1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * UNIX machine dependent virtual memory support. 29 */ 30 31 #ifndef _VM_DEP_H 32 #define _VM_DEP_H 33 34 #pragma ident "%Z%%M% %I% %E% SMI" 35 36 #ifdef __cplusplus 37 extern "C" { 38 #endif 39 40 #include <vm/hat_sfmmu.h> 41 #include <sys/archsystm.h> 42 #include <sys/memnode.h> 43 44 #define GETTICK() gettick() 45 46 /* 47 * Per page size free lists. Allocated dynamically. 48 */ 49 #define MAX_MEM_TYPES 2 /* 0 = reloc, 1 = noreloc */ 50 #define MTYPE_RELOC 0 51 #define MTYPE_NORELOC 1 52 53 #define PP_2_MTYPE(pp) (PP_ISNORELOC(pp) ? MTYPE_NORELOC : MTYPE_RELOC) 54 55 #define MTYPE_INIT(mtype, vp, vaddr, flags) \ 56 mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC; 57 58 /* mtype init for page_get_replacement_page */ 59 60 #define MTYPE_PGR_INIT(mtype, flags, pp, mnode) \ 61 mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC; 62 63 #define MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi) \ 64 ASSERT(mtype != MTYPE_NORELOC); \ 65 pfnlo = mem_node_config[mnode].physbase; \ 66 pfnhi = mem_node_config[mnode].physmax; 67 68 /* 69 * Internal PG_ flags. 70 */ 71 #define PGI_RELOCONLY 0x10000 /* acts in the opposite sense to PG_NORELOC */ 72 #define PGI_NOCAGE 0x20000 /* indicates Cage is disabled */ 73 #define PGI_PGCPHIPRI 0x40000 /* page_get_contig_page priority allocation */ 74 #define PGI_PGCPSZC0 0x80000 /* relocate base pagesize page */ 75 76 /* 77 * PGI mtype flags - should not overlap PGI flags 78 */ 79 #define PGI_MT_RANGE 0x1000000 /* mtype range */ 80 #define PGI_MT_NEXT 0x2000000 /* get next mtype */ 81 82 extern page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES]; 83 extern page_t ***page_cachelists[MAX_MEM_TYPES]; 84 85 #define PAGE_FREELISTS(mnode, szc, color, mtype) \ 86 (*(page_freelists[szc][mtype][mnode] + (color))) 87 88 #define PAGE_CACHELISTS(mnode, color, mtype) \ 89 (*(page_cachelists[mtype][mnode] + (color))) 90 91 /* 92 * There are 'page_colors' colors/bins. Spread them out under a 93 * couple of locks. There are mutexes for both the page freelist 94 * and the page cachelist. We want enough locks to make contention 95 * reasonable, but not too many -- otherwise page_freelist_lock() gets 96 * so expensive that it becomes the bottleneck! 97 */ 98 #define NPC_MUTEX 16 99 100 extern kmutex_t *fpc_mutex[NPC_MUTEX]; 101 extern kmutex_t *cpc_mutex[NPC_MUTEX]; 102 103 /* Find the bin for the given page if it was of size szc */ 104 #define PP_2_BIN_SZC(pp, szc) \ 105 (((pp->p_pagenum) & page_colors_mask) >> \ 106 (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift)) 107 108 #define PP_2_BIN(pp) (PP_2_BIN_SZC(pp, pp->p_szc)) 109 110 #define PP_2_MEM_NODE(pp) (PFN_2_MEM_NODE(pp->p_pagenum)) 111 112 #define PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ? \ 113 &fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] : \ 114 &cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode]) 115 116 #define FPC_MUTEX(mnode, i) (&fpc_mutex[i][mnode]) 117 #define CPC_MUTEX(mnode, i) (&cpc_mutex[i][mnode]) 118 119 #define PFN_BASE(pfnum, szc) (pfnum & ~((1 << PAGE_BSZS_SHIFT(szc)) - 1)) 120 121 typedef char hpmctr_t; 122 123 #ifdef DEBUG 124 #define CHK_LPG(pp, szc) chk_lpg(pp, szc) 125 extern void chk_lpg(page_t *, uchar_t); 126 #else 127 #define CHK_LPG(pp, szc) 128 #endif 129 130 /* 131 * page list count per mnode and type. 132 */ 133 typedef struct { 134 pgcnt_t plc_mt_pgmax; /* max page cnt */ 135 pgcnt_t plc_mt_clpgcnt; /* cache list cnt */ 136 pgcnt_t plc_mt_flpgcnt; /* free list cnt - small pages */ 137 pgcnt_t plc_mt_lgpgcnt; /* free list cnt - large pages */ 138 #ifdef DEBUG 139 struct { 140 pgcnt_t plc_mts_pgcnt; /* per page size count */ 141 int plc_mts_colors; 142 pgcnt_t *plc_mtsc_pgcnt; /* per color bin count */ 143 } plc_mts[MMU_PAGE_SIZES]; 144 #endif 145 } plcnt_t[MAX_MEM_NODES][MAX_MEM_TYPES]; 146 147 #ifdef DEBUG 148 149 #define PLCNT_SZ(ctrs_sz) { \ 150 int szc; \ 151 for (szc = 0; szc <= mmu_page_sizes; szc++) { \ 152 int colors = page_get_pagecolors(szc); \ 153 ctrs_sz += (max_mem_nodes * MAX_MEM_TYPES * \ 154 colors * sizeof (pgcnt_t)); \ 155 } \ 156 } 157 158 #define PLCNT_INIT(base) { \ 159 int mn, mt, szc, colors; \ 160 for (szc = 0; szc < mmu_page_sizes; szc++) { \ 161 colors = page_get_pagecolors(szc); \ 162 for (mn = 0; mn < max_mem_nodes; mn++) { \ 163 for (mt = 0; mt < MAX_MEM_TYPES; mt++) { \ 164 plcnt[mn][mt].plc_mts[szc]. \ 165 plc_mts_colors = colors; \ 166 plcnt[mn][mt].plc_mts[szc]. \ 167 plc_mtsc_pgcnt = (pgcnt_t *)base; \ 168 base += (colors * sizeof (pgcnt_t)); \ 169 } \ 170 } \ 171 } \ 172 } 173 174 #define PLCNT_DO(pp, mn, mtype, szc, cnt, flags) { \ 175 int bin = PP_2_BIN(pp); \ 176 if (flags & PG_CACHE_LIST) \ 177 atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt); \ 178 else if (szc) \ 179 atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt); \ 180 else \ 181 atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt); \ 182 atomic_add_long(&plcnt[mn][mtype].plc_mts[szc].plc_mts_pgcnt, \ 183 cnt); \ 184 atomic_add_long(&plcnt[mn][mtype].plc_mts[szc]. \ 185 plc_mtsc_pgcnt[bin], cnt); \ 186 } 187 188 #else 189 190 #define PLCNT_SZ(ctrs_sz) 191 192 #define PLCNT_INIT(base) 193 194 /* PG_FREE_LIST may not be explicitly set in flags for large pages */ 195 196 #define PLCNT_DO(pp, mn, mtype, szc, cnt, flags) { \ 197 if (flags & PG_CACHE_LIST) \ 198 atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt); \ 199 else if (szc) \ 200 atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt); \ 201 else \ 202 atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt); \ 203 } 204 205 #endif 206 207 #define PLCNT_INCR(pp, mn, mtype, szc, flags) { \ 208 long cnt = (1 << PAGE_BSZS_SHIFT(szc)); \ 209 PLCNT_DO(pp, mn, mtype, szc, cnt, flags); \ 210 } 211 212 #define PLCNT_DECR(pp, mn, mtype, szc, flags) { \ 213 long cnt = ((-1) << PAGE_BSZS_SHIFT(szc)); \ 214 PLCNT_DO(pp, mn, mtype, szc, cnt, flags); \ 215 } 216 217 /* 218 * macros to update page list max counts - done when pages transferred 219 * from RELOC to NORELOC mtype (kcage_init or kcage_assimilate_page). 