1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/machsystm.h> 30 #include <sys/archsystm.h> 31 #include <sys/vm.h> 32 #include <sys/cpu.h> 33 #include <sys/atomic.h> 34 #include <sys/reboot.h> 35 #include <sys/kdi.h> 36 #include <sys/bootconf.h> 37 #include <sys/memlist_plat.h> 38 #include <sys/memlist_impl.h> 39 #include <sys/prom_plat.h> 40 #include <sys/prom_isa.h> 41 #include <sys/autoconf.h> 42 #include <sys/intreg.h> 43 #include <sys/ivintr.h> 44 #include <sys/fpu/fpusystm.h> 45 #include <sys/iommutsb.h> 46 #include <vm/vm_dep.h> 47 #include <vm/seg_dev.h> 48 #include <vm/seg_kmem.h> 49 #include <vm/seg_kpm.h> 50 #include <vm/seg_map.h> 51 #include <vm/seg_kp.h> 52 #include <sys/sysconf.h> 53 #include <vm/hat_sfmmu.h> 54 #include <sys/kobj.h> 55 #include <sys/sun4asi.h> 56 #include <sys/clconf.h> 57 #include <sys/platform_module.h> 58 #include <sys/panic.h> 59 #include <sys/cpu_sgnblk_defs.h> 60 #include <sys/clock.h> 61 #include <sys/cmn_err.h> 62 #include <sys/promif.h> 63 #include <sys/prom_debug.h> 64 #include <sys/traptrace.h> 65 #include <sys/memnode.h> 66 #include <sys/mem_cage.h> 67 #include <sys/mmu.h> 68 69 extern void setup_trap_table(void); 70 extern int cpu_intrq_setup(struct cpu *); 71 extern void cpu_intrq_register(struct cpu *); 72 extern void contig_mem_init(void); 73 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t); 74 extern void mach_dump_buffer_init(void); 75 extern void mach_descrip_init(void); 76 extern void mach_descrip_startup_fini(void); 77 extern void mach_memscrub(void); 78 extern void mach_fpras(void); 79 extern void mach_cpu_halt_idle(void); 80 extern void mach_hw_copy_limit(void); 81 extern void load_mach_drivers(void); 82 extern void load_tod_module(void); 83 #pragma weak load_tod_module 84 85 extern int ndata_alloc_mmfsa(struct memlist *ndata); 86 #pragma weak ndata_alloc_mmfsa 87 88 extern void cif_init(void); 89 #pragma weak cif_init 90 91 extern void parse_idprom(void); 92 extern void add_vx_handler(char *, int, void (*)(cell_t *)); 93 extern void mem_config_init(void); 94 extern void memseg_remap_init(void); 95 96 extern void mach_kpm_init(void); 97 extern int size_pse_array(pgcnt_t, int); 98 99 /* 100 * External Data: 101 */ 102 extern int vac_size; /* cache size in bytes */ 103 extern uint_t vac_mask; /* VAC alignment consistency mask */ 104 extern uint_t vac_colors; 105 106 /* 107 * Global Data Definitions: 108 */ 109 110 /* 111 * XXX - Don't port this to new architectures 112 * A 3rd party volume manager driver (vxdm) depends on the symbol romp. 113 * 'romp' has no use with a prom with an IEEE 1275 client interface. 114 * The driver doesn't use the value, but it depends on the symbol. 115 */ 116 void *romp; /* veritas driver won't load without romp 4154976 */ 117 /* 118 * Declare these as initialized data so we can patch them. 119 */ 120 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 121 pgcnt_t segkpsize = 122 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 123 uint_t segmap_percent = 12; /* Size of segmap segment */ 124 125 int use_cache = 1; /* cache not reliable (605 bugs) with MP */ 126 int vac_copyback = 1; 127 char *cache_mode = NULL; 128 int use_mix = 1; 129 int prom_debug = 0; 130 131 struct bootops *bootops = 0; /* passed in from boot in %o2 */ 132 caddr_t boot_tba; /* %tba at boot - used by kmdb */ 133 uint_t tba_taken_over = 0; 134 135 caddr_t s_text; /* start of kernel text segment */ 136 caddr_t e_text; /* end of kernel text segment */ 137 caddr_t s_data; /* start of kernel data segment */ 138 caddr_t e_data; /* end of kernel data segment */ 139 140 caddr_t modtext; /* beginning of module text */ 141 size_t modtext_sz; /* size of module text */ 142 caddr_t moddata; /* beginning of module data reserve */ 143 caddr_t e_moddata; /* end of module data reserve */ 144 145 /* 146 * End of first block of contiguous kernel in 32-bit virtual address space 147 */ 148 caddr_t econtig32; /* end of first blk of contiguous kernel */ 149 150 caddr_t ncbase; /* beginning of non-cached segment */ 151 caddr_t ncend; /* end of non-cached segment */ 152 caddr_t sdata; /* beginning of data segment */ 153 154 caddr_t extra_etva; /* beginning of unused nucleus text */ 155 pgcnt_t extra_etpg; /* number of pages of unused nucleus text */ 156 157 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */ 158 caddr_t nalloc_base; /* beginning of nucleus allocation */ 159 caddr_t nalloc_end; /* end of nucleus allocatable memory */ 160 caddr_t valloc_base; /* beginning of kvalloc segment */ 161 162 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */ 163 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */ 164 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */ 165 int kmem64_alignsize; /* page size for mem segment in 64-bit space */ 166 int kmem64_szc; /* page size code */ 167 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */ 168 169 uintptr_t shm_alignment; /* VAC address consistency modulus */ 170 struct memlist *phys_install; /* Total installed physical memory */ 171 struct memlist *phys_avail; /* Available (unreserved) physical memory */ 172 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */ 173 struct memlist ndata; /* memlist of nucleus allocatable memory */ 174 int memexp_flag; /* memory expansion card flag */ 175 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */ 176 pgcnt_t obp_pages; /* Physical pages used by OBP */ 177 178 /* 179 * VM data structures 180 */ 181 long page_hashsz; /* Size of page hash table (power of two) */ 182 struct page *pp_base; /* Base of system page struct array */ 183 size_t pp_sz; /* Size in bytes of page struct array */ 184 struct page **page_hash; /* Page hash table */ 185 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 186 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 187 int pse_shift; /* log2(pse_table_size) */ 188 struct seg ktextseg; /* Segment used for kernel executable image */ 189 struct seg kvalloc; /* Segment used for "valloc" mapping */ 190 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 191 struct seg ktexthole; /* Segment used for nucleus text hole */ 192 struct seg kmapseg; /* Segment used for generic kernel mappings */ 193 struct seg kpmseg; /* Segment used for physical mapping */ 194 struct seg kdebugseg; /* Segment used for the kernel debugger */ 195 196 uintptr_t kpm_pp_base; /* Base of system kpm_page array */ 197 size_t kpm_pp_sz; /* Size of system kpm_page array */ 198 pgcnt_t kpm_npages; /* How many kpm pages are managed */ 199 200 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 201 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 202 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 203 204 int segzio_fromheap = 0; /* zio allocations occur from heap */ 205 caddr_t segzio_base; /* Base address of segzio */ 206 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 207 208 /* 209 * debugger pages (if allocated) 210 */ 211 struct vnode kdebugvp; 212 213 /* 214 * VA range available to the debugger 215 */ 216 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 217 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 218 219 /* 220 * Segment for relocated kernel structures in 64-bit large RAM kernels 221 */ 222 struct seg kmem64; 223 224 struct memseg *memseg_base; 225 size_t memseg_sz; /* Used to translate a va to page */ 226 struct vnode unused_pages_vp; 227 228 /* 229 * VM data structures allocated early during boot. 230 */ 231 size_t pagehash_sz; 232 uint64_t memlist_sz; 233 234 char tbr_wr_addr_inited = 0; 235 236 237 /* 238 * Static Routines: 239 */ 240 static void memlist_add(uint64_t, uint64_t, struct memlist **, 241 struct memlist **); 242 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t, 243 pgcnt_t); 244 static void kvm_init(void); 245 246 static void startup_init(void); 247 static void startup_memlist(void); 248 static void startup_modules(void); 249 static void startup_bop_gone(void); 250 static void startup_vm(void); 251 static void startup_end(void); 252 static void setup_cage_params(void); 253 static void startup_create_io_node(void); 254 255 static pgcnt_t npages; 256 static struct memlist *memlist; 257 void *memlist_end; 258 259 static pgcnt_t bop_alloc_pages; 260 static caddr_t hblk_base; 261 uint_t hblk_alloc_dynamic = 0; 262 uint_t hblk1_min = H1MIN; 263 264 265 /* 266 * Hooks for unsupported platforms and down-rev firmware 267 */ 268 int iam_positron(void); 269 #pragma weak iam_positron 270 static void do_prom_version_check(void); 271 static void kpm_init(void); 272 static void kpm_npages_setup(int); 273 static void kpm_memseg_init(void); 274 275 /* 276 * After receiving a thermal interrupt, this is the number of seconds 277 * to delay before shutting off the system, assuming 278 * shutdown fails. Use /etc/system to change the delay if this isn't 279 * large enough. 280 */ 281 int thermal_powerdown_delay = 1200; 282 283 /* 284 * Used to hold off page relocations into the cage until OBP has completed 285 * its boot-time handoff of its resources to the kernel. 286 */ 287 int page_relocate_ready = 0; 288 289 /* 290 * Enable some debugging messages concerning memory usage... 291 */ 292 #ifdef DEBUGGING_MEM 293 static int debugging_mem; 294 static void 295 printmemlist(char *title, struct memlist *list) 296 { 297 if (!debugging_mem) 298 return; 299 300 printf("%s\n", title); 301 302 while (list) { 303 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n", 304 (uint32_t)(list->address >> 32), (uint32_t)list->address, 305 (uint32_t)(list->size >> 32), (uint32_t)(list->size)); 306 list = list->next; 307 } 308 } 309 310 void 311 printmemseg(struct memseg *memseg) 312 { 313 if (!debugging_mem) 314 return; 315 316 printf("memseg\n"); 317 318 while (memseg) { 319 prom_printf("\tpage = 0x%p, epage = 0x%p, " 320 "pfn = 0x%x, epfn = 0x%x\n", 321 memseg->pages, memseg->epages, 322 memseg->pages_base, memseg->pages_end); 323 memseg = memseg->next; 324 } 325 } 326 327 #define debug_pause(str) halt((str)) 328 #define MPRINTF(str) if (debugging_mem) prom_printf((str)) 329 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a)) 330 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b)) 331 #define MPRINTF3(str, a, b, c) \ 332 if (debugging_mem) prom_printf((str), (a), (b), (c)) 333 #else /* DEBUGGING_MEM */ 334 #define MPRINTF(str) 335 #define MPRINTF1(str, a) 336 #define MPRINTF2(str, a, b) 337 #define MPRINTF3(str, a, b, c) 338 #endif /* DEBUGGING_MEM */ 339 340 /* Simple message to indicate that the bootops pointer has been zeroed */ 341 #ifdef DEBUG 342 static int bootops_gone_on = 0; 343 #define BOOTOPS_GONE() \ 344 if (bootops_gone_on) \ 345 prom_printf("The bootops vec is zeroed now!\n"); 346 #else 347 #define BOOTOPS_GONE() 348 #endif /* DEBUG */ 349 350 /* 351 * Monitor pages may not be where this says they are. 352 * and the debugger may not be there either. 353 * 354 * Note that 'pages' here are *physical* pages, which are 8k on sun4u. 355 * 356 * Physical memory layout 357 * (not necessarily contiguous) 358 * (THIS IS SOMEWHAT WRONG) 359 * /-----------------------\ 360 * | monitor pages | 361 * availmem -|-----------------------| 362 * | | 363 * | page pool | 364 * | | 365 * |-----------------------| 366 * | configured tables | 367 * | buffers | 368 * firstaddr -|-----------------------| 369 * | hat data structures | 370 * |-----------------------| 371 * | kernel data, bss | 372 * |-----------------------| 373 * | interrupt stack | 374 * |-----------------------| 375 * | kernel text (RO) | 376 * |-----------------------| 377 * | trap table (4k) | 378 * |-----------------------| 379 * page 1 | panicbuf | 380 * |-----------------------| 381 * page 0 | reclaimed | 382 * |_______________________| 383 * 384 * 385 * 386 * Kernel's Virtual Memory Layout. 