi.uscsi_rqstatus = vd_scsi->sense_status;
5596 
5597 		if (uscsi.uscsi_rqstatus == STATUS_GOOD) {
5598 			uscsi.uscsi_rqresid = uscsi.uscsi_rqlen -
5599 			    vd_scsi->sense_len;
5600 			if (ddi_copyout(sense, uscsi.uscsi_rqbuf,
5601 			    vd_scsi->sense_len, mode) != 0) {
5602 				rv = EFAULT;
5603 				goto done;
5604 			}
5605 		}
5606 	}
5607 
5608 	/* update request data */
5609 	if (uscsi.uscsi_status == STATUS_GOOD) {
5610 		if (uscsi.uscsi_flags & USCSI_READ) {
5611 			uscsi.uscsi_resid = uscsi.uscsi_buflen -
5612 			    vd_scsi->datain_len;
5613 			if (ddi_copyout(datain, uscsi.uscsi_bufaddr,
5614 			    vd_scsi->datain_len, mode) != 0) {
5615 				rv = EFAULT;
5616 				goto done;
5617 			}
5618 		} else {
5619 			uscsi.uscsi_resid = uscsi.uscsi_buflen -
5620 			    vd_scsi->dataout_len;
5621 		}
5622 	}
5623 
5624 	/* copy-out result */
5625 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5626 		uscsi_cmdtouscsi_cmd32((&uscsi), (&uscsi32));
5627 		if (ddi_copyout(&uscsi32, arg, sizeof (struct uscsi_cmd32),
5628 		    mode) != 0) {
5629 			rv = EFAULT;
5630 			goto done;
5631 		}
5632 	} else {
5633 		if (ddi_copyout(&uscsi, arg, sizeof (struct uscsi_cmd),
5634 		    mode) != 0) {
5635 			rv = EFAULT;
5636 			goto done;
5637 		}
5638 	}
5639 
5640 	/* get the return code from the SCSI command status */
5641 	rv = vdc_scsi_status(vdc, vd_scsi,
5642 	    !(uscsi.uscsi_flags & USCSI_SILENT));
5643 
5644 done:
5645 	kmem_free(vd_scsi, vd_scsi_len);
5646 	return (rv);
5647 }
5648 
5649 /*
5650  * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT IN command.
5651  *
5652  * Arguments:
5653  *	cmd		- SCSI PERSISTENT IN command
5654  *	len		- length of the SCSI input buffer
5655  *	vd_scsi_len	- return the length of the allocated buffer
5656  *
5657  * Returned Value:
5658  *	a pointer to the allocated VD_OP_SCSICMD buffer.
5659  */
5660 static vd_scsi_t *
5661 vdc_scsi_alloc_persistent_in(uchar_t cmd, int len, int *vd_scsi_len)
5662 {
5663 	int cdb_len, sense_len, datain_len, dataout_len;
5664 	vd_scsi_t *vd_scsi;
5665 	union scsi_cdb *cdb;
5666 
5667 	cdb_len = CDB_GROUP1;
5668 	sense_len = sizeof (struct scsi_extended_sense);
5669 	datain_len = len;
5670 	dataout_len = 0;
5671 
5672 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5673 	    vd_scsi_len);
5674 
5675 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5676 
5677 	/* set cdb */
5678 	cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
5679 	cdb->cdb_opaque[1] = cmd;
5680 	FORMG1COUNT(cdb, datain_len);
5681 
5682 	vd_scsi->timeout = vdc_scsi_timeout;
5683 
5684 	return (vd_scsi);
5685 }
5686 
5687 /*
5688  * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT OUT command.
5689  *
5690  * Arguments:
5691  *	cmd		- SCSI PERSISTENT OUT command
5692  *	len		- length of the SCSI output buffer
5693  *	vd_scsi_len	- return the length of the allocated buffer
5694  *
5695  * Returned Code:
5696  *	a pointer to the allocated VD_OP_SCSICMD buffer.
5697  */
5698 static vd_scsi_t *
5699 vdc_scsi_alloc_persistent_out(uchar_t cmd, int len, int *vd_scsi_len)
5700 {
5701 	int cdb_len, sense_len, datain_len, dataout_len;
5702 	vd_scsi_t *vd_scsi;
5703 	union scsi_cdb *cdb;
5704 
5705 	cdb_len = CDB_GROUP1;
5706 	sense_len = sizeof (struct scsi_extended_sense);
5707 	datain_len = 0;
5708 	dataout_len = len;
5709 
5710 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5711 	    vd_scsi_len);
5712 
5713 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5714 
5715 	/* set cdb */
5716 	cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
5717 	cdb->cdb_opaque[1] = cmd;
5718 	FORMG1COUNT(cdb, dataout_len);
5719 
5720 	vd_scsi->timeout = vdc_scsi_timeout;
5721 
5722 	return (vd_scsi);
5723 }
5724 
5725 /*
5726  * Implement the MHIOCGRP_INKEYS mhd(7i) ioctl. The ioctl is converted
5727  * to a SCSI PERSISTENT IN READ KEYS command which is sent to the vdisk
5728  * server with a VD_OP_SCSICMD operation.
5729  */
5730 static int
5731 vdc_mhd_inkeys(vdc_t *vdc, caddr_t arg, int mode)
5732 {
5733 	vd_scsi_t *vd_scsi;
5734 	mhioc_inkeys_t inkeys;
5735 	mhioc_key_list_t klist;
5736 	struct mhioc_inkeys32 inkeys32;
5737 	struct mhioc_key_list32 klist32;
5738 	sd_prin_readkeys_t *scsi_keys;
5739 	void *user_keys;
5740 	int vd_scsi_len;
5741 	int listsize, listlen, rv;
5742 
5743 	/* copyin arguments */
5744 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5745 		rv = ddi_copyin(arg, &inkeys32, sizeof (inkeys32), mode);
5746 		if (rv != 0)
5747 			return (EFAULT);
5748 
5749 		rv = ddi_copyin((caddr_t)(uintptr_t)inkeys32.li, &klist32,
5750 		    sizeof (klist32), mode);
5751 		if (rv != 0)
5752 			return (EFAULT);
5753 
5754 		listsize = klist32.listsize;
5755 	} else {
5756 		rv = ddi_copyin(arg, &inkeys, sizeof (inkeys), mode);
5757 		if (rv != 0)
5758 			return (EFAULT);
5759 
5760 		rv = ddi_copyin(inkeys.li, &klist, sizeof (klist), mode);
5761 		if (rv != 0)
5762 			return (EFAULT);
5763 
5764 		listsize = klist.listsize;
5765 	}
5766 
5767 	/* build SCSI VD_OP request */
5768 	vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_KEYS,
5769 	    sizeof (sd_prin_readkeys_t) - sizeof (caddr_t) +
5770 	    (sizeof (mhioc_resv_key_t) * listsize), &vd_scsi_len);
5771 
5772 	scsi_keys = (sd_prin_readkeys_t *)VD_SCSI_DATA_IN(vd_scsi);
5773 
5774 	/* submit the request */
5775 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5776 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5777 
5778 	if (rv != 0)
5779 		goto done;
5780 
5781 	listlen = scsi_keys->len / MHIOC_RESV_KEY_SIZE;
5782 
5783 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5784 		inkeys32.generation = scsi_keys->generation;
5785 		rv = ddi_copyout(&inkeys32, arg, sizeof (inkeys32), mode);
5786 		if (rv != 0) {
5787 			rv = EFAULT;
5788 			goto done;
5789 		}
5790 
5791 		klist32.listlen = listlen;
5792 		rv = ddi_copyout(&klist32, (caddr_t)(uintptr_t)inkeys32.li,
5793 		    sizeof (klist32), mode);
5794 		if (rv != 0) {
5795 			rv = EFAULT;
5796 			goto done;
5797 		}
5798 
5799 		user_keys = (caddr_t)(uintptr_t)klist32.list;
5800 	} else {
5801 		inkeys.generation = scsi_keys->generation;
5802 		rv = ddi_copyout(&inkeys, arg, sizeof (inkeys), mode);
5803 		if (rv != 0) {
5804 			rv = EFAULT;
5805 			goto done;
5806 		}
5807 
5808 		klist.listlen = listlen;
5809 		rv = ddi_copyout(&klist, inkeys.li, sizeof (klist), mode);
5810 		if (rv != 0) {
5811 			rv = EFAULT;
5812 			goto done;
5813 		}
5814 
5815 		user_keys = klist.list;
5816 	}
5817 
5818 	/* copy out keys */
5819 	if (listlen > 0 && listsize > 0) {
5820 		if (listsize < listlen)
5821 			listlen = listsize;
5822 		rv = ddi_copyout(&scsi_keys->keylist, user_keys,
5823 		    listlen * MHIOC_RESV_KEY_SIZE, mode);
5824 		if (rv != 0)
5825 			rv = EFAULT;
5826 	}
5827 
5828 	if (rv == 0)
5829 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5830 
5831 done:
5832 	kmem_free(vd_scsi, vd_scsi_len);
5833 
5834 	return (rv);
5835 }
5836 
5837 /*
5838  * Implement the MHIOCGRP_INRESV mhd(7i) ioctl. The ioctl is converted
5839  * to a SCSI PERSISTENT IN READ RESERVATION command which is sent to
5840  * the vdisk server with a VD_OP_SCSICMD operation.