220 */ 221 222 #define PLCNT_XFER_NORELOC(pp) { \ 223 long cnt = (1 << PAGE_BSZS_SHIFT((pp)->p_szc)); \ 224 int mn = PP_2_MEM_NODE(pp); \ 225 atomic_add_long(&plcnt[mn][MTYPE_NORELOC].plc_mt_pgmax, cnt); \ 226 atomic_add_long(&plcnt[mn][MTYPE_RELOC].plc_mt_pgmax, -cnt); \ 227 } 228 229 /* 230 * macro to modify the page list max counts when memory is added to 231 * the page lists during startup (add_physmem) or during a DR operation 232 * when memory is added (kphysm_add_memory_dynamic) or deleted 233 * (kphysm_del_cleanup). 234 */ 235 #define PLCNT_MODIFY_MAX(pfn, cnt) { \ 236 int mn = PFN_2_MEM_NODE(pfn); \ 237 atomic_add_long(&plcnt[mn][MTYPE_RELOC].plc_mt_pgmax, (cnt)); \ 238 } 239 240 extern plcnt_t plcnt; 241 242 #define MNODE_PGCNT(mn) \ 243 (plcnt[mn][MTYPE_RELOC].plc_mt_clpgcnt + \ 244 plcnt[mn][MTYPE_NORELOC].plc_mt_clpgcnt + \ 245 plcnt[mn][MTYPE_RELOC].plc_mt_flpgcnt + \ 246 plcnt[mn][MTYPE_NORELOC].plc_mt_flpgcnt + \ 247 plcnt[mn][MTYPE_RELOC].plc_mt_lgpgcnt + \ 248 plcnt[mn][MTYPE_NORELOC].plc_mt_lgpgcnt) 249 250 #define MNODETYPE_PGCNT(mn, mtype) \ 251 (plcnt[mn][mtype].plc_mt_clpgcnt + \ 252 plcnt[mn][mtype].plc_mt_flpgcnt + \ 253 plcnt[mn][mtype].plc_mt_lgpgcnt) 254 255 /* 256 * macros to loop through the mtype range - MTYPE_START returns -1 in 257 * mtype if no pages in mnode/mtype and possibly NEXT mtype. 258 */ 259 #define MTYPE_START(mnode, mtype, flags) { \ 260 if (plcnt[mnode][mtype].plc_mt_pgmax == 0) { \ 261 ASSERT(MNODETYPE_PGCNT(mnode, mtype) == 0); \ 262 MTYPE_NEXT(mnode, mtype, flags); \ 263 } \ 264 } 265 266 /* 267 * if allocation from the RELOC pool failed and there is sufficient cage 268 * memory, attempt to allocate from the NORELOC pool. 269 */ 270 #define MTYPE_NEXT(mnode, mtype, flags) { \ 271 if (!(flags & (PG_NORELOC | PGI_NOCAGE | PGI_RELOCONLY)) && \ 272 (kcage_freemem >= kcage_lotsfree)) { \ 273 if (plcnt[mnode][mtype].plc_mt_pgmax == 0) { \ 274 ASSERT(MNODETYPE_PGCNT(mnode, mtype) == 0); \ 275 mtype = -1; \ 276 } else { \ 277 mtype = MTYPE_NORELOC; \ 278 flags |= PG_NORELOC; \ 279 } \ 280 } else { \ 281 mtype = -1; \ 282 } \ 283 } 284 285 /* 286 * get the ecache setsize for the current cpu. 287 */ 288 #define CPUSETSIZE() (cpunodes[CPU->cpu_id].ecache_setsize) 289 290 extern struct cpu cpu0; 291 #define CPU0 &cpu0 292 293 #define PAGE_BSZS_SHIFT(szc) TTE_BSZS_SHIFT(szc) 294 /* 295 * For sfmmu each larger page is 8 times the size of the previous 296 * size page. 297 */ 298 #define FULL_REGION_CNT(rg_szc) (8) 299 300 /* 301 * The counter base must be per page_counter element to prevent 302 * races when re-indexing, and the base page size element should 303 * be aligned on a boundary of the given region size. 304 * 305 * We also round up the number of pages spanned by the counters 306 * for a given region to PC_BASE_ALIGN in certain situations to simplify 307 * the coding for some non-performance critical routines. 308 */ 309 #define PC_BASE_ALIGN ((pfn_t)1 << PAGE_BSZS_SHIFT(mmu_page_sizes-1)) 310 #define PC_BASE_ALIGN_MASK (PC_BASE_ALIGN - 1) 311 312 extern int ecache_alignsize; 313 #define L2CACHE_ALIGN ecache_alignsize 314 #define L2CACHE_ALIGN_MAX 512 315 316 extern int consistent_coloring; 317 extern uint_t vac_colors_mask; 318 extern int vac_size; 319 extern int vac_shift; 320 321 /* 322 * Auto large page selection support variables. Some CPU 323 * implementations may differ from the defaults and will need 324 * to change these. 