1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_FCODE_H 28 #define _SYS_FCODE_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/sysmacros.h> 33 #include <sys/ddi.h> 34 #include <sys/sunddi.h> 35 #include <sys/fc_plat.h> 36 #include <sys/pci.h> 37 38 #ifdef __cplusplus 39 extern "C" { 40 #endif 41 42 /* 43 * The FCode driver presents a private interface to the fcode 44 * user level interpreter. This interface is subject to change 45 * at any time and is only provided for use by the fcode interpreter. 46 * 47 * The user program opens the device, causing a new instance of 48 * the driver to be cloned. This instance is specific to a specific 49 * instance of a new device managed by the kernel and driver framework. 50 * 51 * The interpreter does an FC_GET_PARAMETERS ioctl to get the fcode 52 * length, which can be mmap-ed (at offset 0) to provide access to a copy 53 * of the device's fcode. 54 * 55 * The interpreter uses the FC_RUN_PRIV ioctl to request privileged 56 * operations to be run by the driver. 57 * 58 * The interpreter sends an FC_VALIDATE ioctl to notify the 59 * driver that it's done interpreting FCode to signify a normal 60 * ending sequence when the interpreter later closes the device. 61 * This way the driver can easily distinguish between the user 62 * level interpreter failing and finishing normally, thus validating 63 * the interpreters actions and the state it downloads to the driver. 64 * The 'arg' value in the FC_VALIDATE ioctl is ignored, there 65 * are no arguments to this ioctl. 66 */ 67 68 #define FCIOC (0xfc<<8) 69 #define FC_GET_PARAMETERS (FCIOC | 1) 70 #define FC_RUN_PRIV (FCIOC | 2) 71 #define FC_VALIDATE (FCIOC | 3) 72 #define FC_GET_MY_ARGS (FCIOC | 4) 73 #define FC_GET_FCODE_DATA (FCIOC | 5) 74 #define FC_SET_FCODE_ERROR (FCIOC | 6) 75 76 #define FC_GET_MY_ARGS_BUFLEN 256 /* Max my-args length */ 77 78 /* 79 * FC_GET_PARAMETERS: Expected as the first ioctl after a successful 80 * open and blocking read (the read returns 0 when there's something 81 * to interpret). The ioctl arg is a pointer to an fc_parameters 82 * data structure which is filled in by the driver with the fcode 83 * len (if any) and unit address of the new device. 84 * Offset 0 .. fcode len may be used as the offset to an mmap call to 85 * provide access to a copy of the device fcode. The unit address is 86 * returned as a NULL terminated string. 87 */ 88 89 struct fc_parameters { 90 int32_t fcode_size; 91 char unit_address[OBP_MAXPATHLEN]; 92 int config_address; 93 }; 94 95 96 97 /* 98 * FC_RUN_PRIV: The ioctl 'arg' is a pointer to an array of fc_cell_t's 99 * in the following format: 100 * 101 * fc_cell_t[0]: Pointer to a NULL terminated string: service name 102 * fc_cell_t[1]: Number of input arguments (Call this value 'A') 103 * fc_cell_t[2]: Number of output result cells allocated (Call this val 'R') 104 * fc_cell_t[3]: Error Cell (See below) 105 * fc_cell_t[4]: Priv Violation Cell (non-zero if priv. violation) 106 * fc_cell_t[5]: Argument cell[0] (Possibly none) 107 * fc_cell_t[5 + 'A']: Result cell[0] (Possibly none) 108 * 109 * The array is variable sized, and must contain a minimum of 5 fc_cell_t's. 110 * The size (in fc_cell_t's) is 5 + 'A' + 'R'. 111 * 112 * The argument cells are filled in by the caller. The result cells 113 * (if any) and error cell are returned to the caller by the driver. 114 * The error cell and priv violation cell are filled in and returned 115 * to the caller by the driver. 