xref: /titanic_44/usr/src/uts/sun4u/lw8/os/lw8_platmod.c (revision 334edc4840d12dfd25a5559468cdd15a375cd111)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/time.h>
30 #include <sys/cpuvar.h>
31 #include <sys/dditypes.h>
32 #include <sys/ddipropdefs.h>
33 #include <sys/ddi_impldefs.h>
34 #include <sys/sunddi.h>
35 #include <sys/esunddi.h>
36 #include <sys/sunndi.h>
37 #include <sys/platform_module.h>
38 #include <sys/errno.h>
39 #include <sys/conf.h>
40 #include <sys/modctl.h>
41 #include <sys/promif.h>
42 #include <sys/promimpl.h>
43 #include <sys/prom_plat.h>
44 #include <sys/cmn_err.h>
45 #include <sys/sysmacros.h>
46 #include <sys/mem_cage.h>
47 #include <sys/kobj.h>
48 #include <sys/utsname.h>
49 #include <sys/cpu_sgnblk_defs.h>
50 #include <sys/atomic.h>
51 #include <sys/kdi_impl.h>
52 
53 #include <sys/sgsbbc.h>
54 #include <sys/sgsbbc_iosram.h>
55 #include <sys/sgsbbc_iosram_priv.h>
56 #include <sys/sgsbbc_mailbox.h>
57 #include <sys/sgsgn.h>
58 #include <sys/serengeti.h>
59 #include <sys/sgfrutypes.h>
60 #include <sys/machsystm.h>
61 #include <sys/sbd_ioctl.h>
62 #include <sys/sbd.h>
63 #include <sys/sbdp_mem.h>
64 #include <sys/sgcn.h>
65 
66 #include <sys/memnode.h>
67 #include <vm/vm_dep.h>
68 #include <vm/page.h>
69 
70 #include <sys/cheetahregs.h>
71 #include <sys/plat_ecc_unum.h>
72 #include <sys/plat_ecc_dimm.h>
73 
74 #include <sys/lgrp.h>
75 
76 static int sg_debug = 0;
77 
78 #ifdef DEBUG
79 #define	DCMNERR if (sg_debug) cmn_err
80 #else
81 #define	DCMNERR
82 #endif
83 
84 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
85 
86 /* local functions */
87 static void cpu_sgn_update(ushort_t sgn, uchar_t state,
88     uchar_t sub_state, int cpuid);
89 
90 
91 /*
92  * Local data.
93  *
94  * iosram_write_ptr is a pointer to iosram_write().  Because of
95  * kernel dynamic linking, we can't get to the function by name,
96  * but we can look up its address, and store it in this variable
97  * instead.
98  *
99  * We include the extern for iosram_write() here not because we call
100  * it, but to force compilation errors if its prototype doesn't
101  * match the prototype of iosram_write_ptr.
102  *
103  * The same issues apply to iosram_read() and iosram_read_ptr.
104  */
105 /*CSTYLED*/
106 extern int   iosram_write     (int, uint32_t, caddr_t, uint32_t);
107 static int (*iosram_write_ptr)(int, uint32_t, caddr_t, uint32_t) = NULL;
108 /*CSTYLED*/
109 extern int   iosram_read     (int, uint32_t, caddr_t, uint32_t);
110 static int (*iosram_read_ptr)(int, uint32_t, caddr_t, uint32_t) = NULL;
111 
112 
113 /*
114  * Variable to indicate if the date should be obtained from the SC or not.
115  */
116 int todsg_use_sc = FALSE;	/* set the false at the beginning */
117 
118 /*
119  * Preallocation of spare tsb's for DR
120  *
121  * We don't allocate spares for Wildcat since TSBs should come
122  * out of memory local to the node.
123  */
124 #define	IOMMU_PER_SCHIZO	2
125 int serengeti_tsb_spares = (SG_MAX_IO_BDS * SG_SCHIZO_PER_IO_BD *
126 	IOMMU_PER_SCHIZO);
127 
128 /*
129  * sg_max_ncpus is the maximum number of CPUs supported on lw8.
130  * sg_max_ncpus is set to be smaller than NCPU to reduce the amount of
131  * memory the logs take up until we have a dynamic log memory allocation
132  * solution.
133  */
134 int sg_max_ncpus = (12 * 2);    /* (max # of processors * # of cores/proc) */
135 
136 /*
137  * variables to control mailbox message timeouts.
138  * These can be patched via /etc/system or mdb.
139  */
140 int	sbbc_mbox_default_timeout = MBOX_DEFAULT_TIMEOUT;
141 int	sbbc_mbox_min_timeout = MBOX_MIN_TIMEOUT;
142 
143 /* cached 'chosen' node_id */
144 pnode_t chosen_nodeid = (pnode_t)0;
145 
146 /*
147  * Table that maps memory slices to a specific memnode.
148  */
149 int slice_to_memnode[SG_MAX_SLICE];
150 
151 /*
152  * We define and use LW8_MAX_CPU_BDS here instead of SG_MAX_CPU_BDS
153  * since a LW8 machine will never have a CPU/Mem board #5 (SB5).
154  * A LW8 machine can only have a maximum of three CPU/Mem boards, but
155  * the board numbers assigned are 0, 2, and 4.  LW8_MAX_CPU_BDS is
156  * defined to be 5 since the entries in the domain_dimm_sids array
157  * are keyed by board number.  Not perfect but some wasted space
158  * is avoided.
159  */
160 #define	LW8_MAX_CPU_BDS		5
161 
162 plat_dimm_sid_board_t	domain_dimm_sids[LW8_MAX_CPU_BDS];
163 
164 int
165 set_platform_tsb_spares()
166 {
167 	return (MIN(serengeti_tsb_spares, MAX_UPA));
168 }
169 
170 #pragma weak mmu_init_large_pages
171 
172 void
173 set_platform_defaults(void)
174 {
175 	extern int watchdog_enable;
176 	extern uint64_t xc_tick_limit_scale;
177 	extern void mmu_init_large_pages(size_t);
178 
179 #ifdef DEBUG
180 	char *todsg_name = "todsg";
181 	ce_verbose_memory = 2;
182 	ce_verbose_other = 2;
183 #endif /* DEBUG */
184 
185 	watchdog_enable = TRUE;
186 	watchdog_available = TRUE;
187 
188 	cpu_sgn_func = cpu_sgn_update;
189 
190 #ifdef DEBUG
191 	/* tod_module_name should be set to "todsg" from OBP property */
192 	if (tod_module_name && (strcmp(tod_module_name, todsg_name) == 0))
193 		prom_printf("Using todsg driver\n");
194 	else {
195 		prom_printf("Force using todsg driver\n");
196 		tod_module_name = todsg_name;
197 	}
198 #endif /* DEBUG */
199 
200 	/* lw8 does not support forthdebug */
201 	forthdebug_supported = 0;
202 
203 
204 	/*
205 	 * Some DR operations require the system to be sync paused.