387 * /-----------------------\ 388 * 0xFFFFFFFF.FFFFFFFF -| |- 389 * | OBP's virtual page | 390 * | tables | 391 * 0xFFFFFFFC.00000000 -|-----------------------|- 392 * : : 393 * : : 394 * -|-----------------------|- 395 * | segzio | (base and size vary) 396 * 0xFFFFFE00.00000000 -|-----------------------|- 397 * | | Ultrasparc I/II support 398 * | segkpm segment | up to 2TB of physical 399 * | (64-bit kernel ONLY) | memory, VAC has 2 colors 400 * | | 401 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment 402 * : : 403 * : : 404 * 0xFFFFF810.00000000 -|-----------------------|- hole_end 405 * | | ^ 406 * | UltraSPARC I/II call | | 407 * | bug requires an extra | | 408 * | 4 GB of space between | | 409 * | hole and used RAM | | 410 * | | | 411 * 0xFFFFF800.00000000 -|-----------------------|- | 412 * | | | 413 * | Virtual Address Hole | UltraSPARC 414 * | on UltraSPARC I/II | I/II * ONLY * 415 * | | | 416 * 0x00000800.00000000 -|-----------------------|- | 417 * | | | 418 * | UltraSPARC I/II call | | 419 * | bug requires an extra | | 420 * | 4 GB of space between | | 421 * | hole and used RAM | | 422 * | | v 423 * 0x000007FF.00000000 -|-----------------------|- hole_start ----- 424 * : : ^ 425 * : : | 426 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ | 427 * | overmapped area | alignend_end | 428 * | (kmem64_alignsize | | 429 * | boundary) | | 430 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end | 431 * | | | 432 * | 64-bit kernel ONLY | | 433 * | | | 434 * | kmem64 segment | | 435 * | | | 436 * | (Relocated extra HME | Approximately 437 * | block allocations, | 1 TB of virtual 438 * | memnode freelists, | address space 439 * | HME hash buckets, | | 440 * | mml_table, kpmp_table,| | 441 * | page_t array and | | 442 * | hashblock pool to | | 443 * | avoid hard-coded | | 444 * | 32-bit vaddr | | 445 * | limitations) | | 446 * | | v 447 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base) 448 * | | 449 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB) 450 * | | 451 * 0x00000300.00000000 -|-----------------------|- SYSBASE 452 * : : 453 * : : 454 * -|-----------------------|- 455 * | | 456 * | segmap segment | SEGMAPSIZE (1/8th physmem, 457 * | | 256G MAX) 458 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE 459 * : : 460 * : : 461 * -|-----------------------|- 462 * | | 463 * | segkp | SEGKPSIZE (2GB) 464 * | | 465 * | | 466 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE 467 * | | 468 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE 469 * | | (SEGKPBASE - 0x400000) 470 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE 471 * | | (MEMSCRUBBASE - NCARGS) 472 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE 473 * | | (ARGSBASE - PPMAPSIZE) 474 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE 475 * | | 476 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE 477 * | | 478 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE 479 * : : 480 * : : 481 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR 482 * | | 483 * | OBP | 484 * | | 485 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR 486 * | kmdb | 487 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE 488 * : : 489 * : : 490 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32 491 * | | 492 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 = 493 * | | ~64MB) 494 * 0x00000000.78002000 -|-----------------------| 495 * | panicbuf | 496 * 0x00000000.78000000 -|-----------------------|- SYSBASE32 497 * : : 498 * : : 499 * | | 500 * |-----------------------|- econtig32 501 * | vm structures | 502 * 0x00000000.01C00000 |-----------------------|- nalloc_end 503 * | TSBs | 504 * |-----------------------|- end/nalloc_base 505 * | kernel data & bss | 506 * 0x00000000.01800000 -|-----------------------| 507 * : nucleus text hole : 508 * 0x00000000.01400000 -|-----------------------| 509 * : : 510 * |-----------------------| 511 * | module text | 512 * |-----------------------|- e_text/modtext 513 * | kernel text | 514 * |-----------------------| 515 * | trap table (48k) | 516 * 0x00000000.01000000 -|-----------------------|- KERNELBASE 517 * | reserved for trapstat |} TSTAT_TOTAL_SIZE 518 * |-----------------------| 519 * | | 520 * | invalid | 521 * | | 522 * 0x00000000.00000000 _|_______________________| 523 * 524 * 525 * 526 * 32-bit User Virtual Memory Layout. 527 * /-----------------------\ 528 * | | 529 * | invalid | 530 * | | 531 * 0xFFC00000 -|-----------------------|- USERLIMIT 532 * | user stack | 533 * : : 534 * : : 535 * : : 536 * | user data | 537 * -|-----------------------|- 538 * | user text | 539 * 0x00002000 -|-----------------------|- 540 * | invalid | 541 * 0x00000000 _|_______________________| 542 * 543 * 544 * 545 * 64-bit User Virtual Memory Layout. 546 * /-----------------------\ 547 * | | 548 * | invalid | 549 * | | 550 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT 551 * | user stack | 552 * : : 553 * : : 554 * : : 555 * | user data | 556 * -|-----------------------|- 557 * | user text | 558 * 0x00000000.00100000 -|-----------------------|- 559 * | invalid | 560 * 0x00000000.00000000 _|_______________________| 561 */ 562 563 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base); 564 extern uint64_t ecache_flush_address(void); 565 566 #pragma weak load_platform_modules 567 #pragma weak plat_startup_memlist 568 #pragma weak ecache_init_scrub_flush_area 569 #pragma weak ecache_flush_address 570 571 572 /* 573 * By default the DR Cage is enabled for maximum OS 574 * MPSS performance. Users needing to disable the cage mechanism 575 * can set this variable to zero via /etc/system. 576 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR) 577 * will result in loss of DR functionality. 578 * Platforms wishing to disable kernel Cage by default 579 * should do so in their set_platform_defaults() routine. 580 */ 581 int kernel_cage_enable = 1; 582 583 static void 584 setup_cage_params(void) 585 { 586 void (*func)(void); 587 588 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0); 589 if (func != NULL) { 590 (*func)(); 591 return; 592 } 593 594 if (kernel_cage_enable == 0) { 595 return; 596 } 597 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256); 598 599 if (kcage_on) { 600 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED"); 601 } else { 602 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED"); 603 } 604 605 } 606 607 /* 608 * Machine-dependent startup code 609 */ 610 void 611 startup(void) 612 { 613 startup_init(); 614 if (&startup_platform) 615 startup_platform(); 616 startup_memlist(); 617 startup_modules(); 618 setup_cage_params(); 619 startup_bop_gone(); 620 startup_vm(); 621 startup_end(); 622 } 623 624 struct regs sync_reg_buf; 625 uint64_t sync_tt; 626 627 void 628 sync_handler(void) 629 { 630 struct trap_info ti; 631 int i; 632 633 /* 634 * Prevent trying to talk to the other CPUs since they are 635 * sitting in the prom and won't reply. 636 */ 637 for (i = 0; i < NCPU; i++) { 638 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) { 639 cpu[i]->cpu_flags &= ~CPU_READY; 640 cpu[i]->cpu_flags |= CPU_QUIESCED; 641 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 642 } 643 } 644 645 /* 646 * We've managed to get here without going through the 647 * normal panic code path. Try and save some useful 648 * information. 649 */ 650 if (!panicstr && (curthread->t_panic_trap == NULL)) { 651 ti.trap_type = sync_tt; 652 ti.trap_regs = &sync_reg_buf; 653 ti.trap_addr = NULL; 654 ti.trap_mmu_fsr = 0x0; 655 656 curthread->t_panic_trap = &ti; 657 } 658 659 /* 660 * If we're re-entering the panic path, update the signature 661 * block so that the SC knows we're in the second part of panic. 662 */ 663 if (panicstr) 664 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 665 666 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */ 667 panic("sync initiated"); 668 } 669 670 671 static void 672 startup_init(void) 673 { 674 /* 675 * We want to save the registers while we're still in OBP 676 * so that we know they haven't been fiddled with since. 677 * (In principle, OBP can't change them just because it 678 * makes a callback, but we'd rather not depend on that 679 * behavior.) 680 */ 681 char sync_str[] = 682 "warning @ warning off : sync " 683 "%%tl-c %%tstate h# %p x! " 684 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! " 685 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! " 686 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! " 687 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! " 688 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! " 689 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! " 690 "%%y h# %p l! %%tl-c %%tt h# %p x! " 691 "sync ; warning !"; 692 693 /* 694 * 20 == num of %p substrings 695 * 16 == max num of chars %p will expand to. 696 */ 697 char bp[sizeof (sync_str) + 16 * 20]; 698 699 (void) check_boot_version(BOP_GETVERSION(bootops)); 700 701 /* 702 * Initialize ptl1 stack for the 1st CPU. 703 */ 704 ptl1_init_cpu(&cpu0); 705 706 /* 707 * Initialize the address map for cache consistent mappings 708 * to random pages; must be done after vac_size is set. 709 */ 710 ppmapinit(); 711 712 /* 713 * Initialize the PROM callback handler. 714 */ 715 init_vx_handler(); 716 717 /* 718 * have prom call sync_callback() to handle the sync and 719 * save some useful information which will be stored in the 720 * core file later. 721 */ 722 (void) sprintf((char *)bp, sync_str, 723 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1, 724 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3, 725 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5, 726 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7, 727 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1, 728 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3, 729 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5, 730 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7, 731 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc, 732 (void *)&sync_reg_buf.r_y, (void *)&sync_tt); 733 prom_interpret(bp, 0, 0, 0, 0, 0); 734 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler); 735 } 736 737 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail; 738 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len; 739 740 #define IVSIZE ((MAXIVNUM * sizeof (intr_vec_t *)) + \ 741 (MAX_RSVD_IV * sizeof (intr_vec_t)) + \ 742 (MAX_RSVD_IVX * sizeof (intr_vecx_t))) 743 744 #if !defined(C_OBP) 745 /* 746 * Install a temporary tte handler in OBP for kmem64 area. 747 * 748 * We map kmem64 area with large pages before the trap table is taken 749 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in 750 * the same area. Duplicate tlb entries with different page sizes 751 * cause unpredicatble behavior. To avoid this, we don't create 752 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to 753 * OBP). Instead, we manage translations with a temporary va>tte-data 754 * handler (kmem64-tte). This handler is replaced by unix-tte when 755 * the trap table is taken over. 756 * 757 * The temporary handler knows the physical address of the kmem64 758 * area. It uses the prom's pgmap@ Forth word for other addresses. 759 * 760 * We have to use BOP_ALLOC() method for C-OBP platforms because 761 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti 762 * sun4u platforms. On sun4u we flush tlb after trap table is taken 763 * over if we use large pages for kernel heap and kmem64. Since sun4u 764 * prom (unlike sun4v) calls va>tte-data first for client address 765 * translation prom's ttes for kmem64 can't get into TLB even if we 766 * later switch to prom's trap table again. C-OBP uses 4M pages for 767 * client mappings when possible so on all platforms we get the 768 * benefit from large mappings for kmem64 area immediately during 769 * boot. 770 * 771 * pseudo code: 772 * if (context != 0) { 773 * return false 774 * } else if (miss_va in range[kmem64_base, kmem64_end)) { 775 * tte = tte_template + 776 * (((miss_va & pagemask) - kmem64_base)); 777 * return tte, true 778 * } else { 779 * return pgmap@ result 780 * } 781 */ 782 char kmem64_obp_str[] = 783 "h# %lx constant kmem64_base " 784 "h# %lx constant kmem64_end " 785 "h# %lx constant kmem64_pagemask " 786 "h# %lx constant kmem64_template " 787 788 ": kmem64-tte ( addr cnum -- false | tte-data true ) " 789 " if ( addr ) " 790 " drop false exit then ( false ) " 791 " dup kmem64_base kmem64_end within if ( addr ) " 792 " kmem64_pagemask and ( addr' ) " 793 " kmem64_base - ( addr' ) " 794 " kmem64_template + ( tte ) " 795 " true ( tte true ) " 796 " else ( addr ) " 797 " pgmap@ ( tte ) " 798 " dup 0< if true else drop false then ( tte true | false ) " 799 " then ( tte true | false ) " 800 "; " 801 802 "' kmem64-tte is va>tte-data " 803 ; 804 805 void 806 install_kmem64_tte() 807 { 808 char b[sizeof (kmem64_obp_str) + (4 * 16)]; 809 tte_t tte; 810 811 PRM_DEBUG(kmem64_pabase); 812 PRM_DEBUG(kmem64_szc); 813 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT, 814 PROC_DATA | HAT_NOSYNC, kmem64_szc); 815 PRM_DEBUG(tte.ll); 816 (void) sprintf(b, kmem64_obp_str, 817 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll); 818 ASSERT(strlen(b) < sizeof (b)); 819 prom_interpret(b, 0, 0, 0, 0, 0); 820 } 821 #endif /* !C_OBP */ 822 823 /* 824 * As OBP takes up some RAM when the system boots, pages will already be "lost" 825 * to the system and reflected in npages by the time we see it. 826 * 827 * We only want to allocate kernel structures in the 64-bit virtual address 828 * space on systems with enough RAM to make the overhead of keeping track of 829 * an extra kernel memory segment worthwhile. 830 * 831 * Since OBP has already performed its memory allocations by this point, if we 832 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map 833 * memory in the 64-bit virtual address space; otherwise keep allocations 834 * contiguous with we've mapped so far in the 32-bit virtual address space. 