5841  */
5842 static int
5843 vdc_mhd_inresv(vdc_t *vdc, caddr_t arg, int mode)
5844 {
5845 	vd_scsi_t *vd_scsi;
5846 	mhioc_inresvs_t inresv;
5847 	mhioc_resv_desc_list_t rlist;
5848 	struct mhioc_inresvs32 inresv32;
5849 	struct mhioc_resv_desc_list32 rlist32;
5850 	mhioc_resv_desc_t mhd_resv;
5851 	sd_prin_readresv_t *scsi_resv;
5852 	sd_readresv_desc_t *resv;
5853 	mhioc_resv_desc_t *user_resv;
5854 	int vd_scsi_len;
5855 	int listsize, listlen, i, rv;
5856 
5857 	/* copyin arguments */
5858 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5859 		rv = ddi_copyin(arg, &inresv32, sizeof (inresv32), mode);
5860 		if (rv != 0)
5861 			return (EFAULT);
5862 
5863 		rv = ddi_copyin((caddr_t)(uintptr_t)inresv32.li, &rlist32,
5864 		    sizeof (rlist32), mode);
5865 		if (rv != 0)
5866 			return (EFAULT);
5867 
5868 		listsize = rlist32.listsize;
5869 	} else {
5870 		rv = ddi_copyin(arg, &inresv, sizeof (inresv), mode);
5871 		if (rv != 0)
5872 			return (EFAULT);
5873 
5874 		rv = ddi_copyin(inresv.li, &rlist, sizeof (rlist), mode);
5875 		if (rv != 0)
5876 			return (EFAULT);
5877 
5878 		listsize = rlist.listsize;
5879 	}
5880 
5881 	/* build SCSI VD_OP request */
5882 	vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_RESV,
5883 	    sizeof (sd_prin_readresv_t) - sizeof (caddr_t) +
5884 	    (SCSI3_RESV_DESC_LEN * listsize), &vd_scsi_len);
5885 
5886 	scsi_resv = (sd_prin_readresv_t *)VD_SCSI_DATA_IN(vd_scsi);
5887 
5888 	/* submit the request */
5889 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5890 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5891 
5892 	if (rv != 0)
5893 		goto done;
5894 
5895 	listlen = scsi_resv->len / SCSI3_RESV_DESC_LEN;
5896 
5897 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5898 		inresv32.generation = scsi_resv->generation;
5899 		rv = ddi_copyout(&inresv32, arg, sizeof (inresv32), mode);
5900 		if (rv != 0) {
5901 			rv = EFAULT;
5902 			goto done;
5903 		}
5904 
5905 		rlist32.listlen = listlen;
5906 		rv = ddi_copyout(&rlist32, (caddr_t)(uintptr_t)inresv32.li,
5907 		    sizeof (rlist32), mode);
5908 		if (rv != 0) {
5909 			rv = EFAULT;
5910 			goto done;
5911 		}
5912 
5913 		user_resv = (mhioc_resv_desc_t *)(uintptr_t)rlist32.list;
5914 	} else {
5915 		inresv.generation = scsi_resv->generation;
5916 		rv = ddi_copyout(&inresv, arg, sizeof (inresv), mode);
5917 		if (rv != 0) {
5918 			rv = EFAULT;
5919 			goto done;
5920 		}
5921 
5922 		rlist.listlen = listlen;
5923 		rv = ddi_copyout(&rlist, inresv.li, sizeof (rlist), mode);
5924 		if (rv != 0) {
5925 			rv = EFAULT;
5926 			goto done;
5927 		}
5928 
5929 		user_resv = rlist.list;
5930 	}
5931 
5932 	/* copy out reservations */
5933 	if (listsize > 0 && listlen > 0) {
5934 		if (listsize < listlen)
5935 			listlen = listsize;
5936 		resv = (sd_readresv_desc_t *)&scsi_resv->readresv_desc;
5937 
5938 		for (i = 0; i < listlen; i++) {
5939 			mhd_resv.type = resv->type;
5940 			mhd_resv.scope = resv->scope;
5941 			mhd_resv.scope_specific_addr =
5942 			    BE_32(resv->scope_specific_addr);
5943 			bcopy(&resv->resvkey, &mhd_resv.key,
5944 			    MHIOC_RESV_KEY_SIZE);
5945 
5946 			rv = ddi_copyout(&mhd_resv, user_resv,
5947 			    sizeof (mhd_resv), mode);
5948 			if (rv != 0) {
5949 				rv = EFAULT;
5950 				goto done;
5951 			}
5952 			resv++;
5953 			user_resv++;
5954 		}
5955 	}
5956 
5957 	if (rv == 0)
5958 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5959 
5960 done:
5961 	kmem_free(vd_scsi, vd_scsi_len);
5962 	return (rv);
5963 }
5964 
5965 /*
5966  * Implement the MHIOCGRP_REGISTER mhd(7i) ioctl. The ioctl is converted
5967  * to a SCSI PERSISTENT OUT REGISTER command which is sent to the vdisk
5968  * server with a VD_OP_SCSICMD operation.
5969  */
5970 static int
5971 vdc_mhd_register(vdc_t *vdc, caddr_t arg, int mode)
5972 {
5973 	vd_scsi_t *vd_scsi;
5974 	sd_prout_t *scsi_prout;
5975 	mhioc_register_t mhd_reg;
5976 	int vd_scsi_len, rv;
5977 
5978 	/* copyin arguments */
5979 	rv = ddi_copyin(arg, &mhd_reg, sizeof (mhd_reg), mode);
5980 	if (rv != 0)
5981 		return (EFAULT);
5982 
5983 	/* build SCSI VD_OP request */
5984 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTER,
5985 	    sizeof (sd_prout_t), &vd_scsi_len);
5986 
5987 	/* set parameters */
5988 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
5989 	bcopy(mhd_reg.oldkey.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE);
5990 	bcopy(mhd_reg.newkey.key, scsi_prout->service_key, MHIOC_RESV_KEY_SIZE);
5991 	scsi_prout->aptpl = (uchar_t)mhd_reg.aptpl;
5992 
5993 	/* submit the request */
5994 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5995 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5996 
5997 	if (rv == 0)
5998 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5999 
6000 	kmem_free(vd_scsi, vd_scsi_len);
6001 	return (rv);
6002 }
6003 
6004 /*
6005  * Implement the MHIOCGRP_RESERVE mhd(7i) ioctl. The ioctl is converted
6006  * to a SCSI PERSISTENT OUT RESERVE command which is sent to the vdisk
6007  * server with a VD_OP_SCSICMD operation.
6008  */
6009 static int
6010 vdc_mhd_reserve(vdc_t *vdc, caddr_t arg, int mode)
6011 {
6012 	union scsi_cdb *cdb;
6013 	vd_scsi_t *vd_scsi;
6014 	sd_prout_t *scsi_prout;
6015 	mhioc_resv_desc_t mhd_resv;
6016 	int vd_scsi_len, rv;
6017 
6018 	/* copyin arguments */
6019 	rv = ddi_copyin(arg, &mhd_resv, sizeof (mhd_resv), mode);
6020 	if (rv != 0)
6021 		return (EFAULT);
6022 
6023 	/* build SCSI VD_OP request */
6024 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_RESERVE,
6025 	    sizeof (sd_prout_t), &vd_scsi_len);
6026 
6027 	/* set parameters */
6028 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6029 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6030 	bcopy(mhd_resv.key.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE);
6031 	scsi_prout->scope_address = mhd_resv.scope_specific_addr;
6032 	cdb->cdb_opaque[2] = mhd_resv.type;
6033 
6034 	/* submit the request */
6035 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6036 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6037 
6038 	if (rv == 0)
6039 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6040 
6041 	kmem_free(vd_scsi, vd_scsi_len);
6042 	return (rv);
6043 }
6044 
6045 /*
6046  * Implement the MHIOCGRP_PREEMPTANDABORT mhd(7i) ioctl. The ioctl is
6047  * converted to a SCSI PERSISTENT OUT PREEMPT AND ABORT command which
6048  * is sent to the vdisk server with a VD_OP_SCSICMD operation.
6049  */
6050 static int
6051 vdc_mhd_preemptabort(vdc_t *vdc, caddr_t arg, int mode)
6052 {
6053 	union scsi_cdb *cdb;
6054 	vd_scsi_t *vd_scsi;
6055 	sd_prout_t *scsi_prout;
6056 	mhioc_preemptandabort_t mhd_preempt;
6057 	int vd_scsi_len, rv;
6058 
6059 	/* copyin arguments */
6060 	rv = ddi_copyin(arg, &mhd_preempt, sizeof (mhd_preempt), mode);
6061 	if (rv != 0)
6062 		return (EFAULT);
6063 
6064 	/* build SCSI VD_OP request */
6065 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_PREEMPTANDABORT,
6066 	    sizeof (sd_prout_t), &vd_scsi_len);
6067 
6068 	/* set parameters */
6069 	vd_scsi->task_attribute = VD_SCSI_TASK_ACA;
6070 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6071 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6072 	bcopy(mhd_preempt.resvdesc.key.key, scsi_prout->res_key,
6073 	    MHIOC_RESV_KEY_SIZE);
6074 	bcopy(mhd_preempt.victim_key.key, scsi_prout->service_key,
6075 	    MHIOC_RESV_KEY_SIZE);
6076 	scsi_prout->scope_address = mhd_preempt.resvdesc.scope_specific_addr;
6077 	cdb->cdb_opaque[2] = mhd_preempt.resvdesc.type;
6078 
6079 	/* submit the request */
6080 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6081 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6082 
6083 	if (rv == 0)
6084 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6085 
6086 	kmem_free(vd_scsi, vd_scsi_len);
6087 	return (rv);
6088 }
6089 
6090 /*
6091  * Implement the MHIOCGRP_REGISTERANDIGNOREKEY mhd(7i) ioctl. The ioctl
6092  * is converted to a SCSI PERSISTENT OUT REGISTER AND IGNORE EXISTING KEY
6093  * command which is sent to the vdisk server with a VD_OP_SCSICMD operation.
6094  */
6095 static int
6096 vdc_mhd_registerignore(vdc_t *vdc, caddr_t arg, int mode)
6097 {
6098 	vd_scsi_t *vd_scsi;
6099 	sd_prout_t *scsi_prout;
6100 	mhioc_registerandignorekey_t mhd_regi;
6101 	int vd_scsi_len, rv;
6102 
6103 	/* copyin arguments */
6104 	rv = ddi_copyin(arg, &mhd_regi, sizeof (mhd_regi), mode);
6105 	if (rv != 0)
6106 		return (EFAULT);
6107 
6108 	/* build SCSI VD_OP request */
6109 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTERANDIGNOREKEY,
6110 	    sizeof (sd_prout_t), &vd_scsi_len);
6111 
6112 	/* set parameters */
6113 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6114 	bcopy(mhd_regi.newkey.key, scsi_prout->service_key,
6115 	    MHIOC_RESV_KEY_SIZE);
6116 	scsi_prout->aptpl = (uchar_t)mhd_regi.aptpl;
6117 
6118 	/* submit the request */
6119 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6120 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6121 
6122 	if (rv == 0)
6123 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6124 
6125 	kmem_free(vd_scsi, vd_scsi_len);
6126 	return (rv);
6127 }
6128 
6129 /*
6130  * This function is used by the failfast mechanism to send a SCSI command
6131  * to check for reservation conflict.
6132  */
6133 static int
6134 vdc_failfast_scsi_cmd(vdc_t *vdc, uchar_t scmd)
6135 {
6136 	int cdb_len, sense_len, vd_scsi_len;
6137 	vd_scsi_t *vd_scsi;
6138 	union scsi_cdb *cdb;
6139 	int rv;
6140 
6141 	ASSERT(scmd == SCMD_TEST_UNIT_READY || scmd == SCMD_WRITE_G1);
6142 
6143 	if (scmd == SCMD_WRITE_G1)
6144 		cdb_len = CDB_GROUP1;
6145 	else
6146 		cdb_len = CDB_GROUP0;
6147 
6148 	sense_len = sizeof (struct scsi_extended_sense);
6149 
6150 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, 0, 0, &vd_scsi_len);
6151 
6152 	/* set cdb */
6153 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6154 	cdb->scc_cmd = scmd;
6155 
6156 	vd_scsi->timeout = vdc_scsi_timeout;
6157 
6158 	/*
6159 	 * Submit the request. The last argument has to be B_FALSE so that
6160 	 * vdc_do_sync_op does not loop checking for reservation conflict if
6161 	 * the operation returns an error.
6162 	 */
6163 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6164 	    0, 0, CB_SYNC, (void *)(uint64_t)FKIOCTL, VIO_both_dir, B_FALSE);
6165 
6166 	if (rv == 0)
6167 		(void) vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6168 
6169 	kmem_free(vd_scsi, vd_scsi_len);
6170 	return (rv);
6171 }
6172 
6173 /*
6174  * This function is used by the failfast mechanism to check for reservation
6175  * conflict. It sends some SCSI commands which will fail with a reservation
6176  * conflict error if the system does not have access to the disk and this
6177  * will panic the system.
