xref: /titanic_44/usr/src/uts/sun4/os/startup.c (revision 3db86aab554edbb4244c8d1a1c90f152eee768af)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/vm.h>
32 #include <sys/cpu.h>
33 #include <sys/atomic.h>
34 #include <sys/reboot.h>
35 #include <sys/kdi.h>
36 #include <sys/bootconf.h>
37 #include <sys/memlist_plat.h>
38 #include <sys/memlist_impl.h>
39 #include <sys/prom_plat.h>
40 #include <sys/prom_isa.h>
41 #include <sys/autoconf.h>
42 #include <sys/intreg.h>
43 #include <sys/ivintr.h>
44 #include <sys/fpu/fpusystm.h>
45 #include <sys/iommutsb.h>
46 #include <vm/vm_dep.h>
47 #include <vm/seg_dev.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_kpm.h>
50 #include <vm/seg_map.h>
51 #include <vm/seg_kp.h>
52 #include <sys/sysconf.h>
53 #include <vm/hat_sfmmu.h>
54 #include <sys/kobj.h>
55 #include <sys/sun4asi.h>
56 #include <sys/clconf.h>
57 #include <sys/platform_module.h>
58 #include <sys/panic.h>
59 #include <sys/cpu_sgnblk_defs.h>
60 #include <sys/clock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/promif.h>
63 #include <sys/prom_debug.h>
64 #include <sys/traptrace.h>
65 #include <sys/memnode.h>
66 #include <sys/mem_cage.h>
67 #include <sys/mmu.h>
68 
69 extern void setup_trap_table(void);
70 extern void cpu_intrq_setup(struct cpu *);
71 extern void cpu_intrq_register(struct cpu *);
72 extern void contig_mem_init(void);
73 extern void mach_dump_buffer_init(void);
74 extern void mach_descrip_init(void);
75 extern void mach_descrip_startup_fini(void);
76 extern void mach_memscrub(void);
77 extern void mach_fpras(void);
78 extern void mach_cpu_halt_idle(void);
79 extern void mach_hw_copy_limit(void);
80 extern void load_mach_drivers(void);
81 extern void load_tod_module(void);
82 #pragma weak load_tod_module
83 
84 extern int ndata_alloc_mmfsa(struct memlist *ndata);
85 #pragma weak ndata_alloc_mmfsa
86 
87 extern void cif_init(void);
88 #pragma weak cif_init
89 
90 extern void parse_idprom(void);
91 extern void add_vx_handler(char *, int, void (*)(cell_t *));
92 extern void mem_config_init(void);
93 extern void memseg_remap_init(void);
94 
95 extern void mach_kpm_init(void);
96 
97 /*
98  * External Data:
99  */
100 extern int vac_size;	/* cache size in bytes */
101 extern uint_t vac_mask;	/* VAC alignment consistency mask */
102 extern uint_t vac_colors;
103 
104 /*
105  * Global Data Definitions:
106  */
107 
108 /*
109  * XXX - Don't port this to new architectures
110  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
111  * 'romp' has no use with a prom with an IEEE 1275 client interface.
112  * The driver doesn't use the value, but it depends on the symbol.
113  */
114 void *romp;		/* veritas driver won't load without romp 4154976 */
115 /*
116  * Declare these as initialized data so we can patch them.
117  */
118 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
119 pgcnt_t segkpsize =
120     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
121 uint_t segmap_percent = 12; /* Size of segmap segment */
122 
123 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
124 int vac_copyback = 1;
125 char *cache_mode = NULL;
126 int use_mix = 1;
127 int prom_debug = 0;
128 
129 struct bootops *bootops = 0;	/* passed in from boot in %o2 */
130 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
131 uint_t	tba_taken_over = 0;
132 
133 caddr_t s_text;			/* start of kernel text segment */
134 caddr_t e_text;			/* end of kernel text segment */
135 caddr_t s_data;			/* start of kernel data segment */
136 caddr_t e_data;			/* end of kernel data segment */
137 
138 caddr_t modtext;		/* beginning of module text */
139 size_t	modtext_sz;		/* size of module text */
140 caddr_t moddata;		/* beginning of module data reserve */
141 caddr_t e_moddata;		/* end of module data reserve */
142 
143 /*
144  * End of first block of contiguous kernel in 32-bit virtual address space
145  */
146 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
147 
148 caddr_t		ncbase;		/* beginning of non-cached segment */
149 caddr_t		ncend;		/* end of non-cached segment */
150 caddr_t		sdata;		/* beginning of data segment */
151 
152 caddr_t		extra_etva;	/* beginning of unused nucleus text */
153 pgcnt_t		extra_etpg;	/* number of pages of unused nucleus text */
154 
155 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
156 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
157 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
158 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
159 
160 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
161 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
162 
163 uintptr_t shm_alignment;	/* VAC address consistency modulus */
164 struct memlist *phys_install;	/* Total installed physical memory */
165 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
166 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
167 struct memlist ndata;		/* memlist of nucleus allocatable memory */
168 int memexp_flag;		/* memory expansion card flag */
169 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
170 pgcnt_t obp_pages;		/* Physical pages used by OBP */
171 
172 /*
173  * VM data structures
174  */
175 long page_hashsz;		/* Size of page hash table (power of two) */
176 struct page *pp_base;		/* Base of system page struct array */
177 size_t pp_sz;			/* Size in bytes of page struct array */
178 struct page **page_hash;	/* Page hash table */
179 struct seg ktextseg;		/* Segment used for kernel executable image */
180 struct seg kvalloc;		/* Segment used for "valloc" mapping */
181 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
182 struct seg ktexthole;		/* Segment used for nucleus text hole */
183 struct seg kmapseg;		/* Segment used for generic kernel mappings */
184 struct seg kpmseg;		/* Segment used for physical mapping */
185 struct seg kdebugseg;		/* Segment used for the kernel debugger */
186 
187 uintptr_t kpm_pp_base;		/* Base of system kpm_page array */
188 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
189 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
190 
191 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
192 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
193 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
194 
195 /*
196  * debugger pages (if allocated)
197  */
198 struct vnode kdebugvp;
199 
200 /*
201  * Segment for relocated kernel structures in 64-bit large RAM kernels
202  */
203 struct seg kmem64;
204 
205 struct memseg *memseg_base;
206 size_t memseg_sz;		/* Used to translate a va to page */
207 struct vnode unused_pages_vp;
208 
209 /*
210  * VM data structures allocated early during boot.
211  */
212 size_t pagehash_sz;
213 uint64_t memlist_sz;
214 
215 char tbr_wr_addr_inited = 0;
216 
217 
218 /*
219  * Static Routines:
220  */
221 static void memlist_add(uint64_t, uint64_t, struct memlist **,
222 	struct memlist **);
223 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t,
224 	pgcnt_t);
225 static void kvm_init(void);
226 
227 static void startup_init(void);
228 static void startup_memlist(void);
229 static void startup_modules(void);
230 static void startup_bop_gone(void);
231 static void startup_vm(void);
232 static void startup_end(void);
233 static void setup_cage_params(void);
234 static void startup_create_io_node(void);
235 
236 static pgcnt_t npages;
237 static struct memlist *memlist;
238 void *memlist_end;
239 
240 static pgcnt_t bop_alloc_pages;
241 static caddr_t hblk_base;
242 uint_t hblk_alloc_dynamic = 0;
243 uint_t hblk1_min = H1MIN;
244 uint_t hblk8_min;
245 
246 
247 /*
248  * Hooks for unsupported platforms and down-rev firmware
249  */
250 int iam_positron(void);
251 #pragma weak iam_positron
252 static void do_prom_version_check(void);
253 static void kpm_init(void);
254 static void kpm_npages_setup(int);
255 static void kpm_memseg_init(void);
256 
257 /*
258  * After receiving a thermal interrupt, this is the number of seconds
259  * to delay before shutting off the system, assuming
260  * shutdown fails.  Use /etc/system to change the delay if this isn't
261  * large enough.
262  */
263 int thermal_powerdown_delay = 1200;
264 
265 /*
266  * Used to hold off page relocations into the cage until OBP has completed
267  * its boot-time handoff of its resources to the kernel.
268  */
269 int page_relocate_ready = 0;
270 
271 /*
272  * Enable some debugging messages concerning memory usage...
273  */
274 #ifdef  DEBUGGING_MEM
275 static int debugging_mem;
276 static void
277 printmemlist(char *title, struct memlist *list)
278 {
279 	if (!debugging_mem)
280 		return;
281 
282 	printf("%s\n", title);
283 
284 	while (list) {
285 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
286 		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
287 		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
288 		list = list->next;
289 	}
290 }
291 
292 void
293 printmemseg(struct memseg *memseg)
294 {
295 	if (!debugging_mem)
296 		return;
297 
298 	printf("memseg\n");
299 
300 	while (memseg) {
301 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
302 		    "pfn = 0x%x, epfn = 0x%x\n",
303 		    memseg->pages, memseg->epages,
304 		    memseg->pages_base, memseg->pages_end);
305 		memseg = memseg->next;
306 	}
307 }
308 
309 #define	debug_pause(str)	halt((str))
310 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
311 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
312 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
313 #define	MPRINTF3(str, a, b, c) \
314 	if (debugging_mem) prom_printf((str), (a), (b), (c))
315 #else	/* DEBUGGING_MEM */
316 #define	MPRINTF(str)
317 #define	MPRINTF1(str, a)
318 #define	MPRINTF2(str, a, b)
319 #define	MPRINTF3(str, a, b, c)
320 #endif	/* DEBUGGING_MEM */
321 
322 /* Simple message to indicate that the bootops pointer has been zeroed */
323 #ifdef DEBUG
324 static int bootops_gone_on = 0;
325 #define	BOOTOPS_GONE() \
326 	if (bootops_gone_on) \
327 		prom_printf("The bootops vec is zeroed now!\n");
328 #else
329 #define	BOOTOPS_GONE()
330 #endif /* DEBUG */
331 
332 /*
333  * Monitor pages may not be where this says they are.
334  * and the debugger may not be there either.
335  *
336  * Note that 'pages' here are *physical* pages, which are 8k on sun4u.
337  *
338  *                        Physical memory layout
339  *                     (not necessarily contiguous)
340  *                       (THIS IS SOMEWHAT WRONG)
341  *                       /-----------------------\
342  *                       |       monitor pages   |
343  *             availmem -|-----------------------|
344  *                       |                       |
345  *                       |       page pool       |
346  *                       |                       |
347  *                       |-----------------------|
348  *                       |   configured tables   |
349  *                       |       buffers         |
350  *            firstaddr -|-----------------------|
351  *                       |   hat data structures |
352  *                       |-----------------------|
353  *                       |    kernel data, bss   |
354  *                       |-----------------------|
355  *                       |    interrupt stack    |
356  *                       |-----------------------|
357  *                       |    kernel text (RO)   |
358  *                       |-----------------------|
359  *                       |    trap table (4k)    |
360  *                       |-----------------------|
361  *               page 1  |      panicbuf         |
362  *                       |-----------------------|
363  *               page 0  |       reclaimed       |
364  *                       |_______________________|
365  *
366  *
367  *
368  *                    Kernel's Virtual Memory Layout.
