xref: /titanic_44/usr/src/uts/sun4/io/su_driver.c (revision f88012516de80b8841b4dd45ea1b3b2e15dc47d0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
23 /*	  All Rights Reserved					*/
24 
25 /*
26  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  *	Serial I/O driver for 82510/8250/16450/16550AF/16C554D chips.
34  *	Modified as sparc keyboard/mouse driver.
35  */
36 #define	SU_REGISTER_FILE_NO 0
37 #define	SU_REGOFFSET 0
38 #define	SU_REGISTER_LEN 8
39 
40 #include <sys/param.h>
41 #include <sys/types.h>
42 #include <sys/signal.h>
43 #include <sys/stream.h>
44 #include <sys/termio.h>
45 #include <sys/errno.h>
46 #include <sys/file.h>
47 #include <sys/cmn_err.h>
48 #include <sys/stropts.h>
49 #include <sys/strsubr.h>
50 #include <sys/strsun.h>
51 #include <sys/strtty.h>
52 #include <sys/debug.h>
53 #include <sys/kbio.h>
54 #include <sys/cred.h>
55 #include <sys/modctl.h>
56 #include <sys/stat.h>
57 #include <sys/consdev.h>
58 #include <sys/mkdev.h>
59 #include <sys/kmem.h>
60 #include <sys/cred.h>
61 #ifdef DEBUG
62 #include <sys/promif.h>
63 #endif
64 #include <sys/ddi.h>
65 #include <sys/sunddi.h>
66 #include <sys/sudev.h>
67 #include <sys/note.h>
68 #include <sys/timex.h>
69 #include <sys/policy.h>
70 
71 #define	async_stopc	async_ttycommon.t_stopc
72 #define	async_startc	async_ttycommon.t_startc
73 
74 #define	ASY_INIT	1
75 #define	ASY_NOINIT	0
76 
77 #ifdef DEBUG
78 #define	ASY_DEBUG_INIT	0x001
79 #define	ASY_DEBUG_INPUT	0x002
80 #define	ASY_DEBUG_EOT	0x004
81 #define	ASY_DEBUG_CLOSE	0x008
82 #define	ASY_DEBUG_HFLOW	0x010
83 #define	ASY_DEBUG_PROCS	0x020
84 #define	ASY_DEBUG_STATE	0x040
85 #define	ASY_DEBUG_INTR	0x080
86 static	int asydebug = 0;
87 #endif
88 static	int su_log = 0;
89 
90 int su_drain_check = 15000000;		/* tunable: exit drain check time */
91 
92 static	struct ppsclockev asy_ppsev;
93 
94 static	int max_asy_instance = -1;
95 static	void	*su_asycom;	/* soft state asycom pointer */
96 static	void	*su_asyncline;	/* soft state asyncline pointer */
97 static	boolean_t abort_charseq_recognize(uchar_t ch);
98 
99 static	uint_t	asysoftintr(caddr_t intarg);
100 static	uint_t	asyintr(caddr_t argasy);
101 
102 /* The async interrupt entry points */
103 static void	async_txint(struct asycom *asy, uchar_t lsr);
104 static void	async_rxint(struct asycom *asy, uchar_t lsr);
105 static void	async_msint(struct asycom *asy);
106 static int	async_softint(struct asycom *asy);
107 
108 static void	async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp,
109     boolean_t iswput);
110 static void	async_reioctl(void *);
111 static void	async_iocdata(queue_t *q, mblk_t *mp);
112 static void	async_restart(void *);
113 static void	async_start(struct asyncline *async);
114 static void	async_nstart(struct asyncline *async, int mode);
115 static void	async_resume(struct asyncline *async);
116 static int	asy_program(struct asycom *asy, int mode);
117 
118 static int	asymctl(struct asycom *, int, int);
119 static int	asytodm(int, int);
120 static int	dmtoasy(int);
121 static void	asycheckflowcontrol_hw(struct asycom *asy);
122 static boolean_t asycheckflowcontrol_sw(struct asycom *asy);
123 static void	asy_ppsevent(struct asycom *asy, int msr);
124 
125 extern kcondvar_t lbolt_cv;
126 extern int ddi_create_internal_pathname(dev_info_t *dip, char *name,
127 		int spec_type, minor_t minor_num);
128 
129 
130 /*
131  * Baud rate table. Indexed by #defines found in sys/termios.h
132  */
133 ushort_t asyspdtab[] = {
134 	0,	/* 0 baud rate */
135 	0x900,	/* 50 baud rate */
136 	0x600,	/* 75 baud rate */
137 	0x417,	/* 110 baud rate (%0.026) */
138 	0x359,	/* 134 baud rate (%0.058) */
139 	0x300,	/* 150 baud rate */
140 	0x240,	/* 200 baud rate */
141 	0x180,	/* 300 baud rate */
142 	0x0c0,	/* 600 baud rate */
143 	0x060,	/* 1200 baud rate */
144 	0x040,	/* 1800 baud rate */
145 	0x030,	/* 2400 baud rate */
146 	0x018,	/* 4800 baud rate */
147 	0x00c,	/* 9600 baud rate */
148 	0x006,	/* 19200 baud rate */
149 	0x003,	/* 38400 baud rate */
150 	0x002,	/* 57600 baud rate */
151 	0,	/* 76800 baud rate - not supported */
152 	0x001,	/* 115200 baud rate */
153 	0,	/* 153600 baud rate - not supported */
154 	0x8002,	/* 230400 baud rate - supported on specific platforms */
155 	0,	/* 307200 baud rate - not supported */
156 	0x8001	/* 460800 baud rate - supported on specific platforms */
157 };
158 
159 /*
160  * Number of speeds supported is the number of entries in
161  * the above table.
162  */
163 #define	N_SU_SPEEDS	(sizeof (asyspdtab)/sizeof (ushort_t))
164 
165 /*
166  * Human-readable baud rate table.
167  * Indexed by #defines found in sys/termios.h
168  */
169 int baudtable[] = {
170 	0,	/* 0 baud rate */
171 	50,	/* 50 baud rate */
172 	75,	/* 75 baud rate */
173 	110,	/* 110 baud rate */
174 	134,	/* 134 baud rate */
175 	150,	/* 150 baud rate */
176 	200,	/* 200 baud rate */
177 	300,	/* 300 baud rate */
178 	600,	/* 600 baud rate */
179 	1200,	/* 1200 baud rate */
180 	1800,	/* 1800 baud rate */
181 	2400,	/* 2400 baud rate */
182 	4800,	/* 4800 baud rate */
183 	9600,	/* 9600 baud rate */
184 	19200,	/* 19200 baud rate */
185 	38400,	/* 38400 baud rate */
186 	57600,	/* 57600 baud rate */
187 	76800,	/* 76800 baud rate */
188 	115200,	/* 115200 baud rate */
189 	153600,	/* 153600 baud rate */
190 	230400,	/* 230400 baud rate */
191 	307200,	/* 307200 baud rate */
192 	460800	/* 460800 baud rate */
193 };
194 
195 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
196 static int asyclose(queue_t *q, int flag);
197 static void asywput(queue_t *q, mblk_t *mp);
198 static void asyrsrv(queue_t *q);
199 
200 struct module_info asy_info = {
201 	0,
202 	"su",
203 	0,
204 	INFPSZ,
205 	32*4096,
206 	4096
207 };
208 
209 static struct qinit asy_rint = {
210 	putq,
211 	(int (*)())asyrsrv,
212 	asyopen,
213 	asyclose,
214 	NULL,
215 	&asy_info,
216 	NULL
217 };
218 
219 static struct qinit asy_wint = {
220 	(int (*)())asywput,
221 	NULL,
222 	NULL,
223 	NULL,
224 	NULL,
225 	&asy_info,
226 	NULL
227 };
228 
229 struct streamtab asy_str_info = {
230 	&asy_rint,
231 	&asy_wint,
232 	NULL,
233 	NULL
234 };
235 
236 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
237 		void **result);
238 static int asyprobe(dev_info_t *);
239 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
240 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
241 
242 static 	struct cb_ops cb_asy_ops = {
243 	nodev,			/* cb_open */
244 	nodev,			/* cb_close */
245 	nodev,			/* cb_strategy */
246 	nodev,			/* cb_print */
247 	nodev,			/* cb_dump */
248 	nodev,			/* cb_read */
249 	nodev,			/* cb_write */
250 	nodev,			/* cb_ioctl */
251 	nodev,			/* cb_devmap */
252 	nodev,			/* cb_mmap */
253 	nodev,			/* cb_segmap */
254 	nochpoll,		/* cb_chpoll */
255 	ddi_prop_op,		/* cb_prop_op */
256 	&asy_str_info,		/* cb_stream */
257 	D_MP			/* cb_flag */
258 };
259 
260 struct dev_ops asy_ops = {
261 	DEVO_REV,		/* devo_rev */
262 	0,			/* devo_refcnt */
263 	asyinfo,		/* devo_getinfo */
264 	nulldev,		/* devo_identify */
265 	asyprobe,		/* devo_probe */
266 	asyattach,		/* devo_attach */
267 	asydetach,		/* devo_detach */
268 	nodev,			/* devo_reset */
269 	&cb_asy_ops,		/* devo_cb_ops */
270 };
271 
272 /*
273  * Module linkage information for the kernel.
274  */
275 
276 static struct modldrv modldrv = {
277 	&mod_driverops, /* Type of module.  This one is a driver */
278 	"su driver %I%",
279 	&asy_ops,	/* driver ops */
280 };
281 
282 static struct modlinkage modlinkage = {
283 	MODREV_1,
284 	&modldrv,
285 	NULL
286 };
287 
288 int
289 _init(void)
290 {
291 	int status;
292 
293 	status = ddi_soft_state_init(&su_asycom, sizeof (struct asycom),
294 	    SU_INITIAL_SOFT_ITEMS);
295 	if (status != 0)
296 	    return (status);
297 	status = ddi_soft_state_init(&su_asyncline, sizeof (struct asyncline),
298 	    SU_INITIAL_SOFT_ITEMS);
299 	if (status != 0) {
300 		ddi_soft_state_fini(&su_asycom);
301 		return (status);
302 	}
303 
304 	if ((status = mod_install(&modlinkage)) != 0) {
305 		ddi_soft_state_fini(&su_asycom);
306 		ddi_soft_state_fini(&su_asyncline);
307 	}
308 
309 	return (status);
310 }
311 
312 int
313 _fini(void)
314 {
315 	int i;
316 
317 	i = mod_remove(&modlinkage);
318 	if (i == 0) {
319 		ddi_soft_state_fini(&su_asycom);
320 		ddi_soft_state_fini(&su_asyncline);
321 	}
322 
323 	return (i);
324 }
325 
326 int
327 _info(struct modinfo *modinfop)
328 {
329 	return (mod_info(&modlinkage, modinfop));
330 }
331 
332 static int
333 asyprobe(dev_info_t *devi)
334 {
335 	int		instance;
336 	ddi_acc_handle_t handle;
337 	uchar_t *addr;
338 	ddi_device_acc_attr_t attr;
339 
340 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
341 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
342 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
343 	if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO, (caddr_t *)&addr,
344 	    SU_REGOFFSET, SU_REGISTER_LEN, &attr, &handle) != DDI_SUCCESS) {
345 		cmn_err(CE_WARN, "asyprobe regs map setup failed");
346 		return (DDI_PROBE_FAILURE);
347 	}
348 #ifdef DEBUG
349 	if (asydebug)
350 	    printf("Probe address mapped %p\n", (void *)addr);
351 #endif
352 
353 	/*
354 	 * Probe for the device:
355 	 * 	Ser. int. uses bits 0,1,2; FIFO uses 3,6,7; 4,5 wired low.
356 	 * 	If bit 4 or 5 appears on inb() ISR, board is not there.
357 	 */
358 	if (ddi_get8(handle, addr+ISR) & 0x30) {
359 	    ddi_regs_map_free(&handle);
360 	    return (DDI_PROBE_FAILURE);
361 	}
362 
363 	instance = ddi_get_instance(devi);
364 	if (max_asy_instance < instance)
365 	    max_asy_instance = instance;
366 	ddi_regs_map_free(&handle);
367 
368 	return (DDI_PROBE_SUCCESS); /* hw is present */
369 }
370 
371 static int
372 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
373 {
374 	register int	instance;
375 	struct asycom	*asy;
376 	struct asyncline *async;
377 	char		name[16];
378 
379 	instance = ddi_get_instance(devi);	/* find out which unit */
380 
381 	asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
382 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance);
383 
384 	switch (cmd) {
385 	    case DDI_DETACH:
386 		break;
387 	    case DDI_SUSPEND:
388 		/* grab both mutex locks */
389 		mutex_enter(asy->asy_excl);
390 		mutex_enter(asy->asy_excl_hi);
391 		if (asy->suspended) {
392 			mutex_exit(asy->asy_excl_hi);
393 			mutex_exit(asy->asy_excl);
394 			return (DDI_SUCCESS);
395 		}
396 		asy->suspended = B_TRUE;
397 
398 		/*
399 		 * The quad UART ST16C554D, version D2 (made by EXAR) has an
400 		 * anomaly of generating spurious interrups when the ICR is
401 		 * loaded with zero. The workaround would be to read/write
402 		 * any register with DATA1 bit set to 0 before such write.
403 		 */
404 		if (asy->asy_hwtype == ASY16C554D)
405 			OUTB(SPR, 0);
406 
407 		/* Disable further interrupts */
408 		OUTB(ICR, 0);
409 		mutex_exit(asy->asy_excl_hi);
410 		mutex_exit(asy->asy_excl);
411 		return (DDI_SUCCESS);
412 
413 	    default:
414 		return (DDI_FAILURE);
415 	}
416 
417 #ifdef DEBUG
418 	if (asydebug & ASY_DEBUG_INIT)
419 	    cmn_err(CE_NOTE, "su%d: ASY%s shutdown.", instance,
420 		asy->asy_hwtype == ASY82510 ? "82510" :
421 		asy->asy_hwtype == ASY16550AF ? "16550AF" :
422 		asy->asy_hwtype == ASY16C554D ? "16C554D" :
423 		"8250");
424 #endif
425 	/*
426 	 * Before removing interrupts it is always better to disable
427 	 * interrupts if the chip gives a provision to disable the
428 	 * serial port interrupts.
429 	 */
430 	mutex_enter(asy->asy_excl);
431 	mutex_enter(asy->asy_excl_hi);
432 	/* disable interrupts, see EXAR bug */
433 	if (asy->asy_hwtype == ASY16C554D)
434 		OUTB(SPR, 0);
435 	OUTB(ICR, 0);
436 	mutex_exit(asy->asy_excl_hi);
437 	mutex_exit(asy->asy_excl);
438 
439 	/* remove minor device node(s) for this device */
440 	(void) sprintf(name, "%c", (instance+'a'));	/* serial-port */
441 	ddi_remove_minor_node(devi, name);
442 	(void) sprintf(name, "%c,cu", (instance+'a')); /* serial-port:dailout */
443 	ddi_remove_minor_node(devi, name);
444 
445 	mutex_destroy(asy->asy_excl);
446 	mutex_destroy(asy->asy_excl_hi);
447 	kmem_free(asy->asy_excl, sizeof (kmutex_t));
448 	kmem_free(asy->asy_excl_hi, sizeof (kmutex_t));
449 	cv_destroy(&async->async_flags_cv);
450 	kstat_delete(asy->sukstat);
451 	ddi_remove_intr(devi, 0, asy->asy_iblock);
452 	ddi_regs_map_free(&asy->asy_handle);
453 	ddi_remove_softintr(asy->asy_softintr_id);
454 	mutex_destroy(asy->asy_soft_lock);
455 	kmem_free(asy->asy_soft_lock, sizeof (kmutex_t));
456 	ddi_soft_state_free(su_asycom, instance);
457 	ddi_soft_state_free(su_asyncline, instance);
458 	return (DDI_SUCCESS);
459 }
460 
461 static int
462 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
463 {
464 	register int	instance;
465 	struct asycom	*asy;
466 	struct asyncline *async;
467 	char		name[40];
468 	ddi_device_acc_attr_t attr;
469 	enum states { EMPTY, SOFTSTATE, REGSMAP, MUTEXES, ADDINTR,
470 	    SOFTINTR, ASYINIT, KSTAT, MINORNODE };
471 	enum states state = EMPTY;
472 	char *hwtype;
473 
474 	instance = ddi_get_instance(devi);	/* find out which unit */
475 
476 	/* cannot attach a device that has not been probed first */
477 	if (instance > max_asy_instance)
478 	    return (DDI_FAILURE);
479 
480 	if (cmd != DDI_RESUME) {
481 		/* Allocate soft state space */
482 		if (ddi_soft_state_zalloc(su_asycom, instance) != DDI_SUCCESS) {
483 			cmn_err(CE_WARN, "su%d: cannot allocate soft state",
484 			    instance);
485 			goto error;
486 		}
487 	}
488 	state = SOFTSTATE;
489 
490 	asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
491 
492 	if (asy == NULL) {
493 		cmn_err(CE_WARN, "su%d: cannot get soft state", instance);
494 		goto error;
495 	}
496 
497 	switch (cmd) {
498 	    case DDI_ATTACH:
499 		break;
500 	    case DDI_RESUME: {
501 		struct asyncline *async;
502 
503 		/* grab both mutex locks */
504 		mutex_enter(asy->asy_excl);
505 		mutex_enter(asy->asy_excl_hi);
506 		if (!asy->suspended) {
507 			mutex_exit(asy->asy_excl_hi);
508 			mutex_exit(asy->asy_excl);
509 			return (DDI_SUCCESS);
510 		}
511 		/* re-setup all the registers and enable interrupts if needed */
512 		async = (struct asyncline *)asy->asy_priv;
513 		if ((async) && (async->async_flags & ASYNC_ISOPEN))
514 		    (void) asy_program(asy, ASY_INIT);
515 		asy->suspended = B_FALSE;
516 		mutex_exit(asy->asy_excl_hi);
517 		mutex_exit(asy->asy_excl);
518 		return (DDI_SUCCESS);
519 	    }
520 	    default:
521 		goto error;
522 	}
523 
524 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
525 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
526 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
527 
528 	if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO,
529 	    (caddr_t *)&asy->asy_ioaddr, SU_REGOFFSET, SU_REGISTER_LEN,
530 	    &attr, &asy->asy_handle) != DDI_SUCCESS) {
531 		cmn_err(CE_WARN, "asyprobe regs map setup failed");
532 		goto error;
533 	}
534 	state = REGSMAP;
535 
536 #ifdef DEBUG
537 	if (asydebug)
538 	    printf("su attach mapped %p\n", (void *)asy->asy_ioaddr);
539 #endif
540 
541 	/*
542 	 * Initialize the port with default settings.