116 * 117 * Error Cell Values: 118 * 119 * -1: The call itself failed (the service name was unknown). 120 * 121 * 0: No error (though the result cells may indicate results 122 * that signify an error consistent with the service request.) 123 * 124 * Priv Violation Cell Values: 125 * 126 * 0: No priv violation 127 * 128 * -1: Executing the request caused a priv. violation. 129 * For example, an rl@ from an address not mapped in 130 * by the interpreter. 131 */ 132 133 #define FC_ERR_NONE fc_int2cell(0) 134 #define FC_ERR_SVC_NAME fc_int2cell(-1) 135 136 #define FC_PRIV_OK fc_intcell(0) 137 #define FC_PRIV_ERROR fc_int2cell(-1) 138 139 /* 140 * Client interface template: 141 * The actual number of arguments is nargs. 142 * The actual number of results is nresults. 143 * The variable array 'v' contains 'nargs + nresults' elements 144 */ 145 struct fc_client_interface { 146 fc_cell_t svc_name; 147 fc_cell_t nargs; 148 fc_cell_t nresults; 149 fc_cell_t error; 150 fc_cell_t priv_error; 151 fc_cell_t v[1]; /* variable array of args and results */ 152 }; 153 154 typedef struct fc_client_interface fc_ci_t; 155 156 #define fc_arg(cp, i) (cp->v[(i)]) 157 #define fc_result(cp, i) (cp->v[fc_cell2int(cp->nargs) + (i)]) 158 159 #define FCC_FIXED_CELLS 5 160 161 /* 162 * FC_GET_FCODE_DATA: This ioctl allows userland portion of the fcode 163 * interpreter to get the fcode into a local buffer without having 164 * to use mmap() interface (which calls hat_getkpfnum() routine). 165 * This allows DR kernel cage memory to be relocated while this 166 * fcode buffer is allocated. 167 * 168 * The ioctl arg is a pointer to an fc_fcode_info structure which 169 * has the fcode_size field set with the expected fcode length. 170 * The driver uses this field to validate correct size before using 171 * copyout() to fill in the fcode_ptr buffer with fcode data. 172 */ 173 typedef struct fc_fcode_info { 174 int32_t fcode_size; 175 char *fcode_ptr; 176 } fc_fcode_info_t; 177 178 /* 179 * The service name len (max) is limited by the size of a method name 180 */ 181 #define FC_SVC_NAME_LEN OBP_MAXPROPNAME 182 183 /* 184 * "Internally" generated service names ... 185 */ 186 #define FC_SVC_VALIDATE "sunos,validate" 187 #define FC_SVC_INVALIDATE "sunos,invalidate" 188 #define FC_SVC_EXIT "sunos,exit" 189 190 #define FC_OPEN_METHOD "open" 191 #define FC_CLOSE_METHOD "close" 192 #define FC_FIND_FCODE "$find" 193 194 /* 195 * Property related group: 196 * 197 * sunos,get*proplen ( propname-cstr phandle -- proplen ) 198 * sunos,get*prop ( propname-cstr buf phandle -- proplen ) 199 * 200 * sunos,property ( propname-cstr buf len phandle -- ) 201 */ 202 203 #define FC_GET_MY_PROPLEN "sunos,get-my-proplen" 204 #define FC_GET_MY_PROP "sunos,get-my-prop" 205 206 #define FC_GET_IN_PROPLEN "sunos,get-inherited-proplen" 207 #define FC_GET_IN_PROP "sunos,get-inherited-prop" 208 209 #define FC_GET_PKG_PROPLEN "sunos,get-package-proplen" 210 #define FC_GET_PKG_PROP "sunos,get-package-prop" 211 212 #define FC_CREATE_PROPERTY "sunos,property" 213 214 /* 215 * Register access and dma ... same as 1275 216 * 217 * dma-map-in maps in a suitable aligned user address. 