xref: /titanic_44/usr/src/uts/sun4v/cpu/niagara2.c (revision 58d1a73c51105d779ddacf2ae9553bae44a39ff4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/archsystm.h>
32 #include <sys/machparam.h>
33 #include <sys/machsystm.h>
34 #include <sys/cpu.h>
35 #include <sys/elf_SPARC.h>
36 #include <vm/hat_sfmmu.h>
37 #include <vm/page.h>
38 #include <vm/vm_dep.h>
39 #include <sys/cpuvar.h>
40 #include <sys/async.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/dditypes.h>
44 #include <sys/sunddi.h>
45 #include <sys/cpu_module.h>
46 #include <sys/prom_debug.h>
47 #include <sys/vmsystm.h>
48 #include <sys/prom_plat.h>
49 #include <sys/sysmacros.h>
50 #include <sys/intreg.h>
51 #include <sys/machtrap.h>
52 #include <sys/ontrap.h>
53 #include <sys/ivintr.h>
54 #include <sys/atomic.h>
55 #include <sys/panic.h>
56 #include <sys/dtrace.h>
57 #include <sys/simulate.h>
58 #include <sys/fault.h>
59 #include <sys/niagara2regs.h>
60 #include <sys/hsvc.h>
61 #include <sys/trapstat.h>
62 #include <sys/mutex_impl.h>
63 
64 uint_t root_phys_addr_lo_mask = 0xffffffffU;
65 #if defined(NIAGARA2_IMPL)
66 char cpu_module_name[] = "SUNW,UltraSPARC-T2";
67 #elif defined(VFALLS_IMPL)
68 char cpu_module_name[] = "SUNW,UltraSPARC-T2+";
69 #endif
70 
71 /*
72  * Hypervisor services information for the NIAGARA2 and Victoria Falls
73  * CPU module
74  */
75 static boolean_t cpu_hsvc_available = B_TRUE;
76 static uint64_t cpu_sup_minor;		/* Supported minor number */
77 #if defined(NIAGARA2_IMPL)
78 static hsvc_info_t cpu_hsvc = {
79 	HSVC_REV_1, NULL, HSVC_GROUP_NIAGARA2_CPU, NIAGARA2_HSVC_MAJOR,
80 	NIAGARA2_HSVC_MINOR, cpu_module_name
81 };
82 #elif defined(VFALLS_IMPL)
83 static hsvc_info_t cpu_hsvc = {
84 	HSVC_REV_1, NULL, HSVC_GROUP_VFALLS_CPU, VFALLS_HSVC_MAJOR,
85 	VFALLS_HSVC_MINOR, cpu_module_name
86 };
87 #endif
88 
89 void
90 cpu_setup(void)
91 {
92 	extern int mmu_exported_pagesize_mask;
93 	extern int cpc_has_overflow_intr;
94 	extern size_t contig_mem_prealloc_base_size;
95 	int status;
96 
97 	/*
98 	 * Negotiate the API version for Niagara2 specific hypervisor
99 	 * services.
100 	 */
101 	status = hsvc_register(&cpu_hsvc, &cpu_sup_minor);
102 	if (status != 0) {
103 		cmn_err(CE_WARN, "%s: cannot negotiate hypervisor services "
104 		    "group: 0x%lx major: 0x%lx minor: 0x%lx errno: %d",
105 		    cpu_hsvc.hsvc_modname, cpu_hsvc.hsvc_group,
106 		    cpu_hsvc.hsvc_major, cpu_hsvc.hsvc_minor, status);
107 		cpu_hsvc_available = B_FALSE;
108 	}
109 
110 	/*
111 	 * The setup common to all CPU modules is done in cpu_setup_common
112 	 * routine.
