xref: /titanic_44/usr/src/uts/sun4u/opl/io/mc-opl.c (revision b06cdb87d254343cca2e66a21fd421617c3a0b7b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * All Rights Reserved, Copyright (c) FUJITSU LIMITED 2006
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/types.h>
32 #include <sys/sysmacros.h>
33 #include <sys/conf.h>
34 #include <sys/modctl.h>
35 #include <sys/stat.h>
36 #include <sys/async.h>
37 #include <sys/machcpuvar.h>
38 #include <sys/machsystm.h>
39 #include <sys/promif.h>
40 #include <sys/ksynch.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/ddifm.h>
44 #include <sys/fm/protocol.h>
45 #include <sys/fm/util.h>
46 #include <sys/kmem.h>
47 #include <sys/fm/io/opl_mc_fm.h>
48 #include <sys/memlist.h>
49 #include <sys/param.h>
50 #include <sys/disp.h>
51 #include <vm/page.h>
52 #include <sys/mc-opl.h>
53 #include <sys/opl.h>
54 #include <sys/opl_dimm.h>
55 #include <sys/scfd/scfostoescf.h>
56 #include <sys/cpu_module.h>
57 #include <vm/seg_kmem.h>
58 #include <sys/vmem.h>
59 #include <vm/hat_sfmmu.h>
60 #include <sys/vmsystm.h>
61 
62 /*
63  * Function prototypes
64  */
65 static int mc_open(dev_t *, int, int, cred_t *);
66 static int mc_close(dev_t, int, int, cred_t *);
67 static int mc_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
68 static int mc_attach(dev_info_t *, ddi_attach_cmd_t);
69 static int mc_detach(dev_info_t *, ddi_detach_cmd_t);
70 
71 static int mc_poll_init(void);
72 static void mc_poll_fini(void);
73 static int mc_board_add(mc_opl_t *mcp);
74 static int mc_board_del(mc_opl_t *mcp);
75 static int mc_suspend(mc_opl_t *mcp, uint32_t flag);
76 static int mc_resume(mc_opl_t *mcp, uint32_t flag);
77 int opl_mc_suspend(void);
78 int opl_mc_resume(void);
79 
80 static void insert_mcp(mc_opl_t *mcp);
81 static void delete_mcp(mc_opl_t *mcp);
82 
83 static int pa_to_maddr(mc_opl_t *mcp, uint64_t pa, mc_addr_t *maddr);
84 
85 static int mc_valid_pa(mc_opl_t *mcp, uint64_t pa);
86 
87 int mc_get_mem_unum(int, uint64_t, char *, int, int *);
88 int mc_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *paddr);
89 int mc_get_mem_offset(uint64_t paddr, uint64_t *offp);
90 int mc_get_mem_sid(char *unum, char *buf, int buflen, int *lenp);
91 int mc_get_mem_sid_dimm(mc_opl_t *mcp, char *dname, char *buf,
92     int buflen, int *lenp);
93 mc_dimm_info_t *mc_get_dimm_list(mc_opl_t *mcp);
94 mc_dimm_info_t *mc_prepare_dimmlist(board_dimm_info_t *bd_dimmp);
95 int mc_set_mem_sid(mc_opl_t *mcp, char *buf, int buflen, int lsb, int bank,
96     uint32_t mf_type, uint32_t d_slot);
97 static void mc_free_dimm_list(mc_dimm_info_t *d);
98 static void mc_get_mlist(mc_opl_t *);
99 static void mc_polling(void);
100 static int mc_opl_get_physical_board(int);
101 
102 #ifdef	DEBUG
103 static int mc_ioctl_debug(dev_t, int, intptr_t, int, cred_t *, int *);
104 void mc_dump_dimm(char *buf, int dnamesz, int serialsz, int partnumsz);
105 void mc_dump_dimm_info(board_dimm_info_t *bd_dimmp);
106 #endif
107 
108 #pragma weak opl_get_physical_board
109 extern int opl_get_physical_board(int);
110 extern int plat_max_boards(void);
111 
112 /*
113  * Configuration data structures
114  */
115 static struct cb_ops mc_cb_ops = {
116 	mc_open,			/* open */
117 	mc_close,			/* close */
118 	nulldev,			/* strategy */
119 	nulldev,			/* print */
120 	nodev,				/* dump */
121 	nulldev,			/* read */
122 	nulldev,			/* write */
123 	mc_ioctl,			/* ioctl */
124 	nodev,				/* devmap */
125 	nodev,				/* mmap */
126 	nodev,				/* segmap */
127 	nochpoll,			/* poll */
128 	ddi_prop_op,			/* cb_prop_op */
129 	0,				/* streamtab */
130 	D_MP | D_NEW | D_HOTPLUG,	/* Driver compatibility flag */
131 	CB_REV,				/* rev */
132 	nodev,				/* cb_aread */
133 	nodev				/* cb_awrite */
134 };
135 
136 static struct dev_ops mc_ops = {
137 	DEVO_REV,			/* rev */
138 	0,				/* refcnt  */
139 	ddi_getinfo_1to1,		/* getinfo */
140 	nulldev,			/* identify */
141 	nulldev,			/* probe */
142 	mc_attach,			/* attach */
143 	mc_detach,			/* detach */
144 	nulldev,			/* reset */
145 	&mc_cb_ops,			/* cb_ops */
146 	(struct bus_ops *)0,		/* bus_ops */
147 	nulldev				/* power */
148 };
149 
150 /*
151  * Driver globals
152  */
153 
154 static enum {
155 	MODEL_FF1 = 0,
156 	MODEL_FF2 = 1,
157 	MODEL_DC = 2
158 } plat_model = MODEL_DC;	/* The default behaviour is DC */
159 
160 static struct plat_model_names {
161 	const char *unit_name;
162 	const char *mem_name;
163 } model_names[] = {
164 	{ "MBU_A", "MEMB" },
165 	{ "MBU_B", "MEMB" },
166 	{ "CMU", "" }
167 };
168 
169 /*
170  * The DIMM Names for DC platform.
171  * The index into this table is made up of (bank, dslot),
172  * Where dslot occupies bits 0-1 and bank occupies 2-4.
173  */
174 static char *mc_dc_dimm_unum_table[OPL_MAX_DIMMS] = {
175 	/* --------CMUnn----------- */
176 	/* --CS0-----|--CS1------ */
177 	/* -H-|--L-- | -H- | -L-- */
178 	"03A", "02A", "03B", "02B", /* Bank 0 (MAC 0 bank 0) */
179 	"13A", "12A", "13B", "12B", /* Bank 1 (MAC 0 bank 1) */
180 	"23A", "22A", "23B", "22B", /* Bank 2 (MAC 1 bank 0) */
181 	"33A", "32A", "33B", "32B", /* Bank 3 (MAC 1 bank 1) */
182 	"01A", "00A", "01B", "00B", /* Bank 4 (MAC 2 bank 0) */
183 	"11A", "10A", "11B", "10B", /* Bank 5 (MAC 2 bank 1) */
184 	"21A", "20A", "21B", "20B", /* Bank 6 (MAC 3 bank 0) */
185 	"31A", "30A", "31B", "30B"  /* Bank 7 (MAC 3 bank 1) */
186 };
187 
188 /*
189  * The DIMM Names for FF1/FF2 platforms.
190  * The index into this table is made up of (board, bank, dslot),
191  * Where dslot occupies bits 0-1, bank occupies 2-4 and
192  * board occupies the bit 5.
193  */
194 static char *mc_ff_dimm_unum_table[2 * OPL_MAX_DIMMS] = {
195 	/* --------CMU0---------- */
196 	/* --CS0-----|--CS1------ */
197 	/* -H-|--L-- | -H- | -L-- */
198 	"03A", "02A", "03B", "02B", /* Bank 0 (MAC 0 bank 0) */
199 	"01A", "00A", "01B", "00B", /* Bank 1 (MAC 0 bank 1) */
200 	"13A", "12A", "13B", "12B", /* Bank 2 (MAC 1 bank 0) */
201 	"11A", "10A", "11B", "10B", /* Bank 3 (MAC 1 bank 1) */
202 	"23A", "22A", "23B", "22B", /* Bank 4 (MAC 2 bank 0) */
203 	"21A", "20A", "21B", "20B", /* Bank 5 (MAC 2 bank 1) */
204 	"33A", "32A", "33B", "32B", /* Bank 6 (MAC 3 bank 0) */
205 	"31A", "30A", "31B", "30B", /* Bank 7 (MAC 3 bank 1) */
206 	/* --------CMU1---------- */
207 	/* --CS0-----|--CS1------ */
208 	/* -H-|--L-- | -H- | -L-- */
209 	"43A", "42A", "43B", "42B", /* Bank 0 (MAC 0 bank 0) */
210 	"41A", "40A", "41B", "40B", /* Bank 1 (MAC 0 bank 1) */
211 	"53A", "52A", "53B", "52B", /* Bank 2 (MAC 1 bank 0) */
212 	"51A", "50A", "51B", "50B", /* Bank 3 (MAC 1 bank 1) */
213 	"63A", "62A", "63B", "62B", /* Bank 4 (MAC 2 bank 0) */
214 	"61A", "60A", "61B", "60B", /* Bank 5 (MAC 2 bank 1) */
215 	"73A", "72A", "73B", "72B", /* Bank 6 (MAC 3 bank 0) */
216 	"71A", "70A", "71B", "70B"  /* Bank 7 (MAC 3 bank 1) */
217 };
218 
219 #define	BD_BK_SLOT_TO_INDEX(bd, bk, s)			\
220 	(((bd & 0x01) << 5) | ((bk & 0x07) << 2) | (s & 0x03))
221 
222 #define	INDEX_TO_BANK(i)			(((i) & 0x1C) >> 2)
223 #define	INDEX_TO_SLOT(i)			((i) & 0x03)
224 
225 /* Isolation unit size is 64 MB */
226 #define	MC_ISOLATION_BSIZE	(64 * 1024 * 1024)
227 
228 #define	MC_MAX_SPEEDS 7
229 
230 typedef struct {
231 	uint32_t mc_speeds;
232 	uint32_t mc_period;
233 } mc_scan_speed_t;
234 
235 #define	MC_CNTL_SPEED_SHIFT 26
236 
237 static mc_scan_speed_t	mc_scan_speeds[MC_MAX_SPEEDS] = {
238 	{0x6 << MC_CNTL_SPEED_SHIFT, 0},
239 	{0x5 << MC_CNTL_SPEED_SHIFT, 32},
240 	{0x4 << MC_CNTL_SPEED_SHIFT, 64},
241 	{0x3 << MC_CNTL_SPEED_SHIFT, 128},
242 	{0x2 << MC_CNTL_SPEED_SHIFT, 256},
243 	{0x1 << MC_CNTL_SPEED_SHIFT, 512},
244 	{0x0 << MC_CNTL_SPEED_SHIFT, 1024}
245 };
246 
247 static uint32_t	mc_max_speed = (0x6 << 26);
248 
249 int mc_isolation_bsize = MC_ISOLATION_BSIZE;
250 int mc_patrol_interval_sec = MC_PATROL_INTERVAL_SEC;
251 int mc_max_scf_retry = 16;
252 int mc_max_scf_logs = 64;
253 int mc_max_errlog_processed = BANKNUM_PER_SB*2;
254 int mc_scan_period = 12 * 60 * 60;	/* 12 hours period */
255 int mc_max_rewrite_loop = 100;
256 int mc_rewrite_delay = 10;
257 /*
258  * it takes SCF about 300 m.s. to process a requst.  We can bail out
259  * if it is busy.  It does not pay to wait for it too long.
260  */
261 int mc_max_scf_loop = 2;
262 int mc_scf_delay = 100;
263 int mc_pce_dropped = 0;
264 int mc_poll_priority = MINCLSYSPRI;
265 
266 
267 /*
268  * Mutex heierachy in mc-opl
269  * If both mcmutex and mc_lock must be held,
270  * mcmutex must be acquired first, and then mc_lock.
271  */
272 
273 static kmutex_t mcmutex;
274 mc_opl_t *mc_instances[OPL_MAX_BOARDS];
275 
276 static kmutex_t mc_polling_lock;
277 static kcondvar_t mc_polling_cv;
278 static kcondvar_t mc_poll_exit_cv;
279 static int mc_poll_cmd = 0;
280 static int mc_pollthr_running = 0;
281 int mc_timeout_period = 0; /* this is in m.s. */
282 void *mc_statep;
283 
284 #ifdef	DEBUG
285 int oplmc_debug = 0;
286 #endif
287 
288 static int mc_debug_show_all = 0;
289 
290 extern struct mod_ops mod_driverops;
291 
292 static struct modldrv modldrv = {
293 	&mod_driverops,			/* module type, this one is a driver */
294 	"OPL Memory-controller %I%",	/* module name */
295 	&mc_ops,			/* driver ops */
296 };
297 
298 static struct modlinkage modlinkage = {
299 	MODREV_1,		/* rev */
300 	(void *)&modldrv,
301 	NULL
302 };
303 
304 #pragma weak opl_get_mem_unum
305 #pragma weak opl_get_mem_sid
306 #pragma weak opl_get_mem_offset
307 #pragma weak opl_get_mem_addr
308 
309 extern int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
310 extern int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
311 extern int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
312 extern int (*opl_get_mem_addr)(char *unum, char *sid, uint64_t offset,
313     uint64_t *paddr);
314 
315 
316 /*
317  * pseudo-mc node portid format
318  *
319  *		[10]   = 0
320  *		[9]    = 1
321  *		[8]    = LSB_ID[4] = 0
322  *		[7:4]  = LSB_ID[3:0]
323  *		[3:0]  = 0
324  *
325  */
326 
327 /*
328  * These are the module initialization routines.
329  */
330 int
331 _init(void)
332 {
333 	int	error;
334 	int	plen;
335 	char	model[20];
336 	pnode_t	node;
337 
338 
339 	if ((error = ddi_soft_state_init(&mc_statep,
340 	    sizeof (mc_opl_t), 1)) != 0)
341 		return (error);
342 
343 	if ((error = mc_poll_init()) != 0) {
344 		ddi_soft_state_fini(&mc_statep);
345 		return (error);
346 	}
347 
348 	mutex_init(&mcmutex, NULL, MUTEX_DRIVER, NULL);
349 	if (&opl_get_mem_unum)
350 		opl_get_mem_unum = mc_get_mem_unum;
351 	if (&opl_get_mem_sid)
352 		opl_get_mem_sid = mc_get_mem_sid;
353 	if (&opl_get_mem_offset)
354 		opl_get_mem_offset = mc_get_mem_offset;
355 	if (&opl_get_mem_addr)
356 		opl_get_mem_addr = mc_get_mem_addr;
357 
358 	node = prom_rootnode();
359 	plen = prom_getproplen(node, "model");
360 
361 	if (plen > 0 && plen < sizeof (model)) {
362 		(void) prom_getprop(node, "model", model);
363 		model[plen] = '\0';
364 		if (strcmp(model, "FF1") == 0)
365 			plat_model = MODEL_FF1;
366 		else if (strcmp(model, "FF2") == 0)
367 			plat_model = MODEL_FF2;
368 		else if (strncmp(model, "DC", 2) == 0)
369 			plat_model = MODEL_DC;
370 	}
371 
372 	error =  mod_install(&modlinkage);
373 	if (error != 0) {
374 		if (&opl_get_mem_unum)
375 			opl_get_mem_unum = NULL;
376 		if (&opl_get_mem_sid)
377 			opl_get_mem_sid = NULL;
378 		if (&opl_get_mem_offset)
379 			opl_get_mem_offset = NULL;
380 		if (&opl_get_mem_addr)
381 			opl_get_mem_addr = NULL;
382 		mutex_destroy(&mcmutex);
383 		mc_poll_fini();
384 		ddi_soft_state_fini(&mc_statep);
385 	}
386 	return (error);
387 }
388 
389 int
390 _fini(void)
391 {
392 	int error;
393 
394 	if ((error = mod_remove(&modlinkage)) != 0)
395 		return (error);
396 
397 	if (&opl_get_mem_unum)
398 		opl_get_mem_unum = NULL;
399 	if (&opl_get_mem_sid)
400 		opl_get_mem_sid = NULL;
401 	if (&opl_get_mem_offset)
402 		opl_get_mem_offset = NULL;
403 	if (&opl_get_mem_addr)
404 		opl_get_mem_addr = NULL;
405 
406 	mutex_destroy(&mcmutex);
407 	mc_poll_fini();
408 	ddi_soft_state_fini(&mc_statep);
409 
410 	return (0);
411 }
412 
413 int
414 _info(struct modinfo *modinfop)
415 {
416 	return (mod_info(&modlinkage, modinfop));
417 }
418 
419 static void
420 mc_polling_thread()
421 {
422 	mutex_enter(&mc_polling_lock);
423 	mc_pollthr_running = 1;
424 	while (!(mc_poll_cmd & MC_POLL_EXIT)) {
425 		mc_polling();
426 		cv_timedwait(&mc_polling_cv, &mc_polling_lock,
427 		    ddi_get_lbolt() + mc_timeout_period);
428 	}
429 	mc_pollthr_running = 0;
430 
431 	/*
432 	 * signal if any one is waiting for this thread to exit.
