1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * UNIX machine dependent virtual memory support. 30 */ 31 32 #include <sys/vm.h> 33 #include <sys/exec.h> 34 35 #include <sys/exechdr.h> 36 #include <vm/seg_kmem.h> 37 #include <sys/atomic.h> 38 #include <sys/archsystm.h> 39 #include <sys/machsystm.h> 40 #include <sys/kdi.h> 41 #include <sys/cpu_module.h> 42 43 #include <vm/hat_sfmmu.h> 44 45 #include <sys/memnode.h> 46 47 #include <sys/mem_config.h> 48 #include <sys/mem_cage.h> 49 #include <vm/vm_dep.h> 50 #include <vm/page.h> 51 #include <sys/platform_module.h> 52 53 /* 54 * These variables are set by module specific config routines. 55 * They are only set by modules which will use physical cache page coloring 56 * and/or virtual cache page coloring. 57 */ 58 int do_pg_coloring = 0; 59 int do_virtual_coloring = 0; 60 61 /* 62 * These variables can be conveniently patched at kernel load time to 63 * prevent do_pg_coloring or do_virtual_coloring from being enabled by 64 * module specific config routines. 65 */ 66 67 int use_page_coloring = 1; 68 int use_virtual_coloring = 1; 69 70 /* 71 * initialized by page_coloring_init() 72 */ 73 extern uint_t page_colors; 74 extern uint_t page_colors_mask; 75 extern uint_t page_coloring_shift; 76 int cpu_page_colors; 77 uint_t vac_colors = 0; 78 uint_t vac_colors_mask = 0; 79 80 /* cpu specific coloring initialization */ 81 extern void page_coloring_init_cpu(); 82 #pragma weak page_coloring_init_cpu 83 84 /* 85 * get the ecache setsize for the current cpu. 86 */ 87 #define CPUSETSIZE() (cpunodes[CPU->cpu_id].ecache_setsize) 88 89 plcnt_t plcnt; /* page list count */ 90 91 /* 92 * This variable is set by the cpu module to contain the lowest 93 * address not affected by the SF_ERRATA_57 workaround. It should 94 * remain 0 if the workaround is not needed. 95 */ 96 #if defined(SF_ERRATA_57) 97 caddr_t errata57_limit; 98 #endif 99 100 extern void page_relocate_hash(page_t *, page_t *); 101 102 /* 103 * these must be defined in platform specific areas 104 */ 105 extern void map_addr_proc(caddr_t *, size_t, offset_t, int, caddr_t, 106 struct proc *, uint_t); 107 extern page_t *page_get_freelist(struct vnode *, u_offset_t, struct seg *, 108 caddr_t, size_t, uint_t, struct lgrp *); 109 /* 110 * Convert page frame number to an OBMEM page frame number 111 * (i.e. put in the type bits -- zero for this implementation) 112 */ 113 pfn_t 114 impl_obmem_pfnum(pfn_t pf) 115 { 116 return (pf); 117 } 118 119 /* 120 * Use physmax to determine the highest physical page of DRAM memory 121 * It is assumed that any physical addresses above physmax is in IO space. 122 * We don't bother checking the low end because we assume that memory space 123 * begins at physical page frame 0. 124 * 125 * Return 1 if the page frame is onboard DRAM memory, else 0. 126 * Returns 0 for nvram so it won't be cached. 127 */ 128 int 129 pf_is_memory(pfn_t pf) 130 { 131 /* We must be IO space */ 132 if (pf > physmax) 133 return (0); 134 135 /* We must be memory space */ 136 return (1); 137 } 138 139 /* 140 * Handle a pagefault. 141 */ 142 faultcode_t 143 pagefault(caddr_t addr, enum fault_type type, enum seg_rw rw, int iskernel) 144 { 145 struct as *as; 146 struct proc *p; 147 faultcode_t res; 148 caddr_t base; 149 size_t len; 150 int err; 151 152 if (INVALID_VADDR(addr)) 153 return (FC_NOMAP); 154 155 if (iskernel) { 156 as = &kas; 157 } else { 158 p = curproc; 159 as = p->p_as; 160 #if defined(SF_ERRATA_57) 161 /* 162 * Prevent infinite loops due to a segment driver 163 * setting the execute permissions and the sfmmu hat 164 * silently ignoring them. 165 */ 166 if (rw == S_EXEC && AS_TYPE_64BIT(as) && 167 addr < errata57_limit) { 168 res = FC_NOMAP; 169 goto out; 170 } 171 #endif 172 } 173 174 /* 175 * Dispatch pagefault. 