6178  *
6179  * Returned Code:
6180  *	0	- disk is accessible without reservation conflict error
6181  *	!= 0	- unable to check if disk is accessible
6182  */
6183 int
6184 vdc_failfast_check_resv(vdc_t *vdc)
6185 {
6186 	int failure = 0;
6187 
6188 	/*
6189 	 * Send a TEST UNIT READY command. The command will panic
6190 	 * the system if it fails with a reservation conflict.
6191 	 */
6192 	if (vdc_failfast_scsi_cmd(vdc, SCMD_TEST_UNIT_READY) != 0)
6193 		failure++;
6194 
6195 	/*
6196 	 * With SPC-3 compliant devices TEST UNIT READY will succeed on
6197 	 * a reserved device, so we also do a WRITE(10) of zero byte in
6198 	 * order to provoke a Reservation Conflict status on those newer
6199 	 * devices.
6200 	 */
6201 	if (vdc_failfast_scsi_cmd(vdc, SCMD_WRITE_G1) != 0)
6202 		failure++;
6203 
6204 	return (failure);
6205 }
6206 
6207 /*
6208  * Add a pending I/O to the failfast I/O queue. An I/O is added to this
6209  * queue when it has failed and failfast is enabled. Then we have to check
6210  * if it has failed because of a reservation conflict in which case we have
6211  * to panic the system.
6212  *
6213  * Async I/O should be queued with their block I/O data transfer structure
6214  * (buf). Sync I/O should be queued with buf = NULL.
6215  */
6216 static vdc_io_t *
6217 vdc_failfast_io_queue(vdc_t *vdc, struct buf *buf)
6218 {
6219 	vdc_io_t *vio;
6220 
6221 	ASSERT(MUTEX_HELD(&vdc->lock));
6222 
6223 	vio = kmem_alloc(sizeof (vdc_io_t), KM_SLEEP);
6224 	vio->vio_next = vdc->failfast_io_queue;
6225 	vio->vio_buf = buf;
6226 	vio->vio_qtime = ddi_get_lbolt();
6227 
6228 	vdc->failfast_io_queue = vio;
6229 
6230 	/* notify the failfast thread that a new I/O is queued */
6231 	cv_signal(&vdc->failfast_cv);
6232 
6233 	return (vio);
6234 }
6235 
6236 /*
6237  * Remove and complete I/O in the failfast I/O queue which have been
6238  * added after the indicated deadline. A deadline of 0 means that all
6239  * I/O have to be unqueued and marked as completed.
6240  */
6241 static void
6242 vdc_failfast_io_unqueue(vdc_t *vdc, clock_t deadline)
6243 {
6244 	vdc_io_t *vio, *vio_tmp;
6245 
6246 	ASSERT(MUTEX_HELD(&vdc->lock));
6247 
6248 	vio_tmp = NULL;
6249 	vio = vdc->failfast_io_queue;
6250 
6251 	if (deadline != 0) {
6252 		/*
6253 		 * Skip any io queued after the deadline. The failfast
6254 		 * I/O queue is ordered starting with the last I/O added
6255 		 * to the queue.
6256 		 */
6257 		while (vio != NULL && vio->vio_qtime > deadline) {
6258 			vio_tmp = vio;
6259 			vio = vio->vio_next;
6260 		}
6261 	}
6262 
6263 	if (vio == NULL)
6264 		/* nothing to unqueue */
6265 		return;
6266 
6267 	/* update the queue */
6268 	if (vio_tmp == NULL)
6269 		vdc->failfast_io_queue = NULL;
6270 	else
6271 		vio_tmp->vio_next = NULL;
6272 
6273 	/*
6274 	 * Complete unqueued I/O. Async I/O have a block I/O data transfer
6275 	 * structure (buf) and they are completed by calling biodone(). Sync
6276 	 * I/O do not have a buf and they are completed by setting the
6277 	 * vio_qtime to zero and signaling failfast_io_cv. In that case, the
6278 	 * thread waiting for the I/O to complete is responsible for freeing
6279 	 * the vio structure.
6280 	 */
6281 	while (vio != NULL) {
6282 		vio_tmp = vio->vio_next;
6283 		if (vio->vio_buf != NULL) {
6284 			VD_KSTAT_RUNQ_EXIT(vdc);
6285 			DTRACE_IO1(done, buf_t *, vio->vio_buf);
6286 			biodone(vio->vio_buf);
6287 			kmem_free(vio, sizeof (vdc_io_t));
6288 		} else {
6289 			vio->vio_qtime = 0;
6290 		}
6291 		vio = vio_tmp;
6292 	}
6293 
6294 	cv_broadcast(&vdc->failfast_io_cv);
6295 }
6296 
6297 /*
6298  * Failfast Thread.
6299  *
6300  * While failfast is enabled, the failfast thread sends a TEST UNIT READY
6301  * and a zero size WRITE(10) SCSI commands on a regular basis to check that
6302  * we still have access to the disk. If a command fails with a RESERVATION
6303  * CONFLICT error then the system will immediatly panic.
6304  *
6305  * The failfast thread is also woken up when an I/O has failed. It then check
6306  * the access to the disk to ensure that the I/O failure was not due to a
6307  * reservation conflict.
6308  *
6309  * There is one failfast thread for each virtual disk for which failfast is
6310  * enabled. We could have only one thread sending requests for all disks but
6311  * this would need vdc to send asynchronous requests and to have callbacks to
6312  * process replies.
6313  */
6314 static void
6315 vdc_failfast_thread(void *arg)
6316 {
6317 	int status;
6318 	vdc_t *vdc = (vdc_t *)arg;
6319 	clock_t timeout, starttime;
6320 
6321 	mutex_enter(&vdc->lock);
6322 
6323 	while (vdc->failfast_interval != 0) {
6324 
6325 		starttime = ddi_get_lbolt();
6326 
6327 		mutex_exit(&vdc->lock);
6328 
6329 		/* check for reservation conflict */
6330 		status = vdc_failfast_check_resv(vdc);
6331 
6332 		mutex_enter(&vdc->lock);
6333 		/*
6334 		 * We have dropped the lock to send the SCSI command so we have
6335 		 * to check that failfast is still enabled.
6336 		 */
6337 		if (vdc->failfast_interval == 0)
6338 			break;
6339 
6340 		/*
6341 		 * If we have successfully check the disk access and there was
6342 		 * no reservation conflict then we can complete any I/O queued
6343 		 * before the last check.
6344 		 */
6345 		if (status == 0)
6346 			vdc_failfast_io_unqueue(vdc, starttime);
6347 
6348 		/* proceed again if some I/O are still in the queue */
6349 		if (vdc->failfast_io_queue != NULL)
6350 			continue;
6351 
6352 		timeout = ddi_get_lbolt() +
6353 		    drv_usectohz(vdc->failfast_interval);
6354 		(void) cv_timedwait(&vdc->failfast_cv, &vdc->lock, timeout);
6355 	}
6356 
6357 	/*
6358 	 * Failfast is being stop so we can complete any queued I/O.
6359 	 */
6360 	vdc_failfast_io_unqueue(vdc, 0);
6361 	vdc->failfast_thread = NULL;
6362 	mutex_exit(&vdc->lock);
6363 	thread_exit();
6364 }
6365 
6366 /*
6367  * Implement the MHIOCENFAILFAST mhd(7i) ioctl.
6368  */
6369 static int
6370 vdc_failfast(vdc_t *vdc, caddr_t arg, int mode)
6371 {
6372 	unsigned int mh_time;
6373 
6374 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), mode))
6375 		return (EFAULT);
6376 
6377 	mutex_enter(&vdc->lock);
6378 	if (mh_time != 0 && vdc->failfast_thread == NULL) {
6379 		vdc->failfast_thread = thread_create(NULL, 0,
6380 		    vdc_failfast_thread, vdc, 0, &p0, TS_RUN,
6381 		    v.v_maxsyspri - 2);
6382 	}
6383 
6384 	vdc->failfast_interval = mh_time * 1000;
6385 	cv_signal(&vdc->failfast_cv);
6386 	mutex_exit(&vdc->lock);
6387 
6388 	return (0);
6389 }
6390 
6391 /*
6392  * Implement the MHIOCTKOWN and MHIOCRELEASE mhd(7i) ioctls. These ioctls are
6393  * converted to VD_OP_SET_ACCESS operations.
6394  */
6395 static int
6396 vdc_access_set(vdc_t *vdc, uint64_t flags, int mode)
6397 {
6398 	int rv;
6399 
6400 	/* submit owership command request */
6401 	rv = vdc_do_sync_op(vdc, VD_OP_SET_ACCESS, (caddr_t)&flags,
6402 	    sizeof (uint64_t), 0, 0, CB_SYNC, (void *)(uint64_t)mode,
6403 	    VIO_both_dir, B_TRUE);
6404 
6405 	return (rv);
6406 }
6407 
6408 /*
6409  * Implement the MHIOCSTATUS mhd(7i) ioctl. This ioctl is converted to a
6410  * VD_OP_GET_ACCESS operation.
6411  */
6412 static int
6413 vdc_access_get(vdc_t *vdc, uint64_t *status, int mode)
6414 {
6415 	int rv;
6416 
6417 	/* submit owership command request */
6418 	rv = vdc_do_sync_op(vdc, VD_OP_GET_ACCESS, (caddr_t)status,
6419 	    sizeof (uint64_t), 0, 0, CB_SYNC, (void *)(uint64_t)mode,
6420 	    VIO_both_dir, B_TRUE);
6421 
6422 	return (rv);
6423 }
6424 
6425 /*
6426  * Disk Ownership Thread.
6427  *
6428  * When we have taken the ownership of a disk, this thread waits to be
6429  * notified when the LDC channel is reset so that it can recover the
6430  * ownership.
6431  *
6432  * Note that the thread handling the LDC reset (vdc_process_msg_thread())
6433  * can not be used to do the ownership recovery because it has to be
6434  * running to handle the reply message to the ownership operation.
6435  */
6436 static void
6437 vdc_ownership_thread(void *arg)
6438 {
6439 	vdc_t *vdc = (vdc_t *)arg;
6440 	clock_t timeout;
6441 	uint64_t status;
6442 
6443 	mutex_enter(&vdc->ownership_lock);
6444 	mutex_enter(&vdc->lock);
6445 
6446 	while (vdc->ownership & VDC_OWNERSHIP_WANTED) {
6447 
6448 		if ((vdc->ownership & VDC_OWNERSHIP_RESET) ||
6449 		    !(vdc->ownership & VDC_OWNERSHIP_GRANTED)) {
6450 			/*
6451 			 * There was a reset so the ownership has been lost,
6452 			 * try to recover. We do this without using the preempt
6453 			 * option so that we don't steal the ownership from
6454 			 * someone who has preempted us.