543 	 */
544 	asy->asy_fifo_buf = 1;
545 	asy->asy_use_fifo = FIFO_OFF;
546 
547 	/*
548 	 * Check for baudrate generator's "baud-divisor-factor" property setup
549 	 * by OBP, since different UART chips might have different baudrate
550 	 * generator divisor. e.g., in case of NSPG's Sputnik platform, the
551 	 * baud-divisor-factor is 13, it uses dedicated 16552 "DUART" chip
552 	 * instead of SuperIO. Since the baud-divisor-factor must be a positive
553 	 * integer, the divisors will always be at least as large as the values
554 	 * in asyspdtab[].  Make the default factor 1.
555 	 */
556 	asy->asy_baud_divisor_factor = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
557 	    DDI_PROP_DONTPASS, "baud-divisor-factor", 1);
558 
559 	/* set speed cap */
560 	asy->asy_speed_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
561 	    DDI_PROP_DONTPASS, "serial-speed-cap", 115200);
562 
563 	/* check for ASY82510 chip */
564 	OUTB(ISR, 0x20);
565 	if (INB(ISR) & 0x20) { /* 82510 chip is present */
566 		/*
567 		 * Since most of the general operation of the 82510 chip
568 		 * can be done from BANK 0 (8250A/16450 compatable mode)
569 		 * we will default to BANK 0.
570 		 */
571 		asy->asy_hwtype = ASY82510;
572 		OUTB(DAT+7, 0x04); /* clear status */
573 		OUTB(ISR, 0x40); /* set to bank 2 */
574 		OUTB(MCR, 0x08); /* IMD */
575 		OUTB(DAT, 0x21); /* FMD */
576 		OUTB(ISR, 0x00); /* set to bank 0 */
577 		asy->asy_trig_level = 0;
578 	} else { /* Set the UART in FIFO mode if it has FIFO buffers */
579 		asy->asy_hwtype = ASY16550AF;
580 		OUTB(FIFOR, 0x00); /* clear fifo register */
581 		asy->asy_trig_level = 0x00; /* sets the fifo Threshold to 1 */
582 
583 		/* set/Enable FIFO */
584 		OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH | FIFORXFLSH |
585 		    (asy->asy_trig_level & 0xff));
586 
587 		if ((INB(ISR) & 0xc0) == 0xc0)
588 		    asy->asy_use_fifo = FIFO_ON;
589 		else {
590 			asy->asy_hwtype = ASY8250;
591 			OUTB(FIFOR, 0x00); /* NO FIFOs */
592 			asy->asy_trig_level = 0;
593 		}
594 	}
595 
596 	/* check for ST16C554D chip */
597 	if ((ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, DDI_PROP_NOTPROM |
598 	    DDI_PROP_DONTPASS, "hwtype", &hwtype)) == DDI_PROP_SUCCESS) {
599 		if (strcmp(hwtype, "ST16C554D") == 0)
600 			asy->asy_hwtype = ASY16C554D;
601 		ddi_prop_free(hwtype);
602 	}
603 
604 	/* disable interrupts, see EXAR bug */
605 	if (asy->asy_hwtype == ASY16C554D)
606 		OUTB(SPR, 0);
607 	OUTB(ICR, 0);
608 	OUTB(LCR, DLAB); /* select baud rate generator */
609 	/* Set the baud rate to 9600 */
610 	OUTB(DAT+DLL, (ASY9600*asy->asy_baud_divisor_factor) & 0xff);
611 	OUTB(DAT+DLH, ((ASY9600*asy->asy_baud_divisor_factor) >> 8) & 0xff);
612 	OUTB(LCR, STOP1|BITS8);
613 	OUTB(MCR, (DTR | RTS| OUT2));
614 
615 	/*
616 	 * Set up the other components of the asycom structure for this port.
617 	 */
618 	asy->asy_excl = (kmutex_t *)
619 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
620 	asy->asy_excl_hi = (kmutex_t *)
621 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
622 	asy->asy_soft_lock = (kmutex_t *)
623 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
624 	asy->asy_unit = instance;
625 	asy->asy_dip = devi;
626 
627 	if (ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) != DDI_SUCCESS) {
628 		cmn_err(CE_NOTE,
629 		    "Get iblock_cookie failed-Device interrupt%x\n", instance);
630 		goto error;
631 	}
632 
633 	if (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_HIGH,
634 	    &asy->asy_soft_iblock) != DDI_SUCCESS) {
635 		cmn_err(CE_NOTE, "Get iblock_cookie failed -soft interrupt%x\n",
636 		    instance);
637 		goto error;
638 	}
639 
640 	mutex_init(asy->asy_soft_lock, NULL, MUTEX_DRIVER,
641 	    (void *)asy->asy_soft_iblock);
642 	mutex_init(asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
643 	mutex_init(asy->asy_excl_hi, NULL, MUTEX_DRIVER,
644 	    (void *)asy->asy_iblock);
645 	state = MUTEXES;
646 
647 	/*
648 	 * Install interrupt handlers for this device.
649 	 */
650 	if (ddi_add_intr(devi, 0, &(asy->asy_iblock), 0, asyintr,
651 	    (caddr_t)asy) != DDI_SUCCESS) {
652 		cmn_err(CE_CONT,
653 		    "Cannot set device interrupt for su driver\n");
654 		goto error;
655 	}
656 	state = ADDINTR;
657 
658 	if (ddi_add_softintr(devi, DDI_SOFTINT_HIGH, &(asy->asy_softintr_id),
659 	    &asy->asy_soft_iblock, 0, asysoftintr, (caddr_t)asy)
660 	    != DDI_SUCCESS) {
661 		cmn_err(CE_CONT, "Cannot set soft interrupt for su driver\n");
662 		goto error;
663 	}
664 	state = SOFTINTR;
665 
666 	/* initialize the asyncline structure */
667 	if (ddi_soft_state_zalloc(su_asyncline, instance) != DDI_SUCCESS) {
668 		cmn_err(CE_CONT, "su%d: cannot allocate soft state", instance);
669 		goto error;
670 	}
671 	state = ASYINIT;
672 
673 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance);
674 
675 	mutex_enter(asy->asy_excl);
676 	async->async_common = asy;
677 	cv_init(&async->async_flags_cv, NULL, CV_DEFAULT, NULL);
678 	mutex_exit(asy->asy_excl);
679 
680 	if ((asy->sukstat = kstat_create("su", instance, "serialstat",
681 	    "misc", KSTAT_TYPE_NAMED, 2, KSTAT_FLAG_VIRTUAL)) != NULL) {
682 		asy->sukstat->ks_data = &asy->kstats;
683 		kstat_named_init(&asy->kstats.ringover, "ring buffer overflow",
684 		    KSTAT_DATA_UINT64);
685 		kstat_named_init(&asy->kstats.siloover, "silo overflow",
686 		    KSTAT_DATA_UINT64);
687 		kstat_install(asy->sukstat);
688 	}
689 	state = KSTAT;
690 
691 	if (strcmp(ddi_node_name(devi), "rsc-console") == 0) {
692 		/*
693 		 * If the device is configured as the 'rsc-console'
694 		 * create the minor device for this node.
695 		 */
696 		if (ddi_create_minor_node(devi, "ssp", S_IFCHR,
697 		    asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, NULL)
698 		    == DDI_FAILURE) {
699 			cmn_err(CE_WARN,
700 			    "%s%d: Failed to create node rsc-console",
701 			    ddi_get_name(devi), ddi_get_instance(devi));
702 			goto error;
703 		}
704 
705 		asy->asy_lom_console = 0;
706 		asy->asy_rsc_console = 1;
707 		asy->asy_rsc_control = 0;
708 		asy->asy_device_type = ASY_SERIAL;
709 		asy->asy_flags |= ASY_IGNORE_CD;
710 
711 	} else if (strcmp(ddi_node_name(devi), "lom-console") == 0) {
712 		/*
713 		 * If the device is configured as the 'lom-console'
714 		 * create the minor device for this node.
715 		 * Do not create a dialout device.
716 		 * Use the same minor numbers as would be used for standard
717 		 * serial instances.
718 		 */
719 		if (ddi_create_minor_node(devi, "lom-console", S_IFCHR,
720 		    instance, DDI_NT_SERIAL_LOMCON, NULL) == DDI_FAILURE) {
721 			cmn_err(CE_WARN,
722 			    "%s%d: Failed to create node lom-console",
723 			    ddi_get_name(devi), ddi_get_instance(devi));
724 			goto error;
725 		}
726 		asy->asy_lom_console = 1;
727 		asy->asy_rsc_console = 0;
728 		asy->asy_rsc_control = 0;
729 		asy->asy_device_type = ASY_SERIAL;
730 		asy->asy_flags |= ASY_IGNORE_CD;
731 
732 	} else if (strcmp(ddi_node_name(devi), "rsc-control") == 0) {
733 		/*
734 		 * If the device is configured as the 'rsc-control'
735 		 * create the minor device for this node.
736 		 */
737 		if (ddi_create_minor_node(devi, "sspctl", S_IFCHR,
738 		    asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, NULL)
739 		    == DDI_FAILURE) {
740 			cmn_err(CE_WARN, "%s%d: Failed to create rsc-control",
741 			    ddi_get_name(devi), ddi_get_instance(devi));
742 			goto error;
743 		}
744 
745 		asy->asy_lom_console = 0;
746 		asy->asy_rsc_console = 0;
747 		asy->asy_rsc_control = 1;
748 		asy->asy_device_type = ASY_SERIAL;
749 		asy->asy_flags |= ASY_IGNORE_CD;
750 
751 	} else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
752 		"keyboard", 0)) {
753 		/*
754 		 * If the device is a keyboard, then create an internal
755 		 * pathname so that the dacf code will link the node into
756 		 * the keyboard console stream.  See dacf.conf.
757 		 */
758 		if (ddi_create_internal_pathname(devi, "keyboard",
759 		    S_IFCHR, instance) == DDI_FAILURE) {
760 			goto error;
761 		}
762 		asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
763 		asy->asy_device_type = ASY_KEYBOARD; 	/* Device type */
764 	} else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
765 		"mouse", 0)) {
766 		/*
767 		 * If the device is a mouse, then create an internal
768 		 * pathname so that the dacf code will link the node into
769 		 * the mouse stream.  See dacf.conf.
770 		 */
771 		if (ddi_create_internal_pathname(devi, "mouse", S_IFCHR,
772 		    instance) == DDI_FAILURE) {
773 			goto error;
774 		}
775 		asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
776 		asy->asy_device_type = ASY_MOUSE;
777 	} else {
778 		/*
779 		 * If not used for keyboard/mouse, create minor devices nodes
780 		 * for this device
781 		 */
782 		/* serial-port */
783 		(void) sprintf(name, "%c", (instance+'a'));
784 		if (ddi_create_minor_node(devi, name, S_IFCHR, instance,
785 		    DDI_NT_SERIAL_MB, NULL) == DDI_FAILURE) {
786 			goto error;
787 		}
788 		state = MINORNODE;
789 		/* serial-port:dailout */
790 		(void) sprintf(name, "%c,cu", (instance+'a'));
791 		if (ddi_create_minor_node(devi, name, S_IFCHR, instance|OUTLINE,
792 		    DDI_NT_SERIAL_MB_DO, NULL) == DDI_FAILURE) {
793 			goto error;
794 		}
795 		/* Property for ignoring DCD */
796 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
797 		    "ignore-cd", 0)) {
798 			asy->asy_flags |= ASY_IGNORE_CD;  /* ignore cd */
799 		} else {
800 			asy->asy_flags &= ~ASY_IGNORE_CD;
801 			/*
802 			 * if ignore-cd is not available it could be
803 			 * some old legacy platform, try to see
804 			 * whether the old legacy property exists
805 			 */
806 			(void) sprintf(name,
807 			    "port-%c-ignore-cd", (instance+ 'a'));
808 			if (ddi_getprop(DDI_DEV_T_ANY, devi,
809 			    DDI_PROP_DONTPASS, name, 0))
810 				asy->asy_flags |= ASY_IGNORE_CD;
811 		}
812 		asy->asy_device_type = ASY_SERIAL;
813 	}
814 	ddi_report_dev(devi);
815 	return (DDI_SUCCESS);
816 
817 error:
818 	if (state == MINORNODE) {
819 		(void) sprintf(name, "%c", (instance+'a'));
820 		ddi_remove_minor_node(devi, name);
821 	}
822 	if (state >= KSTAT)
823 		kstat_delete(asy->sukstat);
824 	if (state >= ASYINIT) {
825 		cv_destroy(&async->async_flags_cv);
826 		ddi_soft_state_free(su_asyncline, instance);
827 	}
828 	if (state >= SOFTINTR)
829 		ddi_remove_softintr(asy->asy_softintr_id);
830 	if (state >= ADDINTR)
831 		ddi_remove_intr(devi, 0, asy->asy_iblock);
832 	if (state >= MUTEXES) {
833 		mutex_destroy(asy->asy_excl_hi);
834 		mutex_destroy(asy->asy_excl);
835 		mutex_destroy(asy->asy_soft_lock);
836 		kmem_free(asy->asy_excl_hi, sizeof (kmutex_t));
837 		kmem_free(asy->asy_excl, sizeof (kmutex_t));
838 		kmem_free(asy->asy_soft_lock, sizeof (kmutex_t));
839 	}
840 	if (state >= REGSMAP)
841 		ddi_regs_map_free(&asy->asy_handle);
842 	if (state >= SOFTSTATE)
843 		ddi_soft_state_free(su_asycom, instance);
844 	/* no action for EMPTY state */
845 	return (DDI_FAILURE);
846 }
847 
848 static int
849 asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
850 	void **result)
851 {
852 	_NOTE(ARGUNUSED(dip))
853 	register dev_t dev = (dev_t)arg;
854 	register int instance, error;
855 	struct asycom *asy;
856 
857 	if ((instance = UNIT(dev)) > max_asy_instance)
858 		return (DDI_FAILURE);
859 
860 	switch (infocmd) {
861 	    case DDI_INFO_DEVT2DEVINFO:
862 		asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
863 		if (asy->asy_dip == NULL)
864 		    error = DDI_FAILURE;
865 		else {
866 			*result = (void *) asy->asy_dip;
867 			error = DDI_SUCCESS;
868 		}
869 		break;
870 	    case DDI_INFO_DEVT2INSTANCE:
871 		*result = (void *)(uintptr_t)instance;
872 		error = DDI_SUCCESS;
873 		break;
874 	    default:
875 		error = DDI_FAILURE;
876 	}
877 	return (error);
878 }
879 
880 static int
881 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
882 {
883 	_NOTE(ARGUNUSED(sflag))
884 	struct asycom	*asy;
885 	struct asyncline *async;
886 	int		mcr;
887 	int		unit;
888 	int 		len;
889 	struct termios 	*termiosp;
890 
891 #ifdef DEBUG
892 	if (asydebug & ASY_DEBUG_CLOSE)
893 		printf("open\n");
894 #endif
895 	unit = UNIT(*dev);
896 	if (unit > max_asy_instance)
897 		return (ENXIO);		/* unit not configured */
898 
899 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, unit);
900 	if (async == NULL)
901 		return (ENXIO);
902 
903 	asy = async->async_common;
904 	if (asy == NULL)
905 		return (ENXIO);		/* device not found by autoconfig */
906 
907 	mutex_enter(asy->asy_excl);
908 	asy->asy_priv = (caddr_t)async;
909 
910 again:
911 	mutex_enter(asy->asy_excl_hi);
912 	/*
913 	 * Block waiting for carrier to come up, unless this is a no-delay open.
