1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * VM - Hardware Address Translation management. 28 * 29 * This file describes the contents of the sun-reference-mmu(sfmmu)- 30 * specific hat data structures and the sfmmu-specific hat procedures. 31 * The machine-independent interface is described in <vm/hat.h>. 32 */ 33 34 #ifndef _VM_HAT_SFMMU_H 35 #define _VM_HAT_SFMMU_H 36 37 #ifdef __cplusplus 38 extern "C" { 39 #endif 40 41 #ifndef _ASM 42 43 #include <sys/types.h> 44 45 #endif /* _ASM */ 46 47 #ifdef _KERNEL 48 49 #include <sys/pte.h> 50 #include <vm/mach_sfmmu.h> 51 #include <sys/mmu.h> 52 53 /* 54 * Don't alter these without considering changes to ism_map_t. 55 */ 56 #define DEFAULT_ISM_PAGESIZE MMU_PAGESIZE4M 57 #define DEFAULT_ISM_PAGESZC TTE4M 58 #define ISM_PG_SIZE(ism_vbshift) (1 << ism_vbshift) 59 #define ISM_SZ_MASK(ism_vbshift) (ISM_PG_SIZE(ism_vbshift) - 1) 60 #define ISM_MAP_SLOTS 8 /* Change this carefully. */ 61 62 #ifndef _ASM 63 64 #include <sys/t_lock.h> 65 #include <vm/hat.h> 66 #include <vm/seg.h> 67 #include <sys/machparam.h> 68 #include <sys/systm.h> 69 #include <sys/x_call.h> 70 #include <vm/page.h> 71 #include <sys/ksynch.h> 72 73 typedef struct hat sfmmu_t; 74 typedef struct sf_scd sf_scd_t; 75 76 /* 77 * SFMMU attributes for hat_memload/hat_devload 78 */ 79 #define SFMMU_UNCACHEPTTE 0x01000000 /* unencache in physical $ */ 80 #define SFMMU_UNCACHEVTTE 0x02000000 /* unencache in virtual $ */ 81 #define SFMMU_SIDEFFECT 0x04000000 /* set side effect bit */ 82 #define SFMMU_LOAD_ALLATTR (HAT_PROT_MASK | HAT_ORDER_MASK | \ 83 HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC | \ 84 SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT) 85 86 87 /* 88 * sfmmu flags for hat_memload/hat_devload 89 */ 90 #define SFMMU_NO_TSBLOAD 0x08000000 /* do not preload tsb */ 91 #define SFMMU_LOAD_ALLFLAG (HAT_LOAD | HAT_LOAD_LOCK | \ 92 HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST | \ 93 HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD | \ 94 HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT) 95 96 /* 97 * sfmmu internal flag to hat_pageunload that spares locked mappings 98 */ 99 #define SFMMU_KERNEL_RELOC 0x8000 100 101 /* 102 * mode for sfmmu_chgattr 103 */ 104 #define SFMMU_SETATTR 0x0 105 #define SFMMU_CLRATTR 0x1 106 #define SFMMU_CHGATTR 0x2 107 108 /* 109 * sfmmu specific flags for page_t 110 */ 111 #define P_PNC 0x8 /* non-caching is permanent bit */ 112 #define P_TNC 0x10 /* non-caching is temporary bit */ 113 #define P_KPMS 0x20 /* kpm mapped small (vac alias prevention) */ 114 #define P_KPMC 0x40 /* kpm conflict page (vac alias prevention) */ 115 #define P_EXEC 0x80 /* execution reference (I-cache filled) */ 116 117 #define PP_GENERIC_ATTR(pp) ((pp)->p_nrm & (P_MOD | P_REF | P_RO)) 118 #define PP_ISMOD(pp) ((pp)->p_nrm & P_MOD) 119 #define PP_ISREF(pp) ((pp)->p_nrm & P_REF) 120 #define PP_ISRO(pp) ((pp)->p_nrm & P_RO) 121 #define PP_ISNC(pp) ((pp)->p_nrm & (P_PNC|P_TNC)) 122 #define PP_ISPNC(pp) ((pp)->p_nrm & P_PNC) 123 #ifdef VAC 124 #define PP_ISTNC(pp) ((pp)->p_nrm & P_TNC) 125 #endif 126 #define PP_ISKPMS(pp) ((pp)->p_nrm & P_KPMS) 127 #define PP_ISKPMC(pp) ((pp)->p_nrm & P_KPMC) 128 #define PP_ISEXEC(pp) ((pp)->p_nrm & P_EXEC) 129 130 #define PP_SETMOD(pp) ((pp)->p_nrm |= P_MOD) 131 #define PP_SETREF(pp) ((pp)->p_nrm |= P_REF) 132 #define PP_SETREFMOD(pp) ((pp)->p_nrm |= (P_REF|P_MOD)) 133 #define PP_SETRO(pp) ((pp)->p_nrm |= P_RO) 134 #define PP_SETREFRO(pp) ((pp)->p_nrm |= (P_REF|P_RO)) 135 #define PP_SETPNC(pp) ((pp)->p_nrm |= P_PNC) 136 #ifdef VAC 137 #define PP_SETTNC(pp) ((pp)->p_nrm |= P_TNC) 138 #endif 139 #define PP_SETKPMS(pp) ((pp)->p_nrm |= P_KPMS) 140 #define PP_SETKPMC(pp) ((pp)->p_nrm |= P_KPMC) 141 #define PP_SETEXEC(pp) ((pp)->p_nrm |= P_EXEC) 142 143 #define PP_CLRMOD(pp) ((pp)->p_nrm &= ~P_MOD) 144 #define PP_CLRREF(pp) ((pp)->p_nrm &= ~P_REF) 145 #define PP_CLRREFMOD(pp) ((pp)->p_nrm &= ~(P_REF|P_MOD)) 146 #define PP_CLRRO(pp) ((pp)->p_nrm &= ~P_RO) 147 #define PP_CLRPNC(pp) ((pp)->p_nrm &= ~P_PNC) 148 #ifdef VAC 149 #define PP_CLRTNC(pp) ((pp)->p_nrm &= ~P_TNC) 150 #endif 151 #define PP_CLRKPMS(pp) ((pp)->p_nrm &= ~P_KPMS) 152 #define PP_CLRKPMC(pp) ((pp)->p_nrm &= ~P_KPMC) 153 #define PP_CLREXEC(pp) ((pp)->p_nrm &= ~P_EXEC) 154 155 /* 156 * Support for non-coherent I-cache. If the MD property "coherency" 157 * is set to 0, it means that the I-cache must be flushed in 158 * software. Use the "soft exec" bit in the TTE to detect when a page 159 * has been executed, so that it can be flushed before it is re-used 160 * for another program. 161 */ 162 #define TTE_EXECUTED(ttep) \ 163 (TTE_IS_EXECUTABLE(ttep) && TTE_IS_SOFTEXEC(ttep)) 164 165 /* 166 * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM) 167 * will be constrained to a 4M, 32M or 256M alignment. Also since every newly- 168 * created ISM segment is created out of a new address space at base va 169 * of 0 we don't need to store it. 170 */ 171 #define ISM_ALIGN(shift) (1 << shift) /* base va aligned to <n>M */ 172 #define ISM_ALIGNED(shift, va) (((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0) 173 #define ISM_SHIFT(shift, x) ((uintptr_t)x >> (shift)) 174 175 /* 176 * Pad locks out to cache sub-block boundaries to prevent 177 * false sharing, so several processes don't contend for 178 * the same line if they aren't using the same lock. Since 179 * this is a typedef we also have a bit of freedom in 180 * changing lock implementations later if we decide it 181 * is necessary. 182 */ 183 typedef struct hat_lock { 184 kmutex_t hl_mutex; 185 uchar_t hl_pad[64 - sizeof (kmutex_t)]; 186 } hatlock_t; 187 188 #define HATLOCK_MUTEXP(hatlockp) (&((hatlockp)->hl_mutex)) 189 190 /* 191 * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned. 192 * Also size is guaranteed to be in 4M, 32M or 256M chunks. 193 * ism_seg consists of the following members: 194 * [XX..22] base address of ism segment. XX is 63 or 31 depending whether 195 * caddr_t is 64 bits or 32 bits. 196 * [21..0] size of segment. 197 * 198 * NOTE: Don't alter this structure without changing defines above and 199 * the tsb_miss and protection handlers. 200 */ 201 typedef struct ism_map { 202 uintptr_t imap_seg; /* base va + sz of ISM segment */ 203 uchar_t imap_vb_shift; /* mmu_pageshift for ism page size */ 204 uchar_t imap_rid; /* region id for ism */ 205 ushort_t imap_hatflags; /* primary ism page size */ 206 uint_t imap_sz_mask; /* mmu_pagemask for ism page size */ 207 sfmmu_t *imap_ismhat; /* hat id of dummy ISM as */ 208 struct ism_ment *imap_ment; /* pointer to mapping list entry */ 209 } ism_map_t; 210 211 #define ism_start(map) ((caddr_t)((map).imap_seg & \ 212 ~ISM_SZ_MASK((map).imap_vb_shift))) 213 #define ism_size(map) ((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift)) 214 #define ism_end(map) ((caddr_t)(ism_start(map) + (ism_size(map) * \ 215 ISM_PG_SIZE((map).imap_vb_shift)))) 216 /* 217 * ISM mapping entry. Used to link all hat's sharing a ism_hat. 218 * Same function as the p_mapping list for a page. 219 */ 220 typedef struct ism_ment { 221 sfmmu_t *iment_hat; /* back pointer to hat_share() hat */ 222 caddr_t iment_base_va; /* hat's va base for this ism seg */ 223 struct ism_ment *iment_next; /* next ism map entry */ 224 struct ism_ment *iment_prev; /* prev ism map entry */ 225 } ism_ment_t; 226 227 /* 228 * ISM segment block. One will be hung off the sfmmu structure if a 229 * a process uses ISM. More will be linked using ismblk_next if more 230 * than ISM_MAP_SLOTS segments are attached to this proc. 231 * 232 * All modifications to fields in this structure will be protected 233 * by the hat mutex. In order to avoid grabbing this lock in low level 234 * routines (tsb miss/protection handlers and vatopfn) while not 235 * introducing any race conditions with hat_unshare, we will set 236 * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur 237 * for this ctx while this bit is set will be handled in sfmmu_tsb_excption 238 * where it will synchronize behind the hat mutex. 239 */ 240 typedef struct ism_blk { 241 ism_map_t iblk_maps[ISM_MAP_SLOTS]; 242 struct ism_blk *iblk_next; 243 uint64_t iblk_nextpa; 244 } ism_blk_t; 245 246 /* 247 * TSB access information. All fields are protected by the process's 248 * hat lock. 249 */ 250 251 struct tsb_info { 252 caddr_t tsb_va; /* tsb base virtual address */ 253 uint64_t tsb_pa; /* tsb base physical address */ 254 struct tsb_info *tsb_next; /* next tsb used by this process */ 255 uint16_t tsb_szc; /* tsb size code */ 256 uint16_t tsb_flags; /* flags for this tsb; see below */ 257 uint_t tsb_ttesz_mask; /* page size masks; see below */ 258 259 tte_t tsb_tte; /* tte to lock into DTLB */ 260 sfmmu_t *tsb_sfmmu; /* sfmmu */ 261 kmem_cache_t *tsb_cache; /* cache from which mem allocated */ 262 vmem_t *tsb_vmp; /* vmem arena from which mem alloc'd */ 263 }; 264 265 /* 266 * Values for "tsb_ttesz_mask" bitmask. 267 */ 268 #define TSB8K (1 << TTE8K) 269 #define TSB64K (1 << TTE64K) 270 #define TSB512K (1 << TTE512K) 271 #define TSB4M (1 << TTE4M) 272 #define TSB32M (1 << TTE32M) 273 #define TSB256M (1 << TTE256M) 274 275 /* 276 * Values for "tsb_flags" field. 277 */ 278 #define TSB_RELOC_FLAG 0x1 279 #define TSB_FLUSH_NEEDED 0x2 280 #define TSB_SWAPPED 0x4 281 #define TSB_SHAREDCTX 0x8 282 283 #endif /* !_ASM */ 284 285 /* 286 * Data structures for shared hmeblk support. 287 */ 288 289 /* 290 * Do not increase the maximum number of ism/hme regions without checking first 291 * the impact on ism_map_t, TSB miss area, hblk tag and region id type in 292 * sf_region structure. 293 * Initially, shared hmes will only be used for the main text segment 294 * therefore this value will be set to 64, it will be increased when shared 295 * libraries are included. 296 */ 297 298 #define SFMMU_MAX_HME_REGIONS (64) 299 #define SFMMU_HMERGNMAP_WORDS BT_BITOUL(SFMMU_MAX_HME_REGIONS) 300 301 #define SFMMU_PRIVATE 0 302 #define SFMMU_SHARED 1 303 304 #ifndef _ASM 305 306 #define SFMMU_MAX_ISM_REGIONS (64) 307 #define SFMMU_ISMRGNMAP_WORDS BT_BITOUL(SFMMU_MAX_ISM_REGIONS) 308 309 #define SFMMU_RGNMAP_WORDS (SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS) 310 311 #define SFMMU_MAX_REGION_BUCKETS (128) 312 #define SFMMU_MAX_SRD_BUCKETS (2048) 313 314 typedef struct sf_hmeregion_map { 315 ulong_t bitmap[SFMMU_HMERGNMAP_WORDS]; 316 } sf_hmeregion_map_t; 317 318 typedef struct sf_ismregion_map { 319 ulong_t bitmap[SFMMU_ISMRGNMAP_WORDS]; 320 } sf_ismregion_map_t; 321 322 typedef union sf_region_map_u { 323 struct _h_rmap_s { 324 sf_hmeregion_map_t hmeregion_map; 325 sf_ismregion_map_t ismregion_map; 326 } h_rmap_s; 327 ulong_t bitmap[SFMMU_RGNMAP_WORDS]; 328 } sf_region_map_t; 329 330 #define SF_RGNMAP_ZERO(map) { \ 331 int _i; \ 332 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 333 (map).bitmap[_i] = 0; \ 334 } \ 335 } 336 337 /* 338 * Returns 1 if map1 and map2 are equal. 339 */ 340 #define SF_RGNMAP_EQUAL(map1, map2, rval) { \ 341 int _i; \ 342 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 343 if ((map1)->bitmap[_i] != (map2)->bitmap[_i]) \ 344 break; \ 345 } \ 346 if (_i < SFMMU_RGNMAP_WORDS) \ 347 rval = 0; \ 348 else \ 349 rval = 1; \ 350 } 351 352 #define SF_RGNMAP_ADD(map, r) BT_SET((map).bitmap, r) 353 #define SF_RGNMAP_DEL(map, r) BT_CLEAR((map).bitmap, r) 354 #define SF_RGNMAP_TEST(map, r) BT_TEST((map).bitmap, r) 355 356 /* 357 * Tests whether map2 is a subset of map1, returns 1 if 358 * this assertion is true. 359 */ 360 #define SF_RGNMAP_IS_SUBSET(map1, map2, rval) { \ 361 int _i; \ 362 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 363 if (((map1)->bitmap[_i] & (map2)->bitmap[_i]) \ 364 != (map2)->bitmap[_i]) { \ 365 break; \ 366 } \ 367 } \ 368 if (_i < SFMMU_RGNMAP_WORDS) \ 369 rval = 0; \ 370 else \ 371 rval = 1; \ 372 } 373 374 #define SF_SCD_INCR_REF(scdp) { \ 375 atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1); \ 376 } 377 378 #define SF_SCD_DECR_REF(srdp, scdp) { \ 379 sf_region_map_t _scd_rmap = (scdp)->scd_region_map; \ 380 if (!atomic_add_32_nv( \ 381 (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) { \ 382 sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap); \ 383 } \ 384 } 385 386 /* 387 * A sfmmup link in the link list of sfmmups that share the same region. 