xref: /titanic_44/usr/src/uts/sun4/os/ddi_impl.c (revision 303bf60b5a47ba25850d1ab07297f73962521dff)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * sun4 specific DDI implementation
31  */
32 #include <sys/cpuvar.h>
33 #include <sys/ddi_subrdefs.h>
34 #include <sys/machsystm.h>
35 #include <sys/sunndi.h>
36 #include <sys/sysmacros.h>
37 #include <sys/ontrap.h>
38 #include <vm/seg_kmem.h>
39 #include <sys/membar.h>
40 #include <sys/dditypes.h>
41 #include <sys/ndifm.h>
42 #include <sys/fm/io/ddi.h>
43 #include <sys/ivintr.h>
44 #include <sys/bootconf.h>
45 #include <sys/conf.h>
46 #include <sys/ethernet.h>
47 #include <sys/idprom.h>
48 #include <sys/promif.h>
49 #include <sys/prom_plat.h>
50 #include <sys/systeminfo.h>
51 #include <sys/fpu/fpusystm.h>
52 #include <sys/vm.h>
53 #include <sys/fs/dv_node.h>
54 #include <sys/fs/snode.h>
55 #include <sys/ddi_isa.h>
56 
57 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *,
58     ddi_intr_handle_impl_t *);
59 #pragma weak get_intr_parent
60 
61 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
62     ddi_intr_handle_impl_t *, void *);
63 #pragma weak process_intr_ops
64 
65 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t);
66     prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *,
67     int32_t len);
68 #pragma weak cells_1275_copy
69 
70 /*
71  * Wrapper for ddi_prop_lookup_int_array().
72  * This is handy because it returns the prop length in
73  * bytes which is what most of the callers require.
74  */
75 
76 static int
77 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
78 {
79 	int ret;
80 
81 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
82 	    DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) {
83 		*plen = (*plen) * (uint_t)sizeof (int);
84 	}
85 	return (ret);
86 }
87 
88 /*
89  * SECTION: DDI Node Configuration
90  */
91 
92 /*
93  * init_regspec_64:
94  *
95  * If the parent #size-cells is 2, convert the upa-style or
96  * safari-style reg property from 2-size cells to 1 size cell
97  * format, ignoring the size_hi, which must be zero for devices.
98  * (It won't be zero in the memory list properties in the memory
99  * nodes, but that doesn't matter here.)
100  */
101 struct ddi_parent_private_data *
102 init_regspec_64(dev_info_t *dip)
103 {
104 	struct ddi_parent_private_data *pd;
105 	dev_info_t *parent;
106 	int size_cells;
107 
108 	/*
109 	 * If there are no "reg"s in the child node, return.
110 	 */
111 	pd = ddi_get_parent_data(dip);
112 	if ((pd == NULL) || (pd->par_nreg == 0)) {
113 		return (pd);
114 	}
115 	parent = ddi_get_parent(dip);
116 
117 	size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
118 	    DDI_PROP_DONTPASS, "#size-cells", 1);
119 
120 	if (size_cells != 1)  {
121 
122 		int n, j;
123 		struct regspec *irp;
124 		struct reg_64 {
125 			uint_t addr_hi, addr_lo, size_hi, size_lo;
126 		};
127 		struct reg_64 *r64_rp;
128 		struct regspec *rp;
129 		uint_t len = 0;
130 		int *reg_prop;
131 
132 		ASSERT(size_cells == 2);
133 
134 		/*
135 		 * We already looked the property up once before if
136 		 * pd is non-NULL.
137 		 */
138 		(void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
139 		    DDI_PROP_DONTPASS, OBP_REG, &reg_prop, &len);
140 		ASSERT(len != 0);
141 
142 		n = sizeof (struct reg_64) / sizeof (int);
143 		n = len / n;
144 
145 		/*
146 		 * We're allocating a buffer the size of the PROM's property,
147 		 * but we're only using a smaller portion when we assign it
148 		 * to a regspec.  We do this so that in the
149 		 * impl_ddi_sunbus_removechild function, we will
150 		 * always free the right amount of memory.
151 		 */
152 		irp = rp = (struct regspec *)reg_prop;
153 		r64_rp = (struct reg_64 *)pd->par_reg;
154 
155 		for (j = 0; j < n; ++j, ++rp, ++r64_rp) {
156 			ASSERT(r64_rp->size_hi == 0);
157 			rp->regspec_bustype = r64_rp->addr_hi;
158 			rp->regspec_addr = r64_rp->addr_lo;
159 			rp->regspec_size = r64_rp->size_lo;
160 		}
161 
162 		ddi_prop_free((void *)pd->par_reg);
163 		pd->par_nreg = n;
164 		pd->par_reg = irp;
165 	}
166 	return (pd);
167 }
168 
169 /*
170  * Create a ddi_parent_private_data structure from the ddi properties of
171  * the dev_info node.
172  *
173  * The "reg" is required if the driver wishes to create mappings on behalf
174  * of the device. The "reg" property is assumed to be a list of at least
175  * one triplet
176  *
177  *	<bustype, address, size>*1
178  *
179  * The "interrupt" property is no longer part of parent private data on
180  * sun4u. The interrupt parent is may not be the device tree parent.
181  *
182  * The "ranges" property describes the mapping of child addresses to parent
183  * addresses.
184  *
185  * N.B. struct rangespec is defined for the following default values:
186  *			parent  child
187  *	#address-cells	2	2
188  *	#size-cells	1	1
189  * This function doesn't deal with non-default cells and will not create
190  * ranges in such cases.
191  */
192 void
193 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
194 {
195 	struct ddi_parent_private_data *pdptr;
196 	int *reg_prop, *rng_prop;
197 	uint_t reg_len = 0, rng_len = 0;
198 	dev_info_t *parent;
199 	int parent_addr_cells, parent_size_cells;
200 	int child_addr_cells, child_size_cells;
201 
202 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
203 
204 	/*
205 	 * root node has no parent private data, so *ppd should
206 	 * be initialized for naming to work properly.
207 	 */
208 	if ((parent = ddi_get_parent(child)) == NULL)
209 		return;
210 
211 	/*
212 	 * Set reg field of parent data from "reg" property
213 	 */
214 	if ((get_prop_int_array(child, OBP_REG, &reg_prop, &reg_len)
215 	    == DDI_PROP_SUCCESS) && (reg_len != 0)) {
216 		pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec));
217 		pdptr->par_reg = (struct regspec *)reg_prop;
218 	}
219 
220 	/*
221 	 * "ranges" property ...
222 	 *
223 	 * This function does not handle cases where #address-cells != 2
224 	 * and * min(parent, child) #size-cells != 1 (see bugid 4211124).
225 	 *
226 	 * Nexus drivers with such exceptions (e.g. pci ranges)
227 	 * should either create a separate function for handling
228 	 * ranges or not use parent private data to store ranges.