206 	 * Sync pause on Serengeti could potentially take up to 4
207 	 * seconds to complete depending on the load on the SC.  To
208 	 * avoid send_mond panics during such operations, we need to
209 	 * increase xc_tick_limit to a larger value on Serengeti by
210 	 * setting xc_tick_limit_scale to 5.
211 	 */
212 	xc_tick_limit_scale = 5;
213 
214 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
215 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
216 		if (&mmu_init_large_pages)
217 			mmu_init_large_pages(mmu_ism_pagesize);
218 	}
219 }
220 
221 void
222 load_platform_modules(void)
223 {
224 	if (modload("misc", "pcihp") < 0) {
225 		cmn_err(CE_NOTE, "pcihp driver failed to load");
226 	}
227 }
228 
229 /*ARGSUSED*/
230 int
231 plat_cpu_poweron(struct cpu *cp)
232 {
233 	int (*serengeti_cpu_poweron)(struct cpu *) = NULL;
234 
235 	serengeti_cpu_poweron =
236 	    (int (*)(struct cpu *))modgetsymvalue("sbdp_cpu_poweron", 0);
237 
238 	if (serengeti_cpu_poweron == NULL)
239 		return (ENOTSUP);
240 	else
241 		return ((serengeti_cpu_poweron)(cp));
242 }
243 
244 /*ARGSUSED*/
245 int
246 plat_cpu_poweroff(struct cpu *cp)
247 {
248 	int (*serengeti_cpu_poweroff)(struct cpu *) = NULL;
249 
250 	serengeti_cpu_poweroff =
251 	    (int (*)(struct cpu *))modgetsymvalue("sbdp_cpu_poweroff", 0);
252 
253 	if (serengeti_cpu_poweroff == NULL)
254 		return (ENOTSUP);
255 	else
256 		return ((serengeti_cpu_poweroff)(cp));
257 }
258 
259 #ifdef DEBUG
260 pgcnt_t serengeti_cage_size_limit;
261 #endif
262 
263 /* Preferred minimum cage size (expressed in pages)... for DR */
264 pgcnt_t serengeti_minimum_cage_size = 0;
265 
266 void
267 set_platform_cage_params(void)
268 {
269 	extern pgcnt_t total_pages;
270 	extern struct memlist *phys_avail;
271 
272 	if (kernel_cage_enable) {
273 		pgcnt_t preferred_cage_size;
274 
275 		preferred_cage_size =
276 		    MAX(serengeti_minimum_cage_size, total_pages / 256);
277 #ifdef DEBUG
278 		if (serengeti_cage_size_limit)
279 			preferred_cage_size = serengeti_cage_size_limit;
280 #endif
281 		/*
282 		 * Post copies obp into the lowest slice.  This requires the
283 		 * cage to grow upwards
284 		 */
285 		kcage_range_init(phys_avail, KCAGE_UP, preferred_cage_size);
286 	}
287 
288 	kcage_startup_dir = KCAGE_UP;
289 
290 	/* Only note when the cage is off since it should always be on. */
291 	if (!kcage_on)
292 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
293 }
294 
295 #define	ALIGN(x, a)	((a) == 0 ? (uint64_t)(x) : \
296 	(((uint64_t)(x) + (uint64_t)(a) - 1l) & ~((uint64_t)(a) - 1l)))
297 
298 void
299 update_mem_bounds(int brd, uint64_t base, uint64_t sz)
300 {
301 	uint64_t	end;
302 	int		mnode;
303 
304 	end = base + sz - 1;
305 
306 	/*
307 	 * First see if this board already has a memnode associated
308 	 * with it.  If not, see if this slice has a memnode.  This
309 	 * covers the cases where a single slice covers multiple
310 	 * boards (cross-board interleaving) and where a single
311 	 * board has multiple slices (1+GB DIMMs).
312 	 */
313 	if ((mnode = plat_lgrphand_to_mem_node(brd)) == -1) {
314 		if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
315 			mnode = mem_node_alloc();
316 		plat_assign_lgrphand_to_mem_node(brd, mnode);
317 	}
318 
319 	/*
320 	 * Align base at 16GB boundary
321 	 */
322 	base = ALIGN(base, (1ul << PA_SLICE_SHIFT));
323 
324 	while (base < end) {
325 		slice_to_memnode[PA_2_SLICE(base)] = mnode;
326 		base += (1ul << PA_SLICE_SHIFT);
327 	}
328 }
329 
330 /*
331  * Dynamically detect memory slices in the system by decoding
332  * the cpu memory decoder registers at boot time.
333  */
334 void
335 plat_fill_mc(pnode_t nodeid)
336 {
337 	uint64_t	mc_addr, mask;
338 	uint64_t	mc_decode[SG_MAX_BANKS_PER_MC];
339 	uint64_t	base, size;
340 	uint32_t	regs[4];
341 	int		len;
342 	int		local_mc;
343 	int		portid;
344 	int		boardid;
345 	int		i;
346 
347 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
348 	    (portid == -1))
349 		return;
350 
351 	/*
352 	 * Decode the board number from the MC portid
353 	 */
354 	boardid = SG_PORTID_TO_BOARD_NUM(portid);
355 
356 	/*
357 	 * The "reg" property returns 4 32-bit values. The first two are
358 	 * combined to form a 64-bit address.  The second two are for a
359 	 * 64-bit size, but we don't actually need to look at that value.
360 	 */
361 	len = prom_getproplen(nodeid, "reg");
362 	if (len != (sizeof (uint32_t) * 4)) {
363 		prom_printf("Warning: malformed 'reg' property\n");
364 		return;
365 	}
366 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
367 		return;
368 	mc_addr = ((uint64_t)regs[0]) << 32;
369 	mc_addr |= (uint64_t)regs[1];
370 
371 	/*
372 	 * Figure out whether the memory controller we are examining
373 	 * belongs to this CPU or a different one.
374 	 */
375 	if (portid == cpunodes[CPU->cpu_id].portid)
376 		local_mc = 1;
377 	else
378 		local_mc = 0;
379 
380 	for (i = 0; i < SG_MAX_BANKS_PER_MC; i++) {
381 		mask = SG_REG_2_OFFSET(i);
382 
383 		/*
384 		 * If the memory controller is local to this CPU, we use
385 		 * the special ASI to read the decode registers.
386 		 * Otherwise, we load the values from a magic address in
387 		 * I/O space.
388 		 */
389 		if (local_mc)
390 			mc_decode[i] = lddmcdecode(mask & MC_OFFSET_MASK);
391 		else
392 			mc_decode[i] = lddphysio((mc_addr | mask));
393 
394 		if (mc_decode[i] >> MC_VALID_SHIFT) {
395 			/*
396 			 * The memory decode register is a bitmask field,
397 			 * so we can decode that into both a base and
398 			 * a span.