388 */ 389 typedef struct sf_rgn_link { 390 sfmmu_t *next; 391 sfmmu_t *prev; 392 } sf_rgn_link_t; 393 394 /* 395 * rgn_flags values. 396 */ 397 #define SFMMU_REGION_HME 0x1 398 #define SFMMU_REGION_ISM 0x2 399 #define SFMMU_REGION_FREE 0x8 400 401 #define SFMMU_REGION_TYPE_MASK (0x3) 402 403 /* 404 * sf_region defines a text or (D)ISM segment which map 405 * the same underlying physical object. 406 */ 407 typedef struct sf_region { 408 caddr_t rgn_saddr; /* base addr of attached seg */ 409 size_t rgn_size; /* size of attached seg */ 410 void *rgn_obj; /* the underlying object id */ 411 u_offset_t rgn_objoff; /* offset in the object mapped */ 412 uchar_t rgn_perm; /* PROT_READ/WRITE/EXEC */ 413 uchar_t rgn_pgszc; /* page size of the region */ 414 uchar_t rgn_flags; /* region type, free flag */ 415 uchar_t rgn_id; 416 int rgn_refcnt; /* # of hats sharing the region */ 417 /* callback function for hat_unload_callback */ 418 hat_rgn_cb_func_t rgn_cb_function; 419 struct sf_region *rgn_hash; /* hash chain linking the rgns */ 420 kmutex_t rgn_mutex; /* protect region sfmmu list */ 421 /* A link list of processes attached to this region */ 422 sfmmu_t *rgn_sfmmu_head; 423 ulong_t rgn_ttecnt[MMU_PAGE_SIZES]; 424 uint16_t rgn_hmeflags; /* rgn tte size flags */ 425 } sf_region_t; 426 427 #define rgn_next rgn_hash 428 429 /* srd */ 430 typedef struct sf_shared_region_domain { 431 vnode_t *srd_evp; /* executable vnode */ 432 /* hme region table */ 433 sf_region_t *srd_hmergnp[SFMMU_MAX_HME_REGIONS]; 434 /* ism region table */ 435 sf_region_t *srd_ismrgnp[SFMMU_MAX_ISM_REGIONS]; 436 /* hash chain linking srds */ 437 struct sf_shared_region_domain *srd_hash; 438 /* pointer to the next free hme region */ 439 sf_region_t *srd_hmergnfree; 440 /* pointer to the next free ism region */ 441 sf_region_t *srd_ismrgnfree; 442 /* id of next ism region created */ 443 uint16_t srd_next_ismrid; 444 /* id of next hme region created */ 445 uint16_t srd_next_hmerid; 446 uint16_t srd_ismbusyrgns; /* # of ism rgns in use */ 447 uint16_t srd_hmebusyrgns; /* # of hme rgns in use */ 448 int srd_refcnt; /* # of procs in the srd */ 449 kmutex_t srd_mutex; /* sync add/remove rgns */ 450 kmutex_t srd_scd_mutex; 451 sf_scd_t *srd_scdp; /* list of scds in srd */ 452 /* hash of regions associated with the same executable */ 453 sf_region_t *srd_rgnhash[SFMMU_MAX_REGION_BUCKETS]; 454 } sf_srd_t; 455 456 typedef struct sf_srd_bucket { 457 kmutex_t srdb_lock; 458 sf_srd_t *srdb_srdp; 459 } sf_srd_bucket_t; 460 461 /* 462 * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased 463 * to 16 when the use of shared hmes for shared libraries is enabled. 464 */ 465 466 #define SFMMU_L1_HMERLINKS (8) 467 #define SFMMU_L2_HMERLINKS (8) 468 #define SFMMU_L1_HMERLINKS_SHIFT (3) 469 #define SFMMU_L1_HMERLINKS_MASK (SFMMU_L1_HMERLINKS - 1) 470 #define SFMMU_L2_HMERLINKS_MASK (SFMMU_L2_HMERLINKS - 1) 471 #define SFMMU_L1_HMERLINKS_SIZE \ 472 (SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *)) 473 #define SFMMU_L2_HMERLINKS_SIZE \ 474 (SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t)) 475 476 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS) 477 #error Not Enough HMERLINKS 478 #endif 479 480 /* 481 * This macro grabs hat lock and allocates level 2 hat chain 482 * associated with a shme rgn. In the majority of cases, the macro 483 * is called with alloc = 0, and lock = 0. 484 * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp 485 * parameter. 486 */ 487 #define SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock) \ 488 { \ 489 int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) & \ 490 SFMMU_L1_HMERLINKS_MASK; \ 491 int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK); \ 492 hatlock_t *_hatlockp; \ 493 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 494 if (lnkp != NULL) { \ 495 lnkp = &lnkp[_l2ix]; \ 496 } else if (alloc && lock) { \ 497 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 498 _hatlockp = sfmmu_hat_enter(sfmmup); \ 499 if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) { \ 500 sfmmu_hat_exit(_hatlockp); \ 501 kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE); \ 502 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 503 ASSERT(lnkp != NULL); \ 504 } else { \ 505 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 506 sfmmu_hat_exit(_hatlockp); \ 507 } \ 508 lnkp = &lnkp[_l2ix]; \ 509 } else if (alloc) { \ 510 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 511 ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL); \ 512 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 513 lnkp = &lnkp[_l2ix]; \ 514 } \ 515 } 516 517 /* 518 * Per-MMU context domain kstats. 519 * 520 * TSB Miss Exceptions 521 * Number of times a TSB miss exception is handled in an MMU. See 522 * sfmmu_tsbmiss_exception() for more details. 523 * TSB Raise Exception 524 * Number of times the CPUs within an MMU are cross-called 525 * to invalidate either a specific process context (when the process 526 * switches MMU contexts) or the context of any process that is 527 * running on those CPUs (as part of the MMU context wrap-around). 528 * Wrap Around 529 * The number of times a wrap-around of MMU context happens. 530 */ 531 typedef enum mmu_ctx_stat_types { 532 MMU_CTX_TSB_EXCEPTIONS, /* TSB miss exceptions handled */ 533 MMU_CTX_TSB_RAISE_EXCEPTION, /* ctx invalidation cross calls */ 534 MMU_CTX_WRAP_AROUND, /* wraparounds */ 535 MMU_CTX_NUM_STATS 536 } mmu_ctx_stat_t; 537 538 /* 539 * Per-MMU context domain structure. This is instantiated the first time a CPU 540 * belonging to the MMU context domain is configured into the system, at boot 541 * time or at DR time. 542 * 543 * mmu_gnum 544 * The current generation number for the context IDs on this MMU context 545 * domain. It is protected by mmu_lock. 546 * mmu_cnum 547 * The current cnum to be allocated on this MMU context domain. It 548 * is protected via CAS. 549 * mmu_nctxs 550 * The max number of context IDs supported on every CPU in this 551 * MMU context domain. It is 8K except for Rock where it is 64K. 552 * This is needed here in case the system supports mixed type of 553 * processors/MMUs. It also helps to make ctx switch code access 554 * fewer cache lines i.e. no need to retrieve it from some global nctxs. 555 * mmu_lock 556 * The mutex spin lock used to serialize context ID wrap around 557 * mmu_idx 558 * The index for this MMU context domain structure in the global array 559 * mmu_ctxdoms. 560 * mmu_ncpus 561 * The actual number of CPUs that have been configured in this 562 * MMU context domain. This also acts as a reference count for the 563 * structure. When the last CPU in an MMU context domain is unconfigured, 564 * the structure is freed. It is protected by mmu_lock. 565 * mmu_cpuset 566 * The CPU set of configured CPUs for this MMU context domain. Used 567 * to cross-call all the CPUs in the MMU context domain to invalidate 568 * context IDs during a wraparound operation. It is protected by mmu_lock. 569 */ 570 571 typedef struct mmu_ctx { 572 uint64_t mmu_gnum; 573 uint_t mmu_cnum; 574 uint_t mmu_nctxs; 575 kmutex_t mmu_lock; 576 uint_t mmu_idx; 577 uint_t mmu_ncpus; 578 cpuset_t mmu_cpuset; 579 kstat_t *mmu_kstat; 580 kstat_named_t mmu_kstat_data[MMU_CTX_NUM_STATS]; 581 } mmu_ctx_t; 582 583 #define mmu_tsb_exceptions \ 584 mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64 585 #define mmu_tsb_raise_exception \ 586 mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64 587 #define mmu_wrap_around \ 588 mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64 589 590 extern uint_t max_mmu_ctxdoms; 591 extern mmu_ctx_t **mmu_ctxs_tbl; 592 593 extern void sfmmu_cpu_init(cpu_t *); 594 extern void sfmmu_cpu_cleanup(cpu_t *); 595 596 /* 597 * The following structure is used to get MMU context domain information for 598 * a CPU from the platform. 599 * 600 * mmu_idx 601 * The MMU context domain index within the global array mmu_ctxs 602 * mmu_nctxs 603 * The number of context IDs supported in the MMU context domain 604 * (64K for Rock) 605 */ 606 typedef struct mmu_ctx_info { 607 uint_t mmu_idx; 608 uint_t mmu_nctxs; 609 } mmu_ctx_info_t; 610 611 #pragma weak plat_cpuid_to_mmu_ctx_info 612 613 extern void plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *); 614 615 /* 616 * Each address space has an array of sfmmu_ctx_t structures, one structure 617 * per MMU context domain. 618 * 619 * cnum 620 * The context ID allocated for an address space on an MMU context domain 621 * gnum 622 * The generation number for the context ID in the MMU context domain. 623 * 624 * This structure needs to be a power-of-two in size. 625 */ 626 typedef struct sfmmu_ctx { 627 uint64_t gnum:48; 628 uint64_t cnum:16; 629 } sfmmu_ctx_t; 630 631 632 /* 633 * The platform dependent hat structure. 634 * tte counts should be protected by cas. 635 * cpuset is protected by cas. 636 * 637 * ttecnt accounting for mappings which do not use shared hme is carried out 638 * during pagefault handling. In the shared hme case, only the first process 639 * to access a mapping generates a pagefault, subsequent processes simply 640 * find the shared hme entry during trap handling and therefore there is no 641 * corresponding event to initiate ttecnt accounting. Currently, as shared 642 * hmes are only used for text segments, when joining a region we assume the 643 * worst case and add the the number of ttes required to map the entire region 644 * to the ttecnt corresponding to the region pagesize. However, if the region 645 * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail 646 * then 8K pages will be allocated instead and the first TSB which stores 8K 647 * mappings will potentially be undersized. To compensate for the potential 648 * underaccounting in this case we always add 1/4 of the region size to the 8K 649 * ttecnt. 650 * 651 * Note that sfmmu_xhat_provider MUST be the first element. 