229 	 */
230 
231 	/* root node has no ranges */
232 	if ((parent = ddi_get_parent(child)) == NULL)
233 		return;
234 
235 	child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
236 	    DDI_PROP_DONTPASS, "#address-cells", 2);
237 	child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
238 	    DDI_PROP_DONTPASS, "#size-cells", 1);
239 	parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
240 	    DDI_PROP_DONTPASS, "#address-cells", 2);
241 	parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
242 	    DDI_PROP_DONTPASS, "#size-cells", 1);
243 	if (child_addr_cells != 2 || parent_addr_cells != 2 ||
244 	    (child_size_cells != 1 && parent_size_cells != 1)) {
245 		NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; "
246 		    "#address-cells or #size-cells have non-default value"));
247 		return;
248 	}
249 
250 	if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len)
251 	    == DDI_PROP_SUCCESS) {
252 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
253 		pdptr->par_rng = (struct rangespec *)rng_prop;
254 	}
255 }
256 
257 /*
258  * Free ddi_parent_private_data structure
259  */
260 void
261 impl_free_ddi_ppd(dev_info_t *dip)
262 {
263 	struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip);
264 
265 	if (pdptr == NULL)
266 		return;
267 
268 	if (pdptr->par_nrng != 0)
269 		ddi_prop_free((void *)pdptr->par_rng);
270 
271 	if (pdptr->par_nreg != 0)
272 		ddi_prop_free((void *)pdptr->par_reg);
273 
274 	kmem_free(pdptr, sizeof (*pdptr));
275 	ddi_set_parent_data(dip, NULL);
276 }
277 
278 /*
279  * Name a child of sun busses based on the reg spec.
280  * Handles the following properties:
281  *
282  *	Property	value
283  *	Name		type
284  *
285  *	reg		register spec
286  *	interrupts	new (bus-oriented) interrupt spec
287  *	ranges		range spec
288  *
289  * This may be called multiple times, independent of
290  * initchild calls.
291  */
292 static int
293 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
294 {
295 	struct ddi_parent_private_data *pdptr;
296 	struct regspec *rp;
297 
298 	/*
299 	 * Fill in parent-private data and this function returns to us
300 	 * an indication if it used "registers" to fill in the data.
301 	 */
302 	if (ddi_get_parent_data(child) == NULL) {
303 		make_ddi_ppd(child, &pdptr);
304 		ddi_set_parent_data(child, pdptr);
305 	}
306 
307 	/*
308 	 * No reg property, return null string as address
309 	 * (e.g. root node)
310 	 */
311 	name[0] = '\0';
312 	if (sparc_pd_getnreg(child) == 0) {
313 		return (DDI_SUCCESS);
314 	}
315 
316 	rp = sparc_pd_getreg(child, 0);
317 	(void) snprintf(name, namelen, "%x,%x",
318 	    rp->regspec_bustype, rp->regspec_addr);
319 	return (DDI_SUCCESS);
320 }
321 
322 
323 /*
324  * Called from the bus_ctl op of some drivers.
325  * to implement the DDI_CTLOPS_INITCHILD operation.
326  *
327  * NEW drivers should NOT use this function, but should declare
328  * there own initchild/uninitchild handlers. (This function assumes
329  * the layout of the parent private data and the format of "reg",
330  * "ranges", "interrupts" properties and that #address-cells and
331  * #size-cells of the parent bus are defined to be default values.)
332  */
333 int
334 impl_ddi_sunbus_initchild(dev_info_t *child)
335 {
336 	char name[MAXNAMELEN];
337 
338 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
339 	ddi_set_name_addr(child, name);
340 
341 	/*
342 	 * Try to merge .conf node. If successful, return failure to
343 	 * remove this child.
344 	 */
345 	if ((ndi_dev_is_persistent_node(child) == 0) &&
346 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
347 		impl_ddi_sunbus_removechild(child);
348 		return (DDI_FAILURE);
349 	}
350 	return (DDI_SUCCESS);
351 }
352 
353 /*
354  * A better name for this function would be impl_ddi_sunbus_uninitchild()
355  * It does not remove the child, it uninitializes it, reclaiming the
356  * resources taken by impl_ddi_sunbus_initchild.
357  */
358 void
359 impl_ddi_sunbus_removechild(dev_info_t *dip)
360 {
361 	impl_free_ddi_ppd(dip);
362 	ddi_set_name_addr(dip, NULL);
363 	/*
364 	 * Strip the node to properly convert it back to prototype form
365 	 */
366 	impl_rem_dev_props(dip);
367 }
368 
369 /*
370  * SECTION: DDI Interrupt
371  */
372 
373 void
374 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len)
375 {
376 	int i;
377 	for (i = 0; i < len; i++)
378 		*to = *from;
379 }
380 
381 prop_1275_cell_t *
382 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len)
383 {
384 	prop_1275_cell_t *match_cell = 0;
385 	int32_t i;
386 
387 	for (i = 0; i < len; i++)
388 		if (cell1[i] != cell2[i]) {
389 			match_cell = &cell1[i];
390 			break;
391 		}
392 
393 	return (match_cell);
394 }
395 
396 /*
397  * get_intr_parent() is a generic routine that process a 1275 interrupt
398  * map (imap) property.  This function returns a dev_info_t structure
399  * which claims ownership of the interrupt domain.
400  * It also returns the new interrupt translation within this new domain.
401  * If an interrupt-parent or interrupt-map property are not found,
402  * then we fallback to using the device tree's parent.
403  *
404  * imap entry format:
405  * <reg>,<interrupt>,<phandle>,<translated interrupt>
406  * reg - The register specification in the interrupts domain
407  * interrupt - The interrupt specification
408  * phandle - PROM handle of the device that owns the xlated interrupt domain
409  * translated interrupt - interrupt specifier in the parents domain
410  * note: <reg>,<interrupt> - The reg and interrupt can be combined to create
411  *	a unique entry called a unit interrupt specifier.
412  *
413  * Here's the processing steps:
414  * step1 - If the interrupt-parent property exists, create the ispec and
415  *	return the dip of the interrupt parent.
416  * step2 - Extract the interrupt-map property and the interrupt-map-mask
417  *	If these don't exist, just return the device tree parent.
418  * step3 - build up the unit interrupt specifier to match against the
419  *	interrupt map property
420  * step4 - Scan the interrupt-map property until a match is found
421  * step4a - Extract the interrupt parent
422  * step4b - Compare the unit interrupt specifier
423  */
424 dev_info_t *
425 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp)
426 {
427 	prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req;
428 	int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz,
429 	    addr_cells, intr_cells, reg_len, i, j;
430 	int32_t match_found = 0;
431 	dev_info_t *intr_parent_dip = NULL;
432 	uint32_t *intr = &hdlp->ih_vector;
433 	uint32_t nodeid;
434 #ifdef DEBUG
435 	static int debug = 0;
436 #endif
437 
438 	/*
439 	 * step1
440 	 * If we have an interrupt-parent property, this property represents
441 	 * the nodeid of our interrupt parent.
442 	 */
443 	if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
444 	    "interrupt-parent", -1)) != -1) {
445 		intr_parent_dip = e_ddi_nodeid_to_dip(nodeid);
446 		ASSERT(intr_parent_dip);
447 
448 		/*
449 		 * Attach the interrupt parent.
450 		 *
451 		 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR.
452 		 *	Also, interrupt parent isn't held. This needs
453 		 *	to be revisited if DR-capable platforms implement
454 		 *	interrupt redirection.
