xref: /titanic_44/usr/src/uts/sun4u/daktari/os/daktari.c (revision 6c70fc6414fef5fc5b70768a5cbd683838d30bf4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/cpuvar.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/sunddi.h>
33 #include <sys/ddi.h>
34 #include <sys/sysmacros.h>
35 #include <sys/note.h>
36 
37 #include <sys/modctl.h>		/* for modload() */
38 #include <sys/platform_module.h>
39 #include <sys/errno.h>
40 #include <sys/daktari.h>
41 #include <sys/machsystm.h>
42 #include <sys/promif.h>
43 #include <vm/page.h>
44 #include <sys/memnode.h>
45 #include <vm/vm_dep.h>
46 
47 /* I2C Stuff */
48 #include <sys/i2c/clients/i2c_client.h>
49 
50 
51 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
52 
53 /* Daktari Keyswitch Information */
54 #define	DAK_KEY_POLL_PORT	3
55 #define	DAK_KEY_POLL_BIT	2
56 #define	DAK_KEY_POLL_INTVL	10
57 
58 static	boolean_t	key_locked_bit;
59 static	clock_t		keypoll_timeout_hz;
60 
61 /*
62  * Table that maps memory slices to a specific memnode.
63  */
64 int slice_to_memnode[DAK_MAX_SLICE];
65 
66 /*
67  * For software memory interleaving support.
68  */
69 static	void update_mem_bounds(int, int, int, uint64_t, uint64_t);
70 
71 static uint64_t
72 slice_table[DAK_SBD_SLOTS][DAK_CPUS_PER_BOARD][DAK_BANKS_PER_MC][2];
73 
74 #define	SLICE_PA	0
75 #define	SLICE_SPAN	1
76 
77 int (*daktari_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int);
78 extern	void (*abort_seq_handler)();
79 static	int daktari_dev_search(dev_info_t *, void *);
80 static	void keyswitch_poll(void *);
81 static	void daktari_abort_seq_handler(char *msg);
82 
83 void
84 startup_platform(void)
85 {
86 	/*
87 	 * Disable an active h/w watchdog timer
88 	 * upon exit to OBP.
89 	 */
90 	extern int disable_watchdog_on_exit;
91 	disable_watchdog_on_exit = 1;
92 }
93 
94 int
95 set_platform_tsb_spares()
96 {
97 	return (0);
98 }
99 
100 #pragma weak mmu_init_large_pages
101 
102 void
103 set_platform_defaults(void)
104 {
105 	extern void mmu_init_large_pages(size_t);
106 
107 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
108 	    (mmu_ism_pagesize != MMU_PAGESIZE32M)) {
109 		if (&mmu_init_large_pages)
110 			mmu_init_large_pages(mmu_ism_pagesize);
111 	}
112 }
113 
114 void
115 load_platform_modules(void)
116 {
117 	if (modload("misc", "pcihp") < 0) {
118 		cmn_err(CE_NOTE, "pcihp driver failed to load");
119 	}
120 	if (modload("drv", "pmc") < 0) {
121 		cmn_err(CE_NOTE, "pmc driver failed to load");
122 	}
123 
124 }
125 
126 void
127 load_platform_drivers(void)
128 {
129 	char **drv;
130 	dev_info_t	*keysw_dip;
131 
132 	static char *boot_time_drivers[] = {
133 		"hpc3130",
134 		"todds1287",
135 		"mc-us3",
136 		"ssc050",
137 		"pcisch",
138 		NULL
139 	};
140 
141 	for (drv = boot_time_drivers; *drv; drv++) {
142 		if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS)
143 			cmn_err(CE_WARN, "Failed to install \"%s\" driver.",
144 			    *drv);
145 	}
146 
147 	/*
148 	 * mc-us3 & ssc050 must stay loaded for plat_get_mem_unum()
149 	 * and keyswitch_poll()
150 	 */
151 	(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
152 	(void) ddi_hold_driver(ddi_name_to_major("ssc050"));
153 
154 	/* Gain access into the ssc050_get_port function */
155 	daktari_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int,
156 		uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0);
157 	if (daktari_ssc050_get_port_bit == NULL) {
158 		cmn_err(CE_WARN, "cannot find ssc050_get_port_bit");
159 		return;
160 	}
161 
162 	ddi_walk_devs(ddi_root_node(), daktari_dev_search, (void *)&keysw_dip);
163 	ASSERT(keysw_dip != NULL);
164 
165 	keypoll_timeout_hz = drv_usectohz(10 * MICROSEC);
166 	keyswitch_poll(keysw_dip);
167 	abort_seq_handler = daktari_abort_seq_handler;
168 }
169 
170 static int
171 daktari_dev_search(dev_info_t *dip, void *arg)
172 {
173 	char		*compatible = NULL; /* Search tree for "i2c-ssc050" */
174 	int		*dev_regs; /* Info about where the device is. */
175 	uint_t		len;
176 	int		err;
177 
178 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
179 				"compatible", &compatible) != DDI_PROP_SUCCESS)
180 		return (DDI_WALK_CONTINUE);
181 
182 	if (strcmp(compatible, "i2c-ssc050") == 0) {
183 		ddi_prop_free(compatible);
184 
185 		err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
186 			DDI_PROP_DONTPASS, "reg", &dev_regs, &len);
187 		if (err != DDI_PROP_SUCCESS) {
188 			return (DDI_WALK_CONTINUE);
189 		}
190 		/*
191 		 * regs[0] contains the bus number and regs[1]
192 		 * contains the device address of the i2c device.