914 	 */
915 	if (!(async->async_flags & ASYNC_ISOPEN)) {
916 		/*
917 		 * If this port is for a RSC console or control
918 		 * use the following termio info
919 		 */
920 		if (asy->asy_rsc_console || asy->asy_rsc_control) {
921 			async->async_ttycommon.t_cflag = CIBAUDEXT | CBAUDEXT |
922 			    (B115200 & CBAUD);
923 			async->async_ttycommon.t_cflag |= ((B115200 << IBSHIFT)
924 			    & CIBAUD);
925 			async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL;
926 		} else if (asy->asy_lom_console) {
927 			async->async_ttycommon.t_cflag = B9600 & CBAUD;
928 			async->async_ttycommon.t_cflag |= ((B9600 << IBSHIFT)
929 			    & CIBAUD);
930 			async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL;
931 		} else {
932 
933 			/*
934 			 * Set the default termios settings (cflag).
935 			 * Others are set in ldterm.  Release the spin
936 			 * mutex as we can block here, reaquire before
937 			 * calling asy_program.
938 			 */
939 			mutex_exit(asy->asy_excl_hi);
940 			if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
941 			    0, "ttymodes", (caddr_t)&termiosp, &len)
942 			    == DDI_PROP_SUCCESS &&
943 			    len == sizeof (struct termios)) {
944 				async->async_ttycommon.t_cflag =
945 				    termiosp->c_cflag;
946 				kmem_free(termiosp, len);
947 			} else {
948 				cmn_err(CE_WARN,
949 					"su: couldn't get ttymodes property!");
950 			}
951 			mutex_enter(asy->asy_excl_hi);
952 		}
953 		async->async_ttycommon.t_iflag = 0;
954 		async->async_ttycommon.t_iocpending = NULL;
955 		async->async_ttycommon.t_size.ws_row = 0;
956 		async->async_ttycommon.t_size.ws_col = 0;
957 		async->async_ttycommon.t_size.ws_xpixel = 0;
958 		async->async_ttycommon.t_size.ws_ypixel = 0;
959 		async->async_dev = *dev;
960 		async->async_wbufcid = 0;
961 
962 		async->async_startc = CSTART;
963 		async->async_stopc = CSTOP;
964 		(void) asy_program(asy, ASY_INIT);
965 	} else if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
966 					    secpolicy_excl_open(cr) != 0) {
967 		mutex_exit(asy->asy_excl_hi);
968 		mutex_exit(asy->asy_excl);
969 		return (EBUSY);
970 	} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
971 		mutex_exit(asy->asy_excl_hi);
972 		mutex_exit(asy->asy_excl);
973 		return (EBUSY);
974 	}
975 
976 	if (*dev & OUTLINE)
977 		async->async_flags |= ASYNC_OUT;
978 
979 	/* Raise DTR on every open */
980 	mcr = INB(MCR);
981 	OUTB(MCR, mcr|DTR);
982 
983 	/*
984 	 * Check carrier.
985 	 */
986 	if (asy->asy_flags & ASY_IGNORE_CD)
987 		async->async_ttycommon.t_flags |= TS_SOFTCAR;
988 	if ((async->async_ttycommon.t_flags & TS_SOFTCAR) ||
989 					(INB(MSR) & DCD))
990 		async->async_flags |= ASYNC_CARR_ON;
991 	else
992 		async->async_flags &= ~ASYNC_CARR_ON;
993 	mutex_exit(asy->asy_excl_hi);
994 
995 	/*
996 	 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
997 	 * Quit on interrupt.
998 	 */
999 	if (!(flag & (FNDELAY|FNONBLOCK)) &&
1000 			!(async->async_ttycommon.t_cflag & CLOCAL)) {
1001 		if (!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) ||
1002 				((async->async_flags & ASYNC_OUT) &&
1003 				!(*dev & OUTLINE))) {
1004 			async->async_flags |= ASYNC_WOPEN;
1005 			if (cv_wait_sig(&async->async_flags_cv,
1006 			    asy->asy_excl) == 0) {
1007 				async->async_flags &= ~ASYNC_WOPEN;
1008 				mutex_exit(asy->asy_excl);
1009 				return (EINTR);
1010 			}
1011 			async->async_flags &= ~ASYNC_WOPEN;
1012 			goto again;
1013 		}
1014 	} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
1015 			mutex_exit(asy->asy_excl);
1016 			return (EBUSY);
1017 	}
1018 
1019 	if (asy->suspended) {
1020 		mutex_exit(asy->asy_excl);
1021 		(void) ddi_dev_is_needed(asy->asy_dip, 0, 1);
1022 		mutex_enter(asy->asy_excl);
1023 	}
1024 
1025 	async->async_ttycommon.t_readq = rq;
1026 	async->async_ttycommon.t_writeq = WR(rq);
1027 	rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
1028 	mutex_exit(asy->asy_excl);
1029 	qprocson(rq);
1030 	async->async_flags |= ASYNC_ISOPEN;
1031 	async->async_polltid = 0;
1032 	return (0);
1033 }
1034 
1035 static void
1036 async_progress_check(void *arg)
1037 {
1038 	struct asyncline *async = arg;
1039 	struct asycom	 *asy = async->async_common;
1040 	mblk_t *bp;
1041 
1042 	/*
1043 	 * We define "progress" as either waiting on a timed break or delay, or
1044 	 * having had at least one transmitter interrupt.  If none of these are
1045 	 * true, then just terminate the output and wake up that close thread.
1046 	 */
1047 	mutex_enter(asy->asy_excl);
1048 	mutex_enter(asy->asy_excl_hi);
1049 	if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
1050 		async->async_ocnt = 0;
1051 		async->async_flags &= ~ASYNC_BUSY;
1052 		async->async_timer = 0;
1053 		bp = async->async_xmitblk;
1054 		async->async_xmitblk = NULL;
1055 		mutex_exit(asy->asy_excl_hi);
1056 		if (bp != NULL)
1057 			freeb(bp);
1058 		/*
1059 		 * Since this timer is running, we know that we're in exit(2).
1060 		 * That means that the user can't possibly be waiting on any
1061 		 * valid ioctl(2) completion anymore, and we should just flush
1062 		 * everything.
1063 		 */
1064 		flushq(async->async_ttycommon.t_writeq, FLUSHALL);
1065 		cv_broadcast(&async->async_flags_cv);
1066 	} else {
1067 		async->async_flags &= ~ASYNC_PROGRESS;
1068 		async->async_timer = timeout(async_progress_check, async,
1069 		    drv_usectohz(su_drain_check));
1070 		mutex_exit(asy->asy_excl_hi);
1071 	}
1072 	mutex_exit(asy->asy_excl);
1073 }
1074 
1075 /*
1076  * Close routine.
1077  */
1078 static int
1079 asyclose(queue_t *q, int flag)
1080 {
1081 	struct asyncline *async;
1082 	struct asycom	 *asy;
1083 	int icr, lcr;
1084 	int		nohupcl;
1085 
1086 
1087 #ifdef DEBUG
1088 	if (asydebug & ASY_DEBUG_CLOSE)
1089 		printf("close\n");
1090 #endif
1091 	async = q->q_ptr;
1092 	ASSERT(async != NULL);
1093 	asy = async->async_common;
1094 
1095 	/* get the nohupcl OBP property of this device */
1096 	nohupcl = ddi_getprop(DDI_DEV_T_ANY, asy->asy_dip, DDI_PROP_DONTPASS,
1097 	    "nohupcl", 0);
1098 
1099 	mutex_enter(asy->asy_excl);
1100 	async->async_flags |= ASYNC_CLOSING;
1101 
1102 	/*
1103 	 * Turn off PPS handling early to avoid events occuring during
1104 	 * close.  Also reset the DCD edge monitoring bit.
1105 	 */
1106 	mutex_enter(asy->asy_excl_hi);
1107 	asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
1108 	mutex_exit(asy->asy_excl_hi);
1109 
1110 	/*
1111 	 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
1112 	 * untimed (TIOCSBRK).  For the timed case, these are enqueued on our
1113 	 * write queue and there's a timer running, so we don't have to worry
1114 	 * about them.  For the untimed case, though, the user obviously made a
1115 	 * mistake, because these are handled immediately.  We'll terminate the
1116 	 * break now and honor his implicit request by discarding the rest of
1117 	 * the data.
1118 	 */
1119 	if (!(async->async_flags & ASYNC_BREAK)) {
1120 		mutex_enter(asy->asy_excl_hi);
1121 		lcr = INB(LCR);
1122 		if (lcr & SETBREAK) {
1123 			OUTB(LCR, (lcr & ~SETBREAK));
1124 		}
1125 		mutex_exit(asy->asy_excl_hi);
1126 		if (lcr & SETBREAK)
1127 			goto nodrain;
1128 	}
1129 
1130 	/*
1131 	 * If the user told us not to delay the close ("non-blocking"), then
1132 	 * don't bother trying to drain.
1133 	 *
1134 	 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
1135 	 * getting an M_START (since these messages aren't enqueued), and the
1136 	 * only other way to clear the stop condition is by loss of DCD, which
1137 	 * would discard the queue data.  Thus, we drop the output data if
1138 	 * ASYNC_STOPPED is set.
1139 	 */
1140 	if ((flag & (FNDELAY|FNONBLOCK)) ||
1141 	    (async->async_flags & ASYNC_STOPPED)) {
1142 		goto nodrain;
1143 	}
1144 
1145 	/*
1146 	 * If there's any pending output, then we have to try to drain it.
1147 	 * There are two main cases to be handled:
1148 	 *	- called by close(2): need to drain until done or until
1149 	 *	  a signal is received.  No timeout.
1150 	 *	- called by exit(2): need to drain while making progress
1151 	 *	  or until a timeout occurs.  No signals.
1152 	 *
1153 	 * If we can't rely on receiving a signal to get us out of a hung
1154 	 * session, then we have to use a timer.  In this case, we set a timer
1155 	 * to check for progress in sending the output data -- all that we ask
1156 	 * (at each interval) is that there's been some progress made.  Since
1157 	 * the interrupt routine grabs buffers from the write queue, we can't
1158 	 * trust async_ocnt.  Instead, we use a flag.
1159 	 *
1160 	 * Note that loss of carrier will cause the output queue to be flushed,
1161 	 * and we'll wake up again and finish normally.
1162 	 */
1163 	if (!ddi_can_receive_sig() && su_drain_check != 0) {
1164 		async->async_flags &= ~ASYNC_PROGRESS;
1165 		async->async_timer = timeout(async_progress_check, async,
1166 		    drv_usectohz(su_drain_check));
1167 	}
1168 
1169 	while (async->async_ocnt > 0 ||
1170 	    async->async_ttycommon.t_writeq->q_first != NULL ||
1171 	    (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
1172 		if (cv_wait_sig(&async->async_flags_cv, asy->asy_excl) == 0)
1173 			break;
1174 	}
1175 	if (async->async_timer != 0) {
1176 		(void) untimeout(async->async_timer);
1177 		async->async_timer = 0;
1178 	}
1179 
1180 nodrain:
1181 	mutex_enter(asy->asy_excl_hi);
1182 
1183 	/* turn off the loopback mode */
1184 	if ((async->async_dev != rconsdev) &&
1185 	    (async->async_dev != kbddev) &&
1186 	    (async->async_dev != stdindev)) {
1187 		OUTB(MCR, INB(MCR) & ~ ASY_LOOP);
1188 	}
1189 
1190 	async->async_ocnt = 0;
1191 	if (async->async_xmitblk != NULL)
1192 		freeb(async->async_xmitblk);
1193 	async->async_xmitblk = NULL;
1194 
1195 	/*
1196 	 * If the "nohupcl" OBP property is set for this device, do
1197 	 * not turn off DTR and RTS no matter what.  Otherwise, if the
1198 	 * line has HUPCL set or is incompletely opened, turn off DTR
1199 	 * and RTS to fix the modem line.
1200 	 */
1201 	if (!nohupcl && ((async->async_ttycommon.t_cflag & HUPCL) ||
1202 	    (async->async_flags & ASYNC_WOPEN))) {
1203 		/* turn off DTR, RTS but NOT interrupt to 386 */
1204 		OUTB(MCR, OUT2);
1205 		mutex_exit(asy->asy_excl_hi);
1206 		/*
1207 		 * Don't let an interrupt in the middle of close
1208 		 * bounce us back to the top; just continue closing
1209 		 * as if nothing had happened.
1210 		 */
1211 		if (cv_wait_sig(&lbolt_cv, asy->asy_excl) == 0)
1212 			goto out;
1213 		mutex_enter(asy->asy_excl_hi);
1214 	}
1215 
1216 	/*
1217 	 * If nobody's using it now, turn off receiver interrupts.
1218 	 */
1219 	if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
1220 		icr = INB(ICR);
1221 		OUTB(ICR, (icr & ~RIEN));
1222 	}
1223 	mutex_exit(asy->asy_excl_hi);
1224 out:
1225 	/*
1226 	 * Clear out device state.
1227 	 */
1228 	async->async_flags = 0;
1229 	ttycommon_close(&async->async_ttycommon);
1230 	cv_broadcast(&async->async_flags_cv);
1231 
1232 	/*
1233 	 * Clear ASY_DOINGSOFT and ASY_NEEDSOFT in case we were in
1234 	 * async_softint or an interrupt was pending when the process
1235 	 * using the port exited.
1236 	 */
1237 	asy->asy_flags &= ~ASY_DOINGSOFT & ~ASY_NEEDSOFT;
1238 
1239 	/*
1240 	 * Cancel outstanding "bufcall" request.
1241 	 */
1242 	if (async->async_wbufcid) {
1243 		unbufcall(async->async_wbufcid);
1244 		async->async_wbufcid = 0;
1245 	}
1246 
1247 	/*
1248 	 * If inperim is true, it means the port is closing while there's
1249 	 * a pending software interrupt.  async_flags has been zeroed out,
1250 	 * so this instance of leaveq() needs to be called before we call
1251 	 * qprocsoff() to disable services on the q.  If inperim is false,
1252 	 * leaveq() has already been called or we're not in a perimeter.
1253 	 */
1254 	if (asy->inperim == B_TRUE) {
1255 		asy->inperim = B_FALSE;
1256 		mutex_exit(asy->asy_excl);
1257 		leaveq(q);
1258 	} else {
1259 		mutex_exit(asy->asy_excl);
1260 	}
1261 
1262 	/* Note that qprocsoff can't be done until after interrupts are off */
1263 	qprocsoff(q);
1264 	q->q_ptr = WR(q)->q_ptr = NULL;
1265 	async->async_ttycommon.t_readq = NULL;
1266 	async->async_ttycommon.t_writeq = NULL;
1267 
1268 	return (0);
1269 }
1270 
1271 /*
1272  * Checks to see if the serial port is still transmitting
1273  * characters.  It returns true when there are characters
1274  * queued to transmit,  when the holding register contains
1275  * a byte, or when the shifting register still contains
1276  * data to send.
1277  *
1278  */
1279 static boolean_t
1280 asy_isbusy(struct asycom *asy)
1281 {
1282 	struct asyncline *async;
1283 
1284 #ifdef DEBUG
1285 	if (asydebug & ASY_DEBUG_EOT)
1286 		printf("isbusy\n");
1287 #endif
1288 	async = (struct asyncline *)asy->asy_priv;
1289 	ASSERT(mutex_owned(asy->asy_excl));
1290 	ASSERT(mutex_owned(asy->asy_excl_hi));
1291 	return ((async->async_ocnt > 0) ||
1292 			((INB(LSR) & XSRE) == 0));
1293 }
1294 
1295 /*
1296  * Program the ASY port. Most of the async operation is based on the values
1297  * of 'c_iflag' and 'c_cflag'.
1298  */
1299 static int
1300 asy_program(struct asycom *asy, int mode)
1301 {
1302 	struct asyncline *async;
1303 	int baudrate, c_flag;
1304 	int icr, lcr;
1305 	int ocflags;
1306 	int error = 0;
1307 
1308 	ASSERT(mutex_owned(asy->asy_excl));
1309 	ASSERT(mutex_owned(asy->asy_excl_hi));
1310 
1311 #ifdef DEBUG
1312 	if (asydebug & ASY_DEBUG_PROCS)
1313 		printf("program\n");
1314 #endif
1315 	async = (struct asyncline *)asy->asy_priv;
1316 
1317 	baudrate = async->async_ttycommon.t_cflag & CBAUD;
1318 	if (async->async_ttycommon.t_cflag & CBAUDEXT)
1319 		baudrate += 16;
1320 
1321 	/* Limit baudrate so it can't index out of baudtable */
1322 	if (baudrate >= N_SU_SPEEDS) baudrate = B9600;
1323 
1324 	/*
1325 	 * If baud rate requested is greater than the speed cap
1326 	 * or is an unsupported baud rate then reset t_cflag baud
1327 	 * to the last valid baud rate.  If this is the initial
1328 	 * pass through asy_program then set it to 9600.
