xref: /titanic_44/usr/src/uts/sfmmu/vm/hat_sfmmu.h (revision c623edd31cf7c582de6a3f26cc42c651d6002f73)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * VM - Hardware Address Translation management.
28  *
29  * This file describes the contents of the sun-reference-mmu(sfmmu)-
30  * specific hat data structures and the sfmmu-specific hat procedures.
31  * The machine-independent interface is described in <vm/hat.h>.
32  */
33 
34 #ifndef	_VM_HAT_SFMMU_H
35 #define	_VM_HAT_SFMMU_H
36 
37 #ifdef	__cplusplus
38 extern "C" {
39 #endif
40 
41 #ifndef _ASM
42 
43 #include <sys/types.h>
44 
45 #endif /* _ASM */
46 
47 #ifdef	_KERNEL
48 
49 #include <sys/pte.h>
50 #include <vm/mach_sfmmu.h>
51 #include <sys/mmu.h>
52 
53 /*
54  * Don't alter these without considering changes to ism_map_t.
55  */
56 #define	DEFAULT_ISM_PAGESIZE		MMU_PAGESIZE4M
57 #define	DEFAULT_ISM_PAGESZC		TTE4M
58 #define	ISM_PG_SIZE(ism_vbshift)	(1 << ism_vbshift)
59 #define	ISM_SZ_MASK(ism_vbshift)	(ISM_PG_SIZE(ism_vbshift) - 1)
60 #define	ISM_MAP_SLOTS	8	/* Change this carefully. */
61 
62 #ifndef _ASM
63 
64 #include <sys/t_lock.h>
65 #include <vm/hat.h>
66 #include <vm/seg.h>
67 #include <sys/machparam.h>
68 #include <sys/systm.h>
69 #include <sys/x_call.h>
70 #include <vm/page.h>
71 #include <sys/ksynch.h>
72 
73 typedef struct hat sfmmu_t;
74 typedef struct sf_scd sf_scd_t;
75 
76 /*
77  * SFMMU attributes for hat_memload/hat_devload
78  */
79 #define	SFMMU_UNCACHEPTTE	0x01000000	/* unencache in physical $ */
80 #define	SFMMU_UNCACHEVTTE	0x02000000	/* unencache in virtual $ */
81 #define	SFMMU_SIDEFFECT		0x04000000	/* set side effect bit */
82 #define	SFMMU_LOAD_ALLATTR	(HAT_PROT_MASK | HAT_ORDER_MASK |	\
83 		HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC |		\
84 		SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT)
85 
86 
87 /*
88  * sfmmu flags for hat_memload/hat_devload
89  */
90 #define	SFMMU_NO_TSBLOAD	0x08000000	/* do not preload tsb */
91 #define	SFMMU_LOAD_ALLFLAG	(HAT_LOAD | HAT_LOAD_LOCK |		\
92 		HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST |	\
93 		HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD |	\
94 		HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT)
95 
96 /*
97  * sfmmu internal flag to hat_pageunload that spares locked mappings
98  */
99 #define	SFMMU_KERNEL_RELOC	0x8000
100 
101 /*
102  * mode for sfmmu_chgattr
103  */
104 #define	SFMMU_SETATTR	0x0
105 #define	SFMMU_CLRATTR	0x1
106 #define	SFMMU_CHGATTR	0x2
107 
108 /*
109  * sfmmu specific flags for page_t
110  */
111 #define	P_PNC	0x8		/* non-caching is permanent bit */
112 #define	P_TNC	0x10		/* non-caching is temporary bit */
113 #define	P_KPMS	0x20		/* kpm mapped small (vac alias prevention) */
114 #define	P_KPMC	0x40		/* kpm conflict page (vac alias prevention) */
115 #define	P_EXEC	0x80		/* execution reference (I-cache filled) */
116 
117 #define	PP_GENERIC_ATTR(pp)	((pp)->p_nrm & (P_MOD | P_REF | P_RO))
118 #define	PP_ISMOD(pp)		((pp)->p_nrm & P_MOD)
119 #define	PP_ISREF(pp)		((pp)->p_nrm & P_REF)
120 #define	PP_ISRO(pp)		((pp)->p_nrm & P_RO)
121 #define	PP_ISNC(pp)		((pp)->p_nrm & (P_PNC|P_TNC))
122 #define	PP_ISPNC(pp)		((pp)->p_nrm & P_PNC)
123 #ifdef VAC
124 #define	PP_ISTNC(pp)		((pp)->p_nrm & P_TNC)
125 #endif
126 #define	PP_ISKPMS(pp)		((pp)->p_nrm & P_KPMS)
127 #define	PP_ISKPMC(pp)		((pp)->p_nrm & P_KPMC)
128 #define	PP_ISEXEC(pp)		((pp)->p_nrm & P_EXEC)
129 
130 #define	PP_SETMOD(pp)		((pp)->p_nrm |= P_MOD)
131 #define	PP_SETREF(pp)		((pp)->p_nrm |= P_REF)
132 #define	PP_SETREFMOD(pp)	((pp)->p_nrm |= (P_REF|P_MOD))
133 #define	PP_SETRO(pp)		((pp)->p_nrm |= P_RO)
134 #define	PP_SETREFRO(pp)		((pp)->p_nrm |= (P_REF|P_RO))
135 #define	PP_SETPNC(pp)		((pp)->p_nrm |= P_PNC)
136 #ifdef VAC
137 #define	PP_SETTNC(pp)		((pp)->p_nrm |= P_TNC)
138 #endif
139 #define	PP_SETKPMS(pp)		((pp)->p_nrm |= P_KPMS)
140 #define	PP_SETKPMC(pp)		((pp)->p_nrm |= P_KPMC)
141 #define	PP_SETEXEC(pp)		((pp)->p_nrm |= P_EXEC)
142 
143 #define	PP_CLRMOD(pp)		((pp)->p_nrm &= ~P_MOD)
144 #define	PP_CLRREF(pp)		((pp)->p_nrm &= ~P_REF)
145 #define	PP_CLRREFMOD(pp)	((pp)->p_nrm &= ~(P_REF|P_MOD))
146 #define	PP_CLRRO(pp)		((pp)->p_nrm &= ~P_RO)
147 #define	PP_CLRPNC(pp)		((pp)->p_nrm &= ~P_PNC)
148 #ifdef VAC
149 #define	PP_CLRTNC(pp)		((pp)->p_nrm &= ~P_TNC)
150 #endif
151 #define	PP_CLRKPMS(pp)		((pp)->p_nrm &= ~P_KPMS)
152 #define	PP_CLRKPMC(pp)		((pp)->p_nrm &= ~P_KPMC)
153 #define	PP_CLREXEC(pp)		((pp)->p_nrm &= ~P_EXEC)
154 
155 /*
156  * Support for non-coherent I-cache. If the MD property "coherency"
157  * is set to 0, it means that the I-cache must be flushed in
158  * software. Use the "soft exec" bit in the TTE to detect when a page
159  * has been executed, so that it can be flushed before it is re-used
160  * for another program.
161  */
162 #define	TTE_EXECUTED(ttep)						\
163 	(TTE_IS_EXECUTABLE(ttep) && TTE_IS_SOFTEXEC(ttep))
164 
165 /*
166  * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM)
167  * will be constrained to a 4M, 32M or 256M alignment. Also since every newly-
168  * created ISM segment is created out of a new address space at base va
169  * of 0 we don't need to store it.
170  */
171 #define	ISM_ALIGN(shift)	(1 << shift)	/* base va aligned to <n>M  */
172 #define	ISM_ALIGNED(shift, va)	(((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0)
173 #define	ISM_SHIFT(shift, x)	((uintptr_t)x >> (shift))
174 
175 /*
176  * Pad locks out to cache sub-block boundaries to prevent
177  * false sharing, so several processes don't contend for
178  * the same line if they aren't using the same lock.  Since
179  * this is a typedef we also have a bit of freedom in
180  * changing lock implementations later if we decide it
181  * is necessary.
182  */
183 typedef struct hat_lock {
184 	kmutex_t hl_mutex;
185 	uchar_t hl_pad[64 - sizeof (kmutex_t)];
186 } hatlock_t;
187 
188 #define	HATLOCK_MUTEXP(hatlockp)	(&((hatlockp)->hl_mutex))
189 
190 /*
191  * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned.
192  * Also size is guaranteed to be in 4M, 32M or 256M chunks.
193  * ism_seg consists of the following members:
194  * [XX..22] base address of ism segment. XX is 63 or 31 depending whether
195  *	caddr_t is 64 bits or 32 bits.
196  * [21..0] size of segment.
197  *
198  * NOTE: Don't alter this structure without changing defines above and
199  * the tsb_miss and protection handlers.
200  */
201 typedef struct ism_map {
202 	uintptr_t	imap_seg;  	/* base va + sz of ISM segment */
203 	uchar_t		imap_vb_shift;	/* mmu_pageshift for ism page size */
204 	uchar_t		imap_rid;	/* region id for ism */
205 	ushort_t	imap_hatflags;	/* primary ism page size */
206 	uint_t		imap_sz_mask;	/* mmu_pagemask for ism page size */
207 	sfmmu_t		*imap_ismhat; 	/* hat id of dummy ISM as */
208 	struct ism_ment	*imap_ment;	/* pointer to mapping list entry */
209 } ism_map_t;
210 
211 #define	ism_start(map)	((caddr_t)((map).imap_seg & \
212 				~ISM_SZ_MASK((map).imap_vb_shift)))
213 #define	ism_size(map)	((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift))
214 #define	ism_end(map)	((caddr_t)(ism_start(map) + (ism_size(map) * \
215 				ISM_PG_SIZE((map).imap_vb_shift))))
216 /*
217  * ISM mapping entry. Used to link all hat's sharing a ism_hat.
218  * Same function as the p_mapping list for a page.
219  */
220 typedef struct ism_ment {
221 	sfmmu_t		*iment_hat;	/* back pointer to hat_share() hat */
222 	caddr_t		iment_base_va;	/* hat's va base for this ism seg */
223 	struct ism_ment	*iment_next;	/* next ism map entry */
224 	struct ism_ment	*iment_prev;	/* prev ism map entry */
225 } ism_ment_t;
226 
227 /*
228  * ISM segment block. One will be hung off the sfmmu structure if a
229  * a process uses ISM.  More will be linked using ismblk_next if more
230  * than ISM_MAP_SLOTS segments are attached to this proc.
231  *
232  * All modifications to fields in this structure will be protected
233  * by the hat mutex.  In order to avoid grabbing this lock in low level
234  * routines (tsb miss/protection handlers and vatopfn) while not
235  * introducing any race conditions with hat_unshare, we will set
236  * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur
237  * for this ctx while this bit is set will be handled in sfmmu_tsb_excption
238  * where it will synchronize behind the hat mutex.
239  */
240 typedef struct ism_blk {
241 	ism_map_t		iblk_maps[ISM_MAP_SLOTS];
242 	struct ism_blk		*iblk_next;
243 	uint64_t		iblk_nextpa;
244 } ism_blk_t;
245 
246 /*
247  * TSB access information.  All fields are protected by the process's
248  * hat lock.
249  */
250 
251 struct tsb_info {
252 	caddr_t		tsb_va;		/* tsb base virtual address */
253 	uint64_t	tsb_pa;		/* tsb base physical address */
254 	struct tsb_info	*tsb_next;	/* next tsb used by this process */
255 	uint16_t	tsb_szc;	/* tsb size code */
256 	uint16_t	tsb_flags;	/* flags for this tsb; see below */
257 	uint_t		tsb_ttesz_mask;	/* page size masks; see below */
258 
259 	tte_t		tsb_tte;	/* tte to lock into DTLB */
260 	sfmmu_t		*tsb_sfmmu;	/* sfmmu */
261 	kmem_cache_t	*tsb_cache;	/* cache from which mem allocated */
262 	vmem_t		*tsb_vmp;	/* vmem arena from which mem alloc'd */
263 };
264 
265 /*
266  * Values for "tsb_ttesz_mask" bitmask.
267  */
268 #define	TSB8K	(1 << TTE8K)
269 #define	TSB64K  (1 << TTE64K)
270 #define	TSB512K (1 << TTE512K)
271 #define	TSB4M   (1 << TTE4M)
272 #define	TSB32M  (1 << TTE32M)
273 #define	TSB256M (1 << TTE256M)
274 
275 /*
276  * Values for "tsb_flags" field.
277  */
278 #define	TSB_RELOC_FLAG		0x1
279 #define	TSB_FLUSH_NEEDED	0x2
280 #define	TSB_SWAPPED	0x4
281 #define	TSB_SHAREDCTX		0x8
282 
283 #endif	/* !_ASM */
284 
285 /*
286  * Data structures for shared hmeblk support.
287  */
288 
289 /*
290  * Do not increase the maximum number of ism/hme regions without checking first
291  * the impact on ism_map_t, TSB miss area, hblk tag and region id type in
292  * sf_region structure.
293  * Initially, shared hmes will only be used for the main text segment
294  * therefore this value will be set to 64, it will be increased when shared
295  * libraries are included.
296  */
297 
298 #define	SFMMU_MAX_HME_REGIONS		(64)
299 #define	SFMMU_HMERGNMAP_WORDS		BT_BITOUL(SFMMU_MAX_HME_REGIONS)
300 
301 #define	SFMMU_PRIVATE	0
302 #define	SFMMU_SHARED	1
303 
304 #define	HMEBLK_ENDPA	1
305 
306 #ifndef _ASM
307 
308 #define	SFMMU_MAX_ISM_REGIONS		(64)
309 #define	SFMMU_ISMRGNMAP_WORDS		BT_BITOUL(SFMMU_MAX_ISM_REGIONS)
310 
311 #define	SFMMU_RGNMAP_WORDS	(SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS)
312 
313 #define	SFMMU_MAX_REGION_BUCKETS	(128)
314 #define	SFMMU_MAX_SRD_BUCKETS		(2048)
315 
316 typedef struct sf_hmeregion_map {
317 	ulong_t	bitmap[SFMMU_HMERGNMAP_WORDS];
318 } sf_hmeregion_map_t;
319 
320 typedef struct sf_ismregion_map {
321 	ulong_t	bitmap[SFMMU_ISMRGNMAP_WORDS];
322 } sf_ismregion_map_t;
323 
324 typedef union sf_region_map_u {
325 	struct _h_rmap_s {
326 		sf_hmeregion_map_t hmeregion_map;
327 		sf_ismregion_map_t ismregion_map;
328 	} h_rmap_s;
329 	ulong_t	bitmap[SFMMU_RGNMAP_WORDS];
330 } sf_region_map_t;
331 
332 #define	SF_RGNMAP_ZERO(map) {				\
333 	int _i;						\
334 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {	\
335 		(map).bitmap[_i] = 0;			\
336 	}						\
337 }
338 
339 /*
340  * Returns 1 if map1 and map2 are equal.