218 */ 219 #define FC_RL_FETCH "rl@" 220 #define FC_RW_FETCH "rw@" 221 #define FC_RB_FETCH "rb@" 222 223 #define FC_RL_STORE "rl!" 224 #define FC_RW_STORE "rw!" 225 #define FC_RB_STORE "rb!" 226 227 #define FC_MAP_IN "map-in" 228 #define FC_MAP_OUT "map-out" 229 #define FC_DMA_MAP_IN "dma-map-in" 230 #define FC_DMA_MAP_OUT "dma-map-out" 231 232 /* 233 * PCI configuration space access methods ... same as pci binding 234 */ 235 #define FC_PCI_CFG_L_FETCH "config-l@" 236 #define FC_PCI_CFG_W_FETCH "config-w@" 237 #define FC_PCI_CFG_B_FETCH "config-b@" 238 239 #define FC_PCI_CFG_L_STORE "config-l!" 240 #define FC_PCI_CFG_W_STORE "config-w!" 241 #define FC_PCI_CFG_B_STORE "config-b!" 242 243 /* 244 * Device node creation ... 245 * 246 * Create a new device with the given name, unit-address, parent.phandle 247 * with a phandle that must have been previously allocated using 248 * sunos,alloc-phandle. finish-device marks the device creation and 249 * the creation of its properties as complete. (It's a signal to the 250 * the OS that the node is now reasonably complete.) 251 * 252 * sunos,new-device ( name-cstr unit-addr-cstr parent.phandle phandle -- ) 253 * finish-device ( phandle -- ) 254 */ 255 #define FC_NEW_DEVICE "sunos,new-device" 256 #define FC_FINISH_DEVICE "sunos,finish-device" 257 258 /* 259 * Navigation and configuration: 260 * 261 * sunos,probe-address ( -- phys.lo ... ) 262 * sunos,probe-space ( -- phys.hi ) 263 * 264 * sunos,ap-phandle ( -- ap.phandle ) 265 * Return attachment point phandle 266 * 267 * sunos,parent ( child.phandle -- parent.phandle ) 268 * 269 * child ( parent.phandle -- child.phandle ) 270 * peer ( phandle -- phandle.sibling ) 271 * 272 * sunos,alloc-phandle ( -- phandle ) 273 * Allocates a unique phandle, not associated with the device tree 274 * 275 * sunos,config-child ( -- child.phandle ) 276 * Return the phandle of the child being configured. 277 */ 278 279 #define FC_PROBE_ADDRESS "sunos,probe-address" 280 #define FC_PROBE_SPACE "sunos,probe-space" 281 #define FC_AP_PHANDLE "sunos,ap-phandle" 282 #define FC_PARENT "sunos,parent" 283 #define FC_CHILD_FCODE "child" 284 #define FC_PEER_FCODE "peer" 285 #define FC_ALLOC_PHANDLE "sunos,alloc-phandle" 286 #define FC_CONFIG_CHILD "sunos,config-child" 287 288 /* 289 * Fcode Drop In Routines: 290 * sunos,get_fcode_size ( cstr -- len ) 291 * Returns the size in bytes of the Fcode for a given drop in. 292 * sunos,get_fcode (cstr buf len -- status? ) 293 * Returns the Fcode image for a given drop in. 294 */ 295 #define FC_GET_FCODE_SIZE "sunos,get-fcode-size" 296 #define FC_GET_FCODE "sunos,get-fcode" 297 298 /* 299 * Values for fc_request 'error'. This has been moved from the _KERNEL 300 * area to allow the FC_SET_FCODE_ERROR ioctl to use these values to 301 * signal the kernel as to the disposition of the userland interpreter. 302 * NOTE: Positive values are used to indicate a kernel error, 303 * negative values are used to identify userland interpreter errors. 304 */ 305 #define FC_SUCCESS 0 /* FCode interpreted successfully */ 306 #define FC_TIMEOUT 1 /* Timer expired */ 307 #define FC_ERROR -1 /* Interpreter error */ 308 #define FC_EXEC_FAILED -2 /* Interpreter failed to exec */ 309 #define FC_NO_FCODE -3 /* Interpreter couldn't find fcode */ 310 #define FC_FCODE_ABORT -4 /* Interpreter called exit(1) */ 311 #define FC_ERROR_VALID(s) ((s) >= FC_FCODE_ABORT) && ((s) <= FC_TIMEOUT) 312 313 /* 314 * kernel internal data structures and interfaces 315 * for the fcode interpreter. 316 */ 317 #if defined(_KERNEL) 318 319 /* 320 * PCI bus-specific arguments. 321 * 322 * We can't get the physical config address of the child from the 323 * unit address, so we supply it here, along with the child's dip 324 * as the bus specific argument to pci_ops_alloc_handle. 