xref: /titanic_44/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 9df12a23948bd40cbe37ce88d84e272c3894e675)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for Spitfire MMU.
30  *
31  * This file implements the machine specific hardware translation
32  * needed by the VM system.  The machine independent interface is
33  * described in <vm/hat.h> while the machine dependent interface
34  * and data structures are described in <vm/hat_sfmmu.h>.
35  *
36  * The hat layer manages the address translation hardware as a cache
37  * driven by calls from the higher levels in the VM system.
38  */
39 
40 #include <sys/types.h>
41 #include <vm/hat.h>
42 #include <vm/hat_sfmmu.h>
43 #include <vm/page.h>
44 #include <sys/pte.h>
45 #include <sys/systm.h>
46 #include <sys/mman.h>
47 #include <sys/sysmacros.h>
48 #include <sys/machparam.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/mmu.h>
52 #include <sys/cmn_err.h>
53 #include <sys/cpu.h>
54 #include <sys/cpuvar.h>
55 #include <sys/debug.h>
56 #include <sys/lgrp.h>
57 #include <sys/archsystm.h>
58 #include <sys/machsystm.h>
59 #include <sys/vmsystm.h>
60 #include <vm/as.h>
61 #include <vm/seg.h>
62 #include <vm/seg_kp.h>
63 #include <vm/seg_kmem.h>
64 #include <vm/seg_kpm.h>
65 #include <vm/rm.h>
66 #include <sys/t_lock.h>
67 #include <sys/obpdefs.h>
68 #include <sys/vm_machparam.h>
69 #include <sys/var.h>
70 #include <sys/trap.h>
71 #include <sys/machtrap.h>
72 #include <sys/scb.h>
73 #include <sys/bitmap.h>
74 #include <sys/machlock.h>
75 #include <sys/membar.h>
76 #include <sys/atomic.h>
77 #include <sys/cpu_module.h>
78 #include <sys/prom_debug.h>
79 #include <sys/ksynch.h>
80 #include <sys/mem_config.h>
81 #include <sys/mem_cage.h>
82 #include <sys/dtrace.h>
83 #include <vm/vm_dep.h>
84 #include <vm/xhat_sfmmu.h>
85 #include <sys/fpu/fpusystm.h>
86 
87 #if defined(SF_ERRATA_57)
88 extern caddr_t errata57_limit;
89 #endif
90 
91 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
92 				(sizeof (int64_t)))
93 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
94 
95 #define	HBLK_RESERVE_CNT	128
96 #define	HBLK_RESERVE_MIN	20
97 
98 static struct hme_blk		*freehblkp;
99 static kmutex_t			freehblkp_lock;
100 static int			freehblkcnt;
101 
102 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
103 static kmutex_t			hblk_reserve_lock;
104 static kthread_t		*hblk_reserve_thread;
105 
106 static nucleus_hblk8_info_t	nucleus_hblk8;
107 static nucleus_hblk1_info_t	nucleus_hblk1;
108 
109 /*
110  * SFMMU specific hat functions
111  */
112 void	hat_pagecachectl(struct page *, int);
113 
114 /* flags for hat_pagecachectl */
115 #define	HAT_CACHE	0x1
116 #define	HAT_UNCACHE	0x2
117 #define	HAT_TMPNC	0x4
118 
119 /*
120  * Flag to allow the creation of non-cacheable translations
121  * to system memory. It is off by default. At the moment this
122  * flag is used by the ecache error injector. The error injector
123  * will turn it on when creating such a translation then shut it
124  * off when it's finished.
125  */
126 
127 int	sfmmu_allow_nc_trans = 0;
128 
129 /*
130  * Flag to disable large page support.
131  * 	value of 1 => disable all large pages.
132  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
133  *
134  * For example, use the value 0x4 to disable 512K pages.
135  *
136  */
137 #define	LARGE_PAGES_OFF		0x1
138 
139 /*
140  * WARNING: 512K pages MUST be disabled for ISM/DISM. If not
141  * a process would page fault indefinitely if it tried to
142  * access a 512K page.
143  */
144 int	disable_ism_large_pages = (1 << TTE512K);
145 int	disable_large_pages = 0;
146 int	disable_auto_large_pages = 0;
147 
148 /*
149  * Private sfmmu data structures for hat management
150  */
151 static struct kmem_cache *sfmmuid_cache;
152 
153 /*
154  * Private sfmmu data structures for ctx management
155  */
156 static struct ctx	*ctxhand;	/* hand used while stealing ctxs */
157 static struct ctx	*ctxfree;	/* head of free ctx list */
158 static struct ctx	*ctxdirty;	/* head of dirty ctx list */
159 
160 /*
161  * Private sfmmu data structures for tsb management
162  */
163 static struct kmem_cache *sfmmu_tsbinfo_cache;
164 static struct kmem_cache *sfmmu_tsb8k_cache;
165 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
166 static vmem_t *kmem_tsb_arena;
167 
168 /*
169  * sfmmu static variables for hmeblk resource management.
170  */
171 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
172 static struct kmem_cache *sfmmu8_cache;
173 static struct kmem_cache *sfmmu1_cache;
174 static struct kmem_cache *pa_hment_cache;
175 
176 static kmutex_t 	ctx_list_lock;	/* mutex for ctx free/dirty lists */
177 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
178 /*
179  * private data for ism
180  */
181 static struct kmem_cache *ism_blk_cache;
182 static struct kmem_cache *ism_ment_cache;
183 #define	ISMID_STARTADDR	NULL
184 
185 /*
186  * Whether to delay TLB flushes and use Cheetah's flush-all support
187  * when removing contexts from the dirty list.
188  */
189 int delay_tlb_flush;
190 int disable_delay_tlb_flush;
191 
192 /*
193  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
194  * HAT flags, synchronizing TLB/TSB coherency, and context management.
195  * The lock is hashed on the sfmmup since the case where we need to lock
196  * all processes is rare but does occur (e.g. we need to unload a shared
197  * mapping from all processes using the mapping).  We have a lot of buckets,
198  * and each slab of sfmmu_t's can use about a quarter of them, giving us
199  * a fairly good distribution without wasting too much space and overhead
200  * when we have to grab them all.
201  */
202 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
203 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
204 
205 /*
206  * Hash algorithm optimized for a small number of slabs.
207  *  7 is (highbit((sizeof sfmmu_t)) - 1)
208  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
209  * kmem_cache, and thus they will be sequential within that cache.  In
210  * addition, each new slab will have a different "color" up to cache_maxcolor
211  * which will skew the hashing for each successive slab which is allocated.
212  * If the size of sfmmu_t changed to a larger size, this algorithm may need
213  * to be revisited.
214  */
215 #define	TSB_HASH_SHIFT_BITS (7)
216 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
217 
218 #ifdef DEBUG
219 int tsb_hash_debug = 0;
220 #define	TSB_HASH(sfmmup)	\
221 	(tsb_hash_debug ? &hat_lock[0] : \
222 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
223 #else	/* DEBUG */
224 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
225 #endif	/* DEBUG */
226 
227 
228 /* sfmmu_replace_tsb() return codes. */
229 typedef enum tsb_replace_rc {
230 	TSB_SUCCESS,
231 	TSB_ALLOCFAIL,
232 	TSB_LOSTRACE,
233 	TSB_ALREADY_SWAPPED,
234 	TSB_CANTGROW
235 } tsb_replace_rc_t;
236 
237 /*
238  * Flags for TSB allocation routines.
239  */
240 #define	TSB_ALLOC	0x01
241 #define	TSB_FORCEALLOC	0x02
242 #define	TSB_GROW	0x04
243 #define	TSB_SHRINK	0x08
244 #define	TSB_SWAPIN	0x10
245 
246 /*
247  * Support for HAT callbacks.
248  */
249 #define	SFMMU_MAX_RELOC_CALLBACKS	10
250 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
251 static id_t sfmmu_cb_nextid = 0;
252 static id_t sfmmu_tsb_cb_id;
253 struct sfmmu_callback *sfmmu_cb_table;
254 
255 /*
256  * Kernel page relocation is enabled by default for non-caged
257  * kernel pages.  This has little effect unless segkmem_reloc is
258  * set, since by default kernel memory comes from inside the
259  * kernel cage.
260  */
261 int hat_kpr_enabled = 1;
262 
263 kmutex_t	kpr_mutex;
264 kmutex_t	kpr_suspendlock;
265 kthread_t	*kreloc_thread;
266 
267 /*
268  * Enable VA->PA translation sanity checking on DEBUG kernels.
269  * Disabled by default.  This is incompatible with some
270  * drivers (error injector, RSM) so if it breaks you get
271  * to keep both pieces.
272  */
273 int hat_check_vtop = 0;
274 
275 /*
276  * Private sfmmu routines (prototypes)
277  */
278 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
279 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
280 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
281 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
282 			caddr_t, demap_range_t *, uint_t);
283 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
284 			caddr_t, int);
285 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
286 			uint64_t, struct hme_blk **);
287 static void	sfmmu_hblks_list_purge(struct hme_blk **);
288 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
289 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
290 static struct hme_blk *sfmmu_hblk_steal(int);
291 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
292 			struct hme_blk *, uint64_t, uint64_t,
293 			struct hme_blk *);
294 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
295 
296 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
297 		    uint_t, uint_t, pgcnt_t);
298 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
299 			uint_t);
300 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
301 			uint_t);
302 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
303 					caddr_t, int);
304 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
305 			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
306 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
307 			caddr_t, page_t **, uint_t);
308 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
309 
310 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
311 pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
312 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
313 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
314 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
315 static int	tst_tnc(page_t *pp, pgcnt_t);
316 static void	conv_tnc(page_t *pp, int);
317 
318 static struct ctx *sfmmu_get_ctx(sfmmu_t *);
319 static void	sfmmu_free_ctx(sfmmu_t *, struct ctx *);
320 static void	sfmmu_free_sfmmu(sfmmu_t *);
321 
322 static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
323 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
324 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
325 
326 static cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
327 static void	hat_pagereload(struct page *, struct page *);
328 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
329 static void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
330 static void	sfmmu_page_cache(page_t *, int, int, int);
331 
332 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
333 			pfn_t, int, int, int, int);
334 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
335 			pfn_t, int);
336 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
337 static void	sfmmu_tlb_range_demap(demap_range_t *);
338 static void	sfmmu_tlb_ctx_demap(sfmmu_t *);
339 static void	sfmmu_tlb_all_demap(void);
340 static void	sfmmu_tlb_swap_ctx(sfmmu_t *, struct ctx *);
341 static void	sfmmu_sync_mmustate(sfmmu_t *);
342 
343 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
344 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
345 			sfmmu_t *);
346 static void	sfmmu_tsb_free(struct tsb_info *);
347 static void	sfmmu_tsbinfo_free(struct tsb_info *);
348 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
349 			sfmmu_t *);
350 
351 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
352 static int	sfmmu_select_tsb_szc(pgcnt_t);
353 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
354 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
355 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
356 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
357 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
358 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
359 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
360     hatlock_t *, uint_t);
361 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
362 
363 static void	sfmmu_cache_flush(pfn_t, int);
364 void		sfmmu_cache_flushcolor(int, pfn_t);
365 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
366 			caddr_t, demap_range_t *, uint_t, int);
367 
368 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
369 static uint_t	sfmmu_ptov_attr(tte_t *);
370 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
371 			caddr_t, demap_range_t *, uint_t);
372 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
373 static int	sfmmu_idcache_constructor(void *, void *, int);
374 static void	sfmmu_idcache_destructor(void *, void *);
375 static int	sfmmu_hblkcache_constructor(void *, void *, int);
376 static void	sfmmu_hblkcache_destructor(void *, void *);
377 static void	sfmmu_hblkcache_reclaim(void *);
378 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
379 			struct hmehash_bucket *);
380 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
381 
382 static void	sfmmu_reuse_ctx(struct ctx *, sfmmu_t *);
383 static void	sfmmu_disallow_ctx_steal(sfmmu_t *);
384 static void	sfmmu_allow_ctx_steal(sfmmu_t *);
385 
386 static void	sfmmu_rm_large_mappings(page_t *, int);
387 
388 static void	hat_lock_init(void);
389 static void	hat_kstat_init(void);
390 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
391 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
392 static int	fnd_mapping_sz(page_t *);
393 static void	iment_add(struct ism_ment *,  struct hat *);
394 static void	iment_sub(struct ism_ment *, struct hat *);
395 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
396 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
397 extern void	sfmmu_clear_utsbinfo(void);
398 
399 /* kpm prototypes */
400 static caddr_t	sfmmu_kpm_mapin(page_t *);
401 static void	sfmmu_kpm_mapout(page_t *, caddr_t);
402 static int	sfmmu_kpme_lookup(struct kpme *, page_t *);
403 static void	sfmmu_kpme_add(struct kpme *, page_t *);
404 static void	sfmmu_kpme_sub(struct kpme *, page_t *);
405 static caddr_t	sfmmu_kpm_getvaddr(page_t *, int *);
406 static int	sfmmu_kpm_fault(caddr_t, struct memseg *, page_t *);
407 static int	sfmmu_kpm_fault_small(caddr_t, struct memseg *, page_t *);
408 static void	sfmmu_kpm_vac_conflict(page_t *, caddr_t);
409 static void	sfmmu_kpm_pageunload(page_t *);
410 static void	sfmmu_kpm_vac_unload(page_t *, caddr_t);
411 static void	sfmmu_kpm_demap_large(caddr_t);
412 static void	sfmmu_kpm_demap_small(caddr_t);
413 static void	sfmmu_kpm_demap_tlbs(caddr_t, int);
414 static void	sfmmu_kpm_hme_unload(page_t *);
415 static kpm_hlk_t *sfmmu_kpm_kpmp_enter(page_t *, pgcnt_t);
416 static void	sfmmu_kpm_kpmp_exit(kpm_hlk_t *kpmp);
417 static void	sfmmu_kpm_page_cache(page_t *, int, int);
418 
419 /* kpm globals */
420 #ifdef	DEBUG
421 /*
422  * Enable trap level tsbmiss handling
423  */
424 int	kpm_tsbmtl = 1;
425 
426 /*
427  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
428  * required TLB shootdowns in this case, so handle w/ care. Off by default.
429  */
430 int	kpm_tlb_flush;
431 #endif	/* DEBUG */
432 
433 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
434 
435 #ifdef DEBUG
436 static void	sfmmu_check_hblk_flist();
437 #endif
438 
439 /*
440  * Semi-private sfmmu data structures.  Some of them are initialize in
441  * startup or in hat_init. Some of them are private but accessed by
442  * assembly code or mach_sfmmu.c
443  */
444 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
445 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
446 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
447 uint64_t	khme_hash_pa;		/* PA of khme_hash */
448 int 		uhmehash_num;		/* # of buckets in user hash table */
449 int 		khmehash_num;		/* # of buckets in kernel hash table */
450 struct ctx	*ctxs;			/* used by <machine/mmu.c> */
451 uint_t		nctxs;			/* total number of contexts */
452 
453 int		cache;			/* describes system cache */
454 
455 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
456 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
457 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
458 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
459 
460 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
461 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
462 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
463 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
464 
465 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
466 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
467 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
468 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
469 
470 #ifndef sun4v
471 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
472 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
473 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
474 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
475 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
476 #endif /* sun4v */
477 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
478 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
479 
480 /*
481  * Size to use for TSB slabs.  Future platforms that support page sizes
482  * larger than 4M may wish to change these values, and provide their own
483  * assembly macros for building and decoding the TSB base register contents.
484  */
485 uint_t	tsb_slab_size = MMU_PAGESIZE4M;
486 uint_t	tsb_slab_shift = MMU_PAGESHIFT4M;
487 uint_t	tsb_slab_ttesz = TTE4M;
488 uint_t	tsb_slab_mask = 0x1ff;	/* 4M page alignment for 8K pfn */
489 
490 /* largest TSB size to grow to, will be smaller on smaller memory systems */
491 int	tsb_max_growsize = UTSB_MAX_SZCODE;
492 
493 /*
494  * Tunable parameters dealing with TSB policies.
495  */
496 
497 /*
498  * This undocumented tunable forces all 8K TSBs to be allocated from
499  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
500  */
501 #ifdef	DEBUG
502 int	tsb_forceheap = 0;
503 #endif	/* DEBUG */
504 
505 /*
506  * Decide whether to use per-lgroup arenas, or one global set of
507  * TSB arenas.  The default is not to break up per-lgroup, since
508  * most platforms don't recognize any tangible benefit from it.
509  */
510 int	tsb_lgrp_affinity = 0;
511 
512 /*
513  * Used for growing the TSB based on the process RSS.
514  * tsb_rss_factor is based on the smallest TSB, and is
515  * shifted by the TSB size to determine if we need to grow.
516  * The default will grow the TSB if the number of TTEs for
517  * this page size exceeds 75% of the number of TSB entries,
518  * which should _almost_ eliminate all conflict misses
519  * (at the expense of using up lots and lots of memory).
520  */
521 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
522 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
523 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
524 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
525 	default_tsb_size)
526 #define	TSB_OK_SHRINK()	\
527 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
528 #define	TSB_OK_GROW()	\
529 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
530 
531 int	enable_tsb_rss_sizing = 1;
532 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
533 
534 /* which TSB size code to use for new address spaces or if rss sizing off */
535 int default_tsb_size = TSB_8K_SZCODE;
536 
537 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
538 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
539 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
540 
541 #ifdef DEBUG
542 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
543 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
544 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
545 static int tsb_alloc_fail_mtbf = 0;
546 static int tsb_alloc_count = 0;
547 #endif /* DEBUG */
548 
549 /* if set to 1, will remap valid TTEs when growing TSB. */
550 int tsb_remap_ttes = 1;
551 
552 /*
553  * If we have more than this many mappings, allocate a second TSB.
554  * This default is chosen because the I/D fully associative TLBs are
555  * assumed to have at least 8 available entries. Platforms with a
556  * larger fully-associative TLB could probably override the default.
557  */
558 int tsb_sectsb_threshold = 8;
559 
560 /*
561  * kstat data
562  */
563 struct sfmmu_global_stat sfmmu_global_stat;
564 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
565 
566 /*
567  * Global data
568  */
569 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
570 struct ctx 	*kctx;			/* kernel's context */
571 
572 #ifdef DEBUG
573 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
574 #endif
575 
576 /* sfmmu locking operations */
577 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
578 static int	sfmmu_mlspl_held(struct page *, int);
579 
580 static kmutex_t *sfmmu_page_enter(page_t *);
581 static void	sfmmu_page_exit(kmutex_t *);
582 static int	sfmmu_page_spl_held(struct page *);
583 
584 /* sfmmu internal locking operations - accessed directly */
585 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
586 				kmutex_t **, kmutex_t **);
587 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
588 static hatlock_t *
589 		sfmmu_hat_enter(sfmmu_t *);
590 static hatlock_t *
591 		sfmmu_hat_tryenter(sfmmu_t *);
592 static void	sfmmu_hat_exit(hatlock_t *);
593 static void	sfmmu_hat_lock_all(void);
594 static void	sfmmu_hat_unlock_all(void);
595 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
596 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
597 
598 /*
599  * Array of mutexes protecting a page's mapping list and p_nrm field.
600  *
601  * The hash function looks complicated, but is made up so that:
602  *
603  * "pp" not shifted, so adjacent pp values will hash to different cache lines
604  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
605  *
606  * "pp" >> mml_shift, incorporates more source bits into the hash result
607  *
608  *  "& (mml_table_size - 1), should be faster than using remainder "%"
609  *
610  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
611  * cacheline, since they get declared next to each other below. We'll trust
612  * ld not to do something random.
613  */
614 #ifdef	DEBUG
615 int mlist_hash_debug = 0;
616 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
617 	&mml_table[((uintptr_t)(pp) + \
618 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
619 #else	/* !DEBUG */
620 #define	MLIST_HASH(pp)   &mml_table[ \
621 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
622 #endif	/* !DEBUG */
623 
624 kmutex_t		*mml_table;
625 uint_t			mml_table_sz;	/* must be a power of 2 */
626 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
627 
628 /*
629  * kpm_page lock hash.
630  * All slots should be used equally and 2 adjacent kpm_page_t's
631  * shouldn't have their mutexes in the same cache line.
632  */
633 #ifdef	DEBUG
634 int kpmp_hash_debug = 0;
635 #define	KPMP_HASH(kpp)	(kpmp_hash_debug ? &kpmp_table[0] : &kpmp_table[ \
636 	((uintptr_t)(kpp) + ((uintptr_t)(kpp) >> kpmp_shift)) \
637 	& (kpmp_table_sz - 1)])
638 #else	/* !DEBUG */
639 #define	KPMP_HASH(kpp)	&kpmp_table[ \
640 	((uintptr_t)(kpp) + ((uintptr_t)(kpp) >> kpmp_shift)) \
641 	& (kpmp_table_sz - 1)]
642 #endif	/* DEBUG */
643 
644 kpm_hlk_t	*kpmp_table;
645 uint_t		kpmp_table_sz;	/* must be a power of 2 */
646 uchar_t		kpmp_shift;
647 
648 #ifdef	DEBUG
649 #define	KPMP_SHASH(kpp)	(kpmp_hash_debug ? &kpmp_stable[0] : &kpmp_stable[ \
650 	(((uintptr_t)(kpp) << kpmp_shift) + (uintptr_t)(kpp)) \
651 	& (kpmp_stable_sz - 1)])
652 #else	/* !DEBUG */
653 #define	KPMP_SHASH(kpp)	&kpmp_stable[ \
654 	(((uintptr_t)(kpp) << kpmp_shift) + (uintptr_t)(kpp)) \
655 	& (kpmp_stable_sz - 1)]
656 #endif	/* DEBUG */
657 
658 kpm_shlk_t	*kpmp_stable;
659 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
660 
661 /*
662  * SPL_HASH was improved to avoid false cache line sharing
663  */
664 #define	SPL_TABLE_SIZE	128
665 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
666 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
667 
668 #define	SPL_INDEX(pp) \
669 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
670 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
671 	(SPL_TABLE_SIZE - 1))
672 
673 #define	SPL_HASH(pp)    \
674 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
675 
676 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
677 
678 
679 /*
680  * hat_unload_callback() will group together callbacks in order
681  * to avoid xt_sync() calls.  This is the maximum size of the group.
682  */
683 #define	MAX_CB_ADDR	32
684 
685 #ifdef DEBUG
686 
687 /*
688  * Debugging trace ring buffer for stolen and freed ctxs.  The
689  * stolen_ctxs[] array is protected by the ctx_trace_mutex.
690  */
691 struct ctx_trace stolen_ctxs[TRSIZE];
692 struct ctx_trace *ctx_trace_first = &stolen_ctxs[0];
693 struct ctx_trace *ctx_trace_last = &stolen_ctxs[TRSIZE-1];
694 struct ctx_trace *ctx_trace_ptr = &stolen_ctxs[0];
695 kmutex_t ctx_trace_mutex;
696 uint_t	num_ctx_stolen = 0;
697 
698 int	ism_debug = 0;
699 
700 #endif /* DEBUG */
701 
702 tte_t	hw_tte;
703 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
704 
705 /*
706  * kpm virtual address to physical address
707  */
708 #define	SFMMU_KPM_VTOP(vaddr, paddr) {					\
709 	uintptr_t r, v;							\
710 									\
711 	r = ((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift;		\
712 	(paddr) = (vaddr) - kpm_vbase;					\
713 	if (r != 0) {							\
714 		v = ((uintptr_t)(vaddr) >> MMU_PAGESHIFT) &		\
715 		    vac_colors_mask;					\
716 		(paddr) -= r << kpm_size_shift;				\
717 		if (r > v)						\
718 			(paddr) += (r - v) << MMU_PAGESHIFT;		\
719 		else							\
720 			(paddr) -= r << MMU_PAGESHIFT;			\
721 	}								\
722 }
723 
724 /*
725  * Wrapper for vmem_xalloc since vmem_create only allows limited
726  * parameters for vm_source_alloc functions.  This function allows us
727  * to specify alignment consistent with the size of the object being
728  * allocated.