1329 	 */
1330 	if (((baudrate > 0) && (asyspdtab[baudrate] == 0)) ||
1331 	    (baudtable[baudrate] > asy->asy_speed_cap)) {
1332 		async->async_ttycommon.t_cflag &= ~CBAUD & ~CBAUDEXT &
1333 		    ~CIBAUD & ~CIBAUDEXT;
1334 		if (mode == ASY_INIT) {
1335 			async->async_ttycommon.t_cflag |= B9600;
1336 			async->async_ttycommon.t_cflag |= B9600 << IBSHIFT;
1337 			baudrate = B9600;
1338 		} else {
1339 			async->async_ttycommon.t_cflag |=
1340 			    (asy->asy_ocflags & (CBAUD | CBAUDEXT |
1341 			    CIBAUD | CIBAUDEXT));
1342 			error = EINVAL;
1343 			goto end;
1344 		}
1345 	}
1346 
1347 	/*
1348 	 * If CIBAUD and CIBAUDEXT are zero then we should set them to
1349 	 * the equivelant output baud bits.  Else, if CIBAUD and CIBAUDEXT
1350 	 * don't match CBAUD and CBAUDEXT respectively then we should
1351 	 * notify the requestor that we do not support split speeds.
1352 	 */
1353 	if ((async->async_ttycommon.t_cflag  & (CIBAUD|CIBAUDEXT)) == 0) {
1354 		async->async_ttycommon.t_cflag |=
1355 		    (async->async_ttycommon.t_cflag & CBAUD) << IBSHIFT;
1356 		if (async->async_ttycommon.t_cflag & CBAUDEXT)
1357 		    async->async_ttycommon.t_cflag |= CIBAUDEXT;
1358 	} else {
1359 		if ((((async->async_ttycommon.t_cflag & CBAUD) << IBSHIFT) !=
1360 		    (async->async_ttycommon.t_cflag & CIBAUD)) ||
1361 		    !(((async->async_ttycommon.t_cflag & (CBAUDEXT |
1362 		    CIBAUDEXT)) == (CBAUDEXT | CIBAUDEXT)) ||
1363 		    ((async->async_ttycommon.t_cflag & (CBAUDEXT |
1364 		    CIBAUDEXT)) == 0))) {
1365 			async->async_ttycommon.t_cflag &= ~CBAUD & ~CBAUDEXT &
1366 			    ~CIBAUD & ~CIBAUDEXT;
1367 			async->async_ttycommon.t_cflag |=
1368 			    (asy->asy_ocflags & (CBAUD | CBAUDEXT |
1369 			    CIBAUD | CIBAUDEXT));
1370 			error = EINVAL;
1371 			goto end;
1372 		}
1373 	}
1374 
1375 	c_flag = async->async_ttycommon.t_cflag &
1376 	    (CLOCAL | CREAD | CSTOPB | CSIZE | PARENB | PARODD | CBAUD |
1377 	    CBAUDEXT | CIBAUD | CIBAUDEXT);
1378 
1379 	/* disable interrupts, see EXAR bug */
1380 	if (asy->asy_hwtype == ASY16C554D)
1381 		OUTB(SPR, 0);
1382 	OUTB(ICR, 0);
1383 
1384 	ocflags = asy->asy_ocflags;
1385 
1386 	/* flush/reset the status registers */
1387 	if (mode == ASY_INIT) {
1388 		(void) INB(DAT);
1389 		(void) INB(ISR);
1390 		(void) INB(LSR);
1391 		(void) INB(MSR);
1392 	}
1393 
1394 	if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
1395 		/* Set line control */
1396 		lcr = INB(LCR);
1397 		lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
1398 
1399 		if (c_flag & CSTOPB)
1400 			lcr |= STB;	/* 2 stop bits */
1401 
1402 		if (c_flag & PARENB)
1403 			lcr |= PEN;
1404 
1405 		if ((c_flag & PARODD) == 0)
1406 			lcr |= EPS;
1407 
1408 		switch (c_flag & CSIZE) {
1409 		case CS5:
1410 			lcr |= BITS5;
1411 			break;
1412 		case CS6:
1413 			lcr |= BITS6;
1414 			break;
1415 		case CS7:
1416 			lcr |= BITS7;
1417 			break;
1418 		case CS8:
1419 			lcr |= BITS8;
1420 			break;
1421 		}
1422 
1423 		/* set the baud rate when the rate is NOT B0 */
1424 		if (baudrate != 0) {
1425 			OUTB(LCR, DLAB);
1426 			OUTB(DAT, (asyspdtab[baudrate] *
1427 				asy->asy_baud_divisor_factor) & 0xff);
1428 			OUTB(ICR, ((asyspdtab[baudrate] *
1429 				asy->asy_baud_divisor_factor) >> 8) & 0xff);
1430 		}
1431 		/* set the line control modes */
1432 		OUTB(LCR, lcr);
1433 
1434 		/*
1435 		 * if transitioning from CREAD off to CREAD on,
1436 		 * flush the FIFO buffer if we have one.
1437 		 */
1438 		if ((ocflags & CREAD) == 0 && (c_flag & CREAD)) {
1439 			if (asy->asy_use_fifo == FIFO_ON) {
1440 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH |
1441 				    (asy->asy_trig_level & 0xff));
1442 			}
1443 		}
1444 
1445 		/* remember the new cflags */
1446 		asy->asy_ocflags = c_flag & ~CLOCAL;
1447 	}
1448 
1449 	/* whether or not CLOCAL is set, modify the modem control lines */
1450 	if (baudrate == 0)
1451 		/* B0 has been issued, lower DTR */
1452 		OUTB(MCR, RTS|OUT2);
1453 	else
1454 		/* raise DTR */
1455 		OUTB(MCR, DTR|RTS|OUT2);
1456 
1457 	/*
1458 	 * Call the modem status interrupt handler to check for the carrier
1459 	 * in case CLOCAL was turned off after the carrier came on.
1460 	 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
1461 	 */
1462 	async_msint(asy);
1463 
1464 	/* Set interrupt control */
1465 	if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
1466 		/*
1467 		 * direct-wired line ignores DCD, so we don't enable modem
1468 		 * status interrupts.
1469 		 */
1470 		icr = (TIEN | SIEN);
1471 	else
1472 		icr = (TIEN | SIEN | MIEN);
1473 
1474 	if (c_flag & CREAD)
1475 		icr |= RIEN;
1476 
1477 	OUTB(ICR, icr);
1478 end:
1479 	return (error);
1480 }
1481 
1482 /*
1483  * asyintr() is the High Level Interrupt Handler.
1484  *
1485  * There are four different interrupt types indexed by ISR register values:
1486  *		0: modem
1487  *		1: Tx holding register is empty, ready for next char
1488  *		2: Rx register now holds a char to be picked up
1489  *		3: error or break on line
1490  * This routine checks the Bit 0 (interrupt-not-pending) to determine if
1491  * the interrupt is from this port.
1492  */
1493 uint_t
1494 asyintr(caddr_t argasy)
1495 {
1496 	struct asycom		*asy = (struct asycom *)argasy;
1497 	struct asyncline	*async;
1498 	int			ret_status = DDI_INTR_UNCLAIMED;
1499 	uchar_t			interrupt_id, lsr;
1500 
1501 	interrupt_id = INB(ISR) & 0x0F;
1502 	async = (struct asyncline *)asy->asy_priv;
1503 	if ((async == NULL) ||
1504 		!(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
1505 		if (interrupt_id & NOINTERRUPT)  {
1506 			return (DDI_INTR_UNCLAIMED);
1507 		} else {
1508 			lsr = INB(LSR);
1509 			if ((lsr & BRKDET) &&
1510 			    ((abort_enable == KIOCABORTENABLE) &&
1511 			    (async->async_dev == rconsdev)))
1512 				abort_sequence_enter((char *)NULL);
1513 			else {
1514 				/* reset line status */
1515 				(void) INB(LSR);
1516 				/* discard any data */
1517 				(void) INB(DAT);
1518 				/* reset modem status */
1519 				(void) INB(MSR);
1520 				return (DDI_INTR_CLAIMED);
1521 			}
1522 		}
1523 	}
1524 	/*
1525 	 * Spurious interrupts happen in this driver
1526 	 * because of the transmission on serial port not handled
1527 	 * properly.
1528 	 *
1529 	 * The reasons for Spurious interrupts are:
1530 	 *    1. There is a path in async_nstart which transmits
1531 	 *	 characters without going through interrupt services routine
1532 	 *	 which causes spurious interrupts to happen.
1533 	 *    2. In the async_txint more than one character is sent
1534 	 *	 in one interrupt service.
1535 	 *    3. In async_rxint more than one characters are received in
1536 	 *	 in one interrupt service.
1537 	 *
1538 	 * Hence we have flags to indicate that such scenerio has happened.
1539 	 * and claim only such interrupts and others we donot claim it
1540 	 * as it could be a indicator of some hardware problem.
1541 	 *
1542 	 */
1543 	if (interrupt_id & NOINTERRUPT) {
1544 		mutex_enter(asy->asy_excl_hi);
1545 		if ((asy->asy_xmit_count > 1) ||
1546 			    (asy->asy_out_of_band_xmit > 0) ||
1547 				(asy->asy_rx_count > 1)) {
1548 			asy->asy_xmit_count = 0;
1549 			asy->asy_out_of_band_xmit = 0;
1550 			asy->asy_rx_count = 0;
1551 			mutex_exit(asy->asy_excl_hi);
1552 			return (DDI_INTR_CLAIMED);
1553 		} else {
1554 			mutex_exit(asy->asy_excl_hi);
1555 			return (DDI_INTR_UNCLAIMED);
1556 		}
1557 	}
1558 	ret_status = DDI_INTR_CLAIMED;
1559 	mutex_enter(asy->asy_excl_hi);
1560 	if (asy->asy_hwtype == ASY82510)
1561 		OUTB(ISR, 0x00); /* set bank 0 */
1562 
1563 #ifdef DEBUG
1564 	if (asydebug & ASY_DEBUG_INTR)
1565 		prom_printf("l");
1566 #endif
1567 	lsr = INB(LSR);
1568 	switch (interrupt_id) {
1569 	case RxRDY:
1570 	case RSTATUS:
1571 	case FFTMOUT:
1572 		/* receiver interrupt or receiver errors */
1573 		async_rxint(asy, lsr);
1574 		break;
1575 	case TxRDY:
1576 		/* transmit interrupt */
1577 		async_txint(asy, lsr);
1578 		break;
1579 	case MSTATUS:
1580 		/* modem status interrupt */
1581 		async_msint(asy);
1582 		break;
1583 	}
1584 	mutex_exit(asy->asy_excl_hi);
1585 	return (ret_status);
1586 }
1587 
1588 /*
1589  * Transmitter interrupt service routine.
1590  * If there is more data to transmit in the current pseudo-DMA block,
1591  * send the next character if output is not stopped or draining.
1592  * Otherwise, queue up a soft interrupt.
1593  *
1594  * XXX -  Needs review for HW FIFOs.
1595  */
1596 static void
1597 async_txint(struct asycom *asy, uchar_t lsr)
1598 {
1599 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1600 	int		fifo_len;
1601 	int		xmit_progress;
1602 
1603 	asycheckflowcontrol_hw(asy);
1604 
1605 	/*
1606 	 * If ASYNC_BREAK has been set, return to asyintr()'s context to
1607 	 * claim the interrupt without performing any action.
1608 	 */
1609 	if (async->async_flags & ASYNC_BREAK)
1610 		return;
1611 
1612 	fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
1613 
1614 	/*
1615 	 * Check for flow control and do the needed action.
1616 	 */
1617 	if (asycheckflowcontrol_sw(asy)) {
1618 		return;
1619 	}
1620 
1621 	if (async->async_ocnt > 0 &&
1622 	    !(async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED))) {
1623 		xmit_progress = 0;
1624 		while (fifo_len > 0 && async->async_ocnt > 0) {
1625 			if (lsr & XHRE) {
1626 				OUTB(DAT, *async->async_optr++);
1627 				fifo_len--;
1628 				async->async_ocnt--;
1629 				xmit_progress++;
1630 			}
1631 			/*
1632 			 * Reading the lsr, (moved reading at the end of
1633 			 * while loop) as already we have read once at
1634 			 * the beginning of interrupt service
1635 			 */
1636 			lsr = INB(LSR);
1637 		}
1638 		asy->asy_xmit_count = xmit_progress;
1639 		if (xmit_progress > 0)
1640 			async->async_flags |= ASYNC_PROGRESS;
1641 	}
1642 
1643 	if (fifo_len == 0) {
1644 		return;
1645 	}
1646 
1647 
1648 	ASYSETSOFT(asy);
1649 }
1650 
1651 /*
1652  * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
1653  * error interrupt.
1654  * Try to put the character into the circular buffer for this line; if it
1655  * overflows, indicate a circular buffer overrun. If this port is always
1656  * to be serviced immediately, or the character is a STOP character, or
1657  * more than 15 characters have arrived, queue up a soft interrupt to
1658  * drain the circular buffer.
1659  * XXX - needs review for hw FIFOs support.
1660  */
1661 
1662 static void
1663 async_rxint(struct asycom *asy, uchar_t lsr)
1664 {
1665 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1666 	uchar_t c = 0;
1667 	uint_t s = 0, needsoft = 0;
1668 	register tty_common_t *tp;
1669 
1670 	tp = &async->async_ttycommon;
1671 	if (!(tp->t_cflag & CREAD)) {
1672 		if (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
1673 			(void) (INB(DAT) & 0xff);
1674 		}
1675 		return; /* line is not open for read? */
1676 	}
1677 	asy->asy_rx_count = 0;
1678 	while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
1679 		c = 0;
1680 		s = 0;
1681 		asy->asy_rx_count++;
1682 		if (lsr & RCA) {
1683 			c = INB(DAT) & 0xff;
1684 			/*
1685 			 * Even a single character is received
1686 			 * we need Soft interrupt to pass it to
1687 			 * higher layers.
1688 			 */
1689 			needsoft = 1;
1690 		}
1691 
1692 		/* Check for character break sequence */
1693 		if ((abort_enable == KIOCABORTALTERNATE) &&
1694 		    (async->async_dev == rconsdev)) {
1695 			if (abort_charseq_recognize(c))
1696 				abort_sequence_enter((char *)NULL);
1697 			}
1698 
1699 		/* Handle framing errors */
1700 		if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
1701 			if (lsr & PARERR) {
1702 				if (tp->t_iflag & INPCK) /* parity enabled */
1703 					s |= PERROR;
1704 			}
1705 			if (lsr & (FRMERR|BRKDET))
1706 				s |= FRERROR;
1707 			if (lsr & OVRRUN) {
1708 				async->async_hw_overrun = 1;
1709 				s |= OVERRUN;
1710 			}
1711 		}
1712 
1713 		if (s == 0)
1714 			if ((tp->t_iflag & PARMRK) &&
1715 					!(tp->t_iflag & (IGNPAR|ISTRIP)) &&
1716 						(c == 0377))
1717 				if (RING_POK(async, 2)) {
1718 					RING_PUT(async, 0377);
1719 					RING_PUT(async, c);
1720 				} else
1721 					async->async_sw_overrun = 1;
1722 			else
1723 				if (RING_POK(async, 1))
1724 					RING_PUT(async, c);
1725 				else
1726 					async->async_sw_overrun = 1;
1727 		else
1728 			if (s & FRERROR) { /* Handle framing errors */
1729 				if (c == 0)  {
1730 		/* Look for break on kbd, stdin, or rconsdev */
1731 					if ((async->async_dev == kbddev) ||
1732 					    ((async->async_dev == rconsdev) ||
1733 					    (async->async_dev == stdindev)) &&
1734 					    (abort_enable !=
1735 					    KIOCABORTALTERNATE))
1736 						abort_sequence_enter((char *)0);
1737 					else
1738 						async->async_break++;
1739 				} else {
1740 					if (RING_POK(async, 1))
1741 						RING_MARK(async, c, s);
1742 					else
1743 						async->async_sw_overrun = 1;
1744 				}
1745 			} else  { /* Parity errors  handled by ldterm */
1746 				if (RING_POK(async, 1))
1747 					RING_MARK(async, c, s);
1748 				else
1749 					async->async_sw_overrun = 1;
1750 			}
1751 		lsr = INB(LSR);
1752 		if (asy->asy_rx_count > 16) break;
1753 	}
1754 	/* Check whether there is a request for hw/sw inbound/input flow ctrl */
1755 	if ((async->async_ttycommon.t_cflag & CRTSXOFF) ||
1756 		(async->async_ttycommon.t_iflag & IXOFF))
1757 		if ((int)(RING_CNT(async)) > (RINGSIZE * 3)/4) {
1758 #ifdef DEBUG
1759 			if (asydebug & ASY_DEBUG_HFLOW)
1760 				printf("asy%d: hardware flow stop input.\n",
1761 				UNIT(async->async_dev));
1762 #endif
1763 			async->async_flags |= ASYNC_HW_IN_FLOW;
1764 			async->async_flowc = async->async_stopc;
1765 			async->async_ringbuf_overflow = 1;
1766 		}
1767 
1768 	if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
1769 			(RING_FRAC(async)) || (async->async_polltid == 0))
1770 		ASYSETSOFT(asy);	/* need a soft interrupt */
1771 }
1772 
1773 /*
1774  * Interrupt on port: handle PPS event.  This function is only called
1775  * for a port on which PPS event handling has been enabled.