341  */
342 #define	SF_RGNMAP_EQUAL(map1, map2, rval)	{		\
343 	int _i;							\
344 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {		\
345 		if ((map1)->bitmap[_i] != (map2)->bitmap[_i])	\
346 			break;					\
347 	}							\
348 	if (_i < SFMMU_RGNMAP_WORDS)				\
349 		rval = 0;					\
350 	else							\
351 		rval = 1;					\
352 }
353 
354 #define	SF_RGNMAP_ADD(map, r)		BT_SET((map).bitmap, r)
355 #define	SF_RGNMAP_DEL(map, r)		BT_CLEAR((map).bitmap, r)
356 #define	SF_RGNMAP_TEST(map, r)		BT_TEST((map).bitmap, r)
357 
358 /*
359  * Tests whether map2 is a subset of map1, returns 1 if
360  * this assertion is true.
361  */
362 #define	SF_RGNMAP_IS_SUBSET(map1, map2, rval)	{		\
363 	int _i;							\
364 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {		\
365 		if (((map1)->bitmap[_i]	& (map2)->bitmap[_i])	\
366 		    != (map2)->bitmap[_i])  {	 		\
367 			break;					\
368 		}						\
369 	}							\
370 	if (_i < SFMMU_RGNMAP_WORDS)		 		\
371 		rval = 0;					\
372 	else							\
373 		rval = 1;					\
374 }
375 
376 #define	SF_SCD_INCR_REF(scdp) {						\
377 	atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1);	\
378 }
379 
380 #define	SF_SCD_DECR_REF(srdp, scdp) {				\
381 	sf_region_map_t _scd_rmap = (scdp)->scd_region_map;	\
382 	if (!atomic_add_32_nv(					\
383 	    (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) {	\
384 		sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap);	\
385 	}							\
386 }
387 
388 /*
389  * A sfmmup link in the link list of sfmmups that share the same region.
390  */
391 typedef struct sf_rgn_link {
392 	sfmmu_t	*next;
393 	sfmmu_t *prev;
394 } sf_rgn_link_t;
395 
396 /*
397  * rgn_flags values.
398  */
399 #define	SFMMU_REGION_HME	0x1
400 #define	SFMMU_REGION_ISM	0x2
401 #define	SFMMU_REGION_FREE	0x8
402 
403 #define	SFMMU_REGION_TYPE_MASK	(0x3)
404 
405 /*
406  * sf_region defines a text or (D)ISM segment which map
407  * the same underlying physical object.
408  */
409 typedef struct sf_region {
410 	caddr_t			rgn_saddr;   /* base addr of attached seg */
411 	size_t			rgn_size;    /* size of attached seg */
412 	void			*rgn_obj;    /* the underlying object id */
413 	u_offset_t		rgn_objoff;  /* offset in the object mapped */
414 	uchar_t			rgn_perm;    /* PROT_READ/WRITE/EXEC */
415 	uchar_t			rgn_pgszc;   /* page size of the region */
416 	uchar_t			rgn_flags;   /* region type, free flag */
417 	uchar_t			rgn_id;
418 	int			rgn_refcnt;  /* # of hats sharing the region */
419 	/* callback function for hat_unload_callback */
420 	hat_rgn_cb_func_t	rgn_cb_function;
421 	struct sf_region	*rgn_hash;   /* hash chain linking the rgns */
422 	kmutex_t		rgn_mutex;   /* protect region sfmmu list */
423 	/* A link list of processes attached to this region */
424 	sfmmu_t			*rgn_sfmmu_head;
425 	ulong_t			rgn_ttecnt[MMU_PAGE_SIZES];
426 	uint16_t		rgn_hmeflags; /* rgn tte size flags */
427 } sf_region_t;
428 
429 #define	rgn_next	rgn_hash
430 
431 /* srd */
432 typedef struct sf_shared_region_domain {
433 	vnode_t			*srd_evp;	/* executable vnode */
434 	/* hme region table */
435 	sf_region_t		*srd_hmergnp[SFMMU_MAX_HME_REGIONS];
436 	/* ism region table */
437 	sf_region_t		*srd_ismrgnp[SFMMU_MAX_ISM_REGIONS];
438 	/* hash chain linking srds */
439 	struct sf_shared_region_domain *srd_hash;
440 	/* pointer to the next free hme region */
441 	sf_region_t		*srd_hmergnfree;
442 	/* pointer to the next free ism region */
443 	sf_region_t		*srd_ismrgnfree;
444 	/* id of next ism region created */
445 	uint16_t		srd_next_ismrid;
446 	/* id of next hme region created */
447 	uint16_t		srd_next_hmerid;
448 	uint16_t		srd_ismbusyrgns; /* # of ism rgns in use */
449 	uint16_t		srd_hmebusyrgns; /* # of hme rgns in use */
450 	int			srd_refcnt;	 /* # of procs in the srd */
451 	kmutex_t		srd_mutex;	 /* sync add/remove rgns */
452 	kmutex_t		srd_scd_mutex;
453 	sf_scd_t		*srd_scdp;	 /* list of scds in srd */
454 	/* hash of regions associated with the same executable */
455 	sf_region_t		*srd_rgnhash[SFMMU_MAX_REGION_BUCKETS];
456 } sf_srd_t;
457 
458 typedef struct sf_srd_bucket {
459 	kmutex_t	srdb_lock;
460 	sf_srd_t	*srdb_srdp;
461 } sf_srd_bucket_t;
462 
463 /*
464  * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased
465  * to 16 when the use of shared hmes for shared libraries is enabled.
466  */
467 
468 #define	SFMMU_L1_HMERLINKS		(8)
469 #define	SFMMU_L2_HMERLINKS		(8)
470 #define	SFMMU_L1_HMERLINKS_SHIFT	(3)
471 #define	SFMMU_L1_HMERLINKS_MASK		(SFMMU_L1_HMERLINKS - 1)
472 #define	SFMMU_L2_HMERLINKS_MASK		(SFMMU_L2_HMERLINKS - 1)
473 #define	SFMMU_L1_HMERLINKS_SIZE		\
474 	(SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *))
475 #define	SFMMU_L2_HMERLINKS_SIZE		\
476 	(SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t))
477 
478 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS)
479 #error Not Enough HMERLINKS
480 #endif
481 
482 /*
483  * This macro grabs hat lock and allocates level 2 hat chain
484  * associated with a shme rgn. In the majority of cases, the macro
485  * is called with alloc = 0, and lock = 0.
486  * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp
487  * parameter.
488  */
489 #define	SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock)		\
490 {									\
491 	int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) &		\
492 	    SFMMU_L1_HMERLINKS_MASK;					\
493 	int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK);			\
494 	hatlock_t *_hatlockp;						\
495 	lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix];			\
496 	if (lnkp != NULL) {						\
497 		lnkp = &lnkp[_l2ix];					\
498 	} else if (alloc && lock) {					\
499 		lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP);	\
500 		_hatlockp = sfmmu_hat_enter(sfmmup);			\
501 		if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) {	\
502 			sfmmu_hat_exit(_hatlockp);			\
503 			kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE);	\
504 			lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix];	\
505 			ASSERT(lnkp != NULL);				\
506 		} else {						\
507 			(sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp;	\
508 			sfmmu_hat_exit(_hatlockp);			\
509 		}							\
510 		lnkp = &lnkp[_l2ix];					\
511 	} else if (alloc) {						\
512 		lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP);	\
513 		ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL);	\
514 		(sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp;		\
515 		lnkp = &lnkp[_l2ix];					\
516 	}								\
517 }
518 
519 /*
520  *  Per cpu pending freelist of hmeblks.
521  */
522 typedef struct cpu_hme_pend {
523 	struct   hme_blk *chp_listp;
524 	kmutex_t chp_mutex;
525 	time_t	 chp_timestamp;
526 	uint_t   chp_count;
527 	uint8_t	 chp_pad[36];		/* pad to 64 bytes */
528 } cpu_hme_pend_t;
529 
530 /*
531  * The default value of the threshold for the per cpu pending queues of hmeblks.
532  * The queues are flushed if either the number of hmeblks on the queue is above
533  * the threshold, or one second has elapsed since the last flush.
534  */
535 #define	CPU_HME_PEND_THRESH 1000
536 
537 /*
538  * Per-MMU context domain kstats.
539  *
540  * TSB Miss Exceptions
541  *	Number of times a TSB miss exception is handled in an MMU. See
542  *	sfmmu_tsbmiss_exception() for more details.
543  * TSB Raise Exception
544  *	Number of times the CPUs within an MMU are cross-called
545  *	to invalidate either a specific process context (when the process
546  *	switches MMU contexts) or the context of any process that is
547  *	running on those CPUs (as part of the MMU context wrap-around).
548  * Wrap Around
549  *	The number of times a wrap-around of MMU context happens.
550  */
551 typedef enum mmu_ctx_stat_types {
552 	MMU_CTX_TSB_EXCEPTIONS,		/* TSB miss exceptions handled */
553 	MMU_CTX_TSB_RAISE_EXCEPTION,	/* ctx invalidation cross calls */
554 	MMU_CTX_WRAP_AROUND,		/* wraparounds */
555 	MMU_CTX_NUM_STATS
556 } mmu_ctx_stat_t;
557 
558 /*
559  * Per-MMU context domain structure. This is instantiated the first time a CPU
560  * belonging to the MMU context domain is configured into the system, at boot
561  * time or at DR time.
562  *
563  * mmu_gnum
564  *	The current generation number for the context IDs on this MMU context
565  *	domain. It is protected by mmu_lock.
566  * mmu_cnum
567  *	The current cnum to be allocated on this MMU context domain. It
568  *	is protected via CAS.
569  * mmu_nctxs
570  *	The max number of context IDs supported on every CPU in this
571  *	MMU context domain. It is 8K except for Rock where it is 64K.
572  *      This is needed here in case the system supports mixed type of
573  *      processors/MMUs. It also helps to make ctx switch code access
574  *      fewer cache lines i.e. no need to retrieve it from some global nctxs.
575  * mmu_lock
576  *	The mutex spin lock used to serialize context ID wrap around
577  * mmu_idx
578  *	The index for this MMU context domain structure in the global array
579  *	mmu_ctxdoms.
580  * mmu_ncpus
581  *	The actual number of CPUs that have been configured in this
582  *	MMU context domain. This also acts as a reference count for the
583  *	structure. When the last CPU in an MMU context domain is unconfigured,
584  *	the structure is freed. It is protected by mmu_lock.
585  * mmu_cpuset
586  *	The CPU set of configured CPUs for this MMU context domain. Used
587  *	to cross-call all the CPUs in the MMU context domain to invalidate
588  *	context IDs during a wraparound operation. It is protected by mmu_lock.
589  */
590 
591 typedef struct mmu_ctx {
592 	uint64_t	mmu_gnum;
593 	uint_t		mmu_cnum;
594 	uint_t		mmu_nctxs;
595 	kmutex_t	mmu_lock;
596 	uint_t		mmu_idx;
597 	uint_t		mmu_ncpus;
598 	cpuset_t	mmu_cpuset;
599 	kstat_t		*mmu_kstat;
600 	kstat_named_t	mmu_kstat_data[MMU_CTX_NUM_STATS];
601 } mmu_ctx_t;
602 
603 #define	mmu_tsb_exceptions	\
604 		mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64
605 #define	mmu_tsb_raise_exception	\
606 		mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64
607 #define	mmu_wrap_around		\
608 		mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64
609 
610 extern uint_t		max_mmu_ctxdoms;
611 extern mmu_ctx_t	**mmu_ctxs_tbl;
612 
613 extern void	sfmmu_cpu_init(cpu_t *);
614 extern void	sfmmu_cpu_cleanup(cpu_t *);
615 
616 /*
617  * The following structure is used to get MMU context domain information for
618  * a CPU from the platform.
619  *
620  * mmu_idx
621  *	The MMU context domain index within the global array mmu_ctxs
622  * mmu_nctxs
623  *	The number of context IDs supported in the MMU context domain
624  *	(64K for Rock)
625  */
626 typedef struct mmu_ctx_info {
627 	uint_t		mmu_idx;
628 	uint_t		mmu_nctxs;
629 } mmu_ctx_info_t;
630 
631 #pragma weak plat_cpuid_to_mmu_ctx_info
632 
633 extern void	plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *);
634 
635 /*
636  * Each address space has an array of sfmmu_ctx_t structures, one structure
637  * per MMU context domain.
638  *
639  * cnum
640  *	The context ID allocated for an address space on an MMU context domain
641  * gnum
642  *	The generation number for the context ID in the MMU context domain.
643  *
644  * This structure needs to be a power-of-two in size.
645  */
646 typedef struct sfmmu_ctx {
647 	uint64_t	gnum:48;
648 	uint64_t	cnum:16;
649 } sfmmu_ctx_t;
650 
651 
652 /*
653  * The platform dependent hat structure.
654  * tte counts should be protected by cas.
655  * cpuset is protected by cas.
656  *
657  * ttecnt accounting for mappings which do not use shared hme is carried out
658  * during pagefault handling. In the shared hme case, only the first process
659  * to access a mapping generates a pagefault, subsequent processes simply
660  * find the shared hme entry during trap handling and therefore there is no
661  * corresponding event to initiate ttecnt accounting. Currently, as shared
662  * hmes are only used for text segments, when joining a region we assume the
663  * worst case and add the the number of ttes required to map the entire region
664  * to the ttecnt corresponding to the region pagesize. However, if the region
665  * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail
666  * then 8K pages will be allocated instead and the first TSB which stores 8K
667  * mappings will potentially be undersized. To compensate for the potential
668  * underaccounting in this case we always add 1/4 of the region size to the 8K
669  * ttecnt.
670  *
671  * Note that sfmmu_xhat_provider MUST be the first element.