176 */ 177 res = as_fault(as->a_hat, as, addr, 1, type, rw); 178 179 /* 180 * If this isn't a potential unmapped hole in the user's 181 * UNIX data or stack segments, just return status info. 182 */ 183 if (!(res == FC_NOMAP && iskernel == 0)) 184 goto out; 185 186 /* 187 * Check to see if we happened to faulted on a currently unmapped 188 * part of the UNIX data or stack segments. If so, create a zfod 189 * mapping there and then try calling the fault routine again. 190 */ 191 base = p->p_brkbase; 192 len = p->p_brksize; 193 194 if (addr < base || addr >= base + len) { /* data seg? */ 195 base = (caddr_t)(p->p_usrstack - p->p_stksize); 196 len = p->p_stksize; 197 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 198 /* not in either UNIX data or stack segments */ 199 res = FC_NOMAP; 200 goto out; 201 } 202 } 203 204 /* the rest of this function implements a 3.X 4.X 5.X compatibility */ 205 /* This code is probably not needed anymore */ 206 207 /* expand the gap to the page boundaries on each side */ 208 len = (((uintptr_t)base + len + PAGEOFFSET) & PAGEMASK) - 209 ((uintptr_t)base & PAGEMASK); 210 base = (caddr_t)((uintptr_t)base & PAGEMASK); 211 212 as_rangelock(as); 213 as_purge(as); 214 if (as_gap(as, PAGESIZE, &base, &len, AH_CONTAIN, addr) == 0) { 215 err = as_map(as, base, len, segvn_create, zfod_argsp); 216 as_rangeunlock(as); 217 if (err) { 218 res = FC_MAKE_ERR(err); 219 goto out; 220 } 221 } else { 222 /* 223 * This page is already mapped by another thread after we 224 * returned from as_fault() above. We just fallthrough 225 * as_fault() below. 226 */ 227 as_rangeunlock(as); 228 } 229 230 res = as_fault(as->a_hat, as, addr, 1, F_INVAL, rw); 231 232 out: 233 234 return (res); 235 } 236 237 /* 238 * This is the routine which defines the address limit implied 239 * by the flag '_MAP_LOW32'. USERLIMIT32 matches the highest 240 * mappable address in a 32-bit process on this platform (though 241 * perhaps we should make it be UINT32_MAX here?) 242 */ 243 void 244 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 245 { 246 struct proc *p = curproc; 247 caddr_t userlimit = flags & _MAP_LOW32 ? 248 (caddr_t)USERLIMIT32 : p->p_as->a_userlimit; 249 map_addr_proc(addrp, len, off, vacalign, userlimit, p, flags); 250 } 251 252 /* 253 * Some V9 CPUs have holes in the middle of the 64-bit virtual address range. 254 */ 255 caddr_t hole_start, hole_end; 256 257 /* 258 * kpm mapping window 259 */ 260 caddr_t kpm_vbase; 261 size_t kpm_size; 262 uchar_t kpm_size_shift; 263 264 /* 265 * Determine whether [base, base+len] contains a mapable range of 266 * addresses at least minlen long. base and len are adjusted if 267 * required to provide a mapable range. 268 */ 269 /* ARGSUSED */ 270 int 271 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 272 { 273 caddr_t hi, lo; 274 275 lo = *basep; 276 hi = lo + *lenp; 277 278 /* 279 * If hi rolled over the top, try cutting back. 280 */ 281 if (hi < lo) { 282 size_t newlen = 0 - (uintptr_t)lo - 1l; 283 284 if (newlen + (uintptr_t)hi < minlen) 285 return (0); 286 if (newlen < minlen) 287 return (0); 288 *lenp = newlen; 289 } else if (hi - lo < minlen) 290 return (0); 291 292 /* 293 * Deal with a possible hole in the address range between 294 * hole_start and hole_end that should never be mapped by the MMU. 295 */ 296 hi = lo + *lenp; 297 298 if (lo < hole_start) { 299 if (hi > hole_start) 300 if (hi < hole_end) 301 hi = hole_start; 302 else 303 /* lo < hole_start && hi >= hole_end */ 304 if (dir == AH_LO) { 305 /* 306 * prefer lowest range 307 */ 308 if (hole_start - lo >= minlen) 309 hi = hole_start; 310 else if (hi - hole_end >= minlen) 311 lo = hole_end; 312 else 313 return (0); 314 } else { 315 /* 316 * prefer highest range 317 */ 318 if (hi - hole_end >= minlen) 319 lo = hole_end; 320 else if (hole_start - lo >= minlen) 321 hi = hole_start; 322 else 323 return (0); 324 } 325 } else { 326 /* lo >= hole_start */ 327 if (hi < hole_end) 328 return (0); 329 if (lo < hole_end) 330 lo = hole_end; 331 } 332 333 if (hi - lo < minlen) 334 return (0); 335 336 *basep = lo; 337 *lenp = hi - lo; 338 339 return (1); 340 } 341 342 /* 343 * Determine whether [addr, addr+len] with protections `prot' are valid 344 * for a user address space. 345 */ 346 /*ARGSUSED*/ 347 int 348 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 349 caddr_t userlimit) 350 { 351 caddr_t eaddr = addr + len; 352 353 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 354 return (RANGE_BADADDR); 355 356 /* 357 * Determine if the address range falls within an illegal 358 * range of the MMU. 359 */ 360 if (eaddr > hole_start && addr < hole_end) 361 return (RANGE_BADADDR); 362 363 #if defined(SF_ERRATA_57) 364 /* 365 * Make sure USERLIMIT isn't raised too high 366 */ 367 ASSERT64(addr <= (caddr_t)0xffffffff80000000ul || 368 errata57_limit == 0); 369 370 if (AS_TYPE_64BIT(as) && 371 (addr < errata57_limit) && 372 (prot & PROT_EXEC)) 373 return (RANGE_BADPROT); 374 #endif /* SF_ERRATA57 */ 375 return (RANGE_OKAY); 376 } 377 378 /* 379 * Routine used to check to see if an a.out can be executed 380 * by the current machine/architecture. 381 */ 382 int 383 chkaout(struct exdata *exp) 384 { 385 if (exp->ux_mach == M_SPARC) 386 return (0); 387 else 388 return (ENOEXEC); 389 } 390 391 /* 392 * The following functions return information about an a.out 393 * which is used when a program is executed. 394 */ 395 396 /* 397 * Return the load memory address for the data segment. 398 */ 399 caddr_t 400 getdmem(struct exec *exp) 401 { 402 /* 403 * XXX - Sparc Reference Hack approaching 404 * Remember that we are loading 405 * 8k executables into a 4k machine 406 * DATA_ALIGN == 2 * PAGESIZE 407 */ 408 if (exp->a_text) 409 return ((caddr_t)(roundup(USRTEXT + exp->a_text, DATA_ALIGN))); 410 else 411 return ((caddr_t)USRTEXT); 412 } 413 414 /* 415 * Return the starting disk address for the data segment. 416 */ 417 ulong_t 418 getdfile(struct exec *exp) 419 { 420 if (exp->a_magic == ZMAGIC) 421 return (exp->a_text); 422 else 423 return (sizeof (struct exec) + exp->a_text); 424 } 425 426 /* 427 * Return the load memory address for the text segment. 428 */ 429 430 /*ARGSUSED*/ 431 caddr_t 432 gettmem(struct exec *exp) 433 { 434 return ((caddr_t)USRTEXT); 435 } 436 437 /* 438 * Return the file byte offset for the text segment. 439 */ 440 uint_t 441 gettfile(struct exec *exp) 442 { 443 if (exp->a_magic == ZMAGIC) 444 return (0); 445 else 446 return (sizeof (struct exec)); 447 } 448 449 void 450 getexinfo( 451 struct exdata *edp_in, 452 struct exdata *edp_out, 453 int *pagetext, 454 int *pagedata) 455 { 456 *edp_out = *edp_in; /* structure copy */ 457 458 if ((edp_in->ux_mag == ZMAGIC) && 459 ((edp_in->vp->v_flag & VNOMAP) == 0)) { 460 *pagetext = 1; 461 *pagedata = 1; 462 } else { 463 *pagetext = 0; 464 *pagedata = 0; 465 } 466 } 467 468 /* 469 * Return non 0 value if the address may cause a VAC alias with KPM mappings. 