369  *                       /-----------------------\
370  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
371  *                       |   OBP's virtual page  |
372  *                       |        tables         |
373  * 0xFFFFFFFC.00000000  -|-----------------------|-
374  *                       :                       :
375  *                       :                       :
376  * 0xFFFFFE00.00000000  -|-----------------------|-
377  *                       |                       |  Ultrasparc I/II support
378  *                       |    segkpm segment     |  up to 2TB of physical
379  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
380  *                       |                       |
381  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
382  *                       :                       :
383  *                       :                       :
384  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
385  *                       |                       |      ^
386  *                       |  UltraSPARC I/II call |      |
387  *                       | bug requires an extra |      |
388  *                       | 4 GB of space between |      |
389  *                       |   hole and used RAM   |	|
390  *                       |                       |      |
391  * 0xFFFFF800.00000000  -|-----------------------|-     |
392  *                       |                       |      |
393  *                       | Virtual Address Hole  |   UltraSPARC
394  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
395  *                       |                       |      |
396  * 0x00000800.00000000  -|-----------------------|-     |
397  *                       |                       |      |
398  *                       |  UltraSPARC I/II call |      |
399  *                       | bug requires an extra |      |
400  *                       | 4 GB of space between |      |
401  *                       |   hole and used RAM   |      |
402  *                       |                       |      v
403  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
404  *                       :                       :		   ^
405  *                       :                       :		   |
406  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
407  *                       |                       |		   |
408  *                       |   64-bit kernel ONLY  |		   |
409  *                       |                       |		   |
410  *                       |    kmem64 segment     |		   |
411  *                       |                       |		   |
412  *                       | (Relocated extra HME  |	     Approximately
413  *                       |   block allocations,  |	    1 TB of virtual
414  *                       |   memnode freelists,  |	     address space
415  *                       |    HME hash buckets,  |		   |
416  *                       | mml_table, kpmp_table,|		   |
417  *                       |  page_t array and     |		   |
418  *                       |  hashblock pool to    |		   |
419  *                       |   avoid hard-coded    |		   |
420  *                       |     32-bit vaddr      |		   |
421  *                       |     limitations)      |		   |
422  *                       |                       |		   v
423  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
424  *                       |                       |
425  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
426  *                       |                       |
427  * 0x00000300.00000000  -|-----------------------|- SYSBASE
428  *                       :                       :
429  *                       :                       :
430  *                      -|-----------------------|-
431  *                       |                       |
432  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
433  *                       |                       |               256G MAX)
434  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
435  *                       :                       :
436  *                       :                       :
437  *                      -|-----------------------|-
438  *                       |                       |
439  *                       |       segkp           |    SEGKPSIZE (2GB)
440  *                       |                       |
441  *                       |                       |
442  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
443  *                       |                       |
444  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
445  *                       |                       |       (SEGKPBASE - 0x400000)
446  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
447  *                       |                       |       (MEMSCRUBBASE - NCARGS)
448  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
449  *                       |                       |       (ARGSBASE - PPMAPSIZE)
450  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
451  *                       |                       |
452  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
453  *                       |                       |
454  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
455  *                       :                       :
456  *                       :                       :
457  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
458  *                       |                       |
459  *                       |         OBP           |
460  *                       |                       |
461  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
462  *                       |         kmdb          |
463  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
464  *                       :                       :
465  *                       :                       :
466  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
467  *                       |                       |
468  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
469  *                       |                       |    ~64MB)
470  * 0x00000000.78002000  -|-----------------------|
471  *                       |     panicbuf          |
472  * 0x00000000.78000000  -|-----------------------|- SYSBASE32
473  *                       :                       :
474  *                       :                       :
475  *                       |                       |
476  *                       |-----------------------|- econtig32
477  *                       |    vm structures      |
478  * 0x00000000.01C00000   |-----------------------|- nalloc_end
479  *                       |         TSBs          |
480  *                       |-----------------------|- end/nalloc_base
481  *                       |   kernel data & bss   |
482  * 0x00000000.01800000  -|-----------------------|
483  *                       :   nucleus text hole   :
484  * 0x00000000.01400000  -|-----------------------|
485  *                       :                       :
486  *                       |-----------------------|
487  *                       |      module text      |
488  *                       |-----------------------|- e_text/modtext
489  *                       |      kernel text      |
490  *                       |-----------------------|
491  *                       |    trap table (48k)   |
492  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
493  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
494  *                       |-----------------------|
495  *                       |                       |
496  *                       |        invalid        |
497  *                       |                       |
498  * 0x00000000.00000000  _|_______________________|
499  *
500  *
501  *
502  *                   32-bit User Virtual Memory Layout.
503  *                       /-----------------------\
504  *                       |                       |
505  *                       |        invalid        |
506  *                       |                       |
507  *          0xFFC00000  -|-----------------------|- USERLIMIT
508  *                       |       user stack      |
509  *                       :                       :
510  *                       :                       :
511  *                       :                       :
512  *                       |       user data       |
513  *                      -|-----------------------|-
514  *                       |       user text       |
515  *          0x00002000  -|-----------------------|-
516  *                       |       invalid         |
517  *          0x00000000  _|_______________________|
518  *
519  *
520  *
521  *                   64-bit User Virtual Memory Layout.
522  *                       /-----------------------\
523  *                       |                       |
524  *                       |        invalid        |
525  *                       |                       |
526  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
527  *                       |       user stack      |
528  *                       :                       :
529  *                       :                       :
530  *                       :                       :
531  *                       |       user data       |
532  *                      -|-----------------------|-
533  *                       |       user text       |
534  *  0x00000000.00100000 -|-----------------------|-
535  *                       |       invalid         |
536  *  0x00000000.00000000 _|_______________________|
537  */
538 
539 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
540 extern uint64_t ecache_flush_address(void);
541 
542 #pragma weak load_platform_modules
543 #pragma weak plat_startup_memlist
544 #pragma weak ecache_init_scrub_flush_area
545 #pragma weak ecache_flush_address
546 
547 
548 /*
549  * By default the DR Cage is enabled for maximum OS
550  * MPSS performance.  Users needing to disable the cage mechanism
551  * can set this variable to zero via /etc/system.
552  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
553  * will result in loss of DR functionality.
554  * Platforms wishing to disable kernel Cage by default
555  * should do so in their set_platform_defaults() routine.
556  */
557 int	kernel_cage_enable = 1;
558 
559 static void
560 setup_cage_params(void)
561 {
562 	void (*func)(void);
563 
564 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
565 	if (func != NULL) {
566 		(*func)();
567 		return;
568 	}
569 
570 	if (kernel_cage_enable == 0) {
571 		return;
572 	}
573 	kcage_range_lock();
574 	if (kcage_range_init(phys_avail, 1) == 0) {
575 		kcage_init(total_pages / 256);
576 	}
577 	kcage_range_unlock();
578 
579 	if (kcage_on) {
580 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
581 	} else {
582 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
583 	}
584 
585 }
586 
587 /*
588  * Machine-dependent startup code
589  */
590 void
591 startup(void)
592 {
593 	startup_init();
594 	if (&startup_platform)
595 		startup_platform();
596 	startup_memlist();
597 	startup_modules();
598 	setup_cage_params();
599 	startup_bop_gone();
600 	startup_vm();
601 	startup_end();
602 }
603 
604 struct regs sync_reg_buf;
605 uint64_t sync_tt;
606 
607 void
608 sync_handler(void)
609 {
610 	struct  trap_info 	ti;
611 	int i;
612 
613 	/*
614 	 * Prevent trying to talk to the other CPUs since they are
615 	 * sitting in the prom and won't reply.
616 	 */
617 	for (i = 0; i < NCPU; i++) {
618 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
619 			cpu[i]->cpu_flags &= ~CPU_READY;
620 			cpu[i]->cpu_flags |= CPU_QUIESCED;
621 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
622 		}
623 	}
624 
625 	/*
626 	 * We've managed to get here without going through the
627 	 * normal panic code path. Try and save some useful
628 	 * information.
629 	 */
630 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
631 		ti.trap_type = sync_tt;
632 		ti.trap_regs = &sync_reg_buf;
633 		ti.trap_addr = NULL;
634 		ti.trap_mmu_fsr = 0x0;
635 
636 		curthread->t_panic_trap = &ti;
637 	}
638 
639 	/*
640 	 * If we're re-entering the panic path, update the signature
641 	 * block so that the SC knows we're in the second part of panic.
642 	 */
643 	if (panicstr)
644 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
645 
646 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
647 	panic("sync initiated");
648 }
649 
650 
651 static void
652 startup_init(void)
653 {
654 	/*
655 	 * We want to save the registers while we're still in OBP
656 	 * so that we know they haven't been fiddled with since.
657 	 * (In principle, OBP can't change them just because it
658 	 * makes a callback, but we'd rather not depend on that
659 	 * behavior.)
660 	 */
661 	char		sync_str[] =
662 		"warning @ warning off : sync "
663 		"%%tl-c %%tstate h# %p x! "
664 		"%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
665 		"%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
666 		"%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
667 		"%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
668 		"%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
669 		"%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
670 		"%%y h# %p l! %%tl-c %%tt h# %p x! "
671 		"sync ; warning !";
672 
673 	/*
674 	 * 20 == num of %p substrings
675 	 * 16 == max num of chars %p will expand to.
676 	 */
677 	char 		bp[sizeof (sync_str) + 16 * 20];
678 
679 	(void) check_boot_version(BOP_GETVERSION(bootops));
680 
681 	/*
682 	 * Initialize ptl1 stack for the 1st CPU.
683 	 */
684 	ptl1_init_cpu(&cpu0);
685 
686 	/*
687 	 * Initialize the address map for cache consistent mappings
688 	 * to random pages; must be done after vac_size is set.
689 	 */
690 	ppmapinit();
691 
692 	/*
693 	 * Initialize the PROM callback handler.
694 	 */
695 	init_vx_handler();
696 
697 	/*
698 	 * have prom call sync_callback() to handle the sync and
699 	 * save some useful information which will be stored in the
700 	 * core file later.
701 	 */
702 	(void) sprintf((char *)bp, sync_str,
703 		(void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
704 		(void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
705 		(void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
706 		(void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
707 		(void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
708 		(void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
709 		(void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
710 		(void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
711 		(void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
712 		(void *)&sync_reg_buf.r_y, (void *)&sync_tt);
713 	prom_interpret(bp, 0, 0, 0, 0, 0);
714 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
715 }
716 
717 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
718 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
719 
720 #define	IVSIZE	((MAXIVNUM + 1) * sizeof (struct intr_vector))
721 
722 /*
723  * As OBP takes up some RAM when the system boots, pages will already be "lost"
724  * to the system and reflected in npages by the time we see it.
725  *
726  * We only want to allocate kernel structures in the 64-bit virtual address
727  * space on systems with enough RAM to make the overhead of keeping track of
728  * an extra kernel memory segment worthwhile.
729  *
730  * Since OBP has already performed its memory allocations by this point, if we
731  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
732  * memory in the 64-bit virtual address space; otherwise keep allocations
733  * contiguous with we've mapped so far in the 32-bit virtual address space.
734  */
735 #define	MINMOVE_RAM_MB	((size_t)1900)
736 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
737 
738 pgcnt_t	tune_npages = (pgcnt_t)
739 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
740 
741 static void
742 startup_memlist(void)
743 {
744 	size_t alloc_sz;
745 	size_t ctrs_sz;
746 	caddr_t alloc_base;
747 	caddr_t ctrs_base, ctrs_end;
748 	caddr_t memspace;
749 	caddr_t va;
750 	int memblocks = 0;
751 	struct memlist *cur;
752 	size_t syslimit = (size_t)SYSLIMIT;
753 	size_t sysbase = (size_t)SYSBASE;
754 	int alloc_alignsize = MMU_PAGESIZE;
755 	extern void page_coloring_init(void);
756 
757 	/*
758 	 * Initialize enough of the system to allow kmem_alloc to work by
759 	 * calling boot to allocate its memory until the time that
760 	 * kvm_init is completed.  The page structs are allocated after
761 	 * rounding up end to the nearest page boundary; the memsegs are
762 	 * initialized and the space they use comes from the kernel heap.
763 	 * With appropriate initialization, they can be reallocated later
764 	 * to a size appropriate for the machine's configuration.
765 	 *
766 	 * At this point, memory is allocated for things that will never
767 	 * need to be freed, this used to be "valloced".  This allows a
768 	 * savings as the pages don't need page structures to describe
769 	 * them because them will not be managed by the vm system.
770 	 */
771 
772 	/*
773 	 * We're loaded by boot with the following configuration (as
774 	 * specified in the sun4u/conf/Mapfile):
775 	 *
776 	 * 	text:		4 MB chunk aligned on a 4MB boundary
777 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
778 	 *
779 	 * These two chunks will eventually be mapped by 2 locked 4MB
780 	 * ttes and will represent the nucleus of the kernel.  This gives
781 	 * us some free space that is already allocated, some or all of
782 	 * which is made available to kernel module text.
783 	 *
784 	 * The free space in the data-bss chunk is used for nucleus
785 	 * allocatable data structures and we reserve it using the
786 	 * nalloc_base and nalloc_end variables.  This space is currently
787 	 * being used for hat data structures required for tlb miss
788 	 * handling operations.  We align nalloc_base to a l2 cache
789 	 * linesize because this is the line size the hardware uses to
790 	 * maintain cache coherency.
791 	 * 256K is carved out for module data.
792 	 */
793 
794 	nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
795 	moddata = nalloc_base;
796 	e_moddata = nalloc_base + MODDATA;
797 	nalloc_base = e_moddata;
798 
799 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
800 	valloc_base = nalloc_base;
801 
802 	/*
803 	 * Calculate the start of the data segment.
804 	 */
805 	sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M);
806 
807 	PRM_DEBUG(moddata);
808 	PRM_DEBUG(nalloc_base);
809 	PRM_DEBUG(nalloc_end);
810 	PRM_DEBUG(sdata);
811 
812 	/*
813 	 * Remember any slop after e_text so we can give it to the modules.
814 	 */
815 	PRM_DEBUG(e_text);
816 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
817 	if (((uintptr_t)modtext & MMU_PAGEMASK4M) != (uintptr_t)s_text)
818 		panic("nucleus text overflow");
819 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
820 	    modtext;
821 	PRM_DEBUG(modtext);
822 	PRM_DEBUG(modtext_sz);
823 
824 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
825 	    &boot_physavail, &boot_physavail_len,
826 	    &boot_virtavail, &boot_virtavail_len);
827 	/*
828 	 * Remember what the physically available highest page is
829 	 * so that dumpsys works properly, and find out how much
830 	 * memory is installed.
831 	 */
832 	installed_top_size_memlist_array(boot_physinstalled,
833 	    boot_physinstalled_len, &physmax, &physinstalled);
834 	PRM_DEBUG(physinstalled);
835 	PRM_DEBUG(physmax);
836 
837 	/* Fill out memory nodes config structure */
838 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
839 
840 	/*
841 	 * Get the list of physically available memory to size
842 	 * the number of page structures needed.
843 	 */
844 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
845 	/*
846 	 * This first snap shot of npages can represent the pages used
847 	 * by OBP's text and data approximately. This is used in the
848 	 * the calculation of the kernel size
849 	 */
850 	obp_pages = physinstalled - npages;
851 
852 
853 	/*
854 	 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the
855 	 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently
856 	 * 2MB) and any excess pages are put on physavail.  The assumption is
857 	 * that small-memory systems will need more pages more than they'll
858 	 * need efficiently-mapped module texts.
