xref: /titanic_44/usr/src/uts/sparc/v9/vm/seg_nf.c (revision 3f7d54a6b84904c8f4d8daa4c7b577bede7df8b9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 #pragma ident	"%Z%%M%	%I%	%E% SMI"
35 
36 /*
37  * VM - segment for non-faulting loads.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/t_lock.h>
42 #include <sys/param.h>
43 #include <sys/mman.h>
44 #include <sys/errno.h>
45 #include <sys/kmem.h>
46 #include <sys/cmn_err.h>
47 #include <sys/vnode.h>
48 #include <sys/proc.h>
49 #include <sys/conf.h>
50 #include <sys/debug.h>
51 #include <sys/archsystm.h>
52 #include <sys/lgrp.h>
53 
54 #include <vm/page.h>
55 #include <vm/hat.h>
56 #include <vm/as.h>
57 #include <vm/seg.h>
58 #include <vm/vpage.h>
59 
60 /*
61  * Private seg op routines.
62  */
63 static int	segnf_dup(struct seg *seg, struct seg *newseg);
64 static int	segnf_unmap(struct seg *seg, caddr_t addr, size_t len);
65 static void	segnf_free(struct seg *seg);
66 static faultcode_t segnf_nomap(void);
67 static int	segnf_setprot(struct seg *seg, caddr_t addr,
68 		    size_t len, uint_t prot);
69 static int	segnf_checkprot(struct seg *seg, caddr_t addr,
70 		    size_t len, uint_t prot);
71 static void	segnf_badop(void);
72 static int	segnf_nop(void);
73 static int	segnf_getprot(struct seg *seg, caddr_t addr,
74 		    size_t len, uint_t *protv);
75 static u_offset_t segnf_getoffset(struct seg *seg, caddr_t addr);
76 static int	segnf_gettype(struct seg *seg, caddr_t addr);
77 static int	segnf_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
78 static void	segnf_dump(struct seg *seg);
79 static int	segnf_pagelock(struct seg *seg, caddr_t addr, size_t len,
80 		    struct page ***ppp, enum lock_type type, enum seg_rw rw);
81 static int	segnf_setpagesize(struct seg *seg, caddr_t addr, size_t len,
82 		    uint_t szc);
83 static int	segnf_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp);
84 static lgrp_mem_policy_info_t	*segnf_getpolicy(struct seg *seg,
85     caddr_t addr);
86 
87 
88 struct seg_ops segnf_ops = {
89 	segnf_dup,
90 	segnf_unmap,
91 	segnf_free,
92 	(faultcode_t (*)(struct hat *, struct seg *, caddr_t, size_t,
93 	    enum fault_type, enum seg_rw))
94 		segnf_nomap,		/* fault */
95 	(faultcode_t (*)(struct seg *, caddr_t))
96 		segnf_nomap,		/* faulta */
97 	segnf_setprot,
98 	segnf_checkprot,
99 	(int (*)())segnf_badop,		/* kluster */
100 	(size_t (*)(struct seg *))NULL,	/* swapout */
101 	(int (*)(struct seg *, caddr_t, size_t, int, uint_t))
102 		segnf_nop,		/* sync */
103 	(size_t (*)(struct seg *, caddr_t, size_t, char *))
104 		segnf_nop,		/* incore */
105 	(int (*)(struct seg *, caddr_t, size_t, int, int, ulong_t *, size_t))
106 		segnf_nop,		/* lockop */
107 	segnf_getprot,
108 	segnf_getoffset,
109 	segnf_gettype,
110 	segnf_getvp,
111 	(int (*)(struct seg *, caddr_t, size_t, uint_t))
112 		segnf_nop,		/* advise */
113 	segnf_dump,
114 	segnf_pagelock,
115 	segnf_setpagesize,
116 	segnf_getmemid,
117 	segnf_getpolicy,
118 };
119 
120 /*
121  * vnode and page for the page of zeros we use for the nf mappings.