193 		 * 0x82 is the device address of the i2c device
194 		 * from which  the key switch position is read.
195 		 */
196 		if (dev_regs[0] == 0 && dev_regs[1] == 0x82) {
197 			*((dev_info_t **)arg) = dip;
198 			ddi_prop_free(dev_regs);
199 			return (DDI_WALK_TERMINATE);
200 		}
201 		ddi_prop_free(dev_regs);
202 	} else {
203 		ddi_prop_free(compatible);
204 	}
205 	return (DDI_WALK_CONTINUE);
206 }
207 
208 static void
209 keyswitch_poll(void *arg)
210 {
211 	dev_info_t	*dip = arg;
212 	uchar_t	port_byte;
213 	int	port = DAK_KEY_POLL_PORT;
214 	int	bit = DAK_KEY_POLL_BIT;
215 	int	err;
216 
217 	err = daktari_ssc050_get_port_bit(dip, port, bit,
218 		&port_byte, I2C_NOSLEEP);
219 	if (err != 0) {
220 		return;
221 	}
222 
223 	key_locked_bit = (boolean_t)((port_byte & 0x1));
224 	timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz);
225 }
226 
227 static void
228 daktari_abort_seq_handler(char *msg)
229 {
230 	if (key_locked_bit == 0)
231 		cmn_err(CE_CONT, "KEY in LOCKED position, "
232 			"ignoring debug enter sequence");
233 	else  {
234 		debug_enter(msg);
235 	}
236 }
237 
238 
239 int
240 plat_cpu_poweron(struct cpu *cp)
241 {
242 	_NOTE(ARGUNUSED(cp))
243 	return (ENOTSUP);
244 }
245 
246 int
247 plat_cpu_poweroff(struct cpu *cp)
248 {
249 	_NOTE(ARGUNUSED(cp))
250 	return (ENOTSUP);
251 }
252 
253 /*
254  * Given a pfn, return the board and beginning/end of the page's
255  * memory controller's address range.
256  */
257 static int
258 plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last)
259 {
260 	int bd, cpu, bank;
261 
262 	for (bd = 0; bd < DAK_SBD_SLOTS; bd++) {
263 		for (cpu = 0; cpu < DAK_CPUS_PER_BOARD; cpu++) {
264 			for (bank = 0; bank < DAK_BANKS_PER_MC; bank++) {
265 				uint64_t *slice = slice_table[bd][cpu][bank];
266 				uint64_t base = btop(slice[SLICE_PA]);
267 				uint64_t len = btop(slice[SLICE_SPAN]);
268 				if (len && pfn >= base && pfn < (base + len)) {
269 					*first = base;
270 					*last = base + len - 1;
271 					return (bd);
272 				}
273 			}
274 		}
275 	}
276 	panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn);
277 	/* NOTREACHED */
278 }
279 
280 /*ARGSUSED*/
281 void
282 plat_freelist_process(int mnode)
283 {}
284 
285 
286 /*
287  * Called for each board/cpu/PA range detected in plat_fill_mc().