399 			 */
400 			base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
401 			size = MC_UK2SPAN(mc_decode[i]);
402 			update_mem_bounds(boardid, base, size);
403 		}
404 	}
405 }
406 
407 /*
408  * This routine is run midway through the boot process.  By the time we get
409  * here, we know about all the active CPU boards in the system, and we have
410  * extracted information about each board's memory from the memory
411  * controllers.  We have also figured out which ranges of memory will be
412  * assigned to which memnodes, so we walk the slice table to build the table
413  * of memnodes.
414  */
415 /* ARGSUSED */
416 void
417 plat_build_mem_nodes(prom_memlist_t *list, size_t  nelems)
418 {
419 	int	slice;
420 	pfn_t	basepfn;
421 	pgcnt_t	npgs;
422 
423 	mem_node_pfn_shift = PFN_SLICE_SHIFT;
424 	mem_node_physalign = (1ull << PA_SLICE_SHIFT);
425 
426 	for (slice = 0; slice < SG_MAX_SLICE; slice++) {
427 		if (slice_to_memnode[slice] == -1)
428 			continue;
429 		basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
430 		npgs = 1ull << PFN_SLICE_SHIFT;
431 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
432 	}
433 }
434 
435 int
436 plat_pfn_to_mem_node(pfn_t pfn)
437 {
438 	int node;
439 
440 	node = slice_to_memnode[PFN_2_SLICE(pfn)];
441 
442 	return (node);
443 }
444 
445 /*
446  * Serengeti support for lgroups.
447  *
448  * On Serengeti, an lgroup platform handle == board number.
449  *
450  * Mappings between lgroup handles and memnodes are managed
451  * in addition to mappings between memory slices and memnodes
452  * to support cross-board interleaving as well as multiple
453  * slices per board (e.g. >1GB DIMMs). The initial mapping
454  * of memnodes to lgroup handles is determined at boot time.
455  * A DR addition of memory adds a new mapping. A DR copy-rename
456  * swaps mappings.
457  */
458 
459 /*
460  * Macro for extracting the board number from the CPU id
461  */
462 #define	CPUID_TO_BOARD(id)	(((id) >> 2) & 0x7)
463 
464 /*
465  * Return the platform handle for the lgroup containing the given CPU
466  *
467  * For Serengeti, lgroup platform handle == board number
468  */
469 lgrp_handle_t
470 plat_lgrp_cpu_to_hand(processorid_t id)
471 {
472 	return (CPUID_TO_BOARD(id));
473 }
474 
475 /*
476  * Platform specific lgroup initialization
477  */
478 void
479 plat_lgrp_init(void)
480 {
481 	int i;
482 	extern uint32_t lgrp_expand_proc_thresh;
483 	extern uint32_t lgrp_expand_proc_diff;
484 
485 	/*
486 	 * Initialize lookup tables to invalid values so we catch
487 	 * any illegal use of them.
488 	 */
489 	for (i = 0; i < SG_MAX_SLICE; i++) {
490 		slice_to_memnode[i] = -1;
491 	}
492 
493 	/*
494 	 * Set tuneables for Serengeti architecture
495 	 *
496 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
497 	 * this process is currently running on before considering
498 	 * expanding threads to another lgroup.
499 	 *
500 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
501 	 * must be loaded before expanding to it.
502 	 *
503 	 * Bandwidth is maximized on Serengeti by spreading load across
504 	 * the machine. The impact to inter-thread communication isn't
505 	 * too costly since remote latencies are relatively low.  These
506 	 * values equate to one CPU's load and so attempt to spread the
507 	 * load out across as many lgroups as possible one CPU at a time.
508 	 */
509 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX;
510 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
511 }
512 
513 /*
514  * Platform notification of lgroup (re)configuration changes
515  */
516 /*ARGSUSED*/
517 void
518 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
519 {
520 	update_membounds_t	*umb;
521 	lgrp_config_mem_rename_t lmr;
522 	lgrp_handle_t		shand, thand;
523 	int			snode, tnode;
524 
525 	switch (evt) {
526 
527 	case LGRP_CONFIG_MEM_ADD:
528 		umb = (update_membounds_t *)arg;
529 		update_mem_bounds(umb->u_board, umb->u_base, umb->u_len);
530 
531 		break;
532 
533 	case LGRP_CONFIG_MEM_DEL:
534 		/* We don't have to do anything */
535 
536 		break;
537 
538 	case LGRP_CONFIG_MEM_RENAME:
539 		/*
540 		 * During a DR copy-rename operation, all of the memory
541 		 * on one board is moved to another board -- but the
542 		 * addresses/pfns and memnodes don't change. This means
543 		 * the memory has changed locations without changing identity.
544 		 *
545 		 * Source is where we are copying from and target is where we
546 		 * are copying to.  After source memnode is copied to target
547 		 * memnode, the physical addresses of the target memnode are
548 		 * renamed to match what the source memnode had.  Then target
549 		 * memnode can be removed and source memnode can take its
550 		 * place.
551 		 *
552 		 * To do this, swap the lgroup handle to memnode mappings for
553 		 * the boards, so target lgroup will have source memnode and
554 		 * source lgroup will have empty target memnode which is where
555 		 * its memory will go (if any is added to it later).
556 		 *
557 		 * Then source memnode needs to be removed from its lgroup
558 		 * and added to the target lgroup where the memory was living
559 		 * but under a different name/memnode.  The memory was in the
560 		 * target memnode and now lives in the source memnode with
561 		 * different physical addresses even though it is the same
562 		 * memory.
563 		 */
564 		shand = arg & 0xffff;
565 		thand = (arg & 0xffff0000) >> 16;
566 		snode = plat_lgrphand_to_mem_node(shand);
567 		tnode = plat_lgrphand_to_mem_node(thand);
568 
569 		plat_assign_lgrphand_to_mem_node(thand, snode);
570 		plat_assign_lgrphand_to_mem_node(shand, tnode);
571 
572 		/*
573 		 * Remove source memnode of copy rename from its lgroup
574 		 * and add it to its new target lgroup
575 		 */
576 		lmr.lmem_rename_from = shand;
577 		lmr.lmem_rename_to = thand;
578 
579 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
580 		    (uintptr_t)&lmr);
581 
582 		break;
583 
584 	default:
585 		break;
586 	}
587 }
588 
589 /*
590  * Return latency between "from" and "to" lgroups
591  *
592  * This latency number can only be used for relative comparison
593  * between lgroups on the running system, cannot be used across platforms,
594  * and may not reflect the actual latency.  It is platform and implementation
595  * specific, so platform gets to decide its value.  It would be nice if the
596  * number was at least proportional to make comparisons more meaningful though.