122  */
123 static kmutex_t segnf_lock;
124 static struct vnode nfvp;
125 static struct page **nfpp;
126 
127 #define	addr_to_vcolor(addr)                                            \
128 	(shm_alignment) ?						\
129 	((int)(((uintptr_t)(addr) & (shm_alignment - 1)) >> PAGESHIFT)) : 0
130 
131 /*
132  * We try to limit the number of Non-fault segments created.
133  * Non fault segments are created to optimize sparc V9 code which uses
134  * the sparc nonfaulting load ASI (ASI_PRIMARY_NOFAULT).
135  *
136  * There are several reasons why creating too many non-fault segments
137  * could cause problems.
138  *
139  * 	First, excessive allocation of kernel resources for the seg
140  *	structures and the HAT data to map the zero pages.
141  *
142  * 	Secondly, creating nofault segments actually uses up user virtual
143  * 	address space. This makes it unavailable for subsequent mmap(0, ...)
144  *	calls which use as_gap() to find empty va regions.  Creation of too
145  *	many nofault segments could thus interfere with the ability of the
146  *	runtime linker to load a shared object.
147  */
148 #define	MAXSEGFORNF	(10000)
149 #define	MAXNFSEARCH	(5)
150 
151 
152 /*
153  * Must be called from startup()
154  */
155 void
156 segnf_init()
157 {
158 	mutex_init(&segnf_lock, NULL, MUTEX_DEFAULT, NULL);
159 }
160 
161 
162 /*
163  * Create a no-fault segment.
164  *
165  * The no-fault segment is not technically necessary, as the code in
166  * nfload() in trap.c will emulate the SPARC instruction and load
167  * a value of zero in the destination register.
168  *
169  * However, this code tries to put a page of zero's at the nofault address
170  * so that subsequent non-faulting loads to the same page will not
171  * trap with a tlb miss.
172  *
173  * In order to help limit the number of segments we merge adjacent nofault
174  * segments into a single segment.  If we get a large number of segments
175  * we'll also try to delete a random other nf segment.
176  */
177 /* ARGSUSED */
178 int
179 segnf_create(struct seg *seg, void *argsp)
180 {
181 	uint_t prot;
182 	pgcnt_t	vacpgs;
183 	u_offset_t off = 0;
184 	caddr_t	vaddr = NULL;
185 	int i, color;
186 	struct seg *s1;
187 	struct seg *s2;
188 	size_t size;
189 	struct as *as = seg->s_as;
190 
191 	ASSERT(as && AS_WRITE_HELD(as, &as->a_lock));
192 
193 	/*
194 	 * Need a page per virtual color or just 1 if no vac.
195 	 */
196 	mutex_enter(&segnf_lock);
197 	if (nfpp == NULL) {
198 		struct seg kseg;
199 
200 		vacpgs = 1;
201 		if (shm_alignment > PAGESIZE) {
202 			vacpgs = shm_alignment >> PAGESHIFT;
203 		}
204 
205 		nfpp = kmem_alloc(sizeof (*nfpp) * vacpgs, KM_SLEEP);
206 
207 		kseg.s_as = &kas;
208 		for (i = 0; i < vacpgs; i++, off += PAGESIZE,
209 		    vaddr += PAGESIZE) {
210 			nfpp[i] = page_create_va(&nfvp, off, PAGESIZE,
211 			    PG_WAIT | PG_NORELOC, &kseg, vaddr);
212 			page_io_unlock(nfpp[i]);
213 			page_downgrade(nfpp[i]);
214 			pagezero(nfpp[i], 0, PAGESIZE);
215 		}
216 	}
217 	mutex_exit(&segnf_lock);
218 
219 	hat_map(as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
220 
221 	/*
222 	 * s_data can't be NULL because of ASSERTS in the common vm code.