325 */ 326 327 struct pci_ops_bus_args { 328 int32_t config_address; /* phys.hi config addr component */ 329 }; 330 331 /* 332 * Define data structures for resource lists and handle management 333 * 334 * 'untyped' resources are managed by the provider. 335 */ 336 struct fc_dma_resource { 337 void *virt; 338 size_t len; 339 ddi_dma_handle_t h; 340 uint32_t devaddr; 341 struct buf *bp; 342 }; 343 344 struct fc_map_resource { 345 void *virt; 346 size_t len; 347 ddi_acc_handle_t h; 348 void *regspec; 349 }; 350 351 struct fc_nodeid_resource { 352 int nodeid; /* An allocated nodeid */ 353 }; 354 355 struct fc_contigious_resource { 356 void *virt; 357 size_t len; 358 }; 359 struct fc_untyped_resource { 360 int utype; /* providers private type field */ 361 void (*free)(void *); /* function to free the resource */ 362 void *resource; /* Pointer to the resource */ 363 }; 364 365 typedef enum { 366 RT_DMA = 0, 367 RT_MAP, 368 RT_NODEID, 369 RT_CONTIGIOUS, 370 RT_UNTYPED 371 } fc_resource_type_t; 372 373 struct fc_resource { 374 struct fc_resource *next; 375 fc_resource_type_t type; 376 union { 377 struct fc_dma_resource d; 378 struct fc_map_resource m; 379 struct fc_nodeid_resource n; 380 struct fc_contigious_resource c; 381 struct fc_untyped_resource r; 382 } un; 383 }; 384 385 #define fc_dma_virt un.d.virt 386 #define fc_dma_len un.d.len 387 #define fc_dma_handle un.d.h 388 #define fc_dma_devaddr un.d.devaddr 389 #define fc_dma_bp un.d.bp 390 391 #define fc_map_virt un.m.virt 392 #define fc_map_len un.m.len 393 #define fc_map_handle un.m.h 394 #define fc_regspec un.m.regspec 395 396 #define fc_nodeid_r un.n.nodeid 397 398 #define fc_contig_virt un.c.virt 399 #define fc_contig_len un.c.len 400 401 #define fc_untyped_type un.r.utype 402 #define fc_untyped_free un.r.free 403 #define fc_untyped_r un.r.resource 404 405 struct fc_phandle_entry { 406 struct fc_phandle_entry *next; 407 dev_info_t *dip; 408 fc_phandle_t h; 409 }; 410 411 extern void fc_phandle_table_alloc(struct fc_phandle_entry **); 412 extern void fc_phandle_table_free(struct fc_phandle_entry **); 413 extern dev_info_t *fc_phandle_to_dip(struct fc_phandle_entry **, fc_phandle_t); 414 extern fc_phandle_t fc_dip_to_phandle(struct fc_phandle_entry **, dev_info_t *); 415 extern void fc_add_dip_to_phandle(struct fc_phandle_entry **, dev_info_t *, 416 fc_phandle_t); 417 418 /* 419 * Structures and functions for managing our own subtree rooted 420 * at the attachment point. The parent linkage is established 421 * at node creation time. The 'downwards' linkage isn't established 422 * until the node is bound. 423 */ 424 struct fc_device_tree { 425 dev_info_t *dip; 426 struct fc_device_tree *child; 427 struct fc_device_tree *peer; 428 }; 429 430 void fc_add_child(dev_info_t *child, dev_info_t *parent, 431 struct fc_device_tree *head); 432 433 void fc_remove_child(dev_info_t *child, struct fc_device_tree *head); 434 435 dev_info_t *fc_child_node(dev_info_t *parent, struct fc_device_tree *head); 436 dev_info_t *fc_peer_node(dev_info_t *devi, struct fc_device_tree *head); 437 struct fc_device_tree *fc_find_node(dev_info_t *, struct fc_device_tree *); 438 439 void fc_create_device_tree(dev_info_t *ap, struct fc_device_tree **head); 440 void fc_remove_device_tree(struct fc_device_tree **head); 441 442 /* 443 * Our handles represent a list of resources associated with an 444 * attachment point. The handles chain, just as the ops functions 445 * do, with the ops caller responsible for remembering the handle 446 * of the ops function below it. NB: Externally, this data structure 447 * is opaque. (Not all members may be present in each chained cookie.) 