597  * NOTE: The numbers below are supposed to be load latencies for uncached
598  * memory divided by 10.
599  */
600 int
601 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
602 {
603 	/*
604 	 * Return min remote latency when there are more than two lgroups
605 	 * (root and child) and getting latency between two different lgroups
606 	 * or root is involved
607 	 */
608 	if (lgrp_optimizations() && (from != to ||
609 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
610 		return (28);
611 	else
612 		return (23);
613 }
614 
615 /* ARGSUSED */
616 void
617 plat_freelist_process(int mnode)
618 {
619 }
620 
621 /*
622  * Find dip for chosen IOSRAM
623  */
624 dev_info_t *
625 find_chosen_dip(void)
626 {
627 	dev_info_t	*dip;
628 	char		master_sbbc[MAXNAMELEN];
629 	int		nodeid;
630 	uint_t		tunnel;
631 
632 	/*
633 	 * find the /chosen SBBC node, prom interface will handle errors
634 	 */
635 	nodeid = prom_chosennode();
636 	/*
637 	 * get the 'iosram' property from the /chosen node
638 	 */
639 	if (prom_getprop(nodeid, IOSRAM_CHOSEN_PROP, (caddr_t)&tunnel) <= 0) {
640 		SBBC_ERR(CE_PANIC, "No iosram property found! \n");
641 	}
642 
643 	if (prom_phandle_to_path((phandle_t)tunnel, master_sbbc,
644 	    sizeof (master_sbbc)) < 0) {
645 		SBBC_ERR1(CE_PANIC, "prom_phandle_to_path(%d) failed\n",
646 		    tunnel);
647 	}
648 
649 	chosen_nodeid = nodeid;
650 
651 	/*
652 	 * load and attach the sgsbbc driver.
653 	 * This will also attach all the sgsbbc driver instances
654 	 */
655 	if (i_ddi_attach_hw_nodes("sgsbbc") != DDI_SUCCESS) {
656 		cmn_err(CE_WARN, "sgsbbc failed to load\n");
657 	}
658 	/* translate a path name to a dev_info_t */
659 	dip = e_ddi_hold_devi_by_path(master_sbbc, 0);
660 	if ((dip == NULL) || (ddi_get_nodeid(dip) != tunnel)) {
661 		cmn_err(CE_PANIC,
662 		    "e_ddi_hold_devi_by_path(%x) failed for SBBC\n", tunnel);
663 	}
664 
665 	/* make sure devi_ref is ZERO */
666 	ndi_rele_devi(dip);
667 	DCMNERR(CE_CONT, "Chosen IOSRAM is at %s \n", master_sbbc);
668 
669 	return (dip);
670 }
671 
672 void
673 load_platform_drivers(void)
674 {
675 	int ret;
676 
677 	/*
678 	 * Load the mc-us3 memory driver.
679 	 */
680 	if (i_ddi_attach_hw_nodes("mc-us3") != DDI_SUCCESS)
681 		cmn_err(CE_WARN, "mc-us3 failed to load");
682 	else
683 		(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
684 
685 	/*
686 	 * Initialize the chosen IOSRAM before its clients
687 	 * are loaded.
688 	 */
689 	(void) find_chosen_dip();
690 
691 	/*
692 	 * Load the environmentals driver (sgenv)
693 	 *
694 	 * We need this driver to handle events from the SC when state
695 	 * changes occur in the environmental data.
696 	 */
697 	if (i_ddi_attach_hw_nodes("sgenv") != DDI_SUCCESS)
698 		cmn_err(CE_WARN, "sgenv failed to load");
699 
700 	/*
701 	 * Ideally, we'd do this in set_platform_defaults(), but
702 	 * at that point it's too early to look up symbols.
703 	 */
704 	iosram_write_ptr = (int (*)(int, uint32_t, caddr_t, uint32_t))
705 	    modgetsymvalue("iosram_write", 0);
706 
707 	if (iosram_write_ptr == NULL) {
708 		DCMNERR(CE_WARN, "load_platform_defaults: iosram_write()"
709 		    " not found; signatures will not be updated\n");
710 	} else {
711 		/*
712 		 * The iosram read ptr is only needed if we can actually
713 		 * write CPU signatures, so only bother setting it if we
714 		 * set a valid write pointer, above.
715 		 */
716 		iosram_read_ptr = (int (*)(int, uint32_t, caddr_t, uint32_t))
717 		    modgetsymvalue("iosram_read", 0);
718 
719 		if (iosram_read_ptr == NULL)
720 			DCMNERR(CE_WARN, "load_platform_defaults: iosram_read()"
721 			    " not found\n");
722 	}
723 
724 	/*
725 	 * Set todsg_use_sc to TRUE so that we will be getting date
726 	 * from the SC.
727 	 */
728 	todsg_use_sc = TRUE;
729 
730 	/*
731 	 * Now is a good time to activate hardware watchdog (if one exists).
732 	 */
733 	mutex_enter(&tod_lock);
734 	if (watchdog_enable)
735 		ret = tod_ops.tod_set_watchdog_timer(watchdog_timeout_seconds);
736 	mutex_exit(&tod_lock);
737 	if (ret != 0)
738 		printf("Hardware watchdog enabled\n");
739 
740 	plat_ecc_init();
741 }
742 
743 /*
744  * No platform drivers on this platform
745  */
746 char *platform_module_list[] = {
747 	(char *)0
748 };
749 
750 /*ARGSUSED*/
751 void
752 plat_tod_fault(enum tod_fault_type tod_bad)
753 {
754 }
755 int
756 plat_max_boards()
757 {
758 	return (SG_MAX_BDS);
759 }
760 int
761 plat_max_io_units_per_board()
762 {
763 	return (SG_MAX_IO_PER_BD);
764 }
765 int
766 plat_max_cmp_units_per_board()
767 {
768 	return (SG_MAX_CMPS_PER_BD);
769 }
770 int
771 plat_max_cpu_units_per_board()
772 {
773 	return (SG_MAX_CPUS_PER_BD);
774 }
775 
776 int
777 plat_max_mc_units_per_board()
778 {
779 	return (SG_MAX_CMPS_PER_BD); /* each CPU die has a memory controller */
780 }
781 
782 int
783 plat_max_mem_units_per_board()
784 {
785 	return (SG_MAX_MEM_PER_BD);
786 }
787 
788 int
789 plat_max_cpumem_boards(void)
790 {
791 	return (LW8_MAX_CPU_BDS);
792 }
793 
794 int
795 set_platform_max_ncpus(void)
796 {
797 	return (sg_max_ncpus);
798 }
799 
800 void
801 plat_dmv_params(uint_t *hwint, uint_t *swint)
802 {
803 	*hwint = MAX_UPA;
804 	*swint = 0;
805 }
806 
807 static int (*sg_mbox)(sbbc_msg_t *, sbbc_msg_t *, time_t) = NULL;
808 
809 /*
810  * Our nodename has been set, pass it along to the SC.