835 */ 836 #define MINMOVE_RAM_MB ((size_t)1900) 837 #define MB_TO_BYTES(mb) ((mb) * 1048576ul) 838 839 pgcnt_t tune_npages = (pgcnt_t) 840 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE); 841 842 #pragma weak page_set_colorequiv_arr_cpu 843 extern void page_set_colorequiv_arr_cpu(void); 844 845 static void 846 startup_memlist(void) 847 { 848 size_t alloc_sz; 849 size_t ctrs_sz; 850 caddr_t alloc_base; 851 caddr_t ctrs_base, ctrs_end; 852 caddr_t memspace; 853 caddr_t va; 854 int memblocks = 0; 855 struct memlist *cur; 856 size_t syslimit = (size_t)SYSLIMIT; 857 size_t sysbase = (size_t)SYSBASE; 858 int alloc_alignsize = ecache_alignsize; 859 int i; 860 extern void page_coloring_init(void); 861 extern void page_set_colorequiv_arr(void); 862 863 /* 864 * Initialize enough of the system to allow kmem_alloc to work by 865 * calling boot to allocate its memory until the time that 866 * kvm_init is completed. The page structs are allocated after 867 * rounding up end to the nearest page boundary; the memsegs are 868 * initialized and the space they use comes from the kernel heap. 869 * With appropriate initialization, they can be reallocated later 870 * to a size appropriate for the machine's configuration. 871 * 872 * At this point, memory is allocated for things that will never 873 * need to be freed, this used to be "valloced". This allows a 874 * savings as the pages don't need page structures to describe 875 * them because them will not be managed by the vm system. 876 */ 877 878 /* 879 * We're loaded by boot with the following configuration (as 880 * specified in the sun4u/conf/Mapfile): 881 * 882 * text: 4 MB chunk aligned on a 4MB boundary 883 * data & bss: 4 MB chunk aligned on a 4MB boundary 884 * 885 * These two chunks will eventually be mapped by 2 locked 4MB 886 * ttes and will represent the nucleus of the kernel. This gives 887 * us some free space that is already allocated, some or all of 888 * which is made available to kernel module text. 889 * 890 * The free space in the data-bss chunk is used for nucleus 891 * allocatable data structures and we reserve it using the 892 * nalloc_base and nalloc_end variables. This space is currently 893 * being used for hat data structures required for tlb miss 894 * handling operations. We align nalloc_base to a l2 cache 895 * linesize because this is the line size the hardware uses to 896 * maintain cache coherency. 897 * 256K is carved out for module data. 898 */ 899 900 nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE); 901 moddata = nalloc_base; 902 e_moddata = nalloc_base + MODDATA; 903 nalloc_base = e_moddata; 904 905 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M); 906 valloc_base = nalloc_base; 907 908 /* 909 * Calculate the start of the data segment. 910 */ 911 sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M); 912 913 PRM_DEBUG(moddata); 914 PRM_DEBUG(nalloc_base); 915 PRM_DEBUG(nalloc_end); 916 PRM_DEBUG(sdata); 917 918 /* 919 * Remember any slop after e_text so we can give it to the modules. 920 */ 921 PRM_DEBUG(e_text); 922 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE); 923 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text) 924 prom_panic("nucleus text overflow"); 925 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) - 926 modtext; 927 PRM_DEBUG(modtext); 928 PRM_DEBUG(modtext_sz); 929 930 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 931 &boot_physavail, &boot_physavail_len, 932 &boot_virtavail, &boot_virtavail_len); 933 /* 934 * Remember what the physically available highest page is 935 * so that dumpsys works properly, and find out how much 936 * memory is installed. 937 */ 938 installed_top_size_memlist_array(boot_physinstalled, 939 boot_physinstalled_len, &physmax, &physinstalled); 940 PRM_DEBUG(physinstalled); 941 PRM_DEBUG(physmax); 942 943 /* Fill out memory nodes config structure */ 944 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len); 945 946 /* 947 * Get the list of physically available memory to size 948 * the number of page structures needed. 949 */ 950 size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks); 951 /* 952 * This first snap shot of npages can represent the pages used 953 * by OBP's text and data approximately. This is used in the 954 * the calculation of the kernel size 955 */ 956 obp_pages = physinstalled - npages; 957 958 959 /* 960 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the 961 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently 962 * 2MB) and any excess pages are put on physavail. The assumption is 963 * that small-memory systems will need more pages more than they'll 964 * need efficiently-mapped module texts. 965 */ 966 if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) && 967 modtext_sz > MODTEXT_SM_CAP) { 968 extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP); 969 modtext_sz = MODTEXT_SM_CAP; 970 extra_etva = modtext + modtext_sz; 971 } 972 973 PRM_DEBUG(extra_etpg); 974 PRM_DEBUG(modtext_sz); 975 PRM_DEBUG(extra_etva); 976 977 /* 978 * Account for any pages after e_text and e_data. 979 */ 980 npages += extra_etpg; 981 npages += mmu_btopr(nalloc_end - nalloc_base); 982 PRM_DEBUG(npages); 983 984 /* 985 * npages is the maximum of available physical memory possible. 986 * (ie. it will never be more than this) 987 */ 988 989 /* 990 * initialize the nucleus memory allocator. 991 */ 992 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end); 993 994 /* 995 * Allocate mmu fault status area from the nucleus data area. 996 */ 997 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0)) 998 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc"); 999 1000 /* 1001 * Allocate kernel TSBs from the nucleus data area. 1002 */ 1003 if (ndata_alloc_tsbs(&ndata, npages) != 0) 1004 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc"); 1005 1006 /* 1007 * Allocate dmv dispatch table from the nucleus data area. 1008 */ 1009 if (ndata_alloc_dmv(&ndata) != 0) 1010 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc"); 1011 1012 1013 page_coloring_init(); 1014 1015 /* 1016 * Allocate page_freelists bin headers for memnode 0 from the 1017 * nucleus data area. 1018 */ 1019 if (ndata_alloc_page_freelists(&ndata, 0) != 0) 1020 cmn_err(CE_PANIC, 1021 "no more nucleus memory after page free lists alloc"); 1022 1023 if (kpm_enable) { 1024 kpm_init(); 1025 /* 1026 * kpm page space -- Update kpm_npages and make the 1027 * same assumption about fragmenting as it is done 1028 * for memseg_sz. 1029 */ 1030 kpm_npages_setup(memblocks + 4); 1031 } 1032 1033 /* 1034 * Allocate hat related structs from the nucleus data area. 1035 */ 1036 if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0) 1037 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc"); 1038 1039 /* 1040 * We want to do the BOP_ALLOCs before the real allocation of page 1041 * structs in order to not have to allocate page structs for this 1042 * memory. We need to calculate a virtual address because we want 1043 * the page structs to come before other allocations in virtual address 1044 * space. This is so some (if not all) of page structs can actually 1045 * live in the nucleus. 1046 */ 1047 1048 /* 1049 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1050 * 1051 * There are comments all over the SFMMU code warning of dire 1052 * consequences if the TSBs are moved out of 32-bit space. This 1053 * is largely because the asm code uses "sethi %hi(addr)"-type 1054 * instructions which will not provide the expected result if the 1055 * address is a 64-bit one. 1056 * 1057 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1058 */ 1059 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE); 1060 alloc_base = sfmmu_ktsb_alloc(alloc_base); 1061 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1062 PRM_DEBUG(alloc_base); 1063 1064 /* 1065 * Allocate IOMMU TSB array. We do this here so that the physical 1066 * memory gets deducted from the PROM's physical memory list. 1067 */ 1068 alloc_base = iommu_tsb_init(alloc_base); 1069 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1070 ecache_alignsize); 1071 PRM_DEBUG(alloc_base); 1072 1073 /* 1074 * Platforms like Starcat and OPL need special structures assigned in 1075 * 32-bit virtual address space because their probing routines execute 1076 * FCode, and FCode can't handle 64-bit virtual addresses... 1077 */ 1078 if (&plat_startup_memlist) { 1079 alloc_base = plat_startup_memlist(alloc_base); 1080 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1081 ecache_alignsize); 1082 PRM_DEBUG(alloc_base); 1083 } 1084 1085 /* 1086 * Save off where the contiguous allocations to date have ended 1087 * in econtig32. 1088 */ 1089 econtig32 = alloc_base; 1090 PRM_DEBUG(econtig32); 1091 1092 if (econtig32 > (caddr_t)KERNEL_LIMIT32) 1093 cmn_err(CE_PANIC, "econtig32 too big"); 1094 1095 /* 1096 * To avoid memory allocation collisions in the 32-bit virtual address 1097 * space, make allocations from this point forward in 64-bit virtual 1098 * address space starting at syslimit and working up. 1099 * 1100 * All this is needed because on large memory systems, the default 1101 * Solaris allocations will collide with SYSBASE32, which is hard 1102 * coded to be at the virtual address 0x78000000. Therefore, on 64-bit 1103 * kernels, move the allocations to a location in the 64-bit virtual 1104 * address space space, allowing those structures to grow without 1105 * worry. 1106 * 1107 * On current CPUs we'll run out of physical memory address bits before 1108 * we need to worry about the allocations running into anything else in 1109 * VM or the virtual address holes on US-I and II, as there's currently 1110 * about 1 TB of addressable space before the US-I/II VA hole. 1111 */ 1112 kmem64_base = (caddr_t)syslimit; 1113 PRM_DEBUG(kmem64_base); 1114 1115 /* 1116 * Allocate addresses, but not physical memory. None of these locations 1117 * can be touched until physical memory is allocated below. 1118 */ 1119 alloc_base = kmem64_base; 1120 1121 /* 1122 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate 1123 * them here. 1124 */ 1125 if (khme_hash == NULL || uhme_hash == NULL) { 1126 /* 1127 * alloc_hme_buckets() will align alloc_base properly before 1128 * assigning the hash buckets, so we don't need to do it 1129 * before the call... 1130 */ 1131 alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize); 1132 1133 PRM_DEBUG(alloc_base); 1134 PRM_DEBUG(khme_hash); 1135 PRM_DEBUG(uhme_hash); 1136 } 1137 1138 /* 1139 * Allow for an early allocation of physically contiguous memory. 1140 */ 1141 alloc_base = contig_mem_prealloc(alloc_base, npages); 1142 1143 /* 1144 * Allocate the remaining page freelists. NUMA systems can 1145 * have lots of page freelists, one per node, which quickly 1146 * outgrow the amount of nucleus memory available. 1147 */ 1148 if (max_mem_nodes > 1) { 1149 int mnode; 1150 1151 for (mnode = 1; mnode < max_mem_nodes; mnode++) { 1152 alloc_base = alloc_page_freelists(mnode, alloc_base, 1153 ecache_alignsize); 1154 } 1155 PRM_DEBUG(alloc_base); 1156 } 1157 1158 if (!mml_table) { 1159 size_t mmltable_sz; 1160 1161 /* 1162 * We need to allocate the mml_table here because there 1163 * was not enough space within the nucleus. 1164 */ 1165 mmltable_sz = sizeof (kmutex_t) * mml_table_sz; 1166 alloc_sz = roundup(mmltable_sz, alloc_alignsize); 1167 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1168 alloc_alignsize); 1169 mml_table = (kmutex_t *)alloc_base; 1170 alloc_base += alloc_sz; 1171 PRM_DEBUG(mml_table); 1172 PRM_DEBUG(alloc_base); 1173 } 1174 1175 if (kpm_enable && !(kpmp_table || kpmp_stable)) { 1176 size_t kpmptable_sz; 1177 caddr_t table; 1178 1179 /* 1180 * We need to allocate either kpmp_table or kpmp_stable here 1181 * because there was not enough space within the nucleus. 1182 */ 1183 kpmptable_sz = (kpm_smallpages == 0) ? 1184 sizeof (kpm_hlk_t) * kpmp_table_sz : 1185 sizeof (kpm_shlk_t) * kpmp_stable_sz; 1186 1187 alloc_sz = roundup(kpmptable_sz, alloc_alignsize); 1188 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1189 alloc_alignsize); 1190 1191 table = alloc_base; 1192 1193 if (kpm_smallpages == 0) { 1194 kpmp_table = (kpm_hlk_t *)table; 1195 PRM_DEBUG(kpmp_table); 1196 } else { 1197 kpmp_stable = (kpm_shlk_t *)table; 1198 PRM_DEBUG(kpmp_stable); 1199 } 1200 1201 alloc_base += alloc_sz; 1202 PRM_DEBUG(alloc_base); 1203 } 1204 1205 if (&ecache_init_scrub_flush_area) { 1206 /* 1207 * Pass alloc_base directly, as the routine itself is 1208 * responsible for any special alignment requirements... 1209 */ 1210 alloc_base = ecache_init_scrub_flush_area(alloc_base); 1211 PRM_DEBUG(alloc_base); 1212 } 1213 1214 /* 1215 * Take the most current snapshot we can by calling mem-update. 