6455 			 */
6456 			DMSG(vdc, 0, "[%d] Ownership lost, recovering",
6457 			    vdc->instance);
6458 
6459 			vdc->ownership &= ~(VDC_OWNERSHIP_RESET |
6460 			    VDC_OWNERSHIP_GRANTED);
6461 
6462 			mutex_exit(&vdc->lock);
6463 
6464 			status = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE |
6465 			    VD_ACCESS_SET_PRESERVE, FKIOCTL);
6466 
6467 			mutex_enter(&vdc->lock);
6468 
6469 			if (status == 0) {
6470 				DMSG(vdc, 0, "[%d] Ownership recovered",
6471 				    vdc->instance);
6472 				vdc->ownership |= VDC_OWNERSHIP_GRANTED;
6473 			} else {
6474 				DMSG(vdc, 0, "[%d] Fail to recover ownership",
6475 				    vdc->instance);
6476 			}
6477 
6478 		}
6479 
6480 		/*
6481 		 * If we have the ownership then we just wait for an event
6482 		 * to happen (LDC reset), otherwise we will retry to recover
6483 		 * after a delay.
6484 		 */
6485 		if (vdc->ownership & VDC_OWNERSHIP_GRANTED)
6486 			timeout = 0;
6487 		else
6488 			timeout = ddi_get_lbolt() +
6489 			    drv_usectohz(vdc_ownership_delay);
6490 
6491 		/* Release the ownership_lock and wait on the vdc lock */
6492 		mutex_exit(&vdc->ownership_lock);
6493 
6494 		if (timeout == 0)
6495 			(void) cv_wait(&vdc->ownership_cv, &vdc->lock);
6496 		else
6497 			(void) cv_timedwait(&vdc->ownership_cv,
6498 			    &vdc->lock, timeout);
6499 
6500 		mutex_exit(&vdc->lock);
6501 
6502 		mutex_enter(&vdc->ownership_lock);
6503 		mutex_enter(&vdc->lock);
6504 	}
6505 
6506 	vdc->ownership_thread = NULL;
6507 	mutex_exit(&vdc->lock);
6508 	mutex_exit(&vdc->ownership_lock);
6509 
6510 	thread_exit();
6511 }
6512 
6513 static void
6514 vdc_ownership_update(vdc_t *vdc, int ownership_flags)
6515 {
6516 	ASSERT(MUTEX_HELD(&vdc->ownership_lock));
6517 
6518 	mutex_enter(&vdc->lock);
6519 	vdc->ownership = ownership_flags;
6520 	if ((vdc->ownership & VDC_OWNERSHIP_WANTED) &&
6521 	    vdc->ownership_thread == NULL) {
6522 		/* start ownership thread */
6523 		vdc->ownership_thread = thread_create(NULL, 0,
6524 		    vdc_ownership_thread, vdc, 0, &p0, TS_RUN,
6525 		    v.v_maxsyspri - 2);
6526 	} else {
6527 		/* notify the ownership thread */
6528 		cv_signal(&vdc->ownership_cv);
6529 	}
6530 	mutex_exit(&vdc->lock);
6531 }
6532 
6533 /*
6534  * Get the size and the block size of a virtual disk from the vdisk server.
6535  * We need to use this operation when the vdisk_size attribute was not
6536  * available during the handshake with the vdisk server.
6537  */
6538 static int
6539 vdc_check_capacity(vdc_t *vdc)
6540 {
6541 	int rv = 0;
6542 	size_t alloc_len;
6543 	vd_capacity_t *vd_cap;
6544 
6545 	if (vdc->vdisk_size != 0)
6546 		return (0);
6547 
6548 	alloc_len = P2ROUNDUP(sizeof (vd_capacity_t), sizeof (uint64_t));
6549 
6550 	vd_cap = kmem_zalloc(alloc_len, KM_SLEEP);
6551 
6552 	rv = vdc_do_sync_op(vdc, VD_OP_GET_CAPACITY, (caddr_t)vd_cap, alloc_len,
6553 	    0, 0, CB_SYNC, (void *)(uint64_t)FKIOCTL, VIO_both_dir, B_TRUE);
6554 
6555 	if (rv == 0) {
6556 		if (vd_cap->vdisk_block_size != vdc->block_size ||
6557 		    vd_cap->vdisk_size == VD_SIZE_UNKNOWN ||
6558 		    vd_cap->vdisk_size == 0)
6559 			rv = EINVAL;
6560 		else
6561 			vdc->vdisk_size = vd_cap->vdisk_size;
6562 	}
6563 
6564 	kmem_free(vd_cap, alloc_len);
6565 	return (rv);
6566 }
6567 
6568 /*
6569  * This structure is used in the DKIO(7I) array below.
6570  */
6571 typedef struct vdc_dk_ioctl {
6572 	uint8_t		op;		/* VD_OP_XXX value */
6573 	int		cmd;		/* Solaris ioctl operation number */
6574 	size_t		nbytes;		/* size of structure to be copied */
6575 
6576 	/* function to convert between vDisk and Solaris structure formats */
6577 	int	(*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg,
6578 	    int mode, int dir);
6579 } vdc_dk_ioctl_t;
6580 
6581 /*
6582  * Subset of DKIO(7I) operations currently supported
6583  */
6584 static vdc_dk_ioctl_t	dk_ioctl[] = {
6585 	{VD_OP_FLUSH,		DKIOCFLUSHWRITECACHE,	0,
6586 		vdc_null_copy_func},
6587 	{VD_OP_GET_WCE,		DKIOCGETWCE,		sizeof (int),
6588 		vdc_get_wce_convert},
6589 	{VD_OP_SET_WCE,		DKIOCSETWCE,		sizeof (int),
6590 		vdc_set_wce_convert},
6591 	{VD_OP_GET_VTOC,	DKIOCGVTOC,		sizeof (vd_vtoc_t),
6592 		vdc_get_vtoc_convert},
6593 	{VD_OP_SET_VTOC,	DKIOCSVTOC,		sizeof (vd_vtoc_t),
6594 		vdc_set_vtoc_convert},
6595 	{VD_OP_GET_DISKGEOM,	DKIOCGGEOM,		sizeof (vd_geom_t),
6596 		vdc_get_geom_convert},
6597 	{VD_OP_GET_DISKGEOM,	DKIOCG_PHYGEOM,		sizeof (vd_geom_t),
6598 		vdc_get_geom_convert},
6599 	{VD_OP_GET_DISKGEOM, 	DKIOCG_VIRTGEOM,	sizeof (vd_geom_t),
6600 		vdc_get_geom_convert},
6601 	{VD_OP_SET_DISKGEOM,	DKIOCSGEOM,		sizeof (vd_geom_t),
6602 		vdc_set_geom_convert},
6603 	{VD_OP_GET_EFI,		DKIOCGETEFI,		0,
6604 		vdc_get_efi_convert},
6605 	{VD_OP_SET_EFI,		DKIOCSETEFI,		0,
6606 		vdc_set_efi_convert},
6607 
6608 	/* DIOCTL_RWCMD is converted to a read or a write */
6609 	{0, DIOCTL_RWCMD,  sizeof (struct dadkio_rwcmd), NULL},
6610 
6611 	/* mhd(7I) non-shared multihost disks ioctls */
6612 	{0, MHIOCTKOWN,				0, vdc_null_copy_func},
6613 	{0, MHIOCRELEASE,			0, vdc_null_copy_func},
6614 	{0, MHIOCSTATUS,			0, vdc_null_copy_func},
6615 	{0, MHIOCQRESERVE,			0, vdc_null_copy_func},
6616 
6617 	/* mhd(7I) shared multihost disks ioctls */
6618 	{0, MHIOCGRP_INKEYS,			0, vdc_null_copy_func},
6619 	{0, MHIOCGRP_INRESV,			0, vdc_null_copy_func},
6620 	{0, MHIOCGRP_REGISTER,			0, vdc_null_copy_func},
6621 	{0, MHIOCGRP_RESERVE, 			0, vdc_null_copy_func},
6622 	{0, MHIOCGRP_PREEMPTANDABORT,		0, vdc_null_copy_func},
6623 	{0, MHIOCGRP_REGISTERANDIGNOREKEY,	0, vdc_null_copy_func},
6624 
6625 	/* mhd(7I) failfast ioctl */
6626 	{0, MHIOCENFAILFAST,			0, vdc_null_copy_func},
6627 
6628 	/*
6629 	 * These particular ioctls are not sent to the server - vdc fakes up
6630 	 * the necessary info.
6631 	 */
6632 	{0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func},
6633 	{0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func},
6634 	{0, USCSICMD,	sizeof (struct uscsi_cmd), vdc_null_copy_func},
6635 	{0, DKIOCPARTITION, 0, vdc_null_copy_func },
6636 	{0, DKIOCGAPART, 0, vdc_null_copy_func },
6637 	{0, DKIOCREMOVABLE, 0, vdc_null_copy_func},
6638 	{0, CDROMREADOFFSET, 0, vdc_null_copy_func}
6639 };
6640 
6641 /*
6642  * This function handles ioctl requests from the vd_efi_alloc_and_read()
6643  * function and forward them to the vdisk.
6644  */
6645 static int
6646 vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg)
6647 {
6648 	vdc_t *vdc = (vdc_t *)vdisk;
6649 	dev_t dev;
6650 	int rval;
6651 
6652 	dev = makedevice(ddi_driver_major(vdc->dip),
6653 	    VD_MAKE_DEV(vdc->instance, 0));
6654 
6655 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, FKIOCTL, &rval));
6656 }
6657 
6658 /*
6659  * Function:
6660  *	vd_process_ioctl()
6661  *
6662  * Description:
6663  *	This routine processes disk specific ioctl calls
6664  *
6665  * Arguments:
6666  *	dev	- the device number
6667  *	cmd	- the operation [dkio(7I)] to be processed
6668  *	arg	- pointer to user provided structure
6669  *		  (contains data to be set or reference parameter for get)
6670  *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
6671  *	rvalp	- pointer to return value for calling process.
6672  *
6673  * Return Code:
6674  *	0
6675  *	EFAULT
6676  *	ENXIO
6677  *	EIO
6678  *	ENOTSUP
6679  */
6680 static int
6681 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode, int *rvalp)
6682 {
6683 	int		instance = VDCUNIT(dev);
6684 	vdc_t		*vdc = NULL;
6685 	int		rv = -1;
6686 	int		idx = 0;		/* index into dk_ioctl[] */
6687 	size_t		len = 0;		/* #bytes to send to vds */
6688 	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
6689 	caddr_t		mem_p = NULL;
6690 	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
6691 	vdc_dk_ioctl_t	*iop;
6692 
6693 	vdc = ddi_get_soft_state(vdc_state, instance);
6694 	if (vdc == NULL) {
6695 		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
6696 		    instance);
6697 		return (ENXIO);
6698 	}
6699 
6700 	DMSG(vdc, 0, "[%d] Processing ioctl(%x) for dev %lx : model %x\n",
6701 	    instance, cmd, dev, ddi_model_convert_from(mode & FMODELS));
6702 
6703 	if (rvalp != NULL) {
6704 		/* the return value of the ioctl is 0 by default */
6705 		*rvalp = 0;
6706 	}
6707 
6708 	/*
6709 	 * Validate the ioctl operation to be performed.
6710 	 *
6711 	 * If we have looped through the array without finding a match then we
6712 	 * don't support this ioctl.