433 	 */
434 	cv_signal(&mc_poll_exit_cv);
435 	mutex_exit(&mc_polling_lock);
436 	thread_exit();
437 	/* NOTREACHED */
438 }
439 
440 static int
441 mc_poll_init()
442 {
443 	mutex_init(&mc_polling_lock, NULL, MUTEX_DRIVER, NULL);
444 	cv_init(&mc_polling_cv, NULL, CV_DRIVER, NULL);
445 	cv_init(&mc_poll_exit_cv, NULL, CV_DRIVER, NULL);
446 	return (0);
447 }
448 
449 static void
450 mc_poll_fini()
451 {
452 	mutex_enter(&mc_polling_lock);
453 	if (mc_pollthr_running) {
454 		mc_poll_cmd = MC_POLL_EXIT;
455 		cv_signal(&mc_polling_cv);
456 		while (mc_pollthr_running) {
457 			cv_wait(&mc_poll_exit_cv, &mc_polling_lock);
458 		}
459 	}
460 	mutex_exit(&mc_polling_lock);
461 	mutex_destroy(&mc_polling_lock);
462 	cv_destroy(&mc_polling_cv);
463 	cv_destroy(&mc_poll_exit_cv);
464 }
465 
466 static int
467 mc_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
468 {
469 	mc_opl_t *mcp;
470 	int instance;
471 	int rv;
472 
473 	/* get the instance of this devi */
474 	instance = ddi_get_instance(devi);
475 
476 	switch (cmd) {
477 	case DDI_ATTACH:
478 		break;
479 	case DDI_RESUME:
480 		mcp = ddi_get_soft_state(mc_statep, instance);
481 		rv = mc_resume(mcp, MC_DRIVER_SUSPENDED);
482 		return (rv);
483 	default:
484 		return (DDI_FAILURE);
485 	}
486 
487 	if (ddi_soft_state_zalloc(mc_statep, instance) != DDI_SUCCESS)
488 		return (DDI_FAILURE);
489 
490 	if ((mcp = ddi_get_soft_state(mc_statep, instance)) == NULL) {
491 		goto bad;
492 	}
493 
494 	if (mc_timeout_period == 0) {
495 		mc_patrol_interval_sec = (int)ddi_getprop(DDI_DEV_T_ANY, devi,
496 			DDI_PROP_DONTPASS, "mc-timeout-interval-sec",
497 			mc_patrol_interval_sec);
498 		mc_timeout_period = drv_usectohz(
499 			1000000 * mc_patrol_interval_sec / OPL_MAX_BOARDS);
500 	}
501 
502 	/* set informations in mc state */
503 	mcp->mc_dip = devi;
504 
505 	if (mc_board_add(mcp))
506 		goto bad;
507 
508 	insert_mcp(mcp);
509 
510 	/*
511 	 * Start the polling thread if it is not running already.
512 	 */
513 	mutex_enter(&mc_polling_lock);
514 	if (!mc_pollthr_running) {
515 		(void) thread_create(NULL, 0, (void (*)())mc_polling_thread,
516 			NULL, 0, &p0, TS_RUN, mc_poll_priority);
517 	}
518 	mutex_exit(&mc_polling_lock);
519 	ddi_report_dev(devi);
520 
521 	return (DDI_SUCCESS);
522 
523 bad:
524 	ddi_soft_state_free(mc_statep, instance);
525 	return (DDI_FAILURE);
526 }
527 
528 /* ARGSUSED */
529 static int
530 mc_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
531 {
532 	int rv;
533 	int instance;
534 	mc_opl_t *mcp;
535 
536 	/* get the instance of this devi */
537 	instance = ddi_get_instance(devi);
538 	if ((mcp = ddi_get_soft_state(mc_statep, instance)) == NULL) {
539 		return (DDI_FAILURE);
540 	}
541 
542 	switch (cmd) {
543 	case DDI_SUSPEND:
544 		rv = mc_suspend(mcp, MC_DRIVER_SUSPENDED);
545 		return (rv);
546 	case DDI_DETACH:
547 		break;
548 	default:
549 		return (DDI_FAILURE);
550 	}
551 
552 	delete_mcp(mcp);
553 	if (mc_board_del(mcp) != DDI_SUCCESS) {
554 		return (DDI_FAILURE);
555 	}
556 
557 	/* free up the soft state */
558 	ddi_soft_state_free(mc_statep, instance);
559 
560 	return (DDI_SUCCESS);
561 }
562 
563 /* ARGSUSED */
564 static int
565 mc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
566 {
567 	return (0);
568 }
569 
570 /* ARGSUSED */
571 static int
572 mc_close(dev_t devp, int flag, int otyp, cred_t *credp)
573 {
574 	return (0);
575 }
576 
577 /* ARGSUSED */
578 static int
579 mc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
580 	int *rvalp)
581 {
582 #ifdef DEBUG
583 	return (mc_ioctl_debug(dev, cmd, arg, mode, credp, rvalp));
584 #else
585 	return (ENXIO);
586 #endif
587 }
588 
589 /*
590  * PA validity check:
591  * This function return 1 if the PA is valid, otherwise
592  * return 0.
593  */
594 
595 /* ARGSUSED */
596 static int
597 pa_is_valid(mc_opl_t *mcp, uint64_t addr)
598 {
599 	/*
600 	 * Check if the addr is on the board.
601 	 */
602 	if ((addr < mcp->mc_start_address) ||
603 	    (mcp->mc_start_address + mcp->mc_size <= addr))
604 		return (0);
605 
606 	if (mcp->mlist == NULL)
607 		mc_get_mlist(mcp);
608 
609 	if (mcp->mlist && address_in_memlist(mcp->mlist, addr, 0)) {
610 		return (1);
611 	}
612 	return (0);
613 }
614 
615 /*
616  * mac-pa translation routines.
617  *
618  *    Input: mc driver state, (LSB#, Bank#, DIMM address)
619  *    Output: physical address
620  *
621  *    Valid   - return value:  0
622  *    Invalid - return value: -1
623  */
624 static int
625 mcaddr_to_pa(mc_opl_t *mcp, mc_addr_t *maddr, uint64_t *pa)
626 {
627 	int i;
628 	uint64_t pa_offset = 0;
629 	int cs = (maddr->ma_dimm_addr >> CS_SHIFT) & 1;
630 	int bank = maddr->ma_bank;
631 	mc_addr_t maddr1;
632 	int bank0, bank1;
633 
634 	MC_LOG("mcaddr /LSB%d/B%d/%x\n", maddr->ma_bd, bank,
635 		maddr->ma_dimm_addr);
636 
637 	/* loc validity check */
638 	ASSERT(maddr->ma_bd >= 0 && OPL_BOARD_MAX > maddr->ma_bd);
639 	ASSERT(bank >= 0 && OPL_BANK_MAX > bank);
640 
641 	/* Do translation */
642 	for (i = 0; i < PA_BITS_FOR_MAC; i++) {
643 		int pa_bit = 0;
644 		int mc_bit = mcp->mc_trans_table[cs][i];
645 		if (mc_bit < MC_ADDRESS_BITS) {
646 			pa_bit = (maddr->ma_dimm_addr >> mc_bit) & 1;
647 		} else if (mc_bit == MP_NONE) {
648 			pa_bit = 0;
649 		} else if (mc_bit == MP_BANK_0) {
650 			pa_bit = bank & 1;
651 		} else if (mc_bit == MP_BANK_1) {
652 			pa_bit = (bank >> 1) & 1;
653 		} else if (mc_bit == MP_BANK_2) {
654 			pa_bit = (bank >> 2) & 1;
655 		}
656 		pa_offset |= ((uint64_t)pa_bit) << i;
657 	}
658 	*pa = mcp->mc_start_address + pa_offset;
659 	MC_LOG("pa = %lx\n", *pa);
660 
661 	if (pa_to_maddr(mcp, *pa, &maddr1) == -1) {
662 		cmn_err(CE_WARN, "mcaddr_to_pa: /LSB%d/B%d/%x failed to "
663 		    "convert PA %lx\n", maddr->ma_bd, bank,
664 		    maddr->ma_dimm_addr, *pa);
665 		return (-1);
666 	}
667 
668 	/*
669 	 * In mirror mode, PA is always translated to the even bank.
670 	 */
671 	if (IS_MIRROR(mcp, maddr->ma_bank)) {
672 		bank0 = maddr->ma_bank & ~(1);
673 		bank1 = maddr1.ma_bank & ~(1);
674 	} else {
675 		bank0 = maddr->ma_bank;
676 		bank1 = maddr1.ma_bank;
677 	}
678 	/*
679 	 * there is no need to check ma_bd because it is generated from
680 	 * mcp.  They are the same.
681 	 */
682 	if ((bank0 == bank1) &&
683 		(maddr->ma_dimm_addr == maddr1.ma_dimm_addr)) {
684 		return (0);
685 	} else {
686 		cmn_err(CE_WARN, "Translation error source /LSB%d/B%d/%x, "
687 			"PA %lx, target /LSB%d/B%d/%x\n",
688 			maddr->ma_bd, bank, maddr->ma_dimm_addr,
689 			*pa, maddr1.ma_bd, maddr1.ma_bank,
690 			maddr1.ma_dimm_addr);
691 		return (-1);
692 	}
693 }
694 
695 /*
696  * PA to CS (used by pa_to_maddr).
697  */
698 static int
699 pa_to_cs(mc_opl_t *mcp, uint64_t pa_offset)
700 {
701 	int i;
702 	int cs = 0;
703 
704 	for (i = 0; i < PA_BITS_FOR_MAC; i++) {
705 		/* MAC address bit<29> is arranged on the same PA bit */
706 		/* on both table. So we may use any table. */
707 		if (mcp->mc_trans_table[0][i] == CS_SHIFT) {
708 			cs = (pa_offset >> i) & 1;
709 			break;
710 		}
711 	}
712 	return (cs);
713 }
714 
715 /*
716  * PA to DIMM (used by pa_to_maddr).
717  */
718 /* ARGSUSED */
719 static uint32_t
720 pa_to_dimm(mc_opl_t *mcp, uint64_t pa_offset)
721 {
722 	int i;
723 	int cs = pa_to_cs(mcp, pa_offset);
724 	uint32_t dimm_addr = 0;
725 
726 	for (i = 0; i < PA_BITS_FOR_MAC; i++) {
727 		int pa_bit_value = (pa_offset >> i) & 1;
728 		int mc_bit = mcp->mc_trans_table[cs][i];
729 		if (mc_bit < MC_ADDRESS_BITS) {
730 			dimm_addr |= pa_bit_value << mc_bit;
731 		}
732 	}
733 	return (dimm_addr);
734 }
735 
736 /*
737  * PA to Bank (used by pa_to_maddr).
738  */
739 static int
740 pa_to_bank(mc_opl_t *mcp, uint64_t pa_offset)
741 {
742 	int i;
743 	int cs = pa_to_cs(mcp, pa_offset);
744 	int bankno = mcp->mc_trans_table[cs][INDEX_OF_BANK_SUPPLEMENT_BIT];
745 
746 
747 	for (i = 0; i < PA_BITS_FOR_MAC; i++) {
748 		int pa_bit_value = (pa_offset >> i) & 1;
749 		int mc_bit = mcp->mc_trans_table[cs][i];
750 		switch (mc_bit) {
751 		case MP_BANK_0:
752 			bankno |= pa_bit_value;
753 			break;
754 		case MP_BANK_1:
755 			bankno |= pa_bit_value << 1;
756 			break;
757 		case MP_BANK_2:
758 			bankno |= pa_bit_value << 2;
759 			break;
760 		}
761 	}
762 
763 	return (bankno);
764 }
765 
766 /*
767  * PA to MAC address translation
768  *
769  *   Input: MAC driver state, physicall adress
770  *   Output: LSB#, Bank id, mac address
771  *
772  *    Valid   - return value:  0
773  *    Invalid - return value: -1
774  */
775 
776 int
777 pa_to_maddr(mc_opl_t *mcp, uint64_t pa, mc_addr_t *maddr)
778 {
779 	uint64_t pa_offset;
780 
781 	/* PA validity check */
782 	if (!pa_is_valid(mcp, pa))
783 		return (-1);
784 
785 
786 	/* Do translation */
787 	pa_offset = pa - mcp->mc_start_address;
788 
789 	maddr->ma_bd = mcp->mc_board_num;
790 	maddr->ma_bank = pa_to_bank(mcp, pa_offset);
791 	maddr->ma_dimm_addr = pa_to_dimm(mcp, pa_offset);
792 	MC_LOG("pa %lx -> mcaddr /LSB%d/B%d/%x\n",
793 		pa_offset, maddr->ma_bd, maddr->ma_bank, maddr->ma_dimm_addr);
794 	return (0);
795 }
796 
797 /*
798  * UNUM format for DC is "/CMUnn/MEMxyZ", where
799  *	nn = 00..03 for DC1 and 00..07 for DC2 and 00..15 for DC3.
800  *	x = MAC 0..3
801  *	y = 0..3 (slot info).
802  *	Z = 'A' or 'B'
803  *
804  * UNUM format for FF1 is "/MBU_A/MEMBx/MEMyZ", where
805  *	x = 0..3 (MEMB number)
806  *	y = 0..3 (slot info).
807  *	Z = 'A' or 'B'
808  *
809  * UNUM format for FF2 is "/MBU_B/MEMBx/MEMyZ"
810  *	x = 0..7 (MEMB number)
811  *	y = 0..3 (slot info).
812  *	Z = 'A' or 'B'
813  */
814 int
815 mc_set_mem_unum(char *buf, int buflen, int lsb, int bank,
816     uint32_t mf_type, uint32_t d_slot)
817 {
818 	char *dimmnm;
819 	char memb_num;
820 	int sb;
821 	int i;
822 
823 	if ((sb = mc_opl_get_physical_board(lsb)) < 0)
824 		return (ENODEV);
825 
826 	if (plat_model == MODEL_DC) {
827 		if (mf_type == FLT_TYPE_PERMANENT_CE) {
828 			i = BD_BK_SLOT_TO_INDEX(0, bank, d_slot);
829 			dimmnm = mc_dc_dimm_unum_table[i];
830 			snprintf(buf, buflen, "/%s%02d/MEM%s",
831 			    model_names[plat_model].unit_name, sb, dimmnm);
832 		} else {
833 			i = BD_BK_SLOT_TO_INDEX(0, bank, 0);
834 			snprintf(buf, buflen, "/%s%02d/MEM%s MEM%s MEM%s MEM%s",
835 			    model_names[plat_model].unit_name, sb,
836 			    mc_dc_dimm_unum_table[i],
837 			    mc_dc_dimm_unum_table[i + 1],
838 			    mc_dc_dimm_unum_table[i + 2],
839 			    mc_dc_dimm_unum_table[i + 3]);
840 		}
841 	} else {
842 		i = BD_BK_SLOT_TO_INDEX(sb, bank, d_slot);
843 		if (mf_type == FLT_TYPE_PERMANENT_CE) {
844 			dimmnm = mc_ff_dimm_unum_table[i];
845 			memb_num = dimmnm[0];
846 			snprintf(buf, buflen, "/%s/%s%c/MEM%s",
847 			    model_names[plat_model].unit_name,
848 			    model_names[plat_model].mem_name,
849 			    memb_num, &dimmnm[1]);
850 		} else {
851 			i = BD_BK_SLOT_TO_INDEX(sb, bank, 0);
852 			memb_num = mc_ff_dimm_unum_table[i][0],
853 			snprintf(buf, buflen,
854 			    "/%s/%s%c/MEM%s MEM%s MEM%s MEM%s",
855 			    model_names[plat_model].unit_name,
856 			    model_names[plat_model].mem_name, memb_num,
857 			    &mc_ff_dimm_unum_table[i][1],
858 			    &mc_ff_dimm_unum_table[i + 1][1],
859 			    &mc_ff_dimm_unum_table[i + 2][1],
860 			    &mc_ff_dimm_unum_table[i + 3][1]);
861 		}
862 	}
863 	return (0);
864 }
865 
866 static void
867 mc_ereport_post(mc_aflt_t *mc_aflt)
868 {
869 	char buf[FM_MAX_CLASS];
870 	char device_path[MAXPATHLEN];
871 	char sid[MAXPATHLEN];
872 	nv_alloc_t *nva = NULL;
873 	nvlist_t *ereport, *detector, *resource;
874 	errorq_elem_t *eqep;
875 	int nflts;
876 	mc_flt_stat_t *flt_stat;
877 	int i, n;
878 	int blen = MAXPATHLEN;
879 	char *p, *s = NULL;
880 	uint32_t values[2], synd[2], dslot[2];
881 	uint64_t offset = (uint64_t)-1;
882 	int ret = -1;
883 
884 	if (panicstr) {
885 		eqep = errorq_reserve(ereport_errorq);
886 		if (eqep == NULL)
887 			return;
888 		ereport = errorq_elem_nvl(ereport_errorq, eqep);
889 		nva = errorq_elem_nva(ereport_errorq, eqep);
890 	} else {
891 		ereport = fm_nvlist_create(nva);
892 	}
893 
894 	/*
895 	 * Create the scheme "dev" FMRI.
896 	 */
897 	detector = fm_nvlist_create(nva);
898 	resource = fm_nvlist_create(nva);
899 
900 	nflts = mc_aflt->mflt_nflts;
901 
902 	ASSERT(nflts >= 1 && nflts <= 2);
903 
904 	flt_stat = mc_aflt->mflt_stat[0];
905 	(void) ddi_pathname(mc_aflt->mflt_mcp->mc_dip, device_path);
906 	(void) fm_fmri_dev_set(detector, FM_DEV_SCHEME_VERSION, NULL,
907 	    device_path, NULL);
908 
909 	/*
910 	 * Encode all the common data into the ereport.
911 	 */
912 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s-%s",
913 		MC_OPL_ERROR_CLASS,
914 		mc_aflt->mflt_is_ptrl ? MC_OPL_PTRL_SUBCLASS :
915 		MC_OPL_MI_SUBCLASS,
916 		mc_aflt->mflt_erpt_class);
917 
918 	MC_LOG("mc_ereport_post: ereport %s\n", buf);
919 
920 
921 	fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
922 		fm_ena_generate(mc_aflt->mflt_id, FM_ENA_FMT1),
923 		detector, NULL);
924 
925 	/*
926 	 * Set payload.