652 */ 653 654 struct hat { 655 void *sfmmu_xhat_provider; /* NULL for CPU hat */ 656 cpuset_t sfmmu_cpusran; /* cpu bit mask for efficient xcalls */ 657 struct as *sfmmu_as; /* as this hat provides mapping for */ 658 /* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */ 659 ulong_t sfmmu_ttecnt[MMU_PAGE_SIZES]; 660 /* shme rgns ttecnt for rgns in SCD */ 661 ulong_t sfmmu_scdrttecnt[MMU_PAGE_SIZES]; 662 /* est. ism ttes that are NOT in a SCD */ 663 ulong_t sfmmu_ismttecnt[MMU_PAGE_SIZES]; 664 /* ttecnt for isms that are in a SCD */ 665 ulong_t sfmmu_scdismttecnt[MMU_PAGE_SIZES]; 666 /* inflate tsb0 to allow for large page alloc failure in region */ 667 ulong_t sfmmu_tsb0_4minflcnt; 668 union _h_un { 669 ism_blk_t *sfmmu_iblkp; /* maps to ismhat(s) */ 670 ism_ment_t *sfmmu_imentp; /* ism hat's mapping list */ 671 } h_un; 672 uint_t sfmmu_free:1; /* hat to be freed - set on as_free */ 673 uint_t sfmmu_ismhat:1; /* hat is dummy ism hatid */ 674 uint_t sfmmu_scdhat:1; /* hat is dummy scd hatid */ 675 uchar_t sfmmu_rmstat; /* refmod stats refcnt */ 676 ushort_t sfmmu_clrstart; /* start color bin for page coloring */ 677 ushort_t sfmmu_clrbin; /* per as phys page coloring bin */ 678 ushort_t sfmmu_flags; /* flags */ 679 uchar_t sfmmu_tteflags; /* pgsz flags */ 680 uchar_t sfmmu_rtteflags; /* pgsz flags for SRD hmes */ 681 struct tsb_info *sfmmu_tsb; /* list of per as tsbs */ 682 uint64_t sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */ 683 lock_t sfmmu_ctx_lock; /* sync ctx alloc and invalidation */ 684 kcondvar_t sfmmu_tsb_cv; /* signals TSB swapin or relocation */ 685 uchar_t sfmmu_cext; /* context page size encoding */ 686 uint8_t sfmmu_pgsz[MMU_PAGE_SIZES]; /* ranking for MMU */ 687 sf_srd_t *sfmmu_srdp; 688 sf_scd_t *sfmmu_scdp; /* scd this address space belongs to */ 689 sf_region_map_t sfmmu_region_map; 690 sf_rgn_link_t *sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS]; 691 sf_rgn_link_t sfmmu_scd_link; /* link to scd or pending queue */ 692 #ifdef sun4v 693 struct hv_tsb_block sfmmu_hvblock; 694 #endif 695 /* 696 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of 697 * elements. max_mmu_ctxdoms is determined at run-time. 698 * sfmmu_ctxs[1] is just the fist element of an array, it always 699 * has to be the last field to ensure that the memory allocated 700 * for sfmmu_ctxs is consecutive with the memory of the rest of 701 * the hat data structure. 702 */ 703 sfmmu_ctx_t sfmmu_ctxs[1]; 704 705 }; 706 707 #define sfmmu_iblk h_un.sfmmu_iblkp 708 #define sfmmu_iment h_un.sfmmu_imentp 709 710 #define sfmmu_hmeregion_map sfmmu_region_map.h_rmap_s.hmeregion_map 711 #define sfmmu_ismregion_map sfmmu_region_map.h_rmap_s.ismregion_map 712 713 #define SF_RGNMAP_ISNULL(sfmmup) \ 714 (sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map)) 715 #define SF_HMERGNMAP_ISNULL(sfmmup) \ 716 (sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map)) 717 718 struct sf_scd { 719 sfmmu_t *scd_sfmmup; /* shared context hat */ 720 /* per pgsz ttecnt for shme rgns in SCD */ 721 ulong_t scd_rttecnt[MMU_PAGE_SIZES]; 722 uint_t scd_refcnt; /* address spaces attached to scd */ 723 sf_region_map_t scd_region_map; /* bit mask of attached segments */ 724 sf_scd_t *scd_next; /* link pointers for srd_scd list */ 725 sf_scd_t *scd_prev; 726 sfmmu_t *scd_sf_list; /* list of doubly linked hat structs */ 727 kmutex_t scd_mutex; 728 /* 729 * Link used to add an scd to the sfmmu_iment list. 730 */ 731 ism_ment_t scd_ism_links[SFMMU_MAX_ISM_REGIONS]; 732 }; 733 734 #define scd_hmeregion_map scd_region_map.h_rmap_s.hmeregion_map 735 #define scd_ismregion_map scd_region_map.h_rmap_s.ismregion_map 736 737 extern int disable_shctx; 738 extern int shctx_on; 739 740 /* 741 * bit mask for managing vac conflicts on large pages. 742 * bit 1 is for uncache flag. 743 * bits 2 through min(num of cache colors + 1,31) are 744 * for cache colors that have already been flushed. 745 */ 746 #ifdef VAC 747 #define CACHE_NUM_COLOR (shm_alignment >> MMU_PAGESHIFT) 748 #else 749 #define CACHE_NUM_COLOR 1 750 #endif 751 752 #define CACHE_VCOLOR_MASK(vcolor) (2 << (vcolor & (CACHE_NUM_COLOR - 1))) 753 754 #define CacheColor_IsFlushed(flag, vcolor) \ 755 ((flag) & CACHE_VCOLOR_MASK(vcolor)) 756 757 #define CacheColor_SetFlushed(flag, vcolor) \ 758 ((flag) |= CACHE_VCOLOR_MASK(vcolor)) 759 /* 760 * Flags passed to sfmmu_page_cache to flush page from vac or not. 761 */ 762 #define CACHE_FLUSH 0 763 #define CACHE_NO_FLUSH 1 764 765 /* 766 * Flags passed to sfmmu_tlbcache_demap 767 */ 768 #define FLUSH_NECESSARY_CPUS 0 769 #define FLUSH_ALL_CPUS 1 770 771 #ifdef DEBUG 772 /* 773 * For debugging purpose only. Maybe removed later. 774 */ 775 struct ctx_trace { 776 sfmmu_t *sc_sfmmu_stolen; 777 sfmmu_t *sc_sfmmu_stealing; 778 clock_t sc_time; 779 ushort_t sc_type; 780 ushort_t sc_cnum; 781 }; 782 #define CTX_TRC_STEAL 0x1 783 #define CTX_TRC_FREE 0x0 784 #define TRSIZE 0x400 785 #define NEXT_CTXTR(ptr) (((ptr) >= ctx_trace_last) ? \ 786 ctx_trace_first : ((ptr) + 1)) 787 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \ 788 mutex_enter(mutex); \ 789 (ptr)->sc_sfmmu_stolen = (stolen_sfmmu); \ 790 (ptr)->sc_sfmmu_stealing = (stealing_sfmmu); \ 791 (ptr)->sc_cnum = (cnum); \ 792 (ptr)->sc_type = (type); \ 793 (ptr)->sc_time = lbolt; \ 794 (ptr) = NEXT_CTXTR(ptr); \ 795 num_ctx_stolen += (type); \ 796 mutex_exit(mutex); 797 #else 798 799 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) 800 801 #endif /* DEBUG */ 802 803 #endif /* !_ASM */ 804 805 /* 806 * Macros for sfmmup->sfmmu_flags access. The macros that change the flags 807 * ASSERT() that we're holding the HAT lock before changing the flags; 808 * however callers that read the flags may do so without acquiring the lock 809 * in a fast path, and then recheck the flag after acquiring the lock in 810 * a slow path. 811 */ 812 #define SFMMU_FLAGS_ISSET(sfmmup, flags) \ 813 (((sfmmup)->sfmmu_flags & (flags)) == (flags)) 814 815 #define SFMMU_FLAGS_CLEAR(sfmmup, flags) \ 816 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 817 (sfmmup)->sfmmu_flags &= ~(flags)) 818 819 #define SFMMU_FLAGS_SET(sfmmup, flags) \ 820 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 821 (sfmmup)->sfmmu_flags |= (flags)) 822 823 #define SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \ 824 ((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \ 825 (flags)) 826 827 828 /* 829 * sfmmu tte HAT flags, must fit in 8 bits 830 */ 831 #define HAT_CHKCTX1_FLAG 0x1 832 #define HAT_64K_FLAG (0x1 << TTE64K) 833 #define HAT_512K_FLAG (0x1 << TTE512K) 834 #define HAT_4M_FLAG (0x1 << TTE4M) 835 #define HAT_32M_FLAG (0x1 << TTE32M) 836 #define HAT_256M_FLAG (0x1 << TTE256M) 837 838 /* 839 * sfmmu HAT flags, 16 bits at the moment. 840 */ 841 #define HAT_4MTEXT_FLAG 0x01 842 #define HAT_32M_ISM 0x02 843 #define HAT_256M_ISM 0x04 844 #define HAT_SWAPPED 0x08 /* swapped out */ 845 #define HAT_SWAPIN 0x10 /* swapping in */ 846 #define HAT_BUSY 0x20 /* replacing TSB(s) */ 847 #define HAT_ISMBUSY 0x40 /* adding/removing/traversing ISM maps */ 848 849 #define HAT_CTX1_FLAG 0x100 /* ISM imap hatflag for ctx1 */ 850 #define HAT_JOIN_SCD 0x200 /* region is joining scd */ 851 #define HAT_ALLCTX_INVALID 0x400 /* all per-MMU ctxs are invalidated */ 852 853 #define SFMMU_LGPGS_INUSE(sfmmup) \ 854 (((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) || \ 855 ((sfmmup)->sfmmu_iblk != NULL)) 856 857 /* 858 * Starting with context 0, the first NUM_LOCKED_CTXS contexts 859 * are locked so that sfmmu_getctx can't steal any of these 860 * contexts. At the time this software was being developed, the 861 * only context that needs to be locked is context 0 (the kernel 862 * context), and context 1 (reserved for stolen context). So this constant 863 * was originally defined to be 2. 864 * 865 * For sun4v only, USER_CONTEXT_TYPE represents any user context. Many 866 * routines only care whether the context is kernel, invalid or user. 867 */ 868 869 #define NUM_LOCKED_CTXS 2 870 #define INVALID_CONTEXT 1 871 872 #ifdef sun4v 873 #define USER_CONTEXT_TYPE NUM_LOCKED_CTXS 874 #endif 875 #if defined(sun4v) || defined(UTSB_PHYS) 876 /* 877 * Get the location in the 4MB base TSB of the tsbe for this fault. 878 * Assumes that the second TSB only contains 4M mappings. 879 * 880 * In: 881 * tagacc = tag access register (not clobbered) 882 * tsbe = 2nd TSB base register 883 * tmp1, tmp2 = scratch registers 884 * Out: 885 * tsbe = pointer to the tsbe in the 2nd TSB 886 */ 887 888 #define GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 889 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 890 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 891 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 892 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 893 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 894 srlx tagacc, MMU_PAGESHIFT4M, tmp2; \ 895 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 896 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 897 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 898 899 #define GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 900 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 901 902 /* 903 * Get the location in the 3rd TSB of the tsbe for this fault. 904 * The 3rd TSB corresponds to the shared context, and is used 905 * for 8K - 512k pages. 906 * 907 * In: 908 * tagacc = tag access register (not clobbered) 909 * tsbe, tmp1, tmp2 = scratch registers 910 * Out: 911 * tsbe = pointer to the tsbe in the 3rd TSB 912 */ 913 914 #define GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 915 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 916 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 917 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 918 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 919 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 920 srlx tagacc, MMU_PAGESHIFT, tmp2; \ 921 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 922 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 923 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 924 925 #define GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 926 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 927 /* 928 * Copy the sfmmu_region_map or scd_region_map to the tsbmiss 929 * shmermap or scd_shmermap, from sfmmu_load_mmustate. 930 */ 931 #define SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label) \ 932 /* BEGIN CSTYLED */ \ 933 label: ;\ 934 ldx [rgn_map], tmp ;\ 935 dec cnt ;\ 936 add rgn_map, CLONGSIZE, rgn_map ;\ 937 stx tmp, [tsbmiss_map] ;\ 938 brnz,pt cnt, label ;\ 939 add tsbmiss_map, CLONGSIZE, tsbmiss_map \ 940 /* END CSTYLED */ 941 942 /* 943 * If there is no scd, then zero the tsbmiss scd_shmermap, 944 * from sfmmu_load_mmustate. 945 */ 946 #define ZERO_REGION_MAP(tsbmiss_map, cnt, label) \ 947 /* BEGIN CSTYLED */ \ 948 label: ;\ 949 dec cnt ;\ 950 stx %g0, [tsbmiss_map] ;\ 951 brnz,pt cnt, label ;\ 952 add tsbmiss_map, CLONGSIZE, tsbmiss_map 953 /* END CSTYLED */ 954 955 /* 956 * Set hmemisc to 1 if the shared hme is also part of an scd. 957 * In: 958 * tsbarea = tsbmiss area (not clobbered) 959 * hmeblkpa = hmeblkpa + hmentoff + SFHME_TTE (not clobbered) 960 * hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered) 961 * Out: 962 * use_shctx = 1 if shme is in scd and 0 otherwise 963 */ 964 #define GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx) \ 965 /* BEGIN CSTYLED */ \ 966 sub hmeblkpa, hmentoff, hmentoff /* hmentofff = hmeblkpa */ ;\ 967 add hmentoff, HMEBLK_TAG, hmentoff ;\ 968 ldxa [hmentoff]ASI_MEM, hmentoff /* read 1st part of tag */ ;\ 969 and hmentoff, HTAG_RID_MASK, hmentoff /* mask off rid */ ;\ 970 and hmentoff, BT_ULMASK, use_shctx /* mask bit index */ ;\ 971 srlx hmentoff, BT_ULSHIFT, hmentoff /* extract word */ ;\ 972 sllx hmentoff, CLONGSHIFT, hmentoff /* index */ ;\ 973 add tsbarea, hmentoff, hmentoff /* add to tsbarea */ ;\ 974 ldx [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff /* scdrgn */ ;\ 975 srlx hmentoff, use_shctx, use_shctx ;\ 976 and use_shctx, 0x1, use_shctx \ 977 /* END CSTYLED */ 978 979 /* 980 * Synthesize a TSB base register contents for a process. 981 * 982 * In: 983 * tsbinfo = TSB info pointer (ro) 984 * tsbreg, tmp1 = scratch registers 985 * Out: 986 * tsbreg = value to program into TSB base register 987 */ 988 989 #define MAKE_UTSBREG(tsbinfo, tsbreg, tmp1) \ 990 ldx [tsbinfo + TSBINFO_PADDR], tsbreg; \ 991 lduh [tsbinfo + TSBINFO_SZCODE], tmp1; \ 992 and tmp1, TSB_SOFTSZ_MASK, tmp1; \ 993 or tsbreg, tmp1, tsbreg; 994 995 996 /* 997 * Load TSB base register to TSBMISS area for privte contexts. 998 * This register contains utsb_pabase in bits 63:13, and TSB size 999 * code in bits 2:0. 