859 	 */
860 	if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) &&
861 	    modtext_sz > MODTEXT_SM_CAP) {
862 		extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP);
863 		modtext_sz = MODTEXT_SM_CAP;
864 	} else
865 		extra_etpg = 0;
866 	PRM_DEBUG(extra_etpg);
867 	PRM_DEBUG(modtext_sz);
868 	extra_etva = modtext + modtext_sz;
869 	PRM_DEBUG(extra_etva);
870 
871 	/*
872 	 * Account for any pages after e_text and e_data.
873 	 */
874 	npages += extra_etpg;
875 	npages += mmu_btopr(nalloc_end - nalloc_base);
876 	PRM_DEBUG(npages);
877 
878 	/*
879 	 * npages is the maximum of available physical memory possible.
880 	 * (ie. it will never be more than this)
881 	 */
882 
883 	/*
884 	 * initialize the nucleus memory allocator.
885 	 */
886 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
887 
888 	/*
889 	 * Allocate mmu fault status area from the nucleus data area.
890 	 */
891 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
892 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
893 
894 	/*
895 	 * Allocate kernel TSBs from the nucleus data area.
896 	 */
897 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
898 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
899 
900 	/*
901 	 * Allocate cpus structs from the nucleus data area.
902 	 */
903 	if (ndata_alloc_cpus(&ndata) != 0)
904 		cmn_err(CE_PANIC, "no more nucleus memory after cpu alloc");
905 
906 	/*
907 	 * Allocate dmv dispatch table from the nucleus data area.
908 	 */
909 	if (ndata_alloc_dmv(&ndata) != 0)
910 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
911 
912 
913 	page_coloring_init();
914 
915 	/*
916 	 * Allocate page_freelists bin headers for memnode 0 from the
917 	 * nucleus data area.
918 	 */
919 	if (ndata_alloc_page_freelists(&ndata, 0) != 0)
920 		cmn_err(CE_PANIC,
921 		    "no more nucleus memory after page free lists alloc");
922 
923 	if (kpm_enable) {
924 		kpm_init();
925 		/*
926 		 * kpm page space -- Update kpm_npages and make the
927 		 * same assumption about fragmenting as it is done
928 		 * for memseg_sz.
929 		 */
930 		kpm_npages_setup(memblocks + 4);
931 	}
932 
933 	/*
934 	 * Allocate hat related structs from the nucleus data area.
935 	 */
936 	if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0)
937 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
938 
939 	/*
940 	 * We want to do the BOP_ALLOCs before the real allocation of page
941 	 * structs in order to not have to allocate page structs for this
942 	 * memory.  We need to calculate a virtual address because we want
943 	 * the page structs to come before other allocations in virtual address
944 	 * space.  This is so some (if not all) of page structs can actually
945 	 * live in the nucleus.
946 	 */
947 
948 	/*
949 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
950 	 *
951 	 * There are comments all over the SFMMU code warning of dire
952 	 * consequences if the TSBs are moved out of 32-bit space.  This
953 	 * is largely because the asm code uses "sethi %hi(addr)"-type
954 	 * instructions which will not provide the expected result if the
955 	 * address is a 64-bit one.
956 	 *
957 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
958 	 */
959 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
960 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
961 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
962 	PRM_DEBUG(alloc_base);
963 
964 	/*
965 	 * Allocate IOMMU TSB array.  We do this here so that the physical
966 	 * memory gets deducted from the PROM's physical memory list.
967 	 */
968 	alloc_base = iommu_tsb_init(alloc_base);
969 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
970 	    ecache_alignsize);
971 	PRM_DEBUG(alloc_base);
972 
973 	/*
974 	 * Platforms like Starcat and OPL need special structures assigned in
975 	 * 32-bit virtual address space because their probing routines execute
976 	 * FCode, and FCode can't handle 64-bit virtual addresses...
977 	 */
978 	if (&plat_startup_memlist) {
979 		alloc_base = plat_startup_memlist(alloc_base);
980 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
981 		    ecache_alignsize);
982 		PRM_DEBUG(alloc_base);
983 	}
984 
985 	/*
986 	 * If we have enough memory, use 4M pages for alignment because it
987 	 * greatly reduces the number of TLB misses we take albeit at the cost
988 	 * of possible RAM wastage (degenerate case of 4 MB - MMU_PAGESIZE per
989 	 * allocation.) Still, the speedup on large memory systems (e.g. > 64
990 	 * GB) is quite noticeable, so it is worth the effort to do if we can.
991 	 *
992 	 * Note, however, that this speedup will only occur if the boot PROM
993 	 * uses the largest possible MMU page size possible to map memory
994 	 * requests that are properly aligned and sized (for example, a request
995 	 * for a multiple of 4MB of memory aligned to a 4MB boundary will
996 	 * result in a mapping using a 4MB MMU page.)
997 	 *
998 	 * Even then, the large page mappings will only speed things up until
999 	 * the startup process proceeds a bit further, as when
1000 	 * sfmmu_map_prom_mappings() copies page mappings from the PROM to the
1001 	 * kernel it remaps everything but the TSBs using 8K pages anyway...
1002 	 *
1003 	 * At some point in the future, sfmmu_map_prom_mappings() will be
1004 	 * rewritten to copy memory mappings to the kernel using the same MMU
1005 	 * page sizes the PROM used.  When that occurs, if the PROM did use
1006 	 * large MMU pages to map memory, the alignment/sizing work we're
1007 	 * doing now should give us a nice extra performance boost, albeit at
1008 	 * the cost of greater RAM usage...
1009 	 */
1010 	alloc_alignsize = ((npages >= tune_npages) ? MMU_PAGESIZE4M :
1011 	    MMU_PAGESIZE);
1012 
1013 	PRM_DEBUG(tune_npages);
1014 	PRM_DEBUG(alloc_alignsize);
1015 
1016 	/*
1017 	 * Save off where the contiguous allocations to date have ended
1018 	 * in econtig32.
1019 	 */
1020 	econtig32 = alloc_base;
1021 	PRM_DEBUG(econtig32);
1022 
1023 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1024 		cmn_err(CE_PANIC, "econtig32 too big");
1025 
1026 	/*
1027 	 * To avoid memory allocation collisions in the 32-bit virtual address
1028 	 * space, make allocations from this point forward in 64-bit virtual
1029 	 * address space starting at syslimit and working up.  Also use the
1030 	 * alignment specified by alloc_alignsize, as we may be able to save
1031 	 * ourselves TLB misses by using larger page sizes if they're
1032 	 * available.
1033 	 *
1034 	 * All this is needed because on large memory systems, the default
1035 	 * Solaris allocations will collide with SYSBASE32, which is hard
1036 	 * coded to be at the virtual address 0x78000000.  Therefore, on 64-bit
1037 	 * kernels, move the allocations to a location in the 64-bit virtual
1038 	 * address space space, allowing those structures to grow without
1039 	 * worry.
1040 	 *
1041 	 * On current CPUs we'll run out of physical memory address bits before
1042 	 * we need to worry about the allocations running into anything else in
1043 	 * VM or the virtual address holes on US-I and II, as there's currently
1044 	 * about 1 TB of addressable space before the US-I/II VA hole.
1045 	 */
1046 	kmem64_base = (caddr_t)syslimit;
1047 	PRM_DEBUG(kmem64_base);
1048 
1049 	alloc_base = (caddr_t)roundup((uintptr_t)kmem64_base, alloc_alignsize);
1050 
1051 	/*
1052 	 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate
1053 	 * them here.
1054 	 */
1055 	if (khme_hash == NULL || uhme_hash == NULL) {
1056 		/*
1057 		 * alloc_hme_buckets() will align alloc_base properly before
1058 		 * assigning the hash buckets, so we don't need to do it
1059 		 * before the call...
1060 		 */
1061 		alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize);
1062 
1063 		PRM_DEBUG(alloc_base);
1064 		PRM_DEBUG(khme_hash);
1065 		PRM_DEBUG(uhme_hash);
1066 	}
1067 
1068 	/*
1069 	 * Allocate the remaining page freelists.  NUMA systems can
1070 	 * have lots of page freelists, one per node, which quickly
1071 	 * outgrow the amount of nucleus memory available.
1072 	 */
1073 	if (max_mem_nodes > 1) {
1074 		int mnode;
1075 		caddr_t alloc_start = alloc_base;
1076 
1077 		for (mnode = 1; mnode < max_mem_nodes; mnode++) {
1078 			alloc_base = alloc_page_freelists(mnode, alloc_base,
1079 				ecache_alignsize);
1080 		}
1081 
1082 		if (alloc_base > alloc_start) {
1083 			alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1084 				alloc_alignsize);
1085 			if ((caddr_t)BOP_ALLOC(bootops, alloc_start,
1086 				alloc_base - alloc_start,
1087 				alloc_alignsize) != alloc_start)
1088 				cmn_err(CE_PANIC,
1089 					"Unable to alloc page freelists\n");
1090 		}
1091 
1092 		PRM_DEBUG(alloc_base);
1093 	}
1094 
1095 	if (!mml_table) {
1096 		size_t mmltable_sz;
1097 
1098 		/*
1099 		 * We need to allocate the mml_table here because there
1100 		 * was not enough space within the nucleus.
1101 		 */
1102 		mmltable_sz = sizeof (kmutex_t) * mml_table_sz;
1103 		alloc_sz = roundup(mmltable_sz, alloc_alignsize);
1104 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1105 		    alloc_alignsize);
1106 
1107 		if ((mml_table = (kmutex_t *)BOP_ALLOC(bootops, alloc_base,
1108 		    alloc_sz, alloc_alignsize)) != (kmutex_t *)alloc_base)
1109 			panic("mml_table alloc failure");
1110 
1111 		alloc_base += alloc_sz;
1112 		PRM_DEBUG(mml_table);
1113 		PRM_DEBUG(alloc_base);
1114 	}
1115 
1116 	if (kpm_enable && !(kpmp_table || kpmp_stable)) {
1117 		size_t kpmptable_sz;
1118 		caddr_t table;
1119 
1120 		/*
1121 		 * We need to allocate either kpmp_table or kpmp_stable here
1122 		 * because there was not enough space within the nucleus.
1123 		 */
1124 		kpmptable_sz = (kpm_smallpages == 0) ?
1125 				sizeof (kpm_hlk_t) * kpmp_table_sz :
1126 				sizeof (kpm_shlk_t) * kpmp_stable_sz;
1127 
1128 		alloc_sz = roundup(kpmptable_sz, alloc_alignsize);
1129 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1130 		    alloc_alignsize);
1131 
1132 		table = BOP_ALLOC(bootops, alloc_base, alloc_sz,
1133 				alloc_alignsize);
1134 
1135 		if (table != alloc_base)
1136 			panic("kpmp_table or kpmp_stable alloc failure");
1137 
1138 		if (kpm_smallpages == 0) {
1139 			kpmp_table = (kpm_hlk_t *)table;
1140 			PRM_DEBUG(kpmp_table);
1141 		} else {
1142 			kpmp_stable = (kpm_shlk_t *)table;
1143 			PRM_DEBUG(kpmp_stable);
1144 		}
1145 
1146 		alloc_base += alloc_sz;
1147 		PRM_DEBUG(alloc_base);
1148 	}
1149 
1150 	if (&ecache_init_scrub_flush_area) {
1151 		/*
1152 		 * Pass alloc_base directly, as the routine itself is
1153 		 * responsible for any special alignment requirements...
1154 		 */
1155 		alloc_base = ecache_init_scrub_flush_area(alloc_base);
1156 		PRM_DEBUG(alloc_base);
1157 	}
1158 
1159 	/*
1160 	 * Take the most current snapshot we can by calling mem-update.
1161 	 */
1162 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1163 	    &boot_physavail, &boot_physavail_len,
1164 	    &boot_virtavail, &boot_virtavail_len);
1165 
1166 	/*
1167 	 * Reset npages and memblocks based on boot_physavail list.
1168 	 */
1169 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
1170 	PRM_DEBUG(npages);
1171 
1172 	/*
1173 	 * Account for extra memory after e_text.
1174 	 */
1175 	npages += extra_etpg;
1176 
1177 	/*
1178 	 * Calculate the largest free memory chunk in the nucleus data area.
1179 	 * We need to figure out if page structs can fit in there or not.
1180 	 * We also make sure enough page structs get created for any physical
1181 	 * memory we might be returning to the system.
1182 	 */
1183 	ndata_remain_sz = ndata_maxsize(&ndata);
1184 	PRM_DEBUG(ndata_remain_sz);
1185 
1186 	pp_sz = sizeof (struct page) * npages;
1187 
1188 	/*
1189 	 * Here's a nice bit of code based on somewhat recursive logic:
1190 	 *
1191 	 * If the page array would fit within the nucleus, we want to
1192 	 * add npages to cover any extra memory we may be returning back
1193 	 * to the system.