729  */
730 static void *
731 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
732 {
733 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
734 }
735 
736 /* Common code for setting tsb_alloc_hiwater. */
737 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
738 		ptob(pages) / tsb_alloc_hiwater_factor
739 
740 /*
741  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
742  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
743  * TTEs to represent all those physical pages.  We round this up by using
744  * 1<<highbit().  To figure out which size code to use, remember that the size
745  * code is just an amount to shift the smallest TSB size to get the size of
746  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
747  * highbit() - 1) to get the size code for the smallest TSB that can represent
748  * all of physical memory, while erring on the side of too much.
749  *
750  * If the computed size code is less than the current tsb_max_growsize, we set
751  * tsb_max_growsize to the computed size code.  In the case where the computed
752  * size code is greater than tsb_max_growsize, we have these restrictions that
753  * apply to increasing tsb_max_growsize:
754  *	1) TSBs can't grow larger than the TSB slab size
755  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
756  */
757 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
758 	int	i, szc;							\
759 									\
760 	i = highbit(pages);						\
761 	if ((1 << (i - 1)) == (pages))					\
762 		i--;		/* 2^n case, round down */		\
763 	szc = i - TSB_START_SIZE;					\
764 	if (szc < tsb_max_growsize)					\
765 		tsb_max_growsize = szc;					\
766 	else if ((szc > tsb_max_growsize) &&				\
767 	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
768 		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
769 }
770 
771 /*
772  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
773  * tsb_info which handles that TTE size.
774  */
775 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
776 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
777 	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
778 	if ((tte_szc) >= TTE4M)						\
779 		(tsbinfop) = (tsbinfop)->tsb_next;
780 
781 /*
782  * Return the number of mappings present in the HAT
783  * for a particular process and page size.
784  */
785 #define	SFMMU_TTE_CNT(sfmmup, szc)					\
786 	(sfmmup)->sfmmu_iblk?						\
787 	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
788 	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
789 	    (sfmmup)->sfmmu_ttecnt[(szc)];
790 
791 /*
792  * Macro to use to unload entries from the TSB.
793  * It has knowledge of which page sizes get replicated in the TSB
794  * and will call the appropriate unload routine for the appropriate size.
795  */
796 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
797 {									\
798 	int ttesz = get_hblk_ttesz(hmeblkp);				\
799 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
800 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
801 	} else {							\
802 		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
803 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
804 		ASSERT(addr >= sva && addr < eva);			\
805 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
806 	}								\
807 }
808 
809 
810 /* Update tsb_alloc_hiwater after memory is configured. */
811 /*ARGSUSED*/
812 static void
813 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
814 {
815 	/* Assumes physmem has already been updated. */
816 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
817 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
818 }
819 
820 /*
821  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
822  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
823  * deleted.
824  */
825 /*ARGSUSED*/
826 static int
827 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
828 {
829 	return (0);
830 }
831 
832 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
833 /*ARGSUSED*/
834 static void
835 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
836 {
837 	/*
838 	 * Whether the delete was cancelled or not, just go ahead and update
839 	 * tsb_alloc_hiwater and tsb_max_growsize.
840 	 */
841 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
842 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
843 }
844 
845 static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
846 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
847 	sfmmu_update_tsb_post_add,	/* post_add */
848 	sfmmu_update_tsb_pre_del,	/* pre_del */
849 	sfmmu_update_tsb_post_del	/* post_del */
850 };
851 
852 
853 /*
854  * HME_BLK HASH PRIMITIVES
855  */
856 
857 /*
858  * Enter a hme on the mapping list for page pp.
859  * When large pages are more prevalent in the system we might want to
860  * keep the mapping list in ascending order by the hment size. For now,
861  * small pages are more frequent, so don't slow it down.
862  */
863 #define	HME_ADD(hme, pp)					\
864 {								\
865 	ASSERT(sfmmu_mlist_held(pp));				\
866 								\
867 	hme->hme_prev = NULL;					\
868 	hme->hme_next = pp->p_mapping;				\
869 	hme->hme_page = pp;					\
870 	if (pp->p_mapping) {					\
871 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
872 		ASSERT(pp->p_share > 0);			\
873 	} else  {						\
874 		/* EMPTY */					\
875 		ASSERT(pp->p_share == 0);			\
876 	}							\
877 	pp->p_mapping = hme;					\
878 	pp->p_share++;						\
879 }
880 
881 /*
882  * Enter a hme on the mapping list for page pp.
883  * If we are unmapping a large translation, we need to make sure that the
884  * change is reflect in the corresponding bit of the p_index field.
885  */
886 #define	HME_SUB(hme, pp)					\
887 {								\
888 	ASSERT(sfmmu_mlist_held(pp));				\
889 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
890 								\
891 	if (pp->p_mapping == NULL) {				\
892 		panic("hme_remove - no mappings");		\
893 	}							\
894 								\
895 	membar_stst();	/* ensure previous stores finish */	\
896 								\
897 	ASSERT(pp->p_share > 0);				\
898 	pp->p_share--;						\
899 								\
900 	if (hme->hme_prev) {					\
901 		ASSERT(pp->p_mapping != hme);			\
902 		ASSERT(hme->hme_prev->hme_page == pp ||		\
903 			IS_PAHME(hme->hme_prev));		\
904 		hme->hme_prev->hme_next = hme->hme_next;	\
905 	} else {						\
906 		ASSERT(pp->p_mapping == hme);			\
907 		pp->p_mapping = hme->hme_next;			\
908 		ASSERT((pp->p_mapping == NULL) ?		\
909 			(pp->p_share == 0) : 1);		\
910 	}							\
911 								\
912 	if (hme->hme_next) {					\
913 		ASSERT(hme->hme_next->hme_page == pp ||		\
914 			IS_PAHME(hme->hme_next));		\
915 		hme->hme_next->hme_prev = hme->hme_prev;	\
916 	}							\
917 								\
918 	/* zero out the entry */				\
919 	hme->hme_next = NULL;					\
920 	hme->hme_prev = NULL;					\
921 	hme->hme_page = NULL;					\
922 								\
923 	if (hme_size(hme) > TTE8K) {				\
924 		/* remove mappings for remainder of large pg */	\
925 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
926 	}							\
927 }
928 
929 /*
930  * This function returns the hment given the hme_blk and a vaddr.
931  * It assumes addr has already been checked to belong to hme_blk's
932  * range.
933  */
934 #define	HBLKTOHME(hment, hmeblkp, addr)					\
935 {									\
936 	int index;							\
937 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
938 }
939 
940 /*
941  * Version of HBLKTOHME that also returns the index in hmeblkp
942  * of the hment.
943  */
944 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
945 {									\
946 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
947 									\
948 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
949 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
950 	} else								\
951 		idx = 0;						\
952 									\
953 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
954 }
955 
956 /*
957  * Disable any page sizes not supported by the CPU
958  */
959 void
960 hat_init_pagesizes()
961 {
962 	int 		i;
963 
964 	mmu_exported_page_sizes = 0;
965 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
966 		extern int	disable_text_largepages;
967 		extern int	disable_initdata_largepages;
968 
969 		szc_2_userszc[i] = (uint_t)-1;
970 		userszc_2_szc[i] = (uint_t)-1;
971 
972 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
973 			disable_large_pages |= (1 << i);
974 			disable_ism_large_pages |= (1 << i);
975 			disable_text_largepages |= (1 << i);
976 			disable_initdata_largepages |= (1 << i);
977 		} else {
978 			szc_2_userszc[i] = mmu_exported_page_sizes;
979 			userszc_2_szc[mmu_exported_page_sizes] = i;
980 			mmu_exported_page_sizes++;
981 		}
982 	}
983 
984 	disable_auto_large_pages = disable_large_pages;
985 
986 	/*
987 	 * Initialize mmu-specific large page sizes.
988 	 */
989 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
990 	    (&mmu_large_pages_disabled)) {
991 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
992 		disable_ism_large_pages |=
993 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
994 		disable_auto_large_pages |=
995 		    mmu_large_pages_disabled(HAT_LOAD_AUTOLPG);
996 	}
997 
998 }
999 
1000 /*
1001  * Initialize the hardware address translation structures.
1002  */
1003 void
1004 hat_init(void)
1005 {
1006 	struct ctx	*ctx;
1007 	struct ctx	*cur_ctx = NULL;
1008 	int 		i;
1009 
1010 	hat_lock_init();
1011 	hat_kstat_init();
1012 
1013 	/*
1014 	 * Hardware-only bits in a TTE
1015 	 */
1016 	MAKE_TTE_MASK(&hw_tte);
1017 
1018 	hat_init_pagesizes();
1019 
1020 	/* Initialize the hash locks */
1021 	for (i = 0; i < khmehash_num; i++) {
1022 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1023 		    MUTEX_DEFAULT, NULL);
1024 	}
1025 	for (i = 0; i < uhmehash_num; i++) {
1026 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1027 		    MUTEX_DEFAULT, NULL);
1028 	}
1029 	khmehash_num--;		/* make sure counter starts from 0 */
1030 	uhmehash_num--;		/* make sure counter starts from 0 */
1031 
1032 	/*
1033 	 * Initialize ctx structures and list lock.
1034 	 * We keep two lists of ctxs. The "free" list contains contexts
1035 	 * ready to use.  The "dirty" list contains contexts that are OK
1036 	 * to use after flushing the TLBs of any stale mappings.
1037 	 */
1038 	mutex_init(&ctx_list_lock, NULL, MUTEX_DEFAULT, NULL);
1039 	kctx = &ctxs[KCONTEXT];
1040 	ctx = &ctxs[NUM_LOCKED_CTXS];
1041 	ctxhand = ctxfree = ctx;		/* head of free list */
1042 	ctxdirty = NULL;
1043 	for (i = NUM_LOCKED_CTXS; i < nctxs; i++) {
1044 		cur_ctx = &ctxs[i];
1045 		cur_ctx->ctx_flags = CTX_FREE_FLAG;
1046 		cur_ctx->ctx_free = &ctxs[i + 1];
1047 	}
1048 	cur_ctx->ctx_free = NULL;		/* tail of free list */
1049 
1050 	/*
1051 	 * Intialize ism mapping list lock.
1052 	 */
1053 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1054 
1055 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", sizeof (sfmmu_t),
1056 	    0, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1057 	    NULL, NULL, NULL, 0);
1058 
1059 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1060 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1061 
1062 	/*
1063 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1064 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1065 	 * specified, don't use magazines to cache them--we want to return
1066 	 * them to the system as quickly as possible.
1067 	 */
1068 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1069 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1070 	    static_arena, KMC_NOMAGAZINE);
1071 
1072 	/*
1073 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1074 	 * memory, which corresponds to the old static reserve for TSBs.
1075 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1076 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1077 	 * allocations will be taken from the kernel heap (via
1078 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1079 	 * consumer.
1080 	 */
1081 	if (tsb_alloc_hiwater_factor == 0) {
1082 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1083 	}
1084 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1085 
1086 	/* Set tsb_max_growsize. */
1087 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1088 
1089 	/*
1090 	 * On smaller memory systems, allocate TSB memory in 512K chunks
1091 	 * instead of the default 4M slab size.  The trap handlers need to
1092 	 * be patched with the final slab shift since they need to be able
1093 	 * to construct the TSB pointer at runtime.
1094 	 */
1095 	if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1096 	    !(disable_large_pages & (1 << TTE512K))) {
1097 		tsb_slab_size = MMU_PAGESIZE512K;
1098 		tsb_slab_shift = MMU_PAGESHIFT512K;
1099 		tsb_slab_ttesz = TTE512K;
1100 		tsb_slab_mask = 0x3f;	/* 512K page alignment for 8K pfn */
1101 	}
1102 
1103 	/*
1104 	 * Set up memory callback to update tsb_alloc_hiwater and
1105 	 * tsb_max_growsize.
1106 	 */
1107 	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1108 	ASSERT(i == 0);
1109 
1110 	/*
1111 	 * kmem_tsb_arena is the source from which large TSB slabs are
1112 	 * drawn.  The quantum of this arena corresponds to the largest
1113 	 * TSB size we can dynamically allocate for user processes.
1114 	 * Currently it must also be a supported page size since we
1115 	 * use exactly one translation entry to map each slab page.
1116 	 *
1117 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1118 	 * which most TSBs are allocated.  Since most TSB allocations are
1119 	 * typically 8K we have a kmem cache we stack on top of each
1120 	 * kmem_tsb_default_arena to speed up those allocations.
1121 	 *
1122 	 * Note the two-level scheme of arenas is required only
1123 	 * because vmem_create doesn't allow us to specify alignment
1124 	 * requirements.  If this ever changes the code could be
1125 	 * simplified to use only one level of arenas.
1126 	 */
1127 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1128 	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1129 	    0, VM_SLEEP);
1130 
1131 	if (tsb_lgrp_affinity) {
1132 		char s[50];
1133 		for (i = 0; i < NLGRPS_MAX; i++) {
1134 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1135 			kmem_tsb_default_arena[i] =
1136 			    vmem_create(s, NULL, 0, PAGESIZE,
1137 			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1138 			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1139 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1140 			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1141 			    PAGESIZE, NULL, NULL, NULL, NULL,
1142 			    kmem_tsb_default_arena[i], 0);
1143 		}
1144 	} else {
1145 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1146 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1147 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1148 		    VM_SLEEP | VM_BESTFIT);
1149 
1150 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1151 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1152 		    kmem_tsb_default_arena[0], 0);
1153 	}
1154 
1155 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1156 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1157 		sfmmu_hblkcache_destructor,
1158 		sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1159 		hat_memload_arena, KMC_NOHASH);
1160 
1161 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1162 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1163 
1164 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1165 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1166 		sfmmu_hblkcache_destructor,
1167 		NULL, (void *)HME1BLK_SZ,
1168 		hat_memload1_arena, KMC_NOHASH);
1169 
1170 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1171 		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1172 
1173 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1174 		sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1175 		NULL, NULL, static_arena, KMC_NOHASH);
1176 
1177 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1178 		sizeof (ism_ment_t), 0, NULL, NULL,
1179 		NULL, NULL, NULL, 0);
1180 
1181 	/*
1182 	 * We grab the first hat for the kernel,
1183 	 */
1184 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1185 	kas.a_hat = hat_alloc(&kas);
1186 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1187 
1188 	/*
1189 	 * Initialize hblk_reserve.
1190 	 */
1191 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1192 				va_to_pa((caddr_t)hblk_reserve);
1193 
1194 #ifndef sun4v
1195 	/*
1196 	 * Reserve some kernel virtual address space for the locked TTEs
1197 	 * that allow us to probe the TSB from TL>0.
1198 	 */
1199 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1200 		0, 0, NULL, NULL, VM_SLEEP);
1201 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1202 		0, 0, NULL, NULL, VM_SLEEP);
1203 #endif
1204 
1205 	/*
1206 	 * The big page VAC handling code assumes VAC
1207 	 * will not be bigger than the smallest big
1208 	 * page- which is 64K.
1209 	 */
1210 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1211 		cmn_err(CE_PANIC, "VAC too big!");
1212 	}
1213 
1214 	(void) xhat_init();
1215 
1216 	uhme_hash_pa = va_to_pa(uhme_hash);
1217 	khme_hash_pa = va_to_pa(khme_hash);
1218 
1219 	/*
1220 	 * Initialize relocation locks. kpr_suspendlock is held
1221 	 * at PIL_MAX to prevent interrupts from pinning the holder
1222 	 * of a suspended TTE which may access it leading to a
1223 	 * deadlock condition.
1224 	 */
1225 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1226 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1227 }
1228 
1229 /*
1230  * Initialize locking for the hat layer, called early during boot.
1231  */
1232 static void
1233 hat_lock_init()
1234 {
1235 	int i;
1236 	struct ctx *ctx;
1237 
1238 	/*
1239 	 * initialize the array of mutexes protecting a page's mapping
1240 	 * list and p_nrm field.
1241 	 */
1242 	for (i = 0; i < mml_table_sz; i++)
1243 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1244 
1245 	if (kpm_enable) {
1246 		for (i = 0; i < kpmp_table_sz; i++) {
1247 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1248 			    MUTEX_DEFAULT, NULL);
1249 		}
1250 	}
1251 
1252 	/*
1253 	 * Initialize array of mutex locks that protects sfmmu fields and
1254 	 * TSB lists.
1255 	 */
1256 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1257 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1258 		    NULL);
1259 
1260 #ifdef	DEBUG
1261 	mutex_init(&ctx_trace_mutex, NULL, MUTEX_DEFAULT, NULL);
1262 #endif	/* DEBUG */
1263 
1264 	for (ctx = ctxs, i = 0; i < nctxs; i++, ctx++) {
1265 		rw_init(&ctx->ctx_rwlock, NULL, RW_DEFAULT, NULL);
1266 	}
1267 }
1268 
1269 extern caddr_t kmem64_base, kmem64_end;
1270 
1271 #define	SFMMU_KERNEL_MAXVA \
1272 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1273 
1274 /*
1275  * Allocate a hat structure.
1276  * Called when an address space first uses a hat.
1277  */
1278 struct hat *
1279 hat_alloc(struct as *as)
1280 {
1281 	sfmmu_t *sfmmup;
1282 	struct ctx *ctx;
1283 	int i;
1284 	extern uint_t get_color_start(struct as *);
1285 
1286 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1287 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1288 	sfmmup->sfmmu_as = as;
1289 	sfmmup->sfmmu_flags = 0;
1290 
1291 	if (as == &kas) {
1292 		ctx = kctx;
1293 		ksfmmup = sfmmup;
1294 		sfmmup->sfmmu_cnum = ctxtoctxnum(ctx);
1295 		ASSERT(sfmmup->sfmmu_cnum == KCONTEXT);
1296 		sfmmup->sfmmu_cext = 0;
1297 		ctx->ctx_sfmmu = sfmmup;
1298 		ctx->ctx_flags = 0;
1299 		sfmmup->sfmmu_clrstart = 0;
1300 		sfmmup->sfmmu_tsb = NULL;
1301 		/*
1302 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1303 		 * to setup tsb_info for ksfmmup.
1304 		 */
1305 	} else {
1306 
1307 		/*
1308 		 * Just set to invalid ctx. When it faults, it will
1309 		 * get a valid ctx. This would avoid the situation
1310 		 * where we get a ctx, but it gets stolen and then
1311 		 * we fault when we try to run and so have to get
1312 		 * another ctx.
1313 		 */
1314 		sfmmup->sfmmu_cnum = INVALID_CONTEXT;
1315 		sfmmup->sfmmu_cext = 0;
1316 		/* initialize original physical page coloring bin */
1317 		sfmmup->sfmmu_clrstart = get_color_start(as);
1318 #ifdef DEBUG
1319 		if (tsb_random_size) {
1320 			uint32_t randval = (uint32_t)gettick() >> 4;
1321 			int size = randval % (tsb_max_growsize + 1);
1322 
1323 			/* chose a random tsb size for stress testing */
1324 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1325 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1326 		} else
1327 #endif /* DEBUG */
1328 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1329 			    default_tsb_size,
1330 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1331 		sfmmup->sfmmu_flags = HAT_SWAPPED;
1332 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1333 	}
1334 	sfmmu_setup_tsbinfo(sfmmup);
1335 	for (i = 0; i < max_mmu_page_sizes; i++) {
1336 		sfmmup->sfmmu_ttecnt[i] = 0;
1337 		sfmmup->sfmmu_ismttecnt[i] = 0;
1338 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1339 	}
1340 
1341 	sfmmup->sfmmu_iblk = NULL;
1342 	sfmmup->sfmmu_ismhat = 0;
1343 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1344 	if (sfmmup == ksfmmup) {
1345 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1346 	} else {
1347 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1348 	}
1349 	sfmmup->sfmmu_free = 0;
1350 	sfmmup->sfmmu_rmstat = 0;
1351 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1352 	sfmmup->sfmmu_xhat_provider = NULL;
1353 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1354 	return (sfmmup);
1355 }
1356 
1357 /*
1358  * Hat_setup, makes an address space context the current active one.
1359  * In sfmmu this translates to setting the secondary context with the
1360  * corresponding context.
1361  */
1362 void
1363 hat_setup(struct hat *sfmmup, int allocflag)
1364 {
1365 	struct ctx *ctx;
1366 	uint_t ctx_num;
1367 	hatlock_t *hatlockp;
1368 
1369 	/* Init needs some special treatment. */
1370 	if (allocflag == HAT_INIT) {
1371 		/*
1372 		 * Make sure that we have
1373 		 * 1. a TSB
1374 		 * 2. a valid ctx that doesn't get stolen after this point.
1375 		 */
1376 		hatlockp = sfmmu_hat_enter(sfmmup);
1377 
1378 		/*
1379 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1380 		 * TSBs, but we need one for init, since the kernel does some
1381 		 * special things to set up its stack and needs the TSB to
1382 		 * resolve page faults.
1383 		 */
1384 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1385 
1386 		sfmmu_disallow_ctx_steal(sfmmup);
1387 
1388 		kpreempt_disable();
1389 
1390 		ctx = sfmmutoctx(sfmmup);
1391 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1392 		ctx_num = ctxtoctxnum(ctx);
1393 		ASSERT(sfmmup == ctx->ctx_sfmmu);
1394 		ASSERT(ctx_num >= NUM_LOCKED_CTXS);
1395 		sfmmu_setctx_sec(ctx_num);
1396 		sfmmu_load_mmustate(sfmmup);
1397 
1398 		kpreempt_enable();
1399 
1400 		/*
1401 		 * Allow ctx to be stolen.
1402 		 */
1403 		sfmmu_allow_ctx_steal(sfmmup);
1404 		sfmmu_hat_exit(hatlockp);
1405 	} else {
1406 		ASSERT(allocflag == HAT_ALLOC);
1407 
1408 		hatlockp = sfmmu_hat_enter(sfmmup);
1409 		kpreempt_disable();
1410 
1411 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1412 		sfmmu_setctx_sec(INVALID_CONTEXT);
1413 		sfmmu_clear_utsbinfo();
1414 
1415 		kpreempt_enable();
1416 		sfmmu_hat_exit(hatlockp);
1417 	}
1418 }
1419 
1420 /*
1421  * Free all the translation resources for the specified address space.
1422  * Called from as_free when an address space is being destroyed.
1423  */
1424 void
1425 hat_free_start(struct hat *sfmmup)
1426 {
1427 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1428 	ASSERT(sfmmup != ksfmmup);
1429 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1430 
1431 	sfmmup->sfmmu_free = 1;
1432 }
1433 
1434 void
1435 hat_free_end(struct hat *sfmmup)
1436 {
1437 	int i;
1438 
1439 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1440 	if (sfmmup->sfmmu_ismhat) {
1441 		for (i = 0; i < mmu_page_sizes; i++) {
1442 			sfmmup->sfmmu_ttecnt[i] = 0;
1443 			sfmmup->sfmmu_ismttecnt[i] = 0;
1444 		}
1445 	} else {
1446 		/* EMPTY */
1447 		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1448 		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1449 		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1450 		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1451 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1452 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1453 	}
1454 
1455 	if (sfmmup->sfmmu_rmstat) {
1456 		hat_freestat(sfmmup->sfmmu_as, NULL);
1457 	}
1458 	if (!delay_tlb_flush) {
1459 		sfmmu_tlb_ctx_demap(sfmmup);
1460 		xt_sync(sfmmup->sfmmu_cpusran);
1461 	} else {
1462 		SFMMU_STAT(sf_tlbflush_deferred);
1463 	}
1464 	sfmmu_free_ctx(sfmmup, sfmmutoctx(sfmmup));
1465 	while (sfmmup->sfmmu_tsb != NULL) {
1466 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1467 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1468 		sfmmup->sfmmu_tsb = next;
1469 	}
1470 	sfmmu_free_sfmmu(sfmmup);
1471 
1472 	kmem_cache_free(sfmmuid_cache, sfmmup);
1473 }
1474 
1475 /*
1476  * Set up any translation structures, for the specified address space,
1477  * that are needed or preferred when the process is being swapped in.