470 * KPM selects an address such that it's equal offset modulo shm_alignment and 471 * assumes it can't be in VAC conflict with any larger than PAGESIZE mapping. 472 */ 473 int 474 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 475 { 476 if (vac) { 477 return (((uintptr_t)addr ^ off) & shm_alignment - 1); 478 } else { 479 return (0); 480 } 481 } 482 483 /* 484 * Sanity control. Don't use large pages regardless of user 485 * settings if there's less than priv or shm_lpg_min_physmem memory installed. 486 * The units for this variable is 8K pages. 487 */ 488 pgcnt_t shm_lpg_min_physmem = 131072; /* 1GB */ 489 pgcnt_t privm_lpg_min_physmem = 131072; /* 1GB */ 490 491 static size_t 492 map_pgszheap(struct proc *p, caddr_t addr, size_t len) 493 { 494 size_t pgsz = MMU_PAGESIZE; 495 int szc; 496 497 /* 498 * If len is zero, retrieve from proc and don't demote the page size. 499 * Use atleast the default pagesize. 500 */ 501 if (len == 0) { 502 len = p->p_brkbase + p->p_brksize - p->p_bssbase; 503 } 504 len = MAX(len, default_uheap_lpsize); 505 506 for (szc = mmu_page_sizes - 1; szc >= 0; szc--) { 507 pgsz = hw_page_array[szc].hp_size; 508 if ((disable_auto_data_large_pages & (1 << szc)) || 509 pgsz > max_uheap_lpsize) 510 continue; 511 if (len >= pgsz) { 512 break; 513 } 514 } 515 516 /* 517 * If addr == 0 we were called by memcntl() when the 518 * size code is 0. Don't set pgsz less than current size. 519 */ 520 if (addr == 0 && (pgsz < hw_page_array[p->p_brkpageszc].hp_size)) { 521 pgsz = hw_page_array[p->p_brkpageszc].hp_size; 522 } 523 524 return (pgsz); 525 } 526 527 static size_t 528 map_pgszstk(struct proc *p, caddr_t addr, size_t len) 529 { 530 size_t pgsz = MMU_PAGESIZE; 531 int szc; 532 533 /* 534 * If len is zero, retrieve from proc and don't demote the page size. 535 * Use atleast the default pagesize. 536 */ 537 if (len == 0) { 538 len = p->p_stksize; 539 } 540 len = MAX(len, default_ustack_lpsize); 541 542 for (szc = mmu_page_sizes - 1; szc >= 0; szc--) { 543 pgsz = hw_page_array[szc].hp_size; 544 if ((disable_auto_data_large_pages & (1 << szc)) || 545 pgsz > max_ustack_lpsize) 546 continue; 547 if (len >= pgsz) { 548 break; 549 } 550 } 551 552 /* 553 * If addr == 0 we were called by memcntl() or exec_args() when the 554 * size code is 0. Don't set pgsz less than current size. 555 */ 556 if (addr == 0 && (pgsz < hw_page_array[p->p_stkpageszc].hp_size)) { 557 pgsz = hw_page_array[p->p_stkpageszc].hp_size; 558 } 559 560 return (pgsz); 561 } 562 563 static size_t 564 map_pgszism(caddr_t addr, size_t len) 565 { 566 uint_t szc; 567 size_t pgsz; 568 569 for (szc = mmu_page_sizes - 1; szc >= TTE4M; szc--) { 570 if (disable_ism_large_pages & (1 << szc)) 571 continue; 572 573 pgsz = hw_page_array[szc].hp_size; 574 if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz)) 575 return (pgsz); 576 } 577 578 return (DEFAULT_ISM_PAGESIZE); 579 } 580 581 /* 582 * Suggest a page size to be used to map a segment of type maptype and length 583 * len. Returns a page size (not a size code). 