927 	 */
928 	fm_payload_set(ereport, MC_OPL_BOARD, DATA_TYPE_UINT32,
929 		flt_stat->mf_flt_maddr.ma_bd, NULL);
930 
931 	fm_payload_set(ereport, MC_OPL_PA, DATA_TYPE_UINT64,
932 		flt_stat->mf_flt_paddr, NULL);
933 
934 	if (flt_stat->mf_type == FLT_TYPE_PERMANENT_CE) {
935 		fm_payload_set(ereport, MC_OPL_FLT_TYPE,
936 			DATA_TYPE_UINT8, ECC_STICKY, NULL);
937 	}
938 
939 	for (i = 0; i < nflts; i++)
940 		values[i] = mc_aflt->mflt_stat[i]->mf_flt_maddr.ma_bank;
941 
942 	fm_payload_set(ereport, MC_OPL_BANK, DATA_TYPE_UINT32_ARRAY,
943 		nflts, values, NULL);
944 
945 	for (i = 0; i < nflts; i++)
946 		values[i] = mc_aflt->mflt_stat[i]->mf_cntl;
947 
948 	fm_payload_set(ereport, MC_OPL_STATUS, DATA_TYPE_UINT32_ARRAY,
949 		nflts, values, NULL);
950 
951 	for (i = 0; i < nflts; i++)
952 		values[i] = mc_aflt->mflt_stat[i]->mf_err_add;
953 
954 	/* offset is set only for PCE */
955 	if (mc_aflt->mflt_stat[0]->mf_type == FLT_TYPE_PERMANENT_CE) {
956 		offset = values[0];
957 
958 	}
959 	fm_payload_set(ereport, MC_OPL_ERR_ADD, DATA_TYPE_UINT32_ARRAY,
960 		nflts, values, NULL);
961 
962 	for (i = 0; i < nflts; i++)
963 		values[i] = mc_aflt->mflt_stat[i]->mf_err_log;
964 
965 	fm_payload_set(ereport, MC_OPL_ERR_LOG, DATA_TYPE_UINT32_ARRAY,
966 		nflts, values, NULL);
967 
968 	for (i = 0; i < nflts; i++) {
969 		flt_stat = mc_aflt->mflt_stat[i];
970 		if (flt_stat->mf_errlog_valid) {
971 			synd[i] = flt_stat->mf_synd;
972 			dslot[i] = flt_stat->mf_dimm_slot;
973 			values[i] = flt_stat->mf_dram_place;
974 		} else {
975 			synd[i] = 0;
976 			dslot[i] = 0;
977 			values[i] = 0;
978 		}
979 	}
980 
981 	fm_payload_set(ereport, MC_OPL_ERR_SYND,
982 		DATA_TYPE_UINT32_ARRAY, nflts, synd, NULL);
983 
984 	fm_payload_set(ereport, MC_OPL_ERR_DIMMSLOT,
985 		DATA_TYPE_UINT32_ARRAY, nflts, dslot, NULL);
986 
987 	fm_payload_set(ereport, MC_OPL_ERR_DRAM,
988 		DATA_TYPE_UINT32_ARRAY, nflts, values, NULL);
989 
990 	device_path[0] = 0;
991 	p = &device_path[0];
992 	sid[0] = 0;
993 	s = &sid[0];
994 	ret = 0;
995 
996 	for (i = 0; i < nflts; i++) {
997 		int bank;
998 
999 		flt_stat = mc_aflt->mflt_stat[i];
1000 		bank = flt_stat->mf_flt_maddr.ma_bank;
1001 		ret =  mc_set_mem_unum(p + strlen(p), blen,
1002 			flt_stat->mf_flt_maddr.ma_bd, bank, flt_stat->mf_type,
1003 			flt_stat->mf_dimm_slot);
1004 
1005 		if (ret != 0) {
1006 			cmn_err(CE_WARN,
1007 			    "mc_ereport_post: Failed to determine the unum "
1008 			    "for board=%d bank=%d type=0x%x slot=0x%x",
1009 			    flt_stat->mf_flt_maddr.ma_bd, bank,
1010 			    flt_stat->mf_type, flt_stat->mf_dimm_slot);
1011 			continue;
1012 		}
1013 		n = strlen(device_path);
1014 		blen = MAXPATHLEN - n;
1015 		p = &device_path[n];
1016 		if (i < (nflts - 1)) {
1017 			snprintf(p, blen, " ");
1018 			blen--;
1019 			p++;
1020 		}
1021 
1022 		if (ret == 0) {
1023 			ret = mc_set_mem_sid(mc_aflt->mflt_mcp, s + strlen(s),
1024 			    blen, flt_stat->mf_flt_maddr.ma_bd, bank,
1025 			    flt_stat->mf_type, flt_stat->mf_dimm_slot);
1026 
1027 		}
1028 	}
1029 
1030 	(void) fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION,
1031 		NULL, device_path, (ret == 0) ? sid : NULL,
1032 		(ret == 0) ? offset : (uint64_t)-1);
1033 
1034 	fm_payload_set(ereport, MC_OPL_RESOURCE, DATA_TYPE_NVLIST,
1035 		resource, NULL);
1036 
1037 	if (panicstr) {
1038 		errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
1039 	} else {
1040 		(void) fm_ereport_post(ereport, EVCH_TRYHARD);
1041 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
1042 		fm_nvlist_destroy(detector, FM_NVA_FREE);
1043 		fm_nvlist_destroy(resource, FM_NVA_FREE);
1044 	}
1045 }
1046 
1047 
1048 static void
1049 mc_err_drain(mc_aflt_t *mc_aflt)
1050 {
1051 	int rv;
1052 	uint64_t pa = (uint64_t)(-1);
1053 	int i;
1054 
1055 	MC_LOG("mc_err_drain: %s\n",
1056 		mc_aflt->mflt_erpt_class);
1057 	/*
1058 	 * we come here only when we have:
1059 	 * In mirror mode: CMPE, MUE, SUE
1060 	 * In normal mode: UE, Permanent CE
1061 	 */
1062 	for (i = 0; i < mc_aflt->mflt_nflts; i++) {
1063 		rv = mcaddr_to_pa(mc_aflt->mflt_mcp,
1064 			&(mc_aflt->mflt_stat[i]->mf_flt_maddr), &pa);
1065 		if (rv == 0)
1066 			mc_aflt->mflt_stat[i]->mf_flt_paddr = pa;
1067 		else
1068 			mc_aflt->mflt_stat[i]->mf_flt_paddr = (uint64_t)-1;
1069 	}
1070 
1071 	if (mc_aflt->mflt_stat[0]->mf_type != FLT_TYPE_PERMANENT_CE) {
1072 		uint64_t errors = 0;
1073 
1074 		MC_LOG("mc_err_drain:pa = %lx\n", pa);
1075 
1076 		if (page_retire_check(pa, &errors) == 0) {
1077 			MC_LOG("Page retired\n");
1078 			return;
1079 		}
1080 		if ((errors & mc_aflt->mflt_pr) == mc_aflt->mflt_pr) {
1081 			MC_LOG("errors %lx, mflt_pr %x\n",
1082 				errors, mc_aflt->mflt_pr);
1083 			return;
1084 		}
1085 		MC_LOG("offline page at pa %lx error %x\n", pa,
1086 			mc_aflt->mflt_pr);
1087 		(void) page_retire(pa, mc_aflt->mflt_pr);
1088 	}
1089 
1090 	for (i = 0; i < mc_aflt->mflt_nflts; i++) {
1091 		mc_aflt_t mc_aflt0;
1092 		if (mc_aflt->mflt_stat[i]->mf_flt_paddr != (uint64_t)-1) {
1093 			mc_aflt0 = *mc_aflt;
1094 			mc_aflt0.mflt_nflts = 1;
1095 			mc_aflt0.mflt_stat[0] = mc_aflt->mflt_stat[i];
1096 			mc_ereport_post(&mc_aflt0);
1097 		}
1098 	}
1099 }
1100 
1101 /*
1102  * The restart address is actually defined in unit of PA[37:6]
1103  * the mac patrol will convert that to dimm offset.  If the
1104  * address is not in the bank, it will continue to search for
1105  * the next PA that is within the bank.
1106  *
1107  * Also the mac patrol scans the dimms based on PA, not
1108  * dimm offset.
1109  */
1110 static int
1111 restart_patrol(mc_opl_t *mcp, int bank, mc_addr_info_t *maddr_info)
1112 {
1113 	uint64_t pa;
1114 	int rv;
1115 	int loop_count = 0;
1116 
1117 	if (maddr_info == NULL || (maddr_info->mi_valid == 0)) {
1118 		MAC_PTRL_START(mcp, bank);
1119 		return (0);
1120 	}
1121 
1122 	rv = mcaddr_to_pa(mcp, &maddr_info->mi_maddr, &pa);
1123 	if (rv != 0) {
1124 		MC_LOG("cannot convert mcaddr to pa. use auto restart\n");
1125 		MAC_PTRL_START(mcp, bank);
1126 		return (0);
1127 	}
1128 
1129 	/*
1130 	 * pa is the last address scanned by the mac patrol
1131 	 * we  calculate the next restart address as follows:
1132 	 * first we always advance it by 64 byte. Then begin the loop.
1133 	 * loop {
1134 	 * if it is not in phys_install, we advance to next 64 MB boundary
1135 	 * if it is not backed by a page structure, done
1136 	 * if the page is bad, advance to the next page boundary.
1137 	 * else done
1138 	 * if the new address exceeds the board, wrap around.
1139 	 * } <stop if we come back to the same page>
1140 	 */
1141 
1142 	if (pa < mcp->mc_start_address || pa >= (mcp->mc_start_address
1143 		+ mcp->mc_size)) {
1144 		/* pa is not on this board, just retry */
1145 		cmn_err(CE_WARN, "restart_patrol: invalid address %lx "
1146 			"on board %d\n", pa, mcp->mc_board_num);
1147 		MAC_PTRL_START(mcp, bank);
1148 		return (0);
1149 	}
1150 
1151 	MC_LOG("restart_patrol: pa = %lx\n", pa);
1152 	if (maddr_info->mi_advance) {
1153 		uint64_t new_pa;
1154 
1155 		if (IS_MIRROR(mcp, bank))
1156 			new_pa = pa + 64 * 2;
1157 		else
1158 			new_pa = pa + 64;
1159 
1160 		if (!mc_valid_pa(mcp, new_pa)) {
1161 			MC_LOG("Invalid PA\n");
1162 			pa = roundup(new_pa + 1, mc_isolation_bsize);
1163 		} else {
1164 			uint64_t errors = 0;
1165 			if (page_retire_check(new_pa, &errors) &&
1166 				(errors == 0)) {
1167 				MC_LOG("Page has no error\n");
1168 				pa = new_pa;
1169 				goto done;
1170 			}
1171 			/*
1172 			 * skip bad pages
1173 			 * and let the following loop to take care
1174 			 */
1175 			pa = roundup(new_pa + 1, PAGESIZE);
1176 			MC_LOG("Skipping bad page to %lx\n", pa);
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * if we wrap around twice, we just give up and let
1182 	 * mac patrol decide.
1183 	 */
1184 	MC_LOG("pa is now %lx\n", pa);
1185 	while (loop_count <= 1) {
1186 		if (!mc_valid_pa(mcp, pa)) {
1187 			MC_LOG("pa is not valid. round up to 64 MB\n");
1188 			pa = roundup(pa + 1, 64 * 1024 * 1024);
1189 		} else {
1190 			uint64_t errors = 0;
1191 			if (page_retire_check(pa, &errors) &&
1192 				(errors == 0)) {
1193 				MC_LOG("Page has no error\n");
1194 				break;
1195 			}
1196 			/* skip bad pages */
1197 			pa = roundup(pa + 1, PAGESIZE);
1198 			MC_LOG("Skipping bad page to %lx\n", pa);
1199 		}
1200 		if (pa >= (mcp->mc_start_address + mcp->mc_size)) {
1201 			MC_LOG("Wrap around\n");
1202 			pa = mcp->mc_start_address;
1203 			loop_count++;
1204 		}
1205 	}
1206 
1207 done:
1208 	/* retstart MAC patrol: PA[37:6] */
1209 	MC_LOG("restart at pa = %lx\n", pa);
1210 	ST_MAC_REG(MAC_RESTART_ADD(mcp, bank), MAC_RESTART_PA(pa));
1211 	MAC_PTRL_START_ADD(mcp, bank);
1212 
1213 	return (0);
1214 }
1215 
1216 /*
1217  * Rewriting is used for two purposes.
1218  *  - to correct the error in memory.
1219  *  - to determine whether the error is permanent or intermittent.
1220  * It's done by writing the address in MAC_BANKm_REWRITE_ADD
1221  * and issuing REW_REQ command in MAC_BANKm_PTRL_CNRL. After that,
1222  * REW_END (and REW_CE/REW_UE if some error detected) is set when
1223  * rewrite operation is done. See 4.7.3 and 4.7.11 in Columbus2 PRM.
1224  *
1225  * Note that rewrite operation doesn't change RAW_UE to Marked UE.
1226  * Therefore, we use it only CE case.
1227  */
1228 static uint32_t
1229 do_rewrite(mc_opl_t *mcp, int bank, uint32_t dimm_addr)
1230 {
1231 	uint32_t cntl;
1232 	int count = 0;
1233 
1234 	/* first wait to make sure PTRL_STATUS is 0 */
1235 	while (count++ < mc_max_rewrite_loop) {
1236 		cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank));
1237 		if (!(cntl & MAC_CNTL_PTRL_STATUS))
1238 			break;
1239 		drv_usecwait(mc_rewrite_delay);
1240 	}
1241 	if (count >= mc_max_rewrite_loop)
1242 		goto bad;
1243 
1244 	count = 0;
1245 
1246 	ST_MAC_REG(MAC_REWRITE_ADD(mcp, bank), dimm_addr);
1247 	MAC_REW_REQ(mcp, bank);
1248 
1249 	do {
1250 		cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank));
1251 		if (count++ >= mc_max_rewrite_loop) {
1252 			goto bad;
1253 		} else {
1254 			drv_usecwait(mc_rewrite_delay);
1255 		}
1256 	/*
1257 	 * If there are other MEMORY or PCI activities, this
1258 	 * will be BUSY, else it should be set immediately
1259 	 */
1260 	} while (!(cntl & MAC_CNTL_REW_END));
1261 
1262 	MAC_CLEAR_ERRS(mcp, bank, MAC_CNTL_REW_ERRS);
1263 	return (cntl);
1264 bad:
1265 	/* This is bad.  Just reset the circuit */
1266 	cmn_err(CE_WARN, "mc-opl rewrite timeout on /LSB%d/B%d\n",
1267 		mcp->mc_board_num, bank);
1268 	cntl = MAC_CNTL_REW_END;
1269 	MAC_CMD(mcp, bank, MAC_CNTL_PTRL_RESET);
1270 	MAC_CLEAR_ERRS(mcp, bank, MAC_CNTL_REW_ERRS);
1271 	return (cntl);
1272 }
1273 void
1274 mc_process_scf_log(mc_opl_t *mcp)
1275 {
1276 	int count;
1277 	int n = 0;
1278 	scf_log_t *p;
1279 	int bank;
1280 
1281 	for (bank = 0; bank < BANKNUM_PER_SB; bank++) {
1282 	    while ((p = mcp->mc_scf_log[bank]) != NULL &&
1283 		(n < mc_max_errlog_processed)) {
1284 		ASSERT(bank == p->sl_bank);
1285 		count = 0;
1286 		while ((LD_MAC_REG(MAC_STATIC_ERR_ADD(mcp, p->sl_bank))
1287 			& MAC_STATIC_ERR_VLD)) {
1288 			if (count++ >= (mc_max_scf_loop)) {
1289 				break;
1290 			}
1291 			drv_usecwait(mc_scf_delay);
1292 		}
1293 
1294 		if (count < mc_max_scf_loop) {
1295 			ST_MAC_REG(MAC_STATIC_ERR_LOG(mcp, p->sl_bank),
1296 				p->sl_err_log);
1297 
1298 			ST_MAC_REG(MAC_STATIC_ERR_ADD(mcp, p->sl_bank),
1299 				p->sl_err_add|MAC_STATIC_ERR_VLD);
1300 			mcp->mc_scf_retry[bank] = 0;
1301 		} else {
1302 			/* if we try too many times, just drop the req */
1303 			if (mcp->mc_scf_retry[bank]++ <= mc_max_scf_retry) {
1304 				return;
1305 			} else {
1306 			    if ((++mc_pce_dropped & 0xff) == 0) {
1307 				cmn_err(CE_WARN,
1308 				    "Cannot report Permanent CE to SCF\n");
1309 			    }
1310 			}
1311 		}
1312 		n++;
1313 		mcp->mc_scf_log[bank] = p->sl_next;
1314 		mcp->mc_scf_total[bank]--;
1315 		ASSERT(mcp->mc_scf_total[bank] >= 0);
1316 		kmem_free(p, sizeof (scf_log_t));
1317 	    }
1318 	}
1319 }
1320 void
1321 mc_queue_scf_log(mc_opl_t *mcp, mc_flt_stat_t *flt_stat, int bank)
1322 {
1323 	scf_log_t *p;
1324 
1325 	if (mcp->mc_scf_total[bank] >= mc_max_scf_logs) {
1326 		if ((++mc_pce_dropped & 0xff) == 0) {
1327 		    cmn_err(CE_WARN, "Too many Permanent CE requests.\n");
1328 		}
1329 		return;
1330 	}
1331 	p = kmem_zalloc(sizeof (scf_log_t), KM_SLEEP);
1332 	p->sl_next = 0;
1333 	p->sl_err_add = flt_stat->mf_err_add;
1334 	p->sl_err_log = flt_stat->mf_err_log;
1335 	p->sl_bank = bank;
1336 
1337 	if (mcp->mc_scf_log[bank] == NULL) {
1338 		/*
1339 		 * we rely on mc_scf_log to detect NULL queue.
1340 		 * mc_scf_log_tail is irrelevant is such case.
1341 		 */
1342 		mcp->mc_scf_log_tail[bank] = mcp->mc_scf_log[bank] = p;
1343 	} else {
1344 		mcp->mc_scf_log_tail[bank]->sl_next = p;
1345 		mcp->mc_scf_log_tail[bank] = p;
1346 	}
1347 	mcp->mc_scf_total[bank]++;
1348 }
1349 /*
1350  * This routine determines what kind of CE happens, intermittent
1351  * or permanent as follows. (See 4.7.3 in Columbus2 PRM.)
1352  * - Do rewrite by issuing REW_REQ command to MAC_PTRL_CNTL register.
1353  * - If CE is still detected on the same address even after doing
1354  *   rewrite operation twice, it is determined as permanent error.
1355  * - If error is not detected anymore, it is determined as intermittent
1356  *   error.
1357  * - If UE is detected due to rewrite operation, it should be treated
1358  *   as UE.
1359  */
1360 
1361 /* ARGSUSED */
1362 static void
1363 mc_scrub_ce(mc_opl_t *mcp, int bank, mc_flt_stat_t *flt_stat, int ptrl_error)
1364 {
1365 	uint32_t cntl;
1366 	int i;
1367 
1368 	flt_stat->mf_type = FLT_TYPE_PERMANENT_CE;
1369 	/*
1370 	 * rewrite request 1st time reads and correct error data
1371 	 * and write to DIMM.  2nd rewrite request must be issued
1372 	 * after REW_CE/UE/END is 0.  When the 2nd request is completed,
1373 	 * if REW_CE = 1, then it is permanent CE.