1776  */
1777 static void
1778 asy_ppsevent(struct asycom *asy, int msr)
1779 {
1780 	if (asy->asy_flags & ASY_PPS_EDGE) {
1781 		/* Have seen leading edge, now look for and record drop */
1782 		if ((msr & DCD) == 0)
1783 			asy->asy_flags &= ~ASY_PPS_EDGE;
1784 		/*
1785 		 * Waiting for leading edge, look for rise; stamp event and
1786 		 * calibrate kernel clock.
1787 		 */
1788 	} else if (msr & DCD) {
1789 		/*
1790 		 * This code captures a timestamp at the designated
1791 		 * transition of the PPS signal (DCD asserted).  The
1792 		 * code provides a pointer to the timestamp, as well
1793 		 * as the hardware counter value at the capture.
1794 		 *
1795 		 * Note: the kernel has nano based time values while
1796 		 * NTP requires micro based, an in-line fast algorithm
1797 		 * to convert nsec to usec is used here -- see hrt2ts()
1798 		 * in common/os/timers.c for a full description.
1799 		 */
1800 		struct timeval *tvp = &asy_ppsev.tv;
1801 		timestruc_t ts;
1802 		long nsec, usec;
1803 
1804 		asy->asy_flags |= ASY_PPS_EDGE;
1805 		gethrestime(&ts);
1806 		nsec = ts.tv_nsec;
1807 		usec = nsec + (nsec >> 2);
1808 		usec = nsec + (usec >> 1);
1809 		usec = nsec + (usec >> 2);
1810 		usec = nsec + (usec >> 4);
1811 		usec = nsec - (usec >> 3);
1812 		usec = nsec + (usec >> 2);
1813 		usec = nsec + (usec >> 3);
1814 		usec = nsec + (usec >> 4);
1815 		usec = nsec + (usec >> 1);
1816 		usec = nsec + (usec >> 6);
1817 		tvp->tv_usec = usec >> 10;
1818 		tvp->tv_sec = ts.tv_sec;
1819 
1820 		++asy_ppsev.serial;
1821 
1822 		/*
1823 		 * Because the kernel keeps a high-resolution time,
1824 		 * pass the current highres timestamp in tvp and zero
1825 		 * in usec.
1826 		 */
1827 		ddi_hardpps(tvp, 0);
1828 	}
1829 }
1830 
1831 /*
1832  * Modem status interrupt.
1833  *
1834  * (Note: It is assumed that the MSR hasn't been read by asyintr().)
1835  */
1836 
1837 static void
1838 async_msint(struct asycom *asy)
1839 {
1840 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1841 	int msr;
1842 
1843 	msr = INB(MSR);	/* this resets the interrupt */
1844 	asy->asy_cached_msr = msr;
1845 #ifdef DEBUG
1846 	if (asydebug & ASY_DEBUG_STATE) {
1847 		printf("   transition: %3s %3s %3s %3s\n"
1848 			"current state: %3s %3s %3s %3s\n",
1849 			(msr & DCTS) ? "CTS" : "   ",
1850 			(msr & DDSR) ? "DSR" : "   ",
1851 			(msr & DRI) ?  "RI " : "   ",
1852 			(msr & DDCD) ? "DCD" : "   ",
1853 			(msr & CTS) ?  "CTS" : "   ",
1854 			(msr & DSR) ?  "DSR" : "   ",
1855 			(msr & RI) ?   "RI " : "   ",
1856 			(msr & DCD) ?  "DCD" : "   ");
1857 	}
1858 #endif
1859 	if (async->async_ttycommon.t_cflag & CRTSCTS && !(msr & CTS)) {
1860 #ifdef DEBUG
1861 		if (asydebug & ASY_DEBUG_HFLOW)
1862 			printf("asy%d: hflow start\n",
1863 				UNIT(async->async_dev));
1864 #endif
1865 		async->async_flags |= ASYNC_HW_OUT_FLW;
1866 	}
1867 	if (asy->asy_hwtype == ASY82510)
1868 		OUTB(MSR, (msr & 0xF0));
1869 
1870 	/* Handle PPS event */
1871 	if (asy->asy_flags & ASY_PPS)
1872 		asy_ppsevent(asy, msr);
1873 
1874 	async->async_ext++;
1875 	ASYSETSOFT(asy);
1876 }
1877 
1878 /*
1879  * Handle a second-stage interrupt.
1880  */
1881 uint_t
1882 asysoftintr(caddr_t intarg)
1883 {
1884 	struct asycom *asy = (struct asycom *)intarg;
1885 	struct asyncline *async;
1886 	int rv;
1887 	int cc;
1888 	/*
1889 	 * Test and clear soft interrupt.
1890 	 */
1891 	mutex_enter(asy->asy_soft_lock);
1892 #ifdef DEBUG
1893 	if (asydebug & ASY_DEBUG_PROCS)
1894 		printf("softintr\n");
1895 #endif
1896 	rv = asy->asysoftpend;
1897 	if (rv != 0)
1898 		asy->asysoftpend = 0;
1899 	mutex_exit(asy->asy_soft_lock);
1900 
1901 	if (rv) {
1902 		if (asy->asy_priv == NULL)
1903 			return (rv);
1904 		async = (struct asyncline *)asy->asy_priv;
1905 		mutex_enter(asy->asy_excl_hi);
1906 		if (asy->asy_flags & ASY_NEEDSOFT) {
1907 			asy->asy_flags &= ~ASY_NEEDSOFT;
1908 			mutex_exit(asy->asy_excl_hi);
1909 			(void) async_softint(asy);
1910 			mutex_enter(asy->asy_excl_hi);
1911 		}
1912 		/*
1913 		 * There are some instances where the softintr is not
1914 		 * scheduled and hence not called. It so happened that makes
1915 		 * the last few characters to be stuck in ringbuffer.
1916 		 * Hence, call once again the  handler so that the last few
1917 		 * characters are cleared.
1918 		 */
1919 		cc = RING_CNT(async);
1920 		mutex_exit(asy->asy_excl_hi);
1921 		if (cc > 0) {
1922 			(void) async_softint(asy);
1923 		}
1924 	}
1925 	return (rv);
1926 }
1927 
1928 /*
1929  * Handle a software interrupt.
1930  */
1931 static int
1932 async_softint(struct asycom *asy)
1933 {
1934 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1935 	uint_t	cc;
1936 	mblk_t	*bp;
1937 	queue_t	*q;
1938 	uchar_t	val;
1939 	uchar_t	c;
1940 	tty_common_t	*tp;
1941 
1942 #ifdef DEBUG
1943 	if (asydebug & ASY_DEBUG_PROCS)
1944 		printf("process\n");
1945 #endif
1946 	mutex_enter(asy->asy_excl);
1947 	if (asy->asy_flags & ASY_DOINGSOFT) {
1948 		mutex_exit(asy->asy_excl);
1949 		return (0);
1950 	}
1951 	tp = &async->async_ttycommon;
1952 	q = tp->t_readq;
1953 	if (q != NULL) {
1954 		mutex_exit(asy->asy_excl);
1955 		enterq(q);
1956 		mutex_enter(asy->asy_excl);
1957 	}
1958 	mutex_enter(asy->asy_excl_hi);
1959 	asy->asy_flags |= ASY_DOINGSOFT;
1960 
1961 	if (INB(ICR) & MIEN)
1962 		val = asy->asy_cached_msr & 0xFF;
1963 	else
1964 		val = INB(MSR) & 0xFF;
1965 
1966 	if (async->async_ttycommon.t_cflag & CRTSCTS) {
1967 		if ((val & CTS) && (async->async_flags & ASYNC_HW_OUT_FLW)) {
1968 #ifdef DEBUG
1969 			if (asydebug & ASY_DEBUG_HFLOW)
1970 				printf("asy%d: hflow start\n",
1971 					UNIT(async->async_dev));
1972 #endif
1973 			async->async_flags &= ~ASYNC_HW_OUT_FLW;
1974 			mutex_exit(asy->asy_excl_hi);
1975 			if (async->async_ocnt > 0) {
1976 				mutex_enter(asy->asy_excl_hi);
1977 				async_resume(async);
1978 				mutex_exit(asy->asy_excl_hi);
1979 			} else {
1980 				async_start(async);
1981 			}
1982 			mutex_enter(asy->asy_excl_hi);
1983 		}
1984 	}
1985 	if (async->async_ext) {
1986 		async->async_ext = 0;
1987 		/* check for carrier up */
1988 		if ((val & DCD) || (tp->t_flags & TS_SOFTCAR)) {
1989 			/* carrier present */
1990 			if ((async->async_flags & ASYNC_CARR_ON) == 0) {
1991 				async->async_flags |= ASYNC_CARR_ON;
1992 				mutex_exit(asy->asy_excl_hi);
1993 				mutex_exit(asy->asy_excl);
1994 				if (async->async_flags & ASYNC_ISOPEN)
1995 					(void) putctl(q, M_UNHANGUP);
1996 				cv_broadcast(&async->async_flags_cv);
1997 				mutex_enter(asy->asy_excl);
1998 				mutex_enter(asy->asy_excl_hi);
1999 			}
2000 		} else {
2001 			if ((async->async_flags & ASYNC_CARR_ON) &&
2002 			    !(tp->t_cflag & CLOCAL)) {
2003 				int flushflag;
2004 
2005 				/*
2006 				 * Carrier went away.
2007 				 * Drop DTR, abort any output in
2008 				 * progress, indicate that output is
2009 				 * not stopped, and send a hangup
2010 				 * notification upstream.
2011 				 *
2012 				 * If we're in the midst of close, then flush
2013 				 * everything.  Don't leave stale ioctls lying
2014 				 * about.
2015 				 */
2016 				val = INB(MCR);
2017 				OUTB(MCR, (val & ~DTR));
2018 				flushflag = (async->async_flags &
2019 				    ASYNC_CLOSING) ? FLUSHALL : FLUSHDATA;
2020 				flushq(tp->t_writeq, flushflag);
2021 				if (async->async_xmitblk != NULL) {
2022 					freeb(async->async_xmitblk);
2023 					async->async_xmitblk = NULL;
2024 				}
2025 				if (async->async_flags & ASYNC_BUSY) {
2026 					async->async_ocnt = 0;
2027 					async->async_flags &= ~ASYNC_BUSY;
2028 				}
2029 				async->async_flags &= ~ASYNC_STOPPED;
2030 				if (async->async_flags & ASYNC_ISOPEN) {
2031 					mutex_exit(asy->asy_excl_hi);
2032 					mutex_exit(asy->asy_excl);
2033 					(void) putctl(q, M_HANGUP);
2034 					mutex_enter(asy->asy_excl);
2035 					mutex_enter(asy->asy_excl_hi);
2036 				}
2037 				async->async_flags &= ~ASYNC_CARR_ON;
2038 				mutex_exit(asy->asy_excl_hi);
2039 				cv_broadcast(&async->async_flags_cv);
2040 				mutex_enter(asy->asy_excl_hi);
2041 			}
2042 		}
2043 	}
2044 
2045 	/*
2046 	 * If data has been added to the circular buffer, remove
2047 	 * it from the buffer, and send it up the stream if there's
2048 	 * somebody listening. Try to do it 16 bytes at a time. If we
2049 	 * have more than 16 bytes to move, move 16 byte chunks and
2050 	 * leave the rest for next time around (maybe it will grow).
2051 	 */
2052 	if (!(async->async_flags & ASYNC_ISOPEN)) {
2053 		RING_INIT(async);
2054 		goto rv;
2055 	}
2056 	if ((cc = RING_CNT(async)) == 0) {
2057 		goto rv;
2058 	}
2059 	mutex_exit(asy->asy_excl_hi);
2060 
2061 	if (!canput(q)) {
2062 		if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) {
2063 #ifdef DEBUG
2064 			if (!(asydebug & ASY_DEBUG_HFLOW)) {
2065 				printf("asy%d: hflow stop input.\n",
2066 				UNIT(async->async_dev));
2067 				if (canputnext(q))
2068 					printf("asy%d: next queue is "
2069 						"ready\n",
2070 					UNIT(async->async_dev));
2071 			}
2072 #endif
2073 			mutex_enter(asy->asy_excl_hi);
2074 			async->async_flags |= ASYNC_HW_IN_FLOW;
2075 			async->async_flowc = async->async_stopc;
2076 		} else mutex_enter(asy->asy_excl_hi);
2077 		goto rv;
2078 	}
2079 
2080 	if (async->async_ringbuf_overflow) {
2081 		if ((async->async_flags & ASYNC_HW_IN_FLOW) &&
2082 				((int)(RING_CNT(async)) < (RINGSIZE/4))) {
2083 #ifdef DEBUG
2084 			if (asydebug & ASY_DEBUG_HFLOW)
2085 				printf("asy%d: hflow start input.\n",
2086 				UNIT(async->async_dev));
2087 #endif
2088 			mutex_enter(asy->asy_excl_hi);
2089 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
2090 			async->async_flowc = async->async_startc;
2091 			async->async_ringbuf_overflow = 0;
2092 			goto rv;
2093 		}
2094 	}
2095 #ifdef DEBUG
2096 	if (asydebug & ASY_DEBUG_INPUT)
2097 		printf("asy%d: %d char(s) in queue.\n",
2098 			UNIT(async->async_dev), cc);
2099 #endif
2100 	/*
2101 	 * Before you pull the characters from the RING BUF
2102 	 * Check whether you can put into the queue again
2103 	 */
2104 	if ((!canputnext(q)) || (!canput(q))) {
2105 		mutex_enter(asy->asy_excl_hi);
2106 		if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) {
2107 			async->async_flags |= ASYNC_HW_IN_FLOW;
2108 			async->async_flowc = async->async_stopc;
2109 			async->async_queue_full = 1;
2110 		}
2111 		goto rv;
2112 	}
2113 	mutex_enter(asy->asy_excl_hi);
2114 	if (async->async_queue_full) {
2115 		/*
2116 		 * Last time the Stream queue didnot allow
2117 		 * now it allows so, relax, the flow control
2118 		 */
2119 		if (async->async_flags & ASYNC_HW_IN_FLOW) {
2120 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
2121 			async->async_queue_full = 0;
2122 			async->async_flowc = async->async_startc;
2123 			goto rv;
2124 		} else
2125 			async->async_queue_full = 0;
2126 	}
2127 	mutex_exit(asy->asy_excl_hi);
2128 	if (!(bp = allocb(cc, BPRI_MED))) {
2129 		ttycommon_qfull(&async->async_ttycommon, q);
2130 		mutex_enter(asy->asy_excl_hi);
2131 		goto rv;
2132 	}
2133 	mutex_enter(asy->asy_excl_hi);
2134 	do {
2135 		if (RING_ERR(async, S_ERRORS)) {
2136 			RING_UNMARK(async);
2137 			c = RING_GET(async);
2138 			break;
2139 		} else {
2140 			*bp->b_wptr++ = RING_GET(async);
2141 		}
2142 	} while (--cc);
2143 
2144 	mutex_exit(asy->asy_excl_hi);
2145 	mutex_exit(asy->asy_excl);
2146 	if (bp->b_wptr > bp->b_rptr) {
2147 		if (!canputnext(q)) {
2148 			if (!canput(q)) {
2149 				/*
2150 				 * Even after taking all precautions that
2151 				 * Still we are unable to queue, then we
2152 				 * cannot do anything, just drop the block
2153 				 */
2154 				cmn_err(CE_NOTE,
2155 					"su%d: local queue full\n",
2156 					UNIT(async->async_dev));
2157 				freemsg(bp);
2158 				mutex_enter(asy->asy_excl_hi);
2159 				if ((async->async_flags &
2160 					ASYNC_HW_IN_FLOW) == 0) {
2161 					async->async_flags |=
2162 						ASYNC_HW_IN_FLOW;
2163 					async->async_flowc =
2164 						async->async_stopc;
2165 					async->async_queue_full = 1;
2166 				}
2167 				mutex_exit(asy->asy_excl_hi);
2168 			} else {
2169 				(void) putq(q, bp);
2170 			}
2171 		} else {
2172 			putnext(q, bp);
2173 		}
2174 	} else {
2175 		freemsg(bp);
2176 	}
2177 	/*
2178 	 * If we have a parity error, then send
2179 	 * up an M_BREAK with the "bad"
2180 	 * character as an argument. Let ldterm
2181 	 * figure out what to do with the error.