584 */ 585 /* ARGSUSED */ 586 size_t 587 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 588 { 589 size_t pgsz = MMU_PAGESIZE; 590 591 ASSERT(maptype != MAPPGSZ_VA); 592 593 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 594 return (MMU_PAGESIZE); 595 } 596 597 switch (maptype) { 598 case MAPPGSZ_ISM: 599 pgsz = map_pgszism(addr, len); 600 break; 601 602 case MAPPGSZ_STK: 603 if (max_ustack_lpsize > MMU_PAGESIZE) { 604 pgsz = map_pgszstk(p, addr, len); 605 } 606 break; 607 608 case MAPPGSZ_HEAP: 609 if (max_uheap_lpsize > MMU_PAGESIZE) { 610 pgsz = map_pgszheap(p, addr, len); 611 } 612 break; 613 } 614 return (pgsz); 615 } 616 617 618 /* assumes TTE8K...TTE4M == szc */ 619 620 static uint_t 621 map_szcvec(caddr_t addr, size_t size, uintptr_t off, int disable_lpgs, 622 size_t max_lpsize, size_t min_physmem) 623 { 624 caddr_t eaddr = addr + size; 625 uint_t szcvec = 0; 626 caddr_t raddr; 627 caddr_t readdr; 628 size_t pgsz; 629 int i; 630 631 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 632 return (0); 633 } 634 for (i = mmu_page_sizes - 1; i > 0; i--) { 635 if (disable_lpgs & (1 << i)) { 636 continue; 637 } 638 pgsz = page_get_pagesize(i); 639 if (pgsz > max_lpsize) { 640 continue; 641 } 642 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 643 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 644 if (raddr < addr || raddr >= readdr) { 645 continue; 646 } 647 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 648 continue; 649 } 650 szcvec |= (1 << i); 651 /* 652 * And or in the remaining enabled page sizes. 653 */ 654 szcvec |= P2PHASE(~disable_lpgs, (1 << i)); 655 szcvec &= ~1; /* no need to return 8K pagesize */ 656 break; 657 } 658 return (szcvec); 659 } 660 661 /* 662 * Return a bit vector of large page size codes that 663 * can be used to map [addr, addr + len) region. 664 */ 665 /* ARGSUSED */ 666 uint_t 667 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 668 int memcntl) 669 { 670 if (flags & MAP_TEXT) { 671 return (map_szcvec(addr, size, off, disable_auto_text_large_pages, 672 max_utext_lpsize, shm_lpg_min_physmem)); 673 674 } else if (flags & MAP_INITDATA) { 675 return (map_szcvec(addr, size, off, disable_auto_data_large_pages, 676 max_uidata_lpsize, privm_lpg_min_physmem)); 677 678 } else if (type == MAPPGSZC_SHM) { 679 return (map_szcvec(addr, size, off, disable_auto_data_large_pages, 680 max_shm_lpsize, shm_lpg_min_physmem)); 681 682 } else if (type == MAPPGSZC_HEAP) { 683 return (map_szcvec(addr, size, off, disable_auto_data_large_pages, 684 max_uheap_lpsize, privm_lpg_min_physmem)); 685 686 } else if (type == MAPPGSZC_STACK) { 687 return (map_szcvec(addr, size, off, disable_auto_data_large_pages, 688 max_ustack_lpsize, privm_lpg_min_physmem)); 689 690 } else { 691 return (map_szcvec(addr, size, off, disable_auto_data_large_pages, 692 max_privmap_lpsize, privm_lpg_min_physmem)); 693 } 694 } 695 696 /* 697 * Anchored in the table below are counters used to keep track 698 * of free contiguous physical memory. Each element of the table contains 699 * the array of counters, the size of array which is allocated during 700 * startup based on physmax and a shift value used to convert a pagenum 701 * into a counter array index or vice versa. The table has page size 702 * for rows and region size for columns: 703 * 704 * page_counters[page_size][region_size] 705 * 706 * page_size: TTE size code of pages on page_size freelist. 707 * 708 * region_size: TTE size code of a candidate larger page made up 709 * made up of contiguous free page_size pages. 