223 	 */
224 	seg->s_ops = &segnf_ops;
225 	seg->s_data = seg;
226 	seg->s_flags |= S_PURGE;
227 
228 	mutex_enter(&as->a_contents);
229 	as->a_flags |= AS_NEEDSPURGE;
230 	mutex_exit(&as->a_contents);
231 
232 	prot = PROT_READ;
233 	color = addr_to_vcolor(seg->s_base);
234 	if (as != &kas)
235 		prot |= PROT_USER;
236 	hat_memload(as->a_hat, seg->s_base, nfpp[color],
237 	    prot | HAT_NOFAULT, HAT_LOAD);
238 
239 	/*
240 	 * At this point see if we can concatenate a segment to
241 	 * a non-fault segment immediately before and/or after it.
242 	 */
243 	if ((s1 = AS_SEGPREV(as, seg)) != NULL &&
244 	    s1->s_ops == &segnf_ops &&
245 	    s1->s_base + s1->s_size == seg->s_base) {
246 		size = s1->s_size;
247 		seg_free(s1);
248 		seg->s_base -= size;
249 		seg->s_size += size;
250 	}
251 
252 	if ((s2 = AS_SEGNEXT(as, seg)) != NULL &&
253 	    s2->s_ops == &segnf_ops &&
254 	    seg->s_base + seg->s_size == s2->s_base) {
255 		size = s2->s_size;
256 		seg_free(s2);
257 		seg->s_size += size;
258 	}
259 
260 	/*
261 	 * if we already have a lot of segments, try to delete some other
262 	 * nofault segment to reduce the probability of uncontrolled segment
263 	 * creation.
264 	 *
265 	 * the code looks around quickly (no more than MAXNFSEARCH segments
266 	 * each way) for another NF segment and then deletes it.
267 	 */
268 	if (avl_numnodes(&as->a_segtree) > MAXSEGFORNF) {
269 		size = 0;
270 		s2 = NULL;
271 		s1 = AS_SEGPREV(as, seg);
272 		while (size++ < MAXNFSEARCH && s1 != NULL) {
273 			if (s1->s_ops == &segnf_ops)
274 				s2 = s1;
275 			s1 = AS_SEGPREV(s1->s_as, seg);
276 		}
277 		if (s2 == NULL) {
278 			s1 = AS_SEGNEXT(as, seg);
279 			while (size-- > 0 && s1 != NULL) {
280 				if (s1->s_ops == &segnf_ops)
281 					s2 = s1;
282 				s1 = AS_SEGNEXT(as, seg);
283 			}
284 		}
285 		if (s2 != NULL)
286 			seg_unmap(s2);
287 	}
288 
289 	return (0);
290 }
291 
292 /*
293  * Never really need "No fault" segments, so they aren't dup'd.
294  */
295 /* ARGSUSED */
296 static int
297 segnf_dup(struct seg *seg, struct seg *newseg)
298 {
299 	panic("segnf_dup");
300 	return (0);
301 }
302 
303 /*
304  * Split a segment at addr for length len.
305  */
306 static int
307 segnf_unmap(struct seg *seg, caddr_t addr, size_t len)
308 {
309 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
310 
311 	/*
312 	 * Check for bad sizes.
313 	 */
314 	if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
315 	    (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
316 		cmn_err(CE_PANIC, "segnf_unmap: bad unmap size");
317 	}
318 
319 	/*
320 	 * Unload any hardware translations in the range to be taken out.
321 	 */
322 	hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD_UNMAP);
323 
324 	if (addr == seg->s_base && len == seg->s_size) {
325 		/*
326 		 * Freeing entire segment.
327 		 */
328 		seg_free(seg);
329 	} else if (addr == seg->s_base) {
330 		/*
331 		 * Freeing the beginning of the segment.
332 		 */
333 		seg->s_base += len;
334 		seg->s_size -= len;
335 	} else if (addr + len == seg->s_base + seg->s_size) {
336 		/*
337 		 * Freeing the end of the segment.
338 		 */
339 		seg->s_size -= len;
340 	} else {
341 		/*
342 		 * The section to go is in the middle of the segment, so we
343 		 * have to cut it into two segments.  We shrink the existing
344 		 * "seg" at the low end, and create "nseg" for the high end.