1216 */ 1217 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1218 &boot_physavail, &boot_physavail_len, 1219 &boot_virtavail, &boot_virtavail_len); 1220 1221 /* 1222 * Reset npages and memblocks based on boot_physavail list. 1223 */ 1224 size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks); 1225 PRM_DEBUG(npages); 1226 1227 /* 1228 * Account for extra memory after e_text. 1229 */ 1230 npages += extra_etpg; 1231 1232 /* 1233 * Calculate the largest free memory chunk in the nucleus data area. 1234 * We need to figure out if page structs can fit in there or not. 1235 * We also make sure enough page structs get created for any physical 1236 * memory we might be returning to the system. 1237 */ 1238 ndata_remain_sz = ndata_maxsize(&ndata); 1239 PRM_DEBUG(ndata_remain_sz); 1240 1241 pp_sz = sizeof (struct page) * npages; 1242 1243 /* 1244 * Here's a nice bit of code based on somewhat recursive logic: 1245 * 1246 * If the page array would fit within the nucleus, we want to 1247 * add npages to cover any extra memory we may be returning back 1248 * to the system. 1249 * 1250 * HOWEVER, the page array is sized by calculating the size of 1251 * (struct page * npages), as are the pagehash table, ctrs and 1252 * memseg_list, so the very act of performing the calculation below may 1253 * in fact make the array large enough that it no longer fits in the 1254 * nucleus, meaning there would now be a much larger area of the 1255 * nucleus free that should really be added to npages, which would 1256 * make the page array that much larger, and so on. 1257 * 1258 * This also ignores the memory possibly used in the nucleus for the 1259 * the page hash, ctrs and memseg list and the fact that whether they 1260 * fit there or not varies with the npages calculation below, but we 1261 * don't even factor them into the equation at this point; perhaps we 1262 * should or perhaps we should just take the approach that the few 1263 * extra pages we could add via this calculation REALLY aren't worth 1264 * the hassle... 1265 */ 1266 if (ndata_remain_sz > pp_sz) { 1267 size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize); 1268 1269 npages += mmu_btop(spare); 1270 1271 pp_sz = npages * sizeof (struct page); 1272 1273 pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize); 1274 } 1275 1276 /* 1277 * If physmem is patched to be non-zero, use it instead of 1278 * the monitor value unless physmem is larger than the total 1279 * amount of memory on hand. 1280 */ 1281 if (physmem == 0 || physmem > npages) 1282 physmem = npages; 1283 1284 /* 1285 * If pp_base is NULL that means the routines above have determined 1286 * the page array will not fit in the nucleus; we'll have to 1287 * BOP_ALLOC() ourselves some space for them. 1288 */ 1289 if (pp_base == NULL) { 1290 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1291 alloc_alignsize); 1292 alloc_sz = roundup(pp_sz, alloc_alignsize); 1293 1294 pp_base = (struct page *)alloc_base; 1295 1296 alloc_base += alloc_sz; 1297 } 1298 1299 /* 1300 * The page structure hash table size is a power of 2 1301 * such that the average hash chain length is PAGE_HASHAVELEN. 1302 */ 1303 page_hashsz = npages / PAGE_HASHAVELEN; 1304 page_hashsz = 1 << highbit((ulong_t)page_hashsz); 1305 pagehash_sz = sizeof (struct page *) * page_hashsz; 1306 1307 /* 1308 * We want to TRY to fit the page structure hash table, 1309 * the page size free list counters, the memseg list and 1310 * and the kpm page space in the nucleus if possible. 1311 * 1312 * alloc_sz counts how much memory needs to be allocated by 1313 * BOP_ALLOC(). 1314 */ 1315 page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize); 1316 1317 alloc_sz = (page_hash == NULL ? pagehash_sz : 0); 1318 1319 /* 1320 * Size up per page size free list counters. 1321 */ 1322 ctrs_sz = page_ctrs_sz(); 1323 ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize); 1324 1325 if (ctrs_base == NULL) 1326 alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz; 1327 1328 /* 1329 * The memseg list is for the chunks of physical memory that 1330 * will be managed by the vm system. The number calculated is 1331 * a guess as boot may fragment it more when memory allocations 1332 * are made before kphysm_init(). Currently, there are two 1333 * allocations before then, so we assume each causes fragmen- 1334 * tation, and add a couple more for good measure. 1335 */ 1336 memseg_sz = sizeof (struct memseg) * (memblocks + 4); 1337 memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize); 1338 1339 if (memseg_base == NULL) 1340 alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz; 1341 1342 1343 if (kpm_enable) { 1344 /* 1345 * kpm page space -- Update kpm_npages and make the 1346 * same assumption about fragmenting as it is done 1347 * for memseg_sz above. 1348 */ 1349 kpm_npages_setup(memblocks + 4); 1350 kpm_pp_sz = (kpm_smallpages == 0) ? 1351 kpm_npages * sizeof (kpm_page_t): 1352 kpm_npages * sizeof (kpm_spage_t); 1353 1354 kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz, 1355 ecache_alignsize); 1356 1357 if (kpm_pp_base == NULL) 1358 alloc_sz = roundup(alloc_sz, ecache_alignsize) + 1359 kpm_pp_sz; 1360 } 1361 1362 /* 1363 * Allocate the array that protects pp->p_selock. 1364 */ 1365 pse_shift = size_pse_array(physmem, max_ncpus); 1366 pse_table_size = 1 << pse_shift; 1367 pse_mutex = ndata_alloc(&ndata, pse_table_size * sizeof (pad_mutex_t), 1368 ecache_alignsize); 1369 if (pse_mutex == NULL) 1370 alloc_sz = roundup(alloc_sz, ecache_alignsize) + 1371 pse_table_size * sizeof (pad_mutex_t); 1372 1373 if (alloc_sz > 0) { 1374 uintptr_t bop_base; 1375 1376 /* 1377 * We need extra memory allocated through BOP_ALLOC. 1378 */ 1379 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1380 alloc_alignsize); 1381 1382 alloc_sz = roundup(alloc_sz, alloc_alignsize); 1383 1384 bop_base = (uintptr_t)alloc_base; 1385 1386 alloc_base += alloc_sz; 1387 1388 if (page_hash == NULL) { 1389 page_hash = (struct page **)bop_base; 1390 bop_base = roundup(bop_base + pagehash_sz, 1391 ecache_alignsize); 1392 } 1393 1394 if (ctrs_base == NULL) { 1395 ctrs_base = (caddr_t)bop_base; 1396 bop_base = roundup(bop_base + ctrs_sz, 1397 ecache_alignsize); 1398 } 1399 1400 if (memseg_base == NULL) { 1401 memseg_base = (struct memseg *)bop_base; 1402 bop_base = roundup(bop_base + memseg_sz, 1403 ecache_alignsize); 1404 } 1405 1406 if (kpm_enable && kpm_pp_base == NULL) { 1407 kpm_pp_base = (uintptr_t)bop_base; 1408 bop_base = roundup(bop_base + kpm_pp_sz, 1409 ecache_alignsize); 1410 } 1411 1412 if (pse_mutex == NULL) { 1413 pse_mutex = (pad_mutex_t *)bop_base; 1414 bop_base = roundup(bop_base + 1415 pse_table_size * sizeof (pad_mutex_t), 1416 ecache_alignsize); 1417 } 1418 1419 ASSERT(bop_base <= (uintptr_t)alloc_base); 1420 } 1421 1422 PRM_DEBUG(page_hash); 1423 PRM_DEBUG(memseg_base); 1424 PRM_DEBUG(kpm_pp_base); 1425 PRM_DEBUG(kpm_pp_sz); 1426 PRM_DEBUG(pp_base); 1427 PRM_DEBUG(pp_sz); 1428 PRM_DEBUG(alloc_base); 1429 1430 #ifdef TRAPTRACE 1431 alloc_base = trap_trace_alloc(alloc_base); 1432 PRM_DEBUG(alloc_base); 1433 #endif /* TRAPTRACE */ 1434 1435 /* 1436 * In theory it's possible that kmem64 chunk is 0 sized 1437 * (on very small machines). Check for that. 1438 */ 1439 if (alloc_base == kmem64_base) { 1440 kmem64_base = NULL; 1441 kmem64_end = NULL; 1442 kmem64_aligned_end = NULL; 1443 goto kmem64_alloced; 1444 } 1445 1446 /* 1447 * Allocate kmem64 memory. 1448 * Round up to end of large page and overmap. 1449 * kmem64_end..kmem64_aligned_end is added to memory list for reuse 1450 */ 1451 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, 1452 MMU_PAGESIZE); 1453 1454 /* 1455 * Make one large memory alloc after figuring out the 64-bit size. This 1456 * will enable use of the largest page size appropriate for the system 1457 * architecture. 1458 */ 1459 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K)); 1460 ASSERT(IS_P2ALIGNED(kmem64_base, TTEBYTES(max_bootlp_tteszc))); 1461 for (i = max_bootlp_tteszc; i >= TTE8K; i--) { 1462 size_t asize; 1463 #if !defined(C_OBP) 1464 unsigned long long pa; 1465 #endif /* !C_OBP */ 1466 1467 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) 1468 continue; 1469 kmem64_alignsize = TTEBYTES(i); 1470 kmem64_szc = i; 1471 1472 /* limit page size for small memory */ 1473 if (mmu_btop(kmem64_alignsize) > (npages >> 2)) 1474 continue; 1475 1476 kmem64_aligned_end = (caddr_t)roundup((uintptr_t)kmem64_end, 1477 kmem64_alignsize); 1478 asize = kmem64_aligned_end - kmem64_base; 1479 #if !defined(C_OBP) 1480 if (prom_allocate_phys(asize, kmem64_alignsize, &pa) == 0) { 1481 if (prom_claim_virt(asize, kmem64_base) != 1482 (caddr_t)-1) { 1483 kmem64_pabase = pa; 1484 install_kmem64_tte(); 1485 break; 1486 } else { 1487 prom_free_phys(asize, pa); 1488 } 1489 } 1490 #else /* !C_OBP */ 1491 if ((caddr_t)BOP_ALLOC(bootops, kmem64_base, asize, 1492 kmem64_alignsize) == kmem64_base) { 1493 kmem64_pabase = va_to_pa(kmem64_base); 1494 break; 1495 } 1496 #endif /* !C_OBP */ 1497 if (i == TTE8K) { 1498 prom_panic("kmem64 allocation failure"); 1499 } 1500 } 1501 1502 PRM_DEBUG(kmem64_base); 1503 PRM_DEBUG(kmem64_end); 1504 PRM_DEBUG(kmem64_aligned_end); 1505 PRM_DEBUG(kmem64_alignsize); 1506 1507 /* 1508 * Now set pa using saved va from above. 1509 */ 1510 if (&ecache_init_scrub_flush_area) { 1511 (void) ecache_init_scrub_flush_area(NULL); 1512 } 1513 1514 kmem64_alloced: 1515 1516 /* 1517 * Initialize per page size free list counters. 1518 */ 1519 ctrs_end = page_ctrs_alloc(ctrs_base); 1520 ASSERT(ctrs_base + ctrs_sz >= ctrs_end); 1521 1522 /* 1523 * Allocate space for the interrupt vector table and also for the 1524 * reserved interrupt vector data structures. 1525 */ 1526 memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vec_table, 1527 IVSIZE, MMU_PAGESIZE); 1528 if (memspace != (caddr_t)intr_vec_table) 1529 prom_panic("interrupt vector table allocation failure"); 1530 1531 /* 1532 * The memory lists from boot are allocated from the heap arena 1533 * so that later they can be freed and/or reallocated. 1534 */ 1535 if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1) 1536 prom_panic("could not retrieve property \"extent\""); 1537 1538 /* 1539 * Between now and when we finish copying in the memory lists, 1540 * allocations happen so the space gets fragmented and the 1541 * lists longer. Leave enough space for lists twice as long 1542 * as what boot says it has now; roundup to a pagesize. 1543 * Also add space for the final phys-avail copy in the fixup 1544 * routine. 1545 */ 1546 va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE + 1547 roundup(IVSIZE, MMU_PAGESIZE)); 1548 memlist_sz *= 4; 1549 memlist_sz = roundup(memlist_sz, MMU_PAGESIZE); 1550 memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN); 1551 if (memspace == NULL) 1552 halt("Boot allocation failed."); 1553 1554 memlist = (struct memlist *)memspace; 1555 memlist_end = (char *)memspace + memlist_sz; 1556 1557 PRM_DEBUG(memlist); 1558 PRM_DEBUG(memlist_end); 1559 PRM_DEBUG(sysbase); 1560 PRM_DEBUG(syslimit); 1561 1562 kernelheap_init((void *)sysbase, (void *)syslimit, 1563 (caddr_t)sysbase + PAGESIZE, NULL, NULL); 1564 1565 /* 1566 * Take the most current snapshot we can by calling mem-update. 1567 */ 1568 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1569 &boot_physavail, &boot_physavail_len, 1570 &boot_virtavail, &boot_virtavail_len); 1571 1572 /* 1573 * Remove the space used by BOP_ALLOC from the kernel heap 1574 * plus the area actually used by the OBP (if any) 1575 * ignoring virtual addresses in virt_avail, above syslimit. 1576 */ 1577 virt_avail = memlist; 1578 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1579 1580 for (cur = virt_avail; cur->next; cur = cur->next) { 1581 uint64_t range_base, range_size; 1582 1583 if ((range_base = cur->address + cur->size) < (uint64_t)sysbase) 1584 continue; 1585 if (range_base >= (uint64_t)syslimit) 1586 break; 1587 /* 1588 * Limit the range to end at syslimit. 1589 */ 1590 range_size = MIN(cur->next->address, 1591 (uint64_t)syslimit) - range_base; 1592 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE, 1593 0, 0, (void *)range_base, (void *)(range_base + range_size), 1594 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1595 } 1596 1597 phys_avail = memlist; 1598 (void) copy_physavail(boot_physavail, boot_physavail_len, 1599 &memlist, 0, 0); 1600 1601 /* 1602 * Add any unused kmem64 memory from overmapped page 1603 * (Note: va_to_pa does not work for kmem64_end) 1604 */ 1605 if (kmem64_end < kmem64_aligned_end) { 1606 uint64_t overlap_size = kmem64_aligned_end - kmem64_end; 1607 uint64_t overlap_pa = kmem64_pabase + 1608 (kmem64_end - kmem64_base); 1609 1610 PRM_DEBUG(overlap_pa); 1611 PRM_DEBUG(overlap_size); 1612 memlist_add(overlap_pa, overlap_size, &memlist, &phys_avail); 1613 } 1614 1615 /* 1616 * Add any extra memory after e_text to the phys_avail list, as long 1617 * as there's at least a page to add. 1618 */ 1619 if (extra_etpg) 1620 memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg), 1621 &memlist, &phys_avail); 1622 1623 /* 1624 * Add any extra memory at the end of the ndata region if there's at 1625 * least a page to add. There might be a few more pages available in 1626 * the middle of the ndata region, but for now they are ignored. 