113 	 */
114 	cpu_setup_common(NULL);
115 
116 	cache |= (CACHE_PTAG | CACHE_IOCOHERENT);
117 
118 	if ((mmu_exported_pagesize_mask &
119 	    DEFAULT_SUN4V_MMU_PAGESIZE_MASK) !=
120 	    DEFAULT_SUN4V_MMU_PAGESIZE_MASK)
121 		cmn_err(CE_PANIC, "machine description"
122 		    " does not have required sun4v page sizes"
123 		    " 8K, 64K and 4M: MD mask is 0x%x",
124 		    mmu_exported_pagesize_mask);
125 
126 	cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2 |
127 	    AV_SPARC_ASI_BLK_INIT | AV_SPARC_POPC;
128 
129 	/*
130 	 * Niagara2 supports a 48-bit subset of the full 64-bit virtual
131 	 * address space. Virtual addresses between 0x0000800000000000
132 	 * and 0xffff.7fff.ffff.ffff inclusive lie within a "VA Hole"
133 	 * and must never be mapped. In addition, software must not use
134 	 * pages within 4GB of the VA hole as instruction pages to
135 	 * avoid problems with prefetching into the VA hole.
136 	 */
137 	hole_start = (caddr_t)((1ull << (va_bits - 1)) - (1ull << 32));
138 	hole_end = (caddr_t)((0ull - (1ull << (va_bits - 1))) + (1ull << 32));
139 
140 	/*
141 	 * Niagara2 has a performance counter overflow interrupt
142 	 */
143 	cpc_has_overflow_intr = 1;
144 
145 	/*
146 	 * Enable 4M pages for OOB.
147 	 */
148 	max_uheap_lpsize = MMU_PAGESIZE4M;
149 	max_ustack_lpsize = MMU_PAGESIZE4M;
150 	max_privmap_lpsize = MMU_PAGESIZE4M;
151 
152 #ifdef SUN4V_CONTIG_MEM_PREALLOC_SIZE_MB
153 	/*
154 	 * Use CPU Makefile specific compile time define (if exists)
155 	 * to add to the contig preallocation size.
156 	 */
157 	contig_mem_prealloc_base_size = MB(SUN4V_CONTIG_MEM_PREALLOC_SIZE_MB);
158 #endif
159 }
160 
161 /*
162  * Set the magic constants of the implementation.
163  */
164 void
165 cpu_fiximp(struct cpu_node *cpunode)
166 {
167 	/*
168 	 * The Cache node is optional in MD. Therefore in case "Cache"
169 	 * node does not exists in MD, set the default L2 cache associativity,
170 	 * size, linesize.
171 	 */
172 	if (cpunode->ecache_size == 0)
173 		cpunode->ecache_size = L2CACHE_SIZE;
174 	if (cpunode->ecache_linesize == 0)
175 		cpunode->ecache_linesize = L2CACHE_LINESIZE;
176 	if (cpunode->ecache_associativity == 0)
177 		cpunode->ecache_associativity = L2CACHE_ASSOCIATIVITY;
178 }
179 
180 void
181 cpu_map_exec_units(struct cpu *cp)
182 {
183 	ASSERT(MUTEX_HELD(&cpu_lock));
184 
185 	/*
186 	 * The cpu_ipipe and cpu_fpu fields are initialized based on
187 	 * the execution unit sharing information from the MD. They
188 	 * default to the CPU id in the absence of such information.
189 	 */
190 	cp->cpu_m.cpu_ipipe = cpunodes[cp->cpu_id].exec_unit_mapping;
191 	if (cp->cpu_m.cpu_ipipe == NO_EU_MAPPING_FOUND)
192 		cp->cpu_m.cpu_ipipe = (id_t)(cp->cpu_id);
193 
194 	cp->cpu_m.cpu_fpu = cpunodes[cp->cpu_id].fpu_mapping;
195 	if (cp->cpu_m.cpu_fpu == NO_EU_MAPPING_FOUND)
196 		cp->cpu_m.cpu_fpu = (id_t)(cp->cpu_id);
197 
198 	/*
199 	 * Niagara 2 defines the core to be at the FPU level
200 	 */
201 	cp->cpu_m.cpu_core = cp->cpu_m.cpu_fpu;
202 
203 	/*
204 	 * The cpu_chip field is initialized based on the information
205 	 * in the MD and assume that all cpus within a chip
206 	 * share the same L2 cache. If no such info is available, we
207 	 * set the cpu to belong to the defacto chip 0.