325 */ 326 extern int auto_lpg_tlb_threshold; 327 extern int auto_lpg_minszc; 328 extern int auto_lpg_maxszc; 329 extern size_t auto_lpg_heap_default; 330 extern size_t auto_lpg_stack_default; 331 extern size_t auto_lpg_va_default; 332 extern size_t auto_lpg_remap_threshold; 333 extern pgcnt_t auto_lpg_min_physmem; 334 335 /* 336 * AS_2_BIN macro controls the page coloring policy. 337 * 0 (default) uses various vaddr bits 338 * 1 virtual=paddr 339 * 2 bin hopping 340 */ 341 #define AS_2_BIN(as, seg, vp, addr, bin) \ 342 switch (consistent_coloring) { \ 343 default: \ 344 cmn_err(CE_WARN, \ 345 "AS_2_BIN: bad consistent coloring value"); \ 346 /* assume default algorithm -> continue */ \ 347 case 0: { \ 348 uint32_t ndx, new; \ 349 int slew = 0; \ 350 \ 351 if (vp != NULL && IS_SWAPVP(vp) && \ 352 seg->s_ops == &segvn_ops) \ 353 slew = as_color_bin(as); \ 354 \ 355 bin = (((uintptr_t)addr >> MMU_PAGESHIFT) + \ 356 (((uintptr_t)addr >> page_coloring_shift) << \ 357 (vac_shift - MMU_PAGESHIFT)) + slew) & \ 358 page_colors_mask; \ 359 \ 360 break; \ 361 } \ 362 case 1: \ 363 bin = ((uintptr_t)addr >> MMU_PAGESHIFT) & \ 364 page_colors_mask; \ 365 break; \ 366 case 2: { \ 367 int cnt = as_color_bin(as); \ 368 /* make sure physical color aligns with vac color */ \ 369 while ((cnt & vac_colors_mask) != \ 370 addr_to_vcolor(addr)) { \ 371 cnt++; \ 372 } \ 373 bin = cnt = cnt & page_colors_mask; \ 374 /* update per as page coloring fields */ \ 375 cnt = (cnt + 1) & page_colors_mask; \ 376 if (cnt == (as_color_start(as) & page_colors_mask)) { \ 377 cnt = as_color_start(as) = as_color_start(as) + \ 378 PGCLR_LOOPFACTOR; \ 379 } \ 380 as_color_bin(as) = cnt & page_colors_mask; \ 381 break; \ 382 } \ 383 } \ 384 ASSERT(bin <= page_colors_mask); 385 386 /* 387 * cpu private vm data - accessed thru CPU->cpu_vm_data 388 * vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock() 389 * vc_pnext_memseg: tracks last memseg visited in page_nextn() 390 * vc_kmptr: unaligned kmem pointer for this vm_cpu_data_t 391 * vc_kmsize: orignal kmem size for this vm_cpu_data_t 392 */ 393 394 typedef struct { 395 struct memseg *vc_pnum_memseg; 396 struct memseg *vc_pnext_memseg; 397 void *vc_kmptr; 398 size_t vc_kmsize; 399 } vm_cpu_data_t; 400 401 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */ 402 #define VM_CPU_DATA_PADSIZE \ 403 (P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX)) 404 405 /* for boot cpu before kmem is initialized */ 406 extern char vm_cpu_data0[]; 407 408 /* 409 * Function to get an ecache color bin: F(as, cnt, vcolor). 410 * the goal of this function is to: 411 * - to spread a processes' physical pages across the entire ecache to 412 * maximize its use. 413 * - to minimize vac flushes caused when we reuse a physical page on a 414 * different vac color than it was previously used. 415 * - to prevent all processes to use the same exact colors and trash each 416 * other. 