710 * 711 * As you go across a page_size row increasing region_size each 712 * element keeps track of how many (region_size - 1) size groups 713 * made up of page_size free pages can be coalesced into a 714 * regsion_size page. Yuck! Lets try an example: 715 * 716 * page_counters[1][3] is the table element used for identifying 717 * candidate 4M pages from contiguous pages off the 64K free list. 718 * Each index in the page_counters[1][3].array spans 4M. Its the 719 * number of free 512K size (regsion_size - 1) groups of contiguous 720 * 64K free pages. So when page_counters[1][3].counters[n] == 8 721 * we know we have a candidate 4M page made up of 512K size groups 722 * of 64K free pages. 723 */ 724 725 /* 726 * Per page size free lists. 3rd (max_mem_nodes) and 4th (page coloring bins) 727 * dimensions are allocated dynamically. 728 */ 729 page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES]; 730 731 /* 732 * For now there is only a single size cache list. 733 * Allocated dynamically. 734 */ 735 page_t ***page_cachelists[MAX_MEM_TYPES]; 736 737 kmutex_t *fpc_mutex[NPC_MUTEX]; 738 kmutex_t *cpc_mutex[NPC_MUTEX]; 739 740 caddr_t 741 alloc_page_freelists(int mnode, caddr_t alloc_base, int alloc_align) 742 { 743 int mtype; 744 uint_t szc; 745 746 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, alloc_align); 747 748 /* 749 * We only support small pages in the cachelist. 750 */ 751 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) { 752 page_cachelists[mtype][mnode] = (page_t **)alloc_base; 753 alloc_base += (sizeof (page_t *) * page_get_pagecolors(0)); 754 /* 755 * Allocate freelists bins for all 756 * supported page sizes. 757 */ 758 for (szc = 0; szc < mmu_page_sizes; szc++) { 759 page_freelists[szc][mtype][mnode] = 760 (page_t **)alloc_base; 761 alloc_base += ((sizeof (page_t *) * 762 page_get_pagecolors(szc))); 763 } 764 } 765 766 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, alloc_align); 767 768 return (alloc_base); 769 } 770 771 /* 772 * Allocate page_freelists bin headers for a memnode from the 773 * nucleus data area. This is the first time that mmu_page_sizes is 774 * used during sun4u bootup, so check mmu_page_sizes initialization. 775 */ 776 int 777 ndata_alloc_page_freelists(struct memlist *ndata, int mnode) 778 { 779 size_t alloc_sz; 780 caddr_t alloc_base; 781 caddr_t end; 782 int mtype; 783 uint_t szc; 784 int32_t allp = 0; 785 786 if (&mmu_init_mmu_page_sizes) { 787 if (!mmu_init_mmu_page_sizes(allp)) { 788 cmn_err(CE_PANIC, "mmu_page_sizes %d not initialized", 789 mmu_page_sizes); 790 } 791 } 792 ASSERT(mmu_page_sizes >= DEFAULT_MMU_PAGE_SIZES); 793 794 /* first time called - allocate max_mem_nodes dimension */ 795 if (mnode == 0) { 796 int i; 797 798 /* page_cachelists */ 799 alloc_sz = MAX_MEM_TYPES * max_mem_nodes * 800 sizeof (page_t **); 801 802 /* page_freelists */ 803 alloc_sz += MAX_MEM_TYPES * mmu_page_sizes * max_mem_nodes * 804 sizeof (page_t **); 805 806 /* fpc_mutex and cpc_mutex */ 807 alloc_sz += 2 * NPC_MUTEX * max_mem_nodes * sizeof (kmutex_t); 808 809 alloc_base = ndata_alloc(ndata, alloc_sz, ecache_alignsize); 810 if (alloc_base == NULL) 811 return (-1); 812 813 ASSERT(((uintptr_t)alloc_base & (ecache_alignsize - 1)) == 0); 814 815 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) { 816 page_cachelists[mtype] = (page_t ***)alloc_base; 817 alloc_base += (max_mem_nodes * sizeof (page_t **)); 818 for (szc = 0; szc < mmu_page_sizes; szc++) { 819 page_freelists[szc][mtype] = 820 (page_t ***)alloc_base; 821 alloc_base += (max_mem_nodes * 822 sizeof (page_t **)); 823 } 824 } 825 for (i = 0; i < NPC_MUTEX; i++) { 826 fpc_mutex[i] = (kmutex_t *)alloc_base; 827 alloc_base += (sizeof (kmutex_t) * max_mem_nodes); 828 cpc_mutex[i] = (kmutex_t *)alloc_base; 829 alloc_base += (sizeof (kmutex_t) * max_mem_nodes); 830 } 831 alloc_sz = 0; 832 } 833 834 /* 835 * Calculate the size needed by alloc_page_freelists(). 