208 	 */
209 	cp->cpu_m.cpu_mpipe = cpunodes[cp->cpu_id].l2_cache_mapping;
210 	if (cp->cpu_m.cpu_mpipe == NO_L2_CACHE_MAPPING_FOUND)
211 		cp->cpu_m.cpu_mpipe = CPU_L2_CACHEID_INVALID;
212 
213 	cp->cpu_m.cpu_chip = cpunodes[cp->cpu_id].l2_cache_mapping;
214 	if (cp->cpu_m.cpu_chip == NO_L2_CACHE_MAPPING_FOUND)
215 		cp->cpu_m.cpu_chip = CPU_CHIPID_INVALID;
216 }
217 
218 static int cpucnt;
219 
220 void
221 cpu_init_private(struct cpu *cp)
222 {
223 	extern void niagara_kstat_init(void);
224 
225 	ASSERT(MUTEX_HELD(&cpu_lock));
226 
227 	cpu_map_exec_units(cp);
228 
229 	if ((cpucnt++ == 0) && (cpu_hsvc_available == B_TRUE))
230 		(void) niagara_kstat_init();
231 
232 	mutex_delay = rdccr_delay;
233 }
234 
235 /*ARGSUSED*/
236 void
237 cpu_uninit_private(struct cpu *cp)
238 {
239 	extern void niagara_kstat_fini(void);
240 
241 	ASSERT(MUTEX_HELD(&cpu_lock));
242 	if ((--cpucnt == 0) && (cpu_hsvc_available == B_TRUE))
243 		(void) niagara_kstat_fini();
244 }
245 
246 /*
247  * On Niagara2, any flush will cause all preceding stores to be
248  * synchronized wrt the i$, regardless of address or ASI.  In fact,
249  * the address is ignored, so we always flush address 0.
250  */
251 /*ARGSUSED*/
252 void
253 dtrace_flush_sec(uintptr_t addr)
254 {
255 	doflush(0);
256 }
257 
258 /*
259  * Trapstat support for Niagara2 processor
260  * The Niagara2 provides HWTW support for TSB lookup and with HWTW
261  * enabled no TSB hit information will be available. Therefore setting
262  * the time spent in TLB miss handler for TSB hits to 0.
263  */
264 int
265 cpu_trapstat_conf(int cmd)
266 {
267 	int status = 0;
268 
269 	switch (cmd) {
270 	case CPU_TSTATCONF_INIT:
271 	case CPU_TSTATCONF_FINI:
272 	case CPU_TSTATCONF_ENABLE:
273 	case CPU_TSTATCONF_DISABLE:
274 		break;
275 	default:
276 		status = EINVAL;
277 		break;
278 	}
279 	return (status);
280 }
281 
282 void
283 cpu_trapstat_data(void *buf, uint_t tstat_pgszs)
284 {
285 	tstat_pgszdata_t	*tstatp = (tstat_pgszdata_t *)buf;
286 	int	i;
287 
288 	for (i = 0; i < tstat_pgszs; i++, tstatp++) {
289 		tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_count = 0;
290 		tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_time = 0;
291 		tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_count = 0;
292 		tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_time = 0;
293 		tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_count = 0;
294 		tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_time = 0;
295 		tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_count = 0;
296 		tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_time = 0;
297 	}
298 }
299 
300 /*
301  * Page coloring support for hashed cache index mode
302  */
303 
304 /*
305  * Node id bits from machine description (MD).  Node id distinguishes
306  * local versus remote memory. Because of MPO, page allocation does
307  * not cross node boundaries. Therefore, remove the node id bits from
308  * the color, since they are fixed. Either bit 30, or 31:30 in
309  * Victoria Falls processors.
310  * The number of node id bits is always 0 in Niagara2.
311  */
312 typedef struct n2color {
313 	uchar_t nnbits;	/* number of node id bits */
314 	uchar_t nnmask; /* mask for node id bits */
315 	uchar_t	lomask;	/* mask for bits below node id */
316 	uchar_t lobits;	/* number of bits below node id */
317 } n2color_t;
318 
319 n2color_t n2color[MMU_PAGE_SIZES];
320 static uchar_t nhbits[] = {7, 7, 6, 5, 5, 5};
321 
322 /*
323  * Remove node id bits from color bits 32:28.