811  */
812 void
813 plat_nodename_set(void)
814 {
815 	sbbc_msg_t	req;	/* request */
816 	sbbc_msg_t	resp;	/* response */
817 	int		rv;	/* return value from call to mbox */
818 	struct nodename_info {
819 		int32_t	namelen;
820 		char	nodename[_SYS_NMLN];
821 	} nni;
822 
823 	/*
824 	 * find the symbol for the mailbox routine
825 	 */
826 	if (sg_mbox == NULL)
827 		sg_mbox = (int (*)(sbbc_msg_t *, sbbc_msg_t *, time_t))
828 		    modgetsymvalue("sbbc_mbox_request_response", 0);
829 
830 	if (sg_mbox == NULL) {
831 		cmn_err(CE_NOTE, "!plat_nodename_set: sg_mbox not found\n");
832 		return;
833 	}
834 
835 	/*
836 	 * construct the message telling the SC our nodename
837 	 */
838 	(void) strcpy(nni.nodename, utsname.nodename);
839 	nni.namelen = (int32_t)strlen(nni.nodename);
840 
841 	req.msg_type.type = INFO_MBOX;
842 	req.msg_type.sub_type = INFO_MBOX_NODENAME;
843 	req.msg_status = 0;
844 	req.msg_len = (int)(nni.namelen + sizeof (nni.namelen));
845 	req.msg_bytes = 0;
846 	req.msg_buf = (caddr_t)&nni;
847 	req.msg_data[0] = 0;
848 	req.msg_data[1] = 0;
849 
850 	/*
851 	 * initialize the response back from the SC
852 	 */
853 	resp.msg_type.type = INFO_MBOX;
854 	resp.msg_type.sub_type = INFO_MBOX_NODENAME;
855 	resp.msg_status = 0;
856 	resp.msg_len = 0;
857 	resp.msg_bytes = 0;
858 	resp.msg_buf = (caddr_t)0;
859 	resp.msg_data[0] = 0;
860 	resp.msg_data[1] = 0;
861 
862 	/*
863 	 * ship it and check for success
864 	 */
865 	rv = (sg_mbox)(&req, &resp, sbbc_mbox_default_timeout);
866 
867 	if (rv != 0) {
868 		cmn_err(CE_NOTE, "!plat_nodename_set: sg_mbox retval %d\n", rv);
869 	} else if (resp.msg_status != 0) {
870 		cmn_err(CE_NOTE, "!plat_nodename_set: msg_status %d\n",
871 		    resp.msg_status);
872 	} else {
873 		DCMNERR(CE_NOTE, "!plat_nodename_set was successful\n");
874 
875 		/*
876 		 * It is necessary to exchange capability the bitmap
877 		 * with SC before sending any ecc error information and
878 		 * indictment. We are calling the plat_ecc_capability_send()
879 		 * here just after sending the nodename successfully.
880 		 */
881 		rv = plat_ecc_capability_send();
882 		if (rv == 0) {
883 			DCMNERR(CE_NOTE, "!plat_ecc_capability_send was"
884 			    "successful\n");
885 		}
886 	}
887 }
888 
889 /*
890  * flag to allow users switch between using OBP's
891  * prom_get_unum() and mc-us3 driver's p2get_mem_unum()
892  * (for main memory errors only).
893  */
894 int sg_use_prom_get_unum = 0;
895 
896 /*
897  * Debugging flag: set to 1 to call into obp for get_unum, or set it to 0
898  * to call into the unum cache system.  This is the E$ equivalent of
899  * sg_use_prom_get_unum.
900  */
901 int sg_use_prom_ecache_unum = 0;
902 
903 /* used for logging ECC errors to the SC */
904 #define	SG_MEMORY_ECC	1
905 #define	SG_ECACHE_ECC	2
906 #define	SG_UNKNOWN_ECC	(-1)
907 
908 /*
909  * plat_get_mem_unum() generates a string identifying either the
910  * memory or E$ DIMM(s) during error logging. Depending on whether
911  * the error is E$ or memory related, the appropriate support
912  * routine is called to assist in the string generation.
913  *
914  * - For main memory errors we can use the mc-us3 drivers p2getunum()
915  *   (or prom_get_unum() for debugging purposes).
916  *
917  * - For E$ errors we call sg_get_ecacheunum() to generate the unum (or
918  *   prom_serengeti_get_ecacheunum() for debugging purposes).
919  */
920 
921 static int
922 sg_prom_get_unum(int synd_code, uint64_t paddr, char *buf, int buflen,
923     int *lenp)
924 {
925 	if ((prom_get_unum(synd_code, (unsigned long long)paddr,
926 	    buf, buflen, lenp)) != 0)
927 		return (EIO);
928 	else if (*lenp <= 1)
929 		return (EINVAL);
930 	else
931 		return (0);
932 }
933 
934 /*ARGSUSED*/
935 int
936 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
937     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
938 {
939 	/*
940 	 * unum_func will either point to the memory drivers p2get_mem_unum()
941 	 * or to prom_get_unum() for memory errors.
942 	 */
943 	int (*unum_func)(int synd_code, uint64_t paddr, char *buf,
944 	    int buflen, int *lenp) = p2get_mem_unum;
945 
946 	/*
947 	 * check if it's a Memory or an Ecache error.
948 	 */
949 	if (flt_in_memory) {
950 		/*
951 		 * It's a main memory error.
952 		 *
953 		 * For debugging we allow the user to switch between
954 		 * using OBP's get_unum and the memory driver's get_unum
955 		 * so we create a pointer to the functions and switch
956 		 * depending on the sg_use_prom_get_unum flag.
957 		 */
958 		if (sg_use_prom_get_unum) {
959 			DCMNERR(CE_NOTE, "Using prom_get_unum from OBP");
960 			return (sg_prom_get_unum(synd_code,
961 			    P2ALIGN(flt_addr, 8), buf, buflen, lenp));
962 		} else if (unum_func != NULL) {
963 			return (unum_func(synd_code, P2ALIGN(flt_addr, 8),
964 			    buf, buflen, lenp));
965 		} else {
966 			return (ENOTSUP);
967 		}
968 	} else if (flt_status & ECC_ECACHE) {
969 		/*
970 		 * It's an E$ error.
971 		 */
972 		if (sg_use_prom_ecache_unum) {
973 			/*
974 			 * We call to OBP to handle this.