1374 	 */
1375 	for (i = 0; i < 2; i++) {
1376 		cntl = do_rewrite(mcp, bank, flt_stat->mf_err_add);
1377 		/*
1378 		 * If the error becomes UE or CMPE
1379 		 * we return to the caller immediately.
1380 		 */
1381 		if (cntl & MAC_CNTL_REW_UE) {
1382 			if (ptrl_error)
1383 				flt_stat->mf_cntl |= MAC_CNTL_PTRL_UE;
1384 			else
1385 				flt_stat->mf_cntl |= MAC_CNTL_MI_UE;
1386 			flt_stat->mf_type = FLT_TYPE_UE;
1387 			return;
1388 		}
1389 		if (cntl & MAC_CNTL_REW_CMPE) {
1390 			if (ptrl_error)
1391 				flt_stat->mf_cntl |= MAC_CNTL_PTRL_CMPE;
1392 			else
1393 				flt_stat->mf_cntl |= MAC_CNTL_MI_CMPE;
1394 			flt_stat->mf_type = FLT_TYPE_CMPE;
1395 			return;
1396 		}
1397 	}
1398 	if (!(cntl & MAC_CNTL_REW_CE)) {
1399 		flt_stat->mf_type = FLT_TYPE_INTERMITTENT_CE;
1400 	}
1401 
1402 	if (flt_stat->mf_type == FLT_TYPE_PERMANENT_CE) {
1403 		/* report PERMANENT_CE to SP via SCF */
1404 		if (!(flt_stat->mf_err_log & MAC_ERR_LOG_INVALID)) {
1405 			mc_queue_scf_log(mcp, flt_stat, bank);
1406 		}
1407 	}
1408 }
1409 
1410 #define	IS_CMPE(cntl, f)	((cntl) & ((f) ? MAC_CNTL_PTRL_CMPE :\
1411 				MAC_CNTL_MI_CMPE))
1412 #define	IS_UE(cntl, f)	((cntl) & ((f) ? MAC_CNTL_PTRL_UE : MAC_CNTL_MI_UE))
1413 #define	IS_CE(cntl, f)	((cntl) & ((f) ? MAC_CNTL_PTRL_CE : MAC_CNTL_MI_CE))
1414 #define	IS_OK(cntl, f)	(!((cntl) & ((f) ? MAC_CNTL_PTRL_ERRS : \
1415 			MAC_CNTL_MI_ERRS)))
1416 
1417 
1418 static int
1419 IS_CE_ONLY(uint32_t cntl, int ptrl_error)
1420 {
1421 	if (ptrl_error) {
1422 		return ((cntl & MAC_CNTL_PTRL_ERRS) == MAC_CNTL_PTRL_CE);
1423 	} else {
1424 		return ((cntl & MAC_CNTL_MI_ERRS) == MAC_CNTL_MI_CE);
1425 	}
1426 }
1427 
1428 void
1429 mc_write_cntl(mc_opl_t *mcp, int bank, uint32_t value)
1430 {
1431 	if (mcp->mc_speedup_period[bank] > 0)
1432 		value |= mc_max_speed;
1433 	else
1434 		value |= mcp->mc_speed;
1435 	ST_MAC_REG(MAC_PTRL_CNTL(mcp, bank), value);
1436 }
1437 
1438 static void
1439 mc_read_ptrl_reg(mc_opl_t *mcp, int bank, mc_flt_stat_t *flt_stat)
1440 {
1441 	flt_stat->mf_cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank)) &
1442 		MAC_CNTL_PTRL_ERRS;
1443 	flt_stat->mf_err_add = LD_MAC_REG(MAC_PTRL_ERR_ADD(mcp, bank));
1444 	flt_stat->mf_err_log = LD_MAC_REG(MAC_PTRL_ERR_LOG(mcp, bank));
1445 	flt_stat->mf_flt_maddr.ma_bd = mcp->mc_board_num;
1446 	flt_stat->mf_flt_maddr.ma_bank = bank;
1447 	flt_stat->mf_flt_maddr.ma_dimm_addr = flt_stat->mf_err_add;
1448 }
1449 
1450 static void
1451 mc_read_mi_reg(mc_opl_t *mcp, int bank, mc_flt_stat_t *flt_stat)
1452 {
1453 	uint32_t status, old_status;
1454 
1455 	status = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank)) &
1456 		MAC_CNTL_MI_ERRS;
1457 	old_status = 0;
1458 
1459 	/* we keep reading until the status is stable */
1460 	while (old_status != status) {
1461 		old_status = status;
1462 		flt_stat->mf_err_add =
1463 			LD_MAC_REG(MAC_MI_ERR_ADD(mcp, bank));
1464 		flt_stat->mf_err_log =
1465 			LD_MAC_REG(MAC_MI_ERR_LOG(mcp, bank));
1466 		status = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank)) &
1467 			MAC_CNTL_MI_ERRS;
1468 		if (status == old_status) {
1469 			break;
1470 		}
1471 	}
1472 
1473 	flt_stat->mf_cntl = status;
1474 	flt_stat->mf_flt_maddr.ma_bd = mcp->mc_board_num;
1475 	flt_stat->mf_flt_maddr.ma_bank = bank;
1476 	flt_stat->mf_flt_maddr.ma_dimm_addr = flt_stat->mf_err_add;
1477 }
1478 
1479 
1480 /*
1481  * Error philosophy for mirror mode:
1482  *
1483  * PTRL (The error address for both banks are same, since ptrl stops if it
1484  * detects error.)
1485  * - Compaire error  Report CMPE.
1486  *
1487  * - UE-UE           Report MUE.  No rewrite.
1488  *
1489  * - UE-*	     UE-(CE/OK). Rewrite to scrub UE.  Report SUE.
1490  *
1491  * - CE-*            CE-(CE/OK). Scrub to determine if CE is permanent.
1492  *                   If CE is permanent, inform SCF.  Once for each
1493  *		     Dimm.  If CE becomes UE or CMPE, go back to above.
1494  *
1495  *
1496  * MI (The error addresses for each bank are the same or different.)
1497  * - Compair  error  If addresses are the same.  Just CMPE.
1498  *		     If addresses are different (this could happen
1499  *		     as a result of scrubbing.  Report each seperately.
1500  *		     Only report error info on each side.
1501  *
1502  * - UE-UE           Addresses are the same.  Report MUE.
1503  *		     Addresses are different.  Report SUE on each bank.
1504  *		     Rewrite to clear UE.
1505  *
1506  * - UE-*	     UE-(CE/OK)
1507  *		     Rewrite to clear UE.  Report SUE for the bank.
1508  *
1509  * - CE-*            CE-(CE/OK).  Scrub to determine if CE is permanent.
1510  *                   If CE becomes UE or CMPE, go back to above.
1511  *
1512  */
1513 
1514 static int
1515 mc_process_error_mir(mc_opl_t *mcp, mc_aflt_t *mc_aflt, mc_flt_stat_t *flt_stat)
1516 {
1517 	int ptrl_error = mc_aflt->mflt_is_ptrl;
1518 	int i;
1519 	int rv = 0;
1520 
1521 	MC_LOG("process mirror errors cntl[0] = %x, cntl[1] = %x\n",
1522 		flt_stat[0].mf_cntl, flt_stat[1].mf_cntl);
1523 
1524 	if (ptrl_error) {
1525 		if (((flt_stat[0].mf_cntl | flt_stat[1].mf_cntl)
1526 			& MAC_CNTL_PTRL_ERRS) == 0)
1527 			return (0);
1528 	} else {
1529 		if (((flt_stat[0].mf_cntl | flt_stat[1].mf_cntl)
1530 			& MAC_CNTL_MI_ERRS) == 0)
1531 			return (0);
1532 	}
1533 
1534 	/*
1535 	 * First we take care of the case of CE
1536 	 * because they can become UE or CMPE
1537 	 */
1538 	for (i = 0; i < 2; i++) {
1539 		if (IS_CE_ONLY(flt_stat[i].mf_cntl, ptrl_error)) {
1540 			MC_LOG("CE detected on bank %d\n",
1541 				flt_stat[i].mf_flt_maddr.ma_bank);
1542 			mc_scrub_ce(mcp, flt_stat[i].mf_flt_maddr.ma_bank,
1543 				&flt_stat[i], ptrl_error);
1544 			rv = 1;
1545 		}
1546 	}
1547 
1548 	/* The above scrubbing can turn CE into UE or CMPE */
1549 
1550 	/*
1551 	 * Now we distinguish two cases: same address or not
1552 	 * the same address.  It might seem more intuitive to
1553 	 * distinguish PTRL v.s. MI error but it is more
1554 	 * complicated that way.
1555 	 */
1556 
1557 	if (flt_stat[0].mf_err_add == flt_stat[1].mf_err_add) {
1558 
1559 		if (IS_CMPE(flt_stat[0].mf_cntl, ptrl_error) ||
1560 		    IS_CMPE(flt_stat[1].mf_cntl, ptrl_error)) {
1561 			flt_stat[0].mf_type = FLT_TYPE_CMPE;
1562 			flt_stat[1].mf_type = FLT_TYPE_CMPE;
1563 			mc_aflt->mflt_erpt_class = MC_OPL_CMPE;
1564 			MC_LOG("cmpe error detected\n");
1565 			mc_aflt->mflt_nflts = 2;
1566 			mc_aflt->mflt_stat[0] = &flt_stat[0];
1567 			mc_aflt->mflt_stat[1] = &flt_stat[1];
1568 			mc_aflt->mflt_pr = PR_UE;
1569 			mc_err_drain(mc_aflt);
1570 			return (1);
1571 		}
1572 
1573 		if (IS_UE(flt_stat[0].mf_cntl, ptrl_error) &&
1574 			IS_UE(flt_stat[1].mf_cntl, ptrl_error)) {
1575 			/* Both side are UE's */
1576 
1577 			MAC_SET_ERRLOG_INFO(&flt_stat[0]);
1578 			MAC_SET_ERRLOG_INFO(&flt_stat[1]);
1579 			MC_LOG("MUE detected\n");
1580 			flt_stat[0].mf_type = FLT_TYPE_MUE;
1581 			flt_stat[1].mf_type = FLT_TYPE_MUE;
1582 			mc_aflt->mflt_erpt_class = MC_OPL_MUE;
1583 			mc_aflt->mflt_nflts = 2;
1584 			mc_aflt->mflt_stat[0] = &flt_stat[0];
1585 			mc_aflt->mflt_stat[1] = &flt_stat[1];
1586 			mc_aflt->mflt_pr = PR_UE;
1587 			mc_err_drain(mc_aflt);
1588 			return (1);
1589 		}
1590 
1591 		/* Now the only case is UE/CE, UE/OK, or don't care */
1592 		for (i = 0; i < 2; i++) {
1593 		    if (IS_UE(flt_stat[i].mf_cntl, ptrl_error)) {
1594 
1595 			/* rewrite can clear the one side UE error */
1596 
1597 			if (IS_OK(flt_stat[i^1].mf_cntl, ptrl_error)) {
1598 				(void) do_rewrite(mcp,
1599 				    flt_stat[i].mf_flt_maddr.ma_bank,
1600 				    flt_stat[i].mf_flt_maddr.ma_dimm_addr);
1601 			}
1602 			flt_stat[i].mf_type = FLT_TYPE_UE;
1603 			MAC_SET_ERRLOG_INFO(&flt_stat[i]);
1604 			mc_aflt->mflt_erpt_class = MC_OPL_SUE;
1605 			mc_aflt->mflt_stat[0] = &flt_stat[i];
1606 			mc_aflt->mflt_nflts = 1;
1607 			mc_aflt->mflt_pr = PR_MCE;
1608 			mc_err_drain(mc_aflt);
1609 			/* Once we hit a UE/CE or UE/OK case, done */
1610 			return (1);
1611 		    }
1612 		}
1613 
1614 	} else {
1615 		/*
1616 		 * addresses are different. That means errors
1617 		 * on the 2 banks are not related at all.
1618 		 */
1619 		for (i = 0; i < 2; i++) {
1620 		    if (IS_CMPE(flt_stat[i].mf_cntl, ptrl_error)) {
1621 			flt_stat[i].mf_type = FLT_TYPE_CMPE;
1622 			mc_aflt->mflt_erpt_class = MC_OPL_CMPE;
1623 			MC_LOG("cmpe error detected\n");
1624 			mc_aflt->mflt_nflts = 1;
1625 			mc_aflt->mflt_stat[0] = &flt_stat[i];
1626 			mc_aflt->mflt_pr = PR_UE;
1627 			mc_err_drain(mc_aflt);
1628 			/* no more report on this bank */
1629 			flt_stat[i].mf_cntl = 0;
1630 			rv = 1;
1631 		    }
1632 		}
1633 
1634 		/* rewrite can clear the one side UE error */
1635 
1636 		for (i = 0; i < 2; i++) {
1637 		    if (IS_UE(flt_stat[i].mf_cntl, ptrl_error)) {
1638 			(void) do_rewrite(mcp,
1639 				flt_stat[i].mf_flt_maddr.ma_bank,
1640 				flt_stat[i].mf_flt_maddr.ma_dimm_addr);
1641 			flt_stat[i].mf_type = FLT_TYPE_UE;
1642 			MAC_SET_ERRLOG_INFO(&flt_stat[i]);
1643 			mc_aflt->mflt_erpt_class = MC_OPL_SUE;
1644 			mc_aflt->mflt_stat[0] = &flt_stat[i];
1645 			mc_aflt->mflt_nflts = 1;
1646 			mc_aflt->mflt_pr = PR_MCE;
1647 			mc_err_drain(mc_aflt);
1648 			rv = 1;
1649 		    }
1650 		}
1651 	}
1652 	return (rv);
1653 }
1654 static void
1655 mc_error_handler_mir(mc_opl_t *mcp, int bank, mc_addr_info_t *maddr)
1656 {
1657 	mc_aflt_t mc_aflt;
1658 	mc_flt_stat_t flt_stat[2], mi_flt_stat[2];
1659 	int i;
1660 	int mi_valid;
1661 
1662 	bzero(&mc_aflt, sizeof (mc_aflt_t));
1663 	bzero(&flt_stat, 2 * sizeof (mc_flt_stat_t));
1664 	bzero(&mi_flt_stat, 2 * sizeof (mc_flt_stat_t));
1665 
1666 	mc_aflt.mflt_mcp = mcp;
1667 	mc_aflt.mflt_id = gethrtime();
1668 
1669 	/* Now read all the registers into flt_stat */
1670 
1671 	for (i = 0; i < 2; i++) {
1672 		MC_LOG("Reading registers of bank %d\n", bank);
1673 		/* patrol registers */
1674 		mc_read_ptrl_reg(mcp, bank, &flt_stat[i]);
1675 
1676 		ASSERT(maddr);
1677 		maddr->mi_maddr = flt_stat[i].mf_flt_maddr;
1678 
1679 		MC_LOG("ptrl registers cntl %x add %x log %x\n",
1680 			flt_stat[i].mf_cntl,
1681 			flt_stat[i].mf_err_add,
1682 			flt_stat[i].mf_err_log);
1683 
1684 		/* MI registers */
1685 		mc_read_mi_reg(mcp, bank, &mi_flt_stat[i]);
1686 
1687 		MC_LOG("MI registers cntl %x add %x log %x\n",
1688 			mi_flt_stat[i].mf_cntl,
1689 			mi_flt_stat[i].mf_err_add,
1690 			mi_flt_stat[i].mf_err_log);
1691 
1692 		bank = bank^1;
1693 	}
1694 
1695 	/* clear errors once we read all the registers */
1696 	MAC_CLEAR_ERRS(mcp, bank,
1697 		(MAC_CNTL_PTRL_ERRS|MAC_CNTL_MI_ERRS));
1698 
1699 	MAC_CLEAR_ERRS(mcp, bank ^ 1, (MAC_CNTL_PTRL_ERRS|MAC_CNTL_MI_ERRS));
1700 
1701 	/* Process MI errors first */
1702 
1703 	/* if not error mode, cntl1 is 0 */
1704 	if ((mi_flt_stat[0].mf_err_add & MAC_ERR_ADD_INVALID) ||
1705 		(mi_flt_stat[0].mf_err_log & MAC_ERR_LOG_INVALID))
1706 		mi_flt_stat[0].mf_cntl = 0;
1707 
1708 	if ((mi_flt_stat[1].mf_err_add & MAC_ERR_ADD_INVALID) ||
1709 		(mi_flt_stat[1].mf_err_log & MAC_ERR_LOG_INVALID))
1710 		mi_flt_stat[1].mf_cntl = 0;
1711 
1712 	mc_aflt.mflt_is_ptrl = 0;
1713 	mi_valid = mc_process_error_mir(mcp, &mc_aflt, &mi_flt_stat[0]);
1714 
1715 	if ((((flt_stat[0].mf_cntl & MAC_CNTL_PTRL_ERRS) >>
1716 		MAC_CNTL_PTRL_ERR_SHIFT) ==
1717 		((mi_flt_stat[0].mf_cntl & MAC_CNTL_MI_ERRS) >>
1718 		MAC_CNTL_MI_ERR_SHIFT)) &&
1719 		(flt_stat[0].mf_err_add == mi_flt_stat[0].mf_err_add) &&
1720 		(((flt_stat[1].mf_cntl & MAC_CNTL_PTRL_ERRS) >>
1721 		MAC_CNTL_PTRL_ERR_SHIFT) ==
1722 		((mi_flt_stat[1].mf_cntl & MAC_CNTL_MI_ERRS) >>
1723 		MAC_CNTL_MI_ERR_SHIFT)) &&
1724 		(flt_stat[1].mf_err_add == mi_flt_stat[1].mf_err_add)) {
1725 #ifdef DEBUG
1726 		MC_LOG("discarding PTRL error because "
1727 		    "it is the same as MI\n");
1728 #endif
1729 		maddr->mi_valid = mi_valid;
1730 		return;
1731 	}
1732 	/* if not error mode, cntl1 is 0 */
1733 	if ((flt_stat[0].mf_err_add & MAC_ERR_ADD_INVALID) ||
1734 		(flt_stat[0].mf_err_log & MAC_ERR_LOG_INVALID))
1735 		flt_stat[0].mf_cntl = 0;
1736 
1737 	if ((flt_stat[1].mf_err_add & MAC_ERR_ADD_INVALID) ||
1738 		(flt_stat[1].mf_err_log & MAC_ERR_LOG_INVALID))
1739 		flt_stat[1].mf_cntl = 0;
1740 
1741 	mc_aflt.mflt_is_ptrl = 1;
1742 	maddr->mi_valid = mc_process_error_mir(mcp, &mc_aflt, &flt_stat[0]);
1743 }
1744 static int
1745 mc_process_error(mc_opl_t *mcp, int bank, mc_aflt_t *mc_aflt,
1746 	mc_flt_stat_t *flt_stat)
1747 {
1748 	int ptrl_error = mc_aflt->mflt_is_ptrl;
1749 	int rv = 0;
1750 
1751 	mc_aflt->mflt_erpt_class = NULL;
1752 	if (IS_UE(flt_stat->mf_cntl, ptrl_error)) {