455 		 */
456 		if (i_ddi_attach_node_hierarchy(intr_parent_dip)
457 		    != DDI_SUCCESS) {
458 			ndi_rele_devi(intr_parent_dip);
459 			return (NULL);
460 		}
461 
462 		return (intr_parent_dip);
463 	}
464 
465 	/*
466 	 * step2
467 	 * Get interrupt map structure from PROM property
468 	 */
469 	if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
470 	    "interrupt-map", (caddr_t)&imap, &imap_sz)
471 	    != DDI_PROP_SUCCESS) {
472 		/*
473 		 * If we don't have an imap property, default to using the
474 		 * device tree.
475 		 */
476 
477 		ndi_hold_devi(pdip);
478 		return (pdip);
479 	}
480 
481 	/* Get the interrupt mask property */
482 	if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
483 	    "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz)
484 	    != DDI_PROP_SUCCESS) {
485 		/*
486 		 * If we don't find this property, we have to fail the request
487 		 * because the 1275 imap property wasn't defined correctly.
488 		 */
489 		ASSERT(intr_parent_dip == NULL);
490 		goto exit2;
491 	}
492 
493 	/* Get the address cell size */
494 	addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
495 	    "#address-cells", 2);
496 
497 	/* Get the interrupts cell size */
498 	intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
499 	    "#interrupt-cells", 1);
500 
501 	/*
502 	 * step3
503 	 * Now lets build up the unit interrupt specifier e.g. reg,intr
504 	 * and apply the imap mask.  match_req will hold this when we're
505 	 * through.
506 	 */
507 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg",
508 	    (caddr_t)&reg_p, &reg_len) != DDI_SUCCESS) {
509 		ASSERT(intr_parent_dip == NULL);
510 		goto exit3;
511 	}
512 
513 	match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) +
514 	    CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP);
515 
516 	for (i = 0; i < addr_cells; i++)
517 		match_req[i] = (reg_p[i] & imap_mask[i]);
518 
519 	for (j = 0; j < intr_cells; i++, j++)
520 		match_req[i] = (intr[j] & imap_mask[i]);
521 
522 	/* Calculate the imap size in cells */
523 	imap_cells = BYTES_TO_1275_CELLS(imap_sz);
524 
525 #ifdef DEBUG
526 	if (debug)
527 		prom_printf("reg cell size 0x%x, intr cell size 0x%x, "
528 		    "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells,
529 		    match_req, imap);
530 #endif
531 
532 	/*
533 	 * Scan the imap property looking for a match of the interrupt unit
534 	 * specifier.  This loop is rather complex since the data within the
535 	 * imap property may vary in size.
536 	 */
537 	for (scan = imap, imap_scan_cells = i = 0;
538 	    imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) {
539 		int new_intr_cells;
540 
541 		/* Set the index to the nodeid field */
542 		i = addr_cells + intr_cells;
543 
544 		/*
545 		 * step4a
546 		 * Translate the nodeid field to a dip
547 		 */
548 		ASSERT(intr_parent_dip == NULL);
549 		intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]);
550 
551 		ASSERT(intr_parent_dip != 0);
552 #ifdef DEBUG
553 		if (debug)
554 			prom_printf("scan 0x%p\n", scan);
555 #endif
556 		/*
557 		 * The tmp_dip describes the new domain, get it's interrupt
558 		 * cell size
559 		 */
560 		new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0,
561 		    "#interrupts-cells", 1);
562 
563 		/*
564 		 * step4b
565 		 * See if we have a match on the interrupt unit specifier
566 		 */
567 		if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells)
568 		    == 0) {
569 			uint32_t *intr;
570 
571 			match_found = 1;
572 
573 			/*
574 			 * If we have an imap parent whose not in our device
575 			 * tree path, we need to hold and install that driver.
576 			 */
577 			if (i_ddi_attach_node_hierarchy(intr_parent_dip)
578 			    != DDI_SUCCESS) {
579 				ndi_rele_devi(intr_parent_dip);
580 				intr_parent_dip = (dev_info_t *)NULL;
581 				goto exit4;
582 			}
583 
584 			/*
585 			 * We need to handcraft an ispec along with a bus
586 			 * interrupt value, so we can dup it into our
587 			 * standard ispec structure.
588 			 */
589 			/* Extract the translated interrupt information */
590 			intr = kmem_alloc(
591 			    CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP);
592 
593 			for (j = 0; j < new_intr_cells; j++, i++)
594 				intr[j] = scan[i];
595 
596 			cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells);
597 
598 			kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells));
599 
600 #ifdef DEBUG
601 			if (debug)
602 				prom_printf("dip 0x%p\n", intr_parent_dip);
603 #endif
604 			break;
605 		} else {
606 #ifdef DEBUG
607 			if (debug)
608 				prom_printf("dip 0x%p\n", intr_parent_dip);
609 #endif
610 			ndi_rele_devi(intr_parent_dip);
611 			intr_parent_dip = NULL;
612 			i += new_intr_cells;
613 		}
614 	}
615 
616 	/*
617 	 * If we haven't found our interrupt parent at this point, fallback
618 	 * to using the device tree.
619 	 */
620 	if (!match_found) {
621 		ndi_hold_devi(pdip);
622 		ASSERT(intr_parent_dip == NULL);
623 		intr_parent_dip = pdip;
624 	}
625 
626 	ASSERT(intr_parent_dip != NULL);
627 
628 exit4:
629 	kmem_free(reg_p, reg_len);
630 	kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) +
631 	    CELLS_1275_TO_BYTES(intr_cells));
632 
633 exit3:
634 	kmem_free(imap_mask, imap_mask_sz);
635 
636 exit2:
637 	kmem_free(imap, imap_sz);
638 
639 	return (intr_parent_dip);
640 }
641 
642 /*
643  * process_intr_ops:
644  *
645  * Process the interrupt op via the interrupt parent.
646  */
647 int
648 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op,
649     ddi_intr_handle_impl_t *hdlp, void *result)
650 {
651 	int		ret = DDI_FAILURE;
652 
653 	if (NEXUS_HAS_INTR_OP(pdip)) {
654 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->
655 		    bus_intr_op)) (pdip, rdip, op, hdlp, result);
656 	} else {
657 		cmn_err(CE_WARN, "Failed to process interrupt "
658 		    "for %s%d due to down-rev nexus driver %s%d",
659 		    ddi_get_name(rdip), ddi_get_instance(rdip),
660 		    ddi_get_name(pdip), ddi_get_instance(pdip));
661 	}
662 
663 	return (ret);
664 }
665 
666 /*ARGSUSED*/
667 uint_t
668 softlevel1(caddr_t arg)
669 {
670 	softint();
671 	return (1);
672 }
673 
674 /*
675  * indirection table, to save us some large switch statements
676  * NOTE: This must agree with "INTLEVEL_foo" constants in
677  *	<sys/avintr.h>
678  */
679 struct autovec *const vectorlist[] = { 0 };
680 
681 /*
682  * This value is exported here for the functions in avintr.c
683  */
684 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0]));
685 
686 /*
687  * Check for machine specific interrupt levels which cannot be reassigned by
688  * settrap(), sun4u version.