672  */
673 
674 struct hat {
675 	void		*sfmmu_xhat_provider;	/* NULL for CPU hat */
676 	cpuset_t	sfmmu_cpusran;	/* cpu bit mask for efficient xcalls */
677 	struct	as	*sfmmu_as;	/* as this hat provides mapping for */
678 	/* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */
679 	ulong_t		sfmmu_ttecnt[MMU_PAGE_SIZES];
680 	/* shme rgns ttecnt for rgns in SCD */
681 	ulong_t		sfmmu_scdrttecnt[MMU_PAGE_SIZES];
682 	/* est. ism ttes that are NOT in a SCD */
683 	ulong_t		sfmmu_ismttecnt[MMU_PAGE_SIZES];
684 	/* ttecnt for isms that are in a SCD */
685 	ulong_t		sfmmu_scdismttecnt[MMU_PAGE_SIZES];
686 	/* inflate tsb0 to allow for large page alloc failure in region */
687 	ulong_t		sfmmu_tsb0_4minflcnt;
688 	union _h_un {
689 		ism_blk_t	*sfmmu_iblkp;  /* maps to ismhat(s) */
690 		ism_ment_t	*sfmmu_imentp; /* ism hat's mapping list */
691 	} h_un;
692 	uint_t		sfmmu_free:1;	/* hat to be freed - set on as_free */
693 	uint_t		sfmmu_ismhat:1;	/* hat is dummy ism hatid */
694 	uint_t		sfmmu_scdhat:1;	/* hat is dummy scd hatid */
695 	uchar_t		sfmmu_rmstat;	/* refmod stats refcnt */
696 	ushort_t	sfmmu_clrstart;	/* start color bin for page coloring */
697 	ushort_t	sfmmu_clrbin;	/* per as phys page coloring bin */
698 	ushort_t	sfmmu_flags;	/* flags */
699 	uchar_t		sfmmu_tteflags;	/* pgsz flags */
700 	uchar_t		sfmmu_rtteflags; /* pgsz flags for SRD hmes */
701 	struct tsb_info	*sfmmu_tsb;	/* list of per as tsbs */
702 	uint64_t	sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */
703 	lock_t		sfmmu_ctx_lock;	/* sync ctx alloc and invalidation */
704 	kcondvar_t	sfmmu_tsb_cv;	/* signals TSB swapin or relocation */
705 	uchar_t		sfmmu_cext;	/* context page size encoding */
706 	uint8_t		sfmmu_pgsz[MMU_PAGE_SIZES];  /* ranking for MMU */
707 	sf_srd_t	*sfmmu_srdp;
708 	sf_scd_t	*sfmmu_scdp;	/* scd this address space belongs to */
709 	sf_region_map_t	sfmmu_region_map;
710 	sf_rgn_link_t	*sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS];
711 	sf_rgn_link_t	sfmmu_scd_link;	/* link to scd or pending queue */
712 #ifdef sun4v
713 	struct hv_tsb_block sfmmu_hvblock;
714 #endif
715 	/*
716 	 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of
717 	 * elements. max_mmu_ctxdoms is determined at run-time.
718 	 * sfmmu_ctxs[1] is just the fist element of an array, it always
719 	 * has to be the last field to ensure that the memory allocated
720 	 * for sfmmu_ctxs is consecutive with the memory of the rest of
721 	 * the hat data structure.
722 	 */
723 	sfmmu_ctx_t	sfmmu_ctxs[1];
724 
725 };
726 
727 #define	sfmmu_iblk	h_un.sfmmu_iblkp
728 #define	sfmmu_iment	h_un.sfmmu_imentp
729 
730 #define	sfmmu_hmeregion_map	sfmmu_region_map.h_rmap_s.hmeregion_map
731 #define	sfmmu_ismregion_map	sfmmu_region_map.h_rmap_s.ismregion_map
732 
733 #define	SF_RGNMAP_ISNULL(sfmmup)	\
734 	(sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map))
735 #define	SF_HMERGNMAP_ISNULL(sfmmup)	\
736 	(sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map))
737 
738 struct sf_scd {
739 	sfmmu_t		*scd_sfmmup;	/* shared context hat */
740 	/* per pgsz ttecnt for shme rgns in SCD */
741 	ulong_t		scd_rttecnt[MMU_PAGE_SIZES];
742 	uint_t		scd_refcnt;	/* address spaces attached to scd */
743 	sf_region_map_t scd_region_map; /* bit mask of attached segments */
744 	sf_scd_t	*scd_next;	/* link pointers for srd_scd list */
745 	sf_scd_t	*scd_prev;
746 	sfmmu_t 	*scd_sf_list;	/* list of doubly linked hat structs */
747 	kmutex_t 	scd_mutex;
748 	/*
749 	 * Link used to add an scd to the sfmmu_iment list.
750 	 */
751 	ism_ment_t	scd_ism_links[SFMMU_MAX_ISM_REGIONS];
752 };
753 
754 #define	scd_hmeregion_map	scd_region_map.h_rmap_s.hmeregion_map
755 #define	scd_ismregion_map	scd_region_map.h_rmap_s.ismregion_map
756 
757 extern int disable_shctx;
758 extern int shctx_on;
759 
760 /*
761  * bit mask for managing vac conflicts on large pages.
762  * bit 1 is for uncache flag.
763  * bits 2 through min(num of cache colors + 1,31) are
764  * for cache colors that have already been flushed.
765  */
766 #ifdef VAC
767 #define	CACHE_NUM_COLOR		(shm_alignment >> MMU_PAGESHIFT)
768 #else
769 #define	CACHE_NUM_COLOR		1
770 #endif
771 
772 #define	CACHE_VCOLOR_MASK(vcolor)	(2 << (vcolor & (CACHE_NUM_COLOR - 1)))
773 
774 #define	CacheColor_IsFlushed(flag, vcolor) \
775 					((flag) & CACHE_VCOLOR_MASK(vcolor))
776 
777 #define	CacheColor_SetFlushed(flag, vcolor) \
778 					((flag) |= CACHE_VCOLOR_MASK(vcolor))
779 /*
780  * Flags passed to sfmmu_page_cache to flush page from vac or not.
781  */
782 #define	CACHE_FLUSH	0
783 #define	CACHE_NO_FLUSH	1
784 
785 /*
786  * Flags passed to sfmmu_tlbcache_demap
787  */
788 #define	FLUSH_NECESSARY_CPUS	0
789 #define	FLUSH_ALL_CPUS		1
790 
791 #ifdef	DEBUG
792 /*
793  * For debugging purpose only. Maybe removed later.
794  */
795 struct ctx_trace {
796 	sfmmu_t		*sc_sfmmu_stolen;
797 	sfmmu_t		*sc_sfmmu_stealing;
798 	clock_t		sc_time;
799 	ushort_t	sc_type;
800 	ushort_t	sc_cnum;
801 };
802 #define	CTX_TRC_STEAL	0x1
803 #define	CTX_TRC_FREE	0x0
804 #define	TRSIZE	0x400
805 #define	NEXT_CTXTR(ptr)	(((ptr) >= ctx_trace_last) ? \
806 		ctx_trace_first : ((ptr) + 1))
807 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \
808 	mutex_enter(mutex);						\
809 	(ptr)->sc_sfmmu_stolen = (stolen_sfmmu);			\
810 	(ptr)->sc_sfmmu_stealing = (stealing_sfmmu);			\
811 	(ptr)->sc_cnum = (cnum);					\
812 	(ptr)->sc_type = (type);					\
813 	(ptr)->sc_time = lbolt;						\
814 	(ptr) = NEXT_CTXTR(ptr);					\
815 	num_ctx_stolen += (type);					\
816 	mutex_exit(mutex);
817 #else
818 
819 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type)
820 
821 #endif	/* DEBUG */
822 
823 #endif	/* !_ASM */
824 
825 /*
826  * Macros for sfmmup->sfmmu_flags access.  The macros that change the flags
827  * ASSERT() that we're holding the HAT lock before changing the flags;
828  * however callers that read the flags may do so without acquiring the lock
829  * in a fast path, and then recheck the flag after acquiring the lock in
830  * a slow path.
831  */
832 #define	SFMMU_FLAGS_ISSET(sfmmup, flags) \
833 	(((sfmmup)->sfmmu_flags & (flags)) == (flags))
834 
835 #define	SFMMU_FLAGS_CLEAR(sfmmup, flags) \
836 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
837 	(sfmmup)->sfmmu_flags &= ~(flags))
838 
839 #define	SFMMU_FLAGS_SET(sfmmup, flags) \
840 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
841 	(sfmmup)->sfmmu_flags |= (flags))
842 
843 #define	SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \
844 	((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \
845 	    (flags))
846 
847 
848 /*
849  * sfmmu tte HAT flags, must fit in 8 bits
850  */
851 #define	HAT_CHKCTX1_FLAG 0x1
852 #define	HAT_64K_FLAG	(0x1 << TTE64K)
853 #define	HAT_512K_FLAG	(0x1 << TTE512K)
854 #define	HAT_4M_FLAG	(0x1 << TTE4M)
855 #define	HAT_32M_FLAG	(0x1 << TTE32M)
856 #define	HAT_256M_FLAG	(0x1 << TTE256M)
857 
858 /*
859  * sfmmu HAT flags, 16 bits at the moment.
860  */
861 #define	HAT_4MTEXT_FLAG		0x01
862 #define	HAT_32M_ISM		0x02
863 #define	HAT_256M_ISM		0x04
864 #define	HAT_SWAPPED		0x08 /* swapped out */
865 #define	HAT_SWAPIN		0x10 /* swapping in */
866 #define	HAT_BUSY		0x20 /* replacing TSB(s) */
867 #define	HAT_ISMBUSY		0x40 /* adding/removing/traversing ISM maps */
868 
869 #define	HAT_CTX1_FLAG   	0x100 /* ISM imap hatflag for ctx1 */
870 #define	HAT_JOIN_SCD		0x200 /* region is joining scd */
871 #define	HAT_ALLCTX_INVALID	0x400 /* all per-MMU ctxs are invalidated */
872 
873 #define	SFMMU_LGPGS_INUSE(sfmmup)					\
874 	(((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) ||	\
875 	    ((sfmmup)->sfmmu_iblk != NULL))
876 
877 /*
878  * Starting with context 0, the first NUM_LOCKED_CTXS contexts
879  * are locked so that sfmmu_getctx can't steal any of these
880  * contexts.  At the time this software was being developed, the
881  * only context that needs to be locked is context 0 (the kernel
882  * context), and context 1 (reserved for stolen context). So this constant
883  * was originally defined to be 2.
884  *
885  * For sun4v only, USER_CONTEXT_TYPE represents any user context.  Many
886  * routines only care whether the context is kernel, invalid or user.
887  */
888 
889 #define	NUM_LOCKED_CTXS 2
890 #define	INVALID_CONTEXT	1
891 
892 #ifdef sun4v
893 #define	USER_CONTEXT_TYPE	NUM_LOCKED_CTXS
894 #endif
895 #if defined(sun4v) || defined(UTSB_PHYS)
896 /*
897  * Get the location in the 4MB base TSB of the tsbe for this fault.
898  * Assumes that the second TSB only contains 4M mappings.
899  *
900  * In:
901  *   tagacc = tag access register (not clobbered)
902  *   tsbe = 2nd TSB base register
903  *   tmp1, tmp2 = scratch registers
904  * Out:
905  *   tsbe = pointer to the tsbe in the 2nd TSB
906  */
907 
908 #define	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
909 	and	tsbe, TSB_SOFTSZ_MASK, tmp2;	/* tmp2=szc */		\
910 	andn	tsbe, TSB_SOFTSZ_MASK, tsbe;	/* tsbbase */		\
911 	mov	TSB_ENTRIES(0), tmp1;	/* nentries in TSB size 0 */	\
912 	sllx	tmp1, tmp2, tmp1;	/* tmp1 = nentries in TSB */	\
913 	sub	tmp1, 1, tmp1;		/* mask = nentries - 1 */	\
914 	srlx	tagacc, MMU_PAGESHIFT4M, tmp2; 				\
915 	and	tmp2, tmp1, tmp1;	/* tsbent = virtpage & mask */	\
916 	sllx	tmp1, TSB_ENTRY_SHIFT, tmp1;	/* entry num --> ptr */	\
917 	add	tsbe, tmp1, tsbe	/* add entry offset to TSB base */
918 
919 #define	GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
920 	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)
921 
922 /*
923  * Get the location in the 3rd TSB of the tsbe for this fault.
924  * The 3rd TSB corresponds to the shared context, and is used
925  * for 8K - 512k pages.
926  *
927  * In:
928  *   tagacc = tag access register (not clobbered)
929  *   tsbe, tmp1, tmp2 = scratch registers
930  * Out:
931  *   tsbe = pointer to the tsbe in the 3rd TSB
932  */
933 
934 #define	GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
935 	and	tsbe, TSB_SOFTSZ_MASK, tmp2;    /* tmp2=szc */		\
936 	andn	tsbe, TSB_SOFTSZ_MASK, tsbe;    /* tsbbase */		\
937 	mov	TSB_ENTRIES(0), tmp1;	/* nentries in TSB size 0 */	\
938 	sllx	tmp1, tmp2, tmp1;	/* tmp1 = nentries in TSB */	\
939 	sub	tmp1, 1, tmp1;		/* mask = nentries - 1 */	\
940 	srlx	tagacc, MMU_PAGESHIFT, tmp2;				\
941 	and	tmp2, tmp1, tmp1;	/* tsbent = virtpage & mask */	\
942 	sllx	tmp1, TSB_ENTRY_SHIFT, tmp1;    /* entry num --> ptr */	\
943 	add	tsbe, tmp1, tsbe	/* add entry offset to TSB base */
944 
945 #define	GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)                      \
946 	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)
947 /*
948  * Copy the sfmmu_region_map or scd_region_map to the tsbmiss
949  * shmermap or scd_shmermap, from sfmmu_load_mmustate.
950  */
951 #define	SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label)		\
952 	/* BEGIN CSTYLED */						\
953 label:									;\
954         ldx     [rgn_map], tmp						;\
955         dec     cnt							;\
956         add     rgn_map, CLONGSIZE, rgn_map                             ;\
957         stx     tmp, [tsbmiss_map]                                      ;\
958         brnz,pt cnt, label                                              ;\
959 	    add   tsbmiss_map, CLONGSIZE, tsbmiss_map                    \
960 	/* END CSTYLED */
961 
962 /*
963  * If there is no scd, then zero the tsbmiss scd_shmermap,
964  * from sfmmu_load_mmustate.
965  */
966 #define	ZERO_REGION_MAP(tsbmiss_map, cnt, label)                        \
967 	/* BEGIN CSTYLED */                                             \
968 label:                                                                  ;\
969         dec     cnt                                                     ;\
970         stx     %g0, [tsbmiss_map]                                      ;\
971         brnz,pt cnt, label                                              ;\
972 	    add   tsbmiss_map, CLONGSIZE, tsbmiss_map
973 	/* END CSTYLED */
974 
975 /*
976  * Set hmemisc to 1 if the shared hme is also part of an scd.
977  * In:
978  *   tsbarea = tsbmiss area (not clobbered)
979  *   hmeblkpa  = hmeblkpa +  hmentoff + SFHME_TTE (not clobbered)
980  *   hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered)
981  * Out:
982  *   use_shctx = 1 if shme is in scd and 0 otherwise
983  */
984 #define	GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx)               \
985 	/* BEGIN CSTYLED */   	                                              \
986         sub     hmeblkpa, hmentoff, hmentoff    /* hmentofff = hmeblkpa */   ;\
987         add     hmentoff, HMEBLK_TAG, hmentoff                               ;\
988         ldxa    [hmentoff]ASI_MEM, hmentoff     /* read 1st part of tag */   ;\
989         and     hmentoff, HTAG_RID_MASK, hmentoff       /* mask off rid */   ;\
990         and     hmentoff, BT_ULMASK, use_shctx  /* mask bit index */         ;\
991         srlx    hmentoff, BT_ULSHIFT, hmentoff  /* extract word */           ;\
992         sllx    hmentoff, CLONGSHIFT, hmentoff  /* index */                  ;\
993         add     tsbarea, hmentoff, hmentoff             /* add to tsbarea */ ;\
994         ldx     [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff      /* scdrgn */ ;\
995         srlx    hmentoff, use_shctx, use_shctx                               ;\
996         and     use_shctx, 0x1, use_shctx                                     \
997 	/* END CSTYLED */
998 
999 /*
1000  * Synthesize a TSB base register contents for a process.