6713 	 */
6714 	for (idx = 0; idx < nioctls; idx++) {
6715 		if (cmd == dk_ioctl[idx].cmd)
6716 			break;
6717 	}
6718 
6719 	if (idx >= nioctls) {
6720 		DMSG(vdc, 0, "[%d] Unsupported ioctl (0x%x)\n",
6721 		    vdc->instance, cmd);
6722 		return (ENOTSUP);
6723 	}
6724 
6725 	iop = &(dk_ioctl[idx]);
6726 
6727 	if (cmd == DKIOCGETEFI || cmd == DKIOCSETEFI) {
6728 		/* size is not fixed for EFI ioctls, it depends on ioctl arg */
6729 		dk_efi_t	dk_efi;
6730 
6731 		rv = ddi_copyin(arg, &dk_efi, sizeof (dk_efi_t), mode);
6732 		if (rv != 0)
6733 			return (EFAULT);
6734 
6735 		len = sizeof (vd_efi_t) - 1 + dk_efi.dki_length;
6736 	} else {
6737 		len = iop->nbytes;
6738 	}
6739 
6740 	/* check if the ioctl is applicable */
6741 	switch (cmd) {
6742 	case CDROMREADOFFSET:
6743 	case DKIOCREMOVABLE:
6744 		return (ENOTTY);
6745 
6746 	case USCSICMD:
6747 	case MHIOCTKOWN:
6748 	case MHIOCSTATUS:
6749 	case MHIOCQRESERVE:
6750 	case MHIOCRELEASE:
6751 	case MHIOCGRP_INKEYS:
6752 	case MHIOCGRP_INRESV:
6753 	case MHIOCGRP_REGISTER:
6754 	case MHIOCGRP_RESERVE:
6755 	case MHIOCGRP_PREEMPTANDABORT:
6756 	case MHIOCGRP_REGISTERANDIGNOREKEY:
6757 	case MHIOCENFAILFAST:
6758 		if (vdc->cinfo == NULL)
6759 			return (ENXIO);
6760 		if (vdc->cinfo->dki_ctype != DKC_SCSI_CCS)
6761 			return (ENOTTY);
6762 		break;
6763 
6764 	case DIOCTL_RWCMD:
6765 		if (vdc->cinfo == NULL)
6766 			return (ENXIO);
6767 		if (vdc->cinfo->dki_ctype != DKC_DIRECT)
6768 			return (ENOTTY);
6769 		break;
6770 
6771 	case DKIOCINFO:
6772 		if (vdc->cinfo == NULL)
6773 			return (ENXIO);
6774 		break;
6775 
6776 	case DKIOCGMEDIAINFO:
6777 		if (vdc->minfo == NULL)
6778 			return (ENXIO);
6779 		if (vdc_check_capacity(vdc) != 0)
6780 			/* disk capacity is not available */
6781 			return (EIO);
6782 		break;
6783 	}
6784 
6785 	/*
6786 	 * Deal with ioctls which require a processing different than
6787 	 * converting ioctl arguments and sending a corresponding
6788 	 * VD operation.
6789 	 */
6790 	switch (cmd) {
6791 
6792 	case USCSICMD:
6793 	{
6794 		return (vdc_uscsi_cmd(vdc, arg, mode));
6795 	}
6796 
6797 	case MHIOCTKOWN:
6798 	{
6799 		mutex_enter(&vdc->ownership_lock);
6800 		/*
6801 		 * We have to set VDC_OWNERSHIP_WANTED now so that the ownership
6802 		 * can be flagged with VDC_OWNERSHIP_RESET if the LDC is reset
6803 		 * while we are processing the ioctl.
6804 		 */
6805 		vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED);
6806 
6807 		rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE |
6808 		    VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE, mode);
6809 		if (rv == 0) {
6810 			vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED |
6811 			    VDC_OWNERSHIP_GRANTED);
6812 		} else {
6813 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
6814 		}
6815 		mutex_exit(&vdc->ownership_lock);
6816 		return (rv);
6817 	}
6818 
6819 	case MHIOCRELEASE:
6820 	{
6821 		mutex_enter(&vdc->ownership_lock);
6822 		rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR, mode);
6823 		if (rv == 0) {
6824 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
6825 		}
6826 		mutex_exit(&vdc->ownership_lock);
6827 		return (rv);
6828 	}
6829 
6830 	case MHIOCSTATUS:
6831 	{
6832 		uint64_t status;
6833 
6834 		rv = vdc_access_get(vdc, &status, mode);
6835 		if (rv == 0 && rvalp != NULL)
6836 			*rvalp = (status & VD_ACCESS_ALLOWED)? 0 : 1;
6837 		return (rv);
6838 	}
6839 
6840 	case MHIOCQRESERVE:
6841 	{
6842 		rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE, mode);
6843 		return (rv);
6844 	}
6845 
6846 	case MHIOCGRP_INKEYS:
6847 	{
6848 		return (vdc_mhd_inkeys(vdc, arg, mode));
6849 	}
6850 
6851 	case MHIOCGRP_INRESV:
6852 	{
6853 		return (vdc_mhd_inresv(vdc, arg, mode));
6854 	}
6855 
6856 	case MHIOCGRP_REGISTER:
6857 	{
6858 		return (vdc_mhd_register(vdc, arg, mode));
6859 	}
6860 
6861 	case MHIOCGRP_RESERVE:
6862 	{
6863 		return (vdc_mhd_reserve(vdc, arg, mode));
6864 	}
6865 
6866 	case MHIOCGRP_PREEMPTANDABORT:
6867 	{
6868 		return (vdc_mhd_preemptabort(vdc, arg, mode));
6869 	}
6870 
6871 	case MHIOCGRP_REGISTERANDIGNOREKEY:
6872 	{
6873 		return (vdc_mhd_registerignore(vdc, arg, mode));
6874 	}
6875 
6876 	case MHIOCENFAILFAST:
6877 	{
6878 		rv = vdc_failfast(vdc, arg, mode);
6879 		return (rv);
6880 	}
6881 
6882 	case DIOCTL_RWCMD:
6883 	{
6884 		return (vdc_dioctl_rwcmd(dev, arg, mode));
6885 	}
6886 
6887 	case DKIOCGAPART:
6888 	{
6889 		return (vdc_dkio_gapart(vdc, arg, mode));
6890 	}
6891 
6892 	case DKIOCPARTITION:
6893 	{
6894 		return (vdc_dkio_partition(vdc, arg, mode));
6895 	}
6896 
6897 	case DKIOCINFO:
6898 	{
6899 		struct dk_cinfo	cinfo;
6900 
6901 		bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
6902 		cinfo.dki_partition = VDCPART(dev);
6903 
6904 		rv = ddi_copyout(&cinfo, (void *)arg,
6905 		    sizeof (struct dk_cinfo), mode);
6906 		if (rv != 0)
6907 			return (EFAULT);
6908 
6909 		return (0);
6910 	}
6911 
6912 	case DKIOCGMEDIAINFO:
6913 	{
6914 		ASSERT(vdc->vdisk_size != 0);
6915 		if (vdc->minfo->dki_capacity == 0)
6916 			vdc->minfo->dki_capacity = vdc->vdisk_size;
6917 		rv = ddi_copyout(vdc->minfo, (void *)arg,
6918 		    sizeof (struct dk_minfo), mode);
6919 		if (rv != 0)
6920 			return (EFAULT);
6921 
6922 		return (0);
6923 	}
6924 
6925 	case DKIOCFLUSHWRITECACHE:
6926 		{
6927 			struct dk_callback *dkc =
6928 			    (struct dk_callback *)(uintptr_t)arg;
6929 			vdc_dk_arg_t	*dkarg = NULL;
6930 
6931 			DMSG(vdc, 1, "[%d] Flush W$: mode %x\n",
6932 			    instance, mode);
6933 
6934 			/*
6935 			 * If arg is NULL, then there is no callback function
6936 			 * registered and the call operates synchronously; we
6937 			 * break and continue with the rest of the function and
6938 			 * wait for vds to return (i.e. after the request to
6939 			 * vds returns successfully, all writes completed prior
6940 			 * to the ioctl will have been flushed from the disk
6941 			 * write cache to persistent media.
6942 			 *
6943 			 * If a callback function is registered, we dispatch
6944 			 * the request on a task queue and return immediately.
6945 			 * The callback will deal with informing the calling
6946 			 * thread that the flush request is completed.
6947 			 */
6948 			if (dkc == NULL)
6949 				break;
6950 
6951 			/*
6952 			 * the asynchronous callback is only supported if
6953 			 * invoked from within the kernel
6954 			 */
6955 			if ((mode & FKIOCTL) == 0)
6956 				return (ENOTSUP);
6957 
6958 			dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP);
6959 
6960 			dkarg->mode = mode;
6961 			dkarg->dev = dev;
6962 			bcopy(dkc, &dkarg->dkc, sizeof (*dkc));
6963 
6964 			mutex_enter(&vdc->lock);
6965 			vdc->dkio_flush_pending++;
6966 			dkarg->vdc = vdc;
6967 			mutex_exit(&vdc->lock);
6968 
6969 			/* put the request on a task queue */
6970 			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
6971 			    (void *)dkarg, DDI_SLEEP);
6972 			if (rv == NULL) {
6973 				/* clean up if dispatch fails */
6974 				mutex_enter(&vdc->lock);
6975 				vdc->dkio_flush_pending--;
6976 				mutex_exit(&vdc->lock);
6977 				kmem_free(dkarg, sizeof (vdc_dk_arg_t));
6978 			}
6979 
6980 			return (rv == NULL ? ENOMEM : 0);
6981 		}
6982 	}
6983 
6984 	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
6985 	ASSERT(iop->op != 0);
6986 
6987 	/* check if the vDisk server handles the operation for this vDisk */
6988 	if (VD_OP_SUPPORTED(vdc->operations, iop->op) == B_FALSE) {
6989 		DMSG(vdc, 0, "[%d] Unsupported VD_OP operation (0x%x)\n",
6990 		    vdc->instance, iop->op);
6991 		return (ENOTSUP);
6992 	}
6993 
6994 	/* LDC requires that the memory being mapped is 8-byte aligned */
6995 	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
6996 	DMSG(vdc, 1, "[%d] struct size %ld alloc %ld\n",
6997 	    instance, len, alloc_len);
6998 
6999 	if (alloc_len > 0)
7000 		mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
7001 
7002 	/*
7003 	 * Call the conversion function for this ioctl which, if necessary,
7004 	 * converts from the Solaris format to the format ARC'ed
7005 	 * as part of the vDisk protocol (FWARC 2006/195)
7006 	 */
7007 	ASSERT(iop->convert != NULL);
7008 	rv = (iop->convert)(vdc, arg, mem_p, mode, VD_COPYIN);
7009 	if (rv != 0) {
7010 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
7011 		    instance, rv, cmd);
7012 		if (mem_p != NULL)
7013 			kmem_free(mem_p, alloc_len);
7014 		return (rv);
7015 	}
7016 
7017 	/*
7018 	 * send request to vds to service the ioctl.
7019 	 */
7020 	rv = vdc_do_sync_op(vdc, iop->op, mem_p, alloc_len,
7021 	    VDCPART(dev), 0, CB_SYNC, (void *)(uint64_t)mode,
7022 	    VIO_both_dir, B_TRUE);
7023 
7024 	if (rv != 0) {
7025 		/*
7026 		 * This is not necessarily an error. The ioctl could
7027 		 * be returning a value such as ENOTTY to indicate
7028 		 * that the ioctl is not applicable.