836 */ 837 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) { 838 alloc_sz += sizeof (page_t *) * page_get_pagecolors(0); 839 840 for (szc = 0; szc < mmu_page_sizes; szc++) 841 alloc_sz += sizeof (page_t *) * 842 page_get_pagecolors(szc); 843 } 844 845 alloc_base = ndata_alloc(ndata, alloc_sz, ecache_alignsize); 846 if (alloc_base == NULL) 847 return (-1); 848 849 end = alloc_page_freelists(mnode, alloc_base, ecache_alignsize); 850 ASSERT((uintptr_t)end == roundup((uintptr_t)alloc_base + alloc_sz, 851 ecache_alignsize)); 852 853 return (0); 854 } 855 856 /* 857 * To select our starting bin, we stride through the bins with a stride 858 * of 337. Why 337? It's prime, it's largeish, and it performs well both 859 * in simulation and practice for different workloads on varying cache sizes. 860 */ 861 uint32_t color_start_current = 0; 862 uint32_t color_start_stride = 337; 863 int color_start_random = 0; 864 865 /* ARGSUSED */ 866 uint_t 867 get_color_start(struct as *as) 868 { 869 uint32_t old, new; 870 871 if (consistent_coloring == 2 || color_start_random) { 872 return ((uint_t)(((gettick()) << (vac_shift - MMU_PAGESHIFT)) & 873 (hw_page_array[0].hp_colors - 1))); 874 } 875 876 do { 877 old = color_start_current; 878 new = old + (color_start_stride << (vac_shift - MMU_PAGESHIFT)); 879 } while (cas32(&color_start_current, old, new) != old); 880 881 return ((uint_t)(new)); 882 } 883 884 /* 885 * Called once at startup from kphysm_init() -- before memialloc() 886 * is invoked to do the 1st page_free()/page_freelist_add(). 887 * 888 * initializes page_colors and page_colors_mask based on ecache_setsize. 889 * 890 * Also initializes the counter locks. 891 */ 892 void 893 page_coloring_init() 894 { 895 int a, i; 896 uint_t colors; 897 898 if (do_pg_coloring == 0) { 899 page_colors = 1; 900 for (i = 0; i < mmu_page_sizes; i++) 901 hw_page_array[i].hp_colors = 1; 902 return; 903 } 904 905 /* 906 * Calculate page_colors from ecache_setsize. ecache_setsize contains 907 * the max ecache setsize of all cpus configured in the system or, for 908 * cheetah+ systems, the max possible ecache setsize for all possible 909 * cheetah+ cpus. 910 */ 911 page_colors = ecache_setsize / MMU_PAGESIZE; 912 page_colors_mask = page_colors - 1; 913 914 vac_colors = vac_size / MMU_PAGESIZE; 915 vac_colors_mask = vac_colors -1; 916 917 page_coloring_shift = 0; 918 a = ecache_setsize; 919 while (a >>= 1) { 920 page_coloring_shift++; 921 } 922 923 /* initialize number of colors per page size */ 924 for (i = 0; i < mmu_page_sizes; i++) { 925 hw_page_array[i].hp_colors = (page_colors_mask >> 926 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 927 + 1; 928 } 929 930 /* 931 * initialize cpu_page_colors if ecache setsizes are homogenous. 932 * cpu_page_colors set to -1 during DR operation or during startup 933 * if setsizes are heterogenous. 934 * 935 * The value of cpu_page_colors determines if additional color bins 936 * need to be checked for a particular color in the page_get routines. 