324  * This will reduce the number of colors.
325  * No change if number of node bits is zero.
326  */
327 static inline uint_t
328 n2_hash2color(uint_t color, uchar_t szc)
329 {
330 	n2color_t m = n2color[szc];
331 
332 	if (m.nnbits > 0) {
333 		color = ((color >> m.nnbits) & ~m.lomask) | (color & m.lomask);
334 		ASSERT((color & ~(hw_page_array[szc].hp_colors - 1)) == 0);
335 	}
336 
337 	return (color);
338 }
339 
340 /*
341  * Restore node id bits into page color.
342  * This will increase the number of colors to match N2.
343  * No change if number of node bits is zero.
344  */
345 static inline uint_t
346 n2_color2hash(uint_t color, uchar_t szc, uint_t node)
347 {
348 	n2color_t m = n2color[szc];
349 
350 	if (m.nnbits > 0) {
351 		color = ((color & ~m.lomask) << m.nnbits) | (color & m.lomask);
352 		color |= (node & m.nnmask) << m.lobits;
353 	}
354 
355 	return (color);
356 }
357 
358 /* NI2 L2$ index is pa[32:28]^pa[17:13].pa[19:18]^pa[12:11].pa[10:6] */
359 
360 /*
361  * iterator NULL means pfn is VA, do not adjust ra_to_pa
362  * iterator (-1) means pfn is RA, need to convert to PA
363  * iterator non-null means pfn is RA, use ra_to_pa
364  */
365 uint_t
366 page_pfn_2_color_cpu(pfn_t pfn, uchar_t szc, void *cookie)
367 {
368 	mem_node_iterator_t *it = cookie;
369 	uint_t color;
370 
371 	ASSERT(szc <= TTE256M);
372 
373 	if (it == ((mem_node_iterator_t *)(-1))) {
374 		pfn = plat_rapfn_to_papfn(pfn);
375 	} else if (it != NULL) {
376 		ASSERT(pfn >= it->mi_mblock_base && pfn <= it->mi_mblock_end);
377 		pfn = pfn + it->mi_ra_to_pa;
378 	}
379 	pfn = PFN_BASE(pfn, szc);
380 	color = ((pfn >> 15) ^ pfn) & 0x1f;
381 	if (szc < TTE4M) {
382 		/* 19:18 */
383 		color = (color << 2) | ((pfn >> 5) & 0x3);
384 		if (szc > TTE64K)
385 			color >>= 1;    /* 19 */
386 	}
387 	return (n2_hash2color(color, szc));
388 }
389 
390 static uint_t
391 page_papfn_2_color_cpu(pfn_t papfn, uchar_t szc)
392 {
393 	uint_t color;
394 
395 	ASSERT(szc <= TTE256M);
396 
397 	papfn = PFN_BASE(papfn, szc);
398 	color = ((papfn >> 15) ^ papfn) & 0x1f;
399 	if (szc < TTE4M) {
400 		/* 19:18 */
401 		color = (color << 2) | ((papfn >> 5) & 0x3);
402 		if (szc > TTE64K)
403 			color >>= 1;    /* 19 */
404 	}
405 	return (color);
406 }
407 
408 #if TTE256M != 5
409 #error TTE256M is not 5
410 #endif
411 
412 uint_t
413 page_get_nsz_color_mask_cpu(uchar_t szc, uint_t mask)
414 {
415 	static uint_t ni2_color_masks[5] = {0x63, 0x1e, 0x3e, 0x1f, 0x1f};
416 	ASSERT(szc < TTE256M);
417 	mask = n2_color2hash(mask, szc, 0);
418 	mask &= ni2_color_masks[szc];
419 	if (szc == TTE64K || szc == TTE512K)
420 		mask >>= 1;
421 	return (n2_hash2color(mask, szc + 1));
422 }
423 
424 uint_t
425 page_get_nsz_color_cpu(uchar_t szc, uint_t color)
426 {
427 	ASSERT(szc < TTE256M);
428 	color = n2_color2hash(color, szc, 0);
429 	if (szc == TTE64K || szc == TTE512K)
430 		color >>= 1;