1478  */
1479 /* ARGSUSED */
1480 void
1481 hat_swapin(struct hat *hat)
1482 {
1483 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1484 }
1485 
1486 /*
1487  * Free all of the translation resources, for the specified address space,
1488  * that can be freed while the process is swapped out. Called from as_swapout.
1489  * Also, free up the ctx that this process was using.
1490  */
1491 void
1492 hat_swapout(struct hat *sfmmup)
1493 {
1494 	struct hmehash_bucket *hmebp;
1495 	struct hme_blk *hmeblkp;
1496 	struct hme_blk *pr_hblk = NULL;
1497 	struct hme_blk *nx_hblk;
1498 	struct ctx *ctx;
1499 	int cnum;
1500 	int i;
1501 	uint64_t hblkpa, prevpa, nx_pa;
1502 	struct hme_blk *list = NULL;
1503 	hatlock_t *hatlockp;
1504 	struct tsb_info *tsbinfop;
1505 	struct free_tsb {
1506 		struct free_tsb *next;
1507 		struct tsb_info *tsbinfop;
1508 	};			/* free list of TSBs */
1509 	struct free_tsb *freelist, *last, *next;
1510 
1511 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1512 	SFMMU_STAT(sf_swapout);
1513 
1514 	/*
1515 	 * There is no way to go from an as to all its translations in sfmmu.
1516 	 * Here is one of the times when we take the big hit and traverse
1517 	 * the hash looking for hme_blks to free up.  Not only do we free up
1518 	 * this as hme_blks but all those that are free.  We are obviously
1519 	 * swapping because we need memory so let's free up as much
1520 	 * as we can.
1521 	 *
1522 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1523 	 * because:
1524 	 *  1) we free the ctx we're using and throw away the TSB(s);
1525 	 *  2) processes aren't runnable while being swapped out.
1526 	 */
1527 	ASSERT(sfmmup != KHATID);
1528 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1529 		hmebp = &uhme_hash[i];
1530 		SFMMU_HASH_LOCK(hmebp);
1531 		hmeblkp = hmebp->hmeblkp;
1532 		hblkpa = hmebp->hmeh_nextpa;
1533 		prevpa = 0;
1534 		pr_hblk = NULL;
1535 		while (hmeblkp) {
1536 
1537 			ASSERT(!hmeblkp->hblk_xhat_bit);
1538 
1539 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1540 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1541 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1542 					(caddr_t)get_hblk_base(hmeblkp),
1543 					get_hblk_endaddr(hmeblkp),
1544 					NULL, HAT_UNLOAD);
1545 			}
1546 			nx_hblk = hmeblkp->hblk_next;
1547 			nx_pa = hmeblkp->hblk_nextpa;
1548 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1549 				ASSERT(!hmeblkp->hblk_lckcnt);
1550 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1551 					prevpa, pr_hblk);
1552 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1553 			} else {
1554 				pr_hblk = hmeblkp;
1555 				prevpa = hblkpa;
1556 			}
1557 			hmeblkp = nx_hblk;
1558 			hblkpa = nx_pa;
1559 		}
1560 		SFMMU_HASH_UNLOCK(hmebp);
1561 	}
1562 
1563 	sfmmu_hblks_list_purge(&list);
1564 
1565 	/*
1566 	 * Now free up the ctx so that others can reuse it.
1567 	 */
1568 	hatlockp = sfmmu_hat_enter(sfmmup);
1569 	ctx = sfmmutoctx(sfmmup);
1570 	cnum = ctxtoctxnum(ctx);
1571 
1572 	if (cnum != INVALID_CONTEXT) {
1573 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
1574 		if (sfmmup->sfmmu_cnum == cnum) {
1575 			sfmmu_reuse_ctx(ctx, sfmmup);
1576 			/*
1577 			 * Put ctx back to the free list.
1578 			 */
1579 			mutex_enter(&ctx_list_lock);
1580 			CTX_SET_FLAGS(ctx, CTX_FREE_FLAG);
1581 			ctx->ctx_free = ctxfree;
1582 			ctxfree = ctx;
1583 			mutex_exit(&ctx_list_lock);
1584 		}
1585 		rw_exit(&ctx->ctx_rwlock);
1586 	}
1587 
1588 	/*
1589 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1590 	 * If TSBs were never swapped in, just return.
1591 	 * This implies that we don't support partial swapping
1592 	 * of TSBs -- either all are swapped out, or none are.
1593 	 *
1594 	 * We must hold the HAT lock here to prevent racing with another
1595 	 * thread trying to unmap TTEs from the TSB or running the post-
1596 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1597 	 * can't free memory while holding the HAT lock or we could
1598 	 * deadlock, so we build a list of TSBs to be freed after marking
1599 	 * the tsbinfos as swapped out and free them after dropping the
1600 	 * lock.
1601 	 */
1602 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1603 		sfmmu_hat_exit(hatlockp);
1604 		return;
1605 	}
1606 
1607 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1608 	last = freelist = NULL;
1609 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1610 	    tsbinfop = tsbinfop->tsb_next) {
1611 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1612 
1613 		/*
1614 		 * Cast the TSB into a struct free_tsb and put it on the free
1615 		 * list.
1616 		 */
1617 		if (freelist == NULL) {
1618 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1619 		} else {
1620 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1621 			last = last->next;
1622 		}
1623 		last->next = NULL;
1624 		last->tsbinfop = tsbinfop;
1625 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1626 		/*
1627 		 * Zero out the TTE to clear the valid bit.
1628 		 * Note we can't use a value like 0xbad because we want to
1629 		 * ensure diagnostic bits are NEVER set on TTEs that might
1630 		 * be loaded.  The intent is to catch any invalid access
1631 		 * to the swapped TSB, such as a thread running with a valid
1632 		 * context without first calling sfmmu_tsb_swapin() to
1633 		 * allocate TSB memory.
1634 		 */
1635 		tsbinfop->tsb_tte.ll = 0;
1636 	}
1637 
1638 	/* Now we can drop the lock and free the TSB memory. */
1639 	sfmmu_hat_exit(hatlockp);
1640 	for (; freelist != NULL; freelist = next) {
1641 		next = freelist->next;
1642 		sfmmu_tsb_free(freelist->tsbinfop);
1643 	}
1644 }
1645 
1646 /*
1647  * Duplicate the translations of an as into another newas
1648  */
1649 /* ARGSUSED */
1650 int
1651 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1652 	uint_t flag)
1653 {
1654 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1655 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1656 
1657 	if (flag == HAT_DUP_COW) {
1658 		panic("hat_dup: HAT_DUP_COW not supported");
1659 	}
1660 	return (0);
1661 }
1662 
1663 /*
1664  * Set up addr to map to page pp with protection prot.
1665  * As an optimization we also load the TSB with the
1666  * corresponding tte but it is no big deal if  the tte gets kicked out.
1667  */
1668 void
1669 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1670 	uint_t attr, uint_t flags)
1671 {
1672 	tte_t tte;
1673 
1674 
1675 	ASSERT(hat != NULL);
1676 	ASSERT(PAGE_LOCKED(pp));
1677 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1678 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1679 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1680 
1681 	if (PP_ISFREE(pp)) {
1682 		panic("hat_memload: loading a mapping to free page %p",
1683 		    (void *)pp);
1684 	}
1685 
1686 	if (hat->sfmmu_xhat_provider) {
1687 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1688 		return;
1689 	}
1690 
1691 	ASSERT((hat == ksfmmup) ||
1692 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1693 
1694 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1695 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1696 		    flags & ~SFMMU_LOAD_ALLFLAG);
1697 
1698 	if (hat->sfmmu_rmstat)
1699 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1700 
1701 #if defined(SF_ERRATA_57)
1702 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1703 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1704 	    !(flags & HAT_LOAD_SHARE)) {
1705 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1706 		    " page executable");
1707 		attr &= ~PROT_EXEC;
1708 	}
1709 #endif
1710 
1711 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1712 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1713 
1714 	/*
1715 	 * Check TSB and TLB page sizes.
1716 	 */
1717 	if ((flags & HAT_LOAD_SHARE) == 0) {
1718 		sfmmu_check_page_sizes(hat, 1);
1719 	}
1720 }
1721 
1722 /*
1723  * hat_devload can be called to map real memory (e.g.
1724  * /dev/kmem) and even though hat_devload will determine pf is
1725  * for memory, it will be unable to get a shared lock on the
1726  * page (because someone else has it exclusively) and will
1727  * pass dp = NULL.  If tteload doesn't get a non-NULL
1728  * page pointer it can't cache memory.
1729  */
1730 void
1731 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1732 	uint_t attr, int flags)
1733 {
1734 	tte_t tte;
1735 	struct page *pp = NULL;
1736 	int use_lgpg = 0;
1737 
1738 	ASSERT(hat != NULL);
1739 
1740 	if (hat->sfmmu_xhat_provider) {
1741 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1742 		return;
1743 	}
1744 
1745 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1746 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1747 	ASSERT((hat == ksfmmup) ||
1748 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1749 	if (len == 0)
1750 		panic("hat_devload: zero len");
1751 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1752 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1753 		    flags & ~SFMMU_LOAD_ALLFLAG);
1754 
1755 #if defined(SF_ERRATA_57)
1756 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1757 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1758 	    !(flags & HAT_LOAD_SHARE)) {
1759 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1760 		    " page executable");
1761 		attr &= ~PROT_EXEC;
1762 	}
1763 #endif
1764 
1765 	/*
1766 	 * If it's a memory page find its pp
1767 	 */
1768 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1769 		pp = page_numtopp_nolock(pfn);
1770 		if (pp == NULL) {
1771 			flags |= HAT_LOAD_NOCONSIST;
1772 		} else {
1773 			if (PP_ISFREE(pp)) {
1774 				panic("hat_memload: loading "
1775 				    "a mapping to free page %p",
1776 				    (void *)pp);
1777 			}
1778 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1779 				panic("hat_memload: loading a mapping "
1780 				    "to unlocked relocatable page %p",
1781 				    (void *)pp);
1782 			}
1783 			ASSERT(len == MMU_PAGESIZE);
1784 		}
1785 	}
1786 
1787 	if (hat->sfmmu_rmstat)
1788 		hat_resvstat(len, hat->sfmmu_as, addr);
1789 
1790 	if (flags & HAT_LOAD_NOCONSIST) {
1791 		attr |= SFMMU_UNCACHEVTTE;
1792 		use_lgpg = 1;
1793 	}
1794 	if (!pf_is_memory(pfn)) {
1795 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1796 		use_lgpg = 1;
1797 		switch (attr & HAT_ORDER_MASK) {
1798 			case HAT_STRICTORDER:
1799 			case HAT_UNORDERED_OK:
1800 				/*
1801 				 * we set the side effect bit for all non
1802 				 * memory mappings unless merging is ok
1803 				 */
1804 				attr |= SFMMU_SIDEFFECT;
1805 				break;
1806 			case HAT_MERGING_OK:
1807 			case HAT_LOADCACHING_OK:
1808 			case HAT_STORECACHING_OK:
1809 				break;
1810 			default:
1811 				panic("hat_devload: bad attr");
1812 				break;
1813 		}
1814 	}
1815 	while (len) {
1816 		if (!use_lgpg) {
1817 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1818 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1819 			    flags);
1820 			len -= MMU_PAGESIZE;
1821 			addr += MMU_PAGESIZE;
1822 			pfn++;
1823 			continue;
1824 		}
1825 		/*
1826 		 *  try to use large pages, check va/pa alignments
1827 		 *  Note that 32M/256M page sizes are not (yet) supported.
1828 		 */
1829 		if ((len >= MMU_PAGESIZE4M) &&
1830 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1831 		    !(disable_large_pages & (1 << TTE4M)) &&
1832 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1833 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1834 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1835 			    flags);
1836 			len -= MMU_PAGESIZE4M;
1837 			addr += MMU_PAGESIZE4M;
1838 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1839 		} else if ((len >= MMU_PAGESIZE512K) &&
1840 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1841 		    !(disable_large_pages & (1 << TTE512K)) &&
1842 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1843 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1844 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1845 			    flags);
1846 			len -= MMU_PAGESIZE512K;
1847 			addr += MMU_PAGESIZE512K;
1848 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1849 		} else if ((len >= MMU_PAGESIZE64K) &&
1850 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1851 		    !(disable_large_pages & (1 << TTE64K)) &&
1852 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1853 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1854 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1855 			    flags);
1856 			len -= MMU_PAGESIZE64K;
1857 			addr += MMU_PAGESIZE64K;
1858 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1859 		} else {
1860 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1861 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1862 			    flags);
1863 			len -= MMU_PAGESIZE;
1864 			addr += MMU_PAGESIZE;
1865 			pfn++;
1866 		}
1867 	}
1868 
1869 	/*
1870 	 * Check TSB and TLB page sizes.
1871 	 */
1872 	if ((flags & HAT_LOAD_SHARE) == 0) {
1873 		sfmmu_check_page_sizes(hat, 1);
1874 	}
1875 }
1876 
1877 /*
1878  * Map the largest extend possible out of the page array. The array may NOT
1879  * be in order.  The largest possible mapping a page can have
1880  * is specified in the p_szc field.  The p_szc field
1881  * cannot change as long as there any mappings (large or small)
1882  * to any of the pages that make up the large page. (ie. any
1883  * promotion/demotion of page size is not up to the hat but up to
1884  * the page free list manager).  The array
1885  * should consist of properly aligned contigous pages that are
1886  * part of a big page for a large mapping to be created.
1887  */
1888 void
1889 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
1890 	struct page **pps, uint_t attr, uint_t flags)
1891 {
1892 	int  ttesz;
1893 	size_t mapsz;
1894 	pgcnt_t	numpg, npgs;
1895 	tte_t tte;
1896 	page_t *pp;
1897 	int large_pages_disable;
1898 
1899 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1900 
1901 	if (hat->sfmmu_xhat_provider) {
1902 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
1903 		return;
1904 	}
1905 
1906 	if (hat->sfmmu_rmstat)
1907 		hat_resvstat(len, hat->sfmmu_as, addr);
1908 
1909 #if defined(SF_ERRATA_57)
1910 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1911 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1912 	    !(flags & HAT_LOAD_SHARE)) {
1913 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
1914 		    "user page executable");
1915 		attr &= ~PROT_EXEC;
1916 	}
1917 #endif
1918 
1919 	/* Get number of pages */
1920 	npgs = len >> MMU_PAGESHIFT;
1921 
1922 	if (flags & HAT_LOAD_SHARE) {
1923 		large_pages_disable = disable_ism_large_pages;
1924 	} else {
1925 		large_pages_disable = disable_large_pages;
1926 	}
1927 
1928 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
1929 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
1930 		return;
1931 	}
1932 
1933 	while (npgs >= NHMENTS) {
1934 		pp = *pps;
1935 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
1936 			/*
1937 			 * Check if this page size is disabled.
1938 			 */
1939 			if (large_pages_disable & (1 << ttesz))
1940 				continue;
1941 
1942 			numpg = TTEPAGES(ttesz);
1943 			mapsz = numpg << MMU_PAGESHIFT;
1944 			if ((npgs >= numpg) &&
1945 			    IS_P2ALIGNED(addr, mapsz) &&
1946 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
1947 				/*
1948 				 * At this point we have enough pages and
1949 				 * we know the virtual address and the pfn
1950 				 * are properly aligned.  We still need
1951 				 * to check for physical contiguity but since
1952 				 * it is very likely that this is the case
1953 				 * we will assume they are so and undo
1954 				 * the request if necessary.  It would
1955 				 * be great if we could get a hint flag
1956 				 * like HAT_CONTIG which would tell us
1957 				 * the pages are contigous for sure.
1958 				 */
1959 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
1960 					attr, ttesz);
1961 				if (!sfmmu_tteload_array(hat, &tte, addr,
1962 				    pps, flags)) {
1963 					break;
1964 				}
1965 			}
1966 		}
1967 		if (ttesz == TTE8K) {
1968 			/*
1969 			 * We were not able to map array using a large page
1970 			 * batch a hmeblk or fraction at a time.
1971 			 */
1972 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
1973 				& (NHMENTS-1);
1974 			numpg = NHMENTS - numpg;
1975 			ASSERT(numpg <= npgs);
1976 			mapsz = numpg * MMU_PAGESIZE;
1977 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
1978 							numpg);
1979 		}
1980 		addr += mapsz;
1981 		npgs -= numpg;
1982 		pps += numpg;
1983 	}
1984 
1985 	if (npgs) {
1986 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
1987 	}
1988 
1989 	/*
1990 	 * Check TSB and TLB page sizes.
1991 	 */
1992 	if ((flags & HAT_LOAD_SHARE) == 0) {
1993 		sfmmu_check_page_sizes(hat, 1);
1994 	}
1995 }
1996 
1997 /*
1998  * Function tries to batch 8K pages into the same hme blk.
1999  */
2000 static void
2001 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2002 		    uint_t attr, uint_t flags, pgcnt_t npgs)
2003 {
2004 	tte_t	tte;
2005 	page_t *pp;
2006 	struct hmehash_bucket *hmebp;
2007 	struct hme_blk *hmeblkp;
2008 	int	index;
2009 
2010 	while (npgs) {
2011 		/*
2012 		 * Acquire the hash bucket.
2013 		 */
2014 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2015 		ASSERT(hmebp);
2016 
2017 		/*
2018 		 * Find the hment block.
2019 		 */
2020 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2021 				TTE8K, flags);
2022 		ASSERT(hmeblkp);
2023 
2024 		do {
2025 			/*
2026 			 * Make the tte.
2027 			 */
2028 			pp = *pps;
2029 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2030 
2031 			/*
2032 			 * Add the translation.
2033 			 */
2034 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2035 					vaddr, pps, flags);
2036 
2037 			/*
2038 			 * Goto next page.
2039 			 */
2040 			pps++;
2041 			npgs--;
2042 
2043 			/*
2044 			 * Goto next address.
2045 			 */
2046 			vaddr += MMU_PAGESIZE;
2047 
2048 			/*
2049 			 * Don't crossover into a different hmentblk.
2050 			 */
2051 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2052 			    (NHMENTS-1));
2053 
2054 		} while (index != 0 && npgs != 0);
2055 
2056 		/*
2057 		 * Release the hash bucket.
2058 		 */
2059 
2060 		sfmmu_tteload_release_hashbucket(hmebp);
2061 	}
2062 }
2063 
2064 /*
2065  * Construct a tte for a page:
2066  *
2067  * tte_valid = 1
2068  * tte_size2 = size & TTE_SZ2_BITS (Panther-only)
2069  * tte_size = size
2070  * tte_nfo = attr & HAT_NOFAULT
2071  * tte_ie = attr & HAT_STRUCTURE_LE
2072  * tte_hmenum = hmenum
2073  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2074  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2075  * tte_ref = 1 (optimization)
2076  * tte_wr_perm = attr & PROT_WRITE;
2077  * tte_no_sync = attr & HAT_NOSYNC
2078  * tte_lock = attr & SFMMU_LOCKTTE
2079  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2080  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2081  * tte_e = attr & SFMMU_SIDEFFECT
2082  * tte_priv = !(attr & PROT_USER)
2083  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2084  * tte_glb = 0
2085  */
2086 void
2087 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2088 {
2089 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2090 
2091 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2092 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2093 
2094 	if (TTE_IS_NOSYNC(ttep)) {
2095 		TTE_SET_REF(ttep);
2096 		if (TTE_IS_WRITABLE(ttep)) {
2097 			TTE_SET_MOD(ttep);
2098 		}
2099 	}
2100 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2101 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2102 	}
2103 }
2104 
2105 /*
2106  * This function will add a translation to the hme_blk and allocate the
2107  * hme_blk if one does not exist.
2108  * If a page structure is specified then it will add the
2109  * corresponding hment to the mapping list.
2110  * It will also update the hmenum field for the tte.
2111  */
2112 void
2113 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2114 	uint_t flags)
2115 {
2116 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2117 }
2118 
2119 /*
2120  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2121  * Assumes that a particular page size may only be resident in one TSB.
2122  */
2123 static void
2124 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2125 {
2126 	struct tsb_info *tsbinfop = NULL;
2127 	uint64_t tag;
2128 	struct tsbe *tsbe_addr;
2129 	uint64_t tsb_base;
2130 	uint_t tsb_size;
2131 	int vpshift = MMU_PAGESHIFT;
2132 	int phys = 0;
2133 
2134 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2135 		phys = ktsb_phys;
2136 		if (ttesz >= TTE4M) {
2137 #ifndef sun4v
2138 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2139 #endif
2140 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2141 			tsb_size = ktsb4m_szcode;
2142 		} else {
2143 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2144 			tsb_size = ktsb_szcode;
2145 		}
2146 	} else {
2147 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2148 
2149 		/*
2150 		 * If there isn't a TSB for this page size, or the TSB is
2151 		 * swapped out, there is nothing to do.  Note that the latter
2152 		 * case seems impossible but can occur if hat_pageunload()
2153 		 * is called on an ISM mapping while the process is swapped
2154 		 * out.
2155 		 */
2156 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2157 			return;
2158 
2159 		/*
2160 		 * If another thread is in the middle of relocating a TSB
2161 		 * we can't unload the entry so set a flag so that the
2162 		 * TSB will be flushed before it can be accessed by the
2163 		 * process.
2164 		 */
2165 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2166 			if (ttep == NULL)
2167 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2168 			return;
2169 		}
2170 #if defined(UTSB_PHYS)
2171 		phys = 1;
2172 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2173 #else
2174 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2175 #endif
2176 		tsb_size = tsbinfop->tsb_szc;
2177 	}
2178 	if (ttesz >= TTE4M)
2179 		vpshift = MMU_PAGESHIFT4M;
2180 
2181 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2182 	tag = sfmmu_make_tsbtag(vaddr);
2183 
2184 	if (ttep == NULL) {
2185 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2186 	} else {
2187 		if (ttesz >= TTE4M) {
2188 			SFMMU_STAT(sf_tsb_load4m);
2189 		} else {
2190 			SFMMU_STAT(sf_tsb_load8k);
2191 		}
2192 
2193 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2194 	}
2195 }
2196 
2197 /*
2198  * Unmap all entries from [start, end) matching the given page size.
2199  *
2200  * This function is used primarily to unmap replicated 64K or 512K entries
2201  * from the TSB that are inserted using the base page size TSB pointer, but
2202  * it may also be called to unmap a range of addresses from the TSB.
2203  */
2204 void
2205 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2206 {
2207 	struct tsb_info *tsbinfop;
2208 	uint64_t tag;
2209 	struct tsbe *tsbe_addr;
2210 	caddr_t vaddr;
2211 	uint64_t tsb_base;
2212 	int vpshift, vpgsz;
2213 	uint_t tsb_size;
2214 	int phys = 0;
2215 
2216 	/*
2217 	 * Assumptions:
2218 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2219 	 *  at a time shooting down any valid entries we encounter.
2220 	 *
2221 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2222 	 *  down any valid mappings we find.
2223 	 */
2224 	if (sfmmup == ksfmmup) {
2225 		phys = ktsb_phys;
2226 		if (ttesz >= TTE4M) {
2227 #ifndef sun4v
2228 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2229 #endif
2230 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2231 			tsb_size = ktsb4m_szcode;
2232 		} else {
2233 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2234 			tsb_size = ktsb_szcode;
2235 		}
2236 	} else {
2237 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2238 
2239 		/*
2240 		 * If there isn't a TSB for this page size, or the TSB is
2241 		 * swapped out, there is nothing to do.  Note that the latter
2242 		 * case seems impossible but can occur if hat_pageunload()
2243 		 * is called on an ISM mapping while the process is swapped
2244 		 * out.
2245 		 */
2246 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2247 			return;
2248 
2249 		/*
2250 		 * If another thread is in the middle of relocating a TSB
2251 		 * we can't unload the entry so set a flag so that the
2252 		 * TSB will be flushed before it can be accessed by the
2253 		 * process.