288  */
289 static void
290 update_mem_bounds(int boardid, int cpuid, int bankid,
291 	uint64_t base, uint64_t size)
292 {
293 	uint64_t	end;
294 	int		mnode;
295 
296 	slice_table[boardid][cpuid][bankid][SLICE_PA] = base;
297 	slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size;
298 
299 	end = base + size - 1;
300 
301 	/*
302 	 * First see if this board already has a memnode associated
303 	 * with it.  If not, see if this slice has a memnode.  This
304 	 * covers the cases where a single slice covers multiple
305 	 * boards (cross-board interleaving) and where a single
306 	 * board has multiple slices (1+GB DIMMs).
307 	 */
308 	if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) {
309 		if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
310 			mnode = mem_node_alloc();
311 
312 		ASSERT(mnode >= 0);
313 		ASSERT(mnode < MAX_MEM_NODES);
314 		plat_assign_lgrphand_to_mem_node(boardid, mnode);
315 	}
316 
317 	base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT));
318 
319 	while (base < end) {
320 		slice_to_memnode[PA_2_SLICE(base)] = mnode;
321 		base += (1ul << PA_SLICE_SHIFT);
322 	}
323 }
324 
325 /*
326  * Dynamically detect memory slices in the system by decoding
327  * the cpu memory decoder registers at boot time.
328  */
329 void
330 plat_fill_mc(pnode_t nodeid)
331 {
332 	uint64_t	mc_addr, saf_addr;
333 	uint64_t	mc_decode[DAK_BANKS_PER_MC];
334 	uint64_t	base, size;
335 	uint64_t	saf_mask;
336 	uint64_t	offset;
337 	uint32_t	regs[4];
338 	int		len;
339 	int		local_mc;
340 	int		portid;
341 	int		boardid;
342 	int		cpuid;
343 	int		i;
344 
345 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
346 	    (portid == -1))
347 		return;
348 
349 	/*
350 	 * Decode the board number from the MC portid.  Assumes
351 	 * portid == safari agentid.
352 	 */
353 	boardid = DAK_GETSLOT(portid);
354 	cpuid = DAK_GETSID(portid);
355 
356 	/*
357 	 * The "reg" property returns 4 32-bit values. The first two are
358 	 * combined to form a 64-bit address.  The second two are for a
359 	 * 64-bit size, but we don't actually need to look at that value.
360 	 */
361 	len = prom_getproplen(nodeid, "reg");
362 	if (len != (sizeof (uint32_t) * 4)) {
363 		prom_printf("Warning: malformed 'reg' property\n");
364 		return;
365 	}
366 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
367 		return;
368 	mc_addr = ((uint64_t)regs[0]) << 32;
369 	mc_addr |= (uint64_t)regs[1];
370 
371 	/*
372 	 * Figure out whether the memory controller we are examining
373 	 * belongs to this CPU or a different one.
374 	 */
375 	saf_addr = lddsafaddr(8);
376 	saf_mask = (uint64_t)SAF_MASK;
377 	if ((mc_addr & saf_mask) == saf_addr)
378 		local_mc = 1;
379 	else
380 		local_mc = 0;
381 
382 	for (i = 0; i < DAK_BANKS_PER_MC; i++) {
383 		/*
384 		 * Memory decode masks are at offsets 0x10 - 0x28.
385 		 */
386 		offset = 0x10 + (i << 3);
387 
388 		/*
389 		 * If the memory controller is local to this CPU, we use
390 		 * the special ASI to read the decode registers.
391 		 * Otherwise, we load the values from a magic address in
392 		 * I/O space.
393 		 */
394 		if (local_mc)
395 			mc_decode[i] = lddmcdecode(offset);
396 		else
397 			mc_decode[i] = lddphysio(mc_addr | offset);
398 
399 		/*
400 		 * If the upper bit is set, we have a valid mask
401 		 */
402 		if ((int64_t)mc_decode[i] < 0) {
403 			/*
404 			 * The memory decode register is a bitmask field,
405 			 * so we can decode that into both a base and
406 			 * a span.
407 			 */
408 			base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
409 			size = MC_UK2SPAN(mc_decode[i]);
410 			update_mem_bounds(boardid, cpuid, i, base, size);
411 		}
412 	}
413 }
414 
415 
416 /*
417  * This routine is run midway through the boot process.  By the time we get
418  * here, we know about all the active CPU boards in the system, and we have
419  * extracted information about each board's memory from the memory
420  * controllers.  We have also figured out which ranges of memory will be
421  * assigned to which memnodes, so we walk the slice table to build the table
422  * of memnodes.