1001  *
1002  * In:
1003  *   tsbinfo = TSB info pointer (ro)
1004  *   tsbreg, tmp1 = scratch registers
1005  * Out:
1006  *   tsbreg = value to program into TSB base register
1007  */
1008 
1009 #define	MAKE_UTSBREG(tsbinfo, tsbreg, tmp1)			\
1010 	ldx	[tsbinfo + TSBINFO_PADDR], tsbreg;		\
1011 	lduh	[tsbinfo + TSBINFO_SZCODE], tmp1;		\
1012 	and	tmp1, TSB_SOFTSZ_MASK, tmp1;			\
1013 	or	tsbreg, tmp1, tsbreg;
1014 
1015 
1016 /*
1017  * Load TSB base register to TSBMISS area for privte contexts.
1018  * This register contains utsb_pabase in bits 63:13, and TSB size
1019  * code in bits 2:0.
1020  *
1021  * For private context
1022  * In:
1023  *   tsbreg = value to load (ro)
1024  *   regnum = constant or register
1025  *   tmp1 = scratch register
1026  * Out:
1027  *   Specified scratchpad register updated
1028  *
1029  */
1030 #define	SET_UTSBREG(regnum, tsbreg, tmp1)				\
1031 	mov	regnum, tmp1;						\
1032 	stxa	tsbreg, [tmp1]ASI_SCRATCHPAD	/* save tsbreg */
1033 /*
1034  * Get TSB base register from the scratchpad for private contexts
1035  *
1036  * In:
1037  *   regnum = constant or register
1038  *   tsbreg = scratch
1039  * Out:
1040  *   tsbreg = tsbreg from the specified scratchpad register
1041  */
1042 #define	GET_UTSBREG(regnum, tsbreg)					\
1043 	mov	regnum, tsbreg;						\
1044 	ldxa	[tsbreg]ASI_SCRATCHPAD, tsbreg
1045 
1046 /*
1047  * Load TSB base register to TSBMISS area for shared contexts.
1048  * This register contains utsb_pabase in bits 63:13, and TSB size
1049  * code in bits 2:0.
1050  *
1051  * In:
1052  *   tsbmiss = pointer to tsbmiss area
1053  *   tsbmissoffset = offset to right tsb pointer
1054  *   tsbreg = value to load (ro)
1055  * Out:
1056  *   Specified tsbmiss area updated
1057  *
1058  */
1059 #define	SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg)		\
1060 	stx	tsbreg, [tsbmiss + tsbmissoffset]	/* save tsbreg */
1061 
1062 /*
1063  * Get TSB base register from the scratchpad for
1064  * shared contexts
1065  *
1066  * In:
1067  *   tsbmiss = pointer to tsbmiss area
1068  *   tsbmissoffset = offset to right tsb pointer
1069  *   tsbreg = scratch
1070  * Out:
1071  *   tsbreg = tsbreg from the specified scratchpad register
1072  */
1073 #define	GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg)		\
1074 	ldx	[tsbmiss + tsbmissoffset], tsbreg
1075 
1076 #endif /* defined(sun4v) || defined(UTSB_PHYS) */
1077 
1078 #ifndef	_ASM
1079 
1080 /*
1081  * Kernel page relocation stuff.
1082  */
1083 struct sfmmu_callback {
1084 	int key;
1085 	int (*prehandler)(caddr_t, uint_t, uint_t, void *);
1086 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t);
1087 	int (*errhandler)(caddr_t, uint_t, uint_t, void *);
1088 	int capture_cpus;
1089 };
1090 
1091 extern int sfmmu_max_cb_id;
1092 extern struct sfmmu_callback *sfmmu_cb_table;
1093 
1094 extern int hat_kpr_enabled;
1095 
1096 struct pa_hment;
1097 
1098 /*
1099  * RFE: With multihat gone we gain back an int.  We could use this to
1100  * keep ref bits on a per cpu basis to eliminate xcalls.
1101  */
1102 struct sf_hment {
1103 	tte_t hme_tte;			/* tte for this hment */
1104 
1105 	union {
1106 		struct page *page;	/* what page this maps */
1107 		struct pa_hment *data;	/* pa_hment */
1108 	} sf_hment_un;
1109 
1110 	struct	sf_hment *hme_next;	/* next hment */
1111 	struct	sf_hment *hme_prev;	/* prev hment */
1112 };
1113 
1114 struct pa_hment {
1115 	caddr_t		addr;		/* va */
1116 	uint_t		len;		/* bytes */
1117 	ushort_t	flags;		/* internal flags */
1118 	ushort_t	refcnt;		/* reference count */
1119 	id_t		cb_id;		/* callback id, table index */
1120 	void		*pvt;		/* handler's private data */
1121 	struct sf_hment	sfment;		/* corresponding dummy sf_hment */
1122 };
1123 
1124 #define	hme_page		sf_hment_un.page
1125 #define	hme_data		sf_hment_un.data
1126 #define	hme_size(sfhmep)	((int)(TTE_CSZ(&(sfhmep)->hme_tte)))
1127 #define	PAHME_SZ		(sizeof (struct pa_hment))
1128 #define	SFHME_SZ		(sizeof (struct sf_hment))
1129 
1130 #define	IS_PAHME(hme)	((hme)->hme_tte.ll == 0)
1131 
1132 /*
1133  * hmeblk_tag structure
1134  * structure used to obtain a match on a hme_blk.  Currently consists of
1135  * the address of the sfmmu struct (or hatid), the base page address of the
1136  * hme_blk, and the rehash count.  The rehash count is actually only 2 bits
1137  * and has the following meaning:
1138  * 1 = 8k or 64k hash sequence.
1139  * 2 = 512k hash sequence.
1140  * 3 = 4M hash sequence.
1141  * We require this count because we don't want to get a false hit on a 512K or
1142  * 4M rehash with a base address corresponding to a 8k or 64k hmeblk.
1143  * Note:  The ordering and size of the hmeblk_tag members are implictly known
1144  * by the tsb miss handlers written in assembly.  Do not change this structure
1145  * without checking those routines.  See HTAG_SFMMUPSZ define.
1146  */
1147 
1148 /*
1149  * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID.
1150  */
1151 typedef union {
1152 	struct {
1153 		uint64_t	hblk_basepg: 51,	/* hme_blk base pg # */
1154 				hblk_rehash: 3,		/* rehash number */
1155 				hblk_rid: 10;		/* hme_blk region id */
1156 		void		*hblk_id;
1157 	} hblk_tag_un;
1158 	uint64_t		htag_tag[2];
1159 } hmeblk_tag;
1160 
1161 #define	htag_id		hblk_tag_un.hblk_id
1162 #define	htag_bspage	hblk_tag_un.hblk_basepg
1163 #define	htag_rehash	hblk_tag_un.hblk_rehash
1164 #define	htag_rid	hblk_tag_un.hblk_rid
1165 
1166 #endif /* !_ASM */
1167 
1168 #define	HTAG_REHASH_SHIFT	10
1169 #define	HTAG_MAX_RID	(((0x1 << HTAG_REHASH_SHIFT) - 1))
1170 #define	HTAG_RID_MASK	HTAG_MAX_RID
1171 
1172 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */
1173 #define	SFMMU_INVALID_SHMERID	HTAG_MAX_RID
1174 
1175 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
1176 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
1177 #endif
1178 
1179 #define	SFMMU_IS_SHMERID_VALID(rid)	((rid) != SFMMU_INVALID_SHMERID)
1180 
1181 /* ISM regions */
1182 #define	SFMMU_INVALID_ISMRID	0xff
1183 
1184 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
1185 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
1186 #endif
1187 
1188 #define	SFMMU_IS_ISMRID_VALID(rid)	((rid) != SFMMU_INVALID_ISMRID)
1189 
1190 
1191 #define	HTAGS_EQ(tag1, tag2)	(((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \
1192 				(tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0)
1193 
1194 /*
1195  * this macro must only be used for comparing tags in shared hmeblks.
1196  */
1197 #define	HTAGS_EQ_SHME(hmetag, tag, hrmap)				\
1198 	(((hmetag).htag_rid != SFMMU_INVALID_SHMERID) &&	        \
1199 	(((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) &			\
1200 		~HTAG_RID_MASK) |	        			\
1201 	    ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) &&	\
1202 	SF_RGNMAP_TEST(hrmap, hmetag.htag_rid))
1203 
1204 #define	HME_REHASH(sfmmup)						\
1205 	((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 ||			\
1206 	(sfmmup)->sfmmu_ttecnt[TTE4M] != 0 ||				\
1207 	(sfmmup)->sfmmu_ttecnt[TTE32M] != 0 ||				\
1208 	(sfmmup)->sfmmu_ttecnt[TTE256M] != 0)
1209 
1210 #define	NHMENTS		8		/* # of hments in an 8k hme_blk */
1211 					/* needs to be multiple of 2 */
1212 
1213 #ifndef	_ASM
1214 
1215 #ifdef	HBLK_TRACE
1216 
1217 #define	HBLK_LOCK		1
1218 #define	HBLK_UNLOCK		0
1219 #define	HBLK_STACK_DEPTH	6
1220 #define	HBLK_AUDIT_CACHE_SIZE	16
1221 #define	HBLK_LOCK_PATTERN	0xaaaaaaaa
1222 #define	HBLK_UNLOCK_PATTERN	0xbbbbbbbb
1223 
1224 struct hblk_lockcnt_audit {
1225 	int		flag;		/* lock or unlock */
1226 	kthread_id_t	thread;
1227 	int		depth;
1228 	pc_t		stack[HBLK_STACK_DEPTH];
1229 };
1230 
1231 #endif	/* HBLK_TRACE */
1232 
1233 
1234 /*
1235  * Hment block structure.
1236  * The hme_blk is the node data structure which the hash structure
1237  * mantains. An hme_blk can have 2 different sizes depending on the
1238  * number of hments it implicitly contains.  When dealing with 64K, 512K,
1239  * or 4M hments there is one hment per hme_blk.  When dealing with
1240  * 8k hments we allocate an hme_blk plus an additional 7 hments to
1241  * give us a total of 8 (NHMENTS) hments that can be referenced through a
1242  * hme_blk.
1243  *
1244  * The hmeblk structure contains 2 tte reference counters used to determine if
1245  * it is ok to free up the hmeblk.  Both counters have to be zero in order
1246  * to be able to free up hmeblk.  They are protected by cas.
1247  * hblk_hmecnt is the number of hments present on pp mapping lists.
1248  * hblk_vcnt reflects number of valid ttes in hmeblk.
1249  *
1250  * The hmeblk now also has per tte lock cnts.  This is required because
1251  * the counts can be high and there are not enough bits in the tte. When
1252  * physio is fixed to not lock the translations we should be able to move
1253  * the lock cnt back to the tte.  See bug id 1198554.
1254  *
1255  * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc
1256  * and sf_hment are at the same offsets in both structures. Whenever
1257  * hme_blk is changed, xhat_hme_blk may need to be updated as well.
1258  */
1259 
1260 struct hme_blk_misc {
1261 	uint_t	notused:25;
1262 	uint_t	shared_bit:1;	/* set for SRD shared hmeblk */
1263 	uint_t	xhat_bit:1;	/* set for an xhat hme_blk */
1264 	uint_t	shadow_bit:1;	/* set for a shadow hme_blk */
1265 	uint_t	nucleus_bit:1;	/* set for a nucleus hme_blk */
1266 	uint_t	ttesize:3;	/* contains ttesz of hmeblk */
1267 };
1268 
1269 struct hme_blk {
1270 	volatile uint64_t hblk_nextpa;	/* physical address for hash list */
1271 
1272 	hmeblk_tag	hblk_tag;	/* tag used to obtain an hmeblk match */
1273 
1274 	struct hme_blk	*hblk_next;	/* on free list or on hash list */
1275 					/* protected by hash lock */
1276 
1277 	struct hme_blk	*hblk_shadow;	/* pts to shadow hblk */
1278 					/* protected by hash lock */
1279 	uint_t		hblk_span;	/* span of memory hmeblk maps */
1280 
1281 	struct hme_blk_misc	hblk_misc;
1282 
1283 	union {
1284 		struct {
1285 			ushort_t hblk_hmecount;	/* hment on mlists counter */
1286 			ushort_t hblk_validcnt;	/* valid tte reference count */
1287 		} hblk_counts;
1288 		uint_t		hblk_shadow_mask;
1289 	} hblk_un;
1290 
1291 	uint_t		hblk_lckcnt;
1292 
1293 #ifdef	HBLK_TRACE
1294 	kmutex_t	hblk_audit_lock;	/* lock to protect index */
1295 	uint_t		hblk_audit_index;	/* index into audit_cache */
1296 	struct	hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE];
1297 #endif	/* HBLK_AUDIT */
1298 
1299 	struct sf_hment hblk_hme[1];	/* hment array */
1300 };
1301 
1302 #define	hblk_shared	hblk_misc.shared_bit
1303 #define	hblk_xhat_bit   hblk_misc.xhat_bit
1304 #define	hblk_shw_bit	hblk_misc.shadow_bit
1305 #define	hblk_nuc_bit	hblk_misc.nucleus_bit
1306 #define	hblk_ttesz	hblk_misc.ttesize
1307 #define	hblk_hmecnt	hblk_un.hblk_counts.hblk_hmecount
1308 #define	hblk_vcnt	hblk_un.hblk_counts.hblk_validcnt
1309 #define	hblk_shw_mask	hblk_un.hblk_shadow_mask
1310 
1311 #define	MAX_HBLK_LCKCNT	0xFFFFFFFF
1312 #define	HMEBLK_ALIGN	0x8		/* hmeblk has to be double aligned */
1313 
1314 #ifdef	HBLK_TRACE
1315 
1316 #define	HBLK_STACK_TRACE(hmeblkp, lock)					\
1317 {									\
1318 	int flag = lock;	/* to pacify lint */			\
1319 	int audit_index;						\
1320 									\
1321 	mutex_enter(&hmeblkp->hblk_audit_lock);				\
1322 	audit_index = hmeblkp->hblk_audit_index;			\
1323 	hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) &	\
1324 	    (HBLK_AUDIT_CACHE_SIZE - 1));				\
1325 	mutex_exit(&hmeblkp->hblk_audit_lock);				\
1326 									\
1327 	if (flag)							\
1328 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
1329 		    HBLK_LOCK_PATTERN;					\
1330 	else								\
1331 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
1332 		    HBLK_UNLOCK_PATTERN;				\
1333 									\
1334 	hmeblkp->hblk_audit_cache[audit_index].thread = curthread;	\
1335 	hmeblkp->hblk_audit_cache[audit_index].depth =			\
1336 	    getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack,	\
1337 	    HBLK_STACK_DEPTH);						\
1338 }
1339 
1340 #else
1341 
1342 #define	HBLK_STACK_TRACE(hmeblkp, lock)
1343 
1344 #endif	/* HBLK_TRACE */
1345 
1346 #define	HMEHASH_FACTOR	16	/* used to calc # of buckets in hme hash */
1347 
1348 /*
1349  * A maximum number of user hmeblks is defined in order to place an upper
1350  * limit on how much nucleus memory is required and to avoid overflowing the
1351  * tsbmiss uhashsz and khashsz data areas. The number below corresponds to
1352  * the number of buckets required, for an average hash chain length of 4 on
1353  * a 16TB machine.