1000 * 1001 * For private context 1002 * In: 1003 * tsbreg = value to load (ro) 1004 * regnum = constant or register 1005 * tmp1 = scratch register 1006 * Out: 1007 * Specified scratchpad register updated 1008 * 1009 */ 1010 #define SET_UTSBREG(regnum, tsbreg, tmp1) \ 1011 mov regnum, tmp1; \ 1012 stxa tsbreg, [tmp1]ASI_SCRATCHPAD /* save tsbreg */ 1013 /* 1014 * Get TSB base register from the scratchpad for private contexts 1015 * 1016 * In: 1017 * regnum = constant or register 1018 * tsbreg = scratch 1019 * Out: 1020 * tsbreg = tsbreg from the specified scratchpad register 1021 */ 1022 #define GET_UTSBREG(regnum, tsbreg) \ 1023 mov regnum, tsbreg; \ 1024 ldxa [tsbreg]ASI_SCRATCHPAD, tsbreg 1025 1026 /* 1027 * Load TSB base register to TSBMISS area for shared contexts. 1028 * This register contains utsb_pabase in bits 63:13, and TSB size 1029 * code in bits 2:0. 1030 * 1031 * In: 1032 * tsbmiss = pointer to tsbmiss area 1033 * tsbmissoffset = offset to right tsb pointer 1034 * tsbreg = value to load (ro) 1035 * Out: 1036 * Specified tsbmiss area updated 1037 * 1038 */ 1039 #define SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1040 stx tsbreg, [tsbmiss + tsbmissoffset] /* save tsbreg */ 1041 1042 /* 1043 * Get TSB base register from the scratchpad for 1044 * shared contexts 1045 * 1046 * In: 1047 * tsbmiss = pointer to tsbmiss area 1048 * tsbmissoffset = offset to right tsb pointer 1049 * tsbreg = scratch 1050 * Out: 1051 * tsbreg = tsbreg from the specified scratchpad register 1052 */ 1053 #define GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1054 ldx [tsbmiss + tsbmissoffset], tsbreg 1055 1056 #endif /* defined(sun4v) || defined(UTSB_PHYS) */ 1057 1058 #ifndef _ASM 1059 1060 /* 1061 * Kernel page relocation stuff. 1062 */ 1063 struct sfmmu_callback { 1064 int key; 1065 int (*prehandler)(caddr_t, uint_t, uint_t, void *); 1066 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t); 1067 int (*errhandler)(caddr_t, uint_t, uint_t, void *); 1068 int capture_cpus; 1069 }; 1070 1071 extern int sfmmu_max_cb_id; 1072 extern struct sfmmu_callback *sfmmu_cb_table; 1073 1074 extern int hat_kpr_enabled; 1075 1076 struct pa_hment; 1077 1078 /* 1079 * RFE: With multihat gone we gain back an int. We could use this to 1080 * keep ref bits on a per cpu basis to eliminate xcalls. 1081 */ 1082 struct sf_hment { 1083 tte_t hme_tte; /* tte for this hment */ 1084 1085 union { 1086 struct page *page; /* what page this maps */ 1087 struct pa_hment *data; /* pa_hment */ 1088 } sf_hment_un; 1089 1090 struct sf_hment *hme_next; /* next hment */ 1091 struct sf_hment *hme_prev; /* prev hment */ 1092 }; 1093 1094 struct pa_hment { 1095 caddr_t addr; /* va */ 1096 uint_t len; /* bytes */ 1097 ushort_t flags; /* internal flags */ 1098 ushort_t refcnt; /* reference count */ 1099 id_t cb_id; /* callback id, table index */ 1100 void *pvt; /* handler's private data */ 1101 struct sf_hment sfment; /* corresponding dummy sf_hment */ 1102 }; 1103 1104 #define hme_page sf_hment_un.page 1105 #define hme_data sf_hment_un.data 1106 #define hme_size(sfhmep) ((int)(TTE_CSZ(&(sfhmep)->hme_tte))) 1107 #define PAHME_SZ (sizeof (struct pa_hment)) 1108 #define SFHME_SZ (sizeof (struct sf_hment)) 1109 1110 #define IS_PAHME(hme) ((hme)->hme_tte.ll == 0) 1111 1112 /* 1113 * hmeblk_tag structure 1114 * structure used to obtain a match on a hme_blk. Currently consists of 1115 * the address of the sfmmu struct (or hatid), the base page address of the 1116 * hme_blk, and the rehash count. The rehash count is actually only 2 bits 1117 * and has the following meaning: 1118 * 1 = 8k or 64k hash sequence. 1119 * 2 = 512k hash sequence. 1120 * 3 = 4M hash sequence. 1121 * We require this count because we don't want to get a false hit on a 512K or 1122 * 4M rehash with a base address corresponding to a 8k or 64k hmeblk. 1123 * Note: The ordering and size of the hmeblk_tag members are implictly known 1124 * by the tsb miss handlers written in assembly. Do not change this structure 1125 * without checking those routines. See HTAG_SFMMUPSZ define. 1126 */ 1127 1128 /* 1129 * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID. 1130 */ 1131 typedef union { 1132 struct { 1133 uint64_t hblk_basepg: 51, /* hme_blk base pg # */ 1134 hblk_rehash: 3, /* rehash number */ 1135 hblk_rid: 10; /* hme_blk region id */ 1136 void *hblk_id; 1137 } hblk_tag_un; 1138 uint64_t htag_tag[2]; 1139 } hmeblk_tag; 1140 1141 #define htag_id hblk_tag_un.hblk_id 1142 #define htag_bspage hblk_tag_un.hblk_basepg 1143 #define htag_rehash hblk_tag_un.hblk_rehash 1144 #define htag_rid hblk_tag_un.hblk_rid 1145 1146 #endif /* !_ASM */ 1147 1148 #define HTAG_REHASH_SHIFT 10 1149 #define HTAG_MAX_RID (((0x1 << HTAG_REHASH_SHIFT) - 1)) 1150 #define HTAG_RID_MASK HTAG_MAX_RID 1151 1152 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */ 1153 #define SFMMU_INVALID_SHMERID HTAG_MAX_RID 1154 1155 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1156 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1157 #endif 1158 1159 #define SFMMU_IS_SHMERID_VALID(rid) ((rid) != SFMMU_INVALID_SHMERID) 1160 1161 /* ISM regions */ 1162 #define SFMMU_INVALID_ISMRID 0xff 1163 1164 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1165 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1166 #endif 1167 1168 #define SFMMU_IS_ISMRID_VALID(rid) ((rid) != SFMMU_INVALID_ISMRID) 1169 1170 1171 #define HTAGS_EQ(tag1, tag2) (((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \ 1172 (tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0) 1173 1174 /* 1175 * this macro must only be used for comparing tags in shared hmeblks. 1176 */ 1177 #define HTAGS_EQ_SHME(hmetag, tag, hrmap) \ 1178 (((hmetag).htag_rid != SFMMU_INVALID_SHMERID) && \ 1179 (((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) & \ 1180 ~HTAG_RID_MASK) | \ 1181 ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) && \ 1182 SF_RGNMAP_TEST(hrmap, hmetag.htag_rid)) 1183 1184 #define HME_REHASH(sfmmup) \ 1185 ((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 || \ 1186 (sfmmup)->sfmmu_ttecnt[TTE4M] != 0 || \ 1187 (sfmmup)->sfmmu_ttecnt[TTE32M] != 0 || \ 1188 (sfmmup)->sfmmu_ttecnt[TTE256M] != 0) 1189 1190 #define NHMENTS 8 /* # of hments in an 8k hme_blk */ 1191 /* needs to be multiple of 2 */ 1192 1193 #ifndef _ASM 1194 1195 #ifdef HBLK_TRACE 1196 1197 #define HBLK_LOCK 1 1198 #define HBLK_UNLOCK 0 1199 #define HBLK_STACK_DEPTH 6 1200 #define HBLK_AUDIT_CACHE_SIZE 16 1201 #define HBLK_LOCK_PATTERN 0xaaaaaaaa 1202 #define HBLK_UNLOCK_PATTERN 0xbbbbbbbb 1203 1204 struct hblk_lockcnt_audit { 1205 int flag; /* lock or unlock */ 1206 kthread_id_t thread; 1207 int depth; 1208 pc_t stack[HBLK_STACK_DEPTH]; 1209 }; 1210 1211 #endif /* HBLK_TRACE */ 1212 1213 1214 /* 1215 * Hment block structure. 1216 * The hme_blk is the node data structure which the hash structure 1217 * mantains. An hme_blk can have 2 different sizes depending on the 1218 * number of hments it implicitly contains. When dealing with 64K, 512K, 1219 * or 4M hments there is one hment per hme_blk. When dealing with 1220 * 8k hments we allocate an hme_blk plus an additional 7 hments to 1221 * give us a total of 8 (NHMENTS) hments that can be referenced through a 1222 * hme_blk. 1223 * 1224 * The hmeblk structure contains 2 tte reference counters used to determine if 1225 * it is ok to free up the hmeblk. Both counters have to be zero in order 1226 * to be able to free up hmeblk. They are protected by cas. 1227 * hblk_hmecnt is the number of hments present on pp mapping lists. 1228 * hblk_vcnt reflects number of valid ttes in hmeblk. 1229 * 1230 * The hmeblk now also has per tte lock cnts. This is required because 1231 * the counts can be high and there are not enough bits in the tte. When 1232 * physio is fixed to not lock the translations we should be able to move 1233 * the lock cnt back to the tte. See bug id 1198554. 1234 * 1235 * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc 1236 * and sf_hment are at the same offsets in both structures. Whenever 1237 * hme_blk is changed, xhat_hme_blk may need to be updated as well. 1238 */ 1239 1240 struct hme_blk_misc { 1241 uint_t notused:25; 1242 uint_t shared_bit:1; /* set for SRD shared hmeblk */ 1243 uint_t xhat_bit:1; /* set for an xhat hme_blk */ 1244 uint_t shadow_bit:1; /* set for a shadow hme_blk */ 1245 uint_t nucleus_bit:1; /* set for a nucleus hme_blk */ 1246 uint_t ttesize:3; /* contains ttesz of hmeblk */ 1247 }; 1248 1249 struct hme_blk { 1250 uint64_t hblk_nextpa; /* physical address for hash list */ 1251 1252 hmeblk_tag hblk_tag; /* tag used to obtain an hmeblk match */ 1253 1254 struct hme_blk *hblk_next; /* on free list or on hash list */ 1255 /* protected by hash lock */ 1256 1257 struct hme_blk *hblk_shadow; /* pts to shadow hblk */ 1258 /* protected by hash lock */ 1259 uint_t hblk_span; /* span of memory hmeblk maps */ 1260 1261 struct hme_blk_misc hblk_misc; 1262 1263 union { 1264 struct { 1265 ushort_t hblk_hmecount; /* hment on mlists counter */ 1266 ushort_t hblk_validcnt; /* valid tte reference count */ 1267 } hblk_counts; 1268 uint_t hblk_shadow_mask; 1269 } hblk_un; 1270 1271 uint_t hblk_lckcnt; 1272 1273 #ifdef HBLK_TRACE 1274 kmutex_t hblk_audit_lock; /* lock to protect index */ 1275 uint_t hblk_audit_index; /* index into audit_cache */ 1276 struct hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE]; 1277 #endif /* HBLK_AUDIT */ 1278 1279 struct sf_hment hblk_hme[1]; /* hment array */ 1280 }; 1281 1282 #define hblk_shared hblk_misc.shared_bit 1283 #define hblk_xhat_bit hblk_misc.xhat_bit 1284 #define hblk_shw_bit hblk_misc.shadow_bit 1285 #define hblk_nuc_bit hblk_misc.nucleus_bit 1286 #define hblk_ttesz hblk_misc.ttesize 1287 #define hblk_hmecnt hblk_un.hblk_counts.hblk_hmecount 1288 #define hblk_vcnt hblk_un.hblk_counts.hblk_validcnt 1289 #define hblk_shw_mask hblk_un.hblk_shadow_mask 1290 1291 #define MAX_HBLK_LCKCNT 0xFFFFFFFF 1292 #define HMEBLK_ALIGN 0x8 /* hmeblk has to be double aligned */ 1293 1294 #ifdef HBLK_TRACE 1295 1296 #define HBLK_STACK_TRACE(hmeblkp, lock) \ 1297 { \ 1298 int flag = lock; /* to pacify lint */ \ 1299 int audit_index; \ 1300 \ 1301 mutex_enter(&hmeblkp->hblk_audit_lock); \ 1302 audit_index = hmeblkp->hblk_audit_index; \ 1303 hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) & \ 1304 (HBLK_AUDIT_CACHE_SIZE - 1)); \ 1305 mutex_exit(&hmeblkp->hblk_audit_lock); \ 1306 \ 1307 if (flag) \ 1308 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1309 HBLK_LOCK_PATTERN; \ 1310 else \ 1311 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1312 HBLK_UNLOCK_PATTERN; \ 1313 \ 1314 hmeblkp->hblk_audit_cache[audit_index].thread = curthread; \ 1315 hmeblkp->hblk_audit_cache[audit_index].depth = \ 1316 getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack, \ 1317 HBLK_STACK_DEPTH); \ 1318 } 1319 1320 #else 1321 1322 #define HBLK_STACK_TRACE(hmeblkp, lock) 1323 1324 #endif /* HBLK_TRACE */ 1325 1326 #define HMEHASH_FACTOR 16 /* used to calc # of buckets in hme hash */ 1327 1328 /* 1329 * A maximum number of user hmeblks is defined in order to place an upper 1330 * limit on how much nucleus memory is required and to avoid overflowing the 1331 * tsbmiss uhashsz and khashsz data areas. The number below corresponds to 1332 * the number of buckets required, for an average hash chain length of 4 on 1333 * a 16TB machine. 1334 */ 1335 1336 #define MAX_UHME_BUCKETS (0x1 << 30) 1337 #define MAX_KHME_BUCKETS (0x1 << 30) 1338 1339 /* 1340 * The minimum number of kernel hash buckets. 