2254 		 */
2255 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2256 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2257 			return;
2258 		}
2259 #if defined(UTSB_PHYS)
2260 		phys = 1;
2261 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2262 #else
2263 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2264 #endif
2265 		tsb_size = tsbinfop->tsb_szc;
2266 	}
2267 	if (ttesz >= TTE4M) {
2268 		vpshift = MMU_PAGESHIFT4M;
2269 		vpgsz = MMU_PAGESIZE4M;
2270 	} else {
2271 		vpshift = MMU_PAGESHIFT;
2272 		vpgsz = MMU_PAGESIZE;
2273 	}
2274 
2275 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2276 		tag = sfmmu_make_tsbtag(vaddr);
2277 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2278 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2279 	}
2280 }
2281 
2282 /*
2283  * Select the optimum TSB size given the number of mappings
2284  * that need to be cached.
2285  */
2286 static int
2287 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2288 {
2289 	int szc = 0;
2290 
2291 #ifdef DEBUG
2292 	if (tsb_grow_stress) {
2293 		uint32_t randval = (uint32_t)gettick() >> 4;
2294 		return (randval % (tsb_max_growsize + 1));
2295 	}
2296 #endif	/* DEBUG */
2297 
2298 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2299 		szc++;
2300 	return (szc);
2301 }
2302 
2303 /*
2304  * This function will add a translation to the hme_blk and allocate the
2305  * hme_blk if one does not exist.
2306  * If a page structure is specified then it will add the
2307  * corresponding hment to the mapping list.
2308  * It will also update the hmenum field for the tte.
2309  * Furthermore, it attempts to create a large page translation
2310  * for <addr,hat> at page array pps.  It assumes addr and first
2311  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2312  */
2313 static int
2314 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2315 	page_t **pps, uint_t flags)
2316 {
2317 	struct hmehash_bucket *hmebp;
2318 	struct hme_blk *hmeblkp;
2319 	int 	ret;
2320 	uint_t	size;
2321 
2322 	/*
2323 	 * Get mapping size.
2324 	 */
2325 	size = TTE_CSZ(ttep);
2326 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2327 
2328 	/*
2329 	 * Acquire the hash bucket.
2330 	 */
2331 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2332 	ASSERT(hmebp);
2333 
2334 	/*
2335 	 * Find the hment block.
2336 	 */
2337 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2338 	ASSERT(hmeblkp);
2339 
2340 	/*
2341 	 * Add the translation.
2342 	 */
2343 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2344 
2345 	/*
2346 	 * Release the hash bucket.
2347 	 */
2348 	sfmmu_tteload_release_hashbucket(hmebp);
2349 
2350 	return (ret);
2351 }
2352 
2353 /*
2354  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2355  */
2356 static struct hmehash_bucket *
2357 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2358 {
2359 	struct hmehash_bucket *hmebp;
2360 	int hmeshift;
2361 
2362 	hmeshift = HME_HASH_SHIFT(size);
2363 
2364 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2365 
2366 	SFMMU_HASH_LOCK(hmebp);
2367 
2368 	return (hmebp);
2369 }
2370 
2371 /*
2372  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2373  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2374  * allocated.
2375  */
2376 static struct hme_blk *
2377 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2378 	caddr_t vaddr, uint_t size, uint_t flags)
2379 {
2380 	hmeblk_tag hblktag;
2381 	int hmeshift;
2382 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2383 	uint64_t hblkpa, prevpa;
2384 	struct kmem_cache *sfmmu_cache;
2385 	uint_t forcefree;
2386 
2387 	hblktag.htag_id = sfmmup;
2388 	hmeshift = HME_HASH_SHIFT(size);
2389 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2390 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2391 
2392 ttearray_realloc:
2393 
2394 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2395 	    pr_hblk, prevpa, &list);
2396 
2397 	/*
2398 	 * We block until hblk_reserve_lock is released; it's held by
2399 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2400 	 * replaced by a hblk from sfmmu8_cache.
2401 	 */
2402 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2403 	    hblk_reserve_thread != curthread) {
2404 		SFMMU_HASH_UNLOCK(hmebp);
2405 		mutex_enter(&hblk_reserve_lock);
2406 		mutex_exit(&hblk_reserve_lock);
2407 		SFMMU_STAT(sf_hblk_reserve_hit);
2408 		SFMMU_HASH_LOCK(hmebp);
2409 		goto ttearray_realloc;
2410 	}
2411 
2412 	if (hmeblkp == NULL) {
2413 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2414 		    hblktag, flags);
2415 	} else {
2416 		/*
2417 		 * It is possible for 8k and 64k hblks to collide since they
2418 		 * have the same rehash value. This is because we
2419 		 * lazily free hblks and 8K/64K blks could be lingering.
2420 		 * If we find size mismatch we free the block and & try again.
2421 		 */
2422 		if (get_hblk_ttesz(hmeblkp) != size) {
2423 			ASSERT(!hmeblkp->hblk_vcnt);
2424 			ASSERT(!hmeblkp->hblk_hmecnt);
2425 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2426 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2427 			goto ttearray_realloc;
2428 		}
2429 		if (hmeblkp->hblk_shw_bit) {
2430 			/*
2431 			 * if the hblk was previously used as a shadow hblk then
2432 			 * we will change it to a normal hblk
2433 			 */
2434 			if (hmeblkp->hblk_shw_mask) {
2435 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2436 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2437 				goto ttearray_realloc;
2438 			} else {
2439 				hmeblkp->hblk_shw_bit = 0;
2440 			}
2441 		}
2442 		SFMMU_STAT(sf_hblk_hit);
2443 	}
2444 
2445 	/*
2446 	 * hat_memload() should never call kmem_cache_free(); see block
2447 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2448 	 * enqueue each hblk in the list to reserve list if it's created
2449 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2450 	 */
2451 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2452 	while ((pr_hblk = list) != NULL) {
2453 		list = pr_hblk->hblk_next;
2454 		sfmmu_cache = get_hblk_cache(pr_hblk);
2455 		if ((sfmmu_cache == sfmmu8_cache) &&
2456 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2457 			continue;
2458 
2459 		ASSERT(sfmmup != KHATID);
2460 		kmem_cache_free(sfmmu_cache, pr_hblk);
2461 	}
2462 
2463 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2464 	ASSERT(!hmeblkp->hblk_shw_bit);
2465 
2466 	return (hmeblkp);
2467 }
2468 
2469 /*
2470  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2471  * otherwise.
2472  */
2473 static int
2474 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2475 	caddr_t vaddr, page_t **pps, uint_t flags)
2476 {
2477 	page_t *pp = *pps;
2478 	int hmenum, size, remap;
2479 	tte_t tteold, flush_tte;
2480 #ifdef DEBUG
2481 	tte_t orig_old;
2482 #endif /* DEBUG */
2483 	struct sf_hment *sfhme;
2484 	kmutex_t *pml, *pmtx;
2485 	hatlock_t *hatlockp;
2486 
2487 	/*
2488 	 * remove this panic when we decide to let user virtual address
2489 	 * space be >= USERLIMIT.
2490 	 */
2491 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2492 		panic("user addr %p in kernel space", vaddr);
2493 #if defined(TTE_IS_GLOBAL)
2494 	if (TTE_IS_GLOBAL(ttep))
2495 		panic("sfmmu_tteload: creating global tte");
2496 #endif
2497 
2498 #ifdef DEBUG
2499 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2500 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2501 		panic("sfmmu_tteload: non cacheable memory tte");
2502 #endif /* DEBUG */
2503 
2504 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2505 	    !TTE_IS_MOD(ttep)) {
2506 		/*
2507 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2508 		 * the TSB if the TTE isn't writable since we're likely to
2509 		 * fault on it again -- preloading can be fairly expensive.
2510 		 */
2511 		flags |= SFMMU_NO_TSBLOAD;
2512 	}
2513 
2514 	size = TTE_CSZ(ttep);
2515 	switch (size) {
2516 	case TTE8K:
2517 		SFMMU_STAT(sf_tteload8k);
2518 		break;
2519 	case TTE64K:
2520 		SFMMU_STAT(sf_tteload64k);
2521 		break;
2522 	case TTE512K:
2523 		SFMMU_STAT(sf_tteload512k);
2524 		break;
2525 	case TTE4M:
2526 		SFMMU_STAT(sf_tteload4m);
2527 		break;
2528 	case (TTE32M):
2529 		SFMMU_STAT(sf_tteload32m);
2530 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2531 		break;
2532 	case (TTE256M):
2533 		SFMMU_STAT(sf_tteload256m);
2534 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2535 		break;
2536 	}
2537 
2538 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2539 
2540 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2541 
2542 	/*
2543 	 * Need to grab mlist lock here so that pageunload
2544 	 * will not change tte behind us.
2545 	 */
2546 	if (pp) {
2547 		pml = sfmmu_mlist_enter(pp);
2548 	}
2549 
2550 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2551 	/*
2552 	 * Look for corresponding hment and if valid verify
2553 	 * pfns are equal.
2554 	 */
2555 	remap = TTE_IS_VALID(&tteold);
2556 	if (remap) {
2557 		pfn_t	new_pfn, old_pfn;
2558 
2559 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2560 		new_pfn = TTE_TO_PFN(vaddr, ttep);
2561 
2562 		if (flags & HAT_LOAD_REMAP) {
2563 			/* make sure we are remapping same type of pages */
2564 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2565 				panic("sfmmu_tteload - tte remap io<->memory");
2566 			}
2567 			if (old_pfn != new_pfn &&
2568 			    (pp != NULL || sfhme->hme_page != NULL)) {
2569 				panic("sfmmu_tteload - tte remap pp != NULL");
2570 			}
2571 		} else if (old_pfn != new_pfn) {
2572 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2573 			    (void *)hmeblkp);
2574 		}
2575 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2576 	}
2577 
2578 	if (pp) {
2579 		if (size == TTE8K) {
2580 			/*
2581 			 * Handle VAC consistency
2582 			 */
2583 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2584 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2585 			}
2586 
2587 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2588 				pmtx = sfmmu_page_enter(pp);
2589 				PP_CLRRO(pp);
2590 				sfmmu_page_exit(pmtx);
2591 			} else if (!PP_ISMAPPED(pp) &&
2592 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2593 				pmtx = sfmmu_page_enter(pp);
2594 				if (!(PP_ISMOD(pp))) {
2595 					PP_SETRO(pp);
2596 				}
2597 				sfmmu_page_exit(pmtx);
2598 			}
2599 
2600 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2601 			/*
2602 			 * sfmmu_pagearray_setup failed so return
2603 			 */
2604 			sfmmu_mlist_exit(pml);
2605 			return (1);
2606 		}
2607 	}
2608 
2609 	/*
2610 	 * Make sure hment is not on a mapping list.
2611 	 */
2612 	ASSERT(remap || (sfhme->hme_page == NULL));
2613 
2614 	/* if it is not a remap then hme->next better be NULL */
2615 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2616 
2617 	if (flags & HAT_LOAD_LOCK) {
2618 		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2619 			panic("too high lckcnt-hmeblk %p",
2620 			    (void *)hmeblkp);
2621 		}
2622 		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2623 
2624 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2625 	}
2626 
2627 	if (pp && PP_ISNC(pp)) {
2628 		/*
2629 		 * If the physical page is marked to be uncacheable, like
2630 		 * by a vac conflict, make sure the new mapping is also
2631 		 * uncacheable.
2632 		 */
2633 		TTE_CLR_VCACHEABLE(ttep);
2634 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2635 	}
2636 	ttep->tte_hmenum = hmenum;
2637 
2638 #ifdef DEBUG
2639 	orig_old = tteold;
2640 #endif /* DEBUG */
2641 
2642 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2643 		if ((sfmmup == KHATID) &&
2644 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2645 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2646 		}
2647 #ifdef DEBUG
2648 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2649 #endif /* DEBUG */
2650 	}
2651 
2652 	if (!TTE_IS_VALID(&tteold)) {
2653 
2654 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2655 		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2656 
2657 		/*
2658 		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2659 		 */
2660 
2661 		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2662 		    sfmmup != ksfmmup) {
2663 			/*
2664 			 * If this is the first large mapping for the process
2665 			 * we must force any CPUs running this process to TL=0
2666 			 * where they will reload the HAT flags from the
2667 			 * tsbmiss area.  This is necessary to make the large
2668 			 * mappings we are about to load visible to those CPUs;
2669 			 * otherwise they'll loop forever calling pagefault()
2670 			 * since we don't search large hash chains by default.
2671 			 */
2672 			hatlockp = sfmmu_hat_enter(sfmmup);
2673 			if (size == TTE512K &&
2674 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2675 				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2676 				sfmmu_sync_mmustate(sfmmup);
2677 			} else if (size == TTE4M &&
2678 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2679 				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2680 				sfmmu_sync_mmustate(sfmmup);
2681 			} else if (size == TTE64K &&
2682 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2683 				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2684 				/* no sync mmustate; 64K shares 8K hashes */
2685 			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2686 			    if (size == TTE32M &&
2687 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2688 				SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2689 				sfmmu_sync_mmustate(sfmmup);
2690 			    } else if (size == TTE256M &&
2691 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2692 				SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2693 				sfmmu_sync_mmustate(sfmmup);
2694 			    }
2695 			}
2696 			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2697 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2698 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2699 			}
2700 			sfmmu_hat_exit(hatlockp);
2701 		}
2702 	}
2703 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2704 
2705 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2706 	    hw_tte.tte_intlo;
2707 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2708 	    hw_tte.tte_inthi;
2709 
2710 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2711 		/*
2712 		 * If remap and new tte differs from old tte we need
2713 		 * to sync the mod bit and flush TLB/TSB.  We don't
2714 		 * need to sync ref bit because we currently always set
2715 		 * ref bit in tteload.
2716 		 */
2717 		ASSERT(TTE_IS_REF(ttep));
2718 		if (TTE_IS_MOD(&tteold)) {
2719 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2720 		}
2721 		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2722 		xt_sync(sfmmup->sfmmu_cpusran);
2723 	}
2724 
2725 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2726 		/*
2727 		 * We only preload 8K and 4M mappings into the TSB, since
2728 		 * 64K and 512K mappings are replicated and hence don't
2729 		 * have a single, unique TSB entry. Ditto for 32M/256M.
2730 		 */
2731 		if (size == TTE8K || size == TTE4M) {
2732 			hatlockp = sfmmu_hat_enter(sfmmup);
2733 			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2734 			sfmmu_hat_exit(hatlockp);
2735 		}
2736 	}
2737 	if (pp) {
2738 		if (!remap) {
2739 			HME_ADD(sfhme, pp);
2740 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2741 			ASSERT(hmeblkp->hblk_hmecnt > 0);
2742 
2743 			/*
2744 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2745 			 * see pageunload() for comment.
2746 			 */
2747 		}
2748 		sfmmu_mlist_exit(pml);
2749 	}
2750 
2751 	return (0);
2752 }
2753 /*
2754  * Function unlocks hash bucket.
2755  */
2756 static void
2757 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2758 {
2759 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2760 	SFMMU_HASH_UNLOCK(hmebp);
2761 }
2762 
2763 /*
2764  * function which checks and sets up page array for a large
2765  * translation.  Will set p_vcolor, p_index, p_ro fields.
2766  * Assumes addr and pfnum of first page are properly aligned.
2767  * Will check for physical contiguity. If check fails it return
2768  * non null.
2769  */
2770 static int
2771 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2772 {
2773 	int 	i, index, ttesz, osz;
2774 	pfn_t	pfnum;
2775 	pgcnt_t	npgs;
2776 	int cflags = 0;
2777 	page_t *pp, *pp1;
2778 	kmutex_t *pmtx;
2779 	int vac_err = 0;
2780 	int newidx = 0;
2781 
2782 	ttesz = TTE_CSZ(ttep);
2783 
2784 	ASSERT(ttesz > TTE8K);
2785 
2786 	npgs = TTEPAGES(ttesz);
2787 	index = PAGESZ_TO_INDEX(ttesz);
2788 
2789 	pfnum = (*pps)->p_pagenum;
2790 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2791 
2792 	/*
2793 	 * Save the first pp so we can do HAT_TMPNC at the end.
2794 	 */
2795 	pp1 = *pps;
2796 	osz = fnd_mapping_sz(pp1);
2797 
2798 	for (i = 0; i < npgs; i++, pps++) {
2799 		pp = *pps;
2800 		ASSERT(PAGE_LOCKED(pp));
2801 		ASSERT(pp->p_szc >= ttesz);
2802 		ASSERT(pp->p_szc == pp1->p_szc);
2803 		ASSERT(sfmmu_mlist_held(pp));
2804 
2805 		/*
2806 		 * XXX is it possible to maintain P_RO on the root only?
2807 		 */
2808 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2809 			pmtx = sfmmu_page_enter(pp);
2810 			PP_CLRRO(pp);
2811 			sfmmu_page_exit(pmtx);
2812 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2813 		    !PP_ISMOD(pp)) {
2814 			pmtx = sfmmu_page_enter(pp);
2815 			if (!(PP_ISMOD(pp))) {
2816 				PP_SETRO(pp);
2817 			}
2818 			sfmmu_page_exit(pmtx);
2819 		}
2820 
2821 		/*
2822 		 * If this is a remap we skip vac & contiguity checks.
2823 		 */
2824 		if (remap)
2825 			continue;
2826 
2827 		/*
2828 		 * set p_vcolor and detect any vac conflicts.
2829 		 */
2830 		if (vac_err == 0) {
2831 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2832 
2833 		}
2834 
2835 		/*
2836 		 * Save current index in case we need to undo it.
2837 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2838 		 *	"SFMMU_INDEX_SHIFT	6"
2839 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2840 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2841 		 *
2842 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2843 		 *	if ttesz == 1 then index = 0x2
2844 		 *		    2 then index = 0x4
2845 		 *		    3 then index = 0x8
2846 		 *		    4 then index = 0x10
2847 		 *		    5 then index = 0x20
2848 		 * The code below checks if it's a new pagesize (ie, newidx)
2849 		 * in case we need to take it back out of p_index,
2850 		 * and then or's the new index into the existing index.
2851 		 */
2852 		if ((PP_MAPINDEX(pp) & index) == 0)
2853 			newidx = 1;
2854 		pp->p_index = (PP_MAPINDEX(pp) | index);
2855 
2856 		/*
2857 		 * contiguity check
2858 		 */
2859 		if (pp->p_pagenum != pfnum) {
2860 			/*
2861 			 * If we fail the contiguity test then
2862 			 * the only thing we need to fix is the p_index field.
2863 			 * We might get a few extra flushes but since this
2864 			 * path is rare that is ok.  The p_ro field will
2865 			 * get automatically fixed on the next tteload to
2866 			 * the page.  NO TNC bit is set yet.
2867 			 */
2868 			while (i >= 0) {
2869 				pp = *pps;
2870 				if (newidx)
2871 					pp->p_index = (PP_MAPINDEX(pp) &
2872 					    ~index);
2873 				pps--;
2874 				i--;
2875 			}
2876 			return (1);
2877 		}
2878 		pfnum++;
2879 		addr += MMU_PAGESIZE;
2880 	}
2881 
2882 	if (vac_err) {
2883 		if (ttesz > osz) {
2884 			/*
2885 			 * There are some smaller mappings that causes vac
2886 			 * conflicts. Convert all existing small mappings to
2887 			 * TNC.
2888 			 */
2889 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
2890 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
2891 				npgs);
2892 		} else {
2893 			/* EMPTY */
2894 			/*
2895 			 * If there exists an big page mapping,
2896 			 * that means the whole existing big page
2897 			 * has TNC setting already. No need to covert to
2898 			 * TNC again.
2899 			 */
2900 			ASSERT(PP_ISTNC(pp1));
2901 		}
2902 	}
2903 
2904 	return (0);
2905 }
2906 
2907 /*
2908  * Routine that detects vac consistency for a large page. It also
2909  * sets virtual color for all pp's for this big mapping.
2910  */
2911 static int
2912 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
2913 {
2914 	int vcolor, ocolor;
2915 
2916 	ASSERT(sfmmu_mlist_held(pp));
2917 
2918 	if (PP_ISNC(pp)) {
2919 		return (HAT_TMPNC);
2920 	}
2921 
2922 	vcolor = addr_to_vcolor(addr);
2923 	if (PP_NEWPAGE(pp)) {
2924 		PP_SET_VCOLOR(pp, vcolor);
2925 		return (0);
2926 	}
2927 
2928 	ocolor = PP_GET_VCOLOR(pp);
2929 	if (ocolor == vcolor) {
2930 		return (0);
2931 	}
2932 
2933 	if (!PP_ISMAPPED(pp)) {
2934 		/*
2935 		 * Previous user of page had a differnet color
2936 		 * but since there are no current users
2937 		 * we just flush the cache and change the color.
2938 		 * As an optimization for large pages we flush the
2939 		 * entire cache of that color and set a flag.
2940 		 */
2941 		SFMMU_STAT(sf_pgcolor_conflict);
2942 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
2943 			CacheColor_SetFlushed(*cflags, ocolor);
2944 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
2945 		}
2946 		PP_SET_VCOLOR(pp, vcolor);
2947 		return (0);
2948 	}
2949 
2950 	/*
2951 	 * We got a real conflict with a current mapping.
2952 	 * set flags to start unencaching all mappings
2953 	 * and return failure so we restart looping
2954 	 * the pp array from the beginning.
2955 	 */
2956 	return (HAT_TMPNC);
2957 }
2958 
2959 /*
2960  * creates a large page shadow hmeblk for a tte.
2961  * The purpose of this routine is to allow us to do quick unloads because
2962  * the vm layer can easily pass a very large but sparsely populated range.
2963  */
2964 static struct hme_blk *
2965 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
2966 {
2967 	struct hmehash_bucket *hmebp;
2968 	hmeblk_tag hblktag;
2969 	int hmeshift, size, vshift;
2970 	uint_t shw_mask, newshw_mask;
2971 	struct hme_blk *hmeblkp;
2972 
2973 	ASSERT(sfmmup != KHATID);
2974 	if (mmu_page_sizes == max_mmu_page_sizes) {
2975 		ASSERT(ttesz < TTE256M);
2976 	} else {
2977 		ASSERT(ttesz < TTE4M);
2978 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
2979 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
2980 	}
2981 
2982 	if (ttesz == TTE8K) {
2983 		size = TTE512K;
2984 	} else {
2985 		size = ++ttesz;
2986 	}
2987 
2988 	hblktag.htag_id = sfmmup;
2989 	hmeshift = HME_HASH_SHIFT(size);
2990 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2991 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2992 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2993 
2994 	SFMMU_HASH_LOCK(hmebp);
2995 
2996 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
2997 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
2998 	if (hmeblkp == NULL) {
2999 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3000 			hblktag, flags);
3001 	}
3002 	ASSERT(hmeblkp);
3003 	if (!hmeblkp->hblk_shw_mask) {
3004 		/*
3005 		 * if this is a unused hblk it was just allocated or could
3006 		 * potentially be a previous large page hblk so we need to
3007 		 * set the shadow bit.
3008 		 */
3009 		hmeblkp->hblk_shw_bit = 1;
3010 	}
3011 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3012 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3013 	ASSERT(vshift < 8);
3014 	/*
3015 	 * Atomically set shw mask bit
3016 	 */
3017 	do {
3018 		shw_mask = hmeblkp->hblk_shw_mask;
3019 		newshw_mask = shw_mask | (1 << vshift);
3020 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3021 		    newshw_mask);
3022 	} while (newshw_mask != shw_mask);
3023 
3024 	SFMMU_HASH_UNLOCK(hmebp);
3025 
3026 	return (hmeblkp);
3027 }
3028 
3029 /*
3030  * This routine cleanup a previous shadow hmeblk and changes it to
3031  * a regular hblk.  This happens rarely but it is possible
3032  * when a process wants to use large pages and there are hblks still
3033  * lying around from the previous as that used these hmeblks.
3034  * The alternative was to cleanup the shadow hblks at unload time
3035  * but since so few user processes actually use large pages, it is
3036  * better to be lazy and cleanup at this time.