1753 		MC_LOG("UE deteceted\n");
1754 		flt_stat->mf_type = FLT_TYPE_UE;
1755 		mc_aflt->mflt_erpt_class = MC_OPL_UE;
1756 		mc_aflt->mflt_pr = PR_UE;
1757 		MAC_SET_ERRLOG_INFO(flt_stat);
1758 		rv = 1;
1759 	} else if (IS_CE(flt_stat->mf_cntl, ptrl_error)) {
1760 		MC_LOG("CE deteceted\n");
1761 		MAC_SET_ERRLOG_INFO(flt_stat);
1762 
1763 		/* Error type can change after scrubing */
1764 		mc_scrub_ce(mcp, bank, flt_stat, ptrl_error);
1765 
1766 		if (flt_stat->mf_type == FLT_TYPE_PERMANENT_CE) {
1767 			mc_aflt->mflt_erpt_class = MC_OPL_CE;
1768 			mc_aflt->mflt_pr = PR_MCE;
1769 		} else if (flt_stat->mf_type == FLT_TYPE_UE) {
1770 			mc_aflt->mflt_erpt_class = MC_OPL_UE;
1771 			mc_aflt->mflt_pr = PR_UE;
1772 		}
1773 		rv = 1;
1774 	}
1775 	MC_LOG("mc_process_error: fault type %x erpt %s\n",
1776 		flt_stat->mf_type,
1777 		mc_aflt->mflt_erpt_class);
1778 	if (mc_aflt->mflt_erpt_class) {
1779 		mc_aflt->mflt_stat[0] = flt_stat;
1780 		mc_aflt->mflt_nflts = 1;
1781 		mc_err_drain(mc_aflt);
1782 	}
1783 	return (rv);
1784 }
1785 
1786 static void
1787 mc_error_handler(mc_opl_t *mcp, int bank, mc_addr_info_t *maddr)
1788 {
1789 	mc_aflt_t mc_aflt;
1790 	mc_flt_stat_t flt_stat, mi_flt_stat;
1791 	int mi_valid;
1792 
1793 	bzero(&mc_aflt, sizeof (mc_aflt_t));
1794 	bzero(&flt_stat, sizeof (mc_flt_stat_t));
1795 	bzero(&mi_flt_stat, sizeof (mc_flt_stat_t));
1796 
1797 	mc_aflt.mflt_mcp = mcp;
1798 	mc_aflt.mflt_id = gethrtime();
1799 
1800 	/* patrol registers */
1801 	mc_read_ptrl_reg(mcp, bank, &flt_stat);
1802 
1803 	ASSERT(maddr);
1804 	maddr->mi_maddr = flt_stat.mf_flt_maddr;
1805 
1806 	MC_LOG("ptrl registers cntl %x add %x log %x\n",
1807 		flt_stat.mf_cntl,
1808 		flt_stat.mf_err_add,
1809 		flt_stat.mf_err_log);
1810 
1811 	/* MI registers */
1812 	mc_read_mi_reg(mcp, bank, &mi_flt_stat);
1813 
1814 
1815 	MC_LOG("MI registers cntl %x add %x log %x\n",
1816 		mi_flt_stat.mf_cntl,
1817 		mi_flt_stat.mf_err_add,
1818 		mi_flt_stat.mf_err_log);
1819 
1820 	/* clear errors once we read all the registers */
1821 	MAC_CLEAR_ERRS(mcp, bank, (MAC_CNTL_PTRL_ERRS|MAC_CNTL_MI_ERRS));
1822 
1823 	mc_aflt.mflt_is_ptrl = 0;
1824 	if ((mi_flt_stat.mf_cntl & MAC_CNTL_MI_ERRS) &&
1825 		((mi_flt_stat.mf_err_add & MAC_ERR_ADD_INVALID) == 0) &&
1826 		((mi_flt_stat.mf_err_log & MAC_ERR_LOG_INVALID) == 0)) {
1827 		mi_valid = mc_process_error(mcp, bank, &mc_aflt, &mi_flt_stat);
1828 	}
1829 
1830 	if ((((flt_stat.mf_cntl & MAC_CNTL_PTRL_ERRS) >>
1831 		MAC_CNTL_PTRL_ERR_SHIFT) ==
1832 		((mi_flt_stat.mf_cntl & MAC_CNTL_MI_ERRS) >>
1833 		MAC_CNTL_MI_ERR_SHIFT)) &&
1834 		(flt_stat.mf_err_add == mi_flt_stat.mf_err_add)) {
1835 #ifdef DEBUG
1836 		MC_LOG("discarding PTRL error because "
1837 		    "it is the same as MI\n");
1838 #endif
1839 		maddr->mi_valid = mi_valid;
1840 		return;
1841 	}
1842 
1843 	mc_aflt.mflt_is_ptrl = 1;
1844 	if ((flt_stat.mf_cntl & MAC_CNTL_PTRL_ERRS) &&
1845 		((flt_stat.mf_err_add & MAC_ERR_ADD_INVALID) == 0) &&
1846 		((flt_stat.mf_err_log & MAC_ERR_LOG_INVALID) == 0)) {
1847 		maddr->mi_valid = mc_process_error(mcp, bank,
1848 			&mc_aflt, &flt_stat);
1849 	}
1850 }
1851 /*
1852  *	memory patrol error handling algorithm:
1853  *	timeout() is used to do periodic polling
1854  *	This is the flow chart.
1855  *	timeout ->
1856  *	mc_check_errors()
1857  *	    if memory bank is installed, read the status register
1858  *	    if any error bit is set,
1859  *	    -> mc_error_handler()
1860  *		-> read all error regsiters
1861  *	        -> mc_process_error()
1862  *	            determine error type
1863  *	            rewrite to clear error or scrub to determine CE type
1864  *	            inform SCF on permanent CE
1865  *	        -> mc_err_drain
1866  *	            page offline processing
1867  *	            -> mc_ereport_post()
1868  */
1869 
1870 static void
1871 mc_check_errors_func(mc_opl_t *mcp)
1872 {
1873 	mc_addr_info_t maddr_info;
1874 	int i, error_count = 0;
1875 	uint32_t stat, cntl;
1876 	int running;
1877 	int wrapped;
1878 
1879 	/*
1880 	 * scan errors.
1881 	 */
1882 	if (mcp->mc_status & MC_MEMORYLESS)
1883 		return;
1884 
1885 	for (i = 0; i < BANKNUM_PER_SB; i++) {
1886 		if (mcp->mc_bank[i].mcb_status & BANK_INSTALLED) {
1887 			stat = ldphysio(MAC_PTRL_STAT(mcp, i));
1888 			cntl = ldphysio(MAC_PTRL_CNTL(mcp, i));
1889 			running = cntl & MAC_CNTL_PTRL_START;
1890 			wrapped = cntl & MAC_CNTL_PTRL_ADD_MAX;
1891 
1892 			if (mc_debug_show_all || stat) {
1893 				MC_LOG("/LSB%d/B%d stat %x cntl %x\n",
1894 					mcp->mc_board_num, i,
1895 					stat, cntl);
1896 			}
1897 
1898 			/*
1899 			 * Update stats and reset flag if the HW patrol
1900 			 * wrapped around in its scan.
1901 			 */
1902 			if (wrapped) {
1903 				mcp->mc_period[i]++;
1904 				MC_LOG("mc period %ld on "
1905 				    "/LSB%d/B%d\n", mcp->mc_period[i],
1906 				    mcp->mc_board_num, i);
1907 				MAC_CLEAR_MAX(mcp, i);
1908 			}
1909 
1910 			if (running) {
1911 				/*
1912 				 * Mac patrol HW is still running.
1913 				 * Normally when an error is detected,
1914 				 * the HW patrol will stop so that we
1915 				 * can collect error data for reporting.
1916 				 * Certain errors (MI errors) detected may not
1917 				 * cause the HW patrol to stop which is a
1918 				 * problem since we cannot read error data while
1919 				 * the HW patrol is running. SW is not allowed
1920 				 * to stop the HW patrol while it is running
1921 				 * as it may cause HW inconsistency. This is
1922 				 * described in a HW errata.
1923 				 * In situations where we detected errors
1924 				 * that may not cause the HW patrol to stop.
1925 				 * We speed up the HW patrol scanning in
1926 				 * the hope that it will find the 'real' PTRL
1927 				 * errors associated with the previous errors
1928 				 * causing the HW to finally stop so that we
1929 				 * can do the reporting.
1930 				 */
1931 				/*
1932 				 * Check to see if we did speed up
1933 				 * the HW patrol due to previous errors
1934 				 * detected that did not cause the patrol
1935 				 * to stop. We only do it if HW patrol scan
1936 				 * wrapped (counted as completing a 'period').
1937 				 */
1938 				if (mcp->mc_speedup_period[i] > 0) {
1939 				    if (wrapped &&
1940 					(--mcp->mc_speedup_period[i] == 0)) {
1941 					/*
1942 					 * We did try to speed up.
1943 					 * The speed up period has expired
1944 					 * and the HW patrol is still running.
1945 					 * The errors must be intermittent.
1946 					 * We have no choice but to ignore
1947 					 * them, reset the scan speed to normal
1948 					 * and clear the MI error bits.
1949 					 */
1950 					MC_LOG("Clearing MI errors\n");
1951 					MAC_CLEAR_ERRS(mcp, i,
1952 					    MAC_CNTL_MI_ERRS);
1953 				    }
1954 				} else if (stat & MAC_STAT_MI_ERRS) {
1955 					/*
1956 					 * MI errors detected but we cannot
1957 					 * report them since the HW patrol
1958 					 * is still running.
1959 					 * We will attempt to speed up the
1960 					 * scanning and hopefully the HW
1961 					 * can detect PRTL errors at the same
1962 					 * location that cause the HW patrol
1963 					 * to stop.
1964 					 */
1965 					mcp->mc_speedup_period[i] = 2;
1966 					MAC_CMD(mcp, i, 0);
1967 				}
1968 			} else if (stat & (MAC_STAT_PTRL_ERRS |
1969 			    MAC_STAT_MI_ERRS)) {
1970 				/*
1971 				 * HW Patrol has stopped and we found errors.
1972 				 * Proceed to collect and report error info.
1973 				 */
1974 				mcp->mc_speedup_period[i] = 0;
1975 				maddr_info.mi_valid = 0;
1976 				maddr_info.mi_advance = 1;
1977 				if (IS_MIRROR(mcp, i))
1978 				    mc_error_handler_mir(mcp, i, &maddr_info);
1979 				else
1980 				    mc_error_handler(mcp, i, &maddr_info);
1981 
1982 				error_count++;
1983 				restart_patrol(mcp, i, &maddr_info);
1984 			} else {
1985 				/*
1986 				 * HW patrol scan has apparently stopped
1987 				 * but no errors detected/flagged.
1988 				 * Restart the HW patrol just to be sure.
1989 				 */
1990 				restart_patrol(mcp, i, NULL);
1991 			}
1992 		}
1993 	}
1994 	if (error_count > 0)
1995 		mcp->mc_last_error += error_count;
1996 	else
1997 		mcp->mc_last_error = 0;
1998 }
1999 
2000 /*
2001  * mc_polling -- Check errors for only one instance,
2002  * but process errors for all instances to make sure we drain the errors
2003  * faster than they can be accumulated.
2004  *
2005  * Polling on each board should be done only once per each
2006  * mc_patrol_interval_sec.  This is equivalent to setting mc_tick_left
2007  * to OPL_MAX_BOARDS and decrement by 1 on each timeout.
2008  * Once mc_tick_left becomes negative, the board becomes a candidate
2009  * for polling because it has waited for at least
2010  * mc_patrol_interval_sec's long.    If mc_timeout_period is calculated
2011  * differently, this has to beupdated accordingly.
2012  */
2013 
2014 static void
2015 mc_polling(void)
2016 {
2017 	int i, scan_error;
2018 	mc_opl_t *mcp;
2019 
2020 
2021 	scan_error = 1;
2022 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
2023 		mutex_enter(&mcmutex);
2024 		if ((mcp = mc_instances[i]) == NULL) {
2025 			mutex_exit(&mcmutex);
2026 			continue;
2027 		}
2028 		mutex_enter(&mcp->mc_lock);
2029 		mutex_exit(&mcmutex);
2030 		if (scan_error && mcp->mc_tick_left <= 0) {
2031 			mc_check_errors_func((void *)mcp);
2032 			mcp->mc_tick_left = OPL_MAX_BOARDS;
2033 			scan_error = 0;
2034 		} else {
2035 			mcp->mc_tick_left--;
2036 		}
2037 		mc_process_scf_log(mcp);
2038 		mutex_exit(&mcp->mc_lock);
2039 	}
2040 }
2041 
2042 static void
2043 get_ptrl_start_address(mc_opl_t *mcp, int bank, mc_addr_t *maddr)
2044 {
2045 	maddr->ma_bd = mcp->mc_board_num;
2046 	maddr->ma_bank = bank;
2047 	maddr->ma_dimm_addr = 0;
2048 }
2049 
2050 typedef struct mc_mem_range {
2051 	uint64_t	addr;
2052 	uint64_t	size;
2053 } mc_mem_range_t;
2054 
2055 static int
2056 get_base_address(mc_opl_t *mcp)
2057 {
2058 	mc_mem_range_t *mem_range;
2059 	int len;
2060 
2061 	if (ddi_getlongprop(DDI_DEV_T_ANY, mcp->mc_dip, DDI_PROP_DONTPASS,
2062 		"sb-mem-ranges", (caddr_t)&mem_range, &len) != DDI_SUCCESS) {
2063 		return (DDI_FAILURE);
2064 	}
2065 
2066 	mcp->mc_start_address = mem_range->addr;
2067 	mcp->mc_size = mem_range->size;
2068 
2069 	kmem_free(mem_range, len);
2070 	return (DDI_SUCCESS);
2071 }
2072 
2073 struct mc_addr_spec {
2074 	uint32_t bank;
2075 	uint32_t phys_hi;
2076 	uint32_t phys_lo;
2077 };
2078 
2079 #define	REGS_PA(m, i) ((((uint64_t)m[i].phys_hi)<<32) | m[i].phys_lo)
2080 
2081 static char *mc_tbl_name[] = {
2082 	"cs0-mc-pa-trans-table",
2083 	"cs1-mc-pa-trans-table"
2084 };
2085 
2086 static int
2087 mc_valid_pa(mc_opl_t *mcp, uint64_t pa)
2088 {
2089 	struct memlist *ml;
2090 
2091 	if (mcp->mlist == NULL)
2092 		mc_get_mlist(mcp);
2093 
2094 	for (ml = mcp->mlist; ml; ml = ml->next) {
2095 		if (ml->address <= pa && pa < (ml->address + ml->size))
2096 			return (1);
2097 	}
2098 	return (0);
2099 }
2100 
2101 static void
2102 mc_memlist_delete(struct memlist *mlist)
2103 {
2104 	struct memlist *ml;
2105 
2106 	for (ml = mlist; ml; ml = mlist) {
2107 		mlist = ml->next;
2108 		kmem_free(ml, sizeof (struct memlist));
2109 	}
2110 }
2111 
2112 static struct memlist *
2113 mc_memlist_dup(struct memlist *mlist)
2114 {
2115 	struct memlist *hl = NULL, *tl, **mlp;
2116 
2117 	if (mlist == NULL)
2118 		return (NULL);
2119 
2120 	mlp = &hl;
2121 	tl = *mlp;
2122 	for (; mlist; mlist = mlist->next) {
2123 		*mlp = kmem_alloc(sizeof (struct memlist), KM_SLEEP);
2124 		(*mlp)->address = mlist->address;
2125 		(*mlp)->size = mlist->size;
2126 		(*mlp)->prev = tl;
2127 		tl = *mlp;
2128 		mlp = &((*mlp)->next);
2129 	}
2130 	*mlp = NULL;
2131 
2132 	return (hl);
2133 }
2134 
2135 
2136 static struct memlist *
2137 mc_memlist_del_span(struct memlist *mlist, uint64_t base, uint64_t len)
2138 {
2139 	uint64_t	end;
2140 	struct memlist	*ml, *tl, *nlp;
2141 
2142 	if (mlist == NULL)
2143 		return (NULL);
2144 
2145 	end = base + len;
2146 	if ((end <= mlist->address) || (base == end))
2147 		return (mlist);
2148 
2149 	for (tl = ml = mlist; ml; tl = ml, ml = nlp) {
2150 		uint64_t	mend;
2151 
2152 		nlp = ml->next;
2153 
2154 		if (end <= ml->address)
2155 			break;
2156 
2157 		mend = ml->address + ml->size;
2158 		if (base < mend) {
2159 			if (base <= ml->address) {
2160 				ml->address = end;
2161 				if (end >= mend)
2162 					ml->size = 0ull;
2163 				else
2164 					ml->size = mend - ml->address;
2165 			} else {
2166 				ml->size = base - ml->address;
2167 				if (end < mend) {
2168 					struct memlist	*nl;
2169 					/*
2170 					 * splitting an memlist entry.