1194 	 *
1195 	 * HOWEVER, the page array is sized by calculating the size of
1196 	 * (struct page * npages), as are the pagehash table, ctrs and
1197 	 * memseg_list, so the very act of performing the calculation below may
1198 	 * in fact make the array large enough that it no longer fits in the
1199 	 * nucleus, meaning there would now be a much larger area of the
1200 	 * nucleus free that should really be added to npages, which would
1201 	 * make the page array that much larger, and so on.
1202 	 *
1203 	 * This also ignores the memory possibly used in the nucleus for the
1204 	 * the page hash, ctrs and memseg list and the fact that whether they
1205 	 * fit there or not varies with the npages calculation below, but we
1206 	 * don't even factor them into the equation at this point; perhaps we
1207 	 * should or perhaps we should just take the approach that the few
1208 	 * extra pages we could add via this calculation REALLY aren't worth
1209 	 * the hassle...
1210 	 */
1211 	if (ndata_remain_sz > pp_sz) {
1212 		size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize);
1213 
1214 		npages += mmu_btop(spare);
1215 
1216 		pp_sz = npages * sizeof (struct page);
1217 
1218 		pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize);
1219 	}
1220 
1221 	/*
1222 	 * If physmem is patched to be non-zero, use it instead of
1223 	 * the monitor value unless physmem is larger than the total
1224 	 * amount of memory on hand.
1225 	 */
1226 	if (physmem == 0 || physmem > npages)
1227 		physmem = npages;
1228 
1229 	/*
1230 	 * If pp_base is NULL that means the routines above have determined
1231 	 * the page array will not fit in the nucleus; we'll have to
1232 	 * BOP_ALLOC() ourselves some space for them.
1233 	 */
1234 	if (pp_base == NULL) {
1235 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1236 		    alloc_alignsize);
1237 
1238 		alloc_sz = roundup(pp_sz, alloc_alignsize);
1239 
1240 		if ((pp_base = (struct page *)BOP_ALLOC(bootops,
1241 		    alloc_base, alloc_sz, alloc_alignsize)) !=
1242 		    (struct page *)alloc_base)
1243 			panic("page alloc failure");
1244 
1245 		alloc_base += alloc_sz;
1246 	}
1247 
1248 	/*
1249 	 * The page structure hash table size is a power of 2
1250 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1251 	 */
1252 	page_hashsz = npages / PAGE_HASHAVELEN;
1253 	page_hashsz = 1 << highbit((ulong_t)page_hashsz);
1254 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1255 
1256 	/*
1257 	 * We want to TRY to fit the page structure hash table,
1258 	 * the page size free list counters, the memseg list and
1259 	 * and the kpm page space in the nucleus if possible.
1260 	 *
1261 	 * alloc_sz counts how much memory needs to be allocated by
1262 	 * BOP_ALLOC().
1263 	 */
1264 	page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize);
1265 
1266 	alloc_sz = (page_hash == NULL ? pagehash_sz : 0);
1267 
1268 	/*
1269 	 * Size up per page size free list counters.
1270 	 */
1271 	ctrs_sz = page_ctrs_sz();
1272 	ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize);
1273 
1274 	if (ctrs_base == NULL)
1275 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz;
1276 
1277 	/*
1278 	 * The memseg list is for the chunks of physical memory that
1279 	 * will be managed by the vm system.  The number calculated is
1280 	 * a guess as boot may fragment it more when memory allocations
1281 	 * are made before kphysm_init().  Currently, there are two
1282 	 * allocations before then, so we assume each causes fragmen-
1283 	 * tation, and add a couple more for good measure.
1284 	 */
1285 	memseg_sz = sizeof (struct memseg) * (memblocks + 4);
1286 	memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize);
1287 
1288 	if (memseg_base == NULL)
1289 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz;
1290 
1291 
1292 	if (kpm_enable) {
1293 		/*
1294 		 * kpm page space -- Update kpm_npages and make the
1295 		 * same assumption about fragmenting as it is done
1296 		 * for memseg_sz above.
1297 		 */
1298 		kpm_npages_setup(memblocks + 4);
1299 		kpm_pp_sz = (kpm_smallpages == 0) ?
1300 				kpm_npages * sizeof (kpm_page_t):
1301 				kpm_npages * sizeof (kpm_spage_t);
1302 
1303 		kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz,
1304 		    ecache_alignsize);
1305 
1306 		if (kpm_pp_base == NULL)
1307 			alloc_sz = roundup(alloc_sz, ecache_alignsize) +
1308 			    kpm_pp_sz;
1309 	}
1310 
1311 	if (alloc_sz > 0) {
1312 		uintptr_t bop_base;
1313 
1314 		/*
1315 		 * We need extra memory allocated through BOP_ALLOC.
1316 		 */
1317 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1318 		    alloc_alignsize);
1319 
1320 		alloc_sz = roundup(alloc_sz, alloc_alignsize);
1321 
1322 		if ((bop_base = (uintptr_t)BOP_ALLOC(bootops, alloc_base,
1323 		    alloc_sz, alloc_alignsize)) != (uintptr_t)alloc_base)
1324 			panic("system page struct alloc failure");
1325 
1326 		alloc_base += alloc_sz;
1327 
1328 		if (page_hash == NULL) {
1329 			page_hash = (struct page **)bop_base;
1330 			bop_base = roundup(bop_base + pagehash_sz,
1331 			    ecache_alignsize);
1332 		}
1333 
1334 		if (ctrs_base == NULL) {
1335 			ctrs_base = (caddr_t)bop_base;
1336 			bop_base = roundup(bop_base + ctrs_sz,
1337 			    ecache_alignsize);
1338 		}
1339 
1340 		if (memseg_base == NULL) {
1341 			memseg_base = (struct memseg *)bop_base;
1342 			bop_base = roundup(bop_base + memseg_sz,
1343 			    ecache_alignsize);
1344 		}
1345 
1346 		if (kpm_enable && kpm_pp_base == NULL) {
1347 			kpm_pp_base = (uintptr_t)bop_base;
1348 			bop_base = roundup(bop_base + kpm_pp_sz,
1349 			    ecache_alignsize);
1350 		}
1351 
1352 		ASSERT(bop_base <= (uintptr_t)alloc_base);
1353 	}
1354 
1355 	/*
1356 	 * Initialize per page size free list counters.
1357 	 */
1358 	ctrs_end = page_ctrs_alloc(ctrs_base);
1359 	ASSERT(ctrs_base + ctrs_sz >= ctrs_end);
1360 
1361 	PRM_DEBUG(page_hash);
1362 	PRM_DEBUG(memseg_base);
1363 	PRM_DEBUG(kpm_pp_base);
1364 	PRM_DEBUG(kpm_pp_sz);
1365 	PRM_DEBUG(pp_base);
1366 	PRM_DEBUG(pp_sz);
1367 	PRM_DEBUG(alloc_base);
1368 
1369 #ifdef	TRAPTRACE
1370 	/*
1371 	 * Allocate trap trace buffer last so as not to affect
1372 	 * the 4M alignments of the allocations above on V9 SPARCs...
1373 	 */
1374 	alloc_base = trap_trace_alloc(alloc_base);
1375 	PRM_DEBUG(alloc_base);
1376 #endif	/* TRAPTRACE */
1377 
1378 	if (kmem64_base) {
1379 		/*
1380 		 * Set the end of the kmem64 segment for V9 SPARCs, if
1381 		 * appropriate...
1382 		 */
1383 		kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base,
1384 		    alloc_alignsize);
1385 
1386 		PRM_DEBUG(kmem64_base);
1387 		PRM_DEBUG(kmem64_end);
1388 	}
1389 
1390 	/*
1391 	 * Allocate space for the interrupt vector table.
1392 	 */
1393 	memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vector,
1394 	    IVSIZE, MMU_PAGESIZE);
1395 	if (memspace != (caddr_t)intr_vector)
1396 		panic("interrupt table allocation failure");
1397 
1398 	/*
1399 	 * The memory lists from boot are allocated from the heap arena
1400 	 * so that later they can be freed and/or reallocated.
1401 	 */
1402 	if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1)
1403 		panic("could not retrieve property \"extent\"");
1404 
1405 	/*
1406 	 * Between now and when we finish copying in the memory lists,
1407 	 * allocations happen so the space gets fragmented and the
1408 	 * lists longer.  Leave enough space for lists twice as long
1409 	 * as what boot says it has now; roundup to a pagesize.
1410 	 * Also add space for the final phys-avail copy in the fixup
1411 	 * routine.
1412 	 */
1413 	va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE +
1414 	    roundup(IVSIZE, MMU_PAGESIZE));
1415 	memlist_sz *= 4;
1416 	memlist_sz = roundup(memlist_sz, MMU_PAGESIZE);
1417 	memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN);
1418 	if (memspace == NULL)
1419 		halt("Boot allocation failed.");
1420 
1421 	memlist = (struct memlist *)memspace;
1422 	memlist_end = (char *)memspace + memlist_sz;
1423 
1424 	PRM_DEBUG(memlist);
1425 	PRM_DEBUG(memlist_end);
1426 	PRM_DEBUG(sysbase);
1427 	PRM_DEBUG(syslimit);
1428 
1429 	kernelheap_init((void *)sysbase, (void *)syslimit,
1430 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1431 
1432 	/*
1433 	 * Take the most current snapshot we can by calling mem-update.
1434 	 */
1435 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1436 	    &boot_physavail, &boot_physavail_len,
1437 	    &boot_virtavail, &boot_virtavail_len);
1438 
1439 	/*
1440 	 * Remove the space used by BOP_ALLOC from the kernel heap
1441 	 * plus the area actually used by the OBP (if any)
1442 	 * ignoring virtual addresses in virt_avail, above syslimit.
1443 	 */
1444 	virt_avail = memlist;
1445 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1446 
1447 	for (cur = virt_avail; cur->next; cur = cur->next) {
1448 		uint64_t range_base, range_size;
1449 
1450 		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1451 			continue;
1452 		if (range_base >= (uint64_t)syslimit)
1453 			break;
1454 		/*
1455 		 * Limit the range to end at syslimit.
1456 		 */
1457 		range_size = MIN(cur->next->address,
1458 		    (uint64_t)syslimit) - range_base;
1459 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1460 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1461 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1462 	}
1463 
1464 	phys_avail = memlist;
1465 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1466 	    &memlist, 0, 0);
1467 
1468 	/*
1469 	 * Add any extra memory after e_text to the phys_avail list, as long
1470 	 * as there's at least a page to add.
1471 	 */
1472 	if (extra_etpg)
1473 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1474 		    &memlist, &phys_avail);
1475 
1476 	/*
1477 	 * Add any extra memory after e_data to the phys_avail list as long
1478 	 * as there's at least a page to add.  Usually, there isn't any,
1479 	 * since extra HME blocks typically get allocated there first before
1480 	 * using RAM elsewhere.
1481 	 */
1482 	if ((nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE)) == NULL)
1483 		nalloc_base = nalloc_end;
1484 	ndata_remain_sz = nalloc_end - nalloc_base;
1485 
1486 	if (ndata_remain_sz >= MMU_PAGESIZE)
1487 		memlist_add(va_to_pa(nalloc_base),
1488 		    (uint64_t)ndata_remain_sz, &memlist, &phys_avail);
1489 
1490 	PRM_DEBUG(memlist);
1491 	PRM_DEBUG(memlist_sz);
1492 	PRM_DEBUG(memspace);
1493 
1494 	if ((caddr_t)memlist > (memspace + memlist_sz))
1495 		panic("memlist overflow");
1496 
1497 	PRM_DEBUG(pp_base);
1498 	PRM_DEBUG(memseg_base);
1499 	PRM_DEBUG(npages);
1500 
1501 	/*
1502 	 * Initialize the page structures from the memory lists.
1503 	 */
1504 	kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages);
1505 
1506 	availrmem_initial = availrmem = freemem;
1507 	PRM_DEBUG(availrmem);
1508 
1509 	/*
1510 	 * Some of the locks depend on page_hashsz being set!
1511 	 * kmem_init() depends on this; so, keep it here.
1512 	 */
1513 	page_lock_init();
1514 
1515 	/*
1516 	 * Initialize kernel memory allocator.
1517 	 */
1518 	kmem_init();
1519 
1520 	/*
1521 	 * Initialize bp_mapin().
1522 	 */
1523 	bp_init(shm_alignment, HAT_STRICTORDER);
1524 
1525 	/*
1526 	 * Reserve space for panicbuf and intr_vector from the 32-bit heap
1527 	 */
1528 	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1529 	    panicbuf, panicbuf + PANICBUFSIZE,
1530 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1531 
1532 	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1533 	    intr_vector, (caddr_t)intr_vector + IVSIZE,
1534 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1535 
1536 	mem_config_init();
1537 }
1538 
1539 static void
1540 startup_modules(void)
1541 {
1542 	int proplen, nhblk1, nhblk8;
1543 	size_t  nhblksz;
1544 	pgcnt_t hblk_pages, pages_per_hblk;
1545 	size_t hme8blk_sz, hme1blk_sz;
1546 
1547 	/*
1548 	 * Log any optional messages from the boot program
1549 	 */
1550 	proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message");
1551 	if (proplen > 0) {
1552 		char *msg;
1553 		size_t len = (size_t)proplen;
1554 
1555 		msg = kmem_zalloc(len, KM_SLEEP);
1556 		(void) BOP_GETPROP(bootops, "boot-message", msg);
1557 		cmn_err(CE_CONT, "?%s\n", msg);
1558 		kmem_free(msg, len);
1559 	}
1560 
1561 	/*
1562 	 * Let the platforms have a chance to change default
1563 	 * values before reading system file.