689  *
690  * sun4u does not support V8 SPARC "fast trap" handlers.
691  */
692 /*ARGSUSED*/
693 int
694 exclude_settrap(int lvl)
695 {
696 	return (1);
697 }
698 
699 /*
700  * Check for machine specific interrupt levels which cannot have interrupt
701  * handlers added. We allow levels 1 through 15; level 0 is nonsense.
702  */
703 /*ARGSUSED*/
704 int
705 exclude_level(int lvl)
706 {
707 	return ((lvl < 1) || (lvl > 15));
708 }
709 
710 /*
711  * Wrapper functions used by New DDI interrupt framework.
712  */
713 
714 /*
715  * i_ddi_intr_ops:
716  */
717 int
718 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
719     ddi_intr_handle_impl_t *hdlp, void *result)
720 {
721 	dev_info_t	*pdip = ddi_get_parent(dip);
722 	int		ret = DDI_FAILURE;
723 
724 	/*
725 	 * The following check is required to address
726 	 * one of the test case of ADDI test suite.
727 	 */
728 	if (pdip == NULL)
729 		return (DDI_FAILURE);
730 
731 	if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
732 		return (process_intr_ops(pdip, rdip, op, hdlp, result));
733 
734 	if (hdlp->ih_vector == 0)
735 		hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum);
736 
737 	if (hdlp->ih_pri == 0)
738 		hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum);
739 
740 	switch (op) {
741 	case DDI_INTROP_ADDISR:
742 	case DDI_INTROP_REMISR:
743 	case DDI_INTROP_ENABLE:
744 	case DDI_INTROP_DISABLE:
745 	case DDI_INTROP_BLOCKENABLE:
746 	case DDI_INTROP_BLOCKDISABLE:
747 		/*
748 		 * Try and determine our parent and possibly an interrupt
749 		 * translation. intr parent dip returned held
750 		 */
751 		if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL)
752 			goto done;
753 	}
754 
755 	ret = process_intr_ops(pdip, rdip, op, hdlp, result);
756 
757 done:
758 	switch (op) {
759 	case DDI_INTROP_ADDISR:
760 	case DDI_INTROP_REMISR:
761 	case DDI_INTROP_ENABLE:
762 	case DDI_INTROP_DISABLE:
763 	case DDI_INTROP_BLOCKENABLE:
764 	case DDI_INTROP_BLOCKDISABLE:
765 		/* Release hold acquired in get_intr_parent() */
766 		if (pdip)
767 			ndi_rele_devi(pdip);
768 	}
769 
770 	hdlp->ih_vector = 0;
771 
772 	return (ret);
773 }
774 
775 /*
776  * i_ddi_add_ivintr:
777  */
778 /*ARGSUSED*/
779 int
780 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp)
781 {
782 	/* Sanity check the entry we're about to add */
783 	if (GET_IVINTR(hdlp->ih_vector)) {
784 		cmn_err(CE_WARN, "mondo 0x%x in use", hdlp->ih_vector);
785 		return (DDI_FAILURE);
786 	}
787 
788 	/*
789 	 * If the PIL was set and is valid use it, otherwise
790 	 * default it to 1
791 	 */
792 	if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX))
793 		hdlp->ih_pri = 1;
794 
795 	VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri,
796 	    (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, NULL) == 0);
797 
798 	return (DDI_SUCCESS);
799 }
800 
801 /*
802  * i_ddi_rem_ivintr:
803  */
804 /*ARGSUSED*/
805 void
806 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp)
807 {
808 	rem_ivintr(hdlp->ih_vector, NULL);
809 }
810 
811 /*
812  * i_ddi_get_inum - Get the interrupt number property from the
813  * specified device. Note that this function is called only for
814  * the FIXED interrupt type.
815  */
816 uint32_t
817 i_ddi_get_inum(dev_info_t *dip, uint_t inumber)
818 {
819 	int32_t			intrlen, intr_cells, max_intrs;
820 	prop_1275_cell_t	*ip, intr_sz;
821 	uint32_t		intr = 0;
822 
823 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
824 	    DDI_PROP_CANSLEEP,
825 	    "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
826 
827 		intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
828 		    "#interrupt-cells", 1);
829 
830 		/* adjust for number of bytes */
831 		intr_sz = CELLS_1275_TO_BYTES(intr_cells);
832 
833 		/* Calculate the number of interrupts */
834 		max_intrs = intrlen / intr_sz;
835 
836 		if (inumber < max_intrs) {
837 			prop_1275_cell_t *intrp = ip;
838 
839 			/* Index into interrupt property */
840 			intrp += (inumber * intr_cells);
841 
842 			cells_1275_copy(intrp, &intr, intr_cells);
843 		}
844 
845 		kmem_free(ip, intrlen);
846 	}
847 
848 	return (intr);
849 }
850 
851 /*
852  * i_ddi_get_intr_pri - Get the interrupt-priorities property from
853  * the specified device. Note that this function is called only for
854  * the FIXED interrupt type.
855  */
856 uint32_t
857 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber)
858 {
859 	uint32_t	*intr_prio_p;
860 	uint32_t	pri = 0;
861 	int32_t		i;
862 
863 	/*
864 	 * Use the "interrupt-priorities" property to determine the
865 	 * the pil/ipl for the interrupt handler.