448 * For example, the dtree head is valid in only a single instance 449 * of a set of chained cookies, so use the access function to find it.) 450 */ 451 struct fc_resource_list { 452 struct fc_resource *head; 453 void *next_handle; /* next handle in chain */ 454 dev_info_t *ap; /* Attachment point dip */ 455 dev_info_t *child; /* Child being configured, if any */ 456 dev_info_t *cdip; /* Current node, if any */ 457 int cdip_state; /* node creation state - see below */ 458 void *fcode; /* fcode kernel address */ 459 size_t fcode_size; /* fcode size or zero */ 460 char *unit_address; /* childs unit address */ 461 char *my_args; /* initial setting for my-args */ 462 void *bus_args; /* bus dependent arguments */ 463 struct fc_phandle_entry *ptable; /* devinfo/phandle table */ 464 struct fc_device_tree *dtree; /* Our subtree (leaf cookie only) */ 465 }; 466 467 typedef struct fc_resource_list *fco_handle_t; 468 469 /* 470 * Values for cdip_state: 471 */ 472 #define FC_CDIP_NOSTATE 0x00 /* No state - no nodes created */ 473 #define FC_CDIP_STARTED 0x01 /* Node started - dip in cdip */ 474 #define FC_CDIP_DONE 0x02 /* Node finished - last dip in cdip */ 475 #define FC_CDIP_CONFIG 0x10 /* subtree configured */ 476 477 /* 478 * Functions to allocate handles for the fcode_interpreter. 479 * 480 * This function allocates a handle, used to store resources 481 * associated with this fcode request including the address of 482 * the mapped in and copied in fcode and it's size or NULL, 0 483 * if there is no fcode (the interpreter may look for a drop-in 484 * driver if there is no fcode), the unit address of child and 485 * bus specific arguments. For PCI, the bus specific arguments 486 * include the child's prototype dip and the config address of 487 * the child, which can't be derived from the unit address. 488 * 489 * The 'handle' returned also contains resource information 490 * about any allocations of kernel resources that the fcode 491 * may have created. Thus, the handle's life is the life 492 * of the plug-in card and can't be released until the card 493 * is removed. Upon release, the resources are released. 494 */ 495 extern fco_handle_t 496 fc_ops_alloc_handle(dev_info_t *ap, dev_info_t *config_child, 497 void *fcode, size_t fcode_size, char *unit_address, void *bus_args); 498 499 extern fco_handle_t 500 pci_fc_ops_alloc_handle(dev_info_t *ap, dev_info_t *config_child, 501 void *fcode, size_t fcode_size, char *unit_address, 502 struct pci_ops_bus_args *bus_args); 503 504 extern fco_handle_t 505 gp2_fc_ops_alloc_handle(dev_info_t *ap, dev_info_t *config_child, 506 void *fcode, size_t fcode_size, char *unit_address, 507 char *my_args); 508 509 extern void pci_fc_ops_free_handle(fco_handle_t handle); 510 extern void gp2_fc_ops_free_handle(fco_handle_t handle); 511 extern void fc_ops_free_handle(fco_handle_t handle); 512 513 extern struct fc_phandle_entry **fc_handle_to_phandle_head(fco_handle_t rp); 514 515 struct fc_device_tree **fc_handle_to_dtree_head(fco_handle_t); 516 struct fc_device_tree *fc_handle_to_dtree(fco_handle_t); 517 518 /* 519 * fc_ops_t is the main glue back to the framework and attachment point driver 520 * for privileged driver operations. The framework/driver provides a pointer 521 * to the fc_ops function to handle the request given in the args. The dip 522 * and handle are passed back to the framework/driver to distinguish 523 * requests, if necessary. The argument array is an array of fc_cell_t's 524 * and is defined in fcode.h 525 * 526 * The ops function should return -1 to indicate that the service name is 527 * unknown and return the value 0 to indicate that the service name was known 528 * and processed (even if it failed). ops functions may chain, using the 529 * return code to communicate if the current function handled the service 530 * request. Using this technique, the driver can provide certain ops functions 531 * and allow a framework ops function to handle standardized ops functions, 532 * or work hand in hand with a framework function so both can handle an op. 533 * If an ops function is not handled, thus returning -1 to the driver, the 534 * driver will log an error noting the name of the service and return the 535 * error to the caller. 536 */ 537 typedef int (fc_ops_t)(dev_info_t *, fco_handle_t, fc_ci_t *); 538 539 extern fc_ops_t fc_ops; 540 extern fc_ops_t pci_fc_ops; 541 extern fc_ops_t gp2_fc_ops; 542 543 /* 544 * Internal structure used to enque an fcode request 545 * The 'next' and 'busy' fields are protected by a mutex. 546 * Thread synchronization is accomplished via use of the 'busy' field. 547 */ 548 struct fc_request { 549 struct fc_request *next; /* Next in chain (private) */ 550 int busy; /* Waiters flag (private; see below) */ 551 int error; /* Interpreter return code (private) */ 552 dev_info_t *ap_dip; /* Attachment point. ie: pci nexus */ 553 fc_ops_t *ap_ops; /* driver's fcode ops function */ 554 fco_handle_t handle; /* Caller's private identifier */ 555 timeout_id_t timeout; /* Timeout identifier */ 556 }; 557 558 /* 559 * Values for 'busy'. The requester initializes the field to FC_R_INIT (0), 560 * then waits for it be set to FC_R_DONE. The framework sets it to 561 * FC_R_BUSY while working on the request so it can distinguish between 562 * an inactive and an active request. 563 */ 564 #define FC_R_INIT 0 /* initialized, on queue */ 565 #define FC_R_BUSY 1 /* request is active, busy */ 566 #define FC_R_DONE 2 /* request is done and may be deq'd */ 567 568 /* 569 * Function to call to invoke the fcode interpreter. 570 * 571 * This function will wait and return when the interpreter either 572 * completes successfully or fails, returning pass/fail status as 573 * the return code. Interim calls to the driver's ops function will 574 * be made for both priv. ops and to create device nodes and properties. 575 * 576 * Calling this function will log a message to userland to request the 577 * eventd to start the userland fcode interpreter process. The interpreter 578 * opens /dev/fcode, which clones an instance of the driver, and then 579 * waits in a 'read' until there's an active request. 580 * XXX: For the prototype, we can start it manually or use an init.d script. 581 * 582 * 'ap' is the attachment point dip: that is, the driving parent's dev_info_t 583 * ie: for pci devices, this will be the dip of the pci nexus. 584 * 585 * The 'handle' is provided for the caller, and can be used to 586 * identify the request along with the attachment point dip, both 587 * of which will be passed back to the driver's ops function. 588 * The handle is allocated first by calling a bus-specific 589 * <bus>_ops_handle_alloc function. 590 * 591 * ops functions may chain; an ops function should return -1 if 592 * the call was not recognized, or 0 if the call was recognized. 