1627 */ 1628 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end); 1629 if (nalloc_base == NULL) 1630 nalloc_base = nalloc_end; 1631 ndata_remain_sz = nalloc_end - nalloc_base; 1632 1633 if (ndata_remain_sz >= MMU_PAGESIZE) 1634 memlist_add(va_to_pa(nalloc_base), 1635 (uint64_t)ndata_remain_sz, &memlist, &phys_avail); 1636 1637 PRM_DEBUG(memlist); 1638 PRM_DEBUG(memlist_sz); 1639 PRM_DEBUG(memspace); 1640 1641 if ((caddr_t)memlist > (memspace + memlist_sz)) 1642 prom_panic("memlist overflow"); 1643 1644 PRM_DEBUG(pp_base); 1645 PRM_DEBUG(memseg_base); 1646 PRM_DEBUG(npages); 1647 1648 /* 1649 * Initialize the page structures from the memory lists. 1650 */ 1651 kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages); 1652 1653 availrmem_initial = availrmem = freemem; 1654 PRM_DEBUG(availrmem); 1655 1656 /* 1657 * Some of the locks depend on page_hashsz being set! 1658 * kmem_init() depends on this; so, keep it here. 1659 */ 1660 page_lock_init(); 1661 1662 /* 1663 * Initialize kernel memory allocator. 1664 */ 1665 kmem_init(); 1666 1667 /* 1668 * Factor in colorequiv to check additional 'equivalent' bins 1669 */ 1670 if (&page_set_colorequiv_arr_cpu != NULL) 1671 page_set_colorequiv_arr_cpu(); 1672 else 1673 page_set_colorequiv_arr(); 1674 1675 /* 1676 * Initialize bp_mapin(). 1677 */ 1678 bp_init(shm_alignment, HAT_STRICTORDER); 1679 1680 /* 1681 * Reserve space for panicbuf, intr_vec_table and reserved interrupt 1682 * vector data structures from the 32-bit heap. 1683 */ 1684 (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0, 1685 panicbuf, panicbuf + PANICBUFSIZE, 1686 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1687 1688 (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0, 1689 intr_vec_table, (caddr_t)intr_vec_table + IVSIZE, 1690 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1691 1692 mem_config_init(); 1693 } 1694 1695 static void 1696 startup_modules(void) 1697 { 1698 int proplen, nhblk1, nhblk8; 1699 size_t nhblksz; 1700 pgcnt_t pages_per_hblk; 1701 size_t hme8blk_sz, hme1blk_sz; 1702 1703 /* 1704 * Log any optional messages from the boot program 1705 */ 1706 proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message"); 1707 if (proplen > 0) { 1708 char *msg; 1709 size_t len = (size_t)proplen; 1710 1711 msg = kmem_zalloc(len, KM_SLEEP); 1712 (void) BOP_GETPROP(bootops, "boot-message", msg); 1713 cmn_err(CE_CONT, "?%s\n", msg); 1714 kmem_free(msg, len); 1715 } 1716 1717 /* 1718 * Let the platforms have a chance to change default 1719 * values before reading system file. 1720 */ 1721 if (&set_platform_defaults) 1722 set_platform_defaults(); 1723 1724 /* 1725 * Calculate default settings of system parameters based upon 1726 * maxusers, yet allow to be overridden via the /etc/system file. 1727 */ 1728 param_calc(0); 1729 1730 mod_setup(); 1731 1732 /* 1733 * If this is a positron, complain and halt. 1734 */ 1735 if (&iam_positron && iam_positron()) { 1736 cmn_err(CE_WARN, "This hardware platform is not supported" 1737 " by this release of Solaris.\n"); 1738 #ifdef DEBUG 1739 prom_enter_mon(); /* Type 'go' to resume */ 1740 cmn_err(CE_WARN, "Booting an unsupported platform.\n"); 1741 cmn_err(CE_WARN, "Booting with down-rev firmware.\n"); 1742 1743 #else /* DEBUG */ 1744 halt(0); 1745 #endif /* DEBUG */ 1746 } 1747 1748 /* 1749 * If we are running firmware that isn't 64-bit ready 1750 * then complain and halt. 1751 */ 1752 do_prom_version_check(); 1753 1754 /* 1755 * Initialize system parameters 1756 */ 1757 param_init(); 1758 1759 /* 1760 * maxmem is the amount of physical memory we're playing with. 1761 */ 1762 maxmem = physmem; 1763 1764 /* Set segkp limits. */ 1765 ncbase = kdi_segdebugbase; 1766 ncend = kdi_segdebugbase; 1767 1768 /* 1769 * Initialize the hat layer. 1770 */ 1771 hat_init(); 1772 1773 /* 1774 * Initialize segment management stuff. 1775 */ 1776 seg_init(); 1777 1778 /* 1779 * Create the va>tte handler, so the prom can understand 1780 * kernel translations. The handler is installed later, just 1781 * as we are about to take over the trap table from the prom. 1782 */ 1783 create_va_to_tte(); 1784 1785 /* 1786 * Load the forthdebugger (optional) 1787 */ 1788 forthdebug_init(); 1789 1790 /* 1791 * Create OBP node for console input callbacks 1792 * if it is needed. 1793 */ 1794 startup_create_io_node(); 1795 1796 if (modloadonly("fs", "specfs") == -1) 1797 halt("Can't load specfs"); 1798 1799 if (modloadonly("fs", "devfs") == -1) 1800 halt("Can't load devfs"); 1801 1802 if (modloadonly("misc", "swapgeneric") == -1) 1803 halt("Can't load swapgeneric"); 1804 1805 (void) modloadonly("sys", "lbl_edition"); 1806 1807 dispinit(); 1808 1809 /* 1810 * Infer meanings to the members of the idprom buffer. 1811 */ 1812 parse_idprom(); 1813 1814 /* Read cluster configuration data. */ 1815 clconf_init(); 1816 1817 setup_ddi(); 1818 1819 /* 1820 * Lets take this opportunity to load the root device. 1821 */ 1822 if (loadrootmodules() != 0) 1823 debug_enter("Can't load the root filesystem"); 1824 1825 /* 1826 * Load tod driver module for the tod part found on this system. 1827 * Recompute the cpu frequency/delays based on tod as tod part 1828 * tends to keep time more accurately. 1829 */ 1830 if (&load_tod_module) 1831 load_tod_module(); 1832 1833 /* 1834 * Allow platforms to load modules which might 1835 * be needed after bootops are gone. 1836 */ 1837 if (&load_platform_modules) 1838 load_platform_modules(); 1839 1840 setcpudelay(); 1841 1842 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1843 &boot_physavail, &boot_physavail_len, 1844 &boot_virtavail, &boot_virtavail_len); 1845 1846 /* 1847 * Calculation and allocation of hmeblks needed to remap 1848 * the memory allocated by PROM till now. 1849 * Overestimate the number of hblk1 elements by assuming 1850 * worst case of TTE64K mappings. 1851 * sfmmu_hblk_alloc will panic if this calculation is wrong. 1852 */ 1853 bop_alloc_pages = btopr(kmem64_end - kmem64_base); 1854 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K)); 1855 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1856 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min; 1857 1858 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len); 1859 1860 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */ 1861 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 1862 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 1863 1864 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz); 1865 1866 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K)); 1867 nhblk8 = 0; 1868 while (bop_alloc_pages > 1) { 1869 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1870 nhblk8 += bop_alloc_pages /= pages_per_hblk; 1871 bop_alloc_pages *= hme8blk_sz; 1872 bop_alloc_pages = btopr(bop_alloc_pages); 1873 } 1874 nhblk8 += 2; 1875 1876 /* 1877 * Since hblk8's can hold up to 64k of mappings aligned on a 64k 1878 * boundary, the number of hblk8's needed to map the entries in the 1879 * boot_virtavail list needs to be adjusted to take this into 1880 * consideration. Thus, we need to add additional hblk8's since it 1881 * is possible that an hblk8 will not have all 8 slots used due to 1882 * alignment constraints. Since there were boot_virtavail_len entries 1883 * in that list, we need to add that many hblk8's to the number 1884 * already calculated to make sure we don't underestimate. 1885 */ 1886 nhblk8 += boot_virtavail_len; 1887 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz; 1888 1889 /* Allocate in pagesize chunks */ 1890 nhblksz = roundup(nhblksz, MMU_PAGESIZE); 1891 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP); 1892 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1); 1893 } 1894 1895 static void 1896 startup_bop_gone(void) 1897 { 1898 extern int bop_io_quiesced; 1899 1900 /* 1901 * Destroy the MD initialized at startup 1902 * The startup initializes the MD framework 1903 * using prom and BOP alloc free it now. 1904 */ 1905 mach_descrip_startup_fini(); 1906 1907 /* 1908 * Call back into boot and release boots resources. 1909 */ 1910 BOP_QUIESCE_IO(bootops); 1911 bop_io_quiesced = 1; 1912 1913 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1914 &boot_physavail, &boot_physavail_len, 1915 &boot_virtavail, &boot_virtavail_len); 1916 /* 1917 * Copy physinstalled list into kernel space. 1918 */ 1919 phys_install = memlist; 1920 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist); 1921 1922 /* 1923 * setup physically contiguous area twice as large as the ecache. 1924 * this is used while doing displacement flush of ecaches 1925 */ 1926 if (&ecache_flush_address) { 1927 ecache_flushaddr = ecache_flush_address(); 1928 if (ecache_flushaddr == (uint64_t)-1) { 1929 cmn_err(CE_PANIC, 1930 "startup: no memory to set ecache_flushaddr"); 1931 } 1932 } 1933 1934 /* 1935 * Virtual available next. 1936 */ 1937 ASSERT(virt_avail != NULL); 1938 memlist_free_list(virt_avail); 1939 virt_avail = memlist; 1940 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1941 1942 /* 1943 * Last chance to ask our booter questions .. 1944 */ 1945 } 1946 1947 1948 /* 1949 * startup_fixup_physavail - called from mach_sfmmu.c after the final 1950 * allocations have been performed. We can't call it in startup_bop_gone 1951 * since later operations can cause obp to allocate more memory. 1952 */ 1953 void 1954 startup_fixup_physavail(void) 1955 { 1956 struct memlist *cur; 1957 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end; 1958 1959 PRM_DEBUG(kmem64_overmap_size); 1960 1961 /* 1962 * take the most current snapshot we can by calling mem-update 1963 */ 1964 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1965 &boot_physavail, &boot_physavail_len, 1966 &boot_virtavail, &boot_virtavail_len); 1967 1968 /* 1969 * Copy phys_avail list, again. 1970 * Both the kernel/boot and the prom have been allocating 1971 * from the original list we copied earlier. 1972 */ 1973 cur = memlist; 1974 (void) copy_physavail(boot_physavail, boot_physavail_len, 1975 &memlist, 0, 0); 1976 1977 /* 1978 * Add any unused kmem64 memory from overmapped page 1979 * (Note: va_to_pa does not work for kmem64_end) 1980 */ 1981 if (kmem64_overmap_size) { 1982 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base), 1983 kmem64_overmap_size, 1984 &memlist, &cur); 1985 } 1986 1987 /* 1988 * Add any extra memory after e_text we added to the phys_avail list 1989 * back to the old list. 1990 */ 1991 if (extra_etpg) 1992 memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg), 1993 &memlist, &cur); 1994 if (ndata_remain_sz >= MMU_PAGESIZE) 1995 memlist_add(va_to_pa(nalloc_base), 1996 (uint64_t)ndata_remain_sz, &memlist, &cur); 1997 1998 /* 1999 * There isn't any bounds checking on the memlist area 2000 * so ensure it hasn't overgrown. 2001 */ 2002 if ((caddr_t)memlist > (caddr_t)memlist_end) 2003 cmn_err(CE_PANIC, "startup: memlist size exceeded"); 2004 2005 /* 2006 * The kernel removes the pages that were allocated for it from 2007 * the freelist, but we now have to find any -extra- pages that 2008 * the prom has allocated for it's own book-keeping, and remove 2009 * them from the freelist too. sigh. 2010 */ 2011 fix_prom_pages(phys_avail, cur); 2012 2013 ASSERT(phys_avail != NULL); 2014 memlist_free_list(phys_avail); 2015 phys_avail = cur; 2016 2017 /* 2018 * We're done with boot. Just after this point in time, boot 2019 * gets unmapped, so we can no longer rely on its services. 2020 * Zero the bootops to indicate this fact. 2021 */ 2022 bootops = (struct bootops *)NULL; 2023 BOOTOPS_GONE(); 2024 } 2025 2026 static void 2027 startup_vm(void) 2028 { 2029 size_t i; 2030 struct segmap_crargs a; 2031 struct segkpm_crargs b; 2032 2033 uint64_t avmem; 2034 caddr_t va; 2035 pgcnt_t max_phys_segkp; 2036 int mnode; 2037 2038 extern int use_brk_lpg, use_stk_lpg; 2039 2040 /* 2041 * get prom's mappings, create hments for them and switch 2042 * to the kernel context. 