417 * 418 * cnt is a bin ptr kept on a per as basis. As we page_create we increment 419 * the ptr so we spread out the physical pages to cover the entire ecache. 420 * The virtual color is made a subset of the physical color in order to 421 * in minimize virtual cache flushing. 422 * We add in the as to spread out different as. This happens when we 423 * initialize the start count value. 424 * sizeof(struct as) is 60 so we shift by 3 to get into the bit range 425 * that will tend to change. For example, on spitfire based machines 426 * (vcshft == 1) contigous as are spread bu ~6 bins. 427 * vcshft provides for proper virtual color alignment. 428 * In theory cnt should be updated using cas only but if we are off by one 429 * or 2 it is no big deal. 430 * We also keep a start value which is used to randomize on what bin we 431 * start counting when it is time to start another loop. This avoids 432 * contigous allocations of ecache size to point to the same bin. 433 * Why 3? Seems work ok. Better than 7 or anything larger. 434 */ 435 #define PGCLR_LOOPFACTOR 3 436 437 /* 438 * When a bin is empty, and we can't satisfy a color request correctly, 439 * we scan. If we assume that the programs have reasonable spatial 440 * behavior, then it will not be a good idea to use the adjacent color. 441 * Using the adjacent color would result in virtually adjacent addresses 442 * mapping into the same spot in the cache. So, if we stumble across 443 * an empty bin, skip a bunch before looking. After the first skip, 444 * then just look one bin at a time so we don't miss our cache on 445 * every look. Be sure to check every bin. Page_create() will panic 446 * if we miss a page. 447 * 448 * This also explains the `<=' in the for loops in both page_get_freelist() 449 * and page_get_cachelist(). Since we checked the target bin, skipped 450 * a bunch, then continued one a time, we wind up checking the target bin 451 * twice to make sure we get all of them bins. 452 */ 453 #define BIN_STEP 20 454 455 #ifdef VM_STATS 456 struct vmm_vmstats_str { 457 ulong_t pgf_alloc[MMU_PAGE_SIZES]; /* page_get_freelist */ 458 ulong_t pgf_allocok[MMU_PAGE_SIZES]; 459 ulong_t pgf_allocokrem[MMU_PAGE_SIZES]; 460 ulong_t pgf_allocfailed[MMU_PAGE_SIZES]; 461 ulong_t pgf_allocdeferred; 462 ulong_t pgf_allocretry[MMU_PAGE_SIZES]; 463 ulong_t pgc_alloc; /* page_get_cachelist */ 464 ulong_t pgc_allocok; 465 ulong_t pgc_allocokrem; 466 ulong_t pgc_allocokdeferred; 467 ulong_t pgc_allocfailed; 468 ulong_t pgcp_alloc[MMU_PAGE_SIZES]; /* page_get_contig_pages */ 469 ulong_t pgcp_allocfailed[MMU_PAGE_SIZES]; 470 ulong_t pgcp_allocempty[MMU_PAGE_SIZES]; 471 ulong_t pgcp_allocok[MMU_PAGE_SIZES]; 472 ulong_t ptcp[MMU_PAGE_SIZES]; /* page_trylock_contig_pages */ 473 ulong_t ptcpfreethresh[MMU_PAGE_SIZES]; 474 ulong_t ptcpfailexcl[MMU_PAGE_SIZES]; 475 ulong_t ptcpfailszc[MMU_PAGE_SIZES]; 476 ulong_t ptcpfailcage[MMU_PAGE_SIZES]; 477 ulong_t ptcpok[MMU_PAGE_SIZES]; 478 ulong_t pgmf_alloc[MMU_PAGE_SIZES]; /* page_get_mnode_freelist */ 479 ulong_t pgmf_allocfailed[MMU_PAGE_SIZES]; 480 ulong_t