1564 	 */
1565 	if (&set_platform_defaults)
1566 		set_platform_defaults();
1567 
1568 	/*
1569 	 * Calculate default settings of system parameters based upon
1570 	 * maxusers, yet allow to be overridden via the /etc/system file.
1571 	 */
1572 	param_calc(0);
1573 
1574 	mod_setup();
1575 
1576 	/*
1577 	 * If this is a positron, complain and halt.
1578 	 */
1579 	if (&iam_positron && iam_positron()) {
1580 		cmn_err(CE_WARN, "This hardware platform is not supported"
1581 		    " by this release of Solaris.\n");
1582 #ifdef DEBUG
1583 		prom_enter_mon();	/* Type 'go' to resume */
1584 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1585 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1586 
1587 #else /* DEBUG */
1588 		halt(0);
1589 #endif /* DEBUG */
1590 	}
1591 
1592 	/*
1593 	 * If we are running firmware that isn't 64-bit ready
1594 	 * then complain and halt.
1595 	 */
1596 	do_prom_version_check();
1597 
1598 	/*
1599 	 * Initialize system parameters
1600 	 */
1601 	param_init();
1602 
1603 	/*
1604 	 * maxmem is the amount of physical memory we're playing with.
1605 	 */
1606 	maxmem = physmem;
1607 
1608 	/* Set segkp limits. */
1609 	ncbase = (caddr_t)SEGDEBUGBASE;
1610 	ncend = (caddr_t)SEGDEBUGBASE;
1611 
1612 	/*
1613 	 * Initialize the hat layer.
1614 	 */
1615 	hat_init();
1616 
1617 	/*
1618 	 * Initialize segment management stuff.
1619 	 */
1620 	seg_init();
1621 
1622 	/*
1623 	 * Create the va>tte handler, so the prom can understand
1624 	 * kernel translations.  The handler is installed later, just
1625 	 * as we are about to take over the trap table from the prom.
1626 	 */
1627 	create_va_to_tte();
1628 
1629 	/*
1630 	 * Load the forthdebugger (optional)
1631 	 */
1632 	forthdebug_init();
1633 
1634 	/*
1635 	 * Create OBP node for console input callbacks
1636 	 * if it is needed.
1637 	 */
1638 	startup_create_io_node();
1639 
1640 	if (modloadonly("fs", "specfs") == -1)
1641 		halt("Can't load specfs");
1642 
1643 	if (modloadonly("fs", "devfs") == -1)
1644 		halt("Can't load devfs");
1645 
1646 	if (modloadonly("misc", "swapgeneric") == -1)
1647 		halt("Can't load swapgeneric");
1648 
1649 	(void) modloadonly("sys", "lbl_edition");
1650 
1651 	dispinit();
1652 
1653 	/*
1654 	 * Infer meanings to the members of the idprom buffer.
1655 	 */
1656 	parse_idprom();
1657 
1658 	/* Read cluster configuration data. */
1659 	clconf_init();
1660 
1661 	setup_ddi();
1662 
1663 	/*
1664 	 * Lets take this opportunity to load the root device.
1665 	 */
1666 	if (loadrootmodules() != 0)
1667 		debug_enter("Can't load the root filesystem");
1668 
1669 	/*
1670 	 * Load tod driver module for the tod part found on this system.
1671 	 * Recompute the cpu frequency/delays based on tod as tod part
1672 	 * tends to keep time more accurately.
1673 	 */
1674 	if (&load_tod_module)
1675 		load_tod_module();
1676 
1677 	/*
1678 	 * Allow platforms to load modules which might
1679 	 * be needed after bootops are gone.
1680 	 */
1681 	if (&load_platform_modules)
1682 		load_platform_modules();
1683 
1684 	setcpudelay();
1685 
1686 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1687 	    &boot_physavail, &boot_physavail_len,
1688 	    &boot_virtavail, &boot_virtavail_len);
1689 
1690 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1691 
1692 	/*
1693 	 * Calculation and allocation of hmeblks needed to remap
1694 	 * the memory allocated by PROM till now:
1695 	 *
1696 	 * (1)  calculate how much virtual memory has been bop_alloc'ed.
1697 	 * (2)  roundup this memory to span of hme8blk, i.e. 64KB
1698 	 * (3)  calculate number of hme8blk's needed to remap this memory
1699 	 * (4)  calculate amount of memory that's consumed by these hme8blk's
1700 	 * (5)  add memory calculated in steps (2) and (4) above.
1701 	 * (6)  roundup this memory to span of hme8blk, i.e. 64KB
1702 	 * (7)  calculate number of hme8blk's needed to remap this memory
1703 	 * (8)  calculate amount of memory that's consumed by these hme8blk's
1704 	 * (9)  allocate additional hme1blk's to hold large mappings.
1705 	 *	H8TOH1 determines this.  The current SWAG gives enough hblk1's
1706 	 *	to remap everything with 4M mappings.
1707 	 * (10) account for partially used hblk8's due to non-64K aligned
1708 	 *	PROM mapping entries.
1709 	 * (11) add memory calculated in steps (8), (9), and (10) above.
1710 	 * (12) kmem_zalloc the memory calculated in (11); since segkmem
1711 	 *	is not ready yet, this gets bop_alloc'ed.
1712 	 * (13) there will be very few bop_alloc's after this point before
1713 	 *	trap table takes over
1714 	 */
1715 
1716 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures. */
1717 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1718 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1719 
1720 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1721 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1722 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1723 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1724 	hblk_pages = btopr(nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz);
1725 	bop_alloc_pages += hblk_pages;
1726 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1727 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1728 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1729 	if (nhblk1 < hblk1_min)
1730 		nhblk1 = hblk1_min;
1731 	if (nhblk8 < hblk8_min)
1732 		nhblk8 = hblk8_min;
1733 
1734 	/*
1735 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1736 	 * boundary, the number of hblk8's needed to map the entries in the
1737 	 * boot_virtavail list needs to be adjusted to take this into
1738 	 * consideration.  Thus, we need to add additional hblk8's since it
1739 	 * is possible that an hblk8 will not have all 8 slots used due to
1740 	 * alignment constraints.  Since there were boot_virtavail_len entries
1741 	 * in that list, we need to add that many hblk8's to the number
1742 	 * already calculated to make sure we don't underestimate.
1743 	 */
1744 	nhblk8 += boot_virtavail_len;
1745 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1746 
1747 	/* Allocate in pagesize chunks */
1748 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1749 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1750 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1751 }
1752 
1753 static void
1754 startup_bop_gone(void)
1755 {
1756 	extern int bop_io_quiesced;
1757 
1758 	/*
1759 	 * Destroy the MD initialized at startup
1760 	 * The startup initializes the MD framework
1761 	 * using prom and BOP alloc free it now.
1762 	 */
1763 	mach_descrip_startup_fini();
1764 
1765 	/*
1766 	 * Call back into boot and release boots resources.
1767 	 */
1768 	BOP_QUIESCE_IO(bootops);
1769 	bop_io_quiesced = 1;
1770 
1771 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1772 	    &boot_physavail, &boot_physavail_len,
1773 	    &boot_virtavail, &boot_virtavail_len);
1774 	/*
1775 	 * Copy physinstalled list into kernel space.
1776 	 */
1777 	phys_install = memlist;
1778 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1779 
1780 	/*
1781 	 * setup physically contiguous area twice as large as the ecache.
1782 	 * this is used while doing displacement flush of ecaches
1783 	 */
1784 	if (&ecache_flush_address) {
1785 		ecache_flushaddr = ecache_flush_address();
1786 		if (ecache_flushaddr == (uint64_t)-1) {
1787 			cmn_err(CE_PANIC,
1788 			    "startup: no memory to set ecache_flushaddr");
1789 		}
1790 	}
1791 
1792 	/*
1793 	 * Virtual available next.
1794 	 */
1795 	ASSERT(virt_avail != NULL);
1796 	memlist_free_list(virt_avail);
1797 	virt_avail = memlist;
1798 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1799 
1800 	/*
1801 	 * Last chance to ask our booter questions ..
1802 	 */
1803 }
1804 
1805 
1806 /*
1807  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1808  * allocations have been performed.  We can't call it in startup_bop_gone
1809  * since later operations can cause obp to allocate more memory.
1810  */
1811 void
1812 startup_fixup_physavail(void)
1813 {
1814 	struct memlist *cur;
1815 
1816 	/*
1817 	 * take the most current snapshot we can by calling mem-update
1818 	 */
1819 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1820 	    &boot_physavail, &boot_physavail_len,
1821 	    &boot_virtavail, &boot_virtavail_len);
1822 
1823 	/*
1824 	 * Copy phys_avail list, again.
1825 	 * Both the kernel/boot and the prom have been allocating
1826 	 * from the original list we copied earlier.
1827 	 */
1828 	cur = memlist;
1829 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1830 	    &memlist, 0, 0);
1831 
1832 	/*
1833 	 * Add any extra memory after e_text we added to the phys_avail list
1834 	 * back to the old list.
1835 	 */
1836 	if (extra_etpg)
1837 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1838 		    &memlist, &cur);
1839 	if (ndata_remain_sz >= MMU_PAGESIZE)
1840 		memlist_add(va_to_pa(nalloc_base),
1841 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1842 
1843 	/*
1844 	 * There isn't any bounds checking on the memlist area
1845 	 * so ensure it hasn't overgrown.
1846 	 */
1847 	if ((caddr_t)memlist > (caddr_t)memlist_end)
1848 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1849 
1850 	/*
1851 	 * The kernel removes the pages that were allocated for it from
1852 	 * the freelist, but we now have to find any -extra- pages that
1853 	 * the prom has allocated for it's own book-keeping, and remove
1854 	 * them from the freelist too. sigh.
1855 	 */
1856 	fix_prom_pages(phys_avail, cur);
1857 
1858 	ASSERT(phys_avail != NULL);
1859 	memlist_free_list(phys_avail);
1860 	phys_avail = cur;
1861 
1862 	/*
1863 	 * We're done with boot.  Just after this point in time, boot
1864 	 * gets unmapped, so we can no longer rely on its services.
1865 	 * Zero the bootops to indicate this fact.
1866 	 */
1867 	bootops = (struct bootops *)NULL;
1868 	BOOTOPS_GONE();
1869 }
1870 
1871 static void
1872 startup_vm(void)
1873 {
1874 	size_t	i;
1875 	struct segmap_crargs a;
1876 	struct segkpm_crargs b;
1877 
1878 	uint64_t avmem;
1879 	caddr_t va;
1880 	pgcnt_t	max_phys_segkp;
1881 	int	mnode;
1882 
1883 	extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg;
1884 
1885 	/*
1886 	 * get prom's mappings, create hments for them and switch
1887 	 * to the kernel context.
1888 	 */
1889 	hat_kern_setup();
1890 
1891 	/*
1892 	 * Take over trap table
1893 	 */
1894 	setup_trap_table();
1895 
1896 	/*
1897 	 * Install the va>tte handler, so that the prom can handle
1898 	 * misses and understand the kernel table layout in case
1899 	 * we need call into the prom.
1900 	 */
1901 	install_va_to_tte();
1902 
1903 	/*
1904 	 * Set a flag to indicate that the tba has been taken over.
1905 	 */
1906 	tba_taken_over = 1;
1907 
1908 	/* initialize MMU primary context register */
1909 	mmu_init_kcontext();
1910 
1911 	/*
1912 	 * The boot cpu can now take interrupts, x-calls, x-traps
1913 	 */
1914 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1915 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1916 
1917 	/*
1918 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1919 	 */
1920 	tbr_wr_addr_inited = 1;
1921 
1922 	/*
1923 	 * Initialize VM system, and map kernel address space.
1924 	 */
1925 	kvm_init();
1926 
1927 	/*
1928 	 * XXX4U: previously, we initialized and turned on
1929 	 * the caches at this point. But of course we have
1930 	 * nothing to do, as the prom has already done this
1931 	 * for us -- main memory must be E$able at all times.
1932 	 */
1933 
1934 	/*
1935 	 * If the following is true, someone has patched
1936 	 * phsymem to be less than the number of pages that
1937 	 * the system actually has.  Remove pages until system
1938 	 * memory is limited to the requested amount.  Since we
1939 	 * have allocated page structures for all pages, we
1940 	 * correct the amount of memory we want to remove
1941 	 * by the size of the memory used to hold page structures
1942 	 * for the non-used pages.
1943 	 */
1944 	if (physmem < npages) {
1945 		pgcnt_t diff, off;
1946 		struct page *pp;
1947 		struct seg kseg;
1948 
1949 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1950 
1951 		off = 0;
1952 		diff = npages - physmem;
1953 		diff -= mmu_btopr(diff * sizeof (struct page));
1954 		kseg.s_as = &kas;
1955 		while (diff--) {
1956 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
1957 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1958 			    &kseg, (caddr_t)off);
1959 			if (pp == NULL)
1960 				cmn_err(CE_PANIC, "limited physmem too much!");
1961 			page_io_unlock(pp);
1962 			page_downgrade(pp);
1963 			availrmem--;
1964 			off += MMU_PAGESIZE;
1965 		}
1966 	}
1967 
1968 	/*
1969 	 * When printing memory, show the total as physmem less
1970 	 * that stolen by a debugger.