3037  */
3038 static void
3039 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3040 	struct hmehash_bucket *hmebp)
3041 {
3042 	caddr_t addr, endaddr;
3043 	int hashno, size;
3044 
3045 	ASSERT(hmeblkp->hblk_shw_bit);
3046 
3047 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3048 
3049 	if (!hmeblkp->hblk_shw_mask) {
3050 		hmeblkp->hblk_shw_bit = 0;
3051 		return;
3052 	}
3053 	addr = (caddr_t)get_hblk_base(hmeblkp);
3054 	endaddr = get_hblk_endaddr(hmeblkp);
3055 	size = get_hblk_ttesz(hmeblkp);
3056 	hashno = size - 1;
3057 	ASSERT(hashno > 0);
3058 	SFMMU_HASH_UNLOCK(hmebp);
3059 
3060 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3061 
3062 	SFMMU_HASH_LOCK(hmebp);
3063 }
3064 
3065 static void
3066 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3067 	int hashno)
3068 {
3069 	int hmeshift, shadow = 0;
3070 	hmeblk_tag hblktag;
3071 	struct hmehash_bucket *hmebp;
3072 	struct hme_blk *hmeblkp;
3073 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3074 	uint64_t hblkpa, prevpa, nx_pa;
3075 
3076 	ASSERT(hashno > 0);
3077 	hblktag.htag_id = sfmmup;
3078 	hblktag.htag_rehash = hashno;
3079 
3080 	hmeshift = HME_HASH_SHIFT(hashno);
3081 
3082 	while (addr < endaddr) {
3083 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3084 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3085 		SFMMU_HASH_LOCK(hmebp);
3086 		/* inline HME_HASH_SEARCH */
3087 		hmeblkp = hmebp->hmeblkp;
3088 		hblkpa = hmebp->hmeh_nextpa;
3089 		prevpa = 0;
3090 		pr_hblk = NULL;
3091 		while (hmeblkp) {
3092 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3093 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3094 				/* found hme_blk */
3095 				if (hmeblkp->hblk_shw_bit) {
3096 					if (hmeblkp->hblk_shw_mask) {
3097 						shadow = 1;
3098 						sfmmu_shadow_hcleanup(sfmmup,
3099 						    hmeblkp, hmebp);
3100 						break;
3101 					} else {
3102 						hmeblkp->hblk_shw_bit = 0;
3103 					}
3104 				}
3105 
3106 				/*
3107 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3108 				 * since hblk_unload() does not gurantee that.
3109 				 *
3110 				 * XXX - this could cause tteload() to spin
3111 				 * where sfmmu_shadow_hcleanup() is called.
3112 				 */
3113 			}
3114 
3115 			nx_hblk = hmeblkp->hblk_next;
3116 			nx_pa = hmeblkp->hblk_nextpa;
3117 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3118 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3119 					pr_hblk);
3120 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3121 			} else {
3122 				pr_hblk = hmeblkp;
3123 				prevpa = hblkpa;
3124 			}
3125 			hmeblkp = nx_hblk;
3126 			hblkpa = nx_pa;
3127 		}
3128 
3129 		SFMMU_HASH_UNLOCK(hmebp);
3130 
3131 		if (shadow) {
3132 			/*
3133 			 * We found another shadow hblk so cleaned its
3134 			 * children.  We need to go back and cleanup
3135 			 * the original hblk so we don't change the
3136 			 * addr.
3137 			 */
3138 			shadow = 0;
3139 		} else {
3140 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3141 				(1 << hmeshift));
3142 		}
3143 	}
3144 	sfmmu_hblks_list_purge(&list);
3145 }
3146 
3147 /*
3148  * Release one hardware address translation lock on the given address range.
3149  */
3150 void
3151 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3152 {
3153 	struct hmehash_bucket *hmebp;
3154 	hmeblk_tag hblktag;
3155 	int hmeshift, hashno = 1;
3156 	struct hme_blk *hmeblkp, *list = NULL;
3157 	caddr_t endaddr;
3158 
3159 	ASSERT(sfmmup != NULL);
3160 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3161 
3162 	ASSERT((sfmmup == ksfmmup) ||
3163 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3164 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3165 	endaddr = addr + len;
3166 	hblktag.htag_id = sfmmup;
3167 
3168 	/*
3169 	 * Spitfire supports 4 page sizes.
3170 	 * Most pages are expected to be of the smallest page size (8K) and
3171 	 * these will not need to be rehashed. 64K pages also don't need to be
3172 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3173 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3174 	 */
3175 	while (addr < endaddr) {
3176 		hmeshift = HME_HASH_SHIFT(hashno);
3177 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3178 		hblktag.htag_rehash = hashno;
3179 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3180 
3181 		SFMMU_HASH_LOCK(hmebp);
3182 
3183 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3184 		if (hmeblkp != NULL) {
3185 			/*
3186 			 * If we encounter a shadow hmeblk then
3187 			 * we know there are no valid hmeblks mapping
3188 			 * this address at this size or larger.
3189 			 * Just increment address by the smallest
3190 			 * page size.
3191 			 */
3192 			if (hmeblkp->hblk_shw_bit) {
3193 				addr += MMU_PAGESIZE;
3194 			} else {
3195 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3196 				    endaddr);
3197 			}
3198 			SFMMU_HASH_UNLOCK(hmebp);
3199 			hashno = 1;
3200 			continue;
3201 		}
3202 		SFMMU_HASH_UNLOCK(hmebp);
3203 
3204 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3205 			/*
3206 			 * We have traversed the whole list and rehashed
3207 			 * if necessary without finding the address to unlock
3208 			 * which should never happen.
3209 			 */
3210 			panic("sfmmu_unlock: addr not found. "
3211 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3212 		} else {
3213 			hashno++;
3214 		}
3215 	}
3216 
3217 	sfmmu_hblks_list_purge(&list);
3218 }
3219 
3220 /*
3221  * Function to unlock a range of addresses in an hmeblk.  It returns the
3222  * next address that needs to be unlocked.
3223  * Should be called with the hash lock held.
3224  */
3225 static caddr_t
3226 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3227 {
3228 	struct sf_hment *sfhme;
3229 	tte_t tteold, ttemod;
3230 	int ttesz, ret;
3231 
3232 	ASSERT(in_hblk_range(hmeblkp, addr));
3233 	ASSERT(hmeblkp->hblk_shw_bit == 0);
3234 
3235 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3236 	ttesz = get_hblk_ttesz(hmeblkp);
3237 
3238 	HBLKTOHME(sfhme, hmeblkp, addr);
3239 	while (addr < endaddr) {
3240 readtte:
3241 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3242 		if (TTE_IS_VALID(&tteold)) {
3243 
3244 			ttemod = tteold;
3245 
3246 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3247 			    &sfhme->hme_tte);
3248 
3249 			if (ret < 0)
3250 				goto readtte;
3251 
3252 			if (hmeblkp->hblk_lckcnt == 0)
3253 				panic("zero hblk lckcnt");
3254 
3255 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3256 			    (uintptr_t)endaddr)
3257 				panic("can't unlock large tte");
3258 
3259 			ASSERT(hmeblkp->hblk_lckcnt > 0);
3260 			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3261 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3262 		} else {
3263 			panic("sfmmu_hblk_unlock: invalid tte");
3264 		}
3265 		addr += TTEBYTES(ttesz);
3266 		sfhme++;
3267 	}
3268 	return (addr);
3269 }
3270 
3271 /*
3272  * Physical Address Mapping Framework
3273  *
3274  * General rules:
3275  *
3276  * (1) Applies only to seg_kmem memory pages. To make things easier,
3277  *     seg_kpm addresses are also accepted by the routines, but nothing
3278  *     is done with them since by definition their PA mappings are static.
3279  * (2) hat_add_callback() may only be called while holding the page lock
3280  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()).
3281  * (3) prehandler() and posthandler() may not call hat_add_callback() or
3282  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3283  *     callbacks may not sleep or acquire adaptive mutex locks.
3284  * (4) Either prehandler() or posthandler() (but not both) may be specified
3285  *     as being NULL.  Specifying an errhandler() is optional.
3286  *
3287  * Details of using the framework:
3288  *
3289  * registering a callback (hat_register_callback())
3290  *
3291  *	Pass prehandler, posthandler, errhandler addresses
3292  *	as described below. If capture_cpus argument is nonzero,
3293  *	suspend callback to the prehandler will occur with CPUs
3294  *	captured and executing xc_loop() and CPUs will remain
3295  *	captured until after the posthandler suspend callback
3296  *	occurs.
3297  *
3298  * adding a callback (hat_add_callback())
3299  *
3300  *      as_pagelock();
3301  *	hat_add_callback();
3302  *      save returned pfn in private data structures or program registers;
3303  *      as_pageunlock();
3304  *
3305  * prehandler()
3306  *
3307  *	Stop all accesses by physical address to this memory page.
3308  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3309  *	adaptive locks. The second, SUSPEND, is called at high PIL with
3310  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3311  *	locks must be XCALL_PIL or higher locks).
3312  *
3313  *	May return the following errors:
3314  *		EIO:	A fatal error has occurred. This will result in panic.
3315  *		EAGAIN:	The page cannot be suspended. This will fail the
3316  *			relocation.
3317  *		0:	Success.
3318  *
3319  * posthandler()
3320  *
3321  *      Save new pfn in private data structures or program registers;
3322  *	not allowed to fail (non-zero return values will result in panic).
3323  *
3324  * errhandler()
3325  *
3326  *	called when an error occurs related to the callback.  Currently
3327  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3328  *	a page is being freed, but there are still outstanding callback(s)
3329  *	registered on the page.
3330  *
3331  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3332  *
3333  *	stop using physical address
3334  *	hat_delete_callback();
3335  *
3336  */
3337 
3338 /*
3339  * Register a callback class.  Each subsystem should do this once and
3340  * cache the id_t returned for use in setting up and tearing down callbacks.
3341  *
3342  * There is no facility for removing callback IDs once they are created;
3343  * the "key" should be unique for each module, so in case a module is unloaded
3344  * and subsequently re-loaded, we can recycle the module's previous entry.
3345  */
3346 id_t
3347 hat_register_callback(int key,
3348 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3349 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3350 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3351 	int capture_cpus)
3352 {
3353 	id_t id;
3354 
3355 	/*
3356 	 * Search the table for a pre-existing callback associated with
3357 	 * the identifier "key".  If one exists, we re-use that entry in
3358 	 * the table for this instance, otherwise we assign the next
3359 	 * available table slot.
3360 	 */
3361 	for (id = 0; id < sfmmu_max_cb_id; id++) {
3362 		if (sfmmu_cb_table[id].key == key)
3363 			break;
3364 	}
3365 
3366 	if (id == sfmmu_max_cb_id) {
3367 		id = sfmmu_cb_nextid++;
3368 		if (id >= sfmmu_max_cb_id)
3369 			panic("hat_register_callback: out of callback IDs");
3370 	}
3371 
3372 	ASSERT(prehandler != NULL || posthandler != NULL);
3373 
3374 	sfmmu_cb_table[id].key = key;
3375 	sfmmu_cb_table[id].prehandler = prehandler;
3376 	sfmmu_cb_table[id].posthandler = posthandler;
3377 	sfmmu_cb_table[id].errhandler = errhandler;
3378 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3379 
3380 	return (id);
3381 }
3382 
3383 /*
3384  * Add relocation callbacks to the specified addr/len which will be called
3385  * when relocating the associated page.  See the description of pre and
3386  * posthandler above for more details.  IMPT: this operation is only valid
3387  * on seg_kmem pages!!
3388  *
3389  * If HAC_PAGELOCK is included in flags, the underlying memory page is
3390  * locked internally so the caller must be able to deal with the callback
3391  * running even before this function has returned.  If HAC_PAGELOCK is not
3392  * set, it is assumed that the underlying memory pages are locked.
3393  *
3394  * Since the caller must track the individual page boundaries anyway,
3395  * we only allow a callback to be added to a single page (large
3396  * or small).  Thus [addr, addr + len) MUST be contained within a single
3397  * page.
3398  *
3399  * Registering multiple callbacks on the same [addr, addr+len) is supported,
3400  * in which case the corresponding callback will be called once with each
3401  * unique parameter specified. The number of subsequent deletes must match
3402  * since reference counts are held.  If a callback is desired for each
3403  * virtual object with the same parameter specified for multiple callbacks,
3404  * a different virtual address should be specified at the time of
3405  * callback registration.
3406  *
3407  * Returns the pfn of the underlying kernel page in *rpfn
3408  * on success, or PFN_INVALID on failure.
3409  *
3410  * Returns values:
3411  *    0:      success
3412  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3413  *    EINVAL: callback ID is not valid
3414  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3415  *            space, or crosses a page boundary
3416  */
3417 int
3418 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3419 	void *pvt, pfn_t *rpfn)
3420 {
3421 	struct 		hmehash_bucket *hmebp;
3422 	hmeblk_tag 	hblktag;
3423 	struct hme_blk	*hmeblkp;
3424 	int 		hmeshift, hashno;
3425 	caddr_t 	saddr, eaddr, baseaddr;
3426 	struct pa_hment *pahmep, *tpahmep;
3427 	struct sf_hment *sfhmep, *osfhmep, *tsfhmep;
3428 	kmutex_t	*pml;
3429 	tte_t   	tte;
3430 	page_t		*pp, *rpp;
3431 	pfn_t		pfn;
3432 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3433 	int		locked = 0;
3434 
3435 	/*
3436 	 * For KPM mappings, just return the physical address since we
3437 	 * don't need to register any callbacks.
3438 	 */
3439 	if (IS_KPM_ADDR(vaddr)) {
3440 		uint64_t paddr;
3441 		SFMMU_KPM_VTOP(vaddr, paddr);
3442 		*rpfn = btop(paddr);
3443 		return (0);
3444 	}
3445 
3446 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3447 		*rpfn = PFN_INVALID;
3448 		return (EINVAL);
3449 	}
3450 
3451 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3452 		*rpfn = PFN_INVALID;
3453 		return (ENOMEM);
3454 	}
3455 
3456 	sfhmep = &pahmep->sfment;
3457 
3458 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3459 	eaddr = saddr + len;
3460 
3461 rehash:
3462 	/* Find the mapping(s) for this page */
3463 	for (hashno = TTE64K, hmeblkp = NULL;
3464 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3465 	    hashno++) {
3466 		hmeshift = HME_HASH_SHIFT(hashno);
3467 		hblktag.htag_id = ksfmmup;
3468 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3469 		hblktag.htag_rehash = hashno;
3470 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3471 
3472 		SFMMU_HASH_LOCK(hmebp);
3473 
3474 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3475 
3476 		if (hmeblkp == NULL)
3477 			SFMMU_HASH_UNLOCK(hmebp);
3478 	}
3479 
3480 	if (hmeblkp == NULL) {
3481 		kmem_cache_free(pa_hment_cache, pahmep);
3482 		*rpfn = PFN_INVALID;
3483 		return (ENXIO);
3484 	}
3485 
3486 	/*
3487 	 * Make sure the boundaries for the callback fall within this
3488 	 * single mapping.
3489 	 */
3490 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3491 	ASSERT(saddr >= baseaddr);
3492 	if (eaddr > (caddr_t)get_hblk_endaddr(hmeblkp)) {
3493 		SFMMU_HASH_UNLOCK(hmebp);
3494 		kmem_cache_free(pa_hment_cache, pahmep);
3495 		*rpfn = PFN_INVALID;
3496 		return (ENXIO);
3497 	}
3498 
3499 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3500 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3501 
3502 	ASSERT(TTE_IS_VALID(&tte));
3503 	pfn = sfmmu_ttetopfn(&tte, vaddr);
3504 
3505 	/*
3506 	 * The pfn may not have a page_t underneath in which case we
3507 	 * just return it. This can happen if we are doing I/O to a
3508 	 * static portion of the kernel's address space, for instance.
3509 	 */
3510 	pp = osfhmep->hme_page;
3511 	if (pp == NULL || pp->p_vnode != &kvp) {
3512 		SFMMU_HASH_UNLOCK(hmebp);
3513 		kmem_cache_free(pa_hment_cache, pahmep);
3514 		*rpfn = pfn;
3515 		return (0);
3516 	}
3517 
3518 	pml = sfmmu_mlist_enter(pp);
3519 
3520 	if ((flags & HAC_PAGELOCK) && !locked) {
3521 		if (!page_trylock(pp, SE_SHARED)) {
3522 			page_t *tpp;
3523 
3524 			/*
3525 			 * Somebody is holding SE_EXCL lock.  Drop all
3526 			 * our locks, lookup the page in &kvp, and
3527 			 * retry. If it doesn't exist in &kvp, then we
3528 			 * die here; we should have caught it above,
3529 			 * meaning the page must have changed identity
3530 			 * (e.g. the caller didn't hold onto the page
3531 			 * lock after establishing the kernel mapping)
3532 			 */
3533 			sfmmu_mlist_exit(pml);
3534 			SFMMU_HASH_UNLOCK(hmebp);
3535 			tpp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3536 			if (tpp == NULL) {
3537 				panic("hat_add_callback: page not found: 0x%p",
3538 				    pp);
3539 			}
3540 			pp = tpp;
3541 			rpp = PP_PAGEROOT(pp);
3542 			if (rpp != pp) {
3543 				page_unlock(pp);
3544 				(void) page_lock(rpp, SE_SHARED, NULL,
3545 				    P_NO_RECLAIM);
3546 			}
3547 			locked = 1;
3548 			goto rehash;
3549 		}
3550 		locked = 1;
3551 	}
3552 
3553 	if (!PAGE_LOCKED(pp) && !panicstr)
3554 		panic("hat_add_callback: page 0x%p not locked", pp);
3555 
3556 	if (osfhmep->hme_page != pp || pp->p_vnode != &kvp ||
3557 	    pp->p_offset < (u_offset_t)baseaddr ||
3558 	    pp->p_offset > (u_offset_t)eaddr) {
3559 		/*
3560 		 * The page moved before we got our hands on it.  Drop
3561 		 * all the locks and try again.
3562 		 */
3563 		ASSERT((flags & HAC_PAGELOCK) != 0);
3564 		sfmmu_mlist_exit(pml);
3565 		SFMMU_HASH_UNLOCK(hmebp);
3566 		page_unlock(pp);
3567 		locked = 0;
3568 		goto rehash;
3569 	}
3570 
3571 	ASSERT(osfhmep->hme_page == pp);
3572 
3573 	for (tsfhmep = pp->p_mapping; tsfhmep != NULL;
3574 	    tsfhmep = tsfhmep->hme_next) {
3575 
3576 		/*
3577 		 * skip va to pa mappings
3578 		 */
3579 		if (!IS_PAHME(tsfhmep))
3580 			continue;
3581 
3582 		tpahmep = tsfhmep->hme_data;
3583 		ASSERT(tpahmep != NULL);
3584 
3585 		/*
3586 		 * See if the pahment already exists.
3587 		 */
3588 		if ((tpahmep->pvt == pvt) &&
3589 		    (tpahmep->addr == vaddr) &&
3590 		    (tpahmep->len == len)) {
3591 			ASSERT(tpahmep->cb_id == callback_id);
3592 			tpahmep->refcnt++;
3593 			pp->p_share++;
3594 
3595 			sfmmu_mlist_exit(pml);
3596 			SFMMU_HASH_UNLOCK(hmebp);
3597 
3598 			if (locked)
3599 				page_unlock(pp);
3600 
3601 			kmem_cache_free(pa_hment_cache, pahmep);
3602 
3603 			*rpfn = pfn;
3604 			return (0);
3605 		}
3606 	}
3607 
3608 	/*
3609 	 * setup this shiny new pa_hment ..
3610 	 */
3611 	pp->p_share++;
3612 	pahmep->cb_id = callback_id;
3613 	pahmep->addr = vaddr;
3614 	pahmep->len = len;
3615 	pahmep->refcnt = 1;
3616 	pahmep->flags = 0;
3617 	pahmep->pvt = pvt;
3618 
3619 	/*
3620 	 * .. and also set up the sf_hment and link to p_mapping list.
3621 	 */
3622 	sfhmep->hme_tte.ll = 0;
3623 	sfhmep->hme_data = pahmep;
3624 	sfhmep->hme_prev = osfhmep;
3625 	sfhmep->hme_next = osfhmep->hme_next;
3626 
3627 	if (osfhmep->hme_next)
3628 		osfhmep->hme_next->hme_prev = sfhmep;
3629 
3630 	osfhmep->hme_next = sfhmep;
3631 
3632 	sfmmu_mlist_exit(pml);
3633 	SFMMU_HASH_UNLOCK(hmebp);
3634 
3635 	*rpfn = pfn;
3636 	if (locked)
3637 		page_unlock(pp);
3638 
3639 	return (0);
3640 }
3641 
3642 /*
3643  * Remove the relocation callbacks from the specified addr/len.
3644  */
3645 void
3646 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags)
3647 {
3648 	struct		hmehash_bucket *hmebp;
3649 	hmeblk_tag	hblktag;
3650 	struct hme_blk	*hmeblkp;
3651 	int		hmeshift, hashno;
3652 	caddr_t		saddr, eaddr, baseaddr;
3653 	struct pa_hment	*pahmep;
3654 	struct sf_hment	*sfhmep, *osfhmep;
3655 	kmutex_t	*pml;
3656 	tte_t		tte;
3657 	page_t		*pp, *rpp;
3658 	int		locked = 0;
3659 
3660 	if (IS_KPM_ADDR(vaddr))
3661 		return;
3662 
3663 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3664 	eaddr = saddr + len;
3665 
3666 rehash:
3667 	/* Find the mapping(s) for this page */
3668 	for (hashno = TTE64K, hmeblkp = NULL;
3669 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3670 	    hashno++) {
3671 		hmeshift = HME_HASH_SHIFT(hashno);
3672 		hblktag.htag_id = ksfmmup;
3673 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3674 		hblktag.htag_rehash = hashno;
3675 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3676 
3677 		SFMMU_HASH_LOCK(hmebp);
3678 
3679 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3680 
3681 		if (hmeblkp == NULL)
3682 			SFMMU_HASH_UNLOCK(hmebp);
3683 	}
3684 
3685 	if (hmeblkp == NULL) {
3686 		if (!panicstr) {
3687 			panic("hat_delete_callback: addr 0x%p not found",
3688 			    saddr);
3689 		}
3690 		return;
3691 	}
3692 
3693 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3694 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3695 
3696 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3697 	ASSERT(TTE_IS_VALID(&tte));
3698 
3699 	pp = osfhmep->hme_page;
3700 	if (pp == NULL || pp->p_vnode != &kvp) {
3701 		SFMMU_HASH_UNLOCK(hmebp);
3702 		return;
3703 	}
3704 
3705 	pml = sfmmu_mlist_enter(pp);
3706 
3707 	if ((flags & HAC_PAGELOCK) && !locked) {
3708 		if (!page_trylock(pp, SE_SHARED)) {
3709 			/*
3710 			 * Somebody is holding SE_EXCL lock.  Drop all
3711 			 * our locks, lookup the page in &kvp, and
3712 			 * retry.
3713 			 */
3714 			sfmmu_mlist_exit(pml);
3715 			SFMMU_HASH_UNLOCK(hmebp);
3716 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3717 			ASSERT(pp != NULL);
3718 			rpp = PP_PAGEROOT(pp);
3719 			if (rpp != pp) {
3720 				page_unlock(pp);
3721 				(void) page_lock(rpp, SE_SHARED, NULL,
3722 				    P_NO_RECLAIM);
3723 			}
3724 			locked = 1;
3725 			goto rehash;
3726 		}
3727 		locked = 1;
3728 	}
3729 
3730 	ASSERT(PAGE_LOCKED(pp));
3731 
3732 	if (osfhmep->hme_page != pp || pp->p_vnode != &kvp ||
3733 	    pp->p_offset < (u_offset_t)baseaddr ||
3734 	    pp->p_offset > (u_offset_t)eaddr) {
3735 		/*
3736 		 * The page moved before we got our hands on it.  Drop
3737 		 * all the locks and try again.