431 	return (n2_hash2color(color, szc + 1));
432 }
433 
434 uint_t
435 page_get_color_shift_cpu(uchar_t szc, uchar_t nszc)
436 {
437 	uint_t s;
438 	ASSERT(nszc >= szc);
439 	ASSERT(nszc <= TTE256M);
440 
441 	s = nhbits[szc] - n2color[szc].nnbits;
442 	s -= nhbits[nszc] - n2color[nszc].nnbits;
443 
444 	return (s);
445 }
446 
447 uint_t
448 page_convert_color_cpu(uint_t ncolor, uchar_t szc, uchar_t nszc)
449 {
450 	uint_t color;
451 
452 	ASSERT(nszc > szc);
453 	ASSERT(nszc <= TTE256M);
454 	ncolor = n2_color2hash(ncolor, nszc, 0);
455 	color = ncolor << (nhbits[szc] - nhbits[nszc]);
456 	color = n2_hash2color(color, szc);
457 	return (color);
458 }
459 
460 #define	PAPFN_2_MNODE(pfn) \
461 	(((pfn) & it->mi_mnode_pfn_mask) >> it->mi_mnode_pfn_shift)
462 
463 /*ARGSUSED*/
464 pfn_t
465 page_next_pfn_for_color_cpu(pfn_t pfn, uchar_t szc, uint_t color,
466     uint_t ceq_mask, uint_t color_mask, void *cookie)
467 {
468 	mem_node_iterator_t *it = cookie;
469 	pfn_t pstep = PNUM_SIZE(szc);
470 	pfn_t npfn, pfn_ceq_mask, pfn_color;
471 	pfn_t tmpmask, mask = (pfn_t)-1;
472 	uint_t pfnmn;
473 
474 	ASSERT((color & ~ceq_mask) == 0);
475 	ASSERT(pfn >= it->mi_mblock_base && pfn <= it->mi_mblock_end);
476 
477 	/* convert RA to PA for accurate color calculation */
478 	if (it->mi_init) {
479 		/* first call after it, so cache these values */
480 		it->mi_hash_ceq_mask =
481 		    n2_color2hash(ceq_mask, szc, it->mi_mnode_mask);
482 		it->mi_hash_color =
483 		    n2_color2hash(color, szc, it->mi_mnode);
484 		it->mi_init = 0;
485 	} else {
486 		ASSERT(it->mi_hash_ceq_mask ==
487 		    n2_color2hash(ceq_mask, szc, it->mi_mnode_mask));
488 		ASSERT(it->mi_hash_color ==
489 		    n2_color2hash(color, szc, it->mi_mnode));
490 	}
491 	ceq_mask = it->mi_hash_ceq_mask;
492 	color = it->mi_hash_color;
493 	pfn += it->mi_ra_to_pa;
494 
495 	/* restart here when we switch memblocks */
496 next_mem_block:
497 	if (szc <= TTE64K) {
498 		pfnmn = PAPFN_2_MNODE(pfn);
499 	}
500 	if (((page_papfn_2_color_cpu(pfn, szc) ^ color) & ceq_mask) == 0 &&
501 	    (szc > TTE64K || pfnmn == it->mi_mnode)) {
502 
503 		/* we start from the page with correct color */
504 		if (szc >= TTE512K) {
505 			if (szc >= TTE4M) {
506 				/* page color is PA[32:28] */
507 				pfn_ceq_mask = ceq_mask << 15;
508 			} else {
509 				/* page color is PA[32:28].PA[19:19] */
510 				pfn_ceq_mask = ((ceq_mask & 1) << 6) |
511 				    ((ceq_mask >> 1) << 15);
512 			}
513 			npfn = ADD_MASKED(pfn, pstep, pfn_ceq_mask, mask);
514 			goto done;
515 		} else {
516 			/*
517 			 * We deal 64K or 8K page. Check if we could the
518 			 * satisfy the request without changing PA[32:28]
519 			 */
520 			pfn_ceq_mask = ((ceq_mask & 3) << 5) | (ceq_mask >> 2);
521 			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
522 			npfn = ADD_MASKED(pfn, pstep, pfn_ceq_mask, mask);
523 