1341 */ 1342 #define MIN_KHME_BUCKETS 0x800 1343 1344 /* 1345 * The number of hash buckets must be a power of 2. If the initial calculated 1346 * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater 1347 * power of 2, otherwise we round down to avoid huge over allocations. 1348 */ 1349 #define USER_BUCKETS_THRESHOLD (1<<22) 1350 1351 #define MAX_NUCUHME_BUCKETS 0x4000 1352 #define MAX_NUCKHME_BUCKETS 0x2000 1353 1354 /* 1355 * There are 2 locks in the hmehash bucket. The hmehash_mutex is 1356 * a regular mutex used to make sure operations on a hash link are only 1357 * done by one thread. Any operation which comes into the hat with 1358 * a <vaddr, as> will grab the hmehash_mutex. Normally one would expect 1359 * the tsb miss handlers to grab the hash lock to make sure the hash list 1360 * is consistent while we traverse it. Unfortunately this can lead to 1361 * deadlocks or recursive mutex enters since it is possible for 1362 * someone holding the lock to take a tlb/tsb miss. 1363 * To solve this problem we have added the hmehash_listlock. This lock 1364 * is only grabbed by the tsb miss handlers, vatopfn, and while 1365 * adding/removing a hmeblk from the hash list. The code is written to 1366 * guarantee we won't take a tlb miss while holding this lock. 1367 */ 1368 struct hmehash_bucket { 1369 kmutex_t hmehash_mutex; 1370 uint64_t hmeh_nextpa; /* physical address for hash list */ 1371 struct hme_blk *hmeblkp; 1372 uint_t hmeh_listlock; 1373 }; 1374 1375 #endif /* !_ASM */ 1376 1377 #define SFMMU_PGCNT_MASK 0x3f 1378 #define SFMMU_PGCNT_SHIFT 6 1379 #define INVALID_MMU_ID -1 1380 #define SFMMU_MMU_GNUM_RSHIFT 16 1381 #define SFMMU_MMU_CNUM_LSHIFT (64 - SFMMU_MMU_GNUM_RSHIFT) 1382 #define MAX_SFMMU_CTX_VAL ((1 << 16) - 1) /* for sanity check */ 1383 #define MAX_SFMMU_GNUM_VAL ((0x1UL << 48) - 1) 1384 1385 /* 1386 * The tsb miss handlers written in assembly know that sfmmup 1387 * is a 64 bit ptr. 1388 * 1389 * The bspage and re-hash part is 64 bits, with the sfmmup being another 64 1390 * bits. 1391 */ 1392 #define HTAG_SFMMUPSZ 0 /* Not really used for LP64 */ 1393 #define HTAG_BSPAGE_SHIFT 13 1394 1395 /* 1396 * Assembly routines need to be able to get to ttesz 1397 */ 1398 #define HBLK_SZMASK 0x7 1399 1400 #ifndef _ASM 1401 1402 /* 1403 * Returns the number of bytes that an hmeblk spans given its tte size 1404 */ 1405 #define get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span) 1406 #define get_hblk_ttesz(hmeblkp) ((hmeblkp)->hblk_ttesz) 1407 #define get_hblk_cache(hmeblkp) (((hmeblkp)->hblk_ttesz == TTE8K) ? \ 1408 sfmmu8_cache : sfmmu1_cache) 1409 #define HMEBLK_SPAN(ttesz) \ 1410 ((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz)) 1411 1412 #define set_hblk_sz(hmeblkp, ttesz) \ 1413 (hmeblkp)->hblk_ttesz = (ttesz); \ 1414 (hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz) 1415 1416 #define get_hblk_base(hmeblkp) \ 1417 ((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT) 1418 1419 #define get_hblk_endaddr(hmeblkp) \ 1420 ((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp))) 1421 1422 #define in_hblk_range(hmeblkp, vaddr) \ 1423 (((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) && \ 1424 ((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) + \ 1425 get_hblk_span(hmeblkp)))) 1426 1427 #define tte_to_vaddr(hmeblkp, tte) ((caddr_t)(get_hblk_base(hmeblkp) \ 1428 + (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum))) 1429 1430 #define tte_to_evaddr(hmeblkp, ttep) ((caddr_t)(get_hblk_base(hmeblkp) \ 1431 + (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1)))) 1432 1433 #define vaddr_to_vshift(hblktag, vaddr, shwsz) \ 1434 ((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\ 1435 TTE_BSZS_SHIFT((shwsz) - 1)) 1436 1437 #define HME8BLK_SZ (sizeof (struct hme_blk) + \ 1438 (NHMENTS - 1) * sizeof (struct sf_hment)) 1439 #define HME1BLK_SZ (sizeof (struct hme_blk)) 1440 #define H1MIN (2 + MAX_BIGKTSB_TTES) /* nucleus text+data, ktsb */ 1441 1442 /* 1443 * Hme_blk hash structure 1444 * Active mappings are kept in a hash structure of hme_blks. The hash 1445 * function is based on (ctx, vaddr) The size of the hash table size is a 1446 * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN. 1447 * The hash actually consists of 2 separate hashes. One hash is for the user 1448 * address space and the other hash is for the kernel address space. 1449 * The number of buckets are calculated at boot time and stored in the global 1450 * variables "uhmehash_num" and "khmehash_num". By making the hash table size 1451 * a power of 2 we can use a simply & function to derive an index instead of 1452 * a divide. 1453 * 1454 * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash 1455 * bucket. 1456 * An hme hash bucket contains a pointer to an hme_blk and the mutex that 1457 * protects the link list. 1458 * Spitfire supports 4 page sizes. 8k and 64K pages only need one hash. 1459 * 512K pages need 2 hashes and 4M pages need 3 hashes. 1460 * The 'shift' parameter controls how many bits the vaddr will be shifted in 1461 * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function 1462 * and it varies depending on the page size as follows: 1463 * 8k pages: HBLK_RANGE_SHIFT 1464 * 64k pages: MMU_PAGESHIFT64K 1465 * 512K pages: MMU_PAGESHIFT512K 1466 * 4M pages: MMU_PAGESHIFT4M 1467 * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All 1468 * changes should be reflected in both versions. This function and the TSB 1469 * miss handlers are the only places which know about the two hashes. 1470 * 1471 * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall 1472 * into the same bucket for a particular process. It is currently set to 1473 * be equivalent to 64K range or one hme_blk. 1474 * 1475 * The hme_blks in the hash are protected by a per hash bucket mutex 1476 * known as SFMMU_HASH_LOCK. 1477 * You need to acquire this lock before traversing the hash bucket link 1478 * list, while adding/removing a hme_blk to the list, and while 1479 * modifying an hme_blk. A possible optimization is to replace these 1480 * mutexes by readers/writer lock but right now it is not clear whether 1481 * this is a win or not. 1482 * 1483 * The HME_HASH_TABLE_SEARCH will search the hash table for the 1484 * hme_blk that contains the hment that corresponds to the passed 1485 * ctx and vaddr. It assumed the SFMMU_HASH_LOCK is held. 1486 */ 1487 1488 #endif /* ! _ASM */ 1489 1490 #define KHATID ksfmmup 1491 #define UHMEHASH_SZ uhmehash_num 1492 #define KHMEHASH_SZ khmehash_num 1493 #define HMENT_HASHAVELEN 4 1494 #define HBLK_RANGE_SHIFT MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */ 1495 #define HBLK_MIN_TTESZ 1 1496 #define HBLK_MIN_BYTES MMU_PAGESIZE64K 1497 #define HBLK_MIN_SHIFT MMU_PAGESHIFT64K 1498 #define MAX_HASHCNT 5 1499 #define DEFAULT_MAX_HASHCNT 3 1500 1501 #ifndef _ASM 1502 1503 #define HASHADDR_MASK(hashno) TTE_PAGEMASK(hashno) 1504 1505 #define HME_HASH_SHIFT(ttesz) \ 1506 ((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz)) 1507 1508 #define HME_HASH_ADDR(vaddr, hmeshift) \ 1509 ((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift))) 1510 1511 #define HME_HASH_BSPAGE(vaddr, hmeshift) \ 1512 (((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT)) 1513 1514 #define HME_HASH_REHASH(ttesz) \ 1515 (((ttesz) < TTE512K)? 1 : (ttesz)) 1516 1517 #define HME_HASH_FUNCTION(hatid, vaddr, shift) \ 1518 ((((void *)hatid) != ((void *)KHATID)) ? \ 1519 (&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1520 UHMEHASH_SZ) ]): \ 1521 (&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1522 KHMEHASH_SZ) ])) 1523 1524 /* 1525 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1526 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1527 * will be set to NULL, otherwise it will point to the correct hme_blk. 1528 * This macro also cleans empty hblks. 1529 */ 1530 #define HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, \ 1531 pr_hblk, prevpa, listp) \ 1532 { \ 1533 struct hme_blk *nx_hblk; \ 1534 uint64_t nx_pa; \ 1535 \ 1536 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1537 hblkp = hmebp->hmeblkp; \ 1538 hblkpa = hmebp->hmeh_nextpa; \ 1539 prevpa = 0; \ 1540 pr_hblk = NULL; \ 1541 while (hblkp) { \ 1542 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1543 /* found hme_blk */ \ 1544 break; \ 1545 } \ 1546 nx_hblk = hblkp->hblk_next; \ 1547 nx_pa = hblkp->hblk_nextpa; \ 1548 if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) { \ 1549 sfmmu_hblk_hash_rm(hmebp, hblkp, prevpa, pr_hblk); \ 1550 sfmmu_hblk_free(hmebp, hblkp, hblkpa, listp); \ 1551 } else { \ 1552 pr_hblk = hblkp; \ 1553 prevpa = hblkpa; \ 1554 } \ 1555 hblkp = nx_hblk; \ 1556 hblkpa = nx_pa; \ 1557 } \ 1558 } 1559 1560 #define HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp) \ 1561 { \ 1562 struct hme_blk *pr_hblk; \ 1563 uint64_t hblkpa, prevpa; \ 1564 \ 1565 HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, pr_hblk, \ 1566 prevpa, listp); \ 1567 } 1568 1569 /* 1570 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1571 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1572 * will be set to NULL, otherwise it will point to the correct hme_blk. 1573 * It doesn't remove empty hblks. 1574 */ 1575 #define HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp) \ 1576 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1577 for (hblkp = hmebp->hmeblkp; hblkp; \ 1578 hblkp = hblkp->hblk_next) { \ 1579 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1580 /* found hme_blk */ \ 1581 break; \ 1582 } \ 1583 } 1584 1585 #define SFMMU_HASH_LOCK(hmebp) \ 1586 (mutex_enter(&hmebp->hmehash_mutex)) 1587 1588 #define SFMMU_HASH_UNLOCK(hmebp) \ 1589 (mutex_exit(&hmebp->hmehash_mutex)) 1590 1591 #define SFMMU_HASH_LOCK_TRYENTER(hmebp) \ 1592 (mutex_tryenter(&hmebp->hmehash_mutex)) 1593 1594 #define SFMMU_HASH_LOCK_ISHELD(hmebp) \ 1595 (mutex_owned(&hmebp->hmehash_mutex)) 1596 1597 #define SFMMU_XCALL_STATS(sfmmup) \ 1598 { \ 1599 if (sfmmup == ksfmmup) { \ 1600 SFMMU_STAT(sf_kernel_xcalls); \ 1601 } else { \ 1602 SFMMU_STAT(sf_user_xcalls); \ 1603 } \ 1604 } 1605 1606 #define astosfmmu(as) ((as)->a_hat) 1607 #define hblktosfmmu(hmeblkp) ((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id) 1608 #define hblktosrd(hmeblkp) ((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id) 1609 #define sfmmutoas(sfmmup) ((sfmmup)->sfmmu_as) 1610 1611 #define sfmmutohtagid(sfmmup, rid) \ 1612 (((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \ 1613 (void *)((sfmmup)->sfmmu_srdp)) 1614 1615 /* 1616 * We use the sfmmu data structure to keep the per as page coloring info. 1617 */ 1618 #define as_color_bin(as) (astosfmmu(as)->sfmmu_clrbin) 1619 #define as_color_start(as) (astosfmmu(as)->sfmmu_clrstart) 1620 1621 typedef struct { 1622 char h8[HME8BLK_SZ]; 1623 } hblk8_t; 1624 1625 typedef struct { 1626 char h1[HME1BLK_SZ]; 1627 } hblk1_t; 1628 1629 typedef struct { 1630 ulong_t index; 1631 ulong_t len; 1632 hblk8_t *list; 1633 } nucleus_hblk8_info_t; 1634 1635 typedef struct { 1636 ulong_t index; 1637 ulong_t len; 1638 hblk1_t *list; 1639 } nucleus_hblk1_info_t; 1640 1641 /* 1642 * This struct is used for accumlating information about a range 1643 * of pages that are unloading so that a single xcall can flush 1644 * the entire range from remote tlbs. A function that must demap 1645 * a range of virtual addresses declares one of these structures 1646 * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this 1647 * struct to the appropriate sfmmu_hblk_* level function which does 1648 * all the bookkeeping using the other macros. When the function has 1649 * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH() 1650 * macro to take care of any remaining unflushed mappings. 