3738 		 */
3739 		ASSERT((flags & HAC_PAGELOCK) != 0);
3740 		sfmmu_mlist_exit(pml);
3741 		SFMMU_HASH_UNLOCK(hmebp);
3742 		page_unlock(pp);
3743 		locked = 0;
3744 		goto rehash;
3745 	}
3746 
3747 	ASSERT(osfhmep->hme_page == pp);
3748 
3749 	for (sfhmep = pp->p_mapping; sfhmep != NULL;
3750 	    sfhmep = sfhmep->hme_next) {
3751 
3752 		/*
3753 		 * skip va<->pa mappings
3754 		 */
3755 		if (!IS_PAHME(sfhmep))
3756 			continue;
3757 
3758 		pahmep = sfhmep->hme_data;
3759 		ASSERT(pahmep != NULL);
3760 
3761 		/*
3762 		 * if pa_hment matches, remove it
3763 		 */
3764 		if ((pahmep->pvt == pvt) &&
3765 		    (pahmep->addr == vaddr) &&
3766 		    (pahmep->len == len)) {
3767 			break;
3768 		}
3769 	}
3770 
3771 	if (sfhmep == NULL) {
3772 		if (!panicstr) {
3773 			panic("hat_delete_callback: pa_hment not found, pp %p",
3774 			    (void *)pp);
3775 		}
3776 		return;
3777 	}
3778 
3779 	/*
3780 	 * Note: at this point a valid kernel mapping must still be
3781 	 * present on this page.
3782 	 */
3783 	pp->p_share--;
3784 	if (pp->p_share <= 0)
3785 		panic("hat_delete_callback: zero p_share");
3786 
3787 	if (--pahmep->refcnt == 0) {
3788 		if (pahmep->flags != 0)
3789 			panic("hat_delete_callback: pa_hment is busy");
3790 
3791 		/*
3792 		 * Remove sfhmep from the mapping list for the page.
3793 		 */
3794 		if (sfhmep->hme_prev) {
3795 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3796 		} else {
3797 			pp->p_mapping = sfhmep->hme_next;
3798 		}
3799 
3800 		if (sfhmep->hme_next)
3801 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3802 
3803 		sfmmu_mlist_exit(pml);
3804 		SFMMU_HASH_UNLOCK(hmebp);
3805 
3806 		if (locked)
3807 			page_unlock(pp);
3808 
3809 		kmem_cache_free(pa_hment_cache, pahmep);
3810 		return;
3811 	}
3812 
3813 	sfmmu_mlist_exit(pml);
3814 	SFMMU_HASH_UNLOCK(hmebp);
3815 	if (locked)
3816 		page_unlock(pp);
3817 }
3818 
3819 /*
3820  * hat_probe returns 1 if the translation for the address 'addr' is
3821  * loaded, zero otherwise.
3822  *
3823  * hat_probe should be used only for advisorary purposes because it may
3824  * occasionally return the wrong value. The implementation must guarantee that
3825  * returning the wrong value is a very rare event. hat_probe is used
3826  * to implement optimizations in the segment drivers.
3827  *
3828  */
3829 int
3830 hat_probe(struct hat *sfmmup, caddr_t addr)
3831 {
3832 	pfn_t pfn;
3833 	tte_t tte;
3834 
3835 	ASSERT(sfmmup != NULL);
3836 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3837 
3838 	ASSERT((sfmmup == ksfmmup) ||
3839 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3840 
3841 	if (sfmmup == ksfmmup) {
3842 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
3843 		    == PFN_SUSPENDED) {
3844 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
3845 		}
3846 	} else {
3847 		pfn = sfmmu_uvatopfn(addr, sfmmup);
3848 	}
3849 
3850 	if (pfn != PFN_INVALID)
3851 		return (1);
3852 	else
3853 		return (0);
3854 }
3855 
3856 ssize_t
3857 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
3858 {
3859 	tte_t tte;
3860 
3861 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3862 
3863 	sfmmu_gettte(sfmmup, addr, &tte);
3864 	if (TTE_IS_VALID(&tte)) {
3865 		return (TTEBYTES(TTE_CSZ(&tte)));
3866 	}
3867 	return (-1);
3868 }
3869 
3870 static void
3871 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
3872 {
3873 	struct hmehash_bucket *hmebp;
3874 	hmeblk_tag hblktag;
3875 	int hmeshift, hashno = 1;
3876 	struct hme_blk *hmeblkp, *list = NULL;
3877 	struct sf_hment *sfhmep;
3878 
3879 	/* support for ISM */
3880 	ism_map_t	*ism_map;
3881 	ism_blk_t	*ism_blkp;
3882 	int		i;
3883 	sfmmu_t		*ism_hatid = NULL;
3884 	sfmmu_t		*locked_hatid = NULL;
3885 
3886 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
3887 
3888 	ism_blkp = sfmmup->sfmmu_iblk;
3889 	if (ism_blkp) {
3890 		sfmmu_ismhat_enter(sfmmup, 0);
3891 		locked_hatid = sfmmup;
3892 	}
3893 	while (ism_blkp && ism_hatid == NULL) {
3894 		ism_map = ism_blkp->iblk_maps;
3895 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
3896 			if (addr >= ism_start(ism_map[i]) &&
3897 			    addr < ism_end(ism_map[i])) {
3898 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
3899 				addr = (caddr_t)(addr -
3900 					ism_start(ism_map[i]));
3901 				break;
3902 			}
3903 		}
3904 		ism_blkp = ism_blkp->iblk_next;
3905 	}
3906 	if (locked_hatid) {
3907 		sfmmu_ismhat_exit(locked_hatid, 0);
3908 	}
3909 
3910 	hblktag.htag_id = sfmmup;
3911 	ttep->ll = 0;
3912 
3913 	do {
3914 		hmeshift = HME_HASH_SHIFT(hashno);
3915 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3916 		hblktag.htag_rehash = hashno;
3917 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3918 
3919 		SFMMU_HASH_LOCK(hmebp);
3920 
3921 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3922 		if (hmeblkp != NULL) {
3923 			HBLKTOHME(sfhmep, hmeblkp, addr);
3924 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
3925 			SFMMU_HASH_UNLOCK(hmebp);
3926 			break;
3927 		}
3928 		SFMMU_HASH_UNLOCK(hmebp);
3929 		hashno++;
3930 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
3931 
3932 	sfmmu_hblks_list_purge(&list);
3933 }
3934 
3935 uint_t
3936 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
3937 {
3938 	tte_t tte;
3939 
3940 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3941 
3942 	sfmmu_gettte(sfmmup, addr, &tte);
3943 	if (TTE_IS_VALID(&tte)) {
3944 		*attr = sfmmu_ptov_attr(&tte);
3945 		return (0);
3946 	}
3947 	*attr = 0;
3948 	return ((uint_t)0xffffffff);
3949 }
3950 
3951 /*
3952  * Enables more attributes on specified address range (ie. logical OR)
3953  */
3954 void
3955 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
3956 {
3957 	if (hat->sfmmu_xhat_provider) {
3958 		XHAT_SETATTR(hat, addr, len, attr);
3959 		return;
3960 	} else {
3961 		/*
3962 		 * This must be a CPU HAT. If the address space has
3963 		 * XHATs attached, change attributes for all of them,
3964 		 * just in case
3965 		 */
3966 		ASSERT(hat->sfmmu_as != NULL);
3967 		if (hat->sfmmu_as->a_xhat != NULL)
3968 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
3969 	}
3970 
3971 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
3972 }
3973 
3974 /*
3975  * Assigns attributes to the specified address range.  All the attributes
3976  * are specified.
3977  */
3978 void
3979 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
3980 {
3981 	if (hat->sfmmu_xhat_provider) {
3982 		XHAT_CHGATTR(hat, addr, len, attr);
3983 		return;
3984 	} else {
3985 		/*
3986 		 * This must be a CPU HAT. If the address space has
3987 		 * XHATs attached, change attributes for all of them,
3988 		 * just in case
3989 		 */
3990 		ASSERT(hat->sfmmu_as != NULL);
3991 		if (hat->sfmmu_as->a_xhat != NULL)
3992 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
3993 	}
3994 
3995 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
3996 }
3997 
3998 /*
3999  * Remove attributes on the specified address range (ie. loginal NAND)
4000  */
4001 void
4002 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4003 {
4004 	if (hat->sfmmu_xhat_provider) {
4005 		XHAT_CLRATTR(hat, addr, len, attr);
4006 		return;
4007 	} else {
4008 		/*
4009 		 * This must be a CPU HAT. If the address space has
4010 		 * XHATs attached, change attributes for all of them,
4011 		 * just in case
4012 		 */
4013 		ASSERT(hat->sfmmu_as != NULL);
4014 		if (hat->sfmmu_as->a_xhat != NULL)
4015 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4016 	}
4017 
4018 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4019 }
4020 
4021 /*
4022  * Change attributes on an address range to that specified by attr and mode.
4023  */
4024 static void
4025 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4026 	int mode)
4027 {
4028 	struct hmehash_bucket *hmebp;
4029 	hmeblk_tag hblktag;
4030 	int hmeshift, hashno = 1;
4031 	struct hme_blk *hmeblkp, *list = NULL;
4032 	caddr_t endaddr;
4033 	cpuset_t cpuset;
4034 	demap_range_t dmr;
4035 
4036 	CPUSET_ZERO(cpuset);
4037 
4038 	ASSERT((sfmmup == ksfmmup) ||
4039 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4040 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4041 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4042 
4043 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4044 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4045 		panic("user addr %p in kernel space",
4046 		    (void *)addr);
4047 	}
4048 
4049 	endaddr = addr + len;
4050 	hblktag.htag_id = sfmmup;
4051 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4052 
4053 	while (addr < endaddr) {
4054 		hmeshift = HME_HASH_SHIFT(hashno);
4055 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4056 		hblktag.htag_rehash = hashno;
4057 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4058 
4059 		SFMMU_HASH_LOCK(hmebp);
4060 
4061 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4062 		if (hmeblkp != NULL) {
4063 			/*
4064 			 * We've encountered a shadow hmeblk so skip the range
4065 			 * of the next smaller mapping size.
4066 			 */
4067 			if (hmeblkp->hblk_shw_bit) {
4068 				ASSERT(sfmmup != ksfmmup);
4069 				ASSERT(hashno > 1);
4070 				addr = (caddr_t)P2END((uintptr_t)addr,
4071 					    TTEBYTES(hashno - 1));
4072 			} else {
4073 				addr = sfmmu_hblk_chgattr(sfmmup,
4074 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4075 			}
4076 			SFMMU_HASH_UNLOCK(hmebp);
4077 			hashno = 1;
4078 			continue;
4079 		}
4080 		SFMMU_HASH_UNLOCK(hmebp);
4081 
4082 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4083 			/*
4084 			 * We have traversed the whole list and rehashed
4085 			 * if necessary without finding the address to chgattr.
4086 			 * This is ok, so we increment the address by the
4087 			 * smallest hmeblk range for kernel mappings or for
4088 			 * user mappings with no large pages, and the largest
4089 			 * hmeblk range, to account for shadow hmeblks, for
4090 			 * user mappings with large pages and continue.
4091 			 */
4092 			if (sfmmup == ksfmmup)
4093 				addr = (caddr_t)P2END((uintptr_t)addr,
4094 					    TTEBYTES(1));
4095 			else
4096 				addr = (caddr_t)P2END((uintptr_t)addr,
4097 					    TTEBYTES(hashno));
4098 			hashno = 1;
4099 		} else {
4100 			hashno++;
4101 		}
4102 	}
4103 
4104 	sfmmu_hblks_list_purge(&list);
4105 	DEMAP_RANGE_FLUSH(&dmr);
4106 	cpuset = sfmmup->sfmmu_cpusran;
4107 	xt_sync(cpuset);
4108 }
4109 
4110 /*
4111  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4112  * next addres that needs to be chgattr.
4113  * It should be called with the hash lock held.
4114  * XXX It should be possible to optimize chgattr by not flushing every time but
4115  * on the other hand:
4116  * 1. do one flush crosscall.
4117  * 2. only flush if we are increasing permissions (make sure this will work)
4118  */
4119 static caddr_t
4120 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4121 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4122 {
4123 	tte_t tte, tteattr, tteflags, ttemod;
4124 	struct sf_hment *sfhmep;
4125 	int ttesz;
4126 	struct page *pp = NULL;
4127 	kmutex_t *pml, *pmtx;
4128 	int ret;
4129 	int use_demap_range;
4130 #if defined(SF_ERRATA_57)
4131 	int check_exec;
4132 #endif
4133 
4134 	ASSERT(in_hblk_range(hmeblkp, addr));
4135 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4136 
4137 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4138 	ttesz = get_hblk_ttesz(hmeblkp);
4139 
4140 	/*
4141 	 * Flush the current demap region if addresses have been
4142 	 * skipped or the page size doesn't match.
4143 	 */
4144 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4145 	if (use_demap_range) {
4146 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4147 	} else {
4148 		DEMAP_RANGE_FLUSH(dmrp);
4149 	}
4150 
4151 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4152 #if defined(SF_ERRATA_57)
4153 	check_exec = (sfmmup != ksfmmup) &&
4154 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4155 	    TTE_IS_EXECUTABLE(&tteattr);
4156 #endif
4157 	HBLKTOHME(sfhmep, hmeblkp, addr);
4158 	while (addr < endaddr) {
4159 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4160 		if (TTE_IS_VALID(&tte)) {
4161 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4162 				/*
4163 				 * if the new attr is the same as old
4164 				 * continue
4165 				 */
4166 				goto next_addr;
4167 			}
4168 			if (!TTE_IS_WRITABLE(&tteattr)) {
4169 				/*
4170 				 * make sure we clear hw modify bit if we
4171 				 * removing write protections
4172 				 */
4173 				tteflags.tte_intlo |= TTE_HWWR_INT;
4174 			}
4175 
4176 			pml = NULL;
4177 			pp = sfhmep->hme_page;
4178 			if (pp) {
4179 				pml = sfmmu_mlist_enter(pp);
4180 			}
4181 
4182 			if (pp != sfhmep->hme_page) {
4183 				/*
4184 				 * tte must have been unloaded.
4185 				 */
4186 				ASSERT(pml);
4187 				sfmmu_mlist_exit(pml);
4188 				continue;
4189 			}
4190 
4191 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4192 
4193 			ttemod = tte;
4194 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4195 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4196 
4197 #if defined(SF_ERRATA_57)
4198 			if (check_exec && addr < errata57_limit)
4199 				ttemod.tte_exec_perm = 0;
4200 #endif
4201 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4202 			    &sfhmep->hme_tte);
4203 
4204 			if (ret < 0) {
4205 				/* tte changed underneath us */
4206 				if (pml) {
4207 					sfmmu_mlist_exit(pml);
4208 				}
4209 				continue;
4210 			}
4211 
4212 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4213 				/*
4214 				 * need to sync if we are clearing modify bit.
4215 				 */
4216 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4217 			}
4218 
4219 			if (pp && PP_ISRO(pp)) {
4220 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4221 					pmtx = sfmmu_page_enter(pp);
4222 					PP_CLRRO(pp);
4223 					sfmmu_page_exit(pmtx);
4224 				}
4225 			}
4226 
4227 			if (ret > 0 && use_demap_range) {
4228 				DEMAP_RANGE_MARKPG(dmrp, addr);
4229 			} else if (ret > 0) {
4230 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4231 			}
4232 
4233 			if (pml) {
4234 				sfmmu_mlist_exit(pml);
4235 			}
4236 		}
4237 next_addr:
4238 		addr += TTEBYTES(ttesz);
4239 		sfhmep++;
4240 		DEMAP_RANGE_NEXTPG(dmrp);
4241 	}
4242 	return (addr);
4243 }
4244 
4245 /*
4246  * This routine converts virtual attributes to physical ones.  It will
4247  * update the tteflags field with the tte mask corresponding to the attributes
4248  * affected and it returns the new attributes.  It will also clear the modify
4249  * bit if we are taking away write permission.  This is necessary since the
4250  * modify bit is the hardware permission bit and we need to clear it in order
4251  * to detect write faults.
4252  */
4253 static uint64_t
4254 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4255 {
4256 	tte_t ttevalue;
4257 
4258 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4259 
4260 	switch (mode) {
4261 	case SFMMU_CHGATTR:
4262 		/* all attributes specified */
4263 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4264 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4265 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4266 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4267 		break;
4268 	case SFMMU_SETATTR:
4269 		ASSERT(!(attr & ~HAT_PROT_MASK));
4270 		ttemaskp->ll = 0;
4271 		ttevalue.ll = 0;
4272 		/*
4273 		 * a valid tte implies exec and read for sfmmu
4274 		 * so no need to do anything about them.
4275 		 * since priviledged access implies user access
4276 		 * PROT_USER doesn't make sense either.
4277 		 */
4278 		if (attr & PROT_WRITE) {
4279 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4280 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4281 		}
4282 		break;
4283 	case SFMMU_CLRATTR:
4284 		/* attributes will be nand with current ones */
4285 		if (attr & ~(PROT_WRITE | PROT_USER)) {
4286 			panic("sfmmu: attr %x not supported", attr);
4287 		}
4288 		ttemaskp->ll = 0;
4289 		ttevalue.ll = 0;
4290 		if (attr & PROT_WRITE) {
4291 			/* clear both writable and modify bit */
4292 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4293 		}
4294 		if (attr & PROT_USER) {
4295 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4296 			ttevalue.tte_intlo |= TTE_PRIV_INT;
4297 		}
4298 		break;
4299 	default:
4300 		panic("sfmmu_vtop_attr: bad mode %x", mode);
4301 	}
4302 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4303 	return (ttevalue.ll);
4304 }
4305 
4306 static uint_t
4307 sfmmu_ptov_attr(tte_t *ttep)
4308 {
4309 	uint_t attr;
4310 
4311 	ASSERT(TTE_IS_VALID(ttep));
4312 
4313 	attr = PROT_READ;
4314 
4315 	if (TTE_IS_WRITABLE(ttep)) {
4316 		attr |= PROT_WRITE;
4317 	}
4318 	if (TTE_IS_EXECUTABLE(ttep)) {
4319 		attr |= PROT_EXEC;
4320 	}
4321 	if (!TTE_IS_PRIVILEGED(ttep)) {
4322 		attr |= PROT_USER;
4323 	}
4324 	if (TTE_IS_NFO(ttep)) {
4325 		attr |= HAT_NOFAULT;
4326 	}
4327 	if (TTE_IS_NOSYNC(ttep)) {
4328 		attr |= HAT_NOSYNC;
4329 	}
4330 	if (TTE_IS_SIDEFFECT(ttep)) {
4331 		attr |= SFMMU_SIDEFFECT;
4332 	}
4333 	if (!TTE_IS_VCACHEABLE(ttep)) {
4334 		attr |= SFMMU_UNCACHEVTTE;
4335 	}
4336 	if (!TTE_IS_PCACHEABLE(ttep)) {
4337 		attr |= SFMMU_UNCACHEPTTE;
4338 	}
4339 	return (attr);
4340 }
4341 
4342 /*
4343  * hat_chgprot is a deprecated hat call.  New segment drivers
4344  * should store all attributes and use hat_*attr calls.
4345  *
4346  * Change the protections in the virtual address range
4347  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4348  * then remove write permission, leaving the other
4349  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4350  *
4351  */
4352 void
4353 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4354 {
4355 	struct hmehash_bucket *hmebp;
4356 	hmeblk_tag hblktag;
4357 	int hmeshift, hashno = 1;
4358 	struct hme_blk *hmeblkp, *list = NULL;
4359 	caddr_t endaddr;
4360 	cpuset_t cpuset;
4361 	demap_range_t dmr;
4362 
4363 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4364 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4365 
4366 	if (sfmmup->sfmmu_xhat_provider) {
4367 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4368 		return;
4369 	} else {
4370 		/*
4371 		 * This must be a CPU HAT. If the address space has
4372 		 * XHATs attached, change attributes for all of them,
4373 		 * just in case
4374 		 */
4375 		ASSERT(sfmmup->sfmmu_as != NULL);
4376 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4377 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4378 	}
4379 
4380 	CPUSET_ZERO(cpuset);
4381 
4382 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4383 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4384 		panic("user addr %p vprot %x in kernel space",
4385 		    (void *)addr, vprot);
4386 	}
4387 	endaddr = addr + len;
4388 	hblktag.htag_id = sfmmup;
4389 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4390 
4391 	while (addr < endaddr) {
4392 		hmeshift = HME_HASH_SHIFT(hashno);
4393 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4394 		hblktag.htag_rehash = hashno;
4395 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4396 
4397 		SFMMU_HASH_LOCK(hmebp);
4398 
4399 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4400 		if (hmeblkp != NULL) {
4401 			/*
4402 			 * We've encountered a shadow hmeblk so skip the range
4403 			 * of the next smaller mapping size.
4404 			 */
4405 			if (hmeblkp->hblk_shw_bit) {
4406 				ASSERT(sfmmup != ksfmmup);
4407 				ASSERT(hashno > 1);
4408 				addr = (caddr_t)P2END((uintptr_t)addr,
4409 					    TTEBYTES(hashno - 1));
4410 			} else {
4411 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4412 					addr, endaddr, &dmr, vprot);
4413 			}
4414 			SFMMU_HASH_UNLOCK(hmebp);
4415 			hashno = 1;
4416 			continue;
4417 		}
4418 		SFMMU_HASH_UNLOCK(hmebp);
4419 
4420 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4421 			/*
4422 			 * We have traversed the whole list and rehashed
4423 			 * if necessary without finding the address to chgprot.
4424 			 * This is ok so we increment the address by the
4425 			 * smallest hmeblk range for kernel mappings and the
4426 			 * largest hmeblk range, to account for shadow hmeblks,
4427 			 * for user mappings and continue.
4428 			 */
4429 			if (sfmmup == ksfmmup)
4430 				addr = (caddr_t)P2END((uintptr_t)addr,
4431 					    TTEBYTES(1));
4432 			else
4433 				addr = (caddr_t)P2END((uintptr_t)addr,
4434 					    TTEBYTES(hashno));
4435 			hashno = 1;
4436 		} else {
4437 			hashno++;
4438 		}
4439 	}
4440 
4441 	sfmmu_hblks_list_purge(&list);
4442 	DEMAP_RANGE_FLUSH(&dmr);
4443 	cpuset = sfmmup->sfmmu_cpusran;
4444 	xt_sync(cpuset);
4445 }
4446 
4447 /*
4448  * This function chgprots a range of addresses in an hmeblk.  It returns the
4449  * next addres that needs to be chgprot.
4450  * It should be called with the hash lock held.
4451  * XXX It shold be possible to optimize chgprot by not flushing every time but
4452  * on the other hand:
4453  * 1. do one flush crosscall.
4454  * 2. only flush if we are increasing permissions (make sure this will work)
4455  */
4456 static caddr_t
4457 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4458 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4459 {
4460 	uint_t pprot;
4461 	tte_t tte, ttemod;
4462 	struct sf_hment *sfhmep;
4463 	uint_t tteflags;
4464 	int ttesz;
4465 	struct page *pp = NULL;
4466 	kmutex_t *pml, *pmtx;
4467 	int ret;
4468 	int use_demap_range;
4469 #if defined(SF_ERRATA_57)
4470 	int check_exec;
4471 #endif
4472 
4473 	ASSERT(in_hblk_range(hmeblkp, addr));
4474 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4475 
4476 #ifdef DEBUG
4477 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4478 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4479 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4480 	}
4481 #endif /* DEBUG */
4482 
4483 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4484 	ttesz = get_hblk_ttesz(hmeblkp);
4485 
4486 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4487 #if defined(SF_ERRATA_57)
4488 	check_exec = (sfmmup != ksfmmup) &&
4489 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4490 	    ((vprot & PROT_EXEC) == PROT_EXEC);
4491 #endif
4492 	HBLKTOHME(sfhmep, hmeblkp, addr);
4493 
4494 	/*
4495 	 * Flush the current demap region if addresses have been
4496 	 * skipped or the page size doesn't match.