423  */
424 /* ARGSUSED */
425 void
426 plat_build_mem_nodes(u_longlong_t *list, size_t  nelems)
427 {
428 	int	slice;
429 	pfn_t   basepfn;
430 	pgcnt_t npgs;
431 
432 	mem_node_pfn_shift = PFN_SLICE_SHIFT;
433 	mem_node_physalign = (1ull << PA_SLICE_SHIFT);
434 	npgs = 1ull << PFN_SLICE_SHIFT;
435 
436 	for (slice = 0; slice < DAK_MAX_SLICE; slice++) {
437 		if (slice_to_memnode[slice] == -1)
438 			continue;
439 		basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
440 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
441 	}
442 }
443 
444 
445 
446 /*
447  * Daktari support for lgroups.
448  *
449  * On Daktari, an lgroup platform handle == slot number.
450  *
451  * Mappings between lgroup handles and memnodes are managed
452  * in addition to mappings between memory slices and memnodes
453  * to support cross-board interleaving as well as multiple
454  * slices per board (e.g. >1GB DIMMs). The initial mapping
455  * of memnodes to lgroup handles is determined at boot time.
456  */
457 int
458 plat_pfn_to_mem_node(pfn_t pfn)
459 {
460 	return (slice_to_memnode[PFN_2_SLICE(pfn)]);
461 }
462 
463 /*
464  * Return the platform handle for the lgroup containing the given CPU
465  *
466  * For Daktari, lgroup platform handle == slot number
467  */
468 lgrp_handle_t
469 plat_lgrp_cpu_to_hand(processorid_t id)
470 {
471 	return (DAK_GETSLOT(id));
472 }
473 
474 /*
475  * Platform specific lgroup initialization
476  */
477 void
478 plat_lgrp_init(void)
479 {
480 	int i;
481 
482 	/*
483 	 * Initialize lookup tables to invalid values so we catch
484 	 * any illegal use of them.
485 	 */
486 	for (i = 0; i < DAK_MAX_SLICE; i++) {
487 		slice_to_memnode[i] = -1;
488 	}
489 }
490 
491 /*
492  * Return latency between "from" and "to" lgroups
493  *
494  * This latency number can only be used for relative comparison
495  * between lgroups on the running system, cannot be used across platforms,
496  * and may not reflect the actual latency.  It is platform and implementation
497  * specific, so platform gets to decide its value.  It would be nice if the
498  * number was at least proportional to make comparisons more meaningful though.
499  * NOTE: The numbers below are supposed to be load latencies for uncached
500  * memory divided by 10.
501  */
502 int
503 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
504 {
505 	/*
506 	 * Return min remote latency when there are more than two lgroups
507 	 * (root and child) and getting latency between two different lgroups
508 	 * or root is involved
509 	 */
510 	if (lgrp_optimizations() && (from != to ||
511 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
512 		return (21);
513 	else
514 		return (19);
515 }
516 /*
517  * No platform drivers on this platform
518  */
519 char *platform_module_list[] = {
520 	(char *)0
521 };
522 
523 /*ARGSUSED*/
524 void
525 plat_tod_fault(enum tod_fault_type tod_bad)
526 {
527 }
528 
529 /*ARGSUSED*/
530 int
531 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
532     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
533 {
534 	if (flt_in_memory && (p2get_mem_unum != NULL))
535 		return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
536 			buf, buflen, lenp));
537 	else
538 		return (ENOTSUP);
539 }
540 
541 /*
542  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
543  * driver giving each platform the opportunity to add platform
544  * specific label information to the unum for ECC error logging purposes.
545  */
546 void
547 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
548 {
549 	_NOTE(ARGUNUSED(bank, dimm))
550 
551 	char board = DAK_GETSLOT_LABEL(mcid);
552 	char old_unum[UNUM_NAMLEN];
553 
554 	strcpy(old_unum, unum);
555 	snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum);
556 }
557 
558 int
559 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
560 {
561 	char board = DAK_GETSLOT_LABEL(cpuid);
562 
563 	if (snprintf(buf, buflen, "Slot %c", board) >= buflen) {
564 		return (ENOSPC);
565 	} else {
566 		*lenp = strlen(buf);
567 		return (0);
568 	}
569 }
570 
571 /*
572  * The zuluvm module requires a dmv interrupt for each installed zulu board.
573  */
574 void
575 plat_dmv_params(uint_t *hwint, uint_t *swint)
576 {
577 	*hwint = 0;
578 	*swint = DAK_SBD_SLOTS - 1;
579 }
580