7029 		 */
7030 		DMSG(vdc, 0, "[%d] vds returned %d for ioctl 0x%x\n",
7031 		    instance, rv, cmd);
7032 		if (mem_p != NULL)
7033 			kmem_free(mem_p, alloc_len);
7034 
7035 		return (rv);
7036 	}
7037 
7038 	/*
7039 	 * Call the conversion function (if it exists) for this ioctl
7040 	 * which converts from the format ARC'ed as part of the vDisk
7041 	 * protocol (FWARC 2006/195) back to a format understood by
7042 	 * the rest of Solaris.
7043 	 */
7044 	rv = (iop->convert)(vdc, mem_p, arg, mode, VD_COPYOUT);
7045 	if (rv != 0) {
7046 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
7047 		    instance, rv, cmd);
7048 		if (mem_p != NULL)
7049 			kmem_free(mem_p, alloc_len);
7050 		return (rv);
7051 	}
7052 
7053 	if (mem_p != NULL)
7054 		kmem_free(mem_p, alloc_len);
7055 
7056 	return (rv);
7057 }
7058 
7059 /*
7060  * Function:
7061  *
7062  * Description:
7063  *	This is an empty conversion function used by ioctl calls which
7064  *	do not need to convert the data being passed in/out to userland
7065  */
7066 static int
7067 vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir)
7068 {
7069 	_NOTE(ARGUNUSED(vdc))
7070 	_NOTE(ARGUNUSED(from))
7071 	_NOTE(ARGUNUSED(to))
7072 	_NOTE(ARGUNUSED(mode))
7073 	_NOTE(ARGUNUSED(dir))
7074 
7075 	return (0);
7076 }
7077 
7078 static int
7079 vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
7080     int mode, int dir)
7081 {
7082 	_NOTE(ARGUNUSED(vdc))
7083 
7084 	if (dir == VD_COPYIN)
7085 		return (0);		/* nothing to do */
7086 
7087 	if (ddi_copyout(from, to, sizeof (int), mode) != 0)
7088 		return (EFAULT);
7089 
7090 	return (0);
7091 }
7092 
7093 static int
7094 vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
7095     int mode, int dir)
7096 {
7097 	_NOTE(ARGUNUSED(vdc))
7098 
7099 	if (dir == VD_COPYOUT)
7100 		return (0);		/* nothing to do */
7101 
7102 	if (ddi_copyin(from, to, sizeof (int), mode) != 0)
7103 		return (EFAULT);
7104 
7105 	return (0);
7106 }
7107 
7108 /*
7109  * Function:
7110  *	vdc_get_vtoc_convert()
7111  *
7112  * Description:
7113  *	This routine performs the necessary convertions from the DKIOCGVTOC
7114  *	Solaris structure to the format defined in FWARC 2006/195.
7115  *
7116  *	In the struct vtoc definition, the timestamp field is marked as not
7117  *	supported so it is not part of vDisk protocol (FWARC 2006/195).
7118  *	However SVM uses that field to check it can write into the VTOC,
7119  *	so we fake up the info of that field.
7120  *
7121  * Arguments:
7122  *	vdc	- the vDisk client
7123  *	from	- the buffer containing the data to be copied from
7124  *	to	- the buffer to be copied to
7125  *	mode	- flags passed to ioctl() call
7126  *	dir	- the "direction" of the copy - VD_COPYIN or VD_COPYOUT
7127  *
7128  * Return Code:
7129  *	0	- Success
7130  *	ENXIO	- incorrect buffer passed in.
7131  *	EFAULT	- ddi_copyout routine encountered an error.
7132  */
7133 static int
7134 vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7135 {
7136 	int		i;
7137 	void		*tmp_mem = NULL;
7138 	void		*tmp_memp;
7139 	struct vtoc	vt;
7140 	struct vtoc32	vt32;
7141 	int		copy_len = 0;
7142 	int		rv = 0;
7143 
7144 	if (dir != VD_COPYOUT)
7145 		return (0);	/* nothing to do */
7146 
7147 	if ((from == NULL) || (to == NULL))
7148 		return (ENXIO);
7149 
7150 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
7151 		copy_len = sizeof (struct vtoc32);
7152 	else
7153 		copy_len = sizeof (struct vtoc);
7154 
7155 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7156 
7157 	VD_VTOC2VTOC((vd_vtoc_t *)from, &vt);
7158 
7159 	/* fake the VTOC timestamp field */
7160 	for (i = 0; i < V_NUMPAR; i++) {
7161 		vt.timestamp[i] = vdc->vtoc->timestamp[i];
7162 	}
7163 
7164 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
7165 		/* LINTED E_ASSIGN_NARROW_CONV */
7166 		vtoctovtoc32(vt, vt32);
7167 		tmp_memp = &vt32;
7168 	} else {
7169 		tmp_memp = &vt;
7170 	}
7171 	rv = ddi_copyout(tmp_memp, to, copy_len, mode);
7172 	if (rv != 0)
7173 		rv = EFAULT;
7174 
7175 	kmem_free(tmp_mem, copy_len);
7176 	return (rv);
7177 }
7178 
7179 /*
7180  * Function:
7181  *	vdc_set_vtoc_convert()
7182  *
7183  * Description:
7184  *	This routine performs the necessary convertions from the DKIOCSVTOC
7185  *	Solaris structure to the format defined in FWARC 2006/195.
7186  *
7187  * Arguments:
7188  *	vdc	- the vDisk client
7189  *	from	- Buffer with data
7190  *	to	- Buffer where data is to be copied to
7191  *	mode	- flags passed to ioctl
7192  *	dir	- direction of copy (in or out)
7193  *
7194  * Return Code:
7195  *	0	- Success
7196  *	ENXIO	- Invalid buffer passed in
7197  *	EFAULT	- ddi_copyin of data failed
7198  */
7199 static int
7200 vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7201 {
7202 	_NOTE(ARGUNUSED(vdc))
7203 
7204 	void		*tmp_mem = NULL, *uvtoc;
7205 	struct vtoc	vt;
7206 	struct vtoc	*vtp = &vt;
7207 	vd_vtoc_t	vtvd;
7208 	int		copy_len = 0;
7209 	int		i, rv = 0;
7210 
7211 	if ((from == NULL) || (to == NULL))
7212 		return (ENXIO);
7213 
7214 	if (dir == VD_COPYIN)
7215 		uvtoc = from;
7216 	else
7217 		uvtoc = to;
7218 
7219 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
7220 		copy_len = sizeof (struct vtoc32);
7221 	else
7222 		copy_len = sizeof (struct vtoc);
7223 
7224 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7225 
7226 	rv = ddi_copyin(uvtoc, tmp_mem, copy_len, mode);
7227 	if (rv != 0) {
7228 		kmem_free(tmp_mem, copy_len);
7229 		return (EFAULT);
7230 	}
7231 
7232 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
7233 		vtoc32tovtoc((*(struct vtoc32 *)tmp_mem), vt);
7234 	} else {
7235 		vtp = tmp_mem;
7236 	}
7237 
7238 	if (dir == VD_COPYOUT) {
7239 		/*
7240 		 * The disk label may have changed. Revalidate the disk
7241 		 * geometry. This will also update the device nodes.
7242 		 */
7243 		vdc_validate(vdc);
7244 
7245 		/*
7246 		 * We also need to keep track of the timestamp fields.
7247 		 */
7248 		for (i = 0; i < V_NUMPAR; i++) {
7249 			vdc->vtoc->timestamp[i] = vtp->timestamp[i];
7250 		}
7251 
7252 		return (0);
7253 	}
7254 
7255 	VTOC2VD_VTOC(vtp, &vtvd);
7256 	bcopy(&vtvd, to, sizeof (vd_vtoc_t));
7257 	kmem_free(tmp_mem, copy_len);
7258 
7259 	return (0);
7260 }
7261 
7262 /*
7263  * Function:
7264  *	vdc_get_geom_convert()
7265  *
7266  * Description:
7267  *	This routine performs the necessary convertions from the DKIOCGGEOM,
7268  *	DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format
7269  *	defined in FWARC 2006/195
7270  *
7271  * Arguments:
7272  *	vdc	- the vDisk client
7273  *	from	- Buffer with data
7274  *	to	- Buffer where data is to be copied to
7275  *	mode	- flags passed to ioctl
7276  *	dir	- direction of copy (in or out)
7277  *
7278  * Return Code:
7279  *	0	- Success
7280  *	ENXIO	- Invalid buffer passed in
7281  *	EFAULT	- ddi_copyout of data failed
7282  */
7283 static int
7284 vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7285 {
7286 	_NOTE(ARGUNUSED(vdc))
7287 
7288 	struct dk_geom	geom;
7289 	int	copy_len = sizeof (struct dk_geom);
7290 	int	rv = 0;
7291 
7292 	if (dir != VD_COPYOUT)
7293 		return (0);	/* nothing to do */
7294 
7295 	if ((from == NULL) || (to == NULL))
7296 		return (ENXIO);
7297 
7298 	VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom);
7299 	rv = ddi_copyout(&geom, to, copy_len, mode);
7300 	if (rv != 0)
7301 		rv = EFAULT;
7302 
7303 	return (rv);
7304 }
7305 
7306 /*
7307  * Function:
7308  *	vdc_set_geom_convert()
7309  *
7310  * Description:
7311  *	This routine performs the necessary convertions from the DKIOCSGEOM
7312  *	Solaris structure to the format defined in FWARC 2006/195.
7313  *
7314  * Arguments:
7315  *	vdc	- the vDisk client
7316  *	from	- Buffer with data
7317  *	to	- Buffer where data is to be copied to
7318  *	mode	- flags passed to ioctl
7319  *	dir	- direction of copy (in or out)
7320  *
7321  * Return Code:
7322  *	0	- Success
7323  *	ENXIO	- Invalid buffer passed in
7324  *	EFAULT	- ddi_copyin of data failed
7325  */
7326 static int
7327 vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7328 {
7329 	_NOTE(ARGUNUSED(vdc))
7330 
7331 	vd_geom_t	vdgeom;
7332 	void		*tmp_mem = NULL;
7333 	int		copy_len = sizeof (struct dk_geom);
7334 	int		rv = 0;
7335 
7336 	if (dir != VD_COPYIN)
7337 		return (0);	/* nothing to do */
7338 
7339 	if ((from == NULL) || (to == NULL))
7340 		return (ENXIO);
7341 
7342 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7343 
7344 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
7345 	if (rv != 0) {
7346 		kmem_free(tmp_mem, copy_len);
7347 		return (EFAULT);
7348 	}
7349 	DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom);
7350 	bcopy(&vdgeom, to, sizeof (vdgeom));
7351 	kmem_free(tmp_mem, copy_len);
7352 
7353 	return (0);
7354 }
7355 
7356 static int
7357 vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7358 {
7359 	_NOTE(ARGUNUSED(vdc))
7360 
7361 	vd_efi_t	*vd_efi;
7362 	dk_efi_t	dk_efi;
7363 	int		rv = 0;
7364 	void		*uaddr;
7365 
7366 	if ((from == NULL) || (to == NULL))
7367 		return (ENXIO);
7368 
7369 	if (dir == VD_COPYIN) {
7370 
7371 		vd_efi = (vd_efi_t *)to;
7372 
7373 		rv = ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode);
7374 		if (rv != 0)
7375 			return (EFAULT);
7376 
7377 		vd_efi->lba = dk_efi.dki_lba;
7378 		vd_efi->length = dk_efi.dki_length;
7379 		bzero(vd_efi->data, vd_efi->length);
7380 
7381 	} else {
7382 
7383 		rv = ddi_copyin(to, &dk_efi, sizeof (dk_efi_t), mode);
7384 		if (rv != 0)
7385 			return (EFAULT);
7386 
7387 		uaddr = dk_efi.dki_data;
7388 
7389 		dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
7390 
7391 		VD_EFI2DK_EFI((vd_efi_t *)from, &dk_efi);
7392 
7393 		rv = ddi_copyout(dk_efi.dki_data, uaddr, dk_efi.dki_length,
7394 		    mode);
7395 		if (rv != 0)
7396 			return (EFAULT);
7397 
7398 		kmem_free(dk_efi.dki_data, dk_efi.dki_length);
7399 	}
7400 
7401 	return (0);
7402 }
7403 
7404 static int
7405 vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7406 {
7407 	_NOTE(ARGUNUSED(vdc))
7408 
7409 	dk_efi_t	dk_efi;
7410 	void		*uaddr;
7411 
7412 	if (dir == VD_COPYOUT) {
7413 		/*
7414 		 * The disk label may have changed. Revalidate the disk
7415 		 * geometry. This will also update the device nodes.