345 		 */
346 		caddr_t nbase = addr + len;
347 		size_t nsize = (seg->s_base + seg->s_size) - nbase;
348 		struct seg *nseg;
349 
350 		/*
351 		 * Trim down "seg" before trying to stick "nseg" into the as.
352 		 */
353 		seg->s_size = addr - seg->s_base;
354 		nseg = seg_alloc(seg->s_as, nbase, nsize);
355 		if (nseg == NULL)
356 			cmn_err(CE_PANIC, "segnf_unmap: seg_alloc failed");
357 
358 		/*
359 		 * s_data can't be NULL because of ASSERTs in common VM code.
360 		 */
361 		nseg->s_ops = seg->s_ops;
362 		nseg->s_data = nseg;
363 		nseg->s_flags |= S_PURGE;
364 		mutex_enter(&seg->s_as->a_contents);
365 		seg->s_as->a_flags |= AS_NEEDSPURGE;
366 		mutex_exit(&seg->s_as->a_contents);
367 	}
368 
369 	return (0);
370 }
371 
372 /*
373  * Free a segment.
374  */
375 static void
376 segnf_free(struct seg *seg)
377 {
378 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
379 }
380 
381 /*
382  * No faults allowed on segnf.
383  */
384 static faultcode_t
385 segnf_nomap(void)
386 {
387 	return (FC_NOMAP);
388 }
389 
390 /* ARGSUSED */
391 static int
392 segnf_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
393 {
394 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
395 	return (EACCES);
396 }
397 
398 /* ARGSUSED */
399 static int
400 segnf_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
401 {
402 	uint_t sprot;
403 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
404 
405 	sprot = seg->s_as == &kas ?  PROT_READ : PROT_READ|PROT_USER;
406 	return ((prot & sprot) == prot ? 0 : EACCES);
407 }
408 
409 static void
410 segnf_badop(void)
411 {
412 	panic("segnf_badop");
413 	/*NOTREACHED*/
414 }
415 
416 static int
417 segnf_nop(void)
418 {
419 	return (0);
420 }
421 
422 static int
423 segnf_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
424 {
425 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
426 	size_t p;
427 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
428 
429 	for (p = 0; p < pgno; ++p)
430 		protv[p] = PROT_READ;
431 	return (0);
432 }
433 
434 /* ARGSUSED */
435 static u_offset_t
436 segnf_getoffset(struct seg *seg, caddr_t addr)
437 {
438 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
439 
440 	return ((u_offset_t)0);
441 }
442 
443 /* ARGSUSED */
444 static int
445 segnf_gettype(struct seg *seg, caddr_t addr)
446 {
447 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
448 
449 	return (MAP_SHARED);
450 }
451 
452 /* ARGSUSED */
453 static int
454 segnf_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
455 {
456 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
457 
458 	*vpp = &nfvp;
459 	return (0);
460 }
461 
462 /*
463  * segnf pages are not dumped, so we just return
464  */
465 /* ARGSUSED */
466 static void
467 segnf_dump(struct seg *seg)
468 {}
469 
470 /*ARGSUSED*/
471 static int
472 segnf_pagelock(struct seg *seg, caddr_t addr, size_t len,
473     struct page ***ppp, enum lock_type type, enum seg_rw rw)
474 {
475 	return (ENOTSUP);
476 }
477 
478 /*ARGSUSED*/
479 static int
480 segnf_setpagesize(struct seg *seg, caddr_t addr, size_t len,
481     uint_t szc)
482 {
483 	return (ENOTSUP);
484 }
485 
486 /*ARGSUSED*/
487 static int
488 segnf_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
489 {
490 	return (ENODEV);
491 }
492 
493 /*ARGSUSED*/
494 static lgrp_mem_policy_info_t *
495 segnf_getpolicy(struct seg *seg, caddr_t addr)
496 {
497 	return (NULL);
498 }
499