975 			 */
976 			DCMNERR(CE_NOTE,
977 			    "Using prom_serengeti_get_ecacheunum from OBP");
978 			if (prom_serengeti_get_ecacheunum(flt_bus_id,
979 			    P2ALIGN(flt_addr, 8), buf, buflen, lenp) != 0) {
980 				return (EIO);
981 			}
982 		} else {
983 			return (sg_get_ecacheunum(flt_bus_id, flt_addr,
984 			    buf, buflen, lenp));
985 		}
986 	} else {
987 		return (ENOTSUP);
988 	}
989 
990 	return (0);
991 }
992 
993 /*
994  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
995  * driver giving each platform the opportunity to add platform
996  * specific label information to the unum for ECC error logging purposes.
997  */
998 void
999 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
1000 {
1001 	char	new_unum[UNUM_NAMLEN] = "";
1002 	int	node = SG_PORTID_TO_NODEID(mcid);
1003 	int	board = SG_CPU_BD_PORTID_TO_BD_NUM(mcid);
1004 	int	position = SG_PORTID_TO_CPU_POSN(mcid);
1005 
1006 	/*
1007 	 * The mc-us3 driver deals with logical banks but for unum
1008 	 * purposes we need to use physical banks so that the correct
1009 	 * dimm can be physically located. Logical banks 0 and 2
1010 	 * make up physical bank 0. Logical banks 1 and 3 make up
1011 	 * physical bank 1. Here we do the necessary conversion.
1012 	 */
1013 	bank = (bank % 2);
1014 
1015 	if (dimm == -1) {
1016 		SG_SET_FRU_NAME_NODE(new_unum, node);
1017 		SG_SET_FRU_NAME_CPU_BOARD(new_unum, board);
1018 		SG_SET_FRU_NAME_MODULE(new_unum, position);
1019 		SG_SET_FRU_NAME_BANK(new_unum, bank);
1020 
1021 	} else {
1022 		SG_SET_FRU_NAME_NODE(new_unum, node);
1023 		SG_SET_FRU_NAME_CPU_BOARD(new_unum, board);
1024 		SG_SET_FRU_NAME_MODULE(new_unum, position);
1025 		SG_SET_FRU_NAME_BANK(new_unum, bank);
1026 		SG_SET_FRU_NAME_DIMM(new_unum, dimm);
1027 
1028 		strcat(new_unum, " ");
1029 		strcat(new_unum, unum);
1030 	}
1031 
1032 	strcpy(unum, new_unum);
1033 }
1034 
1035 int
1036 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1037 {
1038 	int	node = SG_PORTID_TO_NODEID(cpuid);
1039 	int	board = SG_CPU_BD_PORTID_TO_BD_NUM(cpuid);
1040 
1041 	if (snprintf(buf, buflen, "/N%d/%s%d", node,
1042 	    SG_HPU_TYPE_CPU_BOARD_ID, board) >= buflen) {
1043 		return (ENOSPC);
1044 	} else {
1045 		*lenp = strlen(buf);
1046 		return (0);
1047 	}
1048 }
1049 
1050 static void (*sg_ecc_taskq_func)(sbbc_ecc_mbox_t *) = NULL;
1051 static int (*sg_ecc_mbox_func)(sbbc_ecc_mbox_t *) = NULL;
1052 
1053 /*
1054  * We log all ECC errors to the SC so we send a mailbox
1055  * message to the SC passing it the relevant data.
1056  * ECC mailbox messages are sent via a taskq mechanism to
1057  * prevent impaired system performance during ECC floods.
1058  * Indictments have already passed through a taskq, so they
1059  * are not queued here.
1060  */
1061 int
1062 plat_send_ecc_mailbox_msg(plat_ecc_message_type_t msg_type, void *datap)
1063 {
1064 	sbbc_ecc_mbox_t	*msgp;
1065 	uint16_t	msg_subtype;
1066 	int		sleep_flag, log_error;
1067 	size_t		msg_size;
1068 
1069 	if (sg_ecc_taskq_func == NULL) {
1070 		sg_ecc_taskq_func = (void (*)(sbbc_ecc_mbox_t *))
1071 		    modgetsymvalue("sbbc_mbox_queue_ecc_event", 0);
1072 		if (sg_ecc_taskq_func == NULL) {
1073 			cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1074 			    "sbbc_mbox_queue_ecc_event not found");
1075 			return (ENODEV);
1076 		}
1077 	}
1078 	if (sg_ecc_mbox_func == NULL) {
1079 		sg_ecc_mbox_func = (int (*)(sbbc_ecc_mbox_t *))
1080 		    modgetsymvalue("sbbc_mbox_ecc_output", 0);
1081 		if (sg_ecc_mbox_func == NULL) {
1082 			cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1083 			    "sbbc_mbox_ecc_output not found");
1084 			return (ENODEV);
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Initialize the request and response structures
1090 	 */
1091 	switch (msg_type) {
1092 	case PLAT_ECC_ERROR_MESSAGE:
1093 		msg_subtype = INFO_MBOX_ERROR_ECC;
1094 		msg_size = sizeof (plat_ecc_error_data_t);
1095 		sleep_flag = KM_NOSLEEP;
1096 		log_error = 1;
1097 		break;
1098 	case PLAT_ECC_ERROR2_MESSAGE:
1099 		msg_subtype = INFO_MBOX_ECC;
1100 		msg_size = sizeof (plat_ecc_error2_data_t);
1101 		sleep_flag = KM_NOSLEEP;
1102 		log_error = 1;
1103 		break;
1104 	case PLAT_ECC_INDICTMENT_MESSAGE:
1105 		msg_subtype = INFO_MBOX_ERROR_INDICT;
1106 		msg_size = sizeof (plat_ecc_indictment_data_t);
1107 		sleep_flag = KM_SLEEP;
1108 		log_error = 0;
1109 		break;
1110 	case PLAT_ECC_INDICTMENT2_MESSAGE:
1111 		msg_subtype = INFO_MBOX_ECC;
1112 		msg_size = sizeof (plat_ecc_indictment2_data_t);
1113 		sleep_flag = KM_SLEEP;
1114 		log_error = 0;
1115 		break;
1116 	case PLAT_ECC_CAPABILITY_MESSAGE:
1117 		msg_subtype = INFO_MBOX_ECC_CAP;
1118 		msg_size = sizeof (plat_capability_data_t) +
1119 		    strlen(utsname.release) + strlen(utsname.version) + 2;
1120 		sleep_flag = KM_SLEEP;
1121 		log_error = 0;
1122 		break;
1123 	case PLAT_ECC_DIMM_SID_MESSAGE:
1124 		msg_subtype = INFO_MBOX_ECC;
1125 		msg_size = sizeof (plat_dimm_sid_request_data_t);
1126 		sleep_flag = KM_SLEEP;
1127 		log_error = 0;
1128 		break;
1129 	default:
1130 		return (EINVAL);
1131 	}
1132 