2171 					 */
2172 					nl = kmem_alloc(sizeof (struct memlist),
2173 						KM_SLEEP);
2174 					nl->address = end;
2175 					nl->size = mend - nl->address;
2176 					if ((nl->next = nlp) != NULL)
2177 						nlp->prev = nl;
2178 					nl->prev = ml;
2179 					ml->next = nl;
2180 					nlp = nl;
2181 				}
2182 			}
2183 			if (ml->size == 0ull) {
2184 				if (ml == mlist) {
2185 					if ((mlist = nlp) != NULL)
2186 						nlp->prev = NULL;
2187 					kmem_free(ml, sizeof (struct memlist));
2188 					if (mlist == NULL)
2189 						break;
2190 					ml = nlp;
2191 				} else {
2192 					if ((tl->next = nlp) != NULL)
2193 						nlp->prev = tl;
2194 					kmem_free(ml, sizeof (struct memlist));
2195 					ml = tl;
2196 				}
2197 			}
2198 		}
2199 	}
2200 
2201 	return (mlist);
2202 }
2203 
2204 static void
2205 mc_get_mlist(mc_opl_t *mcp)
2206 {
2207 	struct memlist *mlist;
2208 
2209 	memlist_read_lock();
2210 	mlist = mc_memlist_dup(phys_install);
2211 	memlist_read_unlock();
2212 
2213 	if (mlist) {
2214 		mlist = mc_memlist_del_span(mlist, 0ull, mcp->mc_start_address);
2215 	}
2216 
2217 	if (mlist) {
2218 		uint64_t startpa, endpa;
2219 
2220 		startpa = mcp->mc_start_address + mcp->mc_size;
2221 		endpa = ptob(physmax + 1);
2222 		if (endpa > startpa) {
2223 			mlist = mc_memlist_del_span(mlist,
2224 				startpa, endpa - startpa);
2225 		}
2226 	}
2227 
2228 	if (mlist) {
2229 		mcp->mlist = mlist;
2230 	}
2231 }
2232 
2233 int
2234 mc_board_add(mc_opl_t *mcp)
2235 {
2236 	struct mc_addr_spec *macaddr;
2237 	cs_status_t *cs_status;
2238 	int len, len1, i, bk, cc;
2239 	mc_addr_info_t maddr;
2240 	uint32_t mirr;
2241 	int nbanks = 0;
2242 	uint64_t nbytes = 0;
2243 
2244 	/*
2245 	 * Get configurations from "pseudo-mc" node which includes:
2246 	 * board# : LSB number
2247 	 * mac-addr : physical base address of MAC registers
2248 	 * csX-mac-pa-trans-table: translation table from DIMM address
2249 	 *			to physical address or vice versa.
2250 	 */
2251 	mcp->mc_board_num = (int)ddi_getprop(DDI_DEV_T_ANY, mcp->mc_dip,
2252 		DDI_PROP_DONTPASS, "board#", -1);
2253 
2254 	if (mcp->mc_board_num == -1) {
2255 		return (DDI_FAILURE);
2256 	}
2257 
2258 	/*
2259 	 * Get start address in this CAB. It can be gotten from
2260 	 * "sb-mem-ranges" property.
2261 	 */
2262 
2263 	if (get_base_address(mcp) == DDI_FAILURE) {
2264 		return (DDI_FAILURE);
2265 	}
2266 	/* get mac-pa trans tables */
2267 	for (i = 0; i < MC_TT_CS; i++) {
2268 		len = MC_TT_ENTRIES;
2269 		cc = ddi_getlongprop_buf(DDI_DEV_T_ANY, mcp->mc_dip,
2270 			DDI_PROP_DONTPASS, mc_tbl_name[i],
2271 			(caddr_t)mcp->mc_trans_table[i], &len);
2272 
2273 		if (cc != DDI_SUCCESS) {
2274 			bzero(mcp->mc_trans_table[i], MC_TT_ENTRIES);
2275 		}
2276 	}
2277 	mcp->mlist = NULL;
2278 
2279 	mc_get_mlist(mcp);
2280 
2281 	/* initialize bank informations */
2282 	cc = ddi_getlongprop(DDI_DEV_T_ANY, mcp->mc_dip, DDI_PROP_DONTPASS,
2283 		"mc-addr", (caddr_t)&macaddr, &len);
2284 	if (cc != DDI_SUCCESS) {
2285 		cmn_err(CE_WARN, "Cannot get mc-addr. err=%d\n", cc);
2286 		return (DDI_FAILURE);
2287 	}
2288 
2289 	cc = ddi_getlongprop(DDI_DEV_T_ANY, mcp->mc_dip, DDI_PROP_DONTPASS,
2290 		"cs-status", (caddr_t)&cs_status, &len1);
2291 
2292 	if (cc != DDI_SUCCESS) {
2293 		if (len > 0)
2294 			kmem_free(macaddr, len);
2295 		cmn_err(CE_WARN, "Cannot get cs-status. err=%d\n", cc);
2296 		return (DDI_FAILURE);
2297 	}
2298 
2299 	mutex_init(&mcp->mc_lock, NULL, MUTEX_DRIVER, NULL);
2300 
2301 	for (i = 0; i < len1 / sizeof (cs_status_t); i++) {
2302 		nbytes += ((uint64_t)cs_status[i].cs_avail_hi << 32) |
2303 			((uint64_t)cs_status[i].cs_avail_low);
2304 	}
2305 	if (len1 > 0)
2306 		kmem_free(cs_status, len1);
2307 	nbanks = len / sizeof (struct mc_addr_spec);
2308 
2309 	if (nbanks > 0)
2310 		nbytes /= nbanks;
2311 	else {
2312 		/* No need to free macaddr because len must be 0 */
2313 		mcp->mc_status |= MC_MEMORYLESS;
2314 		return (DDI_SUCCESS);
2315 	}
2316 
2317 	for (i = 0; i < BANKNUM_PER_SB; i++) {
2318 		mcp->mc_scf_retry[i] = 0;
2319 		mcp->mc_period[i] = 0;
2320 		mcp->mc_speedup_period[i] = 0;
2321 	}
2322 
2323 	/*
2324 	 * Get the memory size here. Let it be B (bytes).
2325 	 * Let T be the time in u.s. to scan 64 bytes.
2326 	 * If we want to complete 1 round of scanning in P seconds.
2327 	 *
2328 	 *	B * T * 10^(-6)	= P
2329 	 *	---------------
2330 	 *		64
2331 	 *
2332 	 *	T = P * 64 * 10^6
2333 	 *	    -------------
2334 	 *		B
2335 	 *
2336 	 *	  = P * 64 * 10^6
2337 	 *	    -------------
2338 	 *		B
2339 	 *
2340 	 *	The timing bits are set in PTRL_CNTL[28:26] where
2341 	 *
2342 	 *	0	- 1 m.s
2343 	 *	1	- 512 u.s.
2344 	 *	10	- 256 u.s.
2345 	 *	11	- 128 u.s.
2346 	 *	100	- 64 u.s.
2347 	 *	101	- 32 u.s.
2348 	 *	110	- 0 u.s.
2349 	 *	111	- reserved.
2350 	 *
2351 	 *
2352 	 *	a[0] = 110, a[1] = 101, ... a[6] = 0
2353 	 *
2354 	 *	cs-status property is int x 7
2355 	 *	0 - cs#
2356 	 *	1 - cs-status
2357 	 *	2 - cs-avail.hi
2358 	 *	3 - cs-avail.lo
2359 	 *	4 - dimm-capa.hi
2360 	 *	5 - dimm-capa.lo
2361 	 *	6 - #of dimms
2362 	 */
2363 
2364 	if (nbytes > 0) {
2365 		int i;
2366 		uint64_t ms;
2367 		ms = ((uint64_t)mc_scan_period * 64 * 1000000)/nbytes;
2368 		mcp->mc_speed = mc_scan_speeds[MC_MAX_SPEEDS - 1].mc_speeds;
2369 		for (i = 0; i < MC_MAX_SPEEDS - 1; i++) {
2370 			if (ms < mc_scan_speeds[i + 1].mc_period) {
2371 				mcp->mc_speed = mc_scan_speeds[i].mc_speeds;
2372 				break;
2373 			}
2374 		}
2375 	} else
2376 		mcp->mc_speed = 0;
2377 
2378 
2379 	for (i = 0; i < len / sizeof (struct mc_addr_spec); i++) {
2380 		struct mc_bank *bankp;
2381 		uint32_t reg;
2382 
2383 		/*
2384 		 * setup bank
2385 		 */
2386 		bk = macaddr[i].bank;
2387 		bankp = &(mcp->mc_bank[bk]);
2388 		bankp->mcb_status = BANK_INSTALLED;
2389 		bankp->mcb_reg_base = REGS_PA(macaddr, i);
2390 
2391 		reg = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bk));
2392 		bankp->mcb_ptrl_cntl = (reg & MAC_CNTL_PTRL_PRESERVE_BITS);
2393 
2394 		/*
2395 		 * check if mirror mode
2396 		 */
2397 		mirr = LD_MAC_REG(MAC_MIRR(mcp, bk));
2398 
2399 		if (mirr & MAC_MIRR_MIRROR_MODE) {
2400 			MC_LOG("Mirror -> /LSB%d/B%d\n",
2401 				mcp->mc_board_num, bk);
2402 			bankp->mcb_status |= BANK_MIRROR_MODE;
2403 			/*
2404 			 * The following bit is only used for
2405 			 * error injection.  We should clear it
2406 			 */
2407 			if (mirr & MAC_MIRR_BANK_EXCLUSIVE)
2408 				ST_MAC_REG(MAC_MIRR(mcp, bk),
2409 					0);
2410 		}
2411 
2412 		/*
2413 		 * restart if not mirror mode or the other bank
2414 		 * of the mirror is not running
2415 		 */
2416 		if (!(mirr & MAC_MIRR_MIRROR_MODE) ||
2417 			!(mcp->mc_bank[bk^1].mcb_status &
2418 			BANK_PTRL_RUNNING)) {
2419 			MC_LOG("Starting up /LSB%d/B%d\n",
2420 				mcp->mc_board_num, bk);
2421 			get_ptrl_start_address(mcp, bk, &maddr.mi_maddr);
2422 			maddr.mi_maddr.ma_bd = mcp->mc_board_num;
2423 			maddr.mi_maddr.ma_bank = bk;
2424 			maddr.mi_maddr.ma_dimm_addr = 0;
2425 			maddr.mi_valid = 0;
2426 			maddr.mi_advance = 0;
2427 			restart_patrol(mcp, bk, &maddr);
2428 		} else {
2429 			MC_LOG("Not starting up /LSB%d/B%d\n",
2430 				mcp->mc_board_num, bk);
2431 		}
2432 		bankp->mcb_status |= BANK_PTRL_RUNNING;
2433 	}
2434 	if (len > 0)
2435 		kmem_free(macaddr, len);
2436 
2437 	mcp->mc_dimm_list = mc_get_dimm_list(mcp);
2438 
2439 	/*
2440 	 * set interval in HZ.
2441 	 */
2442 	mcp->mc_last_error = 0;
2443 
2444 	/* restart memory patrol checking */
2445 	mcp->mc_status |= MC_POLL_RUNNING;
2446 
2447 	return (DDI_SUCCESS);
2448 }
2449 
2450 int
2451 mc_board_del(mc_opl_t *mcp)
2452 {
2453 	int i;
2454 	scf_log_t *p;
2455 
2456 	/*
2457 	 * cleanup mac state
2458 	 */
2459 	mutex_enter(&mcp->mc_lock);
2460 	if (mcp->mc_status & MC_MEMORYLESS) {
2461 		mutex_exit(&mcp->mc_lock);
2462 		mutex_destroy(&mcp->mc_lock);
2463 		return (DDI_SUCCESS);
2464 	}
2465 	for (i = 0; i < BANKNUM_PER_SB; i++) {
2466 		if (mcp->mc_bank[i].mcb_status & BANK_INSTALLED) {
2467 			mcp->mc_bank[i].mcb_status &= ~BANK_INSTALLED;
2468 		}
2469 	}
2470 
2471 	/* stop memory patrol checking */
2472 	if (mcp->mc_status & MC_POLL_RUNNING) {
2473 		mcp->mc_status &= ~MC_POLL_RUNNING;
2474 	}
2475 
2476 	/* just throw away all the scf logs */
2477 	for (i = 0; i < BANKNUM_PER_SB; i++) {
2478 	    while ((p = mcp->mc_scf_log[i]) != NULL) {
2479 		mcp->mc_scf_log[i] = p->sl_next;
2480 		mcp->mc_scf_total[i]--;
2481 		kmem_free(p, sizeof (scf_log_t));
2482 	    }
2483 	}
2484 
2485 	if (mcp->mlist)
2486 		mc_memlist_delete(mcp->mlist);
2487 
2488 	if (mcp->mc_dimm_list)
2489 		mc_free_dimm_list(mcp->mc_dimm_list);
2490 
2491 	mutex_exit(&mcp->mc_lock);
2492 
2493 	mutex_destroy(&mcp->mc_lock);
2494 	return (DDI_SUCCESS);
2495 }
2496 
2497 int
2498 mc_suspend(mc_opl_t *mcp, uint32_t flag)
2499 {
2500 	/* stop memory patrol checking */
2501 	mutex_enter(&mcp->mc_lock);
2502 	if (mcp->mc_status & MC_MEMORYLESS) {
2503 		mutex_exit(&mcp->mc_lock);
2504 		return (DDI_SUCCESS);
2505 	}
2506 
2507 	if (mcp->mc_status & MC_POLL_RUNNING) {
2508 		mcp->mc_status &= ~MC_POLL_RUNNING;
2509 	}
2510 	mcp->mc_status |= flag;
2511 	mutex_exit(&mcp->mc_lock);
2512 
2513 	return (DDI_SUCCESS);
2514 }
2515 
2516 /* caller must clear the SUSPEND bits or this will do nothing */
2517 
2518 int
2519 mc_resume(mc_opl_t *mcp, uint32_t flag)
2520 {
2521 	int i;
2522 	uint64_t basepa;
2523 
2524 	mutex_enter(&mcp->mc_lock);
2525 	if (mcp->mc_status & MC_MEMORYLESS) {
2526 		mutex_exit(&mcp->mc_lock);
2527 		return (DDI_SUCCESS);
2528 	}
2529 	basepa = mcp->mc_start_address;
2530 	if (get_base_address(mcp) == DDI_FAILURE) {
2531 		mutex_exit(&mcp->mc_lock);
2532 		return (DDI_FAILURE);
2533 	}
2534 
2535 	if (basepa != mcp->mc_start_address) {
2536 		if (mcp->mlist)
2537 			mc_memlist_delete(mcp->mlist);
2538 		mcp->mlist = NULL;
2539 		mc_get_mlist(mcp);
2540 	}
2541 
2542 	mcp->mc_status &= ~flag;
2543 
2544 	if (mcp->mc_status & (MC_SOFT_SUSPENDED | MC_DRIVER_SUSPENDED)) {
2545 		mutex_exit(&mcp->mc_lock);
2546 		return (DDI_SUCCESS);
2547 	}
2548 
2549 	if (!(mcp->mc_status & MC_POLL_RUNNING)) {
2550 		/* restart memory patrol checking */
2551 		mcp->mc_status |= MC_POLL_RUNNING;
2552 		for (i = 0; i < BANKNUM_PER_SB; i++) {
2553 			if (mcp->mc_bank[i].mcb_status & BANK_INSTALLED) {
2554 				restart_patrol(mcp, i, NULL);
2555 			}
2556 		}
2557 	}
2558 	mutex_exit(&mcp->mc_lock);
2559 
2560 	return (DDI_SUCCESS);
2561 }
2562 
2563 static mc_opl_t *
2564 mc_pa_to_mcp(uint64_t pa)
2565 {
2566 	mc_opl_t *mcp;
2567 	int i;
2568 
2569 	ASSERT(MUTEX_HELD(&mcmutex));
2570 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
2571 		if ((mcp = mc_instances[i]) == NULL)
2572 			continue;
2573 		/* if mac patrol is suspended, we cannot rely on it */
2574 		if (!(mcp->mc_status & MC_POLL_RUNNING) ||
2575 			(mcp->mc_status & MC_SOFT_SUSPENDED))
2576 			continue;
2577 		if ((mcp->mc_start_address <= pa) &&
2578 			(pa < (mcp->mc_start_address + mcp->mc_size))) {
2579 			return (mcp);
2580 		}
2581 	}
2582 	return (NULL);
2583 }
2584 
2585 /*
2586  * Get Physical Board number from Logical one.