2182 	 */
2183 	if (cc)
2184 		(void) putctl1(q, M_BREAK, c);
2185 	mutex_enter(asy->asy_excl);
2186 	mutex_enter(asy->asy_excl_hi);
2187 rv:
2188 	/*
2189 	 * If a transmission has finished, indicate that it's finished,
2190 	 * and start that line up again.
2191 	 */
2192 	if (async->async_break) {
2193 		async->async_break = 0;
2194 		if (async->async_flags & ASYNC_ISOPEN) {
2195 			mutex_exit(asy->asy_excl_hi);
2196 			mutex_exit(asy->asy_excl);
2197 			(void) putctl(q, M_BREAK);
2198 			mutex_enter(asy->asy_excl);
2199 			mutex_enter(asy->asy_excl_hi);
2200 		}
2201 	}
2202 	if ((async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) ||
2203 	    (async->async_flowc != '\0')) {
2204 		async->async_flags &= ~ASYNC_BUSY;
2205 		mutex_exit(asy->asy_excl_hi);
2206 		if (async->async_xmitblk)
2207 			freeb(async->async_xmitblk);
2208 		async->async_xmitblk = NULL;
2209 		if (async->async_flags & ASYNC_ISOPEN) {
2210 			asy->inperim = B_TRUE;
2211 			mutex_exit(asy->asy_excl);
2212 			enterq(async->async_ttycommon.t_writeq);
2213 			mutex_enter(asy->asy_excl);
2214 		}
2215 		async_start(async);
2216 		/*
2217 		 * We need to check for inperim and ISOPEN due to
2218 		 * multi-threading implications; it's possible to close the
2219 		 * port and nullify async_flags while completing the software
2220 		 * interrupt.  If the port is closed, leaveq() will have already
2221 		 * been called.  We don't want to call it twice.
2222 		 */
2223 		if ((asy->inperim) && (async->async_flags & ASYNC_ISOPEN)) {
2224 			mutex_exit(asy->asy_excl);
2225 			leaveq(async->async_ttycommon.t_writeq);
2226 			mutex_enter(asy->asy_excl);
2227 			asy->inperim = B_FALSE;
2228 		}
2229 		if (!(async->async_flags & ASYNC_BUSY))
2230 			cv_broadcast(&async->async_flags_cv);
2231 		mutex_enter(asy->asy_excl_hi);
2232 	}
2233 	/*
2234 	 * A note about these overrun bits: all they do is *tell* someone
2235 	 * about an error- They do not track multiple errors. In fact,
2236 	 * you could consider them latched register bits if you like.
2237 	 * We are only interested in printing the error message once for
2238 	 * any cluster of overrun errrors.
2239 	 */
2240 	if (async->async_hw_overrun) {
2241 		if (async->async_flags & ASYNC_ISOPEN) {
2242 			if (su_log > 0) {
2243 				mutex_exit(asy->asy_excl_hi);
2244 				mutex_exit(asy->asy_excl);
2245 				cmn_err(CE_NOTE, "su%d: silo overflow\n",
2246 				    UNIT(async->async_dev));
2247 				mutex_enter(asy->asy_excl);
2248 				mutex_enter(asy->asy_excl_hi);
2249 			}
2250 			INC64_KSTAT(asy, siloover);
2251 		}
2252 		async->async_hw_overrun = 0;
2253 	}
2254 	if (async->async_sw_overrun) {
2255 		if (async->async_flags & ASYNC_ISOPEN) {
2256 			if (su_log > 0) {
2257 				mutex_exit(asy->asy_excl_hi);
2258 				mutex_exit(asy->asy_excl);
2259 				cmn_err(CE_NOTE, "su%d: ring buffer overflow\n",
2260 				    UNIT(async->async_dev));
2261 				mutex_enter(asy->asy_excl);
2262 				mutex_enter(asy->asy_excl_hi);
2263 			}
2264 			INC64_KSTAT(asy, ringover);
2265 		}
2266 		async->async_sw_overrun = 0;
2267 	}
2268 	asy->asy_flags &= ~ASY_DOINGSOFT;
2269 	mutex_exit(asy->asy_excl_hi);
2270 	mutex_exit(asy->asy_excl);
2271 	if (q != NULL)
2272 		leaveq(q);
2273 	return (0);
2274 }
2275 
2276 /*
2277  * Restart output on a line after a delay or break timer expired.
2278  */
2279 static void
2280 async_restart(void *arg)
2281 {
2282 	struct asyncline *async = arg;
2283 	struct asycom *asy = async->async_common;
2284 	queue_t *q;
2285 	uchar_t lcr;
2286 
2287 	/*
2288 	 * If break timer expired, turn off the break bit.
2289 	 */
2290 #ifdef DEBUG
2291 	if (asydebug & ASY_DEBUG_PROCS)
2292 		printf("restart\n");
2293 #endif
2294 	mutex_enter(asy->asy_excl);
2295 	if (async->async_flags & ASYNC_BREAK) {
2296 		unsigned int rate;
2297 
2298 		mutex_enter(asy->asy_excl_hi);
2299 		lcr = INB(LCR);
2300 		OUTB(LCR, (lcr & ~SETBREAK));
2301 
2302 		/*
2303 		 * Go to sleep for the time it takes for at least one
2304 		 * stop bit to be received by the device at the other
2305 		 * end of the line as stated in the RS-232 specification.
2306 		 * The wait period is equal to:
2307 		 * 2 clock cycles * (1 MICROSEC / baud rate)
2308 		 */
2309 		rate = async->async_ttycommon.t_cflag & CBAUD;
2310 		if (async->async_ttycommon.t_cflag & CBAUDEXT)
2311 			rate += 16;
2312 		if (rate >= N_SU_SPEEDS || rate == B0) {
2313 			rate = B9600;
2314 		}
2315 
2316 		mutex_exit(asy->asy_excl_hi);
2317 		mutex_exit(asy->asy_excl);
2318 		drv_usecwait(2 * MICROSEC / baudtable[rate]);
2319 		mutex_enter(asy->asy_excl);
2320 	}
2321 	async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK|ASYNC_DRAINING);
2322 	if ((q = async->async_ttycommon.t_writeq) != NULL) {
2323 		mutex_exit(asy->asy_excl);
2324 		enterq(q);
2325 		mutex_enter(asy->asy_excl);
2326 	}
2327 	async_start(async);
2328 	mutex_exit(asy->asy_excl);
2329 	if (q != NULL)
2330 		leaveq(q);
2331 
2332 	/* cleared break or delay flag; may have made some output progress */
2333 	cv_broadcast(&async->async_flags_cv);
2334 }
2335 
2336 static void
2337 async_start(struct asyncline *async)
2338 {
2339 	async_nstart(async, 0);
2340 }
2341 
2342 /*
2343  * Start output on a line, unless it's busy, frozen, or otherwise.
2344  */
2345 static void
2346 async_nstart(struct asyncline *async, int mode)
2347 {
2348 	register struct asycom *asy = async->async_common;
2349 	register int cc;
2350 	register queue_t *q;
2351 	mblk_t *bp, *nbp;
2352 	uchar_t *xmit_addr;
2353 	uchar_t	val;
2354 	int	fifo_len = 1;
2355 	int	xmit_progress;
2356 
2357 #ifdef DEBUG
2358 	if (asydebug & ASY_DEBUG_PROCS)
2359 		printf("start\n");
2360 #endif
2361 	if (asy->asy_use_fifo == FIFO_ON)
2362 		fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
2363 
2364 	ASSERT(mutex_owned(asy->asy_excl));
2365 	mutex_enter(asy->asy_excl_hi);
2366 	asycheckflowcontrol_hw(asy);
2367 
2368 	/*
2369 	 * If the chip is busy (i.e., we're waiting for a break timeout
2370 	 * to expire, or for the current transmission to finish, or for
2371 	 * output to finish draining from chip), don't grab anything new.
2372 	 */
2373 	if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY|ASYNC_DRAINING)) {
2374 		mutex_exit(asy->asy_excl_hi);
2375 #ifdef DEBUG
2376 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2377 			printf("asy%d: start %s.\n",
2378 				UNIT(async->async_dev),
2379 				async->async_flags & ASYNC_BREAK
2380 				? "break" : "busy");
2381 #endif
2382 		return;
2383 	}
2384 
2385 	/*
2386 	 * If we have a flow-control character to transmit, do it now.
2387 	 */
2388 	if (asycheckflowcontrol_sw(asy)) {
2389 		mutex_exit(asy->asy_excl_hi);
2390 		return;
2391 	}
2392 	mutex_exit(asy->asy_excl_hi);
2393 	/*
2394 	 * If we're waiting for a delay timeout to expire, don't grab
2395 	 * anything new.
2396 	 */
2397 	if (async->async_flags & ASYNC_DELAY) {
2398 #ifdef DEBUG
2399 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2400 			printf("asy%d: start ASYNC_DELAY.\n",
2401 				UNIT(async->async_dev));
2402 #endif
2403 		return;
2404 	}
2405 
2406 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
2407 #ifdef DEBUG
2408 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2409 			printf("asy%d: start writeq is null.\n",
2410 				UNIT(async->async_dev));
2411 #endif
2412 		return;	/* not attached to a stream */
2413 	}
2414 
2415 	for (;;) {
2416 		if ((bp = getq(q)) == NULL)
2417 			return;	/* no data to transmit */
2418 
2419 		/*
2420 		 * We have a message block to work on.
2421 		 * Check whether it's a break, a delay, or an ioctl (the latter
2422 		 * occurs if the ioctl in question was waiting for the output
2423 		 * to drain).  If it's one of those, process it immediately.
2424 		 */
2425 		switch (bp->b_datap->db_type) {
2426 
2427 		case M_BREAK:
2428 			/*
2429 			 * Set the break bit, and arrange for "async_restart"
2430 			 * to be called in 1/4 second; it will turn the
2431 			 * break bit off, and call "async_start" to grab
2432 			 * the next message.
2433 			 */
2434 			mutex_enter(asy->asy_excl_hi);
2435 			val = INB(LCR);
2436 			OUTB(LCR, (val | SETBREAK));
2437 			mutex_exit(asy->asy_excl_hi);
2438 			async->async_flags |= ASYNC_BREAK;
2439 			(void) timeout(async_restart, async, hz / 4);
2440 			freemsg(bp);
2441 			return;	/* wait for this to finish */
2442 
2443 		case M_DELAY:
2444 			/*
2445 			 * Arrange for "async_restart" to be called when the
2446 			 * delay expires; it will turn ASYNC_DELAY off,
2447 			 * and call "async_start" to grab the next message.
2448 			 */
2449 			(void) timeout(async_restart, async,
2450 				(clock_t)(*(unsigned char *)bp->b_rptr + 6));
2451 			async->async_flags |= ASYNC_DELAY;
2452 			freemsg(bp);
2453 			return;	/* wait for this to finish */
2454 
2455 		case M_IOCTL:
2456 			/*
2457 			 * This ioctl needs to wait for the output ahead of
2458 			 * it to drain.  Try to do it, and then either
2459 			 * redo the ioctl at a later time or grab the next
2460 			 * message after it.
2461 			 */
2462 
2463 			mutex_enter(asy->asy_excl_hi);
2464 			if (asy_isbusy(asy)) {
2465 				/*
2466 				 * Get the divisor by calculating the rate
2467 				 */
2468 				unsigned int rate;
2469 
2470 				mutex_exit(asy->asy_excl_hi);
2471 				rate = async->async_ttycommon.t_cflag & CBAUD;
2472 				if (async->async_ttycommon.t_cflag & CBAUDEXT)
2473 					rate += 16;
2474 				if (rate >= N_SU_SPEEDS || rate == B0) {
2475 					rate = B9600;
2476 				}
2477 
2478 				/*
2479 				 * We need to do a callback as the port will
2480 				 * be set to drain
2481 				 */
2482 				async->async_flags |= ASYNC_DRAINING;
2483 
2484 				/*
2485 				 * Put the message we just processed back onto
2486 				 * the end of the queue
2487 				 */
2488 				if (putq(q, bp) == 0)
2489 					freemsg(bp);
2490 
2491 				/*
2492 				 * We need to delay until the TSR and THR
2493 				 * have been exhausted.  We base the delay on
2494 				 * the amount of time it takes to transmit
2495 				 * 2 chars at the current baud rate in
2496 				 * microseconds.
2497 				 *
2498 				 * Therefore, the wait period is:
2499 				 *
2500 				 * (#TSR bits + #THR bits) *
2501 				 * 	1 MICROSEC / baud rate
2502 				 */
2503 				(void) timeout(async_restart, async,
2504 					drv_usectohz(16 * MICROSEC /
2505 						baudtable[rate]));
2506 				return;
2507 			}
2508 			mutex_exit(asy->asy_excl_hi);
2509 			mutex_exit(asy->asy_excl);
2510 			async_ioctl(async, q, bp, B_FALSE);
2511 			mutex_enter(asy->asy_excl);
2512 			continue;
2513 		}
2514 
2515 		while (bp != NULL && (cc = bp->b_wptr - bp->b_rptr) == 0) {
2516 			nbp = bp->b_cont;
2517 			freeb(bp);
2518 			bp = nbp;
2519 		}
2520 		if (bp != NULL)
2521 			break;
2522 	}
2523 
2524 	/*
2525 	 * We have data to transmit.  If output is stopped, put
2526 	 * it back and try again later.
2527 	 */
2528 	if (async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED)) {
2529 #ifdef DEBUG
2530 		if (asydebug & ASY_DEBUG_HFLOW &&
2531 					async->async_flags & ASYNC_HW_OUT_FLW)
2532 			printf("asy%d: output hflow in effect.\n",
2533 				UNIT(async->async_dev));
2534 #endif
2535 		mutex_exit(asy->asy_excl);
2536 		(void) putbq(q, bp);
2537 		/*
2538 		 * We entered the routine owning the lock, we need to
2539 		 * exit the routine owning the lock.
2540 		 */
2541 		mutex_enter(asy->asy_excl);
2542 		return;
2543 	}
2544 
2545 	async->async_xmitblk = bp;
2546 	xmit_addr = bp->b_rptr;
2547 	bp = bp->b_cont;
2548 	if (bp != NULL) {
2549 		mutex_exit(asy->asy_excl);
2550 		(void) putbq(q, bp);	/* not done with this message yet */
2551 		mutex_enter(asy->asy_excl);
2552 	}
2553 
2554 	/*
2555 	 * In 5-bit mode, the high order bits are used
2556 	 * to indicate character sizes less than five,
2557 	 * so we need to explicitly mask before transmitting
2558 	 */
2559 	if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
2560 		register unsigned char *p = xmit_addr;
2561 		register int cnt = cc;
2562 
2563 		while (cnt--)
2564 			*p++ &= (unsigned char) 0x1f;
2565 	}
2566 
2567 	/*
2568 	 * Set up this block for pseudo-DMA.
2569 	 */
2570 	mutex_enter(asy->asy_excl_hi);
2571 	async->async_optr = xmit_addr;
2572 	async->async_ocnt = cc;
2573 	/*
2574 	 * If the transmitter is ready, shove some
2575 	 * characters out.
2576 	 */
2577 	xmit_progress = 0;
2578 	while (fifo_len-- && async->async_ocnt) {
2579 		if (INB(LSR) & XHRE) {
2580 			OUTB(DAT, *async->async_optr++);
2581 			async->async_ocnt--;
2582 			xmit_progress++;
2583 		}
2584 	}
2585 	asy->asy_out_of_band_xmit = xmit_progress;
2586 	if (xmit_progress > 0)
2587 		async->async_flags |= ASYNC_PROGRESS;
2588 	async->async_flags |= ASYNC_BUSY;
2589 	mutex_exit(asy->asy_excl_hi);
2590 }
2591 
2592 /*
2593  * Resume output by poking the transmitter.
2594  */
2595 static void
2596 async_resume(struct asyncline *async)
2597 {
2598 	register struct asycom *asy = async->async_common;
2599 
2600 	ASSERT(mutex_owned(asy->asy_excl_hi));
2601 #ifdef DEBUG
2602 	if (asydebug & ASY_DEBUG_PROCS)
2603 		printf("resume\n");
2604 #endif
2605 
2606 	asycheckflowcontrol_hw(asy);
2607 
2608 	if (INB(LSR) & XHRE) {
2609 		if (asycheckflowcontrol_sw(asy)) {
2610 			return;
2611 		} else if (async->async_ocnt > 0) {
2612 			OUTB(DAT, *async->async_optr++);
2613 			async->async_ocnt--;
2614 			async->async_flags |= ASYNC_PROGRESS;
2615 		}
2616 	}
2617 }
2618 
2619 /*
2620  * Process an "ioctl" message sent down to us.
2621  * Note that we don't need to get any locks until we are ready to access
2622  * the hardware.  Nothing we access until then is going to be altered
2623  * outside of the STREAMS framework, so we should be safe.