2043 */ 2044 hat_kern_setup(); 2045 2046 /* 2047 * Take over trap table 2048 */ 2049 setup_trap_table(); 2050 2051 /* 2052 * Install the va>tte handler, so that the prom can handle 2053 * misses and understand the kernel table layout in case 2054 * we need call into the prom. 2055 */ 2056 install_va_to_tte(); 2057 2058 /* 2059 * Set a flag to indicate that the tba has been taken over. 2060 */ 2061 tba_taken_over = 1; 2062 2063 /* initialize MMU primary context register */ 2064 mmu_init_kcontext(); 2065 2066 /* 2067 * The boot cpu can now take interrupts, x-calls, x-traps 2068 */ 2069 CPUSET_ADD(cpu_ready_set, CPU->cpu_id); 2070 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS); 2071 2072 /* 2073 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR. 2074 */ 2075 tbr_wr_addr_inited = 1; 2076 2077 /* 2078 * Initialize VM system, and map kernel address space. 2079 */ 2080 kvm_init(); 2081 2082 /* 2083 * XXX4U: previously, we initialized and turned on 2084 * the caches at this point. But of course we have 2085 * nothing to do, as the prom has already done this 2086 * for us -- main memory must be E$able at all times. 2087 */ 2088 2089 /* 2090 * If the following is true, someone has patched 2091 * phsymem to be less than the number of pages that 2092 * the system actually has. Remove pages until system 2093 * memory is limited to the requested amount. Since we 2094 * have allocated page structures for all pages, we 2095 * correct the amount of memory we want to remove 2096 * by the size of the memory used to hold page structures 2097 * for the non-used pages. 2098 */ 2099 if (physmem < npages) { 2100 pgcnt_t diff, off; 2101 struct page *pp; 2102 struct seg kseg; 2103 2104 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem); 2105 2106 off = 0; 2107 diff = npages - physmem; 2108 diff -= mmu_btopr(diff * sizeof (struct page)); 2109 kseg.s_as = &kas; 2110 while (diff--) { 2111 pp = page_create_va(&unused_pages_vp, (offset_t)off, 2112 MMU_PAGESIZE, PG_WAIT | PG_EXCL, 2113 &kseg, (caddr_t)off); 2114 if (pp == NULL) 2115 cmn_err(CE_PANIC, "limited physmem too much!"); 2116 page_io_unlock(pp); 2117 page_downgrade(pp); 2118 availrmem--; 2119 off += MMU_PAGESIZE; 2120 } 2121 } 2122 2123 /* 2124 * When printing memory, show the total as physmem less 2125 * that stolen by a debugger. 2126 */ 2127 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n", 2128 (ulong_t)(physinstalled) << (PAGESHIFT - 10), 2129 (ulong_t)(physinstalled) << (PAGESHIFT - 12)); 2130 2131 avmem = (uint64_t)freemem << PAGESHIFT; 2132 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem); 2133 2134 /* 2135 * For small memory systems disable automatic large pages. 2136 */ 2137 if (physmem < privm_lpg_min_physmem) { 2138 use_brk_lpg = 0; 2139 use_stk_lpg = 0; 2140 } 2141 2142 /* 2143 * Perform platform specific freelist processing 2144 */ 2145 if (&plat_freelist_process) { 2146 for (mnode = 0; mnode < max_mem_nodes; mnode++) 2147 if (mem_node_config[mnode].exists) 2148 plat_freelist_process(mnode); 2149 } 2150 2151 /* 2152 * Initialize the segkp segment type. We position it 2153 * after the configured tables and buffers (whose end 2154 * is given by econtig) and before V_WKBASE_ADDR. 2155 * Also in this area is segkmap (size SEGMAPSIZE). 2156 */ 2157 2158 /* XXX - cache alignment? */ 2159 va = (caddr_t)SEGKPBASE; 2160 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0); 2161 2162 max_phys_segkp = (physmem * 2); 2163 2164 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) { 2165 segkpsize = btop(SEGKPDEFSIZE); 2166 cmn_err(CE_WARN, "Illegal value for segkpsize. " 2167 "segkpsize has been reset to %ld pages", segkpsize); 2168 } 2169 2170 i = ptob(MIN(segkpsize, max_phys_segkp)); 2171 2172 rw_enter(&kas.a_lock, RW_WRITER); 2173 if (seg_attach(&kas, va, i, segkp) < 0) 2174 cmn_err(CE_PANIC, "startup: cannot attach segkp"); 2175 if (segkp_create(segkp) != 0) 2176 cmn_err(CE_PANIC, "startup: segkp_create failed"); 2177 rw_exit(&kas.a_lock); 2178 2179 /* 2180 * kpm segment 2181 */ 2182 segmap_kpm = kpm_enable && 2183 segmap_kpm && PAGESIZE == MAXBSIZE; 2184 2185 if (kpm_enable) { 2186 rw_enter(&kas.a_lock, RW_WRITER); 2187 2188 /* 2189 * The segkpm virtual range range is larger than the 2190 * actual physical memory size and also covers gaps in 2191 * the physical address range for the following reasons: 2192 * . keep conversion between segkpm and physical addresses 2193 * simple, cheap and unambiguous. 2194 * . avoid extension/shrink of the the segkpm in case of DR. 2195 * . avoid complexity for handling of virtual addressed 2196 * caches, segkpm and the regular mapping scheme must be 2197 * kept in sync wrt. the virtual color of mapped pages. 2198 * Any accesses to virtual segkpm ranges not backed by 2199 * physical memory will fall through the memseg pfn hash 2200 * and will be handled in segkpm_fault. 2201 * Additional kpm_size spaces needed for vac alias prevention. 2202 */ 2203 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors, 2204 segkpm) < 0) 2205 cmn_err(CE_PANIC, "cannot attach segkpm"); 2206 2207 b.prot = PROT_READ | PROT_WRITE; 2208 b.nvcolors = shm_alignment >> MMU_PAGESHIFT; 2209 2210 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 2211 panic("segkpm_create segkpm"); 2212 2213 rw_exit(&kas.a_lock); 2214 2215 mach_kpm_init(); 2216 } 2217 2218 if (!segzio_fromheap) { 2219 size_t size; 2220 size_t physmem_b = mmu_ptob(physmem); 2221 2222 /* size is in bytes, segziosize is in pages */ 2223 if (segziosize == 0) { 2224 size = physmem_b; 2225 } else { 2226 size = mmu_ptob(segziosize); 2227 } 2228 2229 if (size < SEGZIOMINSIZE) { 2230 size = SEGZIOMINSIZE; 2231 } else if (size > SEGZIOMAXSIZE) { 2232 size = SEGZIOMAXSIZE; 2233 /* 2234 * On 64-bit x86, we only have 2TB of KVA. This exists 2235 * for parity with x86. 2236 * 2237 * SEGZIOMAXSIZE is capped at 512gb so that segzio 2238 * doesn't consume all of KVA. However, if we have a 2239 * system that has more thant 512gb of physical memory, 2240 * we can actually consume about half of the difference 2241 * between 512gb and the rest of the available physical 2242 * memory. 2243 */ 2244 if (physmem_b > SEGZIOMAXSIZE) { 2245 size += (physmem_b - SEGZIOMAXSIZE) / 2; 2246 } 2247 } 2248 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE)); 2249 /* put the base of the ZIO segment after the kpm segment */ 2250 segzio_base = kpm_vbase + (kpm_size * vac_colors); 2251 PRM_DEBUG(segziosize); 2252 PRM_DEBUG(segzio_base); 2253 2254 /* 2255 * On some platforms, kvm_init is called after the kpm 2256 * sizes have been determined. On SPARC, kvm_init is called 2257 * before, so we have to attach the kzioseg after kvm is 2258 * initialized, otherwise we'll try to allocate from the boot 2259 * area since the kernel heap hasn't yet been configured. 2260 */ 2261 rw_enter(&kas.a_lock, RW_WRITER); 2262 2263 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2264 &kzioseg); 2265 (void) segkmem_zio_create(&kzioseg); 2266 2267 /* create zio area covering new segment */ 2268 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2269 2270 rw_exit(&kas.a_lock); 2271 } 2272 2273 2274 /* 2275 * Now create generic mapping segment. This mapping 2276 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total 2277 * virtual address is greater than the amount of free 2278 * memory that is available, then we trim back the 2279 * segment size to that amount 2280 */ 2281 va = (caddr_t)SEGMAPBASE; 2282 2283 /* 2284 * 1201049: segkmap base address must be MAXBSIZE aligned 2285 */ 2286 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0); 2287 2288 /* 2289 * Set size of segmap to percentage of freemem at boot, 2290 * but stay within the allowable range 2291 * Note we take percentage before converting from pages 2292 * to bytes to avoid an overflow on 32-bit kernels. 2293 */ 2294 i = mmu_ptob((freemem * segmap_percent) / 100); 2295 2296 if (i < MINMAPSIZE) 2297 i = MINMAPSIZE; 2298 2299 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem))) 2300 i = MIN(SEGMAPSIZE, mmu_ptob(freemem)); 2301 2302 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */ 2303 2304 rw_enter(&kas.a_lock, RW_WRITER); 2305 if (seg_attach(&kas, va, i, segkmap) < 0) 2306 cmn_err(CE_PANIC, "cannot attach segkmap"); 2307 2308 a.prot = PROT_READ | PROT_WRITE; 2309 a.shmsize = shm_alignment; 2310 a.nfreelist = 0; /* use segmap driver defaults */ 2311 2312 if (segmap_create(segkmap, (caddr_t)&a) != 0) 2313 panic("segmap_create segkmap"); 2314 rw_exit(&kas.a_lock); 2315 2316 segdev_init(); 2317 } 2318 2319 static void 2320 startup_end(void) 2321 { 2322 if ((caddr_t)memlist > (caddr_t)memlist_end) 2323 panic("memlist overflow 2"); 2324 memlist_free_block((caddr_t)memlist, 2325 ((caddr_t)memlist_end - (caddr_t)memlist)); 2326 memlist = NULL; 2327 2328 /* enable page_relocation since OBP is now done */ 2329 page_relocate_ready = 1; 2330 2331 /* 2332 * Perform tasks that get done after most of the VM 2333 * initialization has been done but before the clock 2334 * and other devices get started. 2335 */ 2336 kern_setup1(); 2337 2338 /* 2339 * Intialize the VM arenas for allocating physically 2340 * contiguus memory chunk for interrupt queues snd 2341 * allocate/register boot cpu's queues, if any and 2342 * allocate dump buffer for sun4v systems to store 2343 * extra crash information during crash dump 2344 */ 2345 contig_mem_init(); 2346 mach_descrip_init(); 2347 2348 if (cpu_intrq_setup(CPU)) { 2349 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id); 2350 } 2351 cpu_intrq_register(CPU); 2352 mach_htraptrace_setup(CPU->cpu_id); 2353 mach_htraptrace_configure(CPU->cpu_id); 2354 mach_dump_buffer_init(); 2355 2356 /* 2357 * Initialize interrupt related stuff 2358 */ 2359 cpu_intr_alloc(CPU, NINTR_THREADS); 2360 2361 (void) splzs(); /* allow hi clock ints but not zs */ 2362 2363 /* 2364 * Initialize errors. 2365 */ 2366 error_init(); 2367 2368 /* 2369 * Note that we may have already used kernel bcopy before this 2370 * point - but if you really care about this, adb the use_hw_* 2371 * variables to 0 before rebooting. 2372 */ 2373 mach_hw_copy_limit(); 2374 2375 /* 2376 * Install the "real" preemption guards before DDI services 2377 * are available. 2378 */ 2379 (void) prom_set_preprom(kern_preprom); 2380 (void) prom_set_postprom(kern_postprom); 2381 CPU->cpu_m.mutex_ready = 1; 2382 2383 /* 2384 * Initialize segnf (kernel support for non-faulting loads). 2385 */ 2386 segnf_init(); 2387 2388 /* 2389 * Configure the root devinfo node. 2390 */ 2391 configure(); /* set up devices */ 2392 mach_cpu_halt_idle(); 2393 } 2394 2395 2396 void 2397 post_startup(void) 2398 { 2399 #ifdef PTL1_PANIC_DEBUG 2400 extern void init_ptl1_thread(void); 2401 #endif /* PTL1_PANIC_DEBUG */ 2402 extern void abort_sequence_init(void); 2403 2404 /* 2405 * Set the system wide, processor-specific flags to be passed 2406 * to userland via the aux vector for performance hints and 2407 * instruction set extensions. 2408 */ 2409 bind_hwcap(); 2410 2411 /* 2412 * Startup memory scrubber (if any) 2413 */ 2414 mach_memscrub(); 2415 2416 /* 2417 * Allocate soft interrupt to handle abort sequence. 2418 */ 2419 abort_sequence_init(); 2420 2421 /* 2422 * Configure the rest of the system. 2423 * Perform forceloading tasks for /etc/system. 2424 */ 2425 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2426 /* 2427 * ON4.0: Force /proc module in until clock interrupt handle fixed 2428 * ON4.0: This must be fixed or restated in /etc/systems. 2429 */ 2430 (void) modload("fs", "procfs"); 2431 2432 /* load machine class specific drivers */ 2433 load_mach_drivers(); 2434 2435 /* load platform specific drivers */ 2436 if (&load_platform_drivers) 2437 load_platform_drivers(); 2438 2439 /* load vis simulation module, if we are running w/fpu off */ 2440 if (!fpu_exists) { 2441 if (modload("misc", "vis") == -1) 2442 halt("Can't load vis"); 2443 } 2444 2445 mach_fpras(); 2446 2447 maxmem = freemem; 2448 2449 #ifdef PTL1_PANIC_DEBUG 2450 init_ptl1_thread(); 2451 #endif /* PTL1_PANIC_DEBUG */ 2452 2453 if (&cif_init) 2454 cif_init(); 2455 } 2456 2457 #ifdef PTL1_PANIC_DEBUG 2458 int ptl1_panic_test = 0; 2459 int ptl1_panic_xc_one_test = 0; 2460 int ptl1_panic_xc_all_test = 0; 2461 int ptl1_panic_xt_one_test = 0; 2462 int ptl1_panic_xt_all_test = 0; 2463 kthread_id_t ptl1_thread_p = NULL; 2464 kcondvar_t ptl1_cv; 2465 kmutex_t ptl1_mutex; 2466 int ptl1_recurse_count_threshold = 0x40; 2467 int ptl1_recurse_trap_threshold = 0x3d; 2468 extern void ptl1_recurse(int, int); 2469 extern void ptl1_panic_xt(int, int); 2470 2471 /* 2472 * Called once per second by timeout() to wake up 2473 * the ptl1_panic thread to see if it should cause 2474 * a trap to the ptl1_panic() code. 2475 */ 2476 /* ARGSUSED */ 2477 static void 2478 ptl1_wakeup(void *arg) 2479 { 2480 mutex_enter(&ptl1_mutex); 2481 cv_signal(&ptl1_cv); 2482 mutex_exit(&ptl1_mutex); 2483 } 2484 2485 /* 2486 * ptl1_panic cross call function: 2487 * Needed because xc_one() and xc_some() can pass 2488 * 64 bit args but ptl1_recurse() expects ints. 2489 */ 2490 static void 2491 ptl1_panic_xc(void) 2492 { 2493 ptl1_recurse(ptl1_recurse_count_threshold, 2494 ptl1_recurse_trap_threshold); 2495 } 2496 2497 /* 2498 * The ptl1 thread waits for a global flag to be set 2499 * and uses the recurse thresholds to set the stack depth 2500 * to cause a ptl1_panic() directly via a call to ptl1_recurse 2501 * or indirectly via the cross call and cross trap functions. 