4497 	 */
4498 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4499 	if (use_demap_range) {
4500 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4501 	} else {
4502 		DEMAP_RANGE_FLUSH(dmrp);
4503 	}
4504 
4505 	while (addr < endaddr) {
4506 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4507 		if (TTE_IS_VALID(&tte)) {
4508 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4509 				/*
4510 				 * if the new protection is the same as old
4511 				 * continue
4512 				 */
4513 				goto next_addr;
4514 			}
4515 			pml = NULL;
4516 			pp = sfhmep->hme_page;
4517 			if (pp) {
4518 				pml = sfmmu_mlist_enter(pp);
4519 			}
4520 			if (pp != sfhmep->hme_page) {
4521 				/*
4522 				 * tte most have been unloaded
4523 				 * underneath us.  Recheck
4524 				 */
4525 				ASSERT(pml);
4526 				sfmmu_mlist_exit(pml);
4527 				continue;
4528 			}
4529 
4530 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4531 
4532 			ttemod = tte;
4533 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4534 #if defined(SF_ERRATA_57)
4535 			if (check_exec && addr < errata57_limit)
4536 				ttemod.tte_exec_perm = 0;
4537 #endif
4538 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4539 			    &sfhmep->hme_tte);
4540 
4541 			if (ret < 0) {
4542 				/* tte changed underneath us */
4543 				if (pml) {
4544 					sfmmu_mlist_exit(pml);
4545 				}
4546 				continue;
4547 			}
4548 
4549 			if (tteflags & TTE_HWWR_INT) {
4550 				/*
4551 				 * need to sync if we are clearing modify bit.
4552 				 */
4553 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4554 			}
4555 
4556 			if (pp && PP_ISRO(pp)) {
4557 				if (pprot & TTE_WRPRM_INT) {
4558 					pmtx = sfmmu_page_enter(pp);
4559 					PP_CLRRO(pp);
4560 					sfmmu_page_exit(pmtx);
4561 				}
4562 			}
4563 
4564 			if (ret > 0 && use_demap_range) {
4565 				DEMAP_RANGE_MARKPG(dmrp, addr);
4566 			} else if (ret > 0) {
4567 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4568 			}
4569 
4570 			if (pml) {
4571 				sfmmu_mlist_exit(pml);
4572 			}
4573 		}
4574 next_addr:
4575 		addr += TTEBYTES(ttesz);
4576 		sfhmep++;
4577 		DEMAP_RANGE_NEXTPG(dmrp);
4578 	}
4579 	return (addr);
4580 }
4581 
4582 /*
4583  * This routine is deprecated and should only be used by hat_chgprot.
4584  * The correct routine is sfmmu_vtop_attr.
4585  * This routine converts virtual page protections to physical ones.  It will
4586  * update the tteflags field with the tte mask corresponding to the protections
4587  * affected and it returns the new protections.  It will also clear the modify
4588  * bit if we are taking away write permission.  This is necessary since the
4589  * modify bit is the hardware permission bit and we need to clear it in order
4590  * to detect write faults.
4591  * It accepts the following special protections:
4592  * ~PROT_WRITE = remove write permissions.
4593  * ~PROT_USER = remove user permissions.
4594  */
4595 static uint_t
4596 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4597 {
4598 	if (vprot == (uint_t)~PROT_WRITE) {
4599 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4600 		return (0);		/* will cause wrprm to be cleared */
4601 	}
4602 	if (vprot == (uint_t)~PROT_USER) {
4603 		*tteflagsp = TTE_PRIV_INT;
4604 		return (0);		/* will cause privprm to be cleared */
4605 	}
4606 	if ((vprot == 0) || (vprot == PROT_USER) ||
4607 		((vprot & PROT_ALL) != vprot)) {
4608 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4609 	}
4610 
4611 	switch (vprot) {
4612 	case (PROT_READ):
4613 	case (PROT_EXEC):
4614 	case (PROT_EXEC | PROT_READ):
4615 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4616 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4617 	case (PROT_WRITE):
4618 	case (PROT_WRITE | PROT_READ):
4619 	case (PROT_EXEC | PROT_WRITE):
4620 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4621 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4622 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4623 	case (PROT_USER | PROT_READ):
4624 	case (PROT_USER | PROT_EXEC):
4625 	case (PROT_USER | PROT_EXEC | PROT_READ):
4626 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4627 		return (0); 			/* clr prv and wrt */
4628 	case (PROT_USER | PROT_WRITE):
4629 	case (PROT_USER | PROT_WRITE | PROT_READ):
4630 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4631 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4632 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4633 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4634 	default:
4635 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4636 	}
4637 	return (0);
4638 }
4639 
4640 /*
4641  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4642  * the normal algorithm would take too long for a very large VA range with
4643  * few real mappings. This routine just walks thru all HMEs in the global
4644  * hash table to find and remove mappings.
4645  */
4646 static void
4647 hat_unload_large_virtual(
4648 	struct hat		*sfmmup,
4649 	caddr_t			startaddr,
4650 	size_t			len,
4651 	uint_t			flags,
4652 	hat_callback_t		*callback)
4653 {
4654 	struct hmehash_bucket *hmebp;
4655 	struct hme_blk *hmeblkp;
4656 	struct hme_blk *pr_hblk = NULL;
4657 	struct hme_blk *nx_hblk;
4658 	struct hme_blk *list = NULL;
4659 	int i;
4660 	uint64_t hblkpa, prevpa, nx_pa;
4661 	hatlock_t	*hatlockp;
4662 	struct tsb_info	*tsbinfop;
4663 	struct ctx	*ctx;
4664 	caddr_t	endaddr = startaddr + len;
4665 	caddr_t	sa;
4666 	caddr_t	ea;
4667 	caddr_t	cb_sa[MAX_CB_ADDR];
4668 	caddr_t	cb_ea[MAX_CB_ADDR];
4669 	int	addr_cnt = 0;
4670 	int	a = 0;
4671 	int	cnum;
4672 
4673 	hatlockp = sfmmu_hat_enter(sfmmup);
4674 
4675 	/*
4676 	 * Since we know we're unmapping a huge range of addresses,
4677 	 * just throw away the context and switch to another.  It's
4678 	 * cheaper than trying to unmap all of the TTEs we may find
4679 	 * from the TLB individually, which is too expensive in terms
4680 	 * of xcalls.  Better yet, if we're exiting, no need to flush
4681 	 * anything at all!
4682 	 */
4683 	if (!sfmmup->sfmmu_free) {
4684 		ctx = sfmmutoctx(sfmmup);
4685 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
4686 		cnum = sfmmutoctxnum(sfmmup);
4687 		if (cnum != INVALID_CONTEXT) {
4688 			sfmmu_tlb_swap_ctx(sfmmup, ctx);
4689 		}
4690 		rw_exit(&ctx->ctx_rwlock);
4691 
4692 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
4693 		    tsbinfop = tsbinfop->tsb_next) {
4694 			if (tsbinfop->tsb_flags & TSB_SWAPPED)
4695 				continue;
4696 			sfmmu_inv_tsb(tsbinfop->tsb_va,
4697 			    TSB_BYTES(tsbinfop->tsb_szc));
4698 		}
4699 	}
4700 
4701 	/*
4702 	 * Loop through all the hash buckets of HME blocks looking for matches.
4703 	 */
4704 	for (i = 0; i <= UHMEHASH_SZ; i++) {
4705 		hmebp = &uhme_hash[i];
4706 		SFMMU_HASH_LOCK(hmebp);
4707 		hmeblkp = hmebp->hmeblkp;
4708 		hblkpa = hmebp->hmeh_nextpa;
4709 		prevpa = 0;
4710 		pr_hblk = NULL;
4711 		while (hmeblkp) {
4712 			nx_hblk = hmeblkp->hblk_next;
4713 			nx_pa = hmeblkp->hblk_nextpa;
4714 
4715 			/*
4716 			 * skip if not this context, if a shadow block or
4717 			 * if the mapping is not in the requested range
4718 			 */
4719 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4720 			    hmeblkp->hblk_shw_bit ||
4721 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4722 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4723 				pr_hblk = hmeblkp;
4724 				prevpa = hblkpa;
4725 				goto next_block;
4726 			}
4727 
4728 			/*
4729 			 * unload if there are any current valid mappings
4730 			 */
4731 			if (hmeblkp->hblk_vcnt != 0 ||
4732 			    hmeblkp->hblk_hmecnt != 0)
4733 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4734 				    sa, ea, NULL, flags);
4735 
4736 			/*
4737 			 * on unmap we also release the HME block itself, once
4738 			 * all mappings are gone.
4739 			 */
4740 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4741 			    !hmeblkp->hblk_vcnt &&
4742 			    !hmeblkp->hblk_hmecnt) {
4743 				ASSERT(!hmeblkp->hblk_lckcnt);
4744 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4745 					prevpa, pr_hblk);
4746 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4747 			} else {
4748 				pr_hblk = hmeblkp;
4749 				prevpa = hblkpa;
4750 			}
4751 
4752 			if (callback == NULL)
4753 				goto next_block;
4754 
4755 			/*
4756 			 * HME blocks may span more than one page, but we may be
4757 			 * unmapping only one page, so check for a smaller range
4758 			 * for the callback
4759 			 */
4760 			if (sa < startaddr)
4761 				sa = startaddr;
4762 			if (--ea > endaddr)
4763 				ea = endaddr - 1;
4764 
4765 			cb_sa[addr_cnt] = sa;
4766 			cb_ea[addr_cnt] = ea;
4767 			if (++addr_cnt == MAX_CB_ADDR) {
4768 				for (a = 0; a < MAX_CB_ADDR; ++a) {
4769 					callback->hcb_start_addr = cb_sa[a];
4770 					callback->hcb_end_addr = cb_ea[a];
4771 					callback->hcb_function(callback);
4772 				}
4773 				addr_cnt = 0;
4774 			}
4775 
4776 next_block:
4777 			hmeblkp = nx_hblk;
4778 			hblkpa = nx_pa;
4779 		}
4780 		SFMMU_HASH_UNLOCK(hmebp);
4781 	}
4782 
4783 	sfmmu_hblks_list_purge(&list);
4784 
4785 	for (a = 0; a < addr_cnt; ++a) {
4786 		callback->hcb_start_addr = cb_sa[a];
4787 		callback->hcb_end_addr = cb_ea[a];
4788 		callback->hcb_function(callback);
4789 	}
4790 
4791 	sfmmu_hat_exit(hatlockp);
4792 
4793 	/*
4794 	 * Check TSB and TLB page sizes if the process isn't exiting.
4795 	 */
4796 	if (!sfmmup->sfmmu_free)
4797 		sfmmu_check_page_sizes(sfmmup, 0);
4798 }
4799 
4800 
4801 /*
4802  * Unload all the mappings in the range [addr..addr+len). addr and len must
4803  * be MMU_PAGESIZE aligned.
4804  */
4805 
4806 extern struct seg *segkmap;
4807 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4808 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4809 
4810 
4811 void
4812 hat_unload_callback(
4813 	struct hat *sfmmup,
4814 	caddr_t addr,
4815 	size_t len,
4816 	uint_t flags,
4817 	hat_callback_t *callback)
4818 {
4819 	struct hmehash_bucket *hmebp;
4820 	hmeblk_tag hblktag;
4821 	int hmeshift, hashno, iskernel;
4822 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4823 	caddr_t endaddr;
4824 	cpuset_t cpuset;
4825 	uint64_t hblkpa, prevpa;
4826 	int addr_count = 0;
4827 	int a;
4828 	caddr_t cb_start_addr[MAX_CB_ADDR];
4829 	caddr_t cb_end_addr[MAX_CB_ADDR];
4830 	int issegkmap = ISSEGKMAP(sfmmup, addr);
4831 	demap_range_t dmr, *dmrp;
4832 
4833 	if (sfmmup->sfmmu_xhat_provider) {
4834 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4835 		return;
4836 	} else {
4837 		/*
4838 		 * This must be a CPU HAT. If the address space has
4839 		 * XHATs attached, unload the mappings for all of them,
4840 		 * just in case
4841 		 */
4842 		ASSERT(sfmmup->sfmmu_as != NULL);
4843 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4844 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4845 			    len, flags, callback);
4846 	}
4847 
4848 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
4849 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4850 
4851 	ASSERT(sfmmup != NULL);
4852 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4853 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4854 
4855 	/*
4856 	 * Probing through a large VA range (say 63 bits) will be slow, even
4857 	 * at 4 Meg steps between the probes. So, when the virtual address range
4858 	 * is very large, search the HME entries for what to unload.
4859 	 *
4860 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
4861 	 *
4862 	 *	UHMEHASH_SZ is number of hash buckets to examine
4863 	 *
4864 	 */
4865 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
4866 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
4867 		return;
4868 	}
4869 
4870 	CPUSET_ZERO(cpuset);
4871 
4872 	/*
4873 	 * If the process is exiting, we can save a lot of fuss since
4874 	 * we'll flush the TLB when we free the ctx anyway.
4875 	 */
4876 	if (sfmmup->sfmmu_free)
4877 		dmrp = NULL;
4878 	else
4879 		dmrp = &dmr;
4880 
4881 	DEMAP_RANGE_INIT(sfmmup, dmrp);
4882 	endaddr = addr + len;
4883 	hblktag.htag_id = sfmmup;
4884 
4885 	/*
4886 	 * It is likely for the vm to call unload over a wide range of
4887 	 * addresses that are actually very sparsely populated by
4888 	 * translations.  In order to speed this up the sfmmu hat supports
4889 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
4890 	 * correspond to actual small translations are allocated at tteload
4891 	 * time and are referred to as shadow hmeblks.  Now, during unload
4892 	 * time, we first check if we have a shadow hmeblk for that
4893 	 * translation.  The absence of one means the corresponding address
4894 	 * range is empty and can be skipped.
4895 	 *
4896 	 * The kernel is an exception to above statement and that is why
4897 	 * we don't use shadow hmeblks and hash starting from the smallest
4898 	 * page size.
4899 	 */
4900 	if (sfmmup == KHATID) {
4901 		iskernel = 1;
4902 		hashno = TTE64K;
4903 	} else {
4904 		iskernel = 0;
4905 		if (mmu_page_sizes == max_mmu_page_sizes) {
4906 			hashno = TTE256M;
4907 		} else {
4908 			hashno = TTE4M;
4909 		}
4910 	}
4911 	while (addr < endaddr) {
4912 		hmeshift = HME_HASH_SHIFT(hashno);
4913 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4914 		hblktag.htag_rehash = hashno;
4915 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4916 
4917 		SFMMU_HASH_LOCK(hmebp);
4918 
4919 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
4920 			prevpa, &list);
4921 		if (hmeblkp == NULL) {
4922 			/*
4923 			 * didn't find an hmeblk. skip the appropiate
4924 			 * address range.
4925 			 */
4926 			SFMMU_HASH_UNLOCK(hmebp);
4927 			if (iskernel) {
4928 				if (hashno < mmu_hashcnt) {
4929 					hashno++;
4930 					continue;
4931 				} else {
4932 					hashno = TTE64K;
4933 					addr = (caddr_t)roundup((uintptr_t)addr
4934 						+ 1, MMU_PAGESIZE64K);
4935 					continue;
4936 				}
4937 			}
4938 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
4939 				(1 << hmeshift));
4940 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
4941 				ASSERT(hashno == TTE64K);
4942 				continue;
4943 			}
4944 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
4945 				hashno = TTE512K;
4946 				continue;
4947 			}
4948 			if (mmu_page_sizes == max_mmu_page_sizes) {
4949 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
4950 					hashno = TTE4M;
4951 					continue;
4952 				}
4953 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
4954 					hashno = TTE32M;
4955 					continue;
4956 				}
4957 				hashno = TTE256M;
4958 				continue;
4959 			} else {
4960 				hashno = TTE4M;
4961 				continue;
4962 			}
4963 		}
4964 		ASSERT(hmeblkp);
4965 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
4966 			/*
4967 			 * If the valid count is zero we can skip the range
4968 			 * mapped by this hmeblk.
4969 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
4970 			 * is used by segment drivers as a hint
4971 			 * that the mapping resource won't be used any longer.
4972 			 * The best example of this is during exit().
4973 			 */
4974 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
4975 				get_hblk_span(hmeblkp));
4976 			if ((flags & HAT_UNLOAD_UNMAP) ||
4977 			    (iskernel && !issegkmap)) {
4978 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
4979 				    pr_hblk);
4980 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4981 			}
4982 			SFMMU_HASH_UNLOCK(hmebp);
4983 
4984 			if (iskernel) {
4985 				hashno = TTE64K;
4986 				continue;
4987 			}
4988 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
4989 				ASSERT(hashno == TTE64K);
4990 				continue;
4991 			}
4992 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
4993 				hashno = TTE512K;
4994 				continue;
4995 			}
4996 			if (mmu_page_sizes == max_mmu_page_sizes) {
4997 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
4998 					hashno = TTE4M;
4999 					continue;
5000 				}
5001 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5002 					hashno = TTE32M;
5003 					continue;
5004 				}
5005 				hashno = TTE256M;
5006 				continue;
5007 			} else {
5008 				hashno = TTE4M;
5009 				continue;
5010 			}
5011 		}
5012 		if (hmeblkp->hblk_shw_bit) {
5013 			/*
5014 			 * If we encounter a shadow hmeblk we know there is
5015 			 * smaller sized hmeblks mapping the same address space.
5016 			 * Decrement the hash size and rehash.
5017 			 */
5018 			ASSERT(sfmmup != KHATID);
5019 			hashno--;
5020 			SFMMU_HASH_UNLOCK(hmebp);
5021 			continue;
5022 		}
5023 
5024 		/*
5025 		 * track callback address ranges.
5026 		 * only start a new range when it's not contiguous
5027 		 */
5028 		if (callback != NULL) {
5029 			if (addr_count > 0 &&
5030 			    addr == cb_end_addr[addr_count - 1])
5031 				--addr_count;
5032 			else
5033 				cb_start_addr[addr_count] = addr;
5034 		}
5035 
5036 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5037 				dmrp, flags);
5038 
5039 		if (callback != NULL)
5040 			cb_end_addr[addr_count++] = addr;
5041 
5042 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5043 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5044 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5045 			    pr_hblk);
5046 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5047 		}
5048 		SFMMU_HASH_UNLOCK(hmebp);
5049 
5050 		/*
5051 		 * Notify our caller as to exactly which pages
5052 		 * have been unloaded. We do these in clumps,
5053 		 * to minimize the number of xt_sync()s that need to occur.
5054 		 */
5055 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5056 			DEMAP_RANGE_FLUSH(dmrp);
5057 			if (dmrp != NULL) {
5058 				cpuset = sfmmup->sfmmu_cpusran;
5059 				xt_sync(cpuset);
5060 			}
5061 
5062 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5063 				callback->hcb_start_addr = cb_start_addr[a];
5064 				callback->hcb_end_addr = cb_end_addr[a];
5065 				callback->hcb_function(callback);
5066 			}
5067 			addr_count = 0;
5068 		}
5069 		if (iskernel) {
5070 			hashno = TTE64K;
5071 			continue;
5072 		}
5073 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5074 			ASSERT(hashno == TTE64K);
5075 			continue;
5076 		}
5077 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5078 			hashno = TTE512K;
5079 			continue;
5080 		}
5081 		if (mmu_page_sizes == max_mmu_page_sizes) {
5082 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5083 				hashno = TTE4M;
5084 				continue;
5085 			}
5086 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5087 				hashno = TTE32M;
5088 				continue;
5089 			}
5090 			hashno = TTE256M;
5091 		} else {
5092 			hashno = TTE4M;
5093 		}
5094 	}
5095 
5096 	sfmmu_hblks_list_purge(&list);
5097 	DEMAP_RANGE_FLUSH(dmrp);
5098 	if (dmrp != NULL) {
5099 		cpuset = sfmmup->sfmmu_cpusran;
5100 		xt_sync(cpuset);
5101 	}
5102 	if (callback && addr_count != 0) {
5103 		for (a = 0; a < addr_count; ++a) {
5104 			callback->hcb_start_addr = cb_start_addr[a];
5105 			callback->hcb_end_addr = cb_end_addr[a];
5106 			callback->hcb_function(callback);
5107 		}
5108 	}
5109 
5110 	/*
5111 	 * Check TSB and TLB page sizes if the process isn't exiting.
5112 	 */
5113 	if (!sfmmup->sfmmu_free)
5114 		sfmmu_check_page_sizes(sfmmup, 0);
5115 }
5116 
5117 /*
5118  * Unload all the mappings in the range [addr..addr+len). addr and len must
5119  * be MMU_PAGESIZE aligned.
5120  */
5121 void
5122 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5123 {
5124 	if (sfmmup->sfmmu_xhat_provider) {
5125 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5126 		return;
5127 	}
5128 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5129 }
5130 
5131 
5132 /*
5133  * Find the largest mapping size for this page.
5134  */
5135 static int
5136 fnd_mapping_sz(page_t *pp)
5137 {
5138 	int sz;
5139 	int p_index;
5140 
5141 	p_index = PP_MAPINDEX(pp);
5142 
5143 	sz = 0;
5144 	p_index >>= 1;	/* don't care about 8K bit */
5145 	for (; p_index; p_index >>= 1) {
5146 		sz++;
5147 	}
5148 
5149 	return (sz);
5150 }
5151 
5152 /*
5153  * This function unloads a range of addresses for an hmeblk.
5154  * It returns the next address to be unloaded.
5155  * It should be called with the hash lock held.
5156  */
5157 static caddr_t
5158 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5159 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5160 {
5161 	tte_t	tte, ttemod;
5162 	struct	sf_hment *sfhmep;
5163 	int	ttesz;
5164 	long	ttecnt;
5165 	page_t *pp;
5166 	kmutex_t *pml;
5167 	int ret;
5168 	int use_demap_range;
5169 
5170 	ASSERT(in_hblk_range(hmeblkp, addr));
5171 	ASSERT(!hmeblkp->hblk_shw_bit);
5172 #ifdef DEBUG
5173 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5174 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5175 		panic("sfmmu_hblk_unload: partial unload of large page");
5176 	}
5177 #endif /* DEBUG */
5178 
5179 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5180 	ttesz = get_hblk_ttesz(hmeblkp);
5181 
5182 	use_demap_range = (do_virtual_coloring &&
5183 				TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
5184 	if (use_demap_range) {
5185 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5186 	} else {
5187 		DEMAP_RANGE_FLUSH(dmrp);
5188 	}
5189 	ttecnt = 0;
5190 	HBLKTOHME(sfhmep, hmeblkp, addr);
5191 
5192 	while (addr < endaddr) {
5193 		pml = NULL;
5194 again:
5195 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5196 		if (TTE_IS_VALID(&tte)) {
5197 			pp = sfhmep->hme_page;
5198 			if (pp && pml == NULL) {
5199 				pml = sfmmu_mlist_enter(pp);
5200 			}
5201 
5202 			/*
5203 			 * Verify if hme still points to 'pp' now that
5204 			 * we have p_mapping lock.
5205 			 */
5206 			if (sfhmep->hme_page != pp) {
5207 				if (pp != NULL && sfhmep->hme_page != NULL) {
5208 					if (pml) {
5209 						sfmmu_mlist_exit(pml);
5210 					}
5211 					/* Re-start this iteration. */
5212 					continue;
5213 				}
5214 				ASSERT((pp != NULL) &&
5215 				    (sfhmep->hme_page == NULL));
5216 				goto tte_unloaded;
5217 			}
5218 
5219 			/*
5220 			 * This point on we have both HASH and p_mapping
5221 			 * lock.
5222 			 */
5223 			ASSERT(pp == sfhmep->hme_page);
5224 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5225 
5226 			/*
5227 			 * We need to loop on modify tte because it is
5228 			 * possible for pagesync to come along and
5229 			 * change the software bits beneath us.
5230 			 *
5231 			 * Page_unload can also invalidate the tte after
5232 			 * we read tte outside of p_mapping lock.
5233 			 */
5234 			ttemod = tte;
5235 
5236 			TTE_SET_INVALID(&ttemod);
5237 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5238 			    &sfhmep->hme_tte);
5239 
5240 			if (ret <= 0) {
5241 				if (TTE_IS_VALID(&tte)) {
5242 					goto again;
5243 				} else {
5244 					/*
5245 					 * We read in a valid pte, but it
5246 					 * is unloaded by page_unload.
5247 					 * hme_page has become NULL and
5248 					 * we hold no p_mapping lock.