2624  */
2625 static void
2626 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp, boolean_t iswput)
2627 {
2628 	register struct asycom *asy = async->async_common;
2629 	register tty_common_t  *tp = &async->async_ttycommon;
2630 	register struct iocblk *iocp;
2631 	register unsigned datasize;
2632 	size_t ioc_count;
2633 	mblk_t *datamp;
2634 	int error = 0;
2635 	uchar_t val, icr;
2636 #ifdef DEBUG
2637 	if (asydebug & ASY_DEBUG_PROCS)
2638 		printf("ioctl\n");
2639 #endif
2640 
2641 	if (tp->t_iocpending != NULL) {
2642 		/*
2643 		 * We were holding an "ioctl" response pending the
2644 		 * availability of an "mblk" to hold data to be passed up;
2645 		 * another "ioctl" came through, which means that "ioctl"
2646 		 * must have timed out or been aborted.
2647 		 */
2648 		freemsg(async->async_ttycommon.t_iocpending);
2649 		async->async_ttycommon.t_iocpending = NULL;
2650 	}
2651 
2652 	iocp = (struct iocblk *)mp->b_rptr;
2653 
2654 	/*
2655 	 * Save off the ioc count in case we need to restore it
2656 	 * because we are queuing a message block.
2657 	 */
2658 	ioc_count = iocp->ioc_count;
2659 
2660 	/*
2661 	 * For TIOCMGET, TIOCMBIC, TIOCMBIS, TIOCMSET, and PPS, do NOT call
2662 	 * ttycommon_ioctl() because this function frees up the message block
2663 	 * (mp->b_cont) that contains the address of the user variable where
2664 	 * we need to pass back the bit array.
2665 	 */
2666 	if (iocp->ioc_cmd == TIOCMGET ||
2667 		iocp->ioc_cmd == TIOCMBIC ||
2668 		iocp->ioc_cmd == TIOCMBIS ||
2669 		iocp->ioc_cmd == TIOCMSET ||
2670 		iocp->ioc_cmd == TIOCGPPS ||
2671 		iocp->ioc_cmd == TIOCSPPS ||
2672 		iocp->ioc_cmd == TIOCGPPSEV)
2673 		error = -1; /* Do Nothing */
2674 	else
2675 
2676 	/*
2677 	 * The only way in which "ttycommon_ioctl" can fail is if the "ioctl"
2678 	 * requires a response containing data to be returned to the user,
2679 	 * and no mblk could be allocated for the data.
2680 	 * No such "ioctl" alters our state.  Thus, we always go ahead and
2681 	 * do any state-changes the "ioctl" calls for.  If we couldn't allocate
2682 	 * the data, "ttycommon_ioctl" has stashed the "ioctl" away safely, so
2683 	 * we just call "bufcall" to request that we be called back when we
2684 	 * stand a better chance of allocating the data.
2685 	 */
2686 	if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
2687 		if (async->async_wbufcid)
2688 			unbufcall(async->async_wbufcid);
2689 		async->async_wbufcid = bufcall(datasize, BPRI_HI, async_reioctl,
2690 		    async);
2691 		return;
2692 	}
2693 
2694 	mutex_enter(asy->asy_excl);
2695 
2696 	if (error == 0) {
2697 		/*
2698 		 * "ttycommon_ioctl" did most of the work; we just use the
2699 		 * data it set up.
2700 		 */
2701 		switch (iocp->ioc_cmd) {
2702 
2703 		case TCSETS:
2704 			if (!(asy->asy_rsc_console || asy->asy_rsc_control ||
2705 			    asy->asy_lom_console)) {
2706 				mutex_enter(asy->asy_excl_hi);
2707 				error = asy_program(asy, ASY_NOINIT);
2708 				mutex_exit(asy->asy_excl_hi);
2709 			}
2710 			break;
2711 		case TCSETSF:
2712 		case TCSETSW:
2713 		case TCSETA:
2714 		case TCSETAW:
2715 		case TCSETAF:
2716 			if (!(asy->asy_rsc_console || asy->asy_rsc_control ||
2717 			    asy->asy_lom_console)) {
2718 				mutex_enter(asy->asy_excl_hi);
2719 				if (iswput && asy_isbusy(asy)) {
2720 					/*
2721 					 * ttycommon_ioctl sets the db_type to
2722 					 * M_IOCACK and ioc_count to zero
2723 					 * we need to undo this when we
2724 					 * queue a control message. This will
2725 					 * allow the control messages to be
2726 					 * processed again when the chip
2727 					 * becomes available.
2728 					 */
2729 					mp->b_datap->db_type = M_IOCTL;
2730 					iocp->ioc_count = ioc_count;
2731 
2732 					if (putq(wq, mp) == 0)
2733 						freemsg(mp);
2734 					mutex_exit(asy->asy_excl_hi);
2735 					mutex_exit(asy->asy_excl);
2736 					return;
2737 				}
2738 
2739 				/*
2740 				 * TCSETA, TCSETAW, and TCSETAF make use of
2741 				 * the termio structure and therefore have
2742 				 * no concept of any speed except what can
2743 				 * be represented by CBAUD. This is because
2744 				 * of legacy SVR4 code. Therefore, if we see
2745 				 * one of the aforementioned IOCTL commands
2746 				 * we should zero out CBAUDEXT, CIBAUD, and
2747 				 * CIBAUDEXT as to not break legacy
2748 				 * functionality. This is because CBAUDEXT,
2749 				 * CIBAUD, and CIBAUDEXT can't be stored in
2750 				 * an unsigned short. By zeroing out CBAUDEXT,
2751 				 * CIBAUD, and CIBAUDEXT in the t_cflag of the
2752 				 * termios structure asy_program() will set the
2753 				 * input baud rate to the output baud rate.
2754 				 */
2755 				if (iocp->ioc_cmd == TCSETA ||
2756 				    iocp->ioc_cmd == TCSETAW ||
2757 				    iocp->ioc_cmd == TCSETAF)
2758 					tp->t_cflag &= ~(CIBAUD |
2759 					    CIBAUDEXT | CBAUDEXT);
2760 
2761 				error = asy_program(asy, ASY_NOINIT);
2762 				mutex_exit(asy->asy_excl_hi);
2763 			}
2764 			break;
2765 		case TIOCSSOFTCAR:
2766 			/* Set the driver state appropriately */
2767 			mutex_enter(asy->asy_excl_hi);
2768 			if (tp->t_flags & TS_SOFTCAR)
2769 				asy->asy_flags |= ASY_IGNORE_CD;
2770 			else
2771 				asy->asy_flags &= ~ASY_IGNORE_CD;
2772 			mutex_exit(asy->asy_excl_hi);
2773 			break;
2774 		}
2775 	} else if (error < 0) {
2776 		/*
2777 		 * "ttycommon_ioctl" didn't do anything; we process it here.
2778 		 */
2779 		error = 0;
2780 		switch (iocp->ioc_cmd) {
2781 
2782 		case TIOCGPPS:
2783 			/*
2784 			 * Get PPS on/off.
2785 			 */
2786 			if (mp->b_cont != NULL)
2787 				freemsg(mp->b_cont);
2788 
2789 			mp->b_cont = allocb(sizeof (int), BPRI_HI);
2790 			if (mp->b_cont == NULL) {
2791 				error = ENOMEM;
2792 				break;
2793 			}
2794 			if (asy->asy_flags & ASY_PPS)
2795 				*(int *)mp->b_cont->b_wptr = 1;
2796 			else
2797 				*(int *)mp->b_cont->b_wptr = 0;
2798 			mp->b_cont->b_wptr += sizeof (int);
2799 			mp->b_datap->db_type = M_IOCACK;
2800 			iocp->ioc_count = sizeof (int);
2801 			break;
2802 
2803 		case TIOCSPPS:
2804 			/*
2805 			 * Set PPS on/off.
2806 			 */
2807 			error = miocpullup(mp, sizeof (int));
2808 			if (error != 0)
2809 				break;
2810 
2811 			mutex_enter(asy->asy_excl_hi);
2812 			if (*(int *)mp->b_cont->b_rptr)
2813 				asy->asy_flags |= ASY_PPS;
2814 			else
2815 				asy->asy_flags &= ~ASY_PPS;
2816 			/* Reset edge sense */
2817 			asy->asy_flags &= ~ASY_PPS_EDGE;
2818 			mutex_exit(asy->asy_excl_hi);
2819 			mp->b_datap->db_type = M_IOCACK;
2820 			break;
2821 
2822 		case TIOCGPPSEV: {
2823 			/*
2824 			 * Get PPS event data.
2825 			 */
2826 			mblk_t *bp;
2827 			void *buf;
2828 #ifdef _SYSCALL32_IMPL
2829 			struct ppsclockev32 p32;
2830 #endif
2831 			struct ppsclockev ppsclockev;
2832 
2833 			if (mp->b_cont != NULL) {
2834 				freemsg(mp->b_cont);
2835 				mp->b_cont = NULL;
2836 			}
2837 
2838 			if ((asy->asy_flags & ASY_PPS) == 0) {
2839 				error = ENXIO;
2840 				break;
2841 			}
2842 
2843 			/* Protect from incomplete asy_ppsev */
2844 			mutex_enter(asy->asy_excl_hi);
2845 			ppsclockev = asy_ppsev;
2846 			mutex_exit(asy->asy_excl_hi);
2847 
2848 #ifdef _SYSCALL32_IMPL
2849 			if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
2850 				TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
2851 				p32.serial = ppsclockev.serial;
2852 				buf = &p32;
2853 				iocp->ioc_count = sizeof (struct ppsclockev32);
2854 			} else
2855 #endif
2856 			{
2857 				buf = &ppsclockev;
2858 				iocp->ioc_count = sizeof (struct ppsclockev);
2859 			}
2860 
2861 			if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
2862 				error = ENOMEM;
2863 				break;
2864 			}
2865 			mp->b_cont = bp;
2866 
2867 			bcopy(buf, bp->b_wptr, iocp->ioc_count);
2868 			bp->b_wptr += iocp->ioc_count;
2869 			mp->b_datap->db_type = M_IOCACK;
2870 			break;
2871 		}
2872 
2873 		case TCSBRK:
2874 			error = miocpullup(mp, sizeof (int));
2875 			if (error != 0)
2876 				break;
2877 
2878 			mutex_enter(asy->asy_excl_hi);
2879 			if (*(int *)mp->b_cont->b_rptr == 0) {
2880 				/*
2881 				 * Get the divisor by calculating the rate
2882 				 */
2883 				unsigned int rate, divisor;
2884 				rate = async->async_ttycommon.t_cflag & CBAUD;
2885 				if (async->async_ttycommon.t_cflag & CBAUDEXT)
2886 					rate += 16;
2887 				if (rate >= N_SU_SPEEDS) rate = B9600;
2888 				divisor = asyspdtab[rate] & 0xfff;
2889 
2890 				/*
2891 				 * To ensure that erroneous characters are
2892 				 * not sent out when the break is set, SB
2893 				 * recommends three steps:
2894 				 *
2895 				 * 1) pad the TSR with 0 bits
2896 				 * 2) When the TSR is full, set break
2897 				 * 3) When the TSR has been flushed, unset
2898 				 *    the break when transmission must be
2899 				 *    restored.
2900 				 *
2901 				 * We loop until the TSR is empty and then
2902 				 * set the break.  ASYNC_BREAK has been set
2903 				 * to ensure that no characters are
2904 				 * transmitted while the TSR is being
2905 				 * flushed and SOUT is being used for the
2906 				 * break signal.
2907 				 *
2908 				 * The wait period is equal to
2909 				 * clock / (baud * 16) * 16 * 2.
2910 				 */
2911 				async->async_flags |= ASYNC_BREAK;
2912 				while ((INB(LSR) & XSRE) == 0) {
2913 					mutex_exit(asy->asy_excl_hi);
2914 					mutex_exit(asy->asy_excl);
2915 					drv_usecwait(32*divisor);
2916 					mutex_enter(asy->asy_excl);
2917 					mutex_enter(asy->asy_excl_hi);
2918 				}
2919 
2920 				/*
2921 				 * Set the break bit, and arrange for
2922 				 * "async_restart" to be called in 1/4 second;
2923 				 * it will turn the break bit off, and call
2924 				 * "async_start" to grab the next message.
2925 				 */
2926 				val = INB(LCR);
2927 				OUTB(LCR, (val | SETBREAK));
2928 				mutex_exit(asy->asy_excl_hi);
2929 				(void) timeout(async_restart, async, hz / 4);
2930 			} else {
2931 #ifdef DEBUG
2932 				if (asydebug & ASY_DEBUG_CLOSE)
2933 					printf("asy%d: wait for flush.\n",
2934 					UNIT(async->async_dev));
2935 #endif
2936 				if (iswput && asy_isbusy(asy)) {
2937 					if (putq(wq, mp) == 0)
2938 						freemsg(mp);
2939 					mutex_exit(asy->asy_excl_hi);
2940 					mutex_exit(asy->asy_excl);
2941 					return;
2942 				}
2943 				mutex_exit(asy->asy_excl_hi);
2944 #ifdef DEBUG
2945 				if (asydebug & ASY_DEBUG_CLOSE)
2946 					printf("asy%d: ldterm satisfied.\n",
2947 					UNIT(async->async_dev));
2948 #endif
2949 			}
2950 			break;
2951 
2952 		case TIOCSBRK:
2953 			mutex_enter(asy->asy_excl_hi);
2954 			val = INB(LCR);
2955 			OUTB(LCR, (val | SETBREAK));
2956 			mutex_exit(asy->asy_excl_hi);
2957 			mutex_exit(asy->asy_excl);
2958 			miocack(wq, mp, 0, 0);
2959 			return;
2960 
2961 		case TIOCCBRK:
2962 			mutex_enter(asy->asy_excl_hi);
2963 			val = INB(LCR);
2964 			OUTB(LCR, (val & ~SETBREAK));
2965 			mutex_exit(asy->asy_excl_hi);
2966 			mutex_exit(asy->asy_excl);
2967 			miocack(wq, mp, 0, 0);
2968 			return;
2969 
2970 		case TIOCMSET:
2971 		case TIOCMBIS:
2972 		case TIOCMBIC:
2973 			if (iocp->ioc_count == TRANSPARENT)
2974 				mcopyin(mp, NULL, sizeof (int), NULL);
2975 			else {
2976 				error = miocpullup(mp, sizeof (int));
2977 				if (error != 0)
2978 					break;
2979 
2980 				mutex_enter(asy->asy_excl_hi);
2981 
2982 				(void) asymctl(asy,
2983 					dmtoasy(*(int *)mp->b_cont->b_rptr),
2984 					iocp->ioc_cmd);
2985 
2986 				mutex_exit(asy->asy_excl_hi);
2987 				iocp->ioc_error = 0;
2988 				mp->b_datap->db_type = M_IOCACK;
2989 			}
2990 			break;
2991 
2992 		case TIOCSILOOP:
2993 			mutex_enter(asy->asy_excl_hi);
2994 			/*
2995 			 * If somebody misues this Ioctl when used for
2996 			 * driving keyboard and mouse indicate not supported
2997 			 */
2998 			if ((asy->asy_device_type == ASY_KEYBOARD) ||
2999 				(asy->asy_device_type == ASY_MOUSE)) {
3000 				mutex_exit(asy->asy_excl_hi);
3001 				error = ENOTTY;
3002 				break;
3003 			}
3004 
3005 			/* should not use when we're the console */
3006 			if ((async->async_dev == kbddev) ||
3007 			    (async->async_dev == rconsdev) ||
3008 			    (async->async_dev == stdindev)) {
3009 				mutex_exit(asy->asy_excl_hi);
3010 				error = EINVAL;
3011 				break;
3012 			}
3013 
3014 			val = INB(MCR);
3015 			icr = INB(ICR);
3016 			/*
3017 			 * Disable the Modem Status Interrupt
3018 			 * The reason for disabling is  the status of
3019 			 * modem signal are in the higher 4 bits instead of
3020 			 * lower four bits when in loopback mode,
3021 			 * so, donot worry about Modem interrupt when
3022 			 * you are planning to set
3023 			 * this in loopback mode until it is cleared by
3024 			 * another ioctl to get out of the loopback mode
3025 			 */
3026 			OUTB(ICR, icr & ~ MIEN);
3027 			OUTB(MCR, val | ASY_LOOP);
3028 			mutex_exit(asy->asy_excl_hi);
3029 			iocp->ioc_error = 0;
3030 			mp->b_datap->db_type = M_IOCACK;
3031 			break;
3032 
3033 		case TIOCMGET:
3034 			datamp = allocb(sizeof (int), BPRI_MED);
3035 			if (datamp == NULL) {
3036 				error = EAGAIN;
3037 				break;
3038 			}
3039 
3040 			mutex_enter(asy->asy_excl_hi);
3041 			*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
3042 			mutex_exit(asy->asy_excl_hi);
3043 
3044 			if (iocp->ioc_count == TRANSPARENT) {
3045 				mcopyout(mp, NULL, sizeof (int), NULL, datamp);
3046 			} else {
3047 				if (mp->b_cont != NULL)
3048 					freemsg(mp->b_cont);
3049 				mp->b_cont = datamp;
3050 				mp->b_cont->b_wptr += sizeof (int);
3051 				mp->b_datap->db_type = M_IOCACK;
3052 				iocp->ioc_count = sizeof (int);
3053 			}
3054 			break;
3055 
3056 		default: /* unexpected ioctl type */
3057 			/*
3058 			 * If we don't understand it, it's an error.  NAK it.