1971 	 */
1972 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1973 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1974 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1975 
1976 	avmem = (uint64_t)freemem << PAGESHIFT;
1977 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1978 
1979 	/* For small memory systems disable automatic large pages. */
1980 	if (physmem < auto_lpg_min_physmem) {
1981 		exec_lpg_disable = 1;
1982 		use_brk_lpg = 0;
1983 		use_stk_lpg = 0;
1984 		use_zmap_lpg = 0;
1985 	}
1986 
1987 	/*
1988 	 * Perform platform specific freelist processing
1989 	 */
1990 	if (&plat_freelist_process) {
1991 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
1992 			if (mem_node_config[mnode].exists)
1993 				plat_freelist_process(mnode);
1994 	}
1995 
1996 	/*
1997 	 * Initialize the segkp segment type.  We position it
1998 	 * after the configured tables and buffers (whose end
1999 	 * is given by econtig) and before V_WKBASE_ADDR.
2000 	 * Also in this area is segkmap (size SEGMAPSIZE).
2001 	 */
2002 
2003 	/* XXX - cache alignment? */
2004 	va = (caddr_t)SEGKPBASE;
2005 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
2006 
2007 	max_phys_segkp = (physmem * 2);
2008 
2009 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
2010 		segkpsize = btop(SEGKPDEFSIZE);
2011 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
2012 		    "segkpsize has been reset to %ld pages", segkpsize);
2013 	}
2014 
2015 	i = ptob(MIN(segkpsize, max_phys_segkp));
2016 
2017 	rw_enter(&kas.a_lock, RW_WRITER);
2018 	if (seg_attach(&kas, va, i, segkp) < 0)
2019 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
2020 	if (segkp_create(segkp) != 0)
2021 		cmn_err(CE_PANIC, "startup: segkp_create failed");
2022 	rw_exit(&kas.a_lock);
2023 
2024 	/*
2025 	 * kpm segment
2026 	 */
2027 	segmap_kpm = kpm_enable &&
2028 		segmap_kpm && PAGESIZE == MAXBSIZE;
2029 
2030 	if (kpm_enable) {
2031 		rw_enter(&kas.a_lock, RW_WRITER);
2032 
2033 		/*
2034 		 * The segkpm virtual range range is larger than the
2035 		 * actual physical memory size and also covers gaps in
2036 		 * the physical address range for the following reasons:
2037 		 * . keep conversion between segkpm and physical addresses
2038 		 *   simple, cheap and unambiguous.
2039 		 * . avoid extension/shrink of the the segkpm in case of DR.
2040 		 * . avoid complexity for handling of virtual addressed
2041 		 *   caches, segkpm and the regular mapping scheme must be
2042 		 *   kept in sync wrt. the virtual color of mapped pages.
2043 		 * Any accesses to virtual segkpm ranges not backed by
2044 		 * physical memory will fall through the memseg pfn hash
2045 		 * and will be handled in segkpm_fault.
2046 		 * Additional kpm_size spaces needed for vac alias prevention.
2047 		 */
2048 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
2049 		    segkpm) < 0)
2050 			cmn_err(CE_PANIC, "cannot attach segkpm");
2051 
2052 		b.prot = PROT_READ | PROT_WRITE;
2053 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
2054 
2055 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2056 			panic("segkpm_create segkpm");
2057 
2058 		rw_exit(&kas.a_lock);
2059 
2060 		mach_kpm_init();
2061 	}
2062 
2063 	/*
2064 	 * Now create generic mapping segment.  This mapping
2065 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2066 	 * virtual address is greater than the amount of free
2067 	 * memory that is available, then we trim back the
2068 	 * segment size to that amount
2069 	 */
2070 	va = (caddr_t)SEGMAPBASE;
2071 
2072 	/*
2073 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2074 	 */
2075 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2076 
2077 	/*
2078 	 * Set size of segmap to percentage of freemem at boot,
2079 	 * but stay within the allowable range
2080 	 * Note we take percentage  before converting from pages
2081 	 * to bytes to avoid an overflow on 32-bit kernels.
2082 	 */
2083 	i = mmu_ptob((freemem * segmap_percent) / 100);
2084 
2085 	if (i < MINMAPSIZE)
2086 		i = MINMAPSIZE;
2087 
2088 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2089 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2090 
2091 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2092 
2093 	rw_enter(&kas.a_lock, RW_WRITER);
2094 	if (seg_attach(&kas, va, i, segkmap) < 0)
2095 		cmn_err(CE_PANIC, "cannot attach segkmap");
2096 
2097 	a.prot = PROT_READ | PROT_WRITE;
2098 	a.shmsize = shm_alignment;
2099 	a.nfreelist = 0;	/* use segmap driver defaults */
2100 
2101 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2102 		panic("segmap_create segkmap");
2103 	rw_exit(&kas.a_lock);
2104 
2105 	segdev_init();
2106 }
2107 
2108 static void
2109 startup_end(void)
2110 {
2111 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2112 		panic("memlist overflow 2");
2113 	memlist_free_block((caddr_t)memlist,
2114 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2115 	memlist = NULL;
2116 
2117 	/* enable page_relocation since OBP is now done */
2118 	page_relocate_ready = 1;
2119 
2120 	/*
2121 	 * Perform tasks that get done after most of the VM
2122 	 * initialization has been done but before the clock
2123 	 * and other devices get started.
2124 	 */
2125 	kern_setup1();
2126 
2127 	/*
2128 	 * Intialize the VM arenas for allocating physically
2129 	 * contiguus memory chunk for interrupt queues snd
2130 	 * allocate/register boot cpu's queues, if any and
2131 	 * allocate dump buffer for sun4v systems to store
2132 	 * extra crash information during crash dump
2133 	 */
2134 	contig_mem_init();
2135 	mach_descrip_init();
2136 	cpu_intrq_setup(CPU);
2137 	cpu_intrq_register(CPU);
2138 	mach_htraptrace_setup(CPU->cpu_id);
2139 	mach_htraptrace_configure(CPU->cpu_id);
2140 	mach_dump_buffer_init();
2141 
2142 	/*
2143 	 * Initialize interrupt related stuff
2144 	 */
2145 	cpu_intr_alloc(CPU, NINTR_THREADS);
2146 
2147 	(void) splzs();			/* allow hi clock ints but not zs */
2148 
2149 	/*
2150 	 * Initialize errors.
2151 	 */
2152 	error_init();
2153 
2154 	/*
2155 	 * Note that we may have already used kernel bcopy before this
2156 	 * point - but if you really care about this, adb the use_hw_*
2157 	 * variables to 0 before rebooting.
2158 	 */
2159 	mach_hw_copy_limit();
2160 
2161 	/*
2162 	 * Install the "real" preemption guards before DDI services
2163 	 * are available.
2164 	 */
2165 	(void) prom_set_preprom(kern_preprom);
2166 	(void) prom_set_postprom(kern_postprom);
2167 	CPU->cpu_m.mutex_ready = 1;
2168 
2169 	/*
2170 	 * Initialize segnf (kernel support for non-faulting loads).
2171 	 */
2172 	segnf_init();
2173 
2174 	/*
2175 	 * Configure the root devinfo node.
2176 	 */
2177 	configure();		/* set up devices */
2178 	mach_cpu_halt_idle();
2179 }
2180 
2181 
2182 void
2183 post_startup(void)
2184 {
2185 #ifdef	PTL1_PANIC_DEBUG
2186 	extern void init_ptl1_thread(void);
2187 #endif	/* PTL1_PANIC_DEBUG */
2188 	extern void abort_sequence_init(void);
2189 
2190 	/*
2191 	 * Set the system wide, processor-specific flags to be passed
2192 	 * to userland via the aux vector for performance hints and
2193 	 * instruction set extensions.
2194 	 */
2195 	bind_hwcap();
2196 
2197 	/*
2198 	 * Startup memory scrubber (if any)
2199 	 */
2200 	mach_memscrub();
2201 
2202 	/*
2203 	 * Allocate soft interrupt to handle abort sequence.
2204 	 */
2205 	abort_sequence_init();
2206 
2207 	/*
2208 	 * Configure the rest of the system.
2209 	 * Perform forceloading tasks for /etc/system.
2210 	 */
2211 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2212 	/*
2213 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2214 	 * ON4.0: This must be fixed or restated in /etc/systems.
2215 	 */
2216 	(void) modload("fs", "procfs");
2217 
2218 	/* load machine class specific drivers */
2219 	load_mach_drivers();
2220 
2221 	/* load platform specific drivers */
2222 	if (&load_platform_drivers)
2223 		load_platform_drivers();
2224 
2225 	/* load vis simulation module, if we are running w/fpu off */
2226 	if (!fpu_exists) {
2227 		if (modload("misc", "vis") == -1)
2228 			halt("Can't load vis");
2229 	}
2230 
2231 	mach_fpras();
2232 
2233 	maxmem = freemem;
2234 
2235 #ifdef	PTL1_PANIC_DEBUG
2236 	init_ptl1_thread();
2237 #endif	/* PTL1_PANIC_DEBUG */
2238 
2239 	if (&cif_init)
2240 		cif_init();
2241 }
2242 
2243 #ifdef	PTL1_PANIC_DEBUG
2244 int		ptl1_panic_test = 0;
2245 int		ptl1_panic_xc_one_test = 0;
2246 int		ptl1_panic_xc_all_test = 0;
2247 int		ptl1_panic_xt_one_test = 0;
2248 int		ptl1_panic_xt_all_test = 0;
2249 kthread_id_t	ptl1_thread_p = NULL;
2250 kcondvar_t	ptl1_cv;
2251 kmutex_t	ptl1_mutex;
2252 int		ptl1_recurse_count_threshold = 0x40;
2253 int		ptl1_recurse_trap_threshold = 0x3d;
2254 extern void	ptl1_recurse(int, int);
2255 extern void	ptl1_panic_xt(int, int);
2256 
2257 /*
2258  * Called once per second by timeout() to wake up
2259  * the ptl1_panic thread to see if it should cause
2260  * a trap to the ptl1_panic() code.
2261  */
2262 /* ARGSUSED */
2263 static void
2264 ptl1_wakeup(void *arg)
2265 {
2266 	mutex_enter(&ptl1_mutex);
2267 	cv_signal(&ptl1_cv);
2268 	mutex_exit(&ptl1_mutex);
2269 }
2270 
2271 /*
2272  * ptl1_panic cross call function:
2273  *     Needed because xc_one() and xc_some() can pass
2274  *	64 bit args but ptl1_recurse() expects ints.
2275  */
2276 static void
2277 ptl1_panic_xc(void)
2278 {
2279 	ptl1_recurse(ptl1_recurse_count_threshold,
2280 	    ptl1_recurse_trap_threshold);
2281 }
2282 
2283 /*
2284  * The ptl1 thread waits for a global flag to be set
2285  * and uses the recurse thresholds to set the stack depth
2286  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2287  * or indirectly via the cross call and cross trap functions.
2288  *
2289  * This is useful testing stack overflows and normal
2290  * ptl1_panic() states with a know stack frame.
2291  *
2292  * ptl1_recurse() is an asm function in ptl1_panic.s that
2293  * sets the {In, Local, Out, and Global} registers to a
2294  * know state on the stack and just prior to causing a
2295  * test ptl1_panic trap.
2296  */
2297 static void
2298 ptl1_thread(void)
2299 {
2300 	mutex_enter(&ptl1_mutex);
2301 	while (ptl1_thread_p) {
2302 		cpuset_t	other_cpus;
2303 		int		cpu_id;
2304 		int		my_cpu_id;
2305 		int		target_cpu_id;
2306 		int		target_found;
2307 
2308 		if (ptl1_panic_test) {
2309 			ptl1_recurse(ptl1_recurse_count_threshold,
2310 			    ptl1_recurse_trap_threshold);
2311 		}
2312 
2313 		/*
2314 		 * Find potential targets for x-call and x-trap,
2315 		 * if any exist while preempt is disabled we
2316 		 * start a ptl1_panic if requested via a
2317 		 * globals.
2318 		 */
2319 		kpreempt_disable();
2320 		my_cpu_id = CPU->cpu_id;
2321 		other_cpus = cpu_ready_set;
2322 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2323 		target_found = 0;
2324 		if (!CPUSET_ISNULL(other_cpus)) {
2325 			/*
2326 			 * Pick the first one
2327 			 */
2328 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2329 				if (cpu_id == my_cpu_id)
2330 					continue;
2331 
2332 				if (CPU_XCALL_READY(cpu_id)) {
2333 					target_cpu_id = cpu_id;
2334 					target_found = 1;
2335 					break;
2336 				}
2337 			}
2338 			ASSERT(target_found);
2339 
2340 			if (ptl1_panic_xc_one_test) {
2341 				xc_one(target_cpu_id,
2342 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2343 			}
2344 			if (ptl1_panic_xc_all_test) {
2345 				xc_some(other_cpus,
2346 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2347 			}
2348 			if (ptl1_panic_xt_one_test) {
2349 				xt_one(target_cpu_id,
2350 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2351 			}
2352 			if (ptl1_panic_xt_all_test) {
2353 				xt_some(other_cpus,
2354 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2355 			}
2356 		}
2357 		kpreempt_enable();
2358 		(void) timeout(ptl1_wakeup, NULL, hz);
2359 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2360 	}
2361 	mutex_exit(&ptl1_mutex);
2362 }
2363 
2364 /*
2365  * Called during early startup to create the ptl1_thread
2366  */
2367 void
2368 init_ptl1_thread(void)
2369 {
2370 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2371 	    &p0, TS_RUN, 0);
2372 }
2373 #endif	/* PTL1_PANIC_DEBUG */
2374 
2375 
2376 /*
2377  * Add to a memory list.