2587  */
2588 static int
2589 mc_opl_get_physical_board(int sb)
2590 {
2591 	if (&opl_get_physical_board) {
2592 		return (opl_get_physical_board(sb));
2593 	}
2594 
2595 	cmn_err(CE_NOTE, "!opl_get_physical_board() not loaded\n");
2596 	return (-1);
2597 }
2598 
2599 /* ARGSUSED */
2600 int
2601 mc_get_mem_unum(int synd_code, uint64_t flt_addr, char *buf, int buflen,
2602 	int *lenp)
2603 {
2604 	int i;
2605 	int sb;
2606 	int bank;
2607 	mc_opl_t *mcp;
2608 	char memb_num;
2609 
2610 	mutex_enter(&mcmutex);
2611 
2612 	if (((mcp = mc_pa_to_mcp(flt_addr)) == NULL) ||
2613 		(!pa_is_valid(mcp, flt_addr))) {
2614 		mutex_exit(&mcmutex);
2615 		if (snprintf(buf, buflen, "UNKNOWN") >= buflen) {
2616 			return (ENOSPC);
2617 		} else {
2618 			if (lenp)
2619 				*lenp = strlen(buf);
2620 		}
2621 		return (0);
2622 	}
2623 
2624 	bank = pa_to_bank(mcp, flt_addr - mcp->mc_start_address);
2625 	sb = mc_opl_get_physical_board(mcp->mc_board_num);
2626 
2627 	if (sb == -1) {
2628 		mutex_exit(&mcmutex);
2629 		return (ENXIO);
2630 	}
2631 
2632 	if (plat_model == MODEL_DC) {
2633 		i = BD_BK_SLOT_TO_INDEX(0, bank, 0);
2634 		snprintf(buf, buflen, "/%s%02d/MEM%s MEM%s MEM%s MEM%s",
2635 		    model_names[plat_model].unit_name, sb,
2636 		    mc_dc_dimm_unum_table[i], mc_dc_dimm_unum_table[i + 1],
2637 		    mc_dc_dimm_unum_table[i + 2], mc_dc_dimm_unum_table[i + 3]);
2638 	} else {
2639 		i = BD_BK_SLOT_TO_INDEX(sb, bank, 0);
2640 		memb_num = mc_ff_dimm_unum_table[i][0];
2641 		snprintf(buf, buflen, "/%s/%s%c/MEM%s MEM%s MEM%s MEM%s",
2642 		    model_names[plat_model].unit_name,
2643 		    model_names[plat_model].mem_name, memb_num,
2644 		    &mc_ff_dimm_unum_table[i][1],
2645 
2646 		    &mc_ff_dimm_unum_table[i + 1][1],
2647 		    &mc_ff_dimm_unum_table[i + 2][1],
2648 		    &mc_ff_dimm_unum_table[i + 3][1]);
2649 	}
2650 	if (lenp) {
2651 		*lenp = strlen(buf);
2652 	}
2653 	mutex_exit(&mcmutex);
2654 	return (0);
2655 }
2656 
2657 int
2658 opl_mc_suspend(void)
2659 {
2660 	mc_opl_t *mcp;
2661 	int i;
2662 
2663 	mutex_enter(&mcmutex);
2664 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
2665 		if ((mcp = mc_instances[i]) == NULL)
2666 			continue;
2667 		mc_suspend(mcp, MC_SOFT_SUSPENDED);
2668 	}
2669 	mutex_exit(&mcmutex);
2670 
2671 	return (0);
2672 }
2673 
2674 int
2675 opl_mc_resume(void)
2676 {
2677 	mc_opl_t *mcp;
2678 	int i;
2679 
2680 	mutex_enter(&mcmutex);
2681 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
2682 		if ((mcp = mc_instances[i]) == NULL)
2683 			continue;
2684 		mc_resume(mcp, MC_SOFT_SUSPENDED);
2685 	}
2686 	mutex_exit(&mcmutex);
2687 
2688 	return (0);
2689 }
2690 static void
2691 insert_mcp(mc_opl_t *mcp)
2692 {
2693 	mutex_enter(&mcmutex);
2694 	if (mc_instances[mcp->mc_board_num] != NULL) {
2695 		MC_LOG("mc-opl instance for board# %d already exists\n",
2696 			mcp->mc_board_num);
2697 	}
2698 	mc_instances[mcp->mc_board_num] = mcp;
2699 	mutex_exit(&mcmutex);
2700 }
2701 
2702 static void
2703 delete_mcp(mc_opl_t *mcp)
2704 {
2705 	mutex_enter(&mcmutex);
2706 	mc_instances[mcp->mc_board_num] = 0;
2707 	mutex_exit(&mcmutex);
2708 }
2709 
2710 /* Error injection interface */
2711 
2712 static void
2713 mc_lock_va(uint64_t pa, caddr_t new_va)
2714 {
2715 	tte_t tte;
2716 
2717 	vtag_flushpage(new_va, KCONTEXT);
2718 	sfmmu_memtte(&tte, pa >> PAGESHIFT,
2719 		PROC_DATA|HAT_NOSYNC, TTE8K);
2720 	tte.tte_intlo |= TTE_LCK_INT;
2721 	sfmmu_dtlb_ld_kva(new_va, &tte);
2722 }
2723 
2724 static void
2725 mc_unlock_va(caddr_t va)
2726 {
2727 	vtag_flushpage(va, (uint64_t)ksfmmup);
2728 }
2729 
2730 /* ARGSUSED */
2731 int
2732 mc_inject_error(int error_type, uint64_t pa, uint32_t flags)
2733 {
2734 	mc_opl_t *mcp;
2735 	int bank;
2736 	uint32_t dimm_addr;
2737 	uint32_t cntl;
2738 	mc_addr_info_t maddr;
2739 	uint32_t data, stat;
2740 	int both_sides = 0;
2741 	uint64_t pa0;
2742 	int extra_injection_needed = 0;
2743 	extern void cpu_flush_ecache(void);
2744 
2745 	MC_LOG("HW mc_inject_error(%x, %lx, %x)\n", error_type, pa, flags);
2746 
2747 	mutex_enter(&mcmutex);
2748 	if ((mcp = mc_pa_to_mcp(pa)) == NULL) {
2749 		mutex_exit(&mcmutex);
2750 		MC_LOG("mc_inject_error: invalid pa\n");
2751 		return (ENOTSUP);
2752 	}
2753 
2754 	mutex_enter(&mcp->mc_lock);
2755 	mutex_exit(&mcmutex);
2756 
2757 	if (mcp->mc_status & (MC_SOFT_SUSPENDED | MC_DRIVER_SUSPENDED)) {
2758 		mutex_exit(&mcp->mc_lock);
2759 		MC_LOG("mc-opl has been suspended.  No error injection.\n");
2760 		return (EBUSY);
2761 	}
2762 
2763 	/* convert pa to offset within the board */
2764 	MC_LOG("pa %lx, offset %lx\n", pa, pa - mcp->mc_start_address);
2765 
2766 	if (!pa_is_valid(mcp, pa)) {
2767 		mutex_exit(&mcp->mc_lock);
2768 		return (EINVAL);
2769 	}
2770 
2771 	pa0 = pa - mcp->mc_start_address;
2772 
2773 	bank = pa_to_bank(mcp, pa0);
2774 
2775 	if (flags & MC_INJECT_FLAG_OTHER)
2776 		bank = bank ^ 1;
2777 
2778 	if (MC_INJECT_MIRROR(error_type) && !IS_MIRROR(mcp, bank)) {
2779 		mutex_exit(&mcp->mc_lock);
2780 		MC_LOG("Not mirror mode\n");
2781 		return (EINVAL);
2782 	}
2783 
2784 	dimm_addr = pa_to_dimm(mcp, pa0);
2785 
2786 	MC_LOG("injecting error to /LSB%d/B%d/%x\n",
2787 		mcp->mc_board_num, bank, dimm_addr);
2788 
2789 
2790 	switch (error_type) {
2791 	case MC_INJECT_INTERMITTENT_MCE:
2792 	case MC_INJECT_PERMANENT_MCE:
2793 	case MC_INJECT_MUE:
2794 		both_sides = 1;
2795 	}
2796 
2797 	if (flags & MC_INJECT_FLAG_RESET)
2798 		ST_MAC_REG(MAC_EG_CNTL(mcp, bank), 0);
2799 
2800 	ST_MAC_REG(MAC_EG_ADD(mcp, bank), dimm_addr & MAC_EG_ADD_MASK);
2801 
2802 	if (both_sides) {
2803 		ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), 0);
2804 		ST_MAC_REG(MAC_EG_ADD(mcp, bank^1),
2805 			dimm_addr & MAC_EG_ADD_MASK);
2806 	}
2807 
2808 	switch (error_type) {
2809 	case MC_INJECT_SUE:
2810 		extra_injection_needed = 1;
2811 		/*FALLTHROUGH*/
2812 	case MC_INJECT_UE:
2813 	case MC_INJECT_MUE:
2814 		if (flags & MC_INJECT_FLAG_PATH) {
2815 			cntl = MAC_EG_ADD_FIX
2816 				|MAC_EG_FORCE_READ00|MAC_EG_FORCE_READ16
2817 				|MAC_EG_RDERR_ONCE;
2818 		} else {
2819 			cntl = MAC_EG_ADD_FIX|MAC_EG_FORCE_DERR00
2820 				|MAC_EG_FORCE_DERR16|MAC_EG_DERR_ONCE;
2821 		}
2822 		flags |= MC_INJECT_FLAG_ST;
2823 		break;
2824 	case MC_INJECT_INTERMITTENT_CE:
2825 	case MC_INJECT_INTERMITTENT_MCE:
2826 		if (flags & MC_INJECT_FLAG_PATH) {
2827 			cntl = MAC_EG_ADD_FIX
2828 				|MAC_EG_FORCE_READ00
2829 				|MAC_EG_RDERR_ONCE;
2830 		} else {
2831 			cntl = MAC_EG_ADD_FIX
2832 				|MAC_EG_FORCE_DERR16
2833 				|MAC_EG_DERR_ONCE;
2834 		}
2835 		extra_injection_needed = 1;
2836 		flags |= MC_INJECT_FLAG_ST;
2837 		break;
2838 	case MC_INJECT_PERMANENT_CE:
2839 	case MC_INJECT_PERMANENT_MCE:
2840 		if (flags & MC_INJECT_FLAG_PATH) {
2841 			cntl = MAC_EG_ADD_FIX
2842 				|MAC_EG_FORCE_READ00
2843 				|MAC_EG_RDERR_ALWAYS;
2844 		} else {
2845 			cntl = MAC_EG_ADD_FIX
2846 				|MAC_EG_FORCE_DERR16
2847 				|MAC_EG_DERR_ALWAYS;
2848 		}
2849 		flags |= MC_INJECT_FLAG_ST;
2850 		break;
2851 	case MC_INJECT_CMPE:
2852 		data = 0xabcdefab;
2853 		stphys(pa, data);
2854 		cpu_flush_ecache();
2855 		MC_LOG("CMPE: writing data %x to %lx\n", data, pa);
2856 		ST_MAC_REG(MAC_MIRR(mcp, bank), MAC_MIRR_BANK_EXCLUSIVE);
2857 		stphys(pa, data ^ 0xffffffff);
2858 		cpu_flush_ecache();
2859 		ST_MAC_REG(MAC_MIRR(mcp, bank), 0);
2860 		MC_LOG("CMPE: write new data %xto %lx\n", data, pa);
2861 		cntl = 0;
2862 		break;
2863 	case MC_INJECT_NOP:
2864 		cntl = 0;
2865 		break;
2866 	default:
2867 		MC_LOG("mc_inject_error: invalid option\n");
2868 		cntl = 0;
2869 	}
2870 
2871 	if (cntl) {
2872 		ST_MAC_REG(MAC_EG_CNTL(mcp, bank), cntl & MAC_EG_SETUP_MASK);
2873 		ST_MAC_REG(MAC_EG_CNTL(mcp, bank), cntl);
2874 
2875 		if (both_sides) {
2876 			ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), cntl &
2877 				MAC_EG_SETUP_MASK);
2878 			ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), cntl);
2879 		}
2880 	}
2881 
2882 	/*
2883 	 * For all injection cases except compare error, we
2884 	 * must write to the PA to trigger the error.
2885 	 */
2886 
2887 	if (flags & MC_INJECT_FLAG_ST) {
2888 		data = 0xf0e0d0c0;
2889 		MC_LOG("Writing %x to %lx\n", data, pa);
2890 		stphys(pa, data);
2891 		cpu_flush_ecache();
2892 	}
2893 
2894 
2895 	if (flags & MC_INJECT_FLAG_LD) {
2896 		if (flags & MC_INJECT_FLAG_PREFETCH) {
2897 			/*
2898 			 * Use strong prefetch operation to
2899 			 * inject MI errors.
2900 			 */
2901 			page_t *pp;
2902 			extern void mc_prefetch(caddr_t);
2903 
2904 			MC_LOG("prefetch\n");
2905 
2906 			pp = page_numtopp_nolock(pa >> PAGESHIFT);
2907 			if (pp != NULL) {
2908 				caddr_t	va, va1;
2909 
2910 				va = ppmapin(pp, PROT_READ|PROT_WRITE,
2911 					(caddr_t)-1);
2912 				kpreempt_disable();
2913 				mc_lock_va((uint64_t)pa, va);
2914 				va1 = va + (pa & (PAGESIZE - 1));
2915 				mc_prefetch(va1);
2916 				mc_unlock_va(va);
2917 				kpreempt_enable();
2918 				ppmapout(va);
2919 
2920 				/*
2921 				 * For MI errors, we need one extra
2922 				 * injection for HW patrol to stop.
2923 				 */
2924 				extra_injection_needed = 1;
2925 			} else {
2926 				cmn_err(CE_WARN, "Cannot find page structure"
2927 					" for PA %lx\n", pa);
2928 			}
2929 		} else {
2930 			MC_LOG("Reading from %lx\n", pa);
2931 			data = ldphys(pa);
2932 			MC_LOG("data = %x\n", data);
2933 		}
2934 
2935 		if (extra_injection_needed) {
2936 			/*
2937 			 * These are the injection cases where the
2938 			 * requested injected errors will not cause the HW
2939 			 * patrol to stop. For these cases, we need to inject
2940 			 * an extra 'real' PTRL error to force the
2941 			 * HW patrol to stop so that we can report the
2942 			 * errors injected. Note that we cannot read
2943 			 * and report error status while the HW patrol
2944 			 * is running.
2945 			 */
2946 			ST_MAC_REG(MAC_EG_CNTL(mcp, bank),
2947 				cntl & MAC_EG_SETUP_MASK);
2948 			ST_MAC_REG(MAC_EG_CNTL(mcp, bank), cntl);
2949 
2950 			if (both_sides) {
2951 			    ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), cntl &
2952 				MAC_EG_SETUP_MASK);
2953 			    ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), cntl);
2954 			}
2955 			data = 0xf0e0d0c0;
2956 			MC_LOG("Writing %x to %lx\n", data, pa);
2957 			stphys(pa, data);
2958 			cpu_flush_ecache();
2959 		}
2960 	}
2961 
2962 	if (flags & MC_INJECT_FLAG_RESTART) {
2963 		MC_LOG("Restart patrol\n");
2964 		maddr.mi_maddr.ma_bd = mcp->mc_board_num;
2965 		maddr.mi_maddr.ma_bank = bank;
2966 		maddr.mi_maddr.ma_dimm_addr = dimm_addr;
2967 		maddr.mi_valid = 1;
2968 		maddr.mi_advance = 0;
2969 		restart_patrol(mcp, bank, &maddr);
2970 	}
2971 
2972 	if (flags & MC_INJECT_FLAG_POLL) {
2973 		int running;
2974 
2975 		MC_LOG("Poll patrol error\n");
2976 		stat = LD_MAC_REG(MAC_PTRL_STAT(mcp, bank));
2977 		cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank));
2978 		running = cntl & MAC_CNTL_PTRL_START;
2979 
2980 		if (!running &&
2981 		    (stat & (MAC_STAT_PTRL_ERRS|MAC_STAT_MI_ERRS))) {
2982 			/*
2983 			 * HW patrol stopped and we have errors to
2984 			 * report. Do it.
2985 			 */
2986 			mcp->mc_speedup_period[bank] = 0;
2987 			maddr.mi_valid = 0;
2988 			maddr.mi_advance = 1;
2989 			if (IS_MIRROR(mcp, bank))
2990 				mc_error_handler_mir(mcp, bank, &maddr);
2991 			else
2992 				mc_error_handler(mcp, bank, &maddr);
2993 
2994 			restart_patrol(mcp, bank, &maddr);
2995 		} else {
2996 			/*
2997 			 * We are expecting to report injected
2998 			 * errors but the HW patrol is still running.
2999 			 * Speed up the scanning
3000 			 */
3001 			mcp->mc_speedup_period[bank] = 2;
3002 			MAC_CMD(mcp, bank, 0);
3003 			restart_patrol(mcp, bank, NULL);
3004 		}
3005 	}
3006 
3007 	mutex_exit(&mcp->mc_lock);
3008 	return (0);
3009 }
3010 
3011 void
3012 mc_stphysio(uint64_t pa, uint32_t data)
3013 {
3014 	MC_LOG("0x%x -> pa(%lx)\n", data, pa);
3015 	stphysio(pa, data);
3016 
3017 	/* force the above write to be processed by mac patrol */
3018 	data = ldphysio(pa);
3019 	MC_LOG("pa(%lx) = 0x%x\n", pa, data);
3020 }
3021 
3022 uint32_t
3023 mc_ldphysio(uint64_t pa)
3024 {
3025 	uint32_t rv;
3026 
3027 	rv = ldphysio(pa);
3028 	MC_LOG("pa(%lx) = 0x%x\n", pa, rv);
3029 	return (rv);
3030 }
3031 
3032 #define	isdigit(ch)	((ch) >= '0' && (ch) <= '9')
3033 
3034 /*
3035  * parse_unum_memory -- extract the board number and the DIMM name from
3036  * the unum.
3037  *
3038  * Return 0 for success and non-zero for a failure.
3039  */
3040 int
3041 parse_unum_memory(char *unum, int *board, char *dname)
3042 {
3043 	char *c;
3044 	char x, y, z;
3045 
3046 	if ((c = strstr(unum, "CMU")) != NULL) {
3047 		/* DC Model */
3048 		c += 3;
3049 		*board = (uint8_t)stoi(&c);
3050 		if ((c = strstr(c, "MEM")) == NULL) {
3051 			return (1);
3052 		}
3053 		c += 3;
3054 		if (strlen(c) < 3) {
3055 			return (2);
3056 		}
3057 		if ((!isdigit(c[0])) || (!(isdigit(c[1]))) ||
3058 		    ((c[2] != 'A') && (c[2] != 'B'))) {
3059 			return (3);
3060 		}
3061 		x = c[0];
3062 		y = c[1];
3063 		z = c[2];
3064 	} else if ((c = strstr(unum, "MBU_")) != NULL) {
3065 		/*  FF1/FF2 Model */
3066 		c += 4;
3067 		if ((c[0] != 'A') && (c[0] != 'B')) {
3068 			return (4);
3069 		}
3070 		if ((c = strstr(c, "MEMB")) == NULL) {
3071 			return (5);
3072 		}
3073 		c += 4;
3074 
3075 		x = c[0];
3076 		*board =  ((uint8_t)stoi(&c)) / 4;
3077 		if ((c = strstr(c, "MEM")) == NULL) {
3078 			return (6);
3079 		}
3080 		c += 3;
3081 		if (strlen(c) < 2) {
3082 			return (7);
3083 		}
3084 		if ((!isdigit(c[0])) || ((c[1] != 'A') && (c[1] != 'B'))) {
3085 			return (8);
3086 		}
3087 		y = c[0];
3088 		z = c[1];
3089 	} else {
3090 		return (9);
3091 	}
3092 	if (*board < 0) {
3093 		return (10);
3094 	}
3095 	dname[0] = x;
3096 	dname[1] = y;
3097 	dname[2] = z;
3098 	dname[3] = '\0';
3099 	return (0);
3100 }
3101 
3102 /*
3103  * mc_get_mem_sid_dimm -- Get the serial-ID for a given board and
3104  * the DIMM name.