2502 * 2503 * This is useful testing stack overflows and normal 2504 * ptl1_panic() states with a know stack frame. 2505 * 2506 * ptl1_recurse() is an asm function in ptl1_panic.s that 2507 * sets the {In, Local, Out, and Global} registers to a 2508 * know state on the stack and just prior to causing a 2509 * test ptl1_panic trap. 2510 */ 2511 static void 2512 ptl1_thread(void) 2513 { 2514 mutex_enter(&ptl1_mutex); 2515 while (ptl1_thread_p) { 2516 cpuset_t other_cpus; 2517 int cpu_id; 2518 int my_cpu_id; 2519 int target_cpu_id; 2520 int target_found; 2521 2522 if (ptl1_panic_test) { 2523 ptl1_recurse(ptl1_recurse_count_threshold, 2524 ptl1_recurse_trap_threshold); 2525 } 2526 2527 /* 2528 * Find potential targets for x-call and x-trap, 2529 * if any exist while preempt is disabled we 2530 * start a ptl1_panic if requested via a 2531 * globals. 2532 */ 2533 kpreempt_disable(); 2534 my_cpu_id = CPU->cpu_id; 2535 other_cpus = cpu_ready_set; 2536 CPUSET_DEL(other_cpus, CPU->cpu_id); 2537 target_found = 0; 2538 if (!CPUSET_ISNULL(other_cpus)) { 2539 /* 2540 * Pick the first one 2541 */ 2542 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { 2543 if (cpu_id == my_cpu_id) 2544 continue; 2545 2546 if (CPU_XCALL_READY(cpu_id)) { 2547 target_cpu_id = cpu_id; 2548 target_found = 1; 2549 break; 2550 } 2551 } 2552 ASSERT(target_found); 2553 2554 if (ptl1_panic_xc_one_test) { 2555 xc_one(target_cpu_id, 2556 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2557 } 2558 if (ptl1_panic_xc_all_test) { 2559 xc_some(other_cpus, 2560 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2561 } 2562 if (ptl1_panic_xt_one_test) { 2563 xt_one(target_cpu_id, 2564 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2565 } 2566 if (ptl1_panic_xt_all_test) { 2567 xt_some(other_cpus, 2568 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2569 } 2570 } 2571 kpreempt_enable(); 2572 (void) timeout(ptl1_wakeup, NULL, hz); 2573 (void) cv_wait(&ptl1_cv, &ptl1_mutex); 2574 } 2575 mutex_exit(&ptl1_mutex); 2576 } 2577 2578 /* 2579 * Called during early startup to create the ptl1_thread 2580 */ 2581 void 2582 init_ptl1_thread(void) 2583 { 2584 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0, 2585 &p0, TS_RUN, 0); 2586 } 2587 #endif /* PTL1_PANIC_DEBUG */ 2588 2589 2590 /* 2591 * Add to a memory list. 2592 * start = start of new memory segment 2593 * len = length of new memory segment in bytes 2594 * memlistp = pointer to array of available memory segment structures 2595 * curmemlistp = memory list to which to add segment. 2596 */ 2597 static void 2598 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp, 2599 struct memlist **curmemlistp) 2600 { 2601 struct memlist *new; 2602 2603 new = *memlistp; 2604 new->address = start; 2605 new->size = len; 2606 *memlistp = new + 1; 2607 2608 memlist_insert(new, curmemlistp); 2609 } 2610 2611 /* 2612 * In the case of architectures that support dynamic addition of 2613 * memory at run-time there are two cases where memsegs need to 2614 * be initialized and added to the memseg list. 2615 * 1) memsegs that are constructed at startup. 2616 * 2) memsegs that are constructed at run-time on 2617 * hot-plug capable architectures. 2618 * This code was originally part of the function kphysm_init(). 2619 */ 2620 2621 static void 2622 memseg_list_add(struct memseg *memsegp) 2623 { 2624 struct memseg **prev_memsegp; 2625 pgcnt_t num; 2626 2627 /* insert in memseg list, decreasing number of pages order */ 2628 2629 num = MSEG_NPAGES(memsegp); 2630 2631 for (prev_memsegp = &memsegs; *prev_memsegp; 2632 prev_memsegp = &((*prev_memsegp)->next)) { 2633 if (num > MSEG_NPAGES(*prev_memsegp)) 2634 break; 2635 } 2636 2637 memsegp->next = *prev_memsegp; 2638 *prev_memsegp = memsegp; 2639 2640 if (kpm_enable) { 2641 memsegp->nextpa = (memsegp->next) ? 2642 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA; 2643 2644 if (prev_memsegp != &memsegs) { 2645 struct memseg *msp; 2646 msp = (struct memseg *)((caddr_t)prev_memsegp - 2647 offsetof(struct memseg, next)); 2648 msp->nextpa = va_to_pa(memsegp); 2649 } else { 2650 memsegspa = va_to_pa(memsegs); 2651 } 2652 } 2653 } 2654 2655 /* 2656 * PSM add_physmem_cb(). US-II and newer processors have some 2657 * flavor of the prefetch capability implemented. We exploit 2658 * this capability for optimum performance. 2659 */ 2660 #define PREFETCH_BYTES 64 2661 2662 void 2663 add_physmem_cb(page_t *pp, pfn_t pnum) 2664 { 2665 extern void prefetch_page_w(void *); 2666 2667 pp->p_pagenum = pnum; 2668 2669 /* 2670 * Prefetch one more page_t into E$. To prevent future 2671 * mishaps with the sizeof(page_t) changing on us, we 2672 * catch this on debug kernels if we can't bring in the 2673 * entire hpage with 2 PREFETCH_BYTES reads. See 2674 * also, sun4u/cpu/cpu_module.c 2675 */ 2676 /*LINTED*/ 2677 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES); 2678 prefetch_page_w((char *)pp); 2679 } 2680 2681 /* 2682 * kphysm_init() tackles the problem of initializing physical memory. 2683 * The old startup made some assumptions about the kernel living in 2684 * physically contiguous space which is no longer valid. 2685 */ 2686 static void 2687 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages, 2688 uintptr_t kpm_pp, pgcnt_t kpm_npages) 2689 { 2690 struct memlist *pmem; 2691 struct memseg *msp; 2692 pfn_t base; 2693 pgcnt_t num; 2694 pfn_t lastseg_pages_end = 0; 2695 pgcnt_t nelem_used = 0; 2696 2697 ASSERT(page_hash != NULL && page_hashsz != 0); 2698 2699 msp = memsegp; 2700 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2701 2702 /* 2703 * Build the memsegs entry 2704 */ 2705 num = btop(pmem->size); 2706 if (num > npages) 2707 num = npages; 2708 npages -= num; 2709 base = btop(pmem->address); 2710 2711 msp->pages = pp; 2712 msp->epages = pp + num; 2713 msp->pages_base = base; 2714 msp->pages_end = base + num; 2715 2716 if (kpm_enable) { 2717 pfn_t pbase_a; 2718 pfn_t pend_a; 2719 pfn_t prev_pend_a; 2720 pgcnt_t nelem; 2721 2722 msp->pagespa = va_to_pa(pp); 2723 msp->epagespa = va_to_pa(pp + num); 2724 pbase_a = kpmptop(ptokpmp(base)); 2725 pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs; 2726 nelem = ptokpmp(pend_a - pbase_a); 2727 msp->kpm_nkpmpgs = nelem; 2728 msp->kpm_pbase = pbase_a; 2729 if (lastseg_pages_end) { 2730 /* 2731 * Assume phys_avail is in ascending order 2732 * of physical addresses. 2733 */ 2734 ASSERT(base + num > lastseg_pages_end); 2735 prev_pend_a = kpmptop( 2736 ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs; 2737 2738 if (prev_pend_a > pbase_a) { 2739 /* 2740 * Overlap, more than one memseg may 2741 * point to the same kpm_page range. 2742 */ 2743 if (kpm_smallpages == 0) { 2744 msp->kpm_pages = 2745 (kpm_page_t *)kpm_pp - 1; 2746 kpm_pp = (uintptr_t) 2747 ((kpm_page_t *)kpm_pp 2748 + nelem - 1); 2749 } else { 2750 msp->kpm_spages = 2751 (kpm_spage_t *)kpm_pp - 1; 2752 kpm_pp = (uintptr_t) 2753 ((kpm_spage_t *)kpm_pp 2754 + nelem - 1); 2755 } 2756 nelem_used += nelem - 1; 2757 2758 } else { 2759 if (kpm_smallpages == 0) { 2760 msp->kpm_pages = 2761 (kpm_page_t *)kpm_pp; 2762 kpm_pp = (uintptr_t) 2763 ((kpm_page_t *)kpm_pp 2764 + nelem); 2765 } else { 2766 msp->kpm_spages = 2767 (kpm_spage_t *)kpm_pp; 2768 kpm_pp = (uintptr_t) 2769 ((kpm_spage_t *) 2770 kpm_pp + nelem); 2771 } 2772 nelem_used += nelem; 2773 } 2774 2775 } else { 2776 if (kpm_smallpages == 0) { 2777 msp->kpm_pages = (kpm_page_t *)kpm_pp; 2778 kpm_pp = (uintptr_t) 2779 ((kpm_page_t *)kpm_pp + nelem); 2780 } else { 2781 msp->kpm_spages = (kpm_spage_t *)kpm_pp; 2782 kpm_pp = (uintptr_t) 2783 ((kpm_spage_t *)kpm_pp + nelem); 2784 } 2785 nelem_used = nelem; 2786 } 2787 2788 if (nelem_used > kpm_npages) 2789 panic("kphysm_init: kpm_pp overflow\n"); 2790 2791 msp->kpm_pagespa = va_to_pa(msp->kpm_pages); 2792 lastseg_pages_end = msp->pages_end; 2793 } 2794 2795 memseg_list_add(msp); 2796 2797 /* 2798 * add_physmem() initializes the PSM part of the page 2799 * struct by calling the PSM back with add_physmem_cb(). 2800 * In addition it coalesces pages into larger pages as 2801 * it initializes them. 2802 */ 2803 add_physmem(pp, num, base); 2804 pp += num; 2805 msp++; 2806 } 2807 2808 build_pfn_hash(); 2809 } 2810 2811 /* 2812 * Kernel VM initialization. 2813 * Assumptions about kernel address space ordering: 2814 * (1) gap (user space) 2815 * (2) kernel text 2816 * (3) kernel data/bss 2817 * (4) gap 2818 * (5) kernel data structures 2819 * (6) gap 2820 * (7) debugger (optional) 2821 * (8) monitor 2822 * (9) gap (possibly null) 2823 * (10) dvma 2824 * (11) devices 2825 */ 2826 static void 2827 kvm_init(void) 2828 { 2829 /* 2830 * Put the kernel segments in kernel address space. 2831 */ 2832 rw_enter(&kas.a_lock, RW_WRITER); 2833 as_avlinit(&kas); 2834 2835 (void) seg_attach(&kas, (caddr_t)KERNELBASE, 2836 (size_t)(e_moddata - KERNELBASE), &ktextseg); 2837 (void) segkmem_create(&ktextseg); 2838 2839 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M), 2840 (size_t)(MMU_PAGESIZE4M), &ktexthole); 2841 (void) segkmem_create(&ktexthole); 2842 2843 (void) seg_attach(&kas, (caddr_t)valloc_base, 2844 (size_t)(econtig32 - valloc_base), &kvalloc); 2845 (void) segkmem_create(&kvalloc); 2846 2847 if (kmem64_base) { 2848 (void) seg_attach(&kas, (caddr_t)kmem64_base, 2849 (size_t)(kmem64_end - kmem64_base), &kmem64); 2850 (void) segkmem_create(&kmem64); 2851 } 2852 2853 /* 2854 * We're about to map out /boot. This is the beginning of the 2855 * system resource management transition. We can no longer 2856 * call into /boot for I/O or memory allocations. 2857 */ 2858 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); 2859 (void) segkmem_create(&kvseg); 2860 hblk_alloc_dynamic = 1; 2861 2862 /* 2863 * we need to preallocate pages for DR operations before enabling large 2864 * page kernel heap because of memseg_remap_init() hat_unload() hack. 2865 */ 2866 memseg_remap_init(); 2867 2868 /* at this point we are ready to use large page heap */ 2869 segkmem_heap_lp_init(); 2870 2871 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32, 2872 &kvseg32); 2873 (void) segkmem_create(&kvseg32); 2874 2875 /* 2876 * Create a segment for the debugger. 2877 */ 2878 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2879 (void) segkmem_create(&kdebugseg); 2880 2881 rw_exit(&kas.a_lock); 2882 } 2883 2884 char obp_tte_str[] = 2885 "h# %x constant MMU_PAGESHIFT " 2886 "h# %x constant TTE8K " 2887 "h# %x constant SFHME_SIZE " 2888 "h# %x constant SFHME_TTE " 2889 "h# %x constant HMEBLK_TAG " 2890 "h# %x constant HMEBLK_NEXT " 2891 "h# %x constant HMEBLK_MISC " 2892 "h# %x constant HMEBLK_HME1 " 2893 "h# %x constant NHMENTS " 2894 "h# %x constant HBLK_SZMASK " 2895 "h# %x constant HBLK_RANGE_SHIFT " 2896 "h# %x constant HMEBP_HBLK " 2897 "h# %x constant HMEBUCKET_SIZE " 2898 "h# %x constant HTAG_SFMMUPSZ " 2899 "h# %x constant HTAG_BSPAGE_SHIFT " 2900 "h# %x constant HTAG_REHASH_SHIFT " 2901 "h# %x constant SFMMU_INVALID_SHMERID " 2902 "h# %x constant mmu_hashcnt " 2903 "h# %p constant uhme_hash " 2904 "h# %p constant khme_hash " 2905 "h# %x constant UHMEHASH_SZ " 2906 "h# %x constant KHMEHASH_SZ " 2907 "h# %p constant KCONTEXT " 2908 "h# %p constant KHATID " 2909 "h# %x constant ASI_MEM " 2910 2911 ": PHYS-X@ ( phys -- data ) " 2912 " ASI_MEM spacex@ " 2913 "; " 2914 2915 ": PHYS-W@ ( phys -- data ) " 2916 " ASI_MEM spacew@ " 2917 "; " 2918 2919 ": PHYS-L@ ( phys -- data ) " 2920 " ASI_MEM spaceL@ " 2921 "; " 2922 2923 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) " 2924 " 3 * MMU_PAGESHIFT + " 2925 "; " 2926 2927 ": TTE_IS_VALID ( ttep -- flag ) " 2928 " PHYS-X@ 0< " 2929 "; " 2930 2931 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) " 2932 " dup TTE8K = if " 2933 " drop HBLK_RANGE_SHIFT " 2934 " else " 2935 " TTE_PAGE_SHIFT " 2936 " then " 2937 "; " 2938 2939 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) " 2940 " tuck >> swap MMU_PAGESHIFT - << " 2941 "; " 2942 2943 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) " 2944 " >> over xor swap ( hash sfmmup ) " 2945 " KHATID <> if ( hash ) " 2946 " UHMEHASH_SZ and ( bucket ) " 2947 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) " 2948 " else ( hash ) " 2949 " KHMEHASH_SZ and ( bucket ) " 2950 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) " 2951 " then ( hmebp ) " 2952 "; " 2953 2954 ": HME_HASH_TABLE_SEARCH " 2955 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) " 2956 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) " 2957 " dup if ( sfmmup hmeblkp ) ( r: hblktag ) " 2958 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) " 2959 