1fec509a0Sgm89044 /*
2fec509a0Sgm89044 * CDDL HEADER START
3fec509a0Sgm89044 *
4fec509a0Sgm89044 * The contents of this file are subject to the terms of the
5fec509a0Sgm89044 * Common Development and Distribution License (the "License").
6fec509a0Sgm89044 * You may not use this file except in compliance with the License.
7fec509a0Sgm89044 *
8fec509a0Sgm89044 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fec509a0Sgm89044 * or http://www.opensolaris.org/os/licensing.
10fec509a0Sgm89044 * See the License for the specific language governing permissions
11fec509a0Sgm89044 * and limitations under the License.
12fec509a0Sgm89044 *
13fec509a0Sgm89044 * When distributing Covered Code, include this CDDL HEADER in each
14fec509a0Sgm89044 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fec509a0Sgm89044 * If applicable, add the following below this CDDL HEADER, with the
16fec509a0Sgm89044 * fields enclosed by brackets "[]" replaced with your own identifying
17fec509a0Sgm89044 * information: Portions Copyright [yyyy] [name of copyright owner]
18fec509a0Sgm89044 *
19fec509a0Sgm89044 * CDDL HEADER END
20fec509a0Sgm89044 */
21fec509a0Sgm89044 /*
22*32e0ab73SMisaki Miyashita * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23fec509a0Sgm89044 */
24fec509a0Sgm89044
25fec509a0Sgm89044 #include <sys/types.h>
26fec509a0Sgm89044 #include <sys/sysmacros.h>
27fec509a0Sgm89044 #include <sys/modctl.h>
28fec509a0Sgm89044 #include <sys/conf.h>
29fec509a0Sgm89044 #include <sys/devops.h>
30fec509a0Sgm89044 #include <sys/cmn_err.h>
31fec509a0Sgm89044 #include <sys/kmem.h>
32fec509a0Sgm89044 #include <sys/stat.h>
33fec509a0Sgm89044 #include <sys/open.h>
34fec509a0Sgm89044 #include <sys/file.h>
35fec509a0Sgm89044 #include <sys/cpuvar.h>
36fec509a0Sgm89044 #include <sys/disp.h>
37fec509a0Sgm89044 #include <sys/hsvc.h>
38fec509a0Sgm89044 #include <sys/machsystm.h>
39fec509a0Sgm89044 #include <sys/ksynch.h>
40fec509a0Sgm89044 #include <sys/hypervisor_api.h>
41fec509a0Sgm89044 #include <sys/n2rng.h>
42fec509a0Sgm89044 #include <sys/sha1.h>
43fec509a0Sgm89044 #include <sys/ddi.h> /* near end to get min and max macros right */
44fec509a0Sgm89044 #include <sys/sunddi.h>
45fe54a78eSHai-May Chao #include <rng/fips_random.h>
46fec509a0Sgm89044
47fec509a0Sgm89044 /* n must be a power of 2 */
48fec509a0Sgm89044 #define ROUNDUP(k, n) (((k) + (n) - 1) & ~((n) - 1))
49fec509a0Sgm89044
50fec509a0Sgm89044 /*
51fec509a0Sgm89044 * Policy. ENTROPY_STARVATION is the maximum number of calls each
52fec509a0Sgm89044 * FIPS instance will accept without successfully getting more
53fec509a0Sgm89044 * entropy. It needs to be large enough to allow RNG operations to
54fec509a0Sgm89044 * not stall because of health checks, etc. But we don't want it too
55fec509a0Sgm89044 * large. FIPS 186-2 change 1 (5 October 2001) states that no more
56fec509a0Sgm89044 * that 2,000,000 DSA signatures (done using this algorithm) should be
57fec509a0Sgm89044 * done without reseeding. We make sure we add 64 bits of entropy at
58fec509a0Sgm89044 * most every 10000 operations, hence we will have stirred in 160 bits
59fec509a0Sgm89044 * of entropy at most once every 30000 operations. Normally, we stir
60fec509a0Sgm89044 * in 64 bits of entropy for every number generated.