593 */ 594 extern int fcode_interpreter(dev_info_t *, fc_ops_t *, fco_handle_t); 595 596 /* 597 * The fcode implementation uses this function to wait for and 'de-queue' 598 * an fcode request. It's triggered by a 'read' request from the 599 * userland interpreter. It uses a 'sig' form of waiting (cv_wait_sig), 600 * so the interpreter can interrupt the read. 601 */ 602 extern struct fc_request *fc_get_request(void); 603 604 /* 605 * When the fcode implementation is finished servicing a request, it calls this 606 * function to mark the request as done and to signal the originating thread 607 * (now waiting in fcode_interpreter) that the request is done. 608 */ 609 extern void fc_finish_request(struct fc_request *); 610 611 /* 612 * The fcode implementation uses these functions to manage 613 * resource items and resource lists ... 614 */ 615 extern void fc_add_resource(fco_handle_t, struct fc_resource *); 616 extern void fc_rem_resource(fco_handle_t, struct fc_resource *); 617 extern void fc_lock_resource_list(fco_handle_t); 618 extern void fc_unlock_resource_list(fco_handle_t); 619 620 /* 621 * ops common and helper functions 622 */ 623 extern int fc_fail_op(dev_info_t *, fco_handle_t, fc_ci_t *); 624 extern int fc_success_op(dev_info_t *, fco_handle_t, fc_ci_t *); 625 626 extern int fc_syntax_error(fc_ci_t *, char *); 627 extern int fc_priv_error(fc_ci_t *, char *); 628 629 /* 630 * Recharacterized ddi functions we need to define ... 631 * 632 * The only difference is we call through the attachment point driver, 633 * as a proxy for the child that isn't yet attached. The ddi functions 634 * optimize these functions by not necessarily calling through the 635 * attachment point driver. 636 */ 637 int fc_ddi_dma_htoc(dev_info_t *, ddi_dma_handle_t, off_t, ddi_dma_cookie_t *); 638 int fc_ddi_dma_free(dev_info_t *ap, ddi_dma_handle_t h); 639 int fc_ddi_dma_sync(ddi_dma_handle_t h, off_t o, size_t l, uint_t whom); 640 641 /* 642 * The ndi prop functions aren't appropriate for the interpreter. 643 * We create byte-array, untyped properties. 644 */ 645 646 int fc_ndi_prop_update(dev_t, dev_info_t *, char *, uchar_t *, uint_t); 647 648 /* 649 * The setup and teardown parts of physio() 650 */ 651 int fc_physio_setup(struct buf **bpp, void *io_base, size_t io_len); 652 void fc_physio_free(struct buf **bpp, void *io_base, size_t io_len); 653 654 /* 655 * debugging macros 656 */ 657 extern int fcode_debug; 658 #define dcmn_err(level, args) if (fcode_debug >= level) cmn_err args 659 660 #ifdef DEBUG 661 662 void fc_debug(char *, uintptr_t, uintptr_t, 663 uintptr_t, uintptr_t, uintptr_t); 664 665 #define FC_DEBUG0(level, flag, s) if (fcode_debug >= level) \ 666 fc_debug(s, 0, 0, 0, 0, 0) 667 #define FC_DEBUG1(level, flag, fmt, a1) if (fcode_debug >= level) \ 668 fc_debug(fmt, (uintptr_t)(a1), 0, 0, 0, 0); 669 #define FC_DEBUG2(level, flag, fmt, a1, a2) if (fcode_debug >= level) \ 670 fc_debug(fmt, (uintptr_t)(a1), (uintptr_t)(a2), 0, 0, 0); 671 #define FC_DEBUG3(level, flag, fmt, a1, a2, a3) \ 672 if (fcode_debug >= level) \ 673 fc_debug(fmt, (uintptr_t)(a1), (uintptr_t)(a2), (uintptr_t)(a3), 0, 0); 674 #else 675 #define FC_DEBUG0(level, flag, s) 676 #define FC_DEBUG1(level, flag, fmt, a1) 677 #define FC_DEBUG2(level, flag, fmt, a1, a2) 678 #define FC_DEBUG3(level, flag, fmt, a1, a2, a3) 679 #endif 680 681 682 #endif /* defined(_KERNEL) */ 683 684 #ifdef __cplusplus 685 } 686 #endif 687 688 #endif /* _SYS_FCODE_H */ 689