524 			if ((((npfn ^ pfn) >> 15) & 0x1f) == 0)
525 				goto done;
526 
527 			/*
528 			 * for next pfn we have to change bits PA[32:28]
529 			 * set PA[63:28] and PA[19:18] of the next pfn
530 			 */
531 			npfn = (pfn >> 15) << 15;
532 			npfn |= (ceq_mask & color & 3) << 5;
533 			pfn_ceq_mask = (szc == TTE8K) ? 0 :
534 			    (ceq_mask & 0x1c) << 13;
535 			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
536 			npfn = ADD_MASKED(npfn, (1 << 15), pfn_ceq_mask, mask);
537 
538 			/*
539 			 * set bits PA[17:13] to match the color
540 			 */
541 			npfn |= ((npfn >> 15) ^ (color >> 2)) & (ceq_mask >> 2);
542 			goto done;
543 		}
544 	}
545 
546 	/*
547 	 * we start from the page with incorrect color - rare case
548 	 */
549 	if (szc >= TTE512K) {
550 		if (szc >= TTE4M) {
551 			/* page color is in bits PA[32:28] */
552 			npfn = ((pfn >> 20) << 20) | (color << 15);
553 			pfn_ceq_mask = (ceq_mask << 15) | 0x7fff;
554 		} else {
555 			/* try get the right color by changing bit PA[19:19] */
556 			npfn = pfn + pstep;
557 			if (((page_papfn_2_color_cpu(npfn, szc) ^ color) &
558 			    ceq_mask) == 0)
559 				goto done;
560 
561 			/* page color is PA[32:28].PA[19:19] */
562 			pfn_ceq_mask = ((ceq_mask & 1) << 6) |
563 			    ((ceq_mask >> 1) << 15) | (0xff << 7);
564 			pfn_color = ((color & 1) << 6) | ((color >> 1) << 15);
565 			npfn = ((pfn >> 20) << 20) | pfn_color;
566 		}
567 
568 		while (npfn <= pfn) {
569 			npfn = ADD_MASKED(npfn, pstep, pfn_ceq_mask, mask);
570 		}
571 		goto done;
572 	}
573 
574 	/*
575 	 *  We deal 64K or 8K page of incorrect color.
576 	 * Try correcting color without changing PA[32:28]
577 	 */
578 	pfn_ceq_mask = ((ceq_mask & 3) << 5) | (ceq_mask >> 2);
579 	pfn_color = ((color & 3) << 5) | (color >> 2);
580 	if (pfnmn == it->mi_mnode) {
581 		npfn = (pfn & ~(pfn_t)0x7f);
582 		npfn |= (((pfn >> 15) & 0x1f) ^ pfn_color) & pfn_ceq_mask;
583 		npfn = (szc == TTE64K) ? (npfn & ~(pfn_t)0x7) : npfn;
584 
585 		if (((page_papfn_2_color_cpu(npfn, szc) ^ color) &
586 		    ceq_mask) == 0) {
587 			/* the color is fixed - find the next page */
588 			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
589 			while (npfn <= pfn) {
590 				npfn = ADD_MASKED(npfn, pstep, pfn_ceq_mask,
591 				    mask);
592 			}
593 			if ((((npfn ^ pfn) >> 15) & 0x1f) == 0)
594 				goto done;
595 		}
596 	}
597 
598 	/* to fix the color need to touch PA[32:28] */
599 	npfn = (szc == TTE8K) ? ((pfn >> 15) << 15) :
600 	    (((pfn >> 18) << 18) | ((color & 0x1c) << 13));
601 
602 	/* fix mnode if input pfn is in the wrong mnode. */
603 	if ((pfnmn = PAPFN_2_MNODE(npfn)) != it->mi_mnode) {
604 		npfn += ((it->mi_mnode - pfnmn) & it->mi_mnode_mask) <<
605 		    it->mi_mnode_pfn_shift;
606 	}
607 
608 	tmpmask = (szc == TTE8K) ? 0 : (ceq_mask & 0x1c) << 13;
609 	tmpmask |= it->mi_mnode_pfn_mask;
610 
611 	while (npfn <= pfn) {