7416 		 */
7417 		vdc_validate(vdc);
7418 		return (0);
7419 	}
7420 
7421 	if ((from == NULL) || (to == NULL))
7422 		return (ENXIO);
7423 
7424 	if (ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode) != 0)
7425 		return (EFAULT);
7426 
7427 	uaddr = dk_efi.dki_data;
7428 
7429 	dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
7430 
7431 	if (ddi_copyin(uaddr, dk_efi.dki_data, dk_efi.dki_length, mode) != 0)
7432 		return (EFAULT);
7433 
7434 	DK_EFI2VD_EFI(&dk_efi, (vd_efi_t *)to);
7435 
7436 	kmem_free(dk_efi.dki_data, dk_efi.dki_length);
7437 
7438 	return (0);
7439 }
7440 
7441 
7442 /* -------------------------------------------------------------------------- */
7443 
7444 /*
7445  * Function:
7446  *	vdc_create_fake_geometry()
7447  *
7448  * Description:
7449  *	This routine fakes up the disk info needed for some DKIO ioctls such
7450  *	as DKIOCINFO and DKIOCGMEDIAINFO [just like lofi(7D) and ramdisk(7D) do]
7451  *
7452  *	Note: This function must not be called until the vDisk attributes have
7453  *	been exchanged as part of the handshake with the vDisk server.
7454  *
7455  * Arguments:
7456  *	vdc	- soft state pointer for this instance of the device driver.
7457  *
7458  * Return Code:
7459  *	none.
7460  */
7461 static void
7462 vdc_create_fake_geometry(vdc_t *vdc)
7463 {
7464 	ASSERT(vdc != NULL);
7465 	ASSERT(vdc->max_xfer_sz != 0);
7466 
7467 	/*
7468 	 * DKIOCINFO support
7469 	 */
7470 	if (vdc->cinfo == NULL)
7471 		vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
7472 
7473 	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
7474 	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
7475 	/* max_xfer_sz is #blocks so we don't need to divide by DEV_BSIZE */
7476 	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz;
7477 
7478 	/*
7479 	 * We set the controller type to DKC_SCSI_CCS only if the VD_OP_SCSICMD
7480 	 * operation is supported, otherwise the controller type is DKC_DIRECT.
7481 	 * Version 1.0 does not support the VD_OP_SCSICMD operation, so the
7482 	 * controller type is always DKC_DIRECT in that case.
7483 	 *
7484 	 * If the virtual disk is backed by a physical CD/DVD device or
7485 	 * an ISO image, modify the controller type to indicate this
7486 	 */
7487 	switch (vdc->vdisk_media) {
7488 	case VD_MEDIA_CD:
7489 	case VD_MEDIA_DVD:
7490 		vdc->cinfo->dki_ctype = DKC_CDROM;
7491 		break;
7492 	case VD_MEDIA_FIXED:
7493 		if (VD_OP_SUPPORTED(vdc->operations, VD_OP_SCSICMD))
7494 			vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
7495 		else
7496 			vdc->cinfo->dki_ctype = DKC_DIRECT;
7497 		break;
7498 	default:
7499 		/* in the case of v1.0 we default to a fixed disk */
7500 		vdc->cinfo->dki_ctype = DKC_DIRECT;
7501 		break;
7502 	}
7503 	vdc->cinfo->dki_flags = DKI_FMTVOL;
7504 	vdc->cinfo->dki_cnum = 0;
7505 	vdc->cinfo->dki_addr = 0;
7506 	vdc->cinfo->dki_space = 0;
7507 	vdc->cinfo->dki_prio = 0;
7508 	vdc->cinfo->dki_vec = 0;
7509 	vdc->cinfo->dki_unit = vdc->instance;
7510 	vdc->cinfo->dki_slave = 0;
7511 	/*
7512 	 * The partition number will be created on the fly depending on the
7513 	 * actual slice (i.e. minor node) that is used to request the data.
7514 	 */
7515 	vdc->cinfo->dki_partition = 0;
7516 
7517 	/*
7518 	 * DKIOCGMEDIAINFO support
7519 	 */
7520 	if (vdc->minfo == NULL)
7521 		vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
7522 
7523 	if (vio_ver_is_supported(vdc->ver, 1, 1)) {
7524 		vdc->minfo->dki_media_type =
7525 		    VD_MEDIATYPE2DK_MEDIATYPE(vdc->vdisk_media);
7526 	} else {
7527 		vdc->minfo->dki_media_type = DK_FIXED_DISK;
7528 	}
7529 
7530 	vdc->minfo->dki_capacity = vdc->vdisk_size;
7531 	vdc->minfo->dki_lbsize = vdc->block_size;
7532 }
7533 
7534 static ushort_t
7535 vdc_lbl2cksum(struct dk_label *label)
7536 {
7537 	int	count;
7538 	ushort_t sum, *sp;
7539 
7540 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
7541 	sp = (ushort_t *)label;
7542 	sum = 0;
7543 	while (count--) {
7544 		sum ^= *sp++;
7545 	}
7546 
7547 	return (sum);
7548 }
7549 
7550 /*
7551  * Function:
7552  *	vdc_validate_geometry
7553  *
7554  * Description:
7555  *	This routine discovers the label and geometry of the disk. It stores
7556  *	the disk label and related information in the vdc structure. If it
7557  *	fails to validate the geometry or to discover the disk label then
7558  *	the label is marked as unknown (VD_DISK_LABEL_UNK).
7559  *
7560  * Arguments:
7561  *	vdc	- soft state pointer for this instance of the device driver.
7562  *
7563  * Return Code:
7564  *	0	- success.
7565  *	EINVAL	- unknown disk label.
7566  *	ENOTSUP	- geometry not applicable (EFI label).
7567  *	EIO	- error accessing the disk.
7568  */
7569 static int
7570 vdc_validate_geometry(vdc_t *vdc)
7571 {
7572 	buf_t	*buf;	/* BREAD requests need to be in a buf_t structure */
7573 	dev_t	dev;
7574 	int	rv, rval;
7575 	struct dk_label label;
7576 	struct dk_geom geom;
7577 	struct vtoc vtoc;
7578 	efi_gpt_t *gpt;
7579 	efi_gpe_t *gpe;
7580 	vd_efi_dev_t edev;
7581 
7582 	ASSERT(vdc != NULL);
7583 	ASSERT(vdc->vtoc != NULL && vdc->geom != NULL);
7584 	ASSERT(MUTEX_HELD(&vdc->lock));
7585 
7586 	mutex_exit(&vdc->lock);
7587 
7588 	dev = makedevice(ddi_driver_major(vdc->dip),
7589 	    VD_MAKE_DEV(vdc->instance, 0));
7590 
7591 	rv = vd_process_ioctl(dev, DKIOCGGEOM, (caddr_t)&geom, FKIOCTL, &rval);
7592 	if (rv == 0)
7593 		rv = vd_process_ioctl(dev, DKIOCGVTOC, (caddr_t)&vtoc,
7594 		    FKIOCTL, &rval);
7595 
7596 	if (rv == ENOTSUP) {
7597 		/*
7598 		 * If the device does not support VTOC then we try
7599 		 * to read an EFI label.
7600 		 *
7601 		 * We need to know the block size and the disk size to
7602 		 * be able to read an EFI label.
7603 		 */
7604 		if (vdc->vdisk_size == 0) {
7605 			if ((rv = vdc_check_capacity(vdc)) != 0) {
7606 				mutex_enter(&vdc->lock);
7607 				vdc_store_label_unk(vdc);
7608 				return (rv);
7609 			}
7610 		}
7611 
7612 		VD_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl);
7613 
7614 		rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe);
7615 
7616 		if (rv) {
7617 			DMSG(vdc, 0, "[%d] Failed to get EFI (err=%d)",
7618 			    vdc->instance, rv);
7619 			mutex_enter(&vdc->lock);
7620 			vdc_store_label_unk(vdc);
7621 			return (EIO);
7622 		}
7623 
7624 		mutex_enter(&vdc->lock);
7625 		vdc_store_label_efi(vdc, gpt, gpe);
7626 		vd_efi_free(&edev, gpt, gpe);
7627 		return (ENOTSUP);
7628 	}
7629 
7630 	if (rv != 0) {
7631 		DMSG(vdc, 0, "[%d] Failed to get VTOC (err=%d)",
7632 		    vdc->instance, rv);
7633 		mutex_enter(&vdc->lock);
7634 		vdc_store_label_unk(vdc);
7635 		if (rv != EINVAL)
7636 			rv = EIO;
7637 		return (rv);
7638 	}
7639 
7640 	/* check that geometry and vtoc are valid */
7641 	if (geom.dkg_nhead == 0 || geom.dkg_nsect == 0 ||
7642 	    vtoc.v_sanity != VTOC_SANE) {
7643 		mutex_enter(&vdc->lock);
7644 		vdc_store_label_unk(vdc);
7645 		return (EINVAL);
7646 	}
7647 
7648 	/*
7649 	 * We have a disk and a valid VTOC. However this does not mean
7650 	 * that the disk currently have a VTOC label. The returned VTOC may
7651 	 * be a default VTOC to be used for configuring the disk (this is
7652 	 * what is done for disk image). So we read the label from the
7653 	 * beginning of the disk to ensure we really have a VTOC label.
7654 	 *
7655 	 * FUTURE: This could be the default way for reading the VTOC
7656 	 * from the disk as opposed to sending the VD_OP_GET_VTOC
7657 	 * to the server. This will be the default if vdc is implemented
7658 	 * ontop of cmlb.
7659 	 */
7660 
7661 	/*
7662 	 * Single slice disk does not support read using an absolute disk
7663 	 * offset so we just rely on the DKIOCGVTOC ioctl in that case.