1133 	msgp = (sbbc_ecc_mbox_t *)kmem_zalloc(sizeof (sbbc_ecc_mbox_t),
1134 	    sleep_flag);
1135 	if (msgp == NULL) {
1136 		cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1137 		    "unable to allocate sbbc_ecc_mbox");
1138 		return (ENOMEM);
1139 	}
1140 
1141 	msgp->ecc_log_error = log_error;
1142 
1143 	msgp->ecc_req.msg_type.type = INFO_MBOX;
1144 	msgp->ecc_req.msg_type.sub_type = msg_subtype;
1145 	msgp->ecc_req.msg_status = 0;
1146 	msgp->ecc_req.msg_len = (int)msg_size;
1147 	msgp->ecc_req.msg_bytes = 0;
1148 	msgp->ecc_req.msg_buf = (caddr_t)kmem_zalloc(msg_size, sleep_flag);
1149 	msgp->ecc_req.msg_data[0] = 0;
1150 	msgp->ecc_req.msg_data[1] = 0;
1151 
1152 	if (msgp->ecc_req.msg_buf == NULL) {
1153 		cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1154 		    "unable to allocate request msg_buf");
1155 		kmem_free((void *)msgp, sizeof (sbbc_ecc_mbox_t));
1156 		return (ENOMEM);
1157 	}
1158 
1159 	bcopy(datap, (void *)msgp->ecc_req.msg_buf, msg_size);
1160 
1161 	/*
1162 	 * initialize the response back from the SC
1163 	 */
1164 	msgp->ecc_resp.msg_type.type = INFO_MBOX;
1165 	msgp->ecc_resp.msg_type.sub_type = msg_subtype;
1166 	msgp->ecc_resp.msg_status = 0;
1167 	msgp->ecc_resp.msg_len = 0;
1168 	msgp->ecc_resp.msg_bytes = 0;
1169 	msgp->ecc_resp.msg_buf = NULL;
1170 	msgp->ecc_resp.msg_data[0] = 0;
1171 	msgp->ecc_resp.msg_data[1] = 0;
1172 
1173 	switch (msg_type) {
1174 	case PLAT_ECC_ERROR_MESSAGE:
1175 	case PLAT_ECC_ERROR2_MESSAGE:
1176 		/*
1177 		 * For Error Messages, we go through a taskq.
1178 		 * Queue up message for processing
1179 		 */
1180 		(*sg_ecc_taskq_func)(msgp);
1181 		return (0);
1182 
1183 	case PLAT_ECC_CAPABILITY_MESSAGE:
1184 		/*
1185 		 * For indictment and capability messages, we've already gone
1186 		 * through the taskq, so we can call the mailbox routine
1187 		 * directly.  Find the symbol for the routine that sends
1188 		 * the mailbox msg
1189 		 */
1190 		msgp->ecc_resp.msg_len = (int)msg_size;
1191 		msgp->ecc_resp.msg_buf = (caddr_t)kmem_zalloc(msg_size,
1192 		    sleep_flag);
1193 		/* FALLTHRU */
1194 
1195 	case PLAT_ECC_INDICTMENT_MESSAGE:
1196 	case PLAT_ECC_INDICTMENT2_MESSAGE:
1197 		return ((*sg_ecc_mbox_func)(msgp));
1198 
1199 	case PLAT_ECC_DIMM_SID_MESSAGE:
1200 		msgp->ecc_resp.msg_len = sizeof (plat_dimm_sid_board_data_t);
1201 		msgp->ecc_resp.msg_buf = (caddr_t)kmem_zalloc(
1202 		    sizeof (plat_dimm_sid_board_data_t), sleep_flag);
1203 
1204 		return ((*sg_ecc_mbox_func)(msgp));
1205 
1206 	default:
1207 		ASSERT(0);
1208 		return (EINVAL);
1209 	}
1210 }
1211 
1212 /*
1213  * m is redundant on serengeti as the multiplyer is always 4
1214  */
1215 /*ARGSUSED*/
1216 int
1217 plat_make_fru_cpuid(int sb, int m, int proc)
1218 {
1219 	return (MAKE_CPUID(sb, proc));
1220 }
1221 
1222 /*
1223  * board number for a given proc
1224  */
1225 int
1226 plat_make_fru_boardnum(int proc)
1227 {
1228 	return (SG_PORTID_TO_BOARD_NUM(proc));
1229 }
1230 
1231 static
1232 void
1233 cpu_sgn_update(ushort_t sig, uchar_t state, uchar_t sub_state, int cpuid)
1234 {
1235 	uint32_t signature = CPU_SIG_BLD(sig, state, sub_state);
1236 	sig_state_t current_sgn;
1237 	int i;
1238 
1239 	if (iosram_write_ptr == NULL) {
1240 		/*
1241 		 * If the IOSRAM write pointer isn't set, we won't be able
1242 		 * to write signatures to ANYTHING, so we may as well just
1243 		 * write out an error message (if desired) and exit this
1244 		 * routine now...
1245 		 */
1246 		DCMNERR(CE_WARN,
1247 		    "cpu_sgn_update: iosram_write() not found;"
1248 		    " cannot write signature 0x%x for CPU(s) or domain\n",
1249 		    signature);
1250 		return;
1251 	}
1252 
1253 
1254 	/*
1255 	 * Differentiate a panic reboot from a non-panic reboot in the
1256 	 * setting of the substate of the signature.
1257 	 *
1258 	 * If the new substate is REBOOT and we're rebooting due to a panic,
1259 	 * then set the new substate to a special value indicating a panic
1260 	 * reboot, SIGSUBST_PANIC_REBOOT.
1261 	 *
1262 	 * A panic reboot is detected by a current (previous) domain signature
1263 	 * state of SIGST_EXIT, and a new signature substate of SIGSUBST_REBOOT.
1264 	 * The domain signature state SIGST_EXIT is used as the panic flow
1265 	 * progresses.
1266 	 *
1267 	 * At the end of the panic flow, the reboot occurs but we should now
1268 	 * one that was involuntary, something that may be quite useful to know
1269 	 * at OBP level.
1270 	 */
1271 	if (sub_state == SIGSUBST_REBOOT) {
1272 		if (iosram_read_ptr == NULL) {
1273 			DCMNERR(CE_WARN,
1274 			    "cpu_sgn_update: iosram_read() not found;"
1275 			    " could not check current domain signature\n");
1276 		} else {
1277 			(void) (*iosram_read_ptr)(SBBC_SIGBLCK_KEY,
1278 			    SG_SGNBLK_DOMAINSIG_OFFSET,
1279 			    (char *)&current_sgn, sizeof (current_sgn));
1280 			if (current_sgn.state_t.state == SIGST_EXIT)
1281 				signature = CPU_SIG_BLD(sig, state,
1282 				    SIGSUBST_PANIC_REBOOT);
1283 		}
1284 	}
1285 
1286 	/*
1287 	 * cpuid == -1 indicates that the operation applies to all cpus.