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if " 2960 " true ( sfmmup hmeblkp true ) ( r: hblktag ) " 2961 " else " 2962 " hmeblk_next + phys-x@ false " 2963 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2964 " then " 2965 " else " 2966 " hmeblk_next + phys-x@ false " 2967 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2968 " then " 2969 " else " 2970 " true " 2971 " then " 2972 " until r> drop " 2973 "; " 2974 2975 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) " 2976 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) " 2977 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )" 2978 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )" 2979 " SFMMU_INVALID_SHMERID or nip ( hblktag ) " 2980 "; " 2981 2982 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) " 2983 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) " 2984 " TTE8K = if ( hmeblkp addr ) " 2985 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) " 2986 " else ( hmeblkp addr ) " 2987 " drop 0 ( hmeblkp 0 ) " 2988 " then ( hmeblkp hme-index ) " 2989 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) " 2990 " SFHME_TTE + ( ttep ) " 2991 "; " 2992 2993 ": unix-tte ( addr cnum -- false | tte-data true ) " 2994 " KCONTEXT = if ( addr ) " 2995 " KHATID ( addr khatid ) " 2996 " else ( addr ) " 2997 " drop false exit ( false ) " 2998 " then " 2999 " ( addr khatid ) " 3000 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) " 3001 " 2dup swap i HME_HASH_SHIFT " 3002 "( addr sfmmup sfmmup addr hmeshift ) " 3003 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) " 3004 " over i 4 pick " 3005 "( addr sfmmup hmebp sfmmup rehash addr ) " 3006 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) " 3007 " HME_HASH_TABLE_SEARCH " 3008 "( addr sfmmup { null | hmeblkp } ) " 3009 " ?dup if ( addr sfmmup hmeblkp ) " 3010 " nip swap HBLK_TO_TTEP ( ttep ) " 3011 " dup TTE_IS_VALID if ( valid-ttep ) " 3012 " PHYS-X@ true ( tte-data true ) " 3013 " else ( invalid-tte ) " 3014 " drop false ( false ) " 3015 " then ( false | tte-data true ) " 3016 " unloop exit ( false | tte-data true ) " 3017 " then ( addr sfmmup ) " 3018 " loop ( addr sfmmup ) " 3019 " 2drop false ( false ) " 3020 "; " 3021 ; 3022 3023 void 3024 create_va_to_tte(void) 3025 { 3026 char *bp; 3027 extern int khmehash_num, uhmehash_num; 3028 extern struct hmehash_bucket *khme_hash, *uhme_hash; 3029 3030 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field)) 3031 3032 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP); 3033 3034 /* 3035 * Teach obp how to parse our sw ttes. 3036 */ 3037 (void) sprintf(bp, obp_tte_str, 3038 MMU_PAGESHIFT, 3039 TTE8K, 3040 sizeof (struct sf_hment), 3041 OFFSET(struct sf_hment, hme_tte), 3042 OFFSET(struct hme_blk, hblk_tag), 3043 OFFSET(struct hme_blk, hblk_nextpa), 3044 OFFSET(struct hme_blk, hblk_misc), 3045 OFFSET(struct hme_blk, hblk_hme), 3046 NHMENTS, 3047 HBLK_SZMASK, 3048 HBLK_RANGE_SHIFT, 3049 OFFSET(struct hmehash_bucket, hmeh_nextpa), 3050 sizeof (struct hmehash_bucket), 3051 HTAG_SFMMUPSZ, 3052 HTAG_BSPAGE_SHIFT, 3053 HTAG_REHASH_SHIFT, 3054 SFMMU_INVALID_SHMERID, 3055 mmu_hashcnt, 3056 (caddr_t)va_to_pa((caddr_t)uhme_hash), 3057 (caddr_t)va_to_pa((caddr_t)khme_hash), 3058 UHMEHASH_SZ, 3059 KHMEHASH_SZ, 3060 KCONTEXT, 3061 KHATID, 3062 ASI_MEM); 3063 prom_interpret(bp, 0, 0, 0, 0, 0); 3064 3065 kobj_free(bp, MMU_PAGESIZE); 3066 } 3067 3068 void 3069 install_va_to_tte(void) 3070 { 3071 /* 3072 * advise prom that he can use unix-tte 3073 */ 3074 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0); 3075 } 3076 3077 /* 3078 * Here we add "device-type=console" for /os-io node, for currently 3079 * our kernel console output only supports displaying text and 3080 * performing cursor-positioning operations (through kernel framebuffer 3081 * driver) and it doesn't support other functionalities required for a 3082 * standard "display" device as specified in 1275 spec. The main missing 3083 * interface defined by the 1275 spec is "draw-logo". 3084 * also see the comments above prom_stdout_is_framebuffer(). 3085 */ 3086 static char *create_node = 3087 "\" /\" find-device " 3088 "new-device " 3089 "\" os-io\" device-name " 3090 "\" "OBP_DISPLAY_CONSOLE"\" device-type " 3091 ": cb-r/w ( adr,len method$ -- #read/#written ) " 3092 " 2>r swap 2 2r> ['] $callback catch if " 3093 " 2drop 3drop 0 " 3094 " then " 3095 "; " 3096 ": read ( adr,len -- #read ) " 3097 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then " 3098 " ( retN ... ret1 N ) " 3099 " ?dup if " 3100 " swap >r 1- 0 ?do drop loop r> " 3101 " else " 3102 " -2 " 3103 " then " 3104 "; " 3105 ": write ( adr,len -- #written ) " 3106 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then " 3107 " ( retN ... ret1 N ) " 3108 " ?dup if " 3109 " swap >r 1- 0 ?do drop loop r> " 3110 " else " 3111 " 0 " 3112 " then " 3113 "; " 3114 ": poll-tty ( -- ) ; " 3115 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; " 3116 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; " 3117 ": cb-give/take ( $method -- ) " 3118 " 0 -rot ['] $callback catch ?dup if " 3119 " >r 2drop 2drop r> throw " 3120 " else " 3121 " 0 ?do drop loop " 3122 " then " 3123 "; " 3124 ": give ( -- ) \" exit-input\" cb-give/take ; " 3125 ": take ( -- ) \" enter-input\" cb-give/take ; " 3126 ": open ( -- ok? ) true ; " 3127 ": close ( -- ) ; " 3128 "finish-device " 3129 "device-end "; 3130 3131 /* 3132 * Create the OBP input/output node (FCode serial driver). 3133 * It is needed for both USB console keyboard and for 3134 * the kernel terminal emulator. It is too early to check for a 3135 * kernel console compatible framebuffer now, so we create this 3136 * so that we're ready if we need to enable kernel terminal emulation. 3137 * 3138 * When the USB software takes over the input device at the time 3139 * consconfig runs, OBP's stdin is redirected to this node. 3140 * Whenever the FORTH user interface is used after this switch, 3141 * the node will call back into the kernel for console input. 3142 * If a serial device such as ttya or a UART with a Type 5 keyboard 3143 * attached is used, OBP takes over the serial device when the system 3144 * goes to the debugger after the system is booted. This sharing 3145 * of the relatively simple serial device is difficult but possible. 3146 * Sharing the USB host controller is impossible due its complexity. 3147 * 3148 * Similarly to USB keyboard input redirection, after consconfig_dacf 3149 * configures a kernel console framebuffer as the standard output 3150 * device, OBP's stdout is switched to to vector through the 3151 * /os-io node into the kernel terminal emulator. 3152 */ 3153 static void 3154 startup_create_io_node(void) 3155 { 3156 prom_interpret(create_node, 0, 0, 0, 0, 0); 3157 } 3158 3159 3160 static void 3161 do_prom_version_check(void) 3162 { 3163 int i; 3164 pnode_t node; 3165 char buf[64]; 3166 static char drev[] = "Down-rev firmware detected%s\n" 3167 "\tPlease upgrade to the following minimum version:\n" 3168 "\t\t%s\n"; 3169 3170 i = prom_version_check(buf, sizeof (buf), &node); 3171 3172 if (i == PROM_VER64_OK) 3173 return; 3174 3175 if (i == PROM_VER64_UPGRADE) { 3176 cmn_err(CE_WARN, drev, "", buf); 3177 3178 #ifdef DEBUG 3179 prom_enter_mon(); /* Type 'go' to continue */ 3180 cmn_err(CE_WARN, "Booting with down-rev firmware\n"); 3181 return; 3182 #else 3183 halt(0); 3184 #endif 3185 } 3186 3187 /* 3188 * The other possibility is that this is a server running 3189 * good firmware, but down-rev firmware was detected on at 3190 * least one other cpu board. We just complain if we see 3191 * that. 3192 */ 3193 cmn_err(CE_WARN, drev, " on one or more CPU boards", buf); 3194 } 3195 3196 static void 3197 kpm_init() 3198 { 3199 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT; 3200 kpm_pgsz = 1ull << kpm_pgshft; 3201 kpm_pgoff = kpm_pgsz - 1; 3202 kpmp2pshft = kpm_pgshft - PAGESHIFT; 3203 kpmpnpgs = 1 << kpmp2pshft; 3204 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 3205 } 3206 3207 void 3208 kpm_npages_setup(int memblocks) 3209 { 3210 /* 3211 * npages can be scattered in a maximum of 'memblocks' 3212 */ 3213 kpm_npages = ptokpmpr(npages) + memblocks; 3214 } 3215 3216 /* 3217 * Must be defined in platform dependent code. 3218 */ 3219 extern caddr_t modtext; 3220 extern size_t modtext_sz; 3221 extern caddr_t moddata; 3222 3223 #define HEAPTEXT_ARENA(addr) \ 3224 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \ 3225 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \ 3226 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1)) 3227 3228 #define HEAPTEXT_OVERSIZED(addr) \ 3229 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE) 3230 3231 vmem_t *texthole_source[HEAPTEXT_NARENAS]; 3232 vmem_t *texthole_arena[HEAPTEXT_NARENAS]; 3233 kmutex_t texthole_lock; 3234 3235 char kern_bootargs[OBP_MAXPATHLEN]; 3236 3237 void 3238 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3239 { 3240 uintptr_t addr, limit; 3241 3242 addr = HEAPTEXT_BASE; 3243 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE; 3244 3245 /* 3246 * Before we initialize the text_arena, we want to punch holes in the 3247 * underlying heaptext_arena. This guarantees that for any text 3248 * address we can find a text hole less than HEAPTEXT_MAPPED away. 3249 */ 3250 for (; addr + HEAPTEXT_UNMAPPED <= limit; 3251 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) { 3252 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE, 3253 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED), 3254 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3255 } 3256 3257 /* 3258 * Allocate one page at the oversize to break up the text region 3259 * from the oversized region. 3260 */ 3261 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0, 3262 (void *)limit, (void *)(limit + PAGESIZE), 3263 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3264 3265 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL, 3266 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free, 3267 heaptext_arena, 0, VM_SLEEP); 3268 *data_arena = vmem_create("module_data", moddata, MODDATA, 1, 3269 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3270 } 3271 3272 caddr_t 3273 kobj_text_alloc(vmem_t *arena, size_t size) 3274 { 3275 caddr_t rval, better; 3276 3277 /* 3278 * First, try a sleeping allocation. 3279 */ 3280 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT); 3281 3282 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval)) 3283 return (rval); 3284 3285 /* 3286 * We didn't get the area that we wanted. We're going to try to do an 3287 * allocation with explicit constraints. 3288 */ 3289 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL, 3290 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE), 3291 VM_NOSLEEP | VM_BESTFIT); 3292 3293 if (better != NULL) { 3294 /* 3295 * That worked. Free our first attempt and return. 3296 */ 3297 vmem_free(arena, rval, size); 3298 return (better); 3299 } 3300 3301 /* 3302 * That didn't work; we'll have to return our first attempt. 3303 */ 3304 return (rval); 3305 } 3306 3307 caddr_t 3308 kobj_texthole_alloc(caddr_t addr, size_t size) 3309 { 3310 int arena = HEAPTEXT_ARENA(addr); 3311 char c[30]; 3312 uintptr_t base; 3313 3314 if (HEAPTEXT_OVERSIZED(addr)) { 3315 /* 3316 * If this is an oversized allocation, there is no text hole 3317 * available for it; return NULL. 3318 */ 3319 return (NULL); 3320 } 3321 3322 mutex_enter(&texthole_lock); 3323 3324 if (texthole_arena[arena] == NULL) { 3325 ASSERT(texthole_source[arena] == NULL); 3326 3327 if (arena == 0) { 3328 texthole_source[0] = vmem_create("module_text_holesrc", 3329 (void *)(KERNELBASE + MMU_PAGESIZE4M), 3330 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL, 3331 0, VM_SLEEP); 3332 } else { 3333 base = HEAPTEXT_BASE + 3334 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED); 3335 3336 (void) snprintf(c, sizeof (c), 3337 "heaptext_holesrc_%d", arena); 3338 3339 texthole_source[arena] = vmem_create(c, (void *)base, 3340 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL, 3341 0, VM_SLEEP); 3342 } 3343 3344 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena); 3345 3346 texthole_arena[arena] = vmem_create(c, NULL, 0, 3347 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free, 3348 texthole_source[arena], 0, VM_SLEEP); 3349 } 3350 3351 mutex_exit(&texthole_lock); 3352 3353 ASSERT(texthole_arena[arena] != NULL); 3354 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3355 return (vmem_alloc(texthole_arena[arena], size, 3356 VM_BESTFIT | VM_NOSLEEP)); 3357 } 3358 3359 void 3360 kobj_texthole_free(caddr_t addr, size_t size) 3361 { 3362 int arena = HEAPTEXT_ARENA(addr); 3363 3364 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3365 ASSERT(texthole_arena[arena] != NULL); 3366 vmem_free(texthole_arena[arena], addr, size); 3367 } 3368