1354  */
1355 
1356 #define	MAX_UHME_BUCKETS	(0x1 << 30)
1357 #define	MAX_KHME_BUCKETS	(0x1 << 30)
1358 
1359 /*
1360  * The minimum number of kernel hash buckets.
1361  */
1362 #define	MIN_KHME_BUCKETS	0x800
1363 
1364 /*
1365  * The number of hash buckets must be a power of 2. If the initial calculated
1366  * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater
1367  * power of 2, otherwise we round down to avoid huge over allocations.
1368  */
1369 #define	USER_BUCKETS_THRESHOLD	(1<<22)
1370 
1371 #define	MAX_NUCUHME_BUCKETS	0x4000
1372 #define	MAX_NUCKHME_BUCKETS	0x2000
1373 
1374 /*
1375  * There are 2 locks in the hmehash bucket.  The hmehash_mutex is
1376  * a regular mutex used to make sure operations on a hash link are only
1377  * done by one thread.  Any operation which comes into the hat with
1378  * a <vaddr, as> will grab the hmehash_mutex.  Normally one would expect
1379  * the tsb miss handlers to grab the hash lock to make sure the hash list
1380  * is consistent while we traverse it.  Unfortunately this can lead to
1381  * deadlocks or recursive mutex enters since it is possible for
1382  * someone holding the lock to take a tlb/tsb miss.
1383  * To solve this problem we have added the hmehash_listlock.  This lock
1384  * is only grabbed by the tsb miss handlers, vatopfn, and while
1385  * adding/removing a hmeblk from the hash list. The code is written to
1386  * guarantee we won't take a tlb miss while holding this lock.
1387  */
1388 struct hmehash_bucket {
1389 	kmutex_t	hmehash_mutex;
1390 	volatile uint64_t hmeh_nextpa;	/* physical address for hash list */
1391 	struct hme_blk *hmeblkp;
1392 	uint_t		hmeh_listlock;
1393 };
1394 
1395 #endif /* !_ASM */
1396 
1397 #define	SFMMU_PGCNT_MASK	0x3f
1398 #define	SFMMU_PGCNT_SHIFT	6
1399 #define	INVALID_MMU_ID		-1
1400 #define	SFMMU_MMU_GNUM_RSHIFT	16
1401 #define	SFMMU_MMU_CNUM_LSHIFT	(64 - SFMMU_MMU_GNUM_RSHIFT)
1402 #define	MAX_SFMMU_CTX_VAL	((1 << 16) - 1) /* for sanity check */
1403 #define	MAX_SFMMU_GNUM_VAL	((0x1UL << 48) - 1)
1404 
1405 /*
1406  * The tsb miss handlers written in assembly know that sfmmup
1407  * is a 64 bit ptr.
1408  *
1409  * The bspage and re-hash part is 64 bits, with the sfmmup being another 64
1410  * bits.
1411  */
1412 #define	HTAG_SFMMUPSZ		0	/* Not really used for LP64 */
1413 #define	HTAG_BSPAGE_SHIFT	13
1414 
1415 /*
1416  * Assembly routines need to be able to get to ttesz
1417  */
1418 #define	HBLK_SZMASK		0x7
1419 
1420 #ifndef _ASM
1421 
1422 /*
1423  * Returns the number of bytes that an hmeblk spans given its tte size
1424  */
1425 #define	get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span)
1426 #define	get_hblk_ttesz(hmeblkp)	((hmeblkp)->hblk_ttesz)
1427 #define	get_hblk_cache(hmeblkp)	(((hmeblkp)->hblk_ttesz == TTE8K) ? \
1428 	sfmmu8_cache : sfmmu1_cache)
1429 #define	HMEBLK_SPAN(ttesz)						\
1430 	((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz))
1431 
1432 #define	set_hblk_sz(hmeblkp, ttesz)				\
1433 	(hmeblkp)->hblk_ttesz = (ttesz);			\
1434 	(hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz)
1435 
1436 #define	get_hblk_base(hmeblkp)					\
1437 	((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT)
1438 
1439 #define	get_hblk_endaddr(hmeblkp)				\
1440 	((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp)))
1441 
1442 #define	in_hblk_range(hmeblkp, vaddr)					\
1443 	(((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) &&		\
1444 	((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) +			\
1445 	get_hblk_span(hmeblkp))))
1446 
1447 #define	tte_to_vaddr(hmeblkp, tte)	((caddr_t)(get_hblk_base(hmeblkp) \
1448 	+ (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum)))
1449 
1450 #define	tte_to_evaddr(hmeblkp, ttep)	((caddr_t)(get_hblk_base(hmeblkp) \
1451 	+ (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1))))
1452 
1453 #define	vaddr_to_vshift(hblktag, vaddr, shwsz)				\
1454 	((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\
1455 	TTE_BSZS_SHIFT((shwsz) - 1))
1456 
1457 #define	HME8BLK_SZ	(sizeof (struct hme_blk) + \
1458 			(NHMENTS - 1) * sizeof (struct sf_hment))
1459 #define	HME1BLK_SZ	(sizeof (struct hme_blk))
1460 #define	H1MIN		(2 + MAX_BIGKTSB_TTES)	/* nucleus text+data, ktsb */
1461 
1462 /*
1463  * Hme_blk hash structure
1464  * Active mappings are kept in a hash structure of hme_blks.  The hash
1465  * function is based on (ctx, vaddr) The size of the hash table size is a
1466  * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN.
1467  * The hash actually consists of 2 separate hashes.  One hash is for the user
1468  * address space and the other hash is for the kernel address space.
1469  * The number of buckets are calculated at boot time and stored in the global
1470  * variables "uhmehash_num" and "khmehash_num".  By making the hash table size
1471  * a power of 2 we can use a simply & function to derive an index instead of
1472  * a divide.
1473  *
1474  * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash
1475  * bucket.
1476  * An hme hash bucket contains a pointer to an hme_blk and the mutex that
1477  * protects the link list.
1478  * Spitfire supports 4 page sizes.  8k and 64K pages only need one hash.
1479  * 512K pages need 2 hashes and 4M pages need 3 hashes.
1480  * The 'shift' parameter controls how many bits the vaddr will be shifted in
1481  * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function
1482  * and it varies depending on the page size as follows:
1483  *	8k pages:  	HBLK_RANGE_SHIFT
1484  *	64k pages:	MMU_PAGESHIFT64K
1485  *	512K pages:	MMU_PAGESHIFT512K
1486  *	4M pages:	MMU_PAGESHIFT4M
1487  * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All
1488  * changes should be reflected in both versions.  This function and the TSB
1489  * miss handlers are the only places which know about the two hashes.
1490  *
1491  * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall
1492  * into the same bucket for a particular process.  It is currently set to
1493  * be equivalent to 64K range or one hme_blk.
1494  *
1495  * The hme_blks in the hash are protected by a per hash bucket mutex
1496  * known as SFMMU_HASH_LOCK.
1497  * You need to acquire this lock before traversing the hash bucket link
1498  * list, while adding/removing a hme_blk to the list, and while
1499  * modifying an hme_blk.  A possible optimization is to replace these
1500  * mutexes by readers/writer lock but right now it is not clear whether
1501  * this is a win or not.
1502  *
1503  * The HME_HASH_TABLE_SEARCH will search the hash table for the
1504  * hme_blk that contains the hment that corresponds to the passed
1505  * ctx and vaddr.  It assumed the SFMMU_HASH_LOCK is held.
1506  */
1507 
1508 #endif /* ! _ASM */
1509 
1510 #define	KHATID			ksfmmup
1511 #define	UHMEHASH_SZ		uhmehash_num
1512 #define	KHMEHASH_SZ		khmehash_num
1513 #define	HMENT_HASHAVELEN	4
1514 #define	HBLK_RANGE_SHIFT	MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */
1515 #define	HBLK_MIN_TTESZ		1
1516 #define	HBLK_MIN_BYTES		MMU_PAGESIZE64K
1517 #define	HBLK_MIN_SHIFT		MMU_PAGESHIFT64K
1518 #define	MAX_HASHCNT		5
1519 #define	DEFAULT_MAX_HASHCNT	3
1520 
1521 #ifndef _ASM
1522 
1523 #define	HASHADDR_MASK(hashno)	TTE_PAGEMASK(hashno)
1524 
1525 #define	HME_HASH_SHIFT(ttesz)						\
1526 	((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz))
1527 
1528 #define	HME_HASH_ADDR(vaddr, hmeshift)					\
1529 	((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift)))
1530 
1531 #define	HME_HASH_BSPAGE(vaddr, hmeshift)				\
1532 	(((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT))
1533 
1534 #define	HME_HASH_REHASH(ttesz)						\
1535 	(((ttesz) < TTE512K)? 1 : (ttesz))
1536 
1537 #define	HME_HASH_FUNCTION(hatid, vaddr, shift)				     \
1538 	((((void *)hatid) != ((void *)KHATID)) ?			     \
1539 	(&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1540 	    UHMEHASH_SZ) ]):						     \
1541 	(&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1542 	    KHMEHASH_SZ) ]))
1543 
1544 /*
1545  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1546  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1547  * will be set to NULL, otherwise it will point to the correct hme_blk.
1548  * This macro also cleans empty hblks.
1549  */
1550 #define	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp)	\
1551 {									\
1552 	struct hme_blk *nx_hblk;					\
1553 									\
1554 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1555 	hblkp = hmebp->hmeblkp;						\
1556 	pr_hblk = NULL;							\
1557 	while (hblkp) {							\
1558 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1559 			/* found hme_blk */				\
1560 			break;						\
1561 		}							\
1562 		nx_hblk = hblkp->hblk_next;				\
1563 		if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) {		\
1564 			sfmmu_hblk_hash_rm(hmebp, hblkp, pr_hblk,	\
1565 			    listp, 0);					\
1566 		} else {						\
1567 			pr_hblk = hblkp;				\
1568 		}							\
1569 		hblkp = nx_hblk;					\
1570 	}								\
1571 }
1572 
1573 #define	HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp)			\
1574 {									\
1575 	struct hme_blk *pr_hblk;					\
1576 									\
1577 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp,  pr_hblk, listp);	\
1578 }
1579 
1580 /*
1581  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1582  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1583  * will be set to NULL, otherwise it will point to the correct hme_blk.
1584  * It doesn't remove empty hblks.
1585  */
1586 #define	HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp)			\
1587 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1588 	for (hblkp = hmebp->hmeblkp; hblkp;				\
1589 	    hblkp = hblkp->hblk_next) {					\
1590 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1591 			/* found hme_blk */				\
1592 			break;						\
1593 		}							\
1594 	}
1595 
1596 #define	SFMMU_HASH_LOCK(hmebp)						\
1597 		(mutex_enter(&hmebp->hmehash_mutex))
1598 
1599 #define	SFMMU_HASH_UNLOCK(hmebp)					\
1600 		(mutex_exit(&hmebp->hmehash_mutex))
1601 
1602 #define	SFMMU_HASH_LOCK_TRYENTER(hmebp)					\
1603 		(mutex_tryenter(&hmebp->hmehash_mutex))
1604 
1605 #define	SFMMU_HASH_LOCK_ISHELD(hmebp)					\
1606 		(mutex_owned(&hmebp->hmehash_mutex))
1607 
1608 #define	SFMMU_XCALL_STATS(sfmmup)					\
1609 {									\
1610 	if (sfmmup == ksfmmup) {					\
1611 		SFMMU_STAT(sf_kernel_xcalls);				\
1612 	} else {							\
1613 		SFMMU_STAT(sf_user_xcalls);				\
1614 	}								\
1615 }
1616 
1617 #define	astosfmmu(as)		((as)->a_hat)
1618 #define	hblktosfmmu(hmeblkp)	((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id)
1619 #define	hblktosrd(hmeblkp)	((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id)
1620 #define	sfmmutoas(sfmmup)	((sfmmup)->sfmmu_as)
1621 
1622 #define	sfmmutohtagid(sfmmup, rid)			   \
1623 	(((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \
1624 	(void *)((sfmmup)->sfmmu_srdp))
1625 
1626 /*
1627  * We use the sfmmu data structure to keep the per as page coloring info.
1628  */
1629 #define	as_color_bin(as)	(astosfmmu(as)->sfmmu_clrbin)
1630 #define	as_color_start(as)	(astosfmmu(as)->sfmmu_clrstart)
1631 
1632 typedef struct {
1633 	char	h8[HME8BLK_SZ];
1634 } hblk8_t;
1635 
1636 typedef struct {
1637 	char	h1[HME1BLK_SZ];
1638 } hblk1_t;
1639 
1640 typedef struct {
1641 	ulong_t  	index;
1642 	ulong_t  	len;
1643 	hblk8_t		*list;
1644 } nucleus_hblk8_info_t;
1645 
1646 typedef struct {
1647 	ulong_t		index;
1648 	ulong_t		len;
1649 	hblk1_t		*list;
1650 } nucleus_hblk1_info_t;
1651 
1652 /*
1653  * This struct is used for accumlating information about a range
1654  * of pages that are unloading so that a single xcall can flush
1655  * the entire range from remote tlbs. A function that must demap
1656  * a range of virtual addresses declares one of these structures
1657  * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this
1658  * struct to the appropriate sfmmu_hblk_* level function which does
1659  * all the bookkeeping using the other macros. When the function has
1660  * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH()
1661  * macro to take care of any remaining unflushed mappings.
1662  *
1663  * The maximum range this struct can represent is the number of bits
1664  * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only
1665  * MMU_PAGESIZE pages are supported.
1666  *
1667  * Since there are now cases where it's no longer necessary to do
1668  * flushes (e.g. when the process isn't runnable because it's swapping
1669  * out or exiting) we allow these macros to take a NULL dmr input and do
1670  * nothing in that case.