3059 			 */
3060 			error = EINVAL;
3061 			break;
3062 		}
3063 	}
3064 	if (error != 0) {
3065 		iocp->ioc_error = error;
3066 		mp->b_datap->db_type = M_IOCNAK;
3067 	}
3068 	mutex_exit(asy->asy_excl);
3069 	qreply(wq, mp);
3070 }
3071 
3072 static void
3073 asyrsrv(queue_t *q)
3074 {
3075 	mblk_t *bp;
3076 	struct asyncline *async;
3077 
3078 	async = (struct asyncline *)q->q_ptr;
3079 
3080 	while (canputnext(q) && (bp = getq(q)))
3081 		putnext(q, bp);
3082 	ASYSETSOFT(async->async_common);
3083 	async->async_polltid = 0;
3084 }
3085 
3086 /*
3087  * Put procedure for write queue.
3088  * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
3089  * set the flow control character for M_STOPI and M_STARTI messages;
3090  * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
3091  * by the start routine, and then call the start routine; discard
3092  * everything else.  Note that this driver does not incorporate any
3093  * mechanism to negotiate to handle the canonicalization process.
3094  * It expects that these functions are handled in upper module(s),
3095  * as we do in ldterm.
3096  */
3097 static void
3098 asywput(queue_t *q, mblk_t *mp)
3099 {
3100 	register struct asyncline *async;
3101 	register struct asycom *asy;
3102 	int error;
3103 
3104 	async = (struct asyncline *)q->q_ptr;
3105 	asy = async->async_common;
3106 
3107 	switch (mp->b_datap->db_type) {
3108 
3109 	case M_STOP:
3110 		/*
3111 		 * Since we don't do real DMA, we can just let the
3112 		 * chip coast to a stop after applying the brakes.
3113 		 */
3114 		mutex_enter(asy->asy_excl);
3115 		async->async_flags |= ASYNC_STOPPED;
3116 		mutex_exit(asy->asy_excl);
3117 		freemsg(mp);
3118 		break;
3119 
3120 	case M_START:
3121 		mutex_enter(asy->asy_excl);
3122 		if (async->async_flags & ASYNC_STOPPED) {
3123 			async->async_flags &= ~ASYNC_STOPPED;
3124 			/*
3125 			 * If an output operation is in progress,
3126 			 * resume it.  Otherwise, prod the start
3127 			 * routine.
3128 			 */
3129 			if (async->async_ocnt > 0) {
3130 				mutex_enter(asy->asy_excl_hi);
3131 				async_resume(async);
3132 				mutex_exit(asy->asy_excl_hi);
3133 			} else {
3134 				async_start(async);
3135 			}
3136 		}
3137 		mutex_exit(asy->asy_excl);
3138 		freemsg(mp);
3139 		break;
3140 
3141 	case M_IOCTL:
3142 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
3143 
3144 		case TCSBRK:
3145 			error = miocpullup(mp, sizeof (int));
3146 			if (error != 0) {
3147 				miocnak(q, mp, 0, error);
3148 				return;
3149 			}
3150 
3151 			if (*(int *)mp->b_cont->b_rptr != 0) {
3152 #ifdef DEBUG
3153 				if (asydebug & ASY_DEBUG_CLOSE)
3154 					printf("asy%d: flush request.\n",
3155 					    UNIT(async->async_dev));
3156 #endif
3157 				(void) putq(q, mp);
3158 				mutex_enter(asy->asy_excl);
3159 				async_nstart(async, 1);
3160 				mutex_exit(asy->asy_excl);
3161 				break;
3162 			}
3163 			/*FALLTHROUGH*/
3164 		case TCSETSW:
3165 		case TCSETSF:
3166 		case TCSETAW:
3167 		case TCSETAF:
3168 			/*
3169 			 * The changes do not take effect until all
3170 			 * output queued before them is drained.
3171 			 * Put this message on the queue, so that
3172 			 * "async_start" will see it when it's done
3173 			 * with the output before it.  Poke the
3174 			 * start routine, just in case.
3175 			 */
3176 			(void) putq(q, mp);
3177 			mutex_enter(asy->asy_excl);
3178 			async_start(async);
3179 			mutex_exit(asy->asy_excl);
3180 			break;
3181 
3182 		default:
3183 			/*
3184 			 * Do it now.
3185 			 */
3186 			async_ioctl(async, q, mp, B_TRUE);
3187 			break;
3188 		}
3189 		break;
3190 
3191 	case M_FLUSH:
3192 		if (*mp->b_rptr & FLUSHW) {
3193 			mutex_enter(asy->asy_excl);
3194 
3195 			/*
3196 			 * Abort any output in progress.
3197 			 */
3198 			mutex_enter(asy->asy_excl_hi);
3199 			if (async->async_flags & ASYNC_BUSY) {
3200 				async->async_ocnt = 0;
3201 				async->async_flags &= ~ASYNC_BUSY;
3202 			}
3203 			mutex_exit(asy->asy_excl_hi);
3204 
3205 			/* Flush FIFO buffers */
3206 			if (asy->asy_use_fifo == FIFO_ON) {
3207 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH |
3208 				    (asy->asy_trig_level & 0xff));
3209 			}
3210 
3211 			/*
3212 			 * Flush our write queue.
3213 			 */
3214 			flushq(q, FLUSHDATA);	/* XXX doesn't flush M_DELAY */
3215 			if (async->async_xmitblk != NULL) {
3216 				freeb(async->async_xmitblk);
3217 				async->async_xmitblk = NULL;
3218 			}
3219 
3220 			mutex_exit(asy->asy_excl);
3221 			*mp->b_rptr &= ~FLUSHW;	/* it has been flushed */
3222 		}
3223 		if (*mp->b_rptr & FLUSHR) {
3224 			/* Flush FIFO buffers */
3225 			if (asy->asy_use_fifo == FIFO_ON) {
3226 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH |
3227 				    (asy->asy_trig_level & 0xff));
3228 			}
3229 			flushq(RD(q), FLUSHDATA);
3230 			qreply(q, mp);	/* give the read queues a crack at it */
3231 		} else {
3232 			freemsg(mp);
3233 		}
3234 
3235 		/*
3236 		 * We must make sure we process messages that survive the
3237 		 * write-side flush.  Without this call, the close protocol
3238 		 * with ldterm can hang forever.  (ldterm will have sent us a
3239 		 * TCSBRK ioctl that it expects a response to.)
3240 		 */
3241 		mutex_enter(asy->asy_excl);
3242 		async_start(async);
3243 		mutex_exit(asy->asy_excl);
3244 		break;
3245 	case M_BREAK:
3246 	case M_DELAY:
3247 	case M_DATA:
3248 		/*
3249 		 * Queue the message up to be transmitted,
3250 		 * and poke the start routine.
3251 		 */
3252 		(void) putq(q, mp);
3253 		mutex_enter(asy->asy_excl);
3254 		async_start(async);
3255 		mutex_exit(asy->asy_excl);
3256 		break;
3257 
3258 	case M_STOPI:
3259 		mutex_enter(asy->asy_excl);
3260 		async->async_flowc = async->async_stopc;
3261 		async_start(async);		/* poke the start routine */
3262 		mutex_exit(asy->asy_excl);
3263 		freemsg(mp);
3264 		break;
3265 
3266 	case M_STARTI:
3267 		mutex_enter(asy->asy_excl);
3268 		async->async_flowc = async->async_startc;
3269 		async_start(async);		/* poke the start routine */
3270 		mutex_exit(asy->asy_excl);
3271 		freemsg(mp);
3272 		break;
3273 
3274 	case M_CTL:
3275 		if (MBLKL(mp) >= sizeof (struct iocblk) &&
3276 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
3277 			((struct iocblk *)mp->b_rptr)->ioc_cmd = MC_HAS_POSIX;
3278 			qreply(q, mp);
3279 		} else {
3280 			/*
3281 			 * These MC_SERVICE type messages are used by upper
3282 			 * modules to tell this driver to send input up
3283 			 * immediately, or that it can wait for normal
3284 			 * processing that may or may not be done.  Sun
3285 			 * requires these for the mouse module.
3286 			 * (XXX - for x86?)
3287 			 */
3288 			mutex_enter(asy->asy_excl);
3289 			switch (*mp->b_rptr) {
3290 
3291 			case MC_SERVICEIMM:
3292 				async->async_flags |= ASYNC_SERVICEIMM;
3293 				break;
3294 
3295 			case MC_SERVICEDEF:
3296 				async->async_flags &= ~ASYNC_SERVICEIMM;
3297 				break;
3298 			}
3299 			mutex_exit(asy->asy_excl);
3300 			freemsg(mp);
3301 		}
3302 		break;
3303 
3304 	case M_IOCDATA:
3305 		async_iocdata(q, mp);
3306 		break;
3307 
3308 	default:
3309 		freemsg(mp);
3310 		break;
3311 	}
3312 }
3313 
3314 /*
3315  * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
3316  * the buffer we need.
3317  */
3318 static void
3319 async_reioctl(void *arg)
3320 {
3321 	struct asyncline *async = arg;
3322 	struct asycom *asy = async->async_common;
3323 	queue_t	*q;
3324 	mblk_t		*mp;
3325 
3326 	/*
3327 	 * The bufcall is no longer pending.
3328 	 */
3329 	mutex_enter(asy->asy_excl);
3330 	async->async_wbufcid = 0;
3331 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
3332 		mutex_exit(asy->asy_excl);
3333 		return;
3334 	}
3335 	if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
3336 		/* not pending any more */
3337 		async->async_ttycommon.t_iocpending = NULL;
3338 		mutex_exit(asy->asy_excl);
3339 		/* not in STREAMS queue; we no longer know if we're in wput */
3340 		async_ioctl(async, q, mp, B_TRUE);
3341 	} else
3342 		mutex_exit(asy->asy_excl);
3343 }
3344 
3345 static void
3346 async_iocdata(queue_t *q, mblk_t *mp)
3347 {
3348 	struct asyncline	*async = (struct asyncline *)q->q_ptr;
3349 	struct asycom		*asy;
3350 	struct copyresp *csp;
3351 
3352 	asy = async->async_common;
3353 	csp = (struct copyresp *)mp->b_rptr;
3354 
3355 	if (csp->cp_rval != 0) {
3356 		freemsg(mp);
3357 		return;
3358 	}
3359 
3360 	mutex_enter(asy->asy_excl);
3361 
3362 	switch (csp->cp_cmd) {
3363 	case TIOCMSET:
3364 	case TIOCMBIS:
3365 	case TIOCMBIC:
3366 		if (mp->b_cont == NULL) {
3367 			mutex_exit(asy->asy_excl);
3368 			miocnak(q, mp, 0, EINVAL);
3369 			break;
3370 		}
3371 
3372 		mutex_enter(asy->asy_excl_hi);
3373 		(void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr),
3374 			csp->cp_cmd);
3375 		mutex_exit(asy->asy_excl_hi);
3376 
3377 		freemsg(mp->b_cont);
3378 		mp->b_cont = NULL;
3379 		mutex_exit(asy->asy_excl);
3380 		miocack(q, mp, 0, 0);
3381 		break;
3382 
3383 	case TIOCMGET:
3384 		if (mp->b_cont != NULL) {
3385 			freemsg(mp->b_cont);
3386 			mp->b_cont = NULL;
3387 		}
3388 		mutex_exit(asy->asy_excl);
3389 		miocack(q, mp, 0, 0);
3390 		break;
3391 
3392 	default:
3393 		mutex_exit(asy->asy_excl);
3394 		miocnak(q, mp, 0, EINVAL);
3395 		break;
3396 	}
3397 }
3398 
3399 
3400 /*
3401  * Set or get the modem control status.
3402  */
3403 static int
3404 asymctl(struct asycom *asy, int bits, int how)
3405 {
3406 	register int mcr_r, msr_r;
3407 
3408 	ASSERT(mutex_owned(asy->asy_excl_hi));
3409 	ASSERT(mutex_owned(asy->asy_excl));
3410 
3411 	/* Read Modem Control Registers */
3412 	mcr_r = INB(MCR);
3413 
3414 	switch (how) {
3415 
3416 	case TIOCMSET:
3417 		mcr_r = bits;
3418 		break;
3419 
3420 	case TIOCMBIS:
3421 		mcr_r |= bits;			/* Set bits from input	*/
3422 		break;
3423 
3424 	case TIOCMBIC:
3425 		mcr_r &= ~bits;			/* Set ~bits from input	*/
3426 		break;
3427 
3428 	case TIOCMGET:
3429 		/* Read Modem Status Registers */
3430 		if (INB(ICR) & MIEN)
3431 			msr_r = asy->asy_cached_msr;
3432 		else
3433 			msr_r = INB(MSR);
3434 		return (asytodm(mcr_r, msr_r));
3435 	}
3436 
3437 	OUTB(MCR, mcr_r);
3438 
3439 	return (mcr_r);
3440 }
3441 
3442 static int
3443 asytodm(int mcr_r, int msr_r)
3444 {
3445 	register int b = 0;
3446 
3447 
3448 	/* MCR registers */
3449 	if (mcr_r & RTS)
3450 		b |= TIOCM_RTS;
3451 
3452 	if (mcr_r & DTR)
3453 		b |= TIOCM_DTR;
3454 
3455 	/* MSR registers */
3456 	if (msr_r & DCD)
3457 		b |= TIOCM_CAR;
3458 
3459 	if (msr_r & CTS)
3460 		b |= TIOCM_CTS;
3461 
3462 	if (msr_r & DSR)
3463 		b |= TIOCM_DSR;
3464 
3465 	if (msr_r & RI)
3466 		b |= TIOCM_RNG;
3467 
3468 	return (b);
3469 }
3470 
3471 static int
3472 dmtoasy(int bits)
3473 {
3474 	register int b = 0;
3475 
3476 #ifdef	CAN_NOT_SET	/* only DTR and RTS can be set */
3477 	if (bits & TIOCM_CAR)
3478 		b |= DCD;
3479 	if (bits & TIOCM_CTS)
3480 		b |= CTS;
3481 	if (bits & TIOCM_DSR)
3482 		b |= DSR;
3483 	if (bits & TIOCM_RNG)
3484 		b |= RI;
3485 #endif
3486 
3487 	if (bits & TIOCM_RTS)
3488 		b |= RTS;
3489 	if (bits & TIOCM_DTR)
3490 		b |= DTR;
3491 
3492 	return (b);
3493 }
3494 
3495 static void
3496 asycheckflowcontrol_hw(struct asycom *asy)
3497 {
3498 	struct asyncline *async;
3499 	uchar_t	mcr, flag;
3500 
3501 	ASSERT(mutex_owned(asy->asy_excl_hi));
3502 
3503 	async = (struct asyncline *)asy->asy_priv;
3504 	ASSERT(async != NULL);
3505 
3506 	if (async->async_ttycommon.t_cflag & CRTSXOFF) {
3507 		mcr = INB(MCR);
3508 		flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
3509 		if (((mcr ^ flag) & RTS) != 0) {
3510 			OUTB(MCR, (mcr ^ RTS));
3511 		}
3512 	}
3513 }
3514 
3515 static boolean_t
3516 asycheckflowcontrol_sw(struct asycom *asy)
3517 {
3518 	uchar_t		ss;
3519 	struct asyncline *async;
3520 	int rval = B_FALSE;
3521 
3522 	ASSERT(mutex_owned(asy->asy_excl_hi));
3523 
3524 	async = (struct asyncline *)asy->asy_priv;
3525 	ASSERT(async != NULL);
3526 
3527 	if ((ss = async->async_flowc) != '\0' && (INB(LSR) & XHRE)) {
3528 		/*
3529 		 * If we get this far, then we know that flowc is non-zero and
3530 		 * that there's transmit room available.  We've "handled" the
3531 		 * request now, so clear it.  If the user didn't ask for IXOFF,
3532 		 * then don't actually send anything, but wait for the next
3533 		 * opportunity.
3534 		 */
3535 		async->async_flowc = '\0';
3536 		if (async->async_ttycommon.t_iflag & IXOFF) {
3537 			async->async_flags |= ASYNC_BUSY;
3538 			OUTB(DAT, ss);
3539 			rval = B_TRUE;
3540 		}
3541 	}
3542 
3543 	return (rval);
3544 }
3545 
3546 /*
3547  * Check for abort character sequence
3548  */
3549 static boolean_t
3550 abort_charseq_recognize(uchar_t ch)
3551 {
3552 	static int state = 0;
3553 #define	CNTRL(c) ((c)&037)
3554 	static char sequence[] = { '\r', '~', CNTRL('b') };
3555 
3556 	if (ch == sequence[state]) {
3557 		if (++state >= sizeof (sequence)) {
3558 			state = 0;
3559 			return (B_TRUE);
3560 		}
3561 	} else {
3562 		state = (ch == sequence[0]) ? 1 : 0;
3563 	}
3564 	return (B_FALSE);
3565 }
3566