866 	 */
867 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
868 	    "interrupt-priorities", (caddr_t)&intr_prio_p,
869 	    &i) == DDI_SUCCESS) {
870 		if (inumber < (i / sizeof (int32_t)))
871 			pri = intr_prio_p[inumber];
872 		kmem_free(intr_prio_p, i);
873 	}
874 
875 	return (pri);
876 }
877 
878 int
879 i_ddi_get_nintrs(dev_info_t *dip)
880 {
881 	int32_t intrlen;
882 	prop_1275_cell_t intr_sz;
883 	prop_1275_cell_t *ip;
884 	int32_t ret = 0;
885 
886 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
887 	    DDI_PROP_CANSLEEP,
888 	    "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
889 
890 		intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
891 		    "#interrupt-cells", 1);
892 		/* adjust for number of bytes */
893 		intr_sz = CELLS_1275_TO_BYTES(intr_sz);
894 
895 		ret = intrlen / intr_sz;
896 
897 		kmem_free(ip, intrlen);
898 	}
899 
900 	return (ret);
901 }
902 
903 /*
904  * i_ddi_add_softint - allocate and add a soft interrupt to the system
905  */
906 int
907 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
908 {
909 	uint_t		rval;
910 
911 	if ((rval = add_softintr(hdlp->ih_pri, hdlp->ih_cb_func,
912 	    hdlp->ih_cb_arg1)) == 0) {
913 
914 		return (DDI_FAILURE);
915 	}
916 
917 	/* use uintptr_t to suppress the gcc warning */
918 	hdlp->ih_private = (void *)(uintptr_t)rval;
919 
920 	return (DDI_SUCCESS);
921 }
922 
923 void
924 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
925 {
926 	uint_t		intr_id;
927 
928 	/* disable */
929 	ASSERT(hdlp->ih_private != NULL);
930 
931 	/* use uintptr_t to suppress the gcc warning */
932 	intr_id = (uint_t)(uintptr_t)hdlp->ih_private;
933 
934 	rem_softintr(intr_id);
935 	hdlp->ih_private = NULL;
936 }
937 
938 int
939 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
940 {
941 	uint_t		intr_id;
942 	int		ret;
943 
944 	ASSERT(hdlp != NULL);
945 	ASSERT(hdlp->ih_private != NULL);
946 
947 	intr_id = (uint_t)hdlp->ih_private;
948 
949 	/* update the vector table for the 2nd arg */
950 	ret = update_softint_arg2(intr_id, arg2);
951 	if (ret == DDI_SUCCESS)
952 		setsoftint(intr_id);
953 
954 	return (ret);
955 }
956 
957 /* ARGSUSED */
958 int
959 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
960 {
961 	uint_t		intr_id;
962 	int		ret;
963 
964 	ASSERT(hdlp != NULL);
965 	ASSERT(hdlp->ih_private != NULL);
966 
967 	intr_id = (uint_t)hdlp->ih_private;
968 
969 	/* update the vector table for the new priority */
970 	ret = update_softint_pri(intr_id, hdlp->ih_pri);
971 
972 	return (ret);
973 }
974 
975 /*ARGSUSED*/
976 void
977 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
978 {
979 }
980 
981 /*ARGSUSED*/
982 void
983 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
984 {
985 }
986 
987 /*
988  * SECTION: DDI Memory/DMA
989  */
990 
991 static vmem_t *little_endian_arena;
992 static vmem_t *big_endian_arena;
993 
994 static void *
995 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag)
996 {
997 	return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE,
998 	    segkmem_page_create, NULL));
999 }
1000 
1001 static void *
1002 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag)
1003 {
1004 	return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE,
1005 	    segkmem_page_create, NULL));
1006 }
1007 
1008 void
1009 ka_init(void)
1010 {
1011 	little_endian_arena = vmem_create("little_endian", NULL, 0, 1,
1012 	    segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP);
1013 	big_endian_arena = vmem_create("big_endian", NULL, 0, 1,
1014 	    segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP);
1015 }
1016 
1017 /*
1018  * Allocate from the system, aligned on a specific boundary.
1019  * The alignment, if non-zero, must be a power of 2.
1020  */
1021 static void *
1022 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags)
1023 {
1024 	size_t *addr, *raddr, rsize;
1025 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1026 
1027 	align = MAX(align, hdrsize);
1028 	ASSERT((align & (align - 1)) == 0);
1029 
1030 	/*
1031 	 * We need to allocate
1032 	 *    rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment)
1033 	 * bytes to be sure we have enough freedom to satisfy the request.
1034 	 * Since the buffer alignment depends on the request size, this is
1035 	 * not straightforward to use directly.
1036 	 *
1037 	 * kmem guarantees that any allocation of a 64-byte multiple will be
1038 	 * 64-byte aligned.  Since rounding up the request could add more
1039 	 * than we save, we compute the size with and without alignment, and
1040 	 * use the smaller of the two.
1041 	 */
1042 	rsize = size + hdrsize + align;
1043 
1044 	if (endian_flags == DDI_STRUCTURE_LE_ACC) {
1045 		raddr = vmem_alloc(little_endian_arena, rsize,
1046 		    cansleep ? VM_SLEEP : VM_NOSLEEP);
1047 	} else {
1048 		raddr = vmem_alloc(big_endian_arena, rsize,
1049 		    cansleep ? VM_SLEEP : VM_NOSLEEP);
1050 	}
1051 
1052 	if (raddr == NULL)
1053 		return (NULL);
1054 
1055 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1056 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1057 
1058 	addr[-3] = (size_t)endian_flags;
1059 	addr[-2] = (size_t)raddr;
1060 	addr[-1] = rsize;
1061 
1062 	return (addr);
1063 }
1064 
1065 static void
1066 kfreea(void *addr)
1067 {
1068 	size_t *saddr = addr;
1069 
1070 	if (saddr[-3] == DDI_STRUCTURE_LE_ACC)
1071 		vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]);
1072 	else
1073 		vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]);
1074 }
1075 
1076 int
1077 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1078     size_t length, int cansleep, int streaming,
1079     ddi_device_acc_attr_t *accattrp,
1080     caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep)
1081 {
1082 	caddr_t a;
1083 	int iomin, align;
1084 	uint_t endian_flags = DDI_NEVERSWAP_ACC;
1085 
1086 #if defined(lint)
1087 	*handlep = *handlep;
1088 #endif
1089 
1090 	/*
1091 	 * Check legality of arguments
1092 	 */
1093 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1094 		return (DDI_FAILURE);
1095 	}
1096 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1097 	    (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1098 	    (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1099 		return (DDI_FAILURE);
1100 	}
1101 
1102 	/*
1103 	 * Drivers for 64-bit capable SBus devices will encode
1104 	 * the burtsizes for 64-bit xfers in the upper 16-bits.
1105 	 * For DMA alignment, we use the most restrictive
1106 	 * alignment of 32-bit and 64-bit xfers.
1107 	 */
1108 	iomin = (attr->dma_attr_burstsizes & 0xffff) |
1109 	    ((attr->dma_attr_burstsizes >> 16) & 0xffff);
1110 	/*
1111 	 * If a driver set burtsizes to 0, we give him byte alignment.
1112 	 * Otherwise align at the burtsizes boundary.