2378  * start = start of new memory segment
2379  * len = length of new memory segment in bytes
2380  * memlistp = pointer to array of available memory segment structures
2381  * curmemlistp = memory list to which to add segment.
2382  */
2383 static void
2384 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2385 	struct memlist **curmemlistp)
2386 {
2387 	struct memlist *new;
2388 
2389 	new = *memlistp;
2390 	new->address = start;
2391 	new->size = len;
2392 	*memlistp = new + 1;
2393 
2394 	memlist_insert(new, curmemlistp);
2395 }
2396 
2397 /*
2398  * In the case of architectures that support dynamic addition of
2399  * memory at run-time there are two cases where memsegs need to
2400  * be initialized and added to the memseg list.
2401  * 1) memsegs that are constructed at startup.
2402  * 2) memsegs that are constructed at run-time on
2403  *    hot-plug capable architectures.
2404  * This code was originally part of the function kphysm_init().
2405  */
2406 
2407 static void
2408 memseg_list_add(struct memseg *memsegp)
2409 {
2410 	struct memseg **prev_memsegp;
2411 	pgcnt_t num;
2412 
2413 	/* insert in memseg list, decreasing number of pages order */
2414 
2415 	num = MSEG_NPAGES(memsegp);
2416 
2417 	for (prev_memsegp = &memsegs; *prev_memsegp;
2418 	    prev_memsegp = &((*prev_memsegp)->next)) {
2419 		if (num > MSEG_NPAGES(*prev_memsegp))
2420 			break;
2421 	}
2422 
2423 	memsegp->next = *prev_memsegp;
2424 	*prev_memsegp = memsegp;
2425 
2426 	if (kpm_enable) {
2427 		memsegp->nextpa = (memsegp->next) ?
2428 			va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2429 
2430 		if (prev_memsegp != &memsegs) {
2431 			struct memseg *msp;
2432 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2433 				offsetof(struct memseg, next));
2434 			msp->nextpa = va_to_pa(memsegp);
2435 		} else {
2436 			memsegspa = va_to_pa(memsegs);
2437 		}
2438 	}
2439 }
2440 
2441 /*
2442  * PSM add_physmem_cb(). US-II and newer processors have some
2443  * flavor of the prefetch capability implemented. We exploit
2444  * this capability for optimum performance.
2445  */
2446 #define	PREFETCH_BYTES	64
2447 
2448 void
2449 add_physmem_cb(page_t *pp, pfn_t pnum)
2450 {
2451 	extern void	 prefetch_page_w(void *);
2452 
2453 	pp->p_pagenum = pnum;
2454 
2455 	/*
2456 	 * Prefetch one more page_t into E$. To prevent future
2457 	 * mishaps with the sizeof(page_t) changing on us, we
2458 	 * catch this on debug kernels if we can't bring in the
2459 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2460 	 * also, sun4u/cpu/cpu_module.c
2461 	 */
2462 	/*LINTED*/
2463 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2464 	prefetch_page_w((char *)pp);
2465 }
2466 
2467 /*
2468  * kphysm_init() tackles the problem of initializing physical memory.
2469  * The old startup made some assumptions about the kernel living in
2470  * physically contiguous space which is no longer valid.
2471  */
2472 static void
2473 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages,
2474 	uintptr_t kpm_pp, pgcnt_t kpm_npages)
2475 {
2476 	struct memlist	*pmem;
2477 	struct memseg	*msp;
2478 	pfn_t		 base;
2479 	pgcnt_t		 num;
2480 	pfn_t		 lastseg_pages_end = 0;
2481 	pgcnt_t		 nelem_used = 0;
2482 
2483 	ASSERT(page_hash != NULL && page_hashsz != 0);
2484 
2485 	msp = memsegp;
2486 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2487 
2488 		/*
2489 		 * Build the memsegs entry
2490 		 */
2491 		num = btop(pmem->size);
2492 		if (num > npages)
2493 			num = npages;
2494 		npages -= num;
2495 		base = btop(pmem->address);
2496 
2497 		msp->pages = pp;
2498 		msp->epages = pp + num;
2499 		msp->pages_base = base;
2500 		msp->pages_end = base + num;
2501 
2502 		if (kpm_enable) {
2503 			pfn_t pbase_a;
2504 			pfn_t pend_a;
2505 			pfn_t prev_pend_a;
2506 			pgcnt_t	nelem;
2507 
2508 			msp->pagespa = va_to_pa(pp);
2509 			msp->epagespa = va_to_pa(pp + num);
2510 			pbase_a = kpmptop(ptokpmp(base));
2511 			pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs;
2512 			nelem = ptokpmp(pend_a - pbase_a);
2513 			msp->kpm_nkpmpgs = nelem;
2514 			msp->kpm_pbase = pbase_a;
2515 			if (lastseg_pages_end) {
2516 				/*
2517 				 * Assume phys_avail is in ascending order
2518 				 * of physical addresses.
2519 				 */
2520 				ASSERT(base + num > lastseg_pages_end);
2521 				prev_pend_a = kpmptop(
2522 				    ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs;
2523 
2524 				if (prev_pend_a > pbase_a) {
2525 					/*
2526 					 * Overlap, more than one memseg may
2527 					 * point to the same kpm_page range.
2528 					 */
2529 					if (kpm_smallpages == 0) {
2530 						msp->kpm_pages =
2531 						    (kpm_page_t *)kpm_pp - 1;
2532 						kpm_pp = (uintptr_t)
2533 							((kpm_page_t *)kpm_pp
2534 							+ nelem - 1);
2535 					} else {
2536 						msp->kpm_spages =
2537 						    (kpm_spage_t *)kpm_pp - 1;
2538 						kpm_pp = (uintptr_t)
2539 							((kpm_spage_t *)kpm_pp
2540 							+ nelem - 1);
2541 					}
2542 					nelem_used += nelem - 1;
2543 
2544 				} else {
2545 					if (kpm_smallpages == 0) {
2546 						msp->kpm_pages =
2547 						    (kpm_page_t *)kpm_pp;
2548 						kpm_pp = (uintptr_t)
2549 							((kpm_page_t *)kpm_pp
2550 							+ nelem);
2551 					} else {
2552 						msp->kpm_spages =
2553 						    (kpm_spage_t *)kpm_pp;
2554 						kpm_pp = (uintptr_t)
2555 							((kpm_spage_t *)
2556 							kpm_pp + nelem);
2557 					}
2558 					nelem_used += nelem;
2559 				}
2560 
2561 			} else {
2562 				if (kpm_smallpages == 0) {
2563 					msp->kpm_pages = (kpm_page_t *)kpm_pp;
2564 					kpm_pp = (uintptr_t)
2565 						((kpm_page_t *)kpm_pp + nelem);
2566 				} else {
2567 					msp->kpm_spages = (kpm_spage_t *)kpm_pp;
2568 					kpm_pp = (uintptr_t)
2569 						((kpm_spage_t *)kpm_pp + nelem);
2570 				}
2571 				nelem_used = nelem;
2572 			}
2573 
2574 			if (nelem_used > kpm_npages)
2575 				panic("kphysm_init: kpm_pp overflow\n");
2576 
2577 			msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
2578 			lastseg_pages_end = msp->pages_end;
2579 		}
2580 
2581 		memseg_list_add(msp);
2582 
2583 		/*
2584 		 * add_physmem() initializes the PSM part of the page
2585 		 * struct by calling the PSM back with add_physmem_cb().
2586 		 * In addition it coalesces pages into larger pages as
2587 		 * it initializes them.
2588 		 */
2589 		add_physmem(pp, num, base);
2590 		pp += num;
2591 		msp++;
2592 	}
2593 
2594 	build_pfn_hash();
2595 }
2596 
2597 /*
2598  * Kernel VM initialization.
2599  * Assumptions about kernel address space ordering:
2600  *	(1) gap (user space)
2601  *	(2) kernel text
2602  *	(3) kernel data/bss
2603  *	(4) gap
2604  *	(5) kernel data structures
2605  *	(6) gap
2606  *	(7) debugger (optional)
2607  *	(8) monitor
2608  *	(9) gap (possibly null)
2609  *	(10) dvma
2610  *	(11) devices
2611  */
2612 static void
2613 kvm_init(void)
2614 {
2615 	/*
2616 	 * Put the kernel segments in kernel address space.
2617 	 */
2618 	rw_enter(&kas.a_lock, RW_WRITER);
2619 	as_avlinit(&kas);
2620 
2621 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2622 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2623 	(void) segkmem_create(&ktextseg);
2624 
2625 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2626 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2627 	(void) segkmem_create(&ktexthole);
2628 
2629 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2630 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2631 	(void) segkmem_create(&kvalloc);
2632 
2633 	if (kmem64_base) {
2634 	    (void) seg_attach(&kas, (caddr_t)kmem64_base,
2635 		(size_t)(kmem64_end - kmem64_base), &kmem64);
2636 	    (void) segkmem_create(&kmem64);
2637 	}
2638 
2639 	/*
2640 	 * We're about to map out /boot.  This is the beginning of the
2641 	 * system resource management transition. We can no longer
2642 	 * call into /boot for I/O or memory allocations.
2643 	 */
2644 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2645 	(void) segkmem_create(&kvseg);
2646 	hblk_alloc_dynamic = 1;
2647 
2648 	/*
2649 	 * we need to preallocate pages for DR operations before enabling large
2650 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2651 	 */
2652 	memseg_remap_init();
2653 
2654 	/* at this point we are ready to use large page heap */
2655 	segkmem_heap_lp_init();
2656 
2657 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2658 	    &kvseg32);
2659 	(void) segkmem_create(&kvseg32);
2660 
2661 	/*
2662 	 * Create a segment for the debugger.
2663 	 */
2664 	(void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE,
2665 	    &kdebugseg);
2666 	(void) segkmem_create(&kdebugseg);
2667 
2668 	rw_exit(&kas.a_lock);
2669 }
2670 
2671 char obp_tte_str[] =
2672 	"h# %x constant MMU_PAGESHIFT "
2673 	"h# %x constant TTE8K "
2674 	"h# %x constant SFHME_SIZE "
2675 	"h# %x constant SFHME_TTE "
2676 	"h# %x constant HMEBLK_TAG "
2677 	"h# %x constant HMEBLK_NEXT "
2678 	"h# %x constant HMEBLK_MISC "
2679 	"h# %x constant HMEBLK_HME1 "
2680 	"h# %x constant NHMENTS "
2681 	"h# %x constant HBLK_SZMASK "
2682 	"h# %x constant HBLK_RANGE_SHIFT "
2683 	"h# %x constant HMEBP_HBLK "
2684 	"h# %x constant HMEBUCKET_SIZE "
2685 	"h# %x constant HTAG_SFMMUPSZ "
2686 	"h# %x constant HTAG_REHASHSZ "
2687 	"h# %x constant mmu_hashcnt "
2688 	"h# %p constant uhme_hash "
2689 	"h# %p constant khme_hash "
2690 	"h# %x constant UHMEHASH_SZ "
2691 	"h# %x constant KHMEHASH_SZ "
2692 	"h# %p constant KCONTEXT "
2693 	"h# %p constant KHATID "
2694 	"h# %x constant ASI_MEM "
2695 
2696 	": PHYS-X@ ( phys -- data ) "
2697 	"   ASI_MEM spacex@ "
2698 	"; "
2699 
2700 	": PHYS-W@ ( phys -- data ) "
2701 	"   ASI_MEM spacew@ "
2702 	"; "
2703 
2704 	": PHYS-L@ ( phys -- data ) "
2705 	"   ASI_MEM spaceL@ "
2706 	"; "
2707 
2708 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2709 	"   3 * MMU_PAGESHIFT + "
2710 	"; "
2711 
2712 	": TTE_IS_VALID ( ttep -- flag ) "
2713 	"   PHYS-X@ 0< "
2714 	"; "
2715 
2716 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2717 	"   dup TTE8K =  if "
2718 	"      drop HBLK_RANGE_SHIFT "
2719 	"   else "
2720 	"      TTE_PAGE_SHIFT "
2721 	"   then "
2722 	"; "
2723 
2724 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2725 	"   tuck >> swap MMU_PAGESHIFT - << "
2726 	"; "
2727 
2728 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2729 	"   >> over xor swap                    ( hash sfmmup ) "
2730 	"   KHATID <>  if                       ( hash ) "
2731 	"      UHMEHASH_SZ and                  ( bucket ) "
2732 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2733 	"   else                                ( hash ) "
2734 	"      KHMEHASH_SZ and                  ( bucket ) "
2735 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2736 	"   then                                ( hmebp ) "
2737 	"; "
2738 
2739 	": HME_HASH_TABLE_SEARCH "
2740 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2741 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2742 	"      dup if   		( sfmmup hmeblkp ) ( r: hblktag ) "
2743 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2744 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2745 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2746 	"	     else						  "
2747 	"	     	  hmeblk_next + phys-x@ false 			  "
2748 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2749 	"	     then  						  "
2750 	"	  else							  "
2751 	"	     hmeblk_next + phys-x@ false 			  "
2752 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2753 	"	  then 							  "
2754 	"      else							  "
2755 	"         true 							  "
2756 	"      then  							  "
2757 	"   until r> drop 						  "
2758 	"; "
2759 
2760 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2761 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE      ( sfmmup rehash bspage ) "
2762 	"   HTAG_REHASHSZ << or nip		     ( hblktag ) "
2763 	"; "
2764 
2765 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2766 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2767 	"   TTE8K =  if                            ( hmeblkp addr ) "
2768 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2769 	"   else                                   ( hmeblkp addr ) "
2770 	"      drop 0                              ( hmeblkp 0 ) "
2771 	"   then                                   ( hmeblkp hme-index ) "
2772 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2773 	"   SFHME_TTE +                            ( ttep ) "
2774 	"; "
2775 
2776 	": unix-tte ( addr cnum -- false | tte-data true ) "
2777 	"    KCONTEXT = if                   ( addr ) "
2778 	"	KHATID                       ( addr khatid ) "
2779 	"    else                            ( addr ) "
2780 	"       drop false exit              ( false ) "
2781 	"    then "
2782 	"      ( addr khatid ) "
2783 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2784 	"         2dup swap i HME_HASH_SHIFT  "
2785 					"( addr sfmmup sfmmup addr hmeshift ) "
2786 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2787 	"         over i 4 pick               "
2788 				"( addr sfmmup hmebp sfmmup rehash addr ) "
2789 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2790 	"         HME_HASH_TABLE_SEARCH       "
2791 					"( addr sfmmup { null | hmeblkp } ) "
2792 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2793 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2794 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2795 	"               PHYS-X@ true          ( tte-data true ) "
2796 	"            else                     ( invalid-tte ) "
2797 	"               drop false            ( false ) "
2798 	"            then                     ( false | tte-data true ) "
2799 	"            unloop exit              ( false | tte-data true ) "
2800 	"         then                        ( addr sfmmup ) "
2801 	"      loop                           ( addr sfmmup ) "
2802 	"      2drop false                    ( false ) "
2803 	"; "
2804 ;
2805 
2806 void
2807 create_va_to_tte(void)
2808 {
2809 	char *bp;
2810 	extern int khmehash_num, uhmehash_num;
2811 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
2812 
2813 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
2814 
2815 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2816 
2817 	/*
2818 	 * Teach obp how to parse our sw ttes.