1651 * 1652 * The maximum range this struct can represent is the number of bits 1653 * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only 1654 * MMU_PAGESIZE pages are supported. 1655 * 1656 * Since there are now cases where it's no longer necessary to do 1657 * flushes (e.g. when the process isn't runnable because it's swapping 1658 * out or exiting) we allow these macros to take a NULL dmr input and do 1659 * nothing in that case. 1660 */ 1661 typedef struct { 1662 sfmmu_t *dmr_sfmmup; /* relevant hat */ 1663 caddr_t dmr_addr; /* beginning address */ 1664 caddr_t dmr_endaddr; /* ending address */ 1665 ulong_t dmr_bitvec; /* valid pages found */ 1666 ulong_t dmr_bit; /* next page to examine */ 1667 ulong_t dmr_maxbit; /* highest page in range */ 1668 ulong_t dmr_pgsz; /* page size in range */ 1669 } demap_range_t; 1670 1671 #define DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */ 1672 1673 #define DEMAP_RANGE_INIT(sfmmup, dmrp) \ 1674 if ((dmrp) != NULL) { \ 1675 (dmrp)->dmr_sfmmup = (sfmmup); \ 1676 (dmrp)->dmr_bitvec = 0; \ 1677 (dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \ 1678 (dmrp)->dmr_pgsz = MMU_PAGESIZE; \ 1679 } 1680 1681 #define DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE) 1682 1683 #define DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \ 1684 if ((dmrp) != NULL) { \ 1685 if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \ 1686 sfmmu_tlb_range_demap(dmrp); \ 1687 (dmrp)->dmr_endaddr = (endaddr); \ 1688 } 1689 1690 #define DEMAP_RANGE_FLUSH(dmrp) \ 1691 if ((dmrp) != NULL) { \ 1692 if ((dmrp)->dmr_bitvec != 0) \ 1693 sfmmu_tlb_range_demap(dmrp); \ 1694 } 1695 1696 #define DEMAP_RANGE_MARKPG(dmrp, addr) \ 1697 if ((dmrp) != NULL) { \ 1698 if ((dmrp)->dmr_bitvec == 0) { \ 1699 (dmrp)->dmr_addr = (addr); \ 1700 (dmrp)->dmr_bit = 1; \ 1701 } \ 1702 (dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \ 1703 } 1704 1705 #define DEMAP_RANGE_NEXTPG(dmrp) \ 1706 if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \ 1707 if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \ 1708 sfmmu_tlb_range_demap(dmrp); \ 1709 } else { \ 1710 (dmrp)->dmr_bit <<= 1; \ 1711 } \ 1712 } 1713 1714 /* 1715 * TSB related structures 1716 * 1717 * The TSB is made up of tte entries. Both the tag and data are present 1718 * in the TSB. The TSB locking is managed as follows: 1719 * A software bit in the tsb tag is used to indicate that entry is locked. 1720 * If a cpu servicing a tsb miss reads a locked entry the tag compare will 1721 * fail forcing the cpu to go to the hat hash for the translation. 1722 * The cpu who holds the lock can then modify the data side, and the tag side. 1723 * The last write should be to the word containing the lock bit which will 1724 * clear the lock and allow the tsb entry to be read. It is assumed that all 1725 * cpus reading the tsb will do so with atomic 128-bit loads. An atomic 128 1726 * bit load is required to prevent the following from happening: 1727 * 1728 * cpu 0 cpu 1 comments 1729 * 1730 * ldx tag tag unlocked 1731 * ldstub lock set lock 1732 * stx data 1733 * stx tag unlock 1734 * ldx tag incorrect tte!!! 1735 * 1736 * The software also maintains a bit in the tag to indicate an invalid 1737 * tsb entry. The purpose of this bit is to allow the tsb invalidate code 1738 * to invalidate a tsb entry with a single cas. See code for details. 1739 */ 1740 1741 union tsb_tag { 1742 struct { 1743 uint32_t tag_res0:16; /* reserved - context area */ 1744 uint32_t tag_inv:1; /* sw - invalid tsb entry */ 1745 uint32_t tag_lock:1; /* sw - locked tsb entry */ 1746 uint32_t tag_res1:4; /* reserved */ 1747 uint32_t tag_va_hi:10; /* va[63:54] */ 1748 uint32_t tag_va_lo; /* va[53:22] */ 1749 } tagbits; 1750 struct tsb_tagints { 1751 uint32_t inthi; 1752 uint32_t intlo; 1753 } tagints; 1754 }; 1755 #define tag_invalid tagbits.tag_inv 1756 #define tag_locked tagbits.tag_lock 1757 #define tag_vahi tagbits.tag_va_hi 1758 #define tag_valo tagbits.tag_va_lo 1759 #define tag_inthi tagints.inthi 1760 #define tag_intlo tagints.intlo 1761 1762 struct tsbe { 1763 union tsb_tag tte_tag; 1764 tte_t tte_data; 1765 }; 1766 1767 /* 1768 * A per cpu struct is kept that duplicates some info 1769 * used by the tl>0 tsb miss handlers plus it provides 1770 * a scratch area. Its purpose is to minimize cache misses 1771 * in the tsb miss handler and is 128 bytes (2 e$ lines). 1772 * 1773 * There should be one allocated per cpu in nucleus memory 1774 * and should be aligned on an ecache line boundary. 1775 */ 1776 struct tsbmiss { 1777 sfmmu_t *ksfmmup; /* kernel hat id */ 1778 sfmmu_t *usfmmup; /* user hat id */ 1779 sf_srd_t *usrdp; /* user's SRD hat id */ 1780 struct tsbe *tsbptr; /* hardware computed ptr */ 1781 struct tsbe *tsbptr4m; /* hardware computed ptr */ 1782 struct tsbe *tsbscdptr; /* hardware computed ptr */ 1783 struct tsbe *tsbscdptr4m; /* hardware computed ptr */ 1784 uint64_t ismblkpa; 1785 struct hmehash_bucket *khashstart; 1786 struct hmehash_bucket *uhashstart; 1787 uint_t khashsz; 1788 uint_t uhashsz; 1789 uint16_t dcache_line_mask; /* used to flush dcache */ 1790 uchar_t uhat_tteflags; /* private page sizes */ 1791 uchar_t uhat_rtteflags; /* SHME pagesizes */ 1792 uint32_t utsb_misses; 1793 uint32_t ktsb_misses; 1794 uint16_t uprot_traps; 1795 uint16_t kprot_traps; 1796 /* 1797 * scratch[0] -> TSB_TAGACC 1798 * scratch[1] -> TSBMISS_HMEBP 1799 * scratch[2] -> TSBMISS_HATID 1800 */ 1801 uintptr_t scratch[3]; 1802 ulong_t shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1803 ulong_t scd_shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1804 uint8_t pad[48]; /* pad to 64 bytes */ 1805 }; 1806 1807 /* 1808 * A per cpu struct is kept for the use within the tl>0 kpm tsb 1809 * miss handler. Some members are duplicates of common data or 1810 * the physical addresses of common data. A few members are also 1811 * written by the tl>0 kpm tsb miss handler. Its purpose is to 1812 * minimize cache misses in the kpm tsb miss handler and occupies 1813 * one ecache line. There should be one allocated per cpu in 1814 * nucleus memory and it should be aligned on an ecache line 1815 * boundary. It is not merged w/ struct tsbmiss since there is 1816 * not much to share and the tsbmiss pathes are different, so 1817 * a kpm tlbmiss/tsbmiss only touches one cacheline, except for 1818 * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter 1819 * of struct tsbmiss is used on every dtlb miss. 1820 */ 1821 struct kpmtsbm { 1822 caddr_t vbase; /* start of address kpm range */ 1823 caddr_t vend; /* end of address kpm range */ 1824 uchar_t flags; /* flags needed in TL tsbmiss handler */ 1825 uchar_t sz_shift; /* for single kpm window */ 1826 uchar_t kpmp_shift; /* hash lock shift */ 1827 uchar_t kpmp2pshft; /* kpm page to page shift */ 1828 uint_t kpmp_table_sz; /* size of kpmp_table or kpmp_stable */ 1829 uint64_t kpmp_tablepa; /* paddr of kpmp_table or kpmp_stable */ 1830 uint64_t msegphashpa; /* paddr of memseg_phash */ 1831 struct tsbe *tsbptr; /* saved ktsb pointer */ 1832 uint_t kpm_dtlb_misses; /* kpm tlbmiss counter */ 1833 uint_t kpm_tsb_misses; /* kpm tsbmiss counter */ 1834 uintptr_t pad[1]; 1835 }; 1836 1837 extern size_t tsb_slab_size; 1838 extern uint_t tsb_slab_shift; 1839 extern size_t tsb_slab_mask; 1840 1841 #endif /* !_ASM */ 1842 1843 /* 1844 * Flags for TL kpm tsbmiss handler 1845 */ 1846 #define KPMTSBM_ENABLE_FLAG 0x01 /* bit copy of kpm_enable */ 1847 #define KPMTSBM_TLTSBM_FLAG 0x02 /* use TL tsbmiss handler */ 1848 #define KPMTSBM_TSBPHYS_FLAG 0x04 /* use ASI_MEM for TSB update */ 1849 1850 /* 1851 * The TSB 1852 * All TSB sizes supported by the hardware are now supported (8K - 1M). 1853 * For kernel TSBs we may go beyond the hardware supported sizes and support 1854 * larger TSBs via software. 1855 * All TTE sizes are supported in the TSB; the manner in which this is 1856 * done is cpu dependent. 1857 */ 1858 #define TSB_MIN_SZCODE TSB_8K_SZCODE /* min. supported TSB size */ 1859 #define TSB_MIN_OFFSET_MASK (TSB_OFFSET_MASK(TSB_MIN_SZCODE)) 1860 1861 #ifdef sun4v 1862 #define UTSB_MAX_SZCODE TSB_256M_SZCODE /* max. supported TSB size */ 1863 #else /* sun4u */ 1864 #define UTSB_MAX_SZCODE TSB_1M_SZCODE /* max. supported TSB size */ 1865 #endif /* sun4v */ 1866 1867 #define UTSB_MAX_OFFSET_MASK (TSB_OFFSET_MASK(UTSB_MAX_SZCODE)) 1868 1869 #define TSB_FREEMEM_MIN 0x1000 /* 32 mb */ 1870 #define TSB_FREEMEM_LARGE 0x10000 /* 512 mb */ 1871 #define TSB_8K_SZCODE 0 /* 512 entries */ 1872 #define TSB_16K_SZCODE 1 /* 1k entries */ 1873 #define TSB_32K_SZCODE 2 /* 2k entries */ 1874 #define TSB_64K_SZCODE 3 /* 4k entries */ 1875 #define TSB_128K_SZCODE 4 /* 8k entries */ 1876 #define TSB_256K_SZCODE 5 /* 16k entries */ 1877 #define TSB_512K_SZCODE 6 /* 32k entries */ 1878 #define TSB_1M_SZCODE 7 /* 64k entries */ 1879 #define TSB_2M_SZCODE 8 /* 128k entries */ 1880 #define TSB_4M_SZCODE 9 /* 256k entries */ 1881 #define TSB_8M_SZCODE 10 /* 512k entries */ 1882 #define TSB_16M_SZCODE 11 /* 1M entries */ 1883 #define TSB_32M_SZCODE 12 /* 2M entries */ 1884 #define TSB_64M_SZCODE 13 /* 4M entries */ 1885 #define TSB_128M_SZCODE 14 /* 8M entries */ 1886 #define TSB_256M_SZCODE 15 /* 16M entries */ 1887 #define TSB_ENTRY_SHIFT 4 /* each entry = 128 bits = 16 bytes */ 1888 #define TSB_ENTRY_SIZE (1 << 4) 1889 #define TSB_START_SIZE 9 1890 #define TSB_ENTRIES(tsbsz) (1 << (TSB_START_SIZE + tsbsz)) 1891 #define TSB_BYTES(tsbsz) (TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT) 1892 #define TSB_OFFSET_MASK(tsbsz) (TSB_ENTRIES(tsbsz) - 1) 1893 #define TSB_BASEADDR_MASK ((1 << 12) - 1) 1894 1895 /* 1896 * sun4u platforms 1897 * --------------- 1898 * We now support two user TSBs with one TSB base register. 1899 * Hence the TSB base register is split up as follows: 1900 * 1901 * When only one TSB present: 1902 * [63 62..42 41..13 12..4 3..0] 1903 * ^ ^ ^ ^ ^ 1904 * | | | | | 1905 * | | | | |_ TSB size code 1906 * | | | | 1907 * | | | |_ Reserved 0 1908 * | | | 1909 * | | |_ TSB VA[41..13] 1910 * | | 1911 * | |_ VA hole (Spitfire), zeros (Cheetah and beyond) 1912 * | 1913 * |_ 0 1914 * 1915 * When second TSB present: 1916 * [63 62..42 41..33 32..29 28..22 21..13 12..4 3..0] 1917 * ^ ^ ^ ^ ^ ^ ^ ^ 1918 * | | | | | | | | 1919 * | | | | | | | |_ First TSB size code 1920 * | | | | | | | 1921 * | | | | | | |_ Reserved 0 1922 * | | | | | | 1923 * | | | | | |_ First TSB's VA[21..13] 1924 * | | | | | 1925 * | | | | |_ Reserved for future use 1926 * | | | | 1927 * | | | |_ Second TSB's size code 1928 * | | | 1929 * | | |_ Second TSB's VA[21..13] 1930 * | | 1931 * | |_ VA hole (Spitfire) / ones (Cheetah and beyond) 1932 * | 1933 * |_ 1 1934 * 1935 * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs 1936 * may be up to 4M in size. For now, only hardware supported TSB sizes 1937 * are supported, though the slabs are usually 4M in size. 1938 * 1939 * sun4u platforms that define UTSB_PHYS use physical addressing to access 1940 * the user TSBs at TL>0. The first user TSB base is in the MMU I/D TSB Base 1941 * registers. The second TSB base uses a dedicated scratchpad register which 1942 * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h. The layout for 1943 * both registers is equivalent to sun4v below, except the TSB PA range is 1944 * [46..13] for sun4u. 1945 * 1946 * sun4v platforms 1947 * --------------- 1948 * On sun4v platforms, we use two dedicated scratchpad registers as pseudo 1949 * hardware TSB base registers to hold up to two different user TSBs. 1950 * 1951 * Each register contains TSB's physical base and size code information 1952 * as follows: 1953 * 1954 * [63..56 55..13 12..4 3..0] 1955 * ^ ^ ^ ^ 1956 * | | | | 1957 * | | | |_ TSB size code 1958 * | | | 1959 * | | |_ Reserved 0 1960 * | | 1961 * | |_ TSB PA[55..13] 1962 * | 1963 * | 1964 * | 1965 * |_ 0 for valid TSB 1966 * 1967 * Absence of a user TSB (primarily the second user TSB) is indicated by 1968 * storing a negative value in the TSB base register. This allows us to 1969 * check for presence of a user TSB by simply checking bit# 63. 