1288 	 */
1289 	if (cpuid >= 0) {
1290 		(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1291 		    SG_SGNBLK_CPUSIG_OFFSET(cpuid), (char *)&signature,
1292 		    sizeof (signature));
1293 	} else {
1294 		for (i = 0; i < NCPU; i++) {
1295 			if (cpu[i] == NULL || !(cpu[i]->cpu_flags &
1296 			    (CPU_EXISTS|CPU_QUIESCED))) {
1297 				continue;
1298 			}
1299 			(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1300 			    SG_SGNBLK_CPUSIG_OFFSET(i), (char *)&signature,
1301 			    sizeof (signature));
1302 		}
1303 	}
1304 
1305 	if (state == SIGST_OFFLINE || state == SIGST_DETACHED) {
1306 		return;
1307 	}
1308 
1309 	(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1310 	    SG_SGNBLK_DOMAINSIG_OFFSET, (char *)&signature,
1311 	    sizeof (signature));
1312 }
1313 
1314 void
1315 startup_platform(void)
1316 {
1317 }
1318 
1319 /*
1320  * A routine to convert a number (represented as a string) to
1321  * the integer value it represents.
1322  */
1323 
1324 static int
1325 isdigit(int ch)
1326 {
1327 	return (ch >= '0' && ch <= '9');
1328 }
1329 
1330 #define	isspace(c)	((c) == ' ' || (c) == '\t' || (c) == '\n')
1331 
1332 static int
1333 strtoi(char *p, char **pos)
1334 {
1335 	int n;
1336 	int c, neg = 0;
1337 
1338 	if (!isdigit(c = *p)) {
1339 		while (isspace(c))
1340 			c = *++p;
1341 		switch (c) {
1342 			case '-':
1343 				neg++;
1344 				/* FALLTHROUGH */
1345 			case '+':
1346 			c = *++p;
1347 		}
1348 		if (!isdigit(c)) {
1349 			if (pos != NULL)
1350 				*pos = p;
1351 			return (0);
1352 		}
1353 	}
1354 	for (n = '0' - c; isdigit(c = *++p); ) {
1355 		n *= 10; /* two steps to avoid unnecessary overflow */
1356 		n += '0' - c; /* accum neg to avoid surprises at MAX */
1357 	}
1358 	if (pos != NULL)
1359 		*pos = p;
1360 	return (neg ? n : -n);
1361 }
1362 
1363 /*
1364  * Get the three parts of the Serengeti PROM version.
1365  * Used for feature readiness tests.
1366  *
1367  * Return 0 if version extracted successfully, -1 otherwise.
1368  */
1369 
1370 int
1371 sg_get_prom_version(int *sysp, int *intfp, int *bldp)
1372 {
1373 	int plen;
1374 	char vers[512];
1375 	static pnode_t node;
1376 	static char version[] = "version";
1377 	char *verp, *ep;
1378 
1379 	node = prom_finddevice("/openprom");
1380 	if (node == OBP_BADNODE)
1381 		return (-1);
1382 
1383 	plen = prom_getproplen(node, version);
1384 	if (plen <= 0 || plen >= sizeof (vers))
1385 		return (-1);
1386 	(void) prom_getprop(node, version, vers);
1387 	vers[plen] = '\0';
1388 
1389 	/* Make sure it's an OBP flashprom */
1390 	if (vers[0] != 'O' && vers[1] != 'B' && vers[2] != 'P') {
1391 		cmn_err(CE_WARN, "sg_get_prom_version: "
1392 		    "unknown <version> string in </openprom>\n");
1393 		return (-1);
1394 	}
1395 	verp = &vers[4];
1396 
1397 	*sysp = strtoi(verp, &ep);
1398 	if (ep == verp || *ep != '.')
1399 		return (-1);
1400 	verp = ep + 1;
1401 
1402 	*intfp = strtoi(verp, &ep);
1403 	if (ep == verp || *ep != '.')
1404 		return (-1);
1405 	verp = ep + 1;
1406 
1407 	*bldp = strtoi(verp, &ep);
1408 	if (ep == verp || (*ep != '\0' && !isspace(*ep)))
1409 		return (-1);
1410 	return (0);
1411 }
1412 
1413 /*
1414  * Return 0 if system board Dynamic Reconfiguration
1415  * is supported by the firmware, -1 otherwise.
1416  */
1417 int
1418 sg_prom_sb_dr_check(void)
1419 {
1420 	static int prom_res = 1;
1421 
1422 	if (prom_res == 1) {
1423 		int sys, intf, bld;
1424 		int rv;
1425 
1426 		rv = sg_get_prom_version(&sys, &intf, &bld);
1427 		if (rv == 0 && sys == 5 &&
1428 		    (intf >= 12 || (intf == 11 && bld >= 200))) {
1429 			prom_res = 0;
1430 		} else {
1431 			prom_res = -1;
1432 		}
1433 	}
1434 	return (prom_res);
1435 }
1436 
1437 /*
1438  * Return 0 if cPCI Dynamic Reconfiguration
1439  * is supported by the firmware, -1 otherwise.
1440  */
1441 int
1442 sg_prom_cpci_dr_check(void)
1443 {
1444 	/*
1445 	 * The version check is currently the same as for
1446 	 * system boards. Since the two DR sub-systems are
1447 	 * independent, this could change.
1448 	 */
1449 	return (sg_prom_sb_dr_check());
1450 }
1451 
1452 /*
1453  * Our implementation of this KDI op updates the CPU signature in the system
1454  * controller.  Note that we set the signature to OBP_SIG, rather than DBG_SIG.
1455  * The Forth words we execute will, among other things, transform our OBP_SIG
1456  * into DBG_SIG.  They won't function properly if we try to use DBG_SIG.
1457  */
1458 static void
1459 sg_system_claim(void)
1460 {
1461 	prom_interpret("sigb-sig! my-sigb-sig!", OBP_SIG, OBP_SIG, 0, 0, 0);
1462 }
1463 
1464 static void
1465 sg_system_release(void)
1466 {
1467 	prom_interpret("sigb-sig! my-sigb-sig!", OS_SIG, OS_SIG, 0, 0, 0);
1468 }
1469 
1470 static void
1471 sg_console_claim(void)
1472 {
1473 	prom_serengeti_set_console_input(SGCN_OBP_STR);
1474 }
1475 
1476 static void
1477 sg_console_release(void)
1478 {
1479 	prom_serengeti_set_console_input(SGCN_CLNT_STR);
1480 }
1481 
1482 void
1483 plat_kdi_init(kdi_t *kdi)
1484 {
1485 	kdi->pkdi_system_claim = sg_system_claim;
1486 	kdi->pkdi_system_release = sg_system_release;
1487 	kdi->pkdi_console_claim = sg_console_claim;
1488 	kdi->pkdi_console_release = sg_console_release;
1489 }
1490