1113 	 */
1114 	if (iomin == 0)
1115 		iomin = 1;
1116 	else
1117 		iomin = 1 << (ddi_fls(iomin) - 1);
1118 	iomin = maxbit(iomin, attr->dma_attr_minxfer);
1119 	iomin = maxbit(iomin, attr->dma_attr_align);
1120 	iomin = ddi_iomin(dip, iomin, streaming);
1121 	if (iomin == 0)
1122 		return (DDI_FAILURE);
1123 
1124 	ASSERT((iomin & (iomin - 1)) == 0);
1125 	ASSERT(iomin >= attr->dma_attr_minxfer);
1126 	ASSERT(iomin >= attr->dma_attr_align);
1127 
1128 	length = P2ROUNDUP(length, iomin);
1129 	align = iomin;
1130 
1131 	if (accattrp != NULL)
1132 		endian_flags = accattrp->devacc_attr_endian_flags;
1133 
1134 	a = kalloca(length, align, cansleep, endian_flags);
1135 	if ((*kaddrp = a) == 0) {
1136 		return (DDI_FAILURE);
1137 	} else {
1138 		if (real_length) {
1139 			*real_length = length;
1140 		}
1141 		if (handlep) {
1142 			/*
1143 			 * assign handle information
1144 			 */
1145 			impl_acc_hdl_init(handlep);
1146 		}
1147 		return (DDI_SUCCESS);
1148 	}
1149 }
1150 
1151 /*
1152  * covert old DMA limits structure to DMA attribute structure
1153  * and continue
1154  */
1155 int
1156 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1157     size_t length, int cansleep, int streaming,
1158     ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1159     uint_t *real_length, ddi_acc_hdl_t *ap)
1160 {
1161 	ddi_dma_attr_t dma_attr, *attrp;
1162 	size_t rlen;
1163 	int ret;
1164 
1165 	ASSERT(limits);
1166 	attrp = &dma_attr;
1167 	attrp->dma_attr_version = DMA_ATTR_V0;
1168 	attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1169 	attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1170 	attrp->dma_attr_count_max = (uint64_t)-1;
1171 	attrp->dma_attr_align = 1;
1172 	attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1173 	attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1174 	attrp->dma_attr_maxxfer = (uint64_t)-1;
1175 	attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max;
1176 	attrp->dma_attr_sgllen = 1;
1177 	attrp->dma_attr_granular = 1;
1178 	attrp->dma_attr_flags = 0;
1179 
1180 	ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1181 	    accattrp, kaddrp, &rlen, ap);
1182 	if (ret == DDI_SUCCESS) {
1183 		if (real_length)
1184 			*real_length = (uint_t)rlen;
1185 	}
1186 	return (ret);
1187 }
1188 
1189 /* ARGSUSED */
1190 void
1191 i_ddi_mem_free(caddr_t kaddr, int stream)
1192 {
1193 	kfreea(kaddr);
1194 }
1195 
1196 /*
1197  * SECTION: DDI Data Access
1198  */
1199 
1200 static uintptr_t impl_acc_hdl_id = 0;
1201 
1202 /*
1203  * access handle allocator
1204  */
1205 ddi_acc_hdl_t *
1206 impl_acc_hdl_get(ddi_acc_handle_t hdl)
1207 {
1208 	/*
1209 	 * Extract the access handle address from the DDI implemented
1210 	 * access handle
1211 	 */
1212 	return (&((ddi_acc_impl_t *)hdl)->ahi_common);
1213 }
1214 
1215 ddi_acc_handle_t
1216 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg)
1217 {
1218 	ddi_acc_impl_t *hp;
1219 	on_trap_data_t *otp;
1220 	int sleepflag;
1221 
1222 	sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
1223 
1224 	/*
1225 	 * Allocate and initialize the data access handle and error status.
1226 	 */
1227 	if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL)
1228 		goto fail;
1229 	if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc(
1230 	    sizeof (ndi_err_t), sleepflag)) == NULL) {
1231 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1232 		goto fail;
1233 	}
1234 	if ((otp = (on_trap_data_t *)kmem_zalloc(
1235 	    sizeof (on_trap_data_t), sleepflag)) == NULL) {
1236 		kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1237 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1238 		goto fail;
1239 	}
1240 	hp->ahi_err->err_ontrap = otp;
1241 	hp->ahi_common.ah_platform_private = (void *)hp;
1242 
1243 	return ((ddi_acc_handle_t)hp);
1244 fail:
1245 	if ((waitfp != (int (*)())KM_SLEEP) &&
1246 	    (waitfp != (int (*)())KM_NOSLEEP))
1247 		ddi_set_callback(waitfp, arg, &impl_acc_hdl_id);
1248 	return (NULL);
1249 }
1250 
1251 void
1252 impl_acc_hdl_free(ddi_acc_handle_t handle)
1253 {
1254 	ddi_acc_impl_t *hp;
1255 
1256 	/*
1257 	 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *),
1258 	 * because that's what we allocated in impl_acc_hdl_alloc() above.
1259 	 */
1260 	hp = (ddi_acc_impl_t *)handle;
1261 	if (hp) {
1262 		kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t));
1263 		kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1264 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1265 		if (impl_acc_hdl_id)
1266 			ddi_run_callback(&impl_acc_hdl_id);
1267 	}
1268 }
1269 
1270 void
1271 impl_acc_err_init(ddi_acc_hdl_t *handlep)
1272 {
1273 	int fmcap;
1274 	ndi_err_t *errp;
1275 	on_trap_data_t *otp;
1276 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep;
1277 
1278 	fmcap = ddi_fm_capable(handlep->ah_dip);
1279 
1280 	if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 ||
1281 	    !DDI_FM_ACC_ERR_CAP(fmcap)) {
1282 		handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC;
1283 	} else if (DDI_FM_ACC_ERR_CAP(fmcap)) {
1284 		if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
1285 			i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP,
1286 			    NULL, DDI_NOSLEEP);
1287 		} else {
1288 			errp = hp->ahi_err;
1289 			otp = (on_trap_data_t *)errp->err_ontrap;
1290 			otp->ot_handle = (void *)(hp);
1291 			otp->ot_prot = OT_DATA_ACCESS;
1292 			if (handlep->ah_acc.devacc_attr_access ==
1293 			    DDI_CAUTIOUS_ACC)
1294 				otp->ot_trampoline =
1295 				    (uintptr_t)&i_ddi_caut_trampoline;
1296 			else
1297 				otp->ot_trampoline =
1298 				    (uintptr_t)&i_ddi_prot_trampoline;
1299 			errp->err_status = DDI_FM_OK;
1300 			errp->err_expected = DDI_FM_ERR_UNEXPECTED;
1301 		}
1302 	}
1303 }
1304 
1305 void
1306 impl_acc_hdl_init(ddi_acc_hdl_t *handlep)
1307 {
1308 	ddi_acc_impl_t *hp;
1309 
1310 	ASSERT(handlep);
1311 
1312 	hp = (ddi_acc_impl_t *)handlep;
1313 
1314 	/*
1315 	 * check for SW byte-swapping
1316 	 */
1317 	hp->ahi_get8 = i_ddi_get8;
1318 	hp->ahi_put8 = i_ddi_put8;
1319 	hp->ahi_rep_get8 = i_ddi_rep_get8;
1320 	hp->ahi_rep_put8 = i_ddi_rep_put8;
1321 	if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) {
1322 		hp->ahi_get16 = i_ddi_swap_get16;
1323 		hp->ahi_get32 = i_ddi_swap_get32;
1324 		hp->ahi_get64 = i_ddi_swap_get64;
1325 		hp->ahi_put16 = i_ddi_swap_put16;
1326 		hp->ahi_put32 = i_ddi_swap_put32;
1327 		hp->ahi_put64 = i_ddi_swap_put64;
1328 		hp->ahi_rep_get16 = i_ddi_swap_rep_get16;
1329 		hp->ahi_rep_get32 = i_ddi_swap_rep_get32;
1330 		hp->ahi_rep_get64 = i_ddi_swap_rep_get64;