1671  */
1672 typedef struct {
1673 	sfmmu_t		*dmr_sfmmup;	/* relevant hat */
1674 	caddr_t		dmr_addr;	/* beginning address */
1675 	caddr_t		dmr_endaddr;	/* ending  address */
1676 	ulong_t		dmr_bitvec;	/* valid pages found */
1677 	ulong_t		dmr_bit;	/* next page to examine */
1678 	ulong_t		dmr_maxbit;	/* highest page in range */
1679 	ulong_t		dmr_pgsz;	/* page size in range */
1680 } demap_range_t;
1681 
1682 #define	DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */
1683 
1684 #define	DEMAP_RANGE_INIT(sfmmup, dmrp) \
1685 	if ((dmrp) != NULL) { \
1686 	(dmrp)->dmr_sfmmup = (sfmmup); \
1687 	(dmrp)->dmr_bitvec = 0; \
1688 	(dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \
1689 	(dmrp)->dmr_pgsz = MMU_PAGESIZE; \
1690 	}
1691 
1692 #define	DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE)
1693 
1694 #define	DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \
1695 	if ((dmrp) != NULL) { \
1696 	if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \
1697 		sfmmu_tlb_range_demap(dmrp); \
1698 	(dmrp)->dmr_endaddr = (endaddr); \
1699 	}
1700 
1701 #define	DEMAP_RANGE_FLUSH(dmrp) \
1702 	if ((dmrp) != NULL) { \
1703 		if ((dmrp)->dmr_bitvec != 0) \
1704 			sfmmu_tlb_range_demap(dmrp); \
1705 	}
1706 
1707 #define	DEMAP_RANGE_MARKPG(dmrp, addr) \
1708 	if ((dmrp) != NULL) { \
1709 		if ((dmrp)->dmr_bitvec == 0) { \
1710 			(dmrp)->dmr_addr = (addr); \
1711 			(dmrp)->dmr_bit = 1; \
1712 		} \
1713 		(dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \
1714 	}
1715 
1716 #define	DEMAP_RANGE_NEXTPG(dmrp) \
1717 	if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \
1718 		if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \
1719 			sfmmu_tlb_range_demap(dmrp); \
1720 		} else { \
1721 			(dmrp)->dmr_bit <<= 1; \
1722 		} \
1723 	}
1724 
1725 /*
1726  * TSB related structures
1727  *
1728  * The TSB is made up of tte entries.  Both the tag and data are present
1729  * in the TSB.  The TSB locking is managed as follows:
1730  * A software bit in the tsb tag is used to indicate that entry is locked.
1731  * If a cpu servicing a tsb miss reads a locked entry the tag compare will
1732  * fail forcing the cpu to go to the hat hash for the translation.
1733  * The cpu who holds the lock can then modify the data side, and the tag side.
1734  * The last write should be to the word containing the lock bit which will
1735  * clear the lock and allow the tsb entry to be read.  It is assumed that all
1736  * cpus reading the tsb will do so with atomic 128-bit loads.  An atomic 128
1737  * bit load is required to prevent the following from happening:
1738  *
1739  * cpu 0			cpu 1			comments
1740  *
1741  * ldx tag						tag unlocked
1742  *				ldstub lock		set lock
1743  *				stx data
1744  *				stx tag			unlock
1745  * ldx tag						incorrect tte!!!
1746  *
1747  * The software also maintains a bit in the tag to indicate an invalid
1748  * tsb entry.  The purpose of this bit is to allow the tsb invalidate code
1749  * to invalidate a tsb entry with a single cas.  See code for details.
1750  */
1751 
1752 union tsb_tag {
1753 	struct {
1754 		uint32_t	tag_res0:16;	/* reserved - context area */
1755 		uint32_t	tag_inv:1;	/* sw - invalid tsb entry */
1756 		uint32_t	tag_lock:1;	/* sw - locked tsb entry */
1757 		uint32_t	tag_res1:4;	/* reserved */
1758 		uint32_t	tag_va_hi:10;	/* va[63:54] */
1759 		uint32_t	tag_va_lo;	/* va[53:22] */
1760 	} tagbits;
1761 	struct tsb_tagints {
1762 		uint32_t	inthi;
1763 		uint32_t	intlo;
1764 	} tagints;
1765 };
1766 #define	tag_invalid		tagbits.tag_inv
1767 #define	tag_locked		tagbits.tag_lock
1768 #define	tag_vahi		tagbits.tag_va_hi
1769 #define	tag_valo		tagbits.tag_va_lo
1770 #define	tag_inthi		tagints.inthi
1771 #define	tag_intlo		tagints.intlo
1772 
1773 struct tsbe {
1774 	union tsb_tag	tte_tag;
1775 	tte_t		tte_data;
1776 };
1777 
1778 /*
1779  * A per cpu struct is kept that duplicates some info
1780  * used by the tl>0 tsb miss handlers plus it provides
1781  * a scratch area.  Its purpose is to minimize cache misses
1782  * in the tsb miss handler and is 128 bytes (2 e$ lines).
1783  *
1784  * There should be one allocated per cpu in nucleus memory
1785  * and should be aligned on an ecache line boundary.
1786  */
1787 struct tsbmiss {
1788 	sfmmu_t			*ksfmmup;	/* kernel hat id */
1789 	sfmmu_t			*usfmmup;	/* user hat id */
1790 	sf_srd_t		*usrdp;		/* user's SRD hat id */
1791 	struct tsbe		*tsbptr;	/* hardware computed ptr */
1792 	struct tsbe		*tsbptr4m;	/* hardware computed ptr */
1793 	struct tsbe		*tsbscdptr;	/* hardware computed ptr */
1794 	struct tsbe		*tsbscdptr4m;	/* hardware computed ptr */
1795 	uint64_t		ismblkpa;
1796 	struct hmehash_bucket	*khashstart;
1797 	struct hmehash_bucket	*uhashstart;
1798 	uint_t			khashsz;
1799 	uint_t			uhashsz;
1800 	uint16_t 		dcache_line_mask; /* used to flush dcache */
1801 	uchar_t			uhat_tteflags;	/* private page sizes */
1802 	uchar_t			uhat_rtteflags;	/* SHME pagesizes */
1803 	uint32_t		utsb_misses;
1804 	uint32_t		ktsb_misses;
1805 	uint16_t		uprot_traps;
1806 	uint16_t		kprot_traps;
1807 	/*
1808 	 * scratch[0] -> TSB_TAGACC
1809 	 * scratch[1] -> TSBMISS_HMEBP
1810 	 * scratch[2] -> TSBMISS_HATID
1811 	 */
1812 	uintptr_t		scratch[3];
1813 	ulong_t		shmermap[SFMMU_HMERGNMAP_WORDS];	/* 8 bytes */
1814 	ulong_t		scd_shmermap[SFMMU_HMERGNMAP_WORDS];	/* 8 bytes */
1815 	uint8_t		pad[48];			/* pad to 64 bytes */
1816 };
1817 
1818 /*
1819  * A per cpu struct is kept for the use within the tl>0 kpm tsb
1820  * miss handler. Some members are duplicates of common data or
1821  * the physical addresses of common data. A few members are also
1822  * written by the tl>0 kpm tsb miss handler. Its purpose is to
1823  * minimize cache misses in the kpm tsb miss handler and occupies
1824  * one ecache line. There should be one allocated per cpu in
1825  * nucleus memory and it should be aligned on an ecache line
1826  * boundary. It is not merged w/ struct tsbmiss since there is
1827  * not much to share and the tsbmiss pathes are different, so
1828  * a kpm tlbmiss/tsbmiss only touches one cacheline, except for
1829  * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter
1830  * of struct tsbmiss is used on every dtlb miss.
1831  */
1832 struct kpmtsbm {
1833 	caddr_t		vbase;		/* start of address kpm range */
1834 	caddr_t		vend;		/* end of address kpm range */
1835 	uchar_t		flags;		/* flags needed in TL tsbmiss handler */
1836 	uchar_t		sz_shift;	/* for single kpm window */
1837 	uchar_t		kpmp_shift;	/* hash lock shift */
1838 	uchar_t		kpmp2pshft;	/* kpm page to page shift */
1839 	uint_t		kpmp_table_sz;	/* size of kpmp_table or kpmp_stable */
1840 	uint64_t	kpmp_tablepa;	/* paddr of kpmp_table or kpmp_stable */
1841 	uint64_t	msegphashpa;	/* paddr of memseg_phash */
1842 	struct tsbe	*tsbptr;	/* saved ktsb pointer */
1843 	uint_t		kpm_dtlb_misses; /* kpm tlbmiss counter */
1844 	uint_t		kpm_tsb_misses;	/* kpm tsbmiss counter */
1845 	uintptr_t	pad[1];
1846 };
1847 
1848 extern size_t	tsb_slab_size;
1849 extern uint_t	tsb_slab_shift;
1850 extern size_t	tsb_slab_mask;
1851 
1852 #endif /* !_ASM */
1853 
1854 /*
1855  * Flags for TL kpm tsbmiss handler
1856  */
1857 #define	KPMTSBM_ENABLE_FLAG	0x01	/* bit copy of kpm_enable */
1858 #define	KPMTSBM_TLTSBM_FLAG	0x02	/* use TL tsbmiss handler */
1859 #define	KPMTSBM_TSBPHYS_FLAG	0x04	/* use ASI_MEM for TSB update */
1860 
1861 /*
1862  * The TSB
1863  * All TSB sizes supported by the hardware are now supported (8K - 1M).
1864  * For kernel TSBs we may go beyond the hardware supported sizes and support
1865  * larger TSBs via software.
1866  * All TTE sizes are supported in the TSB; the manner in which this is
1867  * done is cpu dependent.
1868  */
1869 #define	TSB_MIN_SZCODE		TSB_8K_SZCODE	/* min. supported TSB size */
1870 #define	TSB_MIN_OFFSET_MASK	(TSB_OFFSET_MASK(TSB_MIN_SZCODE))
1871 
1872 #ifdef sun4v
1873 #define	UTSB_MAX_SZCODE		TSB_256M_SZCODE /* max. supported TSB size */
1874 #else /* sun4u */
1875 #define	UTSB_MAX_SZCODE		TSB_1M_SZCODE	/* max. supported TSB size */
1876 #endif /* sun4v */
1877 
1878 #define	UTSB_MAX_OFFSET_MASK	(TSB_OFFSET_MASK(UTSB_MAX_SZCODE))
1879 
1880 #define	TSB_FREEMEM_MIN		0x1000		/* 32 mb */
1881 #define	TSB_FREEMEM_LARGE	0x10000		/* 512 mb */
1882 #define	TSB_8K_SZCODE		0		/* 512 entries */
1883 #define	TSB_16K_SZCODE		1		/* 1k entries */
1884 #define	TSB_32K_SZCODE		2		/* 2k entries */
1885 #define	TSB_64K_SZCODE		3		/* 4k entries */
1886 #define	TSB_128K_SZCODE		4		/* 8k entries */
1887 #define	TSB_256K_SZCODE		5		/* 16k entries */
1888 #define	TSB_512K_SZCODE		6		/* 32k entries */
1889 #define	TSB_1M_SZCODE		7		/* 64k entries */
1890 #define	TSB_2M_SZCODE		8		/* 128k entries */
1891 #define	TSB_4M_SZCODE		9		/* 256k entries */
1892 #define	TSB_8M_SZCODE		10		/* 512k entries */
1893 #define	TSB_16M_SZCODE		11		/* 1M entries */
1894 #define	TSB_32M_SZCODE		12		/* 2M entries */
1895 #define	TSB_64M_SZCODE		13		/* 4M entries */
1896 #define	TSB_128M_SZCODE		14		/* 8M entries */
1897 #define	TSB_256M_SZCODE		15		/* 16M entries */
1898 #define	TSB_ENTRY_SHIFT		4	/* each entry = 128 bits = 16 bytes */
1899 #define	TSB_ENTRY_SIZE		(1 << 4)
1900 #define	TSB_START_SIZE		9
1901 #define	TSB_ENTRIES(tsbsz)	(1 << (TSB_START_SIZE + tsbsz))
1902 #define	TSB_BYTES(tsbsz)	(TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT)
1903 #define	TSB_OFFSET_MASK(tsbsz)	(TSB_ENTRIES(tsbsz) - 1)
1904 #define	TSB_BASEADDR_MASK	((1 << 12) - 1)
1905 
1906 /*
1907  * sun4u platforms
1908  * ---------------
1909  * We now support two user TSBs with one TSB base register.
1910  * Hence the TSB base register is split up as follows:
1911  *
1912  * When only one TSB present:
1913  *   [63  62..42  41..13  12..4  3..0]
1914  *     ^   ^       ^       ^     ^
1915  *     |   |       |       |     |
1916  *     |   |       |       |     |_ TSB size code
1917  *     |   |       |       |
1918  *     |   |       |       |_ Reserved 0
1919  *     |   |       |
1920  *     |   |       |_ TSB VA[41..13]
1921  *     |   |
1922  *     |   |_ VA hole (Spitfire), zeros (Cheetah and beyond)
1923  *     |
1924  *     |_ 0
1925  *
1926  * When second TSB present:
1927  *   [63  62..42  41..33  32..29  28..22  21..13  12..4  3..0]
1928  *     ^   ^       ^       ^       ^       ^       ^     ^
1929  *     |   |       |       |       |       |       |     |
1930  *     |   |       |       |       |       |       |     |_ First TSB size code
1931  *     |   |       |       |       |       |       |
1932  *     |   |       |       |       |       |       |_ Reserved 0
1933  *     |   |       |       |       |       |
1934  *     |   |       |       |       |       |_ First TSB's VA[21..13]
1935  *     |   |       |       |       |
1936  *     |   |       |       |       |_ Reserved for future use
1937  *     |   |       |       |
1938  *     |   |       |       |_ Second TSB's size code
1939  *     |   |       |
1940  *     |   |       |_ Second TSB's VA[21..13]
1941  *     |   |
1942  *     |   |_ VA hole (Spitfire) / ones (Cheetah and beyond)
1943  *     |
1944  *     |_ 1
1945  *
1946  * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs
1947  * may be up to 4M in size.  For now, only hardware supported TSB sizes
1948  * are supported, though the slabs are usually 4M in size.
1949  *
1950  * sun4u platforms that define UTSB_PHYS use physical addressing to access
1951  * the user TSBs at TL>0.  The first user TSB base is in the MMU I/D TSB Base
1952  * registers.  The second TSB base uses a dedicated scratchpad register which
1953  * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h.  The layout for
1954  * both registers is equivalent to sun4v below, except the TSB PA range is
1955  * [46..13] for sun4u.
1956  *
1957  * sun4v platforms
1958  * ---------------
1959  * On sun4v platforms, we use two dedicated scratchpad registers as pseudo
1960  * hardware TSB base registers to hold up to two different user TSBs.
1961  *
1962  * Each register contains TSB's physical base and size code information
1963  * as follows:
1964  *
1965  *   [63..56  55..13  12..4  3..0]
1966  *      ^       ^       ^     ^
1967  *      |       |       |     |
1968  *      |       |       |     |_ TSB size code
1969  *      |       |       |
1970  *      |       |       |_ Reserved 0
1971  *      |       |
1972  *      |       |_ TSB PA[55..13]
1973  *      |
1974  *      |
1975  *      |
1976  *      |_ 0 for valid TSB
1977  *
1978  * Absence of a user TSB (primarily the second user TSB) is indicated by
1979  * storing a negative value in the TSB base register. This allows us to
1980  * check for presence of a user TSB by simply checking bit# 63.