5249 					 */
5250 					ASSERT(pp == NULL && pml == NULL);
5251 					goto tte_unloaded;
5252 				}
5253 			}
5254 
5255 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5256 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5257 			}
5258 
5259 			/*
5260 			 * Ok- we invalidated the tte. Do the rest of the job.
5261 			 */
5262 			ttecnt++;
5263 
5264 			if (flags & HAT_UNLOAD_UNLOCK) {
5265 				ASSERT(hmeblkp->hblk_lckcnt > 0);
5266 				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5267 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5268 			}
5269 
5270 			/*
5271 			 * Normally we would need to flush the page
5272 			 * from the virtual cache at this point in
5273 			 * order to prevent a potential cache alias
5274 			 * inconsistency.
5275 			 * The particular scenario we need to worry
5276 			 * about is:
5277 			 * Given:  va1 and va2 are two virtual address
5278 			 * that alias and map the same physical
5279 			 * address.
5280 			 * 1.	mapping exists from va1 to pa and data
5281 			 * has been read into the cache.
5282 			 * 2.	unload va1.
5283 			 * 3.	load va2 and modify data using va2.
5284 			 * 4	unload va2.
5285 			 * 5.	load va1 and reference data.  Unless we
5286 			 * flush the data cache when we unload we will
5287 			 * get stale data.
5288 			 * Fortunately, page coloring eliminates the
5289 			 * above scenario by remembering the color a
5290 			 * physical page was last or is currently
5291 			 * mapped to.  Now, we delay the flush until
5292 			 * the loading of translations.  Only when the
5293 			 * new translation is of a different color
5294 			 * are we forced to flush.
5295 			 */
5296 			if (use_demap_range) {
5297 				/*
5298 				 * Mark this page as needing a demap.
5299 				 */
5300 				DEMAP_RANGE_MARKPG(dmrp, addr);
5301 			} else {
5302 				if (do_virtual_coloring) {
5303 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5304 					    sfmmup->sfmmu_free, 0);
5305 				} else {
5306 					pfn_t pfnum;
5307 
5308 					pfnum = TTE_TO_PFN(addr, &tte);
5309 					sfmmu_tlbcache_demap(addr, sfmmup,
5310 					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5311 					    FLUSH_NECESSARY_CPUS,
5312 					    CACHE_FLUSH, 0);
5313 				}
5314 			}
5315 
5316 			if (pp) {
5317 				/*
5318 				 * Remove the hment from the mapping list
5319 				 */
5320 				ASSERT(hmeblkp->hblk_hmecnt > 0);
5321 
5322 				/*
5323 				 * Again, we cannot
5324 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5325 				 */
5326 				HME_SUB(sfhmep, pp);
5327 				membar_stst();
5328 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5329 			}
5330 
5331 			ASSERT(hmeblkp->hblk_vcnt > 0);
5332 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5333 
5334 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5335 			    !hmeblkp->hblk_lckcnt);
5336 
5337 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5338 				if (PP_ISTNC(pp)) {
5339 					/*
5340 					 * If page was temporary
5341 					 * uncached, try to recache
5342 					 * it. Note that HME_SUB() was
5343 					 * called above so p_index and
5344 					 * mlist had been updated.
5345 					 */
5346 					conv_tnc(pp, ttesz);
5347 				} else if (pp->p_mapping == NULL) {
5348 					ASSERT(kpm_enable);
5349 					/*
5350 					 * Page is marked to be in VAC conflict
5351 					 * to an existing kpm mapping and/or is
5352 					 * kpm mapped using only the regular
5353 					 * pagesize.
5354 					 */
5355 					sfmmu_kpm_hme_unload(pp);
5356 				}
5357 			}
5358 		} else if ((pp = sfhmep->hme_page) != NULL) {
5359 				/*
5360 				 * TTE is invalid but the hme
5361 				 * still exists. let pageunload
5362 				 * complete its job.
5363 				 */
5364 				ASSERT(pml == NULL);
5365 				pml = sfmmu_mlist_enter(pp);
5366 				if (sfhmep->hme_page != NULL) {
5367 					sfmmu_mlist_exit(pml);
5368 					pml = NULL;
5369 					goto again;
5370 				}
5371 				ASSERT(sfhmep->hme_page == NULL);
5372 		} else if (hmeblkp->hblk_hmecnt != 0) {
5373 			/*
5374 			 * pageunload may have not finished decrementing
5375 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5376 			 * wait for pageunload to finish. Rely on pageunload
5377 			 * to decrement hblk_hmecnt after hblk_vcnt.
5378 			 */
5379 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5380 			ASSERT(pml == NULL);
5381 			if (pf_is_memory(pfn)) {
5382 				pp = page_numtopp_nolock(pfn);
5383 				if (pp != NULL) {
5384 					pml = sfmmu_mlist_enter(pp);
5385 					sfmmu_mlist_exit(pml);
5386 					pml = NULL;
5387 				}
5388 			}
5389 		}
5390 
5391 tte_unloaded:
5392 		/*
5393 		 * At this point, the tte we are looking at
5394 		 * should be unloaded, and hme has been unlinked
5395 		 * from page too. This is important because in
5396 		 * pageunload, it does ttesync() then HME_SUB.
5397 		 * We need to make sure HME_SUB has been completed
5398 		 * so we know ttesync() has been completed. Otherwise,
5399 		 * at exit time, after return from hat layer, VM will
5400 		 * release as structure which hat_setstat() (called
5401 		 * by ttesync()) needs.
5402 		 */
5403 #ifdef DEBUG
5404 		{
5405 			tte_t	dtte;
5406 
5407 			ASSERT(sfhmep->hme_page == NULL);
5408 
5409 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5410 			ASSERT(!TTE_IS_VALID(&dtte));
5411 		}
5412 #endif
5413 
5414 		if (pml) {
5415 			sfmmu_mlist_exit(pml);
5416 		}
5417 
5418 		addr += TTEBYTES(ttesz);
5419 		sfhmep++;
5420 		DEMAP_RANGE_NEXTPG(dmrp);
5421 	}
5422 	if (ttecnt > 0)
5423 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5424 	return (addr);
5425 }
5426 
5427 /*
5428  * Synchronize all the mappings in the range [addr..addr+len).
5429  * Can be called with clearflag having two states:
5430  * HAT_SYNC_DONTZERO means just return the rm stats
5431  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5432  */
5433 void
5434 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5435 {
5436 	struct hmehash_bucket *hmebp;
5437 	hmeblk_tag hblktag;
5438 	int hmeshift, hashno = 1;
5439 	struct hme_blk *hmeblkp, *list = NULL;
5440 	caddr_t endaddr;
5441 	cpuset_t cpuset;
5442 
5443 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5444 	ASSERT((sfmmup == ksfmmup) ||
5445 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5446 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5447 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5448 		(clearflag == HAT_SYNC_ZERORM));
5449 
5450 	CPUSET_ZERO(cpuset);
5451 
5452 	endaddr = addr + len;
5453 	hblktag.htag_id = sfmmup;
5454 	/*
5455 	 * Spitfire supports 4 page sizes.
5456 	 * Most pages are expected to be of the smallest page
5457 	 * size (8K) and these will not need to be rehashed. 64K
5458 	 * pages also don't need to be rehashed because the an hmeblk
5459 	 * spans 64K of address space. 512K pages might need 1 rehash and
5460 	 * and 4M pages 2 rehashes.
5461 	 */
5462 	while (addr < endaddr) {
5463 		hmeshift = HME_HASH_SHIFT(hashno);
5464 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5465 		hblktag.htag_rehash = hashno;
5466 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5467 
5468 		SFMMU_HASH_LOCK(hmebp);
5469 
5470 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5471 		if (hmeblkp != NULL) {
5472 			/*
5473 			 * We've encountered a shadow hmeblk so skip the range
5474 			 * of the next smaller mapping size.
5475 			 */
5476 			if (hmeblkp->hblk_shw_bit) {
5477 				ASSERT(sfmmup != ksfmmup);
5478 				ASSERT(hashno > 1);
5479 				addr = (caddr_t)P2END((uintptr_t)addr,
5480 					    TTEBYTES(hashno - 1));
5481 			} else {
5482 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5483 				    addr, endaddr, clearflag);
5484 			}
5485 			SFMMU_HASH_UNLOCK(hmebp);
5486 			hashno = 1;
5487 			continue;
5488 		}
5489 		SFMMU_HASH_UNLOCK(hmebp);
5490 
5491 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5492 			/*
5493 			 * We have traversed the whole list and rehashed
5494 			 * if necessary without finding the address to sync.
5495 			 * This is ok so we increment the address by the
5496 			 * smallest hmeblk range for kernel mappings and the
5497 			 * largest hmeblk range, to account for shadow hmeblks,
5498 			 * for user mappings and continue.
5499 			 */
5500 			if (sfmmup == ksfmmup)
5501 				addr = (caddr_t)P2END((uintptr_t)addr,
5502 					    TTEBYTES(1));
5503 			else
5504 				addr = (caddr_t)P2END((uintptr_t)addr,
5505 					    TTEBYTES(hashno));
5506 			hashno = 1;
5507 		} else {
5508 			hashno++;
5509 		}
5510 	}
5511 	sfmmu_hblks_list_purge(&list);
5512 	cpuset = sfmmup->sfmmu_cpusran;
5513 	xt_sync(cpuset);
5514 }
5515 
5516 static caddr_t
5517 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5518 	caddr_t endaddr, int clearflag)
5519 {
5520 	tte_t	tte, ttemod;
5521 	struct sf_hment *sfhmep;
5522 	int ttesz;
5523 	struct page *pp;
5524 	kmutex_t *pml;
5525 	int ret;
5526 
5527 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5528 
5529 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5530 
5531 	ttesz = get_hblk_ttesz(hmeblkp);
5532 	HBLKTOHME(sfhmep, hmeblkp, addr);
5533 
5534 	while (addr < endaddr) {
5535 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5536 		if (TTE_IS_VALID(&tte)) {
5537 			pml = NULL;
5538 			pp = sfhmep->hme_page;
5539 			if (pp) {
5540 				pml = sfmmu_mlist_enter(pp);
5541 			}
5542 			if (pp != sfhmep->hme_page) {
5543 				/*
5544 				 * tte most have been unloaded
5545 				 * underneath us.  Recheck
5546 				 */
5547 				ASSERT(pml);
5548 				sfmmu_mlist_exit(pml);
5549 				continue;
5550 			}
5551 
5552 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5553 
5554 			if (clearflag == HAT_SYNC_ZERORM) {
5555 				ttemod = tte;
5556 				TTE_CLR_RM(&ttemod);
5557 				ret = sfmmu_modifytte_try(&tte, &ttemod,
5558 				    &sfhmep->hme_tte);
5559 				if (ret < 0) {
5560 					if (pml) {
5561 						sfmmu_mlist_exit(pml);
5562 					}
5563 					continue;
5564 				}
5565 
5566 				if (ret > 0) {
5567 					sfmmu_tlb_demap(addr, sfmmup,
5568 						hmeblkp, 0, 0);
5569 				}
5570 			}
5571 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5572 			if (pml) {
5573 				sfmmu_mlist_exit(pml);
5574 			}
5575 		}
5576 		addr += TTEBYTES(ttesz);
5577 		sfhmep++;
5578 	}
5579 	return (addr);
5580 }
5581 
5582 /*
5583  * This function will sync a tte to the page struct and it will
5584  * update the hat stats. Currently it allows us to pass a NULL pp
5585  * and we will simply update the stats.  We may want to change this
5586  * so we only keep stats for pages backed by pp's.
5587  */
5588 static void
5589 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5590 {
5591 	uint_t rm = 0;
5592 	int   	sz;
5593 	pgcnt_t	npgs;
5594 
5595 	ASSERT(TTE_IS_VALID(ttep));
5596 
5597 	if (TTE_IS_NOSYNC(ttep)) {
5598 		return;
5599 	}
5600 
5601 	if (TTE_IS_REF(ttep))  {
5602 		rm = P_REF;
5603 	}
5604 	if (TTE_IS_MOD(ttep))  {
5605 		rm |= P_MOD;
5606 	}
5607 
5608 	if (rm == 0) {
5609 		return;
5610 	}
5611 
5612 	sz = TTE_CSZ(ttep);
5613 	if (sfmmup->sfmmu_rmstat) {
5614 		int i;
5615 		caddr_t	vaddr = addr;
5616 
5617 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5618 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5619 		}
5620 
5621 	}
5622 
5623 	/*
5624 	 * XXX I want to use cas to update nrm bits but they
5625 	 * currently belong in common/vm and not in hat where
5626 	 * they should be.
5627 	 * The nrm bits are protected by the same mutex as
5628 	 * the one that protects the page's mapping list.
5629 	 */
5630 	if (!pp)
5631 		return;
5632 	ASSERT(sfmmu_mlist_held(pp));
5633 	/*
5634 	 * If the tte is for a large page, we need to sync all the
5635 	 * pages covered by the tte.
5636 	 */
5637 	if (sz != TTE8K) {
5638 		ASSERT(pp->p_szc != 0);
5639 		pp = PP_GROUPLEADER(pp, sz);
5640 		ASSERT(sfmmu_mlist_held(pp));
5641 	}
5642 
5643 	/* Get number of pages from tte size. */
5644 	npgs = TTEPAGES(sz);
5645 
5646 	do {
5647 		ASSERT(pp);
5648 		ASSERT(sfmmu_mlist_held(pp));
5649 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5650 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5651 			hat_page_setattr(pp, rm);
5652 
5653 		/*
5654 		 * Are we done? If not, we must have a large mapping.
5655 		 * For large mappings we need to sync the rest of the pages
5656 		 * covered by this tte; goto the next page.
5657 		 */
5658 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5659 }
5660 
5661 /*
5662  * Execute pre-callback handler of each pa_hment linked to pp
5663  *
5664  * Inputs:
5665  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5666  *   capture_cpus: pointer to return value (below)
5667  *
5668  * Returns:
5669  *   Propagates the subsystem callback return values back to the caller;
5670  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5671  *   is zero if all of the pa_hments are of a type that do not require
5672  *   capturing CPUs prior to suspending the mapping, else it is 1.
5673  */
5674 static int
5675 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5676 {
5677 	struct sf_hment	*sfhmep;
5678 	struct pa_hment *pahmep;
5679 	int (*f)(caddr_t, uint_t, uint_t, void *);
5680 	int		ret;
5681 	id_t		id;
5682 	int		locked = 0;
5683 	kmutex_t	*pml;
5684 
5685 	ASSERT(PAGE_EXCL(pp));
5686 	if (!sfmmu_mlist_held(pp)) {
5687 		pml = sfmmu_mlist_enter(pp);
5688 		locked = 1;
5689 	}
5690 
5691 	if (capture_cpus)
5692 		*capture_cpus = 0;
5693 
5694 top:
5695 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5696 		/*
5697 		 * skip sf_hments corresponding to VA<->PA mappings;
5698 		 * for pa_hment's, hme_tte.ll is zero
5699 		 */
5700 		if (!IS_PAHME(sfhmep))
5701 			continue;
5702 
5703 		pahmep = sfhmep->hme_data;
5704 		ASSERT(pahmep != NULL);
5705 
5706 		/*
5707 		 * skip if pre-handler has been called earlier in this loop
5708 		 */
5709 		if (pahmep->flags & flag)
5710 			continue;
5711 
5712 		id = pahmep->cb_id;
5713 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5714 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5715 			*capture_cpus = 1;
5716 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5717 			pahmep->flags |= flag;
5718 			continue;
5719 		}
5720 
5721 		/*
5722 		 * Drop the mapping list lock to avoid locking order issues.
5723 		 */
5724 		if (locked)
5725 			sfmmu_mlist_exit(pml);
5726 
5727 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5728 		if (ret != 0)
5729 			return (ret);	/* caller must do the cleanup */
5730 
5731 		if (locked) {
5732 			pml = sfmmu_mlist_enter(pp);
5733 			pahmep->flags |= flag;
5734 			goto top;
5735 		}
5736 
5737 		pahmep->flags |= flag;
5738 	}
5739 
5740 	if (locked)
5741 		sfmmu_mlist_exit(pml);
5742 
5743 	return (0);
5744 }
5745 
5746 /*
5747  * Execute post-callback handler of each pa_hment linked to pp
5748  *
5749  * Same overall assumptions and restrictions apply as for
5750  * hat_pageprocess_precallbacks().
5751  */
5752 static void
5753 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5754 {
5755 	pfn_t pgpfn = pp->p_pagenum;
5756 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5757 	pfn_t newpfn;
5758 	struct sf_hment *sfhmep;
5759 	struct pa_hment *pahmep;
5760 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5761 	id_t	id;
5762 	int	locked = 0;
5763 	kmutex_t *pml;
5764 
5765 	ASSERT(PAGE_EXCL(pp));
5766 	if (!sfmmu_mlist_held(pp)) {
5767 		pml = sfmmu_mlist_enter(pp);
5768 		locked = 1;
5769 	}
5770 
5771 top:
5772 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5773 		/*
5774 		 * skip sf_hments corresponding to VA<->PA mappings;
5775 		 * for pa_hment's, hme_tte.ll is zero
5776 		 */
5777 		if (!IS_PAHME(sfhmep))
5778 			continue;
5779 
5780 		pahmep = sfhmep->hme_data;
5781 		ASSERT(pahmep != NULL);
5782 
5783 		if ((pahmep->flags & flag) == 0)
5784 			continue;
5785 
5786 		pahmep->flags &= ~flag;
5787 
5788 		id = pahmep->cb_id;
5789 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5790 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5791 			continue;
5792 
5793 		/*
5794 		 * Convert the base page PFN into the constituent PFN
5795 		 * which is needed by the callback handler.
5796 		 */
5797 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5798 
5799 		/*
5800 		 * Drop the mapping list lock to avoid locking order issues.
5801 		 */
5802 		if (locked)
5803 			sfmmu_mlist_exit(pml);
5804 
5805 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5806 		    != 0)
5807 			panic("sfmmu: posthandler failed");
5808 
5809 		if (locked) {
5810 			pml = sfmmu_mlist_enter(pp);
5811 			goto top;
5812 		}
5813 	}
5814 
5815 	if (locked)
5816 		sfmmu_mlist_exit(pml);
5817 }
5818 
5819 /*
5820  * Suspend locked kernel mapping
5821  */
5822 void
5823 hat_pagesuspend(struct page *pp)
5824 {
5825 	struct sf_hment *sfhmep;
5826 	sfmmu_t *sfmmup;
5827 	tte_t tte, ttemod;
5828 	struct hme_blk *hmeblkp;
5829 	caddr_t addr;
5830 	int index, cons;
5831 	cpuset_t cpuset;
5832 
5833 	ASSERT(PAGE_EXCL(pp));
5834 	ASSERT(sfmmu_mlist_held(pp));
5835 
5836 	mutex_enter(&kpr_suspendlock);
5837 
5838 	/*
5839 	 * Call into dtrace to tell it we're about to suspend a
5840 	 * kernel mapping. This prevents us from running into issues
5841 	 * with probe context trying to touch a suspended page
5842 	 * in the relocation codepath itself.
5843 	 */
5844 	if (dtrace_kreloc_init)
5845 		(*dtrace_kreloc_init)();
5846 
5847 	index = PP_MAPINDEX(pp);
5848 	cons = TTE8K;
5849 
5850 retry:
5851 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5852 
5853 		if (IS_PAHME(sfhmep))
5854 			continue;
5855 
5856 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
5857 			continue;
5858 
5859 		/*
5860 		 * Loop until we successfully set the suspend bit in
5861 		 * the TTE.
5862 		 */
5863 again:
5864 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5865 		ASSERT(TTE_IS_VALID(&tte));
5866 
5867 		ttemod = tte;
5868 		TTE_SET_SUSPEND(&ttemod);
5869 		if (sfmmu_modifytte_try(&tte, &ttemod,
5870 		    &sfhmep->hme_tte) < 0)
5871 			goto again;
5872 
5873 		/*
5874 		 * Invalidate TSB entry
5875 		 */
5876 		hmeblkp = sfmmu_hmetohblk(sfhmep);
5877 
5878 		sfmmup = hblktosfmmu(hmeblkp);
5879 		ASSERT(sfmmup == ksfmmup);
5880 
5881 		addr = tte_to_vaddr(hmeblkp, tte);
5882 
5883 		/*
5884 		 * No need to make sure that the TSB for this sfmmu is
5885 		 * not being relocated since it is ksfmmup and thus it
5886 		 * will never be relocated.
5887 		 */
5888 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
5889 
5890 		/*
5891 		 * Update xcall stats
5892 		 */
5893 		cpuset = cpu_ready_set;
5894 		CPUSET_DEL(cpuset, CPU->cpu_id);
5895 
5896 		/* LINTED: constant in conditional context */
5897 		SFMMU_XCALL_STATS(KCONTEXT);
5898 
5899 		/*
5900 		 * Flush TLB entry on remote CPU's
5901 		 */
5902 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, KCONTEXT);
5903 		xt_sync(cpuset);
5904 
5905 		/*
5906 		 * Flush TLB entry on local CPU
5907 		 */
5908 		vtag_flushpage(addr, KCONTEXT);
5909 	}
5910 
5911 	while (index != 0) {
5912 		index = index >> 1;
5913 		if (index != 0)
5914 			cons++;
5915 		if (index & 0x1) {
5916 			pp = PP_GROUPLEADER(pp, cons);
5917 			goto retry;
5918 		}
5919 	}
5920 }
5921 
5922 #ifdef	DEBUG
5923 
5924 #define	N_PRLE	1024
5925 struct prle {
5926 	page_t *targ;
5927 	page_t *repl;
5928 	int status;
5929 	int pausecpus;
5930 	hrtime_t whence;
5931 };
5932 
5933 static struct prle page_relocate_log[N_PRLE];
5934 static int prl_entry;
5935 static kmutex_t prl_mutex;
5936 
5937 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
5938 	mutex_enter(&prl_mutex);					\
5939 	page_relocate_log[prl_entry].targ = *(t);			\
5940 	page_relocate_log[prl_entry].repl = *(r);			\
5941 	page_relocate_log[prl_entry].status = (s);			\
5942 	page_relocate_log[prl_entry].pausecpus = (p);			\
5943 	page_relocate_log[prl_entry].whence = gethrtime();		\
5944 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
5945 	mutex_exit(&prl_mutex);
5946 
5947 #else	/* !DEBUG */
5948 #define	PAGE_RELOCATE_LOG(t, r, s, p)
5949 #endif
5950 
5951 /*
5952  * Core Kernel Page Relocation Algorithm
5953  *
5954  * Input:
5955  *
5956  * target : 	constituent pages are SE_EXCL locked.
5957  * replacement:	constituent pages are SE_EXCL locked.
5958  *
5959  * Output:
5960  *
5961  * nrelocp:	number of pages relocated
5962  */
5963 int
5964 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
5965 {
5966 	page_t		*targ, *repl;
5967 	page_t		*tpp, *rpp;
5968 	kmutex_t	*low, *high;
5969 	spgcnt_t	npages, i;
5970 	page_t		*pl = NULL;
5971 	int		old_pil;
5972 	cpuset_t	cpuset;
5973 	int		cap_cpus;
5974 	int		ret;
5975 
5976 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
5977 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
5978 		return (EAGAIN);
5979 	}
5980 
5981 	mutex_enter(&kpr_mutex);
5982 	kreloc_thread = curthread;
5983 
5984 	targ = *target;
5985 	repl = *replacement;
5986 	ASSERT(repl != NULL);
5987 	ASSERT(targ->p_szc == repl->p_szc);
5988 
5989 	npages = page_get_pagecnt(targ->p_szc);
5990 
5991 	/*
5992 	 * unload VA<->PA mappings that are not locked
5993 	 */
5994 	tpp = targ;
5995 	for (i = 0; i < npages; i++) {
5996 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
5997 		tpp++;
5998 	}
5999 
6000 	/*
6001 	 * Do "presuspend" callbacks, in a context from which we can still
6002 	 * block as needed. Note that we don't hold the mapping list lock
6003 	 * of "targ" at this point due to potential locking order issues;
6004 	 * we assume that between the hat_pageunload() above and holding
6005 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6006 	 