2819 	 */
2820 	(void) sprintf(bp, obp_tte_str,
2821 	    MMU_PAGESHIFT,
2822 	    TTE8K,
2823 	    sizeof (struct sf_hment),
2824 	    OFFSET(struct sf_hment, hme_tte),
2825 	    OFFSET(struct hme_blk, hblk_tag),
2826 	    OFFSET(struct hme_blk, hblk_nextpa),
2827 	    OFFSET(struct hme_blk, hblk_misc),
2828 	    OFFSET(struct hme_blk, hblk_hme),
2829 	    NHMENTS,
2830 	    HBLK_SZMASK,
2831 	    HBLK_RANGE_SHIFT,
2832 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
2833 	    sizeof (struct hmehash_bucket),
2834 	    HTAG_SFMMUPSZ,
2835 	    HTAG_REHASHSZ,
2836 	    mmu_hashcnt,
2837 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
2838 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
2839 	    UHMEHASH_SZ,
2840 	    KHMEHASH_SZ,
2841 	    KCONTEXT,
2842 	    KHATID,
2843 	    ASI_MEM);
2844 	prom_interpret(bp, 0, 0, 0, 0, 0);
2845 
2846 	kobj_free(bp, MMU_PAGESIZE);
2847 }
2848 
2849 void
2850 install_va_to_tte(void)
2851 {
2852 	/*
2853 	 * advise prom that he can use unix-tte
2854 	 */
2855 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2856 }
2857 
2858 
2859 /*
2860  * Because kmdb links prom_stdout_is_framebuffer into its own
2861  * module, we add "device-type=display" here for /os-io node, so that
2862  * prom_stdout_is_framebuffer still works corrrectly  after /os-io node
2863  * is registered into OBP.
2864  */
2865 static char *create_node =
2866 	"\" /\" find-device "
2867 	"new-device "
2868 	"\" os-io\" device-name "
2869 	"\" display\" device-type "
2870 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
2871 	"   2>r swap 2 2r> ['] $callback  catch  if "
2872 	"      2drop 3drop 0 "
2873 	"   then "
2874 	"; "
2875 	": read ( adr,len -- #read ) "
2876 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
2877 	"       ( retN ... ret1 N ) "
2878 	"       ?dup  if "
2879 	"               swap >r 1-  0  ?do  drop  loop  r> "
2880 	"       else "
2881 	"               -2 "
2882 	"       then "
2883 	";    "
2884 	": write ( adr,len -- #written ) "
2885 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
2886 	"       ( retN ... ret1 N ) "
2887 	"       ?dup  if "
2888 	"               swap >r 1-  0  ?do  drop  loop  r> "
2889 	"        else "
2890 	"               0 "
2891 	"       then "
2892 	"; "
2893 	": poll-tty ( -- ) ; "
2894 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
2895 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
2896 	": cb-give/take ( $method -- ) "
2897 	"       0 -rot ['] $callback catch  ?dup  if "
2898 	"               >r 2drop 2drop r> throw "
2899 	"       else "
2900 	"               0  ?do  drop  loop "
2901 	"       then "
2902 	"; "
2903 	": give ( -- )  \" exit-input\" cb-give/take ; "
2904 	": take ( -- )  \" enter-input\" cb-give/take ; "
2905 	": open ( -- ok? )  true ; "
2906 	": close ( -- ) ; "
2907 	"finish-device "
2908 	"device-end ";
2909 
2910 /*
2911  * Create the OBP input/output node (FCode serial driver).
2912  * It is needed for both USB console keyboard and for
2913  * the kernel terminal emulator.  It is too early to check for a
2914  * kernel console compatible framebuffer now, so we create this
2915  * so that we're ready if we need to enable kernel terminal emulation.
2916  *
2917  * When the USB software takes over the input device at the time
2918  * consconfig runs, OBP's stdin is redirected to this node.
2919  * Whenever the FORTH user interface is used after this switch,
2920  * the node will call back into the kernel for console input.
2921  * If a serial device such as ttya or a UART with a Type 5 keyboard
2922  * attached is used, OBP takes over the serial device when the system
2923  * goes to the debugger after the system is booted.  This sharing
2924  * of the relatively simple serial device is difficult but possible.
2925  * Sharing the USB host controller is impossible due its complexity.
2926  *
2927  * Similarly to USB keyboard input redirection, after consconfig_dacf
2928  * configures a kernel console framebuffer as the standard output
2929  * device, OBP's stdout is switched to to vector through the
2930  * /os-io node into the kernel terminal emulator.
2931  */
2932 static void
2933 startup_create_io_node(void)
2934 {
2935 	prom_interpret(create_node, 0, 0, 0, 0, 0);
2936 }
2937 
2938 
2939 static void
2940 do_prom_version_check(void)
2941 {
2942 	int i;
2943 	pnode_t node;
2944 	char buf[64];
2945 	static char drev[] = "Down-rev firmware detected%s\n"
2946 		"\tPlease upgrade to the following minimum version:\n"
2947 		"\t\t%s\n";
2948 
2949 	i = prom_version_check(buf, sizeof (buf), &node);
2950 
2951 	if (i == PROM_VER64_OK)
2952 		return;
2953 
2954 	if (i == PROM_VER64_UPGRADE) {
2955 		cmn_err(CE_WARN, drev, "", buf);
2956 
2957 #ifdef	DEBUG
2958 		prom_enter_mon();	/* Type 'go' to continue */
2959 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
2960 		return;
2961 #else
2962 		halt(0);
2963 #endif
2964 	}
2965 
2966 	/*
2967 	 * The other possibility is that this is a server running
2968 	 * good firmware, but down-rev firmware was detected on at
2969 	 * least one other cpu board. We just complain if we see
2970 	 * that.
2971 	 */
2972 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
2973 }
2974 
2975 static void
2976 kpm_init()
2977 {
2978 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
2979 	kpm_pgsz = 1ull << kpm_pgshft;
2980 	kpm_pgoff = kpm_pgsz - 1;
2981 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
2982 	kpmpnpgs = 1 << kpmp2pshft;
2983 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
2984 }
2985 
2986 void
2987 kpm_npages_setup(int memblocks)
2988 {
2989 	/*
2990 	 * npages can be scattered in a maximum of 'memblocks'
2991 	 */
2992 	kpm_npages = ptokpmpr(npages) + memblocks;
2993 }
2994 
2995 /*
2996  * Must be defined in platform dependent code.
2997  */
2998 extern caddr_t modtext;
2999 extern size_t modtext_sz;
3000 extern caddr_t moddata;
3001 
3002 #define	HEAPTEXT_ARENA(addr)	\
3003 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3004 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3005 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3006 
3007 #define	HEAPTEXT_OVERSIZED(addr)	\
3008 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3009 
3010 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3011 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3012 kmutex_t texthole_lock;
3013 
3014 char kern_bootargs[OBP_MAXPATHLEN];
3015 
3016 void
3017 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3018 {
3019 	uintptr_t addr, limit;
3020 
3021 	addr = HEAPTEXT_BASE;
3022 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3023 
3024 	/*
3025 	 * Before we initialize the text_arena, we want to punch holes in the
3026 	 * underlying heaptext_arena.  This guarantees that for any text
3027 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3028 	 */
3029 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3030 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3031 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3032 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3033 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3034 	}
3035 
3036 	/*
3037 	 * Allocate one page at the oversize to break up the text region
3038 	 * from the oversized region.
3039 	 */
3040 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3041 	    (void *)limit, (void *)(limit + PAGESIZE),
3042 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3043 
3044 	*text_arena = vmem_create("module_text", modtext, modtext_sz,
3045 	    sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3046 	    heaptext_arena, 0, VM_SLEEP);
3047 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3048 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3049 }
3050 
3051 caddr_t
3052 kobj_text_alloc(vmem_t *arena, size_t size)
3053 {
3054 	caddr_t rval, better;
3055 
3056 	/*
3057 	 * First, try a sleeping allocation.
3058 	 */
3059 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3060 
3061 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3062 		return (rval);
3063 
3064 	/*
3065 	 * We didn't get the area that we wanted.  We're going to try to do an
3066 	 * allocation with explicit constraints.
3067 	 */
3068 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3069 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3070 	    VM_NOSLEEP | VM_BESTFIT);
3071 
3072 	if (better != NULL) {
3073 		/*
3074 		 * That worked.  Free our first attempt and return.
3075 		 */
3076 		vmem_free(arena, rval, size);
3077 		return (better);
3078 	}
3079 
3080 	/*
3081 	 * That didn't work; we'll have to return our first attempt.
3082 	 */
3083 	return (rval);
3084 }
3085 
3086 caddr_t
3087 kobj_texthole_alloc(caddr_t addr, size_t size)
3088 {
3089 	int arena = HEAPTEXT_ARENA(addr);
3090 	char c[30];
3091 	uintptr_t base;
3092 
3093 	if (HEAPTEXT_OVERSIZED(addr)) {
3094 		/*
3095 		 * If this is an oversized allocation, there is no text hole
3096 		 * available for it; return NULL.
3097 		 */
3098 		return (NULL);
3099 	}
3100 
3101 	mutex_enter(&texthole_lock);
3102 
3103 	if (texthole_arena[arena] == NULL) {
3104 		ASSERT(texthole_source[arena] == NULL);
3105 
3106 		if (arena == 0) {
3107 			texthole_source[0] = vmem_create("module_text_holesrc",
3108 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3109 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3110 			    0, VM_SLEEP);
3111 		} else {
3112 			base = HEAPTEXT_BASE +
3113 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3114 
3115 			(void) snprintf(c, sizeof (c),
3116 			    "heaptext_holesrc_%d", arena);
3117 
3118 			texthole_source[arena] = vmem_create(c, (void *)base,
3119 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3120 			    0, VM_SLEEP);
3121 		}
3122 
3123 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3124 
3125 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3126 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3127 		    texthole_source[arena], 0, VM_SLEEP);
3128 	}
3129 
3130 	mutex_exit(&texthole_lock);
3131 
3132 	ASSERT(texthole_arena[arena] != NULL);
3133 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3134 	return (vmem_alloc(texthole_arena[arena], size,
3135 	    VM_BESTFIT | VM_NOSLEEP));
3136 }
3137 
3138 void
3139 kobj_texthole_free(caddr_t addr, size_t size)
3140 {
3141 	int arena = HEAPTEXT_ARENA(addr);
3142 
3143 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3144 	ASSERT(texthole_arena[arena] != NULL);
3145 	vmem_free(texthole_arena[arena], addr, size);
3146 }
3147