1981  */
1982 #define	TSBREG_MSB_SHIFT	32		/* set upper bits */
1983 #define	TSBREG_MSB_CONST	0xfffff800	/* set bits 63..43 */
1984 #define	TSBREG_FIRTSB_SHIFT	42		/* to clear bits 63:22 */
1985 #define	TSBREG_SECTSB_MKSHIFT	20		/* 21:13 --> 41:33 */
1986 #define	TSBREG_SECTSB_LSHIFT	22		/* to clear bits 63:42 */
1987 #define	TSBREG_SECTSB_RSHIFT	(TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT)
1988 						/* sectsb va -> bits 21:13 */
1989 						/* after clearing upper bits */
1990 #define	TSBREG_SECSZ_SHIFT	29		/* to get sectsb szc to 3:0 */
1991 #define	TSBREG_VAMASK_SHIFT	13		/* set up VA mask */
1992 
1993 #define	BIGKTSB_SZ_MASK		0xf
1994 #define	TSB_SOFTSZ_MASK		BIGKTSB_SZ_MASK
1995 #define	MIN_BIGKTSB_SZCODE	9	/* 256k entries */
1996 #define	MAX_BIGKTSB_SZCODE	11	/* 1024k entries */
1997 #define	MAX_BIGKTSB_TTES	(TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M)
1998 
1999 #define	TAG_VALO_SHIFT		22		/* tag's va are bits 63-22 */
2000 /*
2001  * sw bits used on tsb_tag - bit masks used only in assembly
2002  * use only a sethi for these fields.
2003  */
2004 #define	TSBTAG_INVALID	0x00008000		/* tsb_tag.tag_invalid */
2005 #define	TSBTAG_LOCKED	0x00004000		/* tsb_tag.tag_locked */
2006 
2007 #ifdef	_ASM
2008 
2009 /*
2010  * Marker to indicate that this instruction will be hot patched at runtime
2011  * to some other value.
2012  * This value must be zero since it fills in the imm bits of the target
2013  * instructions to be patched
2014  */
2015 #define	RUNTIME_PATCH	(0)
2016 
2017 /*
2018  * V9 defines nop instruction as the following, which we use
2019  * at runtime to nullify some instructions we don't want to
2020  * execute in the trap handlers on certain platforms.
2021  */
2022 #define	MAKE_NOP_INSTR(reg)	\
2023 	sethi	%hi(0x1000000), reg
2024 
2025 /*
2026  * This macro constructs a SPARC V9 "jmpl <source reg>, %g0"
2027  * instruction, with the source register specified by the jump_reg_number.
2028  * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14].
2029  * The instruction is returned in reg. The macro is used to patch in a jmpl
2030  * instruction at runtime.
2031  */
2032 #define	MAKE_JMP_INSTR(jump_reg_number, reg, tmp)	\
2033 	sethi	%hi(0x81c00000), reg;			\
2034 	mov	jump_reg_number, tmp;			\
2035 	sll	tmp, 14, tmp;				\
2036 	or	reg, tmp, reg
2037 
2038 /*
2039  * Macro to get hat per-MMU cnum on this CPU.
2040  * sfmmu - In, pass in "sfmmup" from the caller.
2041  * cnum	- Out, return 'cnum' to the caller
2042  * scr	- scratch
2043  */
2044 #define	SFMMU_CPU_CNUM(sfmmu, cnum, scr)				      \
2045 	CPU_ADDR(scr, cnum);	/* scr = load CPU struct addr */	      \
2046 	ld	[scr + CPU_MMU_IDX], cnum;	/* cnum = mmuid */	      \
2047 	add	sfmmu, SFMMU_CTXS, scr;	/* scr = sfmmup->sfmmu_ctxs[] */      \
2048 	sllx    cnum, SFMMU_MMU_CTX_SHIFT, cnum;			      \
2049 	add	scr, cnum, scr;		/* scr = sfmmup->sfmmu_ctxs[id] */    \
2050 	ldx	[scr + SFMMU_MMU_GC_NUM], scr;	/* sfmmu_ctxs[id].gcnum */    \
2051 	sllx    scr, SFMMU_MMU_CNUM_LSHIFT, scr;			      \
2052 	srlx    scr, SFMMU_MMU_CNUM_LSHIFT, cnum;	/* cnum = sfmmu cnum */
2053 
2054 /*
2055  * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry
2056  * entry - In,  pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller.
2057  * gnum - Out, return sfmmu gnum
2058  * cnum - Out, return sfmmu cnum
2059  * reg	- scratch
2060  */
2061 #define	SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg)			     \
2062 	ldx	[entry + SFMMU_CTXS], reg;  /* reg = sfmmu (gnum | cnum) */  \
2063 	srlx	reg, SFMMU_MMU_GNUM_RSHIFT, gnum;    /* gnum = sfmmu gnum */ \
2064 	sllx	reg, SFMMU_MMU_CNUM_LSHIFT, cnum;			     \
2065 	srlx	cnum, SFMMU_MMU_CNUM_LSHIFT, cnum;   /* cnum = sfmmu cnum */
2066 
2067 /*
2068  * Macro to get this CPU's tsbmiss area.
2069  */
2070 #define	CPU_TSBMISS_AREA(tsbmiss, tmp1)					\
2071 	CPU_INDEX(tmp1, tsbmiss);		/* tmp1 = cpu idx */	\
2072 	sethi	%hi(tsbmiss_area), tsbmiss;	/* tsbmiss base ptr */	\
2073 	mulx    tmp1, TSBMISS_SIZE, tmp1;	/* byte offset */	\
2074 	or	tsbmiss, %lo(tsbmiss_area), tsbmiss;			\
2075 	add	tsbmiss, tmp1, tsbmiss		/* tsbmiss area of CPU */
2076 
2077 
2078 /*
2079  * Macro to set kernel context + page size codes in DMMU primary context
2080  * register. It is only necessary for sun4u because sun4v does not need
2081  * page size codes
2082  */
2083 #ifdef sun4v
2084 
2085 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3)
2086 
2087 #else
2088 
2089 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \
2090 	sethi	%hi(kcontextreg), reg0;					\
2091 	ldx	[reg0 + %lo(kcontextreg)], reg0;			\
2092 	mov	MMU_PCONTEXT, reg1;					\
2093 	ldxa	[reg1]ASI_MMU_CTX, reg2;				\
2094 	xor	reg0, reg2, reg2;					\
2095 	brz	reg2, label3;						\
2096 	srlx	reg2, CTXREG_NEXT_SHIFT, reg2;				\
2097 	rdpr	%pstate, reg3;		/* disable interrupts */	\
2098 	btst	PSTATE_IE, reg3;					\
2099 /*CSTYLED*/								\
2100 	bnz,a,pt %icc, label1;						\
2101 	wrpr	reg3, PSTATE_IE, %pstate;				\
2102 /*CSTYLED*/								\
2103 label1:;								\
2104 	brz	reg2, label2;	   /* need demap if N_pgsz0/1 change */	\
2105 	sethi	%hi(FLUSH_ADDR), reg4;					\
2106 	mov	DEMAP_ALL_TYPE, reg2;					\
2107 	stxa	%g0, [reg2]ASI_DTLB_DEMAP;				\
2108 	stxa	%g0, [reg2]ASI_ITLB_DEMAP;				\
2109 /*CSTYLED*/								\
2110 label2:;								\
2111 	stxa	reg0, [reg1]ASI_MMU_CTX;				\
2112 	flush	reg4;							\
2113 	btst	PSTATE_IE, reg3;					\
2114 /*CSTYLED*/								\
2115 	bnz,a,pt %icc, label3;						\
2116 	wrpr	%g0, reg3, %pstate;	/* restore interrupt state */	\
2117 label3:;
2118 
2119 #endif
2120 
2121 /*
2122  * Macro to setup arguments with kernel sfmmup context + page size before
2123  * calling sfmmu_setctx_sec()
2124  */
2125 #ifdef sun4v
2126 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
2127 	set	KCONTEXT, arg0;					\
2128 	set	0, arg1;
2129 #else
2130 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
2131 	ldub	[sfmmup + SFMMU_CEXT], arg1;			\
2132 	set	KCONTEXT, arg0;					\
2133 	sll	arg1, CTXREG_EXT_SHIFT, arg1;
2134 #endif
2135 
2136 #define	PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr)	       	\
2137 	andcc	pstatereg, PSTATE_IE, %g0;	/* panic if intrs */	\
2138 /*CSTYLED*/								\
2139 	bnz,pt	%icc, label;			/* already disabled */	\
2140 	nop;								\
2141 									\
2142 	sethi	%hi(panicstr), scr;					\
2143 	ldx	[scr + %lo(panicstr)], scr;				\
2144 	tst	scr;							\
2145 /*CSTYLED*/								\
2146 	bnz,pt	%xcc, label;						\
2147 	nop;								\
2148 									\
2149 	save	%sp, -SA(MINFRAME), %sp;				\
2150 	sethi	%hi(sfmmu_panic1), %o0;					\
2151 	call	panic;							\
2152 	or	%o0, %lo(sfmmu_panic1), %o0;				\
2153 /*CSTYLED*/								\
2154 label:
2155 
2156 #define	PANIC_IF_INTR_ENABLED_PSTR(label, scr)				\
2157 	/*								\
2158 	 * The caller must have disabled interrupts.			\
2159 	 * If interrupts are not disabled, panic			\
2160 	 */								\
2161 	rdpr	%pstate, scr;						\
2162 	andcc	scr, PSTATE_IE, %g0;					\
2163 /*CSTYLED*/								\
2164 	bz,pt	%icc, label;						\
2165 	nop;								\
2166 									\
2167 	sethi	%hi(panicstr), scr;					\
2168 	ldx	[scr + %lo(panicstr)], scr;				\
2169 	tst	scr;							\
2170 /*CSTYLED*/								\
2171 	bnz,pt	%xcc, label;						\
2172 	nop;								\
2173 									\
2174 	sethi	%hi(sfmmu_panic6), %o0;					\
2175 	call	panic;							\
2176 	or	%o0, %lo(sfmmu_panic6), %o0;				\
2177 /*CSTYLED*/								\
2178 label:
2179 
2180 #endif	/* _ASM */
2181 
2182 #ifndef _ASM
2183 
2184 #ifdef VAC
2185 /*
2186  * Page coloring
2187  * The p_vcolor field of the page struct (1 byte) is used to store the
2188  * virtual page color.  This provides for 255 colors.  The value zero is
2189  * used to mean the page has no color - never been mapped or somehow
2190  * purified.
2191  */
2192 
2193 #define	PP_GET_VCOLOR(pp)	(((pp)->p_vcolor) - 1)
2194 #define	PP_NEWPAGE(pp)		(!(pp)->p_vcolor)
2195 #define	PP_SET_VCOLOR(pp, color)                                          \
2196 	((pp)->p_vcolor = ((color) + 1))
2197 
2198 /*
2199  * As mentioned p_vcolor == 0 means there is no color for this page.
2200  * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus
2201  * one so we define this constant.
2202  */
2203 #define	NO_VCOLOR	(-1)
2204 
2205 #define	addr_to_vcolor(addr) \
2206 	(((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask)
2207 #else	/* VAC */
2208 #define	addr_to_vcolor(addr)	(0)
2209 #endif	/* VAC */
2210 
2211 /*
2212  * The field p_index in the psm page structure is for large pages support.
2213  * P_index is a bit-vector of the different mapping sizes that a given page
2214  * is part of. An hme structure for a large mapping is only added in the
2215  * group leader page (first page). All pages covered by a given large mapping
2216  * have the corrosponding mapping bit set in their p_index field. This allows
2217  * us to only store an explicit hme structure in the leading page which
2218  * simplifies the mapping link list management. Furthermore, it provides us
2219  * a fast mechanism for determining the largest mapping a page is part of. For
2220  * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A.
2221  *
2222  * Implementation note: even though the first bit in p_index is reserved
2223  * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set.
2224  * In addition, the upper four bits of the p_index field are used by the
2225  * code as temporaries
2226  */
2227 
2228 /*
2229  * Defines for psm page struct fields and large page support
2230  */
2231 #define	SFMMU_INDEX_SHIFT		6
2232 #define	SFMMU_INDEX_MASK		((1 << SFMMU_INDEX_SHIFT) - 1)
2233 
2234 /* Return the mapping index */
2235 #define	PP_MAPINDEX(pp)	((pp)->p_index & SFMMU_INDEX_MASK)
2236 
2237 /*
2238  * These macros rely on the following property:
2239  * All pages constituting a large page are covered by a virtually
2240  * contiguous set of page_t's.
2241  */
2242 
2243 /* Return the leader for this mapping size */
2244 #define	PP_GROUPLEADER(pp, sz) \
2245 	(&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))])
2246 
2247 /* Return the root page for this page based on p_szc */
2248 #define	PP_PAGEROOT(pp)	((pp)->p_szc == 0 ? (pp) : \
2249 	PP_GROUPLEADER((pp), (pp)->p_szc))
2250 
2251 #define	PP_PAGENEXT_N(pp, n)	((pp) + (n))
2252 #define	PP_PAGENEXT(pp)		PP_PAGENEXT_N((pp), 1)
2253 
2254 #define	PP_PAGEPREV_N(pp, n)	((pp) - (n))
2255 #define	PP_PAGEPREV(pp)		PP_PAGEPREV_N((pp), 1)
2256 
2257 #define	PP_ISMAPPED_LARGE(pp)	(PP_MAPINDEX(pp) != 0)
2258 
2259 /* Need function to test the page mappping which takes p_index into account */
2260 #define	PP_ISMAPPED(pp)	((pp)->p_mapping || PP_ISMAPPED_LARGE(pp))
2261 
2262 /*
2263  * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT
2264  * set p_index field.
2265  */
2266 #define	PAGESZ_TO_INDEX(sz)	(1 << (sz))
2267 
2268 
2269 /*
2270  * prototypes for hat assembly routines.  Some of these are
2271  * known to machine dependent VM code.