61fec509a0Sgm89044 */
62fec509a0Sgm89044 #define ENTROPY_STARVATION 10000ULL
63fec509a0Sgm89044
64fec509a0Sgm89044
65fec509a0Sgm89044 int
fips_random(n2rng_t * n2rng,uint8_t * out,size_t nbytes)66fec509a0Sgm89044 fips_random(n2rng_t *n2rng, uint8_t *out, size_t nbytes)
67fec509a0Sgm89044 {
68fec509a0Sgm89044 int i;
69fec509a0Sgm89044 fipsrandomstruct_t *frsp;
70741c280dStwelke int rv;
71fec509a0Sgm89044 union {
72fec509a0Sgm89044 uint32_t as32[SHA1WORDS];
73fec509a0Sgm89044 uint64_t as64[ROUNDUP(SHA1WORDS, 2) >> 1];
74fec509a0Sgm89044 } entropy = {0};
75fec509a0Sgm89044 uint32_t tempout[SHA1WORDS];
76fec509a0Sgm89044
77fec509a0Sgm89044
78fec509a0Sgm89044 for (i = 0; i < nbytes; i += SHA1BYTES) {
79741c280dStwelke frsp = &n2rng->n_frs.fipsarray[
80741c280dStwelke atomic_inc_32_nv(&n2rng->n_frs.fips_round_robin_j) %
81741c280dStwelke N2RNG_FIPS_INSTANCES];
82fec509a0Sgm89044 /*
83fec509a0Sgm89044 * Since in the new scheme of things, the RNG latency
84fec509a0Sgm89044 * will be high on reads after the first, we get just
85741c280dStwelke * one word of entropy per call.
86fec509a0Sgm89044 */
87741c280dStwelke if ((rv = n2rng_getentropy(n2rng, (void *)&entropy.as64[1],
88741c280dStwelke sizeof (uint64_t))) != 0) {
89741c280dStwelke
90741c280dStwelke /*
91741c280dStwelke * If all rngs have failed, dispatch task to unregister
92741c280dStwelke * from kcf and put the driver in an error state. If
93741c280dStwelke * recoverable errors persist, a configuration retry
94741c280dStwelke * will be initiated.
95741c280dStwelke */
96741c280dStwelke if (rv == EPERM) {
97741c280dStwelke n2rng_failure(n2rng);
98741c280dStwelke return (EIO);
99741c280dStwelke }
100741c280dStwelke /* Failure with possible recovery */
101fec509a0Sgm89044 entropy.as64[1] = 0;
102fec509a0Sgm89044 }
103fec509a0Sgm89044
104fec509a0Sgm89044 /*
105fec509a0Sgm89044 * The idea here is that a Niagara2 chip is highly
106fec509a0Sgm89044 * parallel, with many strands. If we have just one
107fec509a0Sgm89044 * instance of the FIPS data, then only one FIPS
108fec509a0Sgm89044 * computation can happen at a time, serializeing all
109fec509a0Sgm89044 * the RNG stuff. So we make N2RNG_FIPS_INSTANCES,
110fec509a0Sgm89044 * and use them round-robin, with the counter being
111fec509a0Sgm89044 * n2rng->n_frs.fips_round_robin_j. We increment the
112fec509a0Sgm89044 * counter with an atomic op, avoiding having to have
113fec509a0Sgm89044 * a global muxtex. The atomic ops are also
114fec509a0Sgm89044 * significantly faster than mutexes. The mutex is
115fec509a0Sgm89044 * put inside the loop, otherwise one thread reading
116fec509a0Sgm89044 * many blocks could stall all other strands.
117fec509a0Sgm89044 */
118fec509a0Sgm89044 frsp = &n2rng->n_frs.fipsarray[
119fec509a0Sgm89044 atomic_inc_32_nv(&n2rng->n_frs.fips_round_robin_j) %
120fec509a0Sgm89044 N2RNG_FIPS_INSTANCES];
121fec509a0Sgm89044
122fec509a0Sgm89044 mutex_enter(&frsp->mtx);
123fec509a0Sgm89044
124fec509a0Sgm89044 if (entropy.as64[1] == 0) {
125fec509a0Sgm89044 /*
126fec509a0Sgm89044 * If we did not get any entropy, entropyword
127fec509a0Sgm89044 * is zero. We get a false positive with
128fec509a0Sgm89044 * probablitity 2^-64. It's not worth a few
129fec509a0Sgm89044 * extra stores and tests eliminate the false
130fec509a0Sgm89044 * positive.