7664 	 */
7665 	if (vdc->vdisk_type == VD_DISK_TYPE_SLICE) {
7666 		mutex_enter(&vdc->lock);
7667 		if (vtoc.v_nparts != 1) {
7668 			vdc_store_label_unk(vdc);
7669 			return (EINVAL);
7670 		}
7671 		vdc_store_label_vtoc(vdc, &geom, &vtoc);
7672 		return (0);
7673 	}
7674 
7675 	if (vtoc.v_nparts != V_NUMPAR) {
7676 		mutex_enter(&vdc->lock);
7677 		vdc_store_label_unk(vdc);
7678 		return (EINVAL);
7679 	}
7680 
7681 	/*
7682 	 * Read disk label from start of disk
7683 	 */
7684 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
7685 	bioinit(buf);
7686 	buf->b_un.b_addr = (caddr_t)&label;
7687 	buf->b_bcount = DK_LABEL_SIZE;
7688 	buf->b_flags = B_BUSY | B_READ;
7689 	buf->b_dev = cmpdev(dev);
7690 	rv = vdc_send_request(vdc, VD_OP_BREAD, (caddr_t)&label,
7691 	    DK_LABEL_SIZE, VD_SLICE_NONE, 0, CB_STRATEGY, buf, VIO_read_dir);
7692 	if (rv) {
7693 		DMSG(vdc, 1, "[%d] Failed to read disk block 0\n",
7694 		    vdc->instance);
7695 	} else {
7696 		rv = biowait(buf);
7697 		biofini(buf);
7698 	}
7699 	kmem_free(buf, sizeof (buf_t));
7700 
7701 	if (rv != 0 || label.dkl_magic != DKL_MAGIC ||
7702 	    label.dkl_cksum != vdc_lbl2cksum(&label)) {
7703 		DMSG(vdc, 1, "[%d] Got VTOC with invalid label\n",
7704 		    vdc->instance);
7705 		mutex_enter(&vdc->lock);
7706 		vdc_store_label_unk(vdc);
7707 		return (EINVAL);
7708 	}
7709 
7710 	mutex_enter(&vdc->lock);
7711 	vdc_store_label_vtoc(vdc, &geom, &vtoc);
7712 	return (0);
7713 }
7714 
7715 /*
7716  * Function:
7717  *	vdc_validate
7718  *
7719  * Description:
7720  *	This routine discovers the label of the disk and create the
7721  *	appropriate device nodes if the label has changed.
7722  *
7723  * Arguments:
7724  *	vdc	- soft state pointer for this instance of the device driver.
7725  *
7726  * Return Code:
7727  *	none.
7728  */
7729 static void
7730 vdc_validate(vdc_t *vdc)
7731 {
7732 	vd_disk_label_t old_label;
7733 	vd_slice_t old_slice[V_NUMPAR];
7734 	int rv;
7735 
7736 	ASSERT(!MUTEX_HELD(&vdc->lock));
7737 
7738 	mutex_enter(&vdc->lock);
7739 
7740 	/* save the current label and vtoc */
7741 	old_label = vdc->vdisk_label;
7742 	bcopy(vdc->slice, &old_slice, sizeof (vd_slice_t) * V_NUMPAR);
7743 
7744 	/* check the geometry */
7745 	(void) vdc_validate_geometry(vdc);
7746 
7747 	/* if the disk label has changed, update device nodes */
7748 	if (vdc->vdisk_label != old_label) {
7749 
7750 		if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
7751 			rv = vdc_create_device_nodes_efi(vdc);
7752 		else
7753 			rv = vdc_create_device_nodes_vtoc(vdc);
7754 
7755 		if (rv != 0) {
7756 			DMSG(vdc, 0, "![%d] Failed to update device nodes",
7757 			    vdc->instance);
7758 		}
7759 	}
7760 
7761 	mutex_exit(&vdc->lock);
7762 }
7763 
7764 static void
7765 vdc_validate_task(void *arg)
7766 {
7767 	vdc_t *vdc = (vdc_t *)arg;
7768 
7769 	vdc_validate(vdc);
7770 
7771 	mutex_enter(&vdc->lock);
7772 	ASSERT(vdc->validate_pending > 0);
7773 	vdc->validate_pending--;
7774 	mutex_exit(&vdc->lock);
7775 }
7776 
7777 /*
7778  * Function:
7779  *	vdc_setup_devid()
7780  *
7781  * Description:
7782  *	This routine discovers the devid of a vDisk. It requests the devid of
7783  *	the underlying device from the vDisk server, builds an encapsulated
7784  *	devid based on the retrieved devid and registers that new devid to
7785  *	the vDisk.
7786  *
7787  * Arguments:
7788  *	vdc	- soft state pointer for this instance of the device driver.
7789  *
7790  * Return Code:
7791  *	0	- A devid was succesfully registered for the vDisk
7792  */
7793 static int
7794 vdc_setup_devid(vdc_t *vdc)
7795 {
7796 	int rv;
7797 	vd_devid_t *vd_devid;
7798 	size_t bufsize, bufid_len;
7799 
7800 	/*
7801 	 * At first sight, we don't know the size of the devid that the
7802 	 * server will return but this size will be encoded into the
7803 	 * reply. So we do a first request using a default size then we
7804 	 * check if this size was large enough. If not then we do a second
7805 	 * request with the correct size returned by the server. Note that
7806 	 * ldc requires size to be 8-byte aligned.
7807 	 */
7808 	bufsize = P2ROUNDUP(VD_DEVID_SIZE(VD_DEVID_DEFAULT_LEN),
7809 	    sizeof (uint64_t));
7810 	vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
7811 	bufid_len = bufsize - sizeof (vd_efi_t) - 1;
7812 
7813 	rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID, (caddr_t)vd_devid,
7814 	    bufsize, 0, 0, CB_SYNC, 0, VIO_both_dir, B_TRUE);
7815 
7816 	DMSG(vdc, 2, "sync_op returned %d\n", rv);
7817 
7818 	if (rv) {
7819 		kmem_free(vd_devid, bufsize);
7820 		return (rv);
7821 	}
7822 
7823 	if (vd_devid->length > bufid_len) {
7824 		/*
7825 		 * The returned devid is larger than the buffer used. Try again
7826 		 * with a buffer with the right size.
7827 		 */
7828 		kmem_free(vd_devid, bufsize);
7829 		bufsize = P2ROUNDUP(VD_DEVID_SIZE(vd_devid->length),
7830 		    sizeof (uint64_t));
7831 		vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
7832 		bufid_len = bufsize - sizeof (vd_efi_t) - 1;
7833 
7834 		rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID,
7835 		    (caddr_t)vd_devid, bufsize, 0, 0, CB_SYNC, 0,
7836 		    VIO_both_dir, B_TRUE);
7837 
7838 		if (rv) {
7839 			kmem_free(vd_devid, bufsize);
7840 			return (rv);
7841 		}
7842 	}
7843 
7844 	/*
7845 	 * The virtual disk should have the same device id as the one associated
7846 	 * with the physical disk it is mapped on, otherwise sharing a disk
7847 	 * between a LDom and a non-LDom may not work (for example for a shared
7848 	 * SVM disk set).
7849 	 *
7850 	 * The DDI framework does not allow creating a device id with any
7851 	 * type so we first create a device id of type DEVID_ENCAP and then
7852 	 * we restore the orignal type of the physical device.
7853 	 */
7854 
7855 	DMSG(vdc, 2, ": devid length = %d\n", vd_devid->length);
7856 
7857 	/* build an encapsulated devid based on the returned devid */
7858 	if (ddi_devid_init(vdc->dip, DEVID_ENCAP, vd_devid->length,
7859 	    vd_devid->id, &vdc->devid) != DDI_SUCCESS) {
7860 		DMSG(vdc, 1, "[%d] Fail to created devid\n", vdc->instance);
7861 		kmem_free(vd_devid, bufsize);
7862 		return (1);
7863 	}
7864 
7865 	DEVID_FORMTYPE((impl_devid_t *)vdc->devid, vd_devid->type);
7866 
7867 	ASSERT(ddi_devid_valid(vdc->devid) == DDI_SUCCESS);
7868 
7869 	kmem_free(vd_devid, bufsize);
7870 
7871 	if (ddi_devid_register(vdc->dip, vdc->devid) != DDI_SUCCESS) {
7872 		DMSG(vdc, 1, "[%d] Fail to register devid\n", vdc->instance);
7873 		return (1);
7874 	}
7875 
7876 	return (0);
7877 }
7878 
7879 static void
7880 vdc_store_label_efi(vdc_t *vdc, efi_gpt_t *gpt, efi_gpe_t *gpe)
7881 {
7882 	int i, nparts;
7883 
7884 	ASSERT(MUTEX_HELD(&vdc->lock));
7885 
7886 	vdc->vdisk_label = VD_DISK_LABEL_EFI;
7887 	bzero(vdc->vtoc, sizeof (struct vtoc));
7888 	bzero(vdc->geom, sizeof (struct dk_geom));
7889 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
7890 
7891 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
7892 
7893 	for (i = 0; i < nparts && i < VD_EFI_WD_SLICE; i++) {
7894 
7895 		if (gpe[i].efi_gpe_StartingLBA == 0 ||
7896 		    gpe[i].efi_gpe_EndingLBA == 0) {
7897 			continue;
7898 		}
7899 
7900 		vdc->slice[i].start = gpe[i].efi_gpe_StartingLBA;
7901 		vdc->slice[i].nblocks = gpe[i].efi_gpe_EndingLBA -
7902 		    gpe[i].efi_gpe_StartingLBA + 1;
7903 	}
7904 
7905 	ASSERT(vdc->vdisk_size != 0);
7906 	vdc->slice[VD_EFI_WD_SLICE].start = 0;
7907 	vdc->slice[VD_EFI_WD_SLICE].nblocks = vdc->vdisk_size;
7908 
7909 }
7910 
7911 static void
7912 vdc_store_label_vtoc(vdc_t *vdc, struct dk_geom *geom, struct vtoc *vtoc)
7913 {
7914 	int i;
7915 
7916 	ASSERT(MUTEX_HELD(&vdc->lock));
7917 	ASSERT(vdc->block_size == vtoc->v_sectorsz);
7918 
7919 	vdc->vdisk_label = VD_DISK_LABEL_VTOC;
7920 	bcopy(vtoc, vdc->vtoc, sizeof (struct vtoc));
7921 	bcopy(geom, vdc->geom, sizeof (struct dk_geom));
7922 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
7923 
7924 	for (i = 0; i < vtoc->v_nparts; i++) {
7925 		vdc->slice[i].start = vtoc->v_part[i].p_start;
7926 		vdc->slice[i].nblocks = vtoc->v_part[i].p_size;
7927 	}
7928 }
7929 
7930 static void
7931 vdc_store_label_unk(vdc_t *vdc)
7932 {
7933 	ASSERT(MUTEX_HELD(&vdc->lock));
7934 
7935 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
7936 	bzero(vdc->vtoc, sizeof (struct vtoc));
7937 	bzero(vdc->geom, sizeof (struct dk_geom));
7938 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
7939 }
7940