pgmf_allocempty[MMU_PAGE_SIZES]; 481 ulong_t pgmf_allocok[MMU_PAGE_SIZES]; 482 ulong_t pgmc_alloc; /* page_get_mnode_cachelist */ 483 ulong_t pgmc_allocfailed; 484 ulong_t pgmc_allocempty; 485 ulong_t pgmc_allocok; 486 ulong_t pladd_free[MMU_PAGE_SIZES]; /* page_list_add/sub */ 487 ulong_t plsub_free[MMU_PAGE_SIZES]; 488 ulong_t pladd_cache; 489 ulong_t plsub_cache; 490 ulong_t plsubpages_szcbig; 491 ulong_t plsubpages_szc0; 492 ulong_t pff_req[MMU_PAGE_SIZES]; /* page_freelist_fill */ 493 ulong_t pff_demote[MMU_PAGE_SIZES]; 494 ulong_t pff_coalok[MMU_PAGE_SIZES]; 495 ulong_t ppr_reloc[MMU_PAGE_SIZES]; /* page_relocate */ 496 ulong_t ppr_relocok[MMU_PAGE_SIZES]; 497 ulong_t ppr_relocnoroot[MMU_PAGE_SIZES]; 498 ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES]; 499 ulong_t ppr_relocnolock[MMU_PAGE_SIZES]; 500 ulong_t ppr_relocnomem[MMU_PAGE_SIZES]; 501 ulong_t ppr_krelocfail[MMU_PAGE_SIZES]; 502 ulong_t page_ctrs_coalesce; /* page coalesce counter */ 503 ulong_t page_ctrs_cands_skip; /* candidates useful */ 504 ulong_t page_ctrs_changed; /* ctrs changed after locking */ 505 ulong_t page_ctrs_failed; /* page_freelist_coalesce failed */ 506 ulong_t page_ctrs_coalesce_all; /* page coalesce all counter */ 507 ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */ 508 }; 509 extern struct vmm_vmstats_str vmm_vmstats; 510 #endif /* VM_STATS */ 511 512 /* 513 * Used to hold off page relocations into the cage until OBP has completed 514 * its boot-time handoff of its resources to the kernel. 515 */ 516 extern int page_relocate_ready; 517 518 /* 519 * cpu/mmu-dependent vm variables may be reset at bootup. 520 */ 521 extern uint_t mmu_page_sizes; 522 extern uint_t max_mmu_page_sizes; 523 extern uint_t mmu_hashcnt; 524 extern uint_t max_mmu_hashcnt; 525 extern size_t mmu_ism_pagesize; 526 extern int mmu_exported_pagesize_mask; 527 extern uint_t mmu_exported_page_sizes; 528 extern uint_t szc_2_userszc[]; 529 extern uint_t userszc_2_szc[]; 530 531 #define USERSZC_2_SZC(userszc) (userszc_2_szc[userszc]) 532 #define SZC_2_USERSZC(szc) (szc_2_userszc[szc]) 533 534 /* 535 * Platform specific map_pgsz large page hook routines. 536 */ 537 extern size_t map_pgszva(struct proc *p, caddr_t addr, size_t len); 538 extern size_t map_pgszheap(struct proc *p, caddr_t addr, size_t len); 539 extern size_t map_pgszstk(struct proc *p, caddr_t addr, size_t len); 540 541 /* 542 * Platform specific page routines 543 */ 544 extern void mach_page_add(page_t **, page_t *); 545 extern void mach_page_sub(page_t **, page_t *); 546 extern uint_t page_get_pagecolors(uint_t); 547 extern void ppcopy_kernel__relocatable(page_t *, page_t *); 548 #define ppcopy_kernel(p1, p2) ppcopy_kernel__relocatable(p1, p2) 549 550 /* 551 * platform specific large pages for kernel heap support 552 */ 553 extern size_t get_segkmem_lpsize(size_t lpsize); 554 extern size_t mmu_get_kernel_lpsize(size_t lpsize); 555 extern void mmu_init_kernel_pgsz(struct hat *hat); 556 extern void mmu_init_kcontext(); 557 extern uint64_t kcontextreg; 558 559 #ifdef __cplusplus 560 } 561 #endif 562 563 #endif /* _VM_DEP_H */ 564