3105  */
3106 int
3107 mc_get_mem_sid_dimm(mc_opl_t *mcp, char *dname, char *buf,
3108     int buflen, int *lenp)
3109 {
3110 	int		ret = ENODEV;
3111 	mc_dimm_info_t	*d = NULL;
3112 
3113 	if ((d = mcp->mc_dimm_list) == NULL)
3114 		return (ENOTSUP);
3115 
3116 	for (; d != NULL; d = d->md_next) {
3117 		if (strcmp(d->md_dimmname, dname) == 0) {
3118 			break;
3119 		}
3120 	}
3121 	if (d != NULL) {
3122 		*lenp = strlen(d->md_serial) + strlen(d->md_partnum);
3123 		if (buflen <=  *lenp) {
3124 			cmn_err(CE_WARN, "mc_get_mem_sid_dimm: "
3125 			    "buflen is smaller than %d\n", *lenp);
3126 			ret = ENOSPC;
3127 		} else {
3128 			snprintf(buf, buflen, "%s:%s",
3129 			    d->md_serial, d->md_partnum);
3130 			ret = 0;
3131 		}
3132 	}
3133 	MC_LOG("mc_get_mem_sid_dimm: Ret=%d Name=%s Serial-ID=%s\n",
3134 	    ret, dname, (ret == 0) ? buf : "");
3135 	return (ret);
3136 }
3137 
3138 int
3139 mc_set_mem_sid(mc_opl_t *mcp, char *buf, int buflen, int lsb,
3140     int bank, uint32_t mf_type, uint32_t d_slot)
3141 {
3142 	int	sb;
3143 	int	lenp = buflen;
3144 	int	id;
3145 	int	ret;
3146 	char	*dimmnm;
3147 
3148 	if ((sb = mc_opl_get_physical_board(lsb)) < 0) {
3149 		return (ENODEV);
3150 	}
3151 
3152 	if (mf_type == FLT_TYPE_PERMANENT_CE) {
3153 		if (plat_model == MODEL_DC) {
3154 			id = BD_BK_SLOT_TO_INDEX(0, bank, d_slot);
3155 		} else {
3156 			id = BD_BK_SLOT_TO_INDEX(sb, bank, d_slot);
3157 		}
3158 		dimmnm = mc_dc_dimm_unum_table[id];
3159 		if ((ret = mc_get_mem_sid_dimm(mcp, dimmnm, buf, buflen,
3160 		    &lenp)) != 0) {
3161 			return (ret);
3162 		}
3163 	} else {
3164 		return (1);
3165 	}
3166 
3167 	return (0);
3168 }
3169 
3170 /*
3171  * mc_get_mem_sid -- get the DIMM serial-ID corresponding to the unum.
3172  */
3173 int
3174 mc_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
3175 {
3176 	int	i;
3177 	int	ret = ENODEV;
3178 	int	board;
3179 	char	dname[MCOPL_MAX_DIMMNAME + 1];
3180 	mc_opl_t *mcp;
3181 
3182 	MC_LOG("mc_get_mem_sid: unum=%s buflen=%d\n", unum, buflen);
3183 	if ((ret = parse_unum_memory(unum, &board, dname)) != 0) {
3184 		MC_LOG("mc_get_mem_sid: unum(%s) parsing failed ret=%d\n",
3185 		    unum, ret);
3186 		return (EINVAL);
3187 	}
3188 
3189 	if (board < 0) {
3190 		MC_LOG("mc_get_mem_sid: Invalid board=%d dimm=%s\n",
3191 		    board, dname);
3192 		return (EINVAL);
3193 	}
3194 
3195 	mutex_enter(&mcmutex);
3196 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
3197 		if ((mcp = mc_instances[i]) == NULL)
3198 			continue;
3199 		mutex_enter(&mcp->mc_lock);
3200 		if (mcp->mc_board_num == board) {
3201 			ret = mc_get_mem_sid_dimm(mcp, dname, buf,
3202 			    buflen, lenp);
3203 			mutex_exit(&mcp->mc_lock);
3204 			break;
3205 		}
3206 		mutex_exit(&mcp->mc_lock);
3207 	}
3208 	mutex_exit(&mcmutex);
3209 	return (ret);
3210 }
3211 
3212 /*
3213  * mc_get_mem_offset -- get the offset in a DIMM for a given physical address.
3214  */
3215 int
3216 mc_get_mem_offset(uint64_t paddr, uint64_t *offp)
3217 {
3218 	int		i;
3219 	int		ret = ENODEV;
3220 	mc_addr_t	maddr;
3221 	mc_opl_t	*mcp;
3222 
3223 	mutex_enter(&mcmutex);
3224 	for (i = 0; ((i < OPL_MAX_BOARDS) && (ret != 0)); i++) {
3225 		if ((mcp = mc_instances[i]) == NULL)
3226 			continue;
3227 		mutex_enter(&mcp->mc_lock);
3228 		if (!pa_is_valid(mcp, paddr)) {
3229 			mutex_exit(&mcp->mc_lock);
3230 			continue;
3231 		}
3232 		if (pa_to_maddr(mcp, paddr, &maddr) == 0) {
3233 			*offp = maddr.ma_dimm_addr;
3234 			ret = 0;
3235 		}
3236 		mutex_exit(&mcp->mc_lock);
3237 	}
3238 	mutex_exit(&mcmutex);
3239 	MC_LOG("mc_get_mem_offset: Ret=%d paddr=0x%lx offset=0x%lx\n",
3240 	    ret, paddr, *offp);
3241 	return (ret);
3242 }
3243 
3244 /*
3245  * dname_to_bankslot - Get the bank and slot number from the DIMM name.
3246  */
3247 int
3248 dname_to_bankslot(char *dname, int *bank, int *slot)
3249 {
3250 	int i;
3251 	int tsz;
3252 	char **tbl;
3253 
3254 	if (plat_model == MODEL_DC) { /* DC */
3255 		tbl = mc_dc_dimm_unum_table;
3256 		tsz = OPL_MAX_DIMMS;
3257 	} else {
3258 		tbl = mc_ff_dimm_unum_table;
3259 		tsz = 2 * OPL_MAX_DIMMS;
3260 	}
3261 
3262 	for (i = 0; i < tsz; i++) {
3263 		if (strcmp(dname,  tbl[i]) == 0) {
3264 			break;
3265 		}
3266 	}
3267 	if (i == tsz) {
3268 		return (1);
3269 	}
3270 	*bank = INDEX_TO_BANK(i);
3271 	*slot = INDEX_TO_SLOT(i);
3272 	return (0);
3273 }
3274 
3275 /*
3276  * mc_get_mem_addr -- get the physical address of a DIMM corresponding
3277  * to the unum and sid.
3278  */
3279 int
3280 mc_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *paddr)
3281 {
3282 	int	board;
3283 	int	bank;
3284 	int	slot;
3285 	int	i;
3286 	int	ret = ENODEV;
3287 	char	dname[MCOPL_MAX_DIMMNAME + 1];
3288 	mc_addr_t maddr;
3289 	mc_opl_t *mcp;
3290 
3291 	MC_LOG("mc_get_mem_addr: unum=%s sid=%s offset=0x%lx\n",
3292 	    unum, sid, offset);
3293 	if (parse_unum_memory(unum, &board, dname) != 0) {
3294 		MC_LOG("mc_get_mem_sid: unum(%s) parsing failed ret=%d\n",
3295 		    unum, ret);
3296 		return (EINVAL);
3297 	}
3298 
3299 	if (board < 0) {
3300 		MC_LOG("mc_get_mem_addr: Invalid board=%d dimm=%s\n",
3301 		    board, dname);
3302 		return (EINVAL);
3303 	}
3304 
3305 	mutex_enter(&mcmutex);
3306 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
3307 		if ((mcp = mc_instances[i]) == NULL)
3308 			continue;
3309 		mutex_enter(&mcp->mc_lock);
3310 		if (mcp->mc_board_num != board) {
3311 			mutex_exit(&mcp->mc_lock);
3312 			continue;
3313 		}
3314 
3315 		ret = dname_to_bankslot(dname, &bank, &slot);
3316 		MC_LOG("mc_get_mem_addr: bank=%d slot=%d\n", bank, slot);
3317 		if (ret != 0) {
3318 			MC_LOG("mc_get_mem_addr: dname_to_bankslot failed\n");
3319 			ret = ENODEV;
3320 		} else {
3321 			maddr.ma_bd = board;
3322 			maddr.ma_bank =  bank;
3323 			maddr.ma_dimm_addr = offset;
3324 			ret = mcaddr_to_pa(mcp, &maddr, paddr);
3325 			if (ret != 0) {
3326 				MC_LOG("mc_get_mem_addr: "
3327 				    "mcaddr_to_pa failed\n");
3328 				ret = ENODEV;
3329 			}
3330 		}
3331 		mutex_exit(&mcp->mc_lock);
3332 	}
3333 	mutex_exit(&mcmutex);
3334 	MC_LOG("mc_get_mem_addr: Ret=%d, Paddr=0x%lx\n", ret, *paddr);
3335 	return (ret);
3336 }
3337 
3338 static void
3339 mc_free_dimm_list(mc_dimm_info_t *d)
3340 {
3341 	mc_dimm_info_t *next;
3342 
3343 	while (d != NULL) {
3344 		next = d->md_next;
3345 		kmem_free(d, sizeof (mc_dimm_info_t));
3346 		d = next;
3347 	}
3348 }
3349 
3350 /*
3351  * mc_get_dimm_list -- get the list of dimms with serial-id info
3352  * from the SP.
3353  */
3354 mc_dimm_info_t *
3355 mc_get_dimm_list(mc_opl_t *mcp)
3356 {
3357 	uint32_t	bufsz;
3358 	uint32_t	maxbufsz;
3359 	int		ret;
3360 	int		sexp;
3361 	board_dimm_info_t *bd_dimmp;
3362 	mc_dimm_info_t	*dimm_list = NULL;
3363 
3364 	maxbufsz = bufsz = sizeof (board_dimm_info_t) +
3365 	    ((MCOPL_MAX_DIMMNAME +  MCOPL_MAX_SERIAL +
3366 	    MCOPL_MAX_PARTNUM) * OPL_MAX_DIMMS);
3367 
3368 	bd_dimmp = (board_dimm_info_t *)kmem_alloc(bufsz, KM_SLEEP);
3369 	ret = scf_get_dimminfo(mcp->mc_board_num, (void *)bd_dimmp, &bufsz);
3370 
3371 	MC_LOG("mc_get_dimm_list:  scf_service_getinfo returned=%d\n", ret);
3372 	if (ret == 0) {
3373 		sexp = sizeof (board_dimm_info_t) +
3374 		    ((bd_dimmp->bd_dnamesz +  bd_dimmp->bd_serialsz +
3375 		    bd_dimmp->bd_partnumsz) * bd_dimmp->bd_numdimms);
3376 
3377 		if ((bd_dimmp->bd_version == OPL_DIMM_INFO_VERSION) &&
3378 		    (bd_dimmp->bd_dnamesz <= MCOPL_MAX_DIMMNAME) &&
3379 		    (bd_dimmp->bd_serialsz <= MCOPL_MAX_SERIAL) &&
3380 		    (bd_dimmp->bd_partnumsz <= MCOPL_MAX_PARTNUM) &&
3381 		    (sexp <= bufsz)) {
3382 
3383 #ifdef DEBUG
3384 			if (oplmc_debug)
3385 				mc_dump_dimm_info(bd_dimmp);
3386 #endif
3387 			dimm_list = mc_prepare_dimmlist(bd_dimmp);
3388 
3389 		} else {
3390 			cmn_err(CE_WARN, "DIMM info version mismatch\n");
3391 		}
3392 	}
3393 	kmem_free(bd_dimmp, maxbufsz);
3394 	MC_LOG("mc_get_dimm_list: dimmlist=0x%p\n", dimm_list);
3395 	return (dimm_list);
3396 }
3397 
3398 /*
3399  * mc_prepare_dimmlist - Prepare the dimm list from the infomation
3400  * recieved from the SP.
3401  */
3402 mc_dimm_info_t *
3403 mc_prepare_dimmlist(board_dimm_info_t *bd_dimmp)
3404 {
3405 	char	*dimm_name;
3406 	char	*serial;
3407 	char	*part;
3408 	int	dimm;
3409 	int	dnamesz = bd_dimmp->bd_dnamesz;
3410 	int	sersz = bd_dimmp->bd_serialsz;
3411 	int	partsz = bd_dimmp->bd_partnumsz;
3412 	mc_dimm_info_t	*dimm_list = NULL;
3413 	mc_dimm_info_t	*d;
3414 
3415 	dimm_name = (char *)(bd_dimmp + 1);
3416 	for (dimm = 0; dimm < bd_dimmp->bd_numdimms; dimm++) {
3417 
3418 		d = (mc_dimm_info_t *)kmem_alloc(sizeof (mc_dimm_info_t),
3419 		    KM_SLEEP);
3420 		snprintf(d->md_dimmname, dnamesz + 1, "%s", dimm_name);
3421 		serial = dimm_name + dnamesz;
3422 		snprintf(d->md_serial, sersz + 1, "%s", serial);
3423 		part = serial + sersz;
3424 		snprintf(d->md_partnum, partsz + 1, "%s", part);
3425 
3426 		d->md_next = dimm_list;
3427 		dimm_list = d;
3428 		dimm_name = part + partsz;
3429 	}
3430 	return (dimm_list);
3431 }
3432 
3433 #ifdef DEBUG
3434 void
3435 mc_dump_dimm(char *buf, int dnamesz, int serialsz, int partnumsz)
3436 {
3437 	char dname[MCOPL_MAX_DIMMNAME + 1];
3438 	char serial[MCOPL_MAX_SERIAL + 1];
3439 	char part[ MCOPL_MAX_PARTNUM + 1];
3440 	char *b;
3441 
3442 	b = buf;
3443 	snprintf(dname, dnamesz + 1, "%s", b);
3444 	b += dnamesz;
3445 	snprintf(serial, serialsz + 1, "%s", b);
3446 	b += serialsz;
3447 	snprintf(part, partnumsz + 1, "%s", b);
3448 	printf("DIMM=%s  Serial=%s PartNum=%s\n", dname, serial, part);
3449 }
3450 
3451 void
3452 mc_dump_dimm_info(board_dimm_info_t *bd_dimmp)
3453 {
3454 	int	dimm;
3455 	int	dnamesz = bd_dimmp->bd_dnamesz;
3456 	int	sersz = bd_dimmp->bd_serialsz;
3457 	int	partsz = bd_dimmp->bd_partnumsz;
3458 	char	*buf;
3459 
3460 	printf("Version=%d Board=%02d DIMMs=%d NameSize=%d "
3461 	    "SerialSize=%d PartnumSize=%d\n", bd_dimmp->bd_version,
3462 	    bd_dimmp->bd_boardnum, bd_dimmp->bd_numdimms, bd_dimmp->bd_dnamesz,
3463 	    bd_dimmp->bd_serialsz, bd_dimmp->bd_partnumsz);
3464 	printf("======================================================\n");
3465 
3466 	buf = (char *)(bd_dimmp + 1);
3467 	for (dimm = 0; dimm < bd_dimmp->bd_numdimms; dimm++) {
3468 		mc_dump_dimm(buf, dnamesz, sersz, partsz);
3469 		buf += dnamesz + sersz + partsz;
3470 	}
3471 	printf("======================================================\n");
3472 }
3473 
3474 
3475 /* ARGSUSED */
3476 static int
3477 mc_ioctl_debug(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
3478 	int *rvalp)
3479 {
3480 	caddr_t	buf;
3481 	uint64_t pa;
3482 	int rv = 0;
3483 	int i;
3484 	uint32_t flags;
3485 	static uint32_t offset = 0;
3486 
3487 
3488 	flags = (cmd >> 4) & 0xfffffff;
3489 
3490 	cmd &= 0xf;
3491 
3492 	MC_LOG("mc_ioctl(cmd = %x, flags = %x)\n", cmd, flags);
3493 
3494 	if (arg != NULL) {
3495 		if (ddi_copyin((const void *)arg, (void *)&pa,
3496 			sizeof (uint64_t), 0) < 0) {
3497 			rv = EFAULT;
3498 			return (rv);
3499 		}
3500 		buf = NULL;
3501 	} else {
3502 		buf = (caddr_t)kmem_alloc(PAGESIZE, KM_SLEEP);
3503 
3504 		pa = va_to_pa(buf);
3505 		pa += offset;
3506 
3507 		offset += 64;
3508 		if (offset >= PAGESIZE)
3509 			offset = 0;
3510 	}
3511 
3512 	switch (cmd) {
3513 	case MCI_CE:
3514 		mc_inject_error(MC_INJECT_INTERMITTENT_CE, pa,
3515 			flags);
3516 		break;
3517 	case MCI_PERM_CE:
3518 		mc_inject_error(MC_INJECT_PERMANENT_CE, pa,
3519 			flags);
3520 		break;
3521 	case MCI_UE:
3522 		mc_inject_error(MC_INJECT_UE, pa,
3523 			flags);
3524 		break;
3525 	case MCI_M_CE:
3526 		mc_inject_error(MC_INJECT_INTERMITTENT_MCE, pa,
3527 			flags);
3528 		break;
3529 	case MCI_M_PCE:
3530 		mc_inject_error(MC_INJECT_PERMANENT_MCE, pa,
3531 			flags);
3532 		break;
3533 	case MCI_M_UE:
3534 		mc_inject_error(MC_INJECT_MUE, pa,
3535 			flags);
3536 		break;
3537 	case MCI_CMP:
3538 		mc_inject_error(MC_INJECT_CMPE, pa,
3539 			flags);
3540 		break;
3541 	case MCI_NOP:
3542 		mc_inject_error(MC_INJECT_NOP, pa, flags);
3543 		break;
3544 	case MCI_SHOW_ALL:
3545 		mc_debug_show_all = 1;
3546 		break;
3547 	case MCI_SHOW_NONE:
3548 		mc_debug_show_all = 0;
3549 		break;
3550 	case MCI_ALLOC:
3551 		/*
3552 		 * just allocate some kernel memory and never free it
3553 		 * 512 MB seems to be the maximum size supported.
3554 		 */
3555 		cmn_err(CE_NOTE, "Allocating kmem %d MB\n", flags * 512);
3556 		for (i = 0; i < flags; i++) {
3557 			buf = kmem_alloc(512 * 1024 * 1024, KM_SLEEP);
3558 			cmn_err(CE_NOTE, "kmem buf %llx PA %llx\n",
3559 				(u_longlong_t)buf, (u_longlong_t)va_to_pa(buf));
3560 		}
3561 		break;
3562 	case MCI_SUSPEND:
3563 		(void) opl_mc_suspend();
3564 		break;
3565 	case MCI_RESUME:
3566 		(void) opl_mc_resume();
3567 		break;
3568 	default:
3569 		rv = ENXIO;
3570 	}
3571 	return (rv);
3572 }
3573 
3574 #endif /* DEBUG */
3575