937 */ 938 if ((cpu_page_colors == 0) && (cpu_setsize < ecache_setsize)) { 939 940 cpu_page_colors = cpu_setsize / MMU_PAGESIZE; 941 a = lowbit(page_colors) - lowbit(cpu_page_colors); 942 ASSERT(a > 0); 943 ASSERT(a < 16); 944 945 for (i = 0; i < mmu_page_sizes; i++) { 946 if ((colors = hw_page_array[i].hp_colors) <= 1) { 947 colorequivszc[i] = 0; 948 continue; 949 } 950 while ((colors >> a) == 0) 951 a--; 952 ASSERT(a >= 0); 953 954 /* higher 4 bits encodes color equiv mask */ 955 colorequivszc[i] = (a << 4); 956 } 957 } 958 959 /* factor in colorequiv to check additional 'equivalent' bins. */ 960 if (colorequiv > 1 && &page_coloring_init_cpu == NULL) { 961 962 a = lowbit(colorequiv) - 1; 963 964 if (a > 15) 965 a = 15; 966 967 for (i = 0; i < mmu_page_sizes; i++) { 968 if ((colors = hw_page_array[i].hp_colors) <= 1) { 969 continue; 970 } 971 while ((colors >> a) == 0) 972 a--; 973 if ((a << 4) > colorequivszc[i]) { 974 colorequivszc[i] = (a << 4); 975 } 976 } 977 } 978 979 /* do cpu specific color initialization */ 980 if (&page_coloring_init_cpu) { 981 page_coloring_init_cpu(); 982 } 983 } 984 985 int 986 bp_color(struct buf *bp) 987 { 988 int color = -1; 989 990 if (vac) { 991 if ((bp->b_flags & B_PAGEIO) != 0) { 992 color = sfmmu_get_ppvcolor(bp->b_pages); 993 } else if (bp->b_un.b_addr != NULL) { 994 color = sfmmu_get_addrvcolor(bp->b_un.b_addr); 995 } 996 } 997 return (color < 0 ? 0 : ptob(color)); 998 } 999 1000 /* 1001 * Create & Initialise pageout scanner thread. The thread has to 1002 * start at procedure with process pp and priority pri. 1003 */ 1004 void 1005 pageout_init(void (*procedure)(), proc_t *pp, pri_t pri) 1006 { 1007 (void) thread_create(NULL, 0, procedure, NULL, 0, pp, TS_RUN, pri); 1008 } 1009 1010 /* 1011 * Function for flushing D-cache when performing module relocations 1012 * to an alternate mapping. Stubbed out on all platforms except sun4u, 1013 * at least for now. 1014 */ 1015 void 1016 dcache_flushall() 1017 { 1018 sfmmu_cache_flushall(); 1019 } 1020 1021 static int 1022 kdi_range_overlap(uintptr_t va1, size_t sz1, uintptr_t va2, size_t sz2) 1023 { 1024 if (va1 < va2 && va1 + sz1 <= va2) 1025 return (0); 1026 1027 if (va2 < va1 && va2 + sz2 <= va1) 1028 return (0); 1029 1030 return (1); 1031 } 1032 1033 /* 1034 * Return the number of bytes, relative to the beginning of a given range, that 1035 * are non-toxic (can be read from and written to with relative impunity). 1036 */ 1037 size_t 1038 kdi_range_is_nontoxic(uintptr_t va, size_t sz, int write) 1039 { 1040 /* OBP reads are harmless, but we don't want people writing there */ 1041 if (write && kdi_range_overlap(va, sz, OFW_START_ADDR, OFW_END_ADDR - 1042 OFW_START_ADDR + 1)) 1043 return (va < OFW_START_ADDR ? OFW_START_ADDR - va : 0); 1044 1045 if (kdi_range_overlap(va, sz, PIOMAPBASE, PIOMAPSIZE)) 1046 return (va < PIOMAPBASE ? PIOMAPBASE - va : 0); 1047 1048 return (sz); /* no overlap */ 1049 } 1050 1051 /* 1052 * Minimum physmem required for enabling large pages for kernel heap 1053 * Currently we do not enable lp for kmem on systems with less 1054 * than 1GB of memory. This value can be changed via /etc/system 1055 */ 1056 size_t segkmem_lpminphysmem = 0x40000000; /* 1GB */ 1057 1058 /* 1059 * this function chooses large page size for kernel heap 1060 */ 1061 size_t 1062 get_segkmem_lpsize(size_t lpsize) 1063 { 1064 size_t memtotal = physmem * PAGESIZE; 1065 size_t mmusz; 1066 uint_t szc; 1067 1068 if (memtotal < segkmem_lpminphysmem) 1069 return (PAGESIZE); 1070 1071 if (plat_lpkmem_is_supported != NULL && 1072 plat_lpkmem_is_supported() == 0) 1073 return (PAGESIZE); 1074 1075 mmusz = mmu_get_kernel_lpsize(lpsize); 1076 szc = page_szc(mmusz); 1077 1078 while (szc) { 1079 if (!(disable_large_pages & (1 << szc))) 1080 return (page_get_pagesize(szc)); 1081 szc--; 1082 } 1083 return (PAGESIZE); 1084 } 1085