1970 */ 1971 #define TSBREG_MSB_SHIFT 32 /* set upper bits */ 1972 #define TSBREG_MSB_CONST 0xfffff800 /* set bits 63..43 */ 1973 #define TSBREG_FIRTSB_SHIFT 42 /* to clear bits 63:22 */ 1974 #define TSBREG_SECTSB_MKSHIFT 20 /* 21:13 --> 41:33 */ 1975 #define TSBREG_SECTSB_LSHIFT 22 /* to clear bits 63:42 */ 1976 #define TSBREG_SECTSB_RSHIFT (TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT) 1977 /* sectsb va -> bits 21:13 */ 1978 /* after clearing upper bits */ 1979 #define TSBREG_SECSZ_SHIFT 29 /* to get sectsb szc to 3:0 */ 1980 #define TSBREG_VAMASK_SHIFT 13 /* set up VA mask */ 1981 1982 #define BIGKTSB_SZ_MASK 0xf 1983 #define TSB_SOFTSZ_MASK BIGKTSB_SZ_MASK 1984 #define MIN_BIGKTSB_SZCODE 9 /* 256k entries */ 1985 #define MAX_BIGKTSB_SZCODE 11 /* 1024k entries */ 1986 #define MAX_BIGKTSB_TTES (TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M) 1987 1988 #define TAG_VALO_SHIFT 22 /* tag's va are bits 63-22 */ 1989 /* 1990 * sw bits used on tsb_tag - bit masks used only in assembly 1991 * use only a sethi for these fields. 1992 */ 1993 #define TSBTAG_INVALID 0x00008000 /* tsb_tag.tag_invalid */ 1994 #define TSBTAG_LOCKED 0x00004000 /* tsb_tag.tag_locked */ 1995 1996 #ifdef _ASM 1997 1998 /* 1999 * Marker to indicate that this instruction will be hot patched at runtime 2000 * to some other value. 2001 * This value must be zero since it fills in the imm bits of the target 2002 * instructions to be patched 2003 */ 2004 #define RUNTIME_PATCH (0) 2005 2006 /* 2007 * V9 defines nop instruction as the following, which we use 2008 * at runtime to nullify some instructions we don't want to 2009 * execute in the trap handlers on certain platforms. 2010 */ 2011 #define MAKE_NOP_INSTR(reg) \ 2012 sethi %hi(0x1000000), reg 2013 2014 /* 2015 * This macro constructs a SPARC V9 "jmpl <source reg>, %g0" 2016 * instruction, with the source register specified by the jump_reg_number. 2017 * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14]. 2018 * The instruction is returned in reg. The macro is used to patch in a jmpl 2019 * instruction at runtime. 2020 */ 2021 #define MAKE_JMP_INSTR(jump_reg_number, reg, tmp) \ 2022 sethi %hi(0x81c00000), reg; \ 2023 mov jump_reg_number, tmp; \ 2024 sll tmp, 14, tmp; \ 2025 or reg, tmp, reg 2026 2027 /* 2028 * Macro to get hat per-MMU cnum on this CPU. 2029 * sfmmu - In, pass in "sfmmup" from the caller. 2030 * cnum - Out, return 'cnum' to the caller 2031 * scr - scratch 2032 */ 2033 #define SFMMU_CPU_CNUM(sfmmu, cnum, scr) \ 2034 CPU_ADDR(scr, cnum); /* scr = load CPU struct addr */ \ 2035 ld [scr + CPU_MMU_IDX], cnum; /* cnum = mmuid */ \ 2036 add sfmmu, SFMMU_CTXS, scr; /* scr = sfmmup->sfmmu_ctxs[] */ \ 2037 sllx cnum, SFMMU_MMU_CTX_SHIFT, cnum; \ 2038 add scr, cnum, scr; /* scr = sfmmup->sfmmu_ctxs[id] */ \ 2039 ldx [scr + SFMMU_MMU_GC_NUM], scr; /* sfmmu_ctxs[id].gcnum */ \ 2040 sllx scr, SFMMU_MMU_CNUM_LSHIFT, scr; \ 2041 srlx scr, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2042 2043 /* 2044 * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry 2045 * entry - In, pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller. 2046 * gnum - Out, return sfmmu gnum 2047 * cnum - Out, return sfmmu cnum 2048 * reg - scratch 2049 */ 2050 #define SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg) \ 2051 ldx [entry + SFMMU_CTXS], reg; /* reg = sfmmu (gnum | cnum) */ \ 2052 srlx reg, SFMMU_MMU_GNUM_RSHIFT, gnum; /* gnum = sfmmu gnum */ \ 2053 sllx reg, SFMMU_MMU_CNUM_LSHIFT, cnum; \ 2054 srlx cnum, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2055 2056 /* 2057 * Macro to get this CPU's tsbmiss area. 2058 */ 2059 #define CPU_TSBMISS_AREA(tsbmiss, tmp1) \ 2060 CPU_INDEX(tmp1, tsbmiss); /* tmp1 = cpu idx */ \ 2061 sethi %hi(tsbmiss_area), tsbmiss; /* tsbmiss base ptr */ \ 2062 mulx tmp1, TSBMISS_SIZE, tmp1; /* byte offset */ \ 2063 or tsbmiss, %lo(tsbmiss_area), tsbmiss; \ 2064 add tsbmiss, tmp1, tsbmiss /* tsbmiss area of CPU */ 2065 2066 2067 /* 2068 * Macro to set kernel context + page size codes in DMMU primary context 2069 * register. It is only necessary for sun4u because sun4v does not need 2070 * page size codes 2071 */ 2072 #ifdef sun4v 2073 2074 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) 2075 2076 #else 2077 2078 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \ 2079 sethi %hi(kcontextreg), reg0; \ 2080 ldx [reg0 + %lo(kcontextreg)], reg0; \ 2081 mov MMU_PCONTEXT, reg1; \ 2082 ldxa [reg1]ASI_MMU_CTX, reg2; \ 2083 xor reg0, reg2, reg2; \ 2084 brz reg2, label3; \ 2085 srlx reg2, CTXREG_NEXT_SHIFT, reg2; \ 2086 rdpr %pstate, reg3; /* disable interrupts */ \ 2087 btst PSTATE_IE, reg3; \ 2088 /*CSTYLED*/ \ 2089 bnz,a,pt %icc, label1; \ 2090 wrpr reg3, PSTATE_IE, %pstate; \ 2091 /*CSTYLED*/ \ 2092 label1:; \ 2093 brz reg2, label2; /* need demap if N_pgsz0/1 change */ \ 2094 sethi %hi(FLUSH_ADDR), reg4; \ 2095 mov DEMAP_ALL_TYPE, reg2; \ 2096 stxa %g0, [reg2]ASI_DTLB_DEMAP; \ 2097 stxa %g0, [reg2]ASI_ITLB_DEMAP; \ 2098 /*CSTYLED*/ \ 2099 label2:; \ 2100 stxa reg0, [reg1]ASI_MMU_CTX; \ 2101 flush reg4; \ 2102 btst PSTATE_IE, reg3; \ 2103 /*CSTYLED*/ \ 2104 bnz,a,pt %icc, label3; \ 2105 wrpr %g0, reg3, %pstate; /* restore interrupt state */ \ 2106 label3:; 2107 2108 #endif 2109 2110 /* 2111 * Macro to setup arguments with kernel sfmmup context + page size before 2112 * calling sfmmu_setctx_sec() 2113 */ 2114 #ifdef sun4v 2115 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2116 set KCONTEXT, arg0; \ 2117 set 0, arg1; 2118 #else 2119 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2120 ldub [sfmmup + SFMMU_CEXT], arg1; \ 2121 set KCONTEXT, arg0; \ 2122 sll arg1, CTXREG_EXT_SHIFT, arg1; 2123 #endif 2124 2125 #define PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr) \ 2126 andcc pstatereg, PSTATE_IE, %g0; /* panic if intrs */ \ 2127 /*CSTYLED*/ \ 2128 bnz,pt %icc, label; /* already disabled */ \ 2129 nop; \ 2130 \ 2131 sethi %hi(panicstr), scr; \ 2132 ldx [scr + %lo(panicstr)], scr; \ 2133 tst scr; \ 2134 /*CSTYLED*/ \ 2135 bnz,pt %xcc, label; \ 2136 nop; \ 2137 \ 2138 save %sp, -SA(MINFRAME), %sp; \ 2139 sethi %hi(sfmmu_panic1), %o0; \ 2140 call panic; \ 2141 or %o0, %lo(sfmmu_panic1), %o0; \ 2142 /*CSTYLED*/ \ 2143 label: 2144 2145 #define PANIC_IF_INTR_ENABLED_PSTR(label, scr) \ 2146 /* \ 2147 * The caller must have disabled interrupts. \ 2148 * If interrupts are not disabled, panic \ 2149 */ \ 2150 rdpr %pstate, scr; \ 2151 andcc scr, PSTATE_IE, %g0; \ 2152 /*CSTYLED*/ \ 2153 bz,pt %icc, label; \ 2154 nop; \ 2155 \ 2156 sethi %hi(panicstr), scr; \ 2157 ldx [scr + %lo(panicstr)], scr; \ 2158 tst scr; \ 2159 /*CSTYLED*/ \ 2160 bnz,pt %xcc, label; \ 2161 nop; \ 2162 \ 2163 sethi %hi(sfmmu_panic6), %o0; \ 2164 call panic; \ 2165 or %o0, %lo(sfmmu_panic6), %o0; \ 2166 /*CSTYLED*/ \ 2167 label: 2168 2169 #endif /* _ASM */ 2170 2171 #ifndef _ASM 2172 2173 #ifdef VAC 2174 /* 2175 * Page coloring 2176 * The p_vcolor field of the page struct (1 byte) is used to store the 2177 * virtual page color. This provides for 255 colors. The value zero is 2178 * used to mean the page has no color - never been mapped or somehow 2179 * purified. 2180 */ 2181 2182 #define PP_GET_VCOLOR(pp) (((pp)->p_vcolor) - 1) 2183 #define PP_NEWPAGE(pp) (!(pp)->p_vcolor) 2184 #define PP_SET_VCOLOR(pp, color) \ 2185 ((pp)->p_vcolor = ((color) + 1)) 2186 2187 /* 2188 * As mentioned p_vcolor == 0 means there is no color for this page. 2189 * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus 2190 * one so we define this constant. 2191 */ 2192 #define NO_VCOLOR (-1) 2193 2194 #define addr_to_vcolor(addr) \ 2195 (((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask) 2196 #else /* VAC */ 2197 #define addr_to_vcolor(addr) (0) 2198 #endif /* VAC */ 2199 2200 /* 2201 * The field p_index in the psm page structure is for large pages support. 2202 * P_index is a bit-vector of the different mapping sizes that a given page 2203 * is part of. An hme structure for a large mapping is only added in the 2204 * group leader page (first page). All pages covered by a given large mapping 2205 * have the corrosponding mapping bit set in their p_index field. This allows 2206 * us to only store an explicit hme structure in the leading page which 2207 * simplifies the mapping link list management. Furthermore, it provides us 2208 * a fast mechanism for determining the largest mapping a page is part of. For 2209 * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A. 2210 * 2211 * Implementation note: even though the first bit in p_index is reserved 2212 * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set. 2213 * In addition, the upper four bits of the p_index field are used by the 2214 * code as temporaries 2215 */ 2216 2217 /* 2218 * Defines for psm page struct fields and large page support 2219 */ 2220 #define SFMMU_INDEX_SHIFT 6 2221 #define SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1) 2222 2223 /* Return the mapping index */ 2224 #define PP_MAPINDEX(pp) ((pp)->p_index & SFMMU_INDEX_MASK) 2225 2226 /* 2227 * These macros rely on the following property: 2228 * All pages constituting a large page are covered by a virtually 2229 * contiguous set of page_t's. 2230 */ 2231 2232 /* Return the leader for this mapping size */ 2233 #define PP_GROUPLEADER(pp, sz) \ 2234 (&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))]) 2235 2236 /* Return the root page for this page based on p_szc */ 2237 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 2238 PP_GROUPLEADER((pp), (pp)->p_szc)) 2239 2240 #define PP_PAGENEXT_N(pp, n) ((pp) + (n)) 2241 #define PP_PAGENEXT(pp) PP_PAGENEXT_N((pp), 1) 2242 2243 #define PP_PAGEPREV_N(pp, n) ((pp) - (n)) 2244 #define PP_PAGEPREV(pp) PP_PAGEPREV_N((pp), 1) 2245 2246 #define PP_ISMAPPED_LARGE(pp) (PP_MAPINDEX(pp) != 0) 2247 2248 /* Need function to test the page mappping which takes p_index into account */ 2249 #define PP_ISMAPPED(pp) ((pp)->p_mapping || PP_ISMAPPED_LARGE(pp)) 2250 2251 /* 2252 * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT 2253 * set p_index field. 