2272  */
2273 extern uint64_t sfmmu_make_tsbtag(caddr_t);
2274 extern struct tsbe *
2275 		sfmmu_get_tsbe(uint64_t, caddr_t, int, int);
2276 extern void	sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int);
2277 extern void	sfmmu_unload_tsbe(struct tsbe *, uint64_t, int);
2278 extern void	sfmmu_load_mmustate(sfmmu_t *);
2279 extern void	sfmmu_raise_tsb_exception(uint64_t, uint64_t);
2280 #ifndef sun4v
2281 extern void	sfmmu_itlb_ld_kva(caddr_t, tte_t *);
2282 extern void	sfmmu_dtlb_ld_kva(caddr_t, tte_t *);
2283 #endif /* sun4v */
2284 extern void	sfmmu_copytte(tte_t *, tte_t *);
2285 extern int	sfmmu_modifytte(tte_t *, tte_t *, tte_t *);
2286 extern int	sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *);
2287 extern pfn_t	sfmmu_ttetopfn(tte_t *, caddr_t);
2288 extern uint_t	sfmmu_disable_intrs(void);
2289 extern void	sfmmu_enable_intrs(uint_t);
2290 /*
2291  * functions exported to machine dependent VM code
2292  */
2293 extern void	sfmmu_patch_ktsb(void);
2294 #ifndef UTSB_PHYS
2295 extern void	sfmmu_patch_utsb(void);
2296 #endif /* UTSB_PHYS */
2297 extern pfn_t	sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *);
2298 extern void	sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *);
2299 extern pfn_t	sfmmu_kvaszc2pfn(caddr_t, int);
2300 #ifdef	DEBUG
2301 extern void	sfmmu_check_kpfn(pfn_t);
2302 #else
2303 #define		sfmmu_check_kpfn(pfn)	/* disabled */
2304 #endif	/* DEBUG */
2305 extern void	sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
2306 extern void	sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,	uint_t);
2307 extern void	sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t);
2308 extern void	sfmmu_init_tsbs(void);
2309 extern caddr_t  sfmmu_ktsb_alloc(caddr_t);
2310 extern int	sfmmu_getctx_pri(void);
2311 extern int	sfmmu_getctx_sec(void);
2312 extern void	sfmmu_setctx_sec(uint_t);
2313 extern void	sfmmu_inv_tsb(caddr_t, uint_t);
2314 extern void	sfmmu_init_ktsbinfo(void);
2315 extern int	sfmmu_setup_4lp(void);
2316 extern void	sfmmu_patch_mmu_asi(int);
2317 extern void	sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int);
2318 extern void	sfmmu_cache_flushall(void);
2319 extern pgcnt_t  sfmmu_tte_cnt(sfmmu_t *, uint_t);
2320 extern void	*sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int);
2321 extern void	sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t);
2322 extern void	sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *);
2323 
2324 extern void	hat_kern_setup(void);
2325 extern int	hat_page_relocate(page_t **, page_t **, spgcnt_t *);
2326 extern int	sfmmu_get_ppvcolor(struct page *);
2327 extern int	sfmmu_get_addrvcolor(caddr_t);
2328 extern int	sfmmu_hat_lock_held(sfmmu_t *);
2329 extern int	sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int);
2330 
2331 /*
2332  * Functions exported to xhat_sfmmu.c
2333  */
2334 extern kmutex_t *sfmmu_mlist_enter(page_t *);
2335 extern void	sfmmu_mlist_exit(kmutex_t *);
2336 extern int	sfmmu_mlist_held(struct page *);
2337 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *);
2338 
2339 /*
2340  * MMU-specific functions optionally imported from the CPU module
2341  */
2342 #pragma weak mmu_init_scd
2343 #pragma weak mmu_large_pages_disabled
2344 #pragma weak mmu_set_ctx_page_sizes
2345 #pragma weak mmu_check_page_sizes
2346 
2347 extern void mmu_init_scd(sf_scd_t *);
2348 extern uint_t mmu_large_pages_disabled(uint_t);
2349 extern void mmu_set_ctx_page_sizes(sfmmu_t *);
2350 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *);
2351 
2352 extern sfmmu_t 		*ksfmmup;
2353 extern caddr_t		ktsb_base;
2354 extern uint64_t		ktsb_pbase;
2355 extern int		ktsb_sz;
2356 extern int		ktsb_szcode;
2357 extern caddr_t		ktsb4m_base;
2358 extern uint64_t		ktsb4m_pbase;
2359 extern int		ktsb4m_sz;
2360 extern int		ktsb4m_szcode;
2361 extern uint64_t		kpm_tsbbase;
2362 extern int		kpm_tsbsz;
2363 extern int		ktsb_phys;
2364 extern int		enable_bigktsb;
2365 #ifndef sun4v
2366 extern int		utsb_dtlb_ttenum;
2367 extern int		utsb4m_dtlb_ttenum;
2368 #endif /* sun4v */
2369 extern int		uhmehash_num;
2370 extern int		khmehash_num;
2371 extern struct hmehash_bucket *uhme_hash;
2372 extern struct hmehash_bucket *khme_hash;
2373 extern kmutex_t		*mml_table;
2374 extern uint_t		mml_table_sz;
2375 extern uint_t		mml_shift;
2376 extern uint_t		hblk_alloc_dynamic;
2377 extern struct tsbmiss	tsbmiss_area[NCPU];
2378 extern struct kpmtsbm	kpmtsbm_area[NCPU];
2379 
2380 #ifndef sun4v
2381 extern int		dtlb_resv_ttenum;
2382 extern caddr_t		utsb_vabase;
2383 extern caddr_t		utsb4m_vabase;
2384 #endif /* sun4v */
2385 extern vmem_t		*kmem_tsb_default_arena[];
2386 extern int		tsb_lgrp_affinity;
2387 
2388 extern uint_t		disable_large_pages;
2389 extern uint_t		disable_ism_large_pages;
2390 extern uint_t		disable_auto_data_large_pages;
2391 extern uint_t		disable_auto_text_large_pages;
2392 
2393 /* kpm externals */
2394 extern pfn_t		sfmmu_kpm_vatopfn(caddr_t);
2395 extern void		sfmmu_kpm_patch_tlbm(void);
2396 extern void		sfmmu_kpm_patch_tsbm(void);
2397 extern void		sfmmu_patch_shctx(void);
2398 extern void		sfmmu_kpm_load_tsb(caddr_t, tte_t *, int);
2399 extern void		sfmmu_kpm_unload_tsb(caddr_t, int);
2400 extern void		sfmmu_kpm_tsbmtl(short *, uint_t *, int);
2401 extern int		sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int);
2402 extern caddr_t		kpm_vbase;
2403 extern size_t		kpm_size;
2404 extern struct memseg	*memseg_hash[];
2405 extern uint64_t		memseg_phash[];
2406 extern kpm_hlk_t	*kpmp_table;
2407 extern kpm_shlk_t	*kpmp_stable;
2408 extern uint_t		kpmp_table_sz;
2409 extern uint_t		kpmp_stable_sz;
2410 extern uchar_t		kpmp_shift;
2411 
2412 #define	PP_ISMAPPED_KPM(pp)	((pp)->p_kpmref > 0)
2413 
2414 #define	IS_KPM_ALIAS_RANGE(vaddr)					\
2415 	(((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0)
2416 
2417 #endif /* !_ASM */
2418 
2419 /* sfmmu_kpm_tsbmtl flags */
2420 #define	KPMTSBM_STOP		0
2421 #define	KPMTSBM_START		1
2422 
2423 /*
2424  * For kpm_smallpages, the state about how a kpm page is mapped and whether
2425  * it is ready to go is indicated by the two 4-bit fields defined in the
2426  * kpm_spage structure as follows:
2427  * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not
2428  * kp_mapped_flag bit[4:7] - the mapping is ready to go or not
2429  * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss
2430  * handler can drop the mapping in regardless of the caching state of the
2431  * mapping. Otherwise, we will have C handler resolve the VAC conflict no
2432  * matter the page is currently mapped cacheable or non-cacheable.
2433  */
2434 #define	KPM_MAPPEDS		0x1	/* small mapping valid, no conflict */
2435 #define	KPM_MAPPEDSC		0x2	/* small mapping valid, conflict */
2436 #define	KPM_MAPPED_GO		0x10	/* the mapping is ready to go */
2437 #define	KPM_MAPPED_MASK		0xf
2438 
2439 /* Physical memseg address NULL marker */
2440 #define	MSEG_NULLPTR_PA		-1
2441 
2442 /*
2443  * Memseg hash defines for kpm trap level tsbmiss handler.
2444  * Must be in sync w/ page.h .
2445  */
2446 #define	SFMMU_MEM_HASH_SHIFT		0x9
2447 #define	SFMMU_N_MEM_SLOTS		0x200
2448 #define	SFMMU_MEM_HASH_ENTRY_SHIFT	3
2449 
2450 #ifndef	_ASM
2451 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT)
2452 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT
2453 #endif
2454 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS)
2455 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS
2456 #endif
2457 
2458 /* Physical memseg address NULL marker */
2459 #define	SFMMU_MEMSEG_NULLPTR_PA		-1
2460 
2461 /*
2462  * Check KCONTEXT to be zero, asm parts depend on that assumption.
2463  */
2464 #if (KCONTEXT != 0)
2465 #error KCONTEXT != 0
2466 #endif
2467 #endif	/* !_ASM */
2468 
2469 
2470 #endif /* _KERNEL */
2471 
2472 #ifndef _ASM
2473 /*
2474  * ctx, hmeblk, mlistlock and other stats for sfmmu
2475  */
2476 struct sfmmu_global_stat {
2477 	int		sf_tsb_exceptions;	/* # of tsb exceptions */
2478 	int		sf_tsb_raise_exception;	/* # tsb exc. w/o TLB flush */
2479 
2480 	int		sf_pagefaults;		/* # of pagefaults */
2481 
2482 	int		sf_uhash_searches;	/* # of user hash searches */
2483 	int		sf_uhash_links;		/* # of user hash links */
2484 	int		sf_khash_searches;	/* # of kernel hash searches */
2485 	int		sf_khash_links;		/* # of kernel hash links */
2486 
2487 	int		sf_swapout;		/* # times hat swapped out */
2488 
2489 	int		sf_tsb_alloc;		/* # TSB allocations */
2490 	int		sf_tsb_allocfail;	/* # times TSB alloc fail */
2491 	int		sf_tsb_sectsb_create;	/* # times second TSB added */
2492 
2493 	int		sf_scd_1sttsb_alloc;	/* # SCD 1st TSB allocations */
2494 	int		sf_scd_2ndtsb_alloc;	/* # SCD 2nd TSB allocations */
2495 	int		sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */
2496 	int		sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */
2497 
2498 
2499 	int		sf_tteload8k;		/* calls to sfmmu_tteload */
2500 	int		sf_tteload64k;		/* calls to sfmmu_tteload */
2501 	int		sf_tteload512k;		/* calls to sfmmu_tteload */
2502 	int		sf_tteload4m;		/* calls to sfmmu_tteload */
2503 	int		sf_tteload32m;		/* calls to sfmmu_tteload */
2504 	int		sf_tteload256m;		/* calls to sfmmu_tteload */
2505 
2506 	int		sf_tsb_load8k;		/* # times loaded 8K tsbent */
2507 	int		sf_tsb_load4m;		/* # times loaded 4M tsbent */
2508 
2509 	int		sf_hblk_hit;		/* found hblk during tteload */
2510 	int		sf_hblk8_ncreate;	/* static hblk8's created */
2511 	int		sf_hblk8_nalloc;	/* static hblk8's allocated */
2512 	int		sf_hblk1_ncreate;	/* static hblk1's created */
2513 	int		sf_hblk1_nalloc;	/* static hblk1's allocated */
2514 	int		sf_hblk_slab_cnt;	/* sfmmu8_cache slab creates */
2515 	int		sf_hblk_reserve_cnt;	/* hblk_reserve usage */
2516 	int		sf_hblk_recurse_cnt;	/* hblk_reserve	owner reqs */
2517 	int		sf_hblk_reserve_hit;	/* hblk_reserve hash hits */
2518 	int		sf_get_free_success;	/* reserve list allocs */
2519 	int		sf_get_free_throttle;	/* fails due to throttling */
2520 	int		sf_get_free_fail;	/* fails due to empty list */
2521 	int		sf_put_free_success;	/* reserve list frees */
2522 	int		sf_put_free_fail;	/* fails due to full list */
2523 
2524 	int		sf_pgcolor_conflict;	/* VAC conflict resolution */
2525 	int		sf_uncache_conflict;	/* VAC conflict resolution */
2526 	int		sf_unload_conflict;	/* VAC unload resolution */
2527 	int		sf_ism_uncache;		/* VAC conflict resolution */
2528 	int		sf_ism_recache;		/* VAC conflict resolution */
2529 	int		sf_recache;		/* VAC conflict resolution */
2530 
2531 	int		sf_steal_count;		/* # of hblks stolen */
2532 
2533 	int		sf_pagesync;		/* # of pagesyncs */
2534 	int		sf_clrwrt;		/* # of clear write perms */
2535 	int		sf_pagesync_invalid;	/* pagesync with inv tte */
2536 
2537 	int		sf_kernel_xcalls;	/* # of kernel cross calls */
2538 	int		sf_user_xcalls;		/* # of user cross calls */
2539 
2540 	int		sf_tsb_grow;		/* # of user tsb grows */
2541 	int		sf_tsb_shrink;		/* # of user tsb shrinks */
2542 	int		sf_tsb_resize_failures;	/* # of user tsb resize */
2543 	int		sf_tsb_reloc;		/* # of user tsb relocations */
2544 
2545 	int		sf_user_vtop;		/* # of user vatopfn calls */
2546 
2547 	int		sf_ctx_inv;		/* #times invalidate MMU ctx */
2548 
2549 	int		sf_tlb_reprog_pgsz;	/* # times switch TLB pgsz */
2550 
2551 	int		sf_region_remap_demap;	/* # times shme remap demap */
2552 
2553 	int		sf_create_scd;		/* # times SCD is created */
2554 	int		sf_join_scd;		/* # process joined scd */
2555 	int		sf_leave_scd;		/* # process left scd */
2556 	int		sf_destroy_scd;		/* # times SCD is destroyed */
2557 };
2558 
2559 struct sfmmu_tsbsize_stat {
2560 	int		sf_tsbsz_8k;
2561 	int		sf_tsbsz_16k;
2562 	int		sf_tsbsz_32k;
2563 	int		sf_tsbsz_64k;
2564 	int		sf_tsbsz_128k;
2565 	int		sf_tsbsz_256k;
2566 	int		sf_tsbsz_512k;
2567 	int		sf_tsbsz_1m;
2568 	int		sf_tsbsz_2m;
2569 	int		sf_tsbsz_4m;
2570 	int		sf_tsbsz_8m;
2571 	int		sf_tsbsz_16m;
2572 	int		sf_tsbsz_32m;
2573 	int		sf_tsbsz_64m;
2574 	int		sf_tsbsz_128m;
2575 	int		sf_tsbsz_256m;
2576 };
2577 
2578 struct sfmmu_percpu_stat {
2579 	int	sf_itlb_misses;		/* # of itlb misses */
2580 	int	sf_dtlb_misses;		/* # of dtlb misses */
2581 	int	sf_utsb_misses;		/* # of user tsb misses */
2582 	int	sf_ktsb_misses;		/* # of kernel tsb misses */
2583 	int	sf_tsb_hits;		/* # of tsb hits */
2584 	int	sf_umod_faults;		/* # of mod (prot viol) flts */
2585 	int	sf_kmod_faults;		/* # of mod (prot viol) flts */
2586 };
2587 
2588 #define	SFMMU_STAT(stat)		sfmmu_global_stat.stat++
2589 #define	SFMMU_STAT_ADD(stat, amount)	sfmmu_global_stat.stat += (amount)
2590 #define	SFMMU_STAT_SET(stat, count)	sfmmu_global_stat.stat = (count)
2591 
2592 #define	SFMMU_MMU_STAT(stat)		CPU->cpu_m.cpu_mmu_ctxp->stat++
2593 
2594 #endif /* !_ASM */
2595 
2596 #ifdef	__cplusplus
2597 }
2598 #endif
2599 
2600 #endif	/* _VM_HAT_SFMMU_H */
2601