1331 		hp->ahi_rep_put16 = i_ddi_swap_rep_put16;
1332 		hp->ahi_rep_put32 = i_ddi_swap_rep_put32;
1333 		hp->ahi_rep_put64 = i_ddi_swap_rep_put64;
1334 	} else {
1335 		hp->ahi_get16 = i_ddi_get16;
1336 		hp->ahi_get32 = i_ddi_get32;
1337 		hp->ahi_get64 = i_ddi_get64;
1338 		hp->ahi_put16 = i_ddi_put16;
1339 		hp->ahi_put32 = i_ddi_put32;
1340 		hp->ahi_put64 = i_ddi_put64;
1341 		hp->ahi_rep_get16 = i_ddi_rep_get16;
1342 		hp->ahi_rep_get32 = i_ddi_rep_get32;
1343 		hp->ahi_rep_get64 = i_ddi_rep_get64;
1344 		hp->ahi_rep_put16 = i_ddi_rep_put16;
1345 		hp->ahi_rep_put32 = i_ddi_rep_put32;
1346 		hp->ahi_rep_put64 = i_ddi_rep_put64;
1347 	}
1348 
1349 	/* Legacy fault flags and support */
1350 	hp->ahi_fault_check = i_ddi_acc_fault_check;
1351 	hp->ahi_fault_notify = i_ddi_acc_fault_notify;
1352 	hp->ahi_fault = 0;
1353 	impl_acc_err_init(handlep);
1354 }
1355 
1356 void
1357 i_ddi_acc_set_fault(ddi_acc_handle_t handle)
1358 {
1359 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1360 
1361 	if (!hp->ahi_fault) {
1362 		hp->ahi_fault = 1;
1363 			(*hp->ahi_fault_notify)(hp);
1364 	}
1365 }
1366 
1367 void
1368 i_ddi_acc_clr_fault(ddi_acc_handle_t handle)
1369 {
1370 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1371 
1372 	if (hp->ahi_fault) {
1373 		hp->ahi_fault = 0;
1374 			(*hp->ahi_fault_notify)(hp);
1375 	}
1376 }
1377 
1378 /* ARGSUSED */
1379 void
1380 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp)
1381 {
1382 	/* Default version, does nothing */
1383 }
1384 
1385 /*
1386  * SECTION: Misc functions
1387  */
1388 
1389 /*
1390  * instance wrappers
1391  */
1392 /*ARGSUSED*/
1393 uint_t
1394 impl_assign_instance(dev_info_t *dip)
1395 {
1396 	return ((uint_t)-1);
1397 }
1398 
1399 /*ARGSUSED*/
1400 int
1401 impl_keep_instance(dev_info_t *dip)
1402 {
1403 	return (DDI_FAILURE);
1404 }
1405 
1406 /*ARGSUSED*/
1407 int
1408 impl_free_instance(dev_info_t *dip)
1409 {
1410 	return (DDI_FAILURE);
1411 }
1412 
1413 /*ARGSUSED*/
1414 int
1415 impl_check_cpu(dev_info_t *devi)
1416 {
1417 	return (DDI_SUCCESS);
1418 }
1419 
1420 
1421 static const char *nocopydevs[] = {
1422 	"SUNW,ffb",
1423 	"SUNW,afb",
1424 	NULL
1425 };
1426 
1427 /*
1428  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
1429  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
1430  */
1431 /*ARGSUSED*/
1432 int
1433 e_ddi_copyfromdev(dev_info_t *devi,
1434     off_t off, const void *devaddr, void *kaddr, size_t len)
1435 {
1436 	const char **argv;
1437 
1438 	for (argv = nocopydevs; *argv; argv++)
1439 		if (strcmp(ddi_binding_name(devi), *argv) == 0) {
1440 			bzero(kaddr, len);
1441 			return (0);
1442 		}
1443 
1444 	bcopy(devaddr, kaddr, len);
1445 	return (0);
1446 }
1447 
1448 /*
1449  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
1450  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
1451  */
1452 /*ARGSUSED*/
1453 int
1454 e_ddi_copytodev(dev_info_t *devi,
1455     off_t off, const void *kaddr, void *devaddr, size_t len)
1456 {
1457 	const char **argv;
1458 
1459 	for (argv = nocopydevs; *argv; argv++)
1460 		if (strcmp(ddi_binding_name(devi), *argv) == 0)
1461 			return (1);
1462 
1463 	bcopy(kaddr, devaddr, len);
1464 	return (0);
1465 }
1466 
1467 /*
1468  * Boot Configuration
1469  */
1470 idprom_t idprom;
1471 
1472 /*
1473  * Configure the hardware on the system.
1474  * Called before the rootfs is mounted
1475  */
1476 void
1477 configure(void)
1478 {
1479 	extern void i_ddi_init_root();
1480 
1481 	/* We better have released boot by this time! */
1482 	ASSERT(!bootops);
1483 
1484 	/*
1485 	 * Determine whether or not to use the fpu, V9 SPARC cpus
1486 	 * always have one. Could check for existence of a fp queue,
1487 	 * Ultra I, II and IIa do not have a fp queue.
1488 	 */
1489 	if (fpu_exists)
1490 		fpu_probe();
1491 	else
1492 		cmn_err(CE_CONT, "FPU not in use\n");
1493 
1494 #if 0 /* XXXQ - not necessary for sun4u */
1495 	/*
1496 	 * This following line fixes bugid 1041296; we need to do a
1497 	 * prom_nextnode(0) because this call ALSO patches the DMA+
1498 	 * bug in Campus-B and Phoenix. The prom uncaches the traptable
1499 	 * page as a side-effect of devr_next(0) (which prom_nextnode calls),
1500 	 * so this *must* be executed early on. (XXX This is untrue for sun4u)
1501 	 */
1502 	(void) prom_nextnode((pnode_t)0);
1503 #endif
1504 
1505 	/*
1506 	 * Initialize devices on the machine.
1507 	 * Uses configuration tree built by the PROMs to determine what
1508 	 * is present, and builds a tree of prototype dev_info nodes
1509 	 * corresponding to the hardware which identified itself.
1510 	 */
1511 	i_ddi_init_root();
1512 
1513 #ifdef	DDI_PROP_DEBUG
1514 	(void) ddi_prop_debug(1);	/* Enable property debugging */
1515 #endif	/* DDI_PROP_DEBUG */
1516 }
1517 
1518 /*
1519  * The "status" property indicates the operational status of a device.
1520  * If this property is present, the value is a string indicating the
1521  * status of the device as follows:
1522  *
1523  *	"okay"		operational.
1524  *	"disabled"	not operational, but might become operational.
1525  *	"fail"		not operational because a fault has been detected,
1526  *			and it is unlikely that the device will become
1527  *			operational without repair. no additional details
1528  *			are available.
1529  *	"fail-xxx"	not operational because a fault has been detected,
1530  *			and it is unlikely that the device will become
1531  *			operational without repair. "xxx" is additional
1532  *			human-readable information about the particular
1533  *			fault condition that was detected.
1534  *
1535  * The absence of this property means that the operational status is
1536  * unknown or okay.
1537  *
1538  * This routine checks the status property of the specified device node
1539  * and returns 0 if the operational status indicates failure, and 1 otherwise.
1540  *
1541  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
1542  * And, in that case, the property may not even be a string. So we carefully
1543  * check for the value "fail", in the beginning of the string, noting
1544  * the property length.
1545  */
1546 int
1547 status_okay(int id, char *buf, int buflen)
1548 {
1549 	char status_buf[OBP_MAXPROPNAME];
1550 	char *bufp = buf;
1551 	int len = buflen;
1552 	int proplen;
1553 	static const char *status = "status";
1554 	static const char *fail = "fail";
1555 	size_t fail_len = strlen(fail);
1556 
1557 	/*
1558 	 * Get the proplen ... if it's smaller than "fail",
1559 	 * or doesn't exist ... then we don't care, since
1560 	 * the value can't begin with the char string "fail".