2254 */ 2255 #define PAGESZ_TO_INDEX(sz) (1 << (sz)) 2256 2257 2258 /* 2259 * prototypes for hat assembly routines. Some of these are 2260 * known to machine dependent VM code. 2261 */ 2262 extern uint64_t sfmmu_make_tsbtag(caddr_t); 2263 extern struct tsbe * 2264 sfmmu_get_tsbe(uint64_t, caddr_t, int, int); 2265 extern void sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int); 2266 extern void sfmmu_unload_tsbe(struct tsbe *, uint64_t, int); 2267 extern void sfmmu_load_mmustate(sfmmu_t *); 2268 extern void sfmmu_raise_tsb_exception(uint64_t, uint64_t); 2269 #ifndef sun4v 2270 extern void sfmmu_itlb_ld_kva(caddr_t, tte_t *); 2271 extern void sfmmu_dtlb_ld_kva(caddr_t, tte_t *); 2272 #endif /* sun4v */ 2273 extern void sfmmu_copytte(tte_t *, tte_t *); 2274 extern int sfmmu_modifytte(tte_t *, tte_t *, tte_t *); 2275 extern int sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *); 2276 extern pfn_t sfmmu_ttetopfn(tte_t *, caddr_t); 2277 extern void sfmmu_hblk_hash_rm(struct hmehash_bucket *, 2278 struct hme_blk *, uint64_t, struct hme_blk *); 2279 extern void sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *, 2280 uint64_t); 2281 extern uint_t sfmmu_disable_intrs(void); 2282 extern void sfmmu_enable_intrs(uint_t); 2283 /* 2284 * functions exported to machine dependent VM code 2285 */ 2286 extern void sfmmu_patch_ktsb(void); 2287 #ifndef UTSB_PHYS 2288 extern void sfmmu_patch_utsb(void); 2289 #endif /* UTSB_PHYS */ 2290 extern pfn_t sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *); 2291 extern void sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *); 2292 extern pfn_t sfmmu_kvaszc2pfn(caddr_t, int); 2293 #ifdef DEBUG 2294 extern void sfmmu_check_kpfn(pfn_t); 2295 #else 2296 #define sfmmu_check_kpfn(pfn) /* disabled */ 2297 #endif /* DEBUG */ 2298 extern void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 2299 extern void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, uint_t); 2300 extern void sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t); 2301 extern void sfmmu_init_tsbs(void); 2302 extern caddr_t sfmmu_ktsb_alloc(caddr_t); 2303 extern int sfmmu_getctx_pri(void); 2304 extern int sfmmu_getctx_sec(void); 2305 extern void sfmmu_setctx_sec(uint_t); 2306 extern void sfmmu_inv_tsb(caddr_t, uint_t); 2307 extern void sfmmu_init_ktsbinfo(void); 2308 extern int sfmmu_setup_4lp(void); 2309 extern void sfmmu_patch_mmu_asi(int); 2310 extern void sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int); 2311 extern void sfmmu_cache_flushall(void); 2312 extern pgcnt_t sfmmu_tte_cnt(sfmmu_t *, uint_t); 2313 extern void *sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int); 2314 extern void sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t); 2315 extern void sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *); 2316 2317 extern void hat_kern_setup(void); 2318 extern int hat_page_relocate(page_t **, page_t **, spgcnt_t *); 2319 extern int sfmmu_get_ppvcolor(struct page *); 2320 extern int sfmmu_get_addrvcolor(caddr_t); 2321 extern int sfmmu_hat_lock_held(sfmmu_t *); 2322 extern int sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int); 2323 2324 /* 2325 * Functions exported to xhat_sfmmu.c 2326 */ 2327 extern kmutex_t *sfmmu_mlist_enter(page_t *); 2328 extern void sfmmu_mlist_exit(kmutex_t *); 2329 extern int sfmmu_mlist_held(struct page *); 2330 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *); 2331 2332 /* 2333 * MMU-specific functions optionally imported from the CPU module 2334 */ 2335 #pragma weak mmu_init_scd 2336 #pragma weak mmu_large_pages_disabled 2337 #pragma weak mmu_set_ctx_page_sizes 2338 #pragma weak mmu_check_page_sizes 2339 2340 extern void mmu_init_scd(sf_scd_t *); 2341 extern uint_t mmu_large_pages_disabled(uint_t); 2342 extern void mmu_set_ctx_page_sizes(sfmmu_t *); 2343 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *); 2344 2345 extern sfmmu_t *ksfmmup; 2346 extern caddr_t ktsb_base; 2347 extern uint64_t ktsb_pbase; 2348 extern int ktsb_sz; 2349 extern int ktsb_szcode; 2350 extern caddr_t ktsb4m_base; 2351 extern uint64_t ktsb4m_pbase; 2352 extern int ktsb4m_sz; 2353 extern int ktsb4m_szcode; 2354 extern uint64_t kpm_tsbbase; 2355 extern int kpm_tsbsz; 2356 extern int ktsb_phys; 2357 extern int enable_bigktsb; 2358 #ifndef sun4v 2359 extern int utsb_dtlb_ttenum; 2360 extern int utsb4m_dtlb_ttenum; 2361 #endif /* sun4v */ 2362 extern int uhmehash_num; 2363 extern int khmehash_num; 2364 extern struct hmehash_bucket *uhme_hash; 2365 extern struct hmehash_bucket *khme_hash; 2366 extern kmutex_t *mml_table; 2367 extern uint_t mml_table_sz; 2368 extern uint_t mml_shift; 2369 extern uint_t hblk_alloc_dynamic; 2370 extern struct tsbmiss tsbmiss_area[NCPU]; 2371 extern struct kpmtsbm kpmtsbm_area[NCPU]; 2372 2373 #ifndef sun4v 2374 extern int dtlb_resv_ttenum; 2375 extern caddr_t utsb_vabase; 2376 extern caddr_t utsb4m_vabase; 2377 #endif /* sun4v */ 2378 extern vmem_t *kmem_tsb_default_arena[]; 2379 extern int tsb_lgrp_affinity; 2380 2381 extern uint_t disable_large_pages; 2382 extern uint_t disable_ism_large_pages; 2383 extern uint_t disable_auto_data_large_pages; 2384 extern uint_t disable_auto_text_large_pages; 2385 2386 /* kpm externals */ 2387 extern pfn_t sfmmu_kpm_vatopfn(caddr_t); 2388 extern void sfmmu_kpm_patch_tlbm(void); 2389 extern void sfmmu_kpm_patch_tsbm(void); 2390 extern void sfmmu_patch_shctx(void); 2391 extern void sfmmu_kpm_load_tsb(caddr_t, tte_t *, int); 2392 extern void sfmmu_kpm_unload_tsb(caddr_t, int); 2393 extern void sfmmu_kpm_tsbmtl(short *, uint_t *, int); 2394 extern int sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int); 2395 extern caddr_t kpm_vbase; 2396 extern size_t kpm_size; 2397 extern struct memseg *memseg_hash[]; 2398 extern uint64_t memseg_phash[]; 2399 extern kpm_hlk_t *kpmp_table; 2400 extern kpm_shlk_t *kpmp_stable; 2401 extern uint_t kpmp_table_sz; 2402 extern uint_t kpmp_stable_sz; 2403 extern uchar_t kpmp_shift; 2404 2405 #define PP_ISMAPPED_KPM(pp) ((pp)->p_kpmref > 0) 2406 2407 #define IS_KPM_ALIAS_RANGE(vaddr) \ 2408 (((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0) 2409 2410 #endif /* !_ASM */ 2411 2412 /* sfmmu_kpm_tsbmtl flags */ 2413 #define KPMTSBM_STOP 0 2414 #define KPMTSBM_START 1 2415 2416 /* 2417 * For kpm_smallpages, the state about how a kpm page is mapped and whether 2418 * it is ready to go is indicated by the two 4-bit fields defined in the 2419 * kpm_spage structure as follows: 2420 * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not 2421 * kp_mapped_flag bit[4:7] - the mapping is ready to go or not 2422 * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss 2423 * handler can drop the mapping in regardless of the caching state of the 2424 * mapping. Otherwise, we will have C handler resolve the VAC conflict no 2425 * matter the page is currently mapped cacheable or non-cacheable. 2426 */ 2427 #define KPM_MAPPEDS 0x1 /* small mapping valid, no conflict */ 2428 #define KPM_MAPPEDSC 0x2 /* small mapping valid, conflict */ 2429 #define KPM_MAPPED_GO 0x10 /* the mapping is ready to go */ 2430 #define KPM_MAPPED_MASK 0xf 2431 2432 /* Physical memseg address NULL marker */ 2433 #define MSEG_NULLPTR_PA -1 2434 2435 /* 2436 * Memseg hash defines for kpm trap level tsbmiss handler. 2437 * Must be in sync w/ page.h . 2438 */ 2439 #define SFMMU_MEM_HASH_SHIFT 0x9 2440 #define SFMMU_N_MEM_SLOTS 0x200 2441 #define SFMMU_MEM_HASH_ENTRY_SHIFT 3 2442 2443 #ifndef _ASM 2444 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT) 2445 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT 2446 #endif 2447 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS) 2448 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS 2449 #endif 2450 2451 /* Physical memseg address NULL marker */ 2452 #define SFMMU_MEMSEG_NULLPTR_PA -1 2453 2454 /* 2455 * Check KCONTEXT to be zero, asm parts depend on that assumption. 2456 */ 2457 #if (KCONTEXT != 0) 2458 #error KCONTEXT != 0 2459 #endif 2460 #endif /* !_ASM */ 2461 2462 2463 #endif /* _KERNEL */ 2464 2465 #ifndef _ASM 2466 /* 2467 * ctx, hmeblk, mlistlock and other stats for sfmmu 2468 */ 2469 struct sfmmu_global_stat { 2470 int sf_tsb_exceptions; /* # of tsb exceptions */ 2471 int sf_tsb_raise_exception; /* # tsb exc. w/o TLB flush */ 2472 2473 int sf_pagefaults; /* # of pagefaults */ 2474 2475 int sf_uhash_searches; /* # of user hash searches */ 2476 int sf_uhash_links; /* # of user hash links */ 2477 int sf_khash_searches; /* # of kernel hash searches */ 2478 int sf_khash_links; /* # of kernel hash links */ 2479 2480 int sf_swapout; /* # times hat swapped out */ 2481 2482 int sf_tsb_alloc; /* # TSB allocations */ 2483 int sf_tsb_allocfail; /* # times TSB alloc fail */ 2484 int sf_tsb_sectsb_create; /* # times second TSB added */ 2485 2486 int sf_scd_1sttsb_alloc; /* # SCD 1st TSB allocations */ 2487 int sf_scd_2ndtsb_alloc; /* # SCD 2nd TSB allocations */ 2488 int sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */ 2489 int sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */ 2490 2491 2492 int sf_tteload8k; /* calls to sfmmu_tteload */ 2493 int sf_tteload64k; /* calls to sfmmu_tteload */ 2494 int sf_tteload512k; /* calls to sfmmu_tteload */ 2495 int sf_tteload4m; /* calls to sfmmu_tteload */ 2496 int sf_tteload32m; /* calls to sfmmu_tteload */ 2497 int sf_tteload256m; /* calls to sfmmu_tteload */ 2498 2499 int sf_tsb_load8k; /* # times loaded 8K tsbent */ 2500 int sf_tsb_load4m; /* # times loaded 4M tsbent */ 2501 2502 int sf_hblk_hit; /* found hblk during tteload */ 2503 int sf_hblk8_ncreate; /* static hblk8's created */ 2504 int sf_hblk8_nalloc; /* static hblk8's allocated */ 2505 int sf_hblk1_ncreate; /* static hblk1's created */ 2506 int sf_hblk1_nalloc; /* static hblk1's allocated */ 2507 int sf_hblk_slab_cnt; /* sfmmu8_cache slab creates */ 2508 int sf_hblk_reserve_cnt; /* hblk_reserve usage */ 2509 int sf_hblk_recurse_cnt; /* hblk_reserve owner reqs */ 2510 int sf_hblk_reserve_hit; /* hblk_reserve hash hits */ 2511 int sf_get_free_success; /* reserve list allocs */ 2512 int sf_get_free_throttle; /* fails due to throttling */ 2513 int sf_get_free_fail; /* fails due to empty list */ 2514 int sf_put_free_success; /* reserve list frees */ 2515 int sf_put_free_fail; /* fails due to full list */ 2516 2517 int sf_pgcolor_conflict; /* VAC conflict resolution */ 2518 int sf_uncache_conflict; /* VAC conflict resolution */ 2519 int sf_unload_conflict; /* VAC unload resolution */ 2520 int sf_ism_uncache; /* VAC conflict resolution */ 2521 int sf_ism_recache; /* VAC conflict resolution */ 2522 int sf_recache; /* VAC conflict resolution */ 2523 2524 int sf_steal_count; /* # of hblks stolen */ 2525 2526 int sf_pagesync; /* # of pagesyncs */ 2527 int sf_clrwrt; /* # of clear write perms */ 2528 int sf_pagesync_invalid; /* pagesync with inv tte */ 2529 2530 int sf_kernel_xcalls; /* # of kernel cross calls */ 2531 int sf_user_xcalls; /* # of user cross calls */ 2532 2533 int sf_tsb_grow; /* # of user tsb grows */ 2534 int sf_tsb_shrink; /* # of user tsb shrinks */ 2535 int sf_tsb_resize_failures; /* # of user tsb resize */ 2536 int sf_tsb_reloc; /* # of user tsb relocations */ 2537 2538 int sf_user_vtop; /* # of user vatopfn calls */ 2539 2540 int sf_ctx_inv; /* #times invalidate MMU ctx */ 2541 2542 int sf_tlb_reprog_pgsz; /* # times switch TLB pgsz */ 2543 2544 int sf_region_remap_demap; /* # times shme remap demap */ 2545 2546 int sf_create_scd; /* # times SCD is created */ 2547 int sf_join_scd; /* # process joined scd */ 2548 int sf_leave_scd; /* # process left scd */ 2549 int sf_destroy_scd; /* # times SCD is destroyed */ 2550 }; 2551 2552 struct sfmmu_tsbsize_stat { 2553 int sf_tsbsz_8k; 2554 int sf_tsbsz_16k; 2555 int sf_tsbsz_32k; 2556 int sf_tsbsz_64k; 2557 int sf_tsbsz_128k; 2558 int sf_tsbsz_256k; 2559 int sf_tsbsz_512k; 2560 int sf_tsbsz_1m; 2561 int sf_tsbsz_2m; 2562 int sf_tsbsz_4m; 2563 int sf_tsbsz_8m; 2564 int sf_tsbsz_16m; 2565 int sf_tsbsz_32m; 2566 int sf_tsbsz_64m; 2567 int sf_tsbsz_128m; 2568 int sf_tsbsz_256m; 2569 }; 2570 2571 struct sfmmu_percpu_stat { 2572 int sf_itlb_misses; /* # of itlb misses */ 2573 int sf_dtlb_misses; /* # of dtlb misses */ 2574 int sf_utsb_misses; /* # of user tsb misses */ 2575 int sf_ktsb_misses; /* # of kernel tsb misses */ 2576 int sf_tsb_hits; /* # of tsb hits */ 2577 int sf_umod_faults; /* # of mod (prot viol) flts */ 2578 int sf_kmod_faults; /* # of mod (prot viol) flts */ 2579 }; 2580 2581 #define SFMMU_STAT(stat) sfmmu_global_stat.stat++ 2582 #define SFMMU_STAT_ADD(stat, amount) sfmmu_global_stat.stat += (amount) 2583 #define SFMMU_STAT_SET(stat, count) sfmmu_global_stat.stat = (count) 2584 2585 #define SFMMU_MMU_STAT(stat) CPU->cpu_m.cpu_mmu_ctxp->stat++ 2586 2587 #endif /* !_ASM */ 2588 2589 #ifdef __cplusplus 2590 } 2591 #endif 2592 2593 #endif /* _VM_HAT_SFMMU_H */ 2594