131fec509a0Sgm89044 */
132fec509a0Sgm89044 if (++frsp->entropyhunger > ENTROPY_STARVATION) {
133fec509a0Sgm89044 mutex_exit(&frsp->mtx);
134741c280dStwelke n2rng_unconfigured(n2rng);
135fec509a0Sgm89044 return (EIO);
136fec509a0Sgm89044 }
137fec509a0Sgm89044 } else {
138fec509a0Sgm89044 frsp->entropyhunger = 0;
139fec509a0Sgm89044 }
140fec509a0Sgm89044
141fec509a0Sgm89044 /* nbytes - i is bytes to go */
142fe54a78eSHai-May Chao fips_random_inner(frsp->XKEY, tempout, entropy.as32);
143*32e0ab73SMisaki Miyashita
144fec509a0Sgm89044 bcopy(tempout, &out[i], min(nbytes - i, SHA1BYTES));
145fec509a0Sgm89044
146fec509a0Sgm89044 mutex_exit(&frsp->mtx);
147fec509a0Sgm89044 }
148fec509a0Sgm89044
149fec509a0Sgm89044 /* Zeroize sensitive information */
150fec509a0Sgm89044
151fec509a0Sgm89044 entropy.as64[1] = 0;
152fec509a0Sgm89044 bzero(tempout, SHA1BYTES);
153fec509a0Sgm89044
154fec509a0Sgm89044 return (0);
155fec509a0Sgm89044 }
156fec509a0Sgm89044
157fec509a0Sgm89044 /*
158fec509a0Sgm89044 * Initializes one FIPS RNG instance. Must be called once for each
159fec509a0Sgm89044 * instance.
160fec509a0Sgm89044 */
161fec509a0Sgm89044 int
n2rng_fips_random_init(n2rng_t * n2rng,fipsrandomstruct_t * frsp)162fec509a0Sgm89044 n2rng_fips_random_init(n2rng_t *n2rng, fipsrandomstruct_t *frsp)
163fec509a0Sgm89044 {
164fec509a0Sgm89044 /*
165fec509a0Sgm89044 * All FIPS-approved algorithms will operate as cryptograpic
166fec509a0Sgm89044 * quality PRNGs even if there is no entropy source. (In
167fec509a0Sgm89044 * fact, this the only one that accepts entropy on the fly.)
168fec509a0Sgm89044 * One motivation for this is that they system keeps on
169fec509a0Sgm89044 * delivering cryptographic quality random numbers, even if
170fec509a0Sgm89044 * the entropy source fails.
171fec509a0Sgm89044 */
172fec509a0Sgm89044
173fec509a0Sgm89044 int rv;
174*32e0ab73SMisaki Miyashita static uint32_t FIPS_RNG_NO_USER_INPUT[] = {0, 0, 0, 0, 0};
175fec509a0Sgm89044
176fec509a0Sgm89044 rv = n2rng_getentropy(n2rng, (void *)frsp->XKEY, ROUNDUP(SHA1BYTES, 8));
177fec509a0Sgm89044 if (rv) {
178fec509a0Sgm89044 return (rv);
179fec509a0Sgm89044 }
180741c280dStwelke frsp->entropyhunger = 0;
181fec509a0Sgm89044 mutex_init(&frsp->mtx, NULL, MUTEX_DRIVER, NULL);
182fec509a0Sgm89044
183*32e0ab73SMisaki Miyashita /* compute the first (compare only) random value */
184*32e0ab73SMisaki Miyashita fips_random_inner(frsp->XKEY, frsp->x_jminus1, FIPS_RNG_NO_USER_INPUT);
185*32e0ab73SMisaki Miyashita
186fec509a0Sgm89044 return (0);
187fec509a0Sgm89044 }
188fec509a0Sgm89044
189fec509a0Sgm89044 void
n2rng_fips_random_fini(fipsrandomstruct_t * frsp)190fec509a0Sgm89044 n2rng_fips_random_fini(fipsrandomstruct_t *frsp)
191fec509a0Sgm89044 {
192fec509a0Sgm89044 mutex_destroy(&frsp->mtx);
193fec509a0Sgm89044 /*
194fec509a0Sgm89044 * Zeroise fips data. Not really necessary, since the
195fec509a0Sgm89044 * algorithm has backtracking resistance, but do it anyway.
196fec509a0Sgm89044 */
197fec509a0Sgm89044 bzero(frsp, sizeof (fipsrandomstruct_t));
198fec509a0Sgm89044 }
199