612 		npfn = ADD_MASKED(npfn, (1 << 15), tmpmask, mask);
613 	}
614 
615 	/* set bits PA[19:13] to match the color */
616 	npfn |= (((npfn >> 15) & 0x1f) ^ pfn_color) & pfn_ceq_mask;
617 	npfn = (szc == TTE64K) ? (npfn & ~(pfn_t)0x7) : npfn;
618 
619 done:
620 	ASSERT(((page_papfn_2_color_cpu(npfn, szc) ^ color) & ceq_mask) == 0);
621 	ASSERT(PAPFN_2_MNODE(npfn) == it->mi_mnode);
622 
623 	/* PA to RA */
624 	npfn -= it->mi_ra_to_pa;
625 
626 	/* check for possible memblock switch */
627 	if (npfn > it->mi_mblock_end) {
628 		pfn = plat_mem_node_iterator_init(npfn, it->mi_mnode, szc, it,
629 		    0);
630 		if (pfn == (pfn_t)-1)
631 			return (pfn);
632 		ASSERT(pfn >= it->mi_mblock_base && pfn <= it->mi_mblock_end);
633 		pfn += it->mi_ra_to_pa;
634 		goto next_mem_block;
635 	}
636 
637 	return (npfn);
638 }
639 
640 /*
641  * init page coloring
642  * VF encodes node_id for an L-group in either bit 30 or 31:30,
643  * which effectively reduces the number of colors available per mnode.
644  */
645 void
646 page_coloring_init_cpu()
647 {
648 	int i;
649 	uchar_t id;
650 	uchar_t lo;
651 	uchar_t hi;
652 	n2color_t m;
653 	mem_node_iterator_t it;
654 	static uchar_t idmask[] = {0, 0x7, 0x1f, 0x1f, 0x1f, 0x1f};
655 
656 	for (i = 0; i < max_mem_nodes; i++) {
657 		memset(&it, 0, sizeof (it));
658 		if (plat_mem_node_iterator_init(0, i, 0, &it, 1) != (pfn_t)-1)
659 			break;
660 	}
661 	ASSERT(i < max_mem_nodes);
662 	for (i = 0; i < mmu_page_sizes; i++) {
663 		(void) memset(&m, 0, sizeof (m));
664 		id = it.mi_mnode_pfn_mask >> 15;	/* node id mask */
665 		id &= idmask[i];
666 		lo = lowbit(id);
667 		if (lo > 0) {
668 			hi = highbit(id);
669 			m.nnbits = hi - lo + 1;
670 			m.nnmask = (1 << m.nnbits) - 1;
671 			lo += nhbits[i] - 5;
672 			m.lomask = (1 << (lo - 1)) - 1;
673 			m.lobits = lo - 1;
674 		}
675 		hw_page_array[i].hp_colors = 1 << (nhbits[i] - m.nnbits);
676 		n2color[i] = m;
677 	}
678 }
679 
680 /*
681  * group colorequiv colors on N2 by low order bits of the color first
682  */
683 void
684 page_set_colorequiv_arr_cpu(void)
685 {
686 	static uint_t nequiv_shades_log2[MMU_PAGE_SIZES] = {2, 5, 0, 0, 0, 0};
687 
688 	nequiv_shades_log2[1] -= n2color[1].nnbits;
689 	if (colorequiv > 1) {
690 		int i;
691 		uint_t sv_a = lowbit(colorequiv) - 1;
692 
693 		if (sv_a > 15)
694 			sv_a = 15;
695 
696 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
697 			uint_t colors;
698 			uint_t a = sv_a;
699 
700 			if ((colors = hw_page_array[i].hp_colors) <= 1)
701 				continue;
702 			while ((colors >> a) == 0)
703 				a--;
704 			if (a > (colorequivszc[i] & 0xf) +
705 			    (colorequivszc[i] >> 4)) {
706 				if (a <= nequiv_shades_log2[i]) {
707 					colorequivszc[i] = (uchar_t)a;
708 				} else {
709 					colorequivszc[i] =
710 					    ((a - nequiv_shades_log2[i]) << 4) |
711 					    nequiv_shades_log2[i];
712 				}
713 			}
714 		}
715 	}
716 }
717