1561 	 *
1562 	 * NB: proplen, if it's a string, includes the NULL in the
1563 	 * the size of the property, and fail_len does not.
1564 	 */
1565 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
1566 	if (proplen <= fail_len)	/* nonexistent or uninteresting len */
1567 		return (1);
1568 
1569 	/*
1570 	 * if a buffer was provided, use it
1571 	 */
1572 	if ((buf == (char *)NULL) || (buflen <= 0)) {
1573 		bufp = status_buf;
1574 		len = sizeof (status_buf);
1575 	}
1576 	*bufp = (char)0;
1577 
1578 	/*
1579 	 * Get the property into the buffer, to the extent of the buffer,
1580 	 * and in case the buffer is smaller than the property size,
1581 	 * NULL terminate the buffer. (This handles the case where
1582 	 * a buffer was passed in and the caller wants to print the
1583 	 * value, but the buffer was too small).
1584 	 */
1585 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
1586 	    (caddr_t)bufp, len);
1587 	*(bufp + len - 1) = (char)0;
1588 
1589 	/*
1590 	 * If the value begins with the char string "fail",
1591 	 * then it means the node is failed. We don't care
1592 	 * about any other values. We assume the node is ok
1593 	 * although it might be 'disabled'.
1594 	 */
1595 	if (strncmp(bufp, fail, fail_len) == 0)
1596 		return (0);
1597 
1598 	return (1);
1599 }
1600 
1601 
1602 /*
1603  * We set the cpu type from the idprom, if we can.
1604  * Note that we just read out the contents of it, for the most part.
1605  */
1606 void
1607 setcputype(void)
1608 {
1609 	/*
1610 	 * We cache the idprom info early on so that we don't
1611 	 * rummage through the NVRAM unnecessarily later.
1612 	 */
1613 	(void) prom_getidprom((caddr_t)&idprom, sizeof (idprom));
1614 }
1615 
1616 /*
1617  *  Here is where we actually infer meanings to the members of idprom_t
1618  */
1619 void
1620 parse_idprom(void)
1621 {
1622 	if (idprom.id_format == IDFORM_1) {
1623 		uint_t i;
1624 
1625 		(void) localetheraddr((struct ether_addr *)idprom.id_ether,
1626 		    (struct ether_addr *)NULL);
1627 
1628 		i = idprom.id_machine << 24;
1629 		i = i + idprom.id_serial;
1630 		numtos((ulong_t)i, hw_serial);
1631 	} else
1632 		prom_printf("Invalid format code in IDprom.\n");
1633 }
1634 
1635 /*
1636  * Allow for implementation specific correction of PROM property values.
1637  */
1638 /*ARGSUSED*/
1639 void
1640 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
1641     caddr_t buffer)
1642 {
1643 	/*
1644 	 * There are no adjustments needed in this implementation.
1645 	 */
1646 }
1647 
1648 /*
1649  * The following functions ready a cautious request to go up to the nexus
1650  * driver.  It is up to the nexus driver to decide how to process the request.
1651  * It may choose to call i_ddi_do_caut_get/put in this file, or do it
1652  * differently.
1653  */
1654 
1655 static void
1656 i_ddi_caut_getput_ctlops(
1657     ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size,
1658     size_t repcount, uint_t flags, ddi_ctl_enum_t cmd)
1659 {
1660 	peekpoke_ctlops_t	cautacc_ctlops_arg;
1661 
1662 	cautacc_ctlops_arg.size = size;
1663 	cautacc_ctlops_arg.dev_addr = dev_addr;
1664 	cautacc_ctlops_arg.host_addr = host_addr;
1665 	cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
1666 	cautacc_ctlops_arg.repcount = repcount;
1667 	cautacc_ctlops_arg.flags = flags;
1668 
1669 	(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
1670 	    &cautacc_ctlops_arg, NULL);
1671 }
1672 
1673 uint8_t
1674 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
1675 {
1676 	uint8_t value;
1677 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1678 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
1679 
1680 	return (value);
1681 }
1682 
1683 uint16_t
1684 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
1685 {
1686 	uint16_t value;
1687 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1688 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
1689 
1690 	return (value);
1691 }
1692 
1693 uint32_t
1694 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
1695 {
1696 	uint32_t value;
1697 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1698 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
1699 
1700 	return (value);
1701 }
1702 
1703 uint64_t
1704 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
1705 {
1706 	uint64_t value;
1707 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1708 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
1709 
1710 	return (value);
1711 }
1712 
1713 void
1714 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
1715 {
1716 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1717 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
1718 }
1719 
1720 void
1721 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
1722 {
1723 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1724 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
1725 }
1726 
1727 void
1728 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
1729 {
1730 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1731 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
1732 }
1733 
1734 void
1735 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
1736 {
1737 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1738 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
1739 }
1740 
1741 void
1742 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1743 	size_t repcount, uint_t flags)
1744 {
1745 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1746 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
1747 }
1748 
1749 void
1750 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1751     uint16_t *dev_addr, size_t repcount, uint_t flags)
1752 {
1753 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1754 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
1755 }
1756 
1757 void
1758 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1759     uint32_t *dev_addr, size_t repcount, uint_t flags)
1760 {
1761 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1762 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
1763 }
1764 
1765 void
1766 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1767     uint64_t *dev_addr, size_t repcount, uint_t flags)
1768 {
1769 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1770 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
1771 }
1772 
1773 void
1774 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1775 	size_t repcount, uint_t flags)
1776 {
1777 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1778 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
1779 }
1780 
1781 void
1782 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1783     uint16_t *dev_addr, size_t repcount, uint_t flags)
1784 {
1785 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1786 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
1787 }
1788 
1789 void
1790 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1791     uint32_t *dev_addr, size_t repcount, uint_t flags)
1792 {
1793 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1794 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
1795 }
1796 
1797 void
1798 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1799     uint64_t *dev_addr, size_t repcount, uint_t flags)
1800 {
1801 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1802 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
1803 }
1804 
1805 /*
1806  * This is called only to process peek/poke when the DIP is NULL.
1807  * Assume that this is for memory, as nexi take care of device safe accesses.
1808  */
1809 int
1810 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
1811 {
1812 	int err = DDI_SUCCESS;
1813 	on_trap_data_t otd;
1814 
1815 	/* Set up protected environment. */
1816 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1817 		uintptr_t tramp = otd.ot_trampoline;
1818 
1819 		if (cmd == DDI_CTLOPS_POKE) {
1820 			otd.ot_trampoline = (uintptr_t)&poke_fault;
1821 			err = do_poke(in_args->size, (void *)in_args->dev_addr,
1822 			    (void *)in_args->host_addr);
1823 		} else {
1824 			otd.ot_trampoline = (uintptr_t)&peek_fault;
1825 			err = do_peek(in_args->size, (void *)in_args->dev_addr,
1826 			    (void *)in_args->host_addr);
1827 		}
1828 		otd.ot_trampoline = tramp;
1829 	} else
1830 		err = DDI_FAILURE;
1831 
1832 	/* Take down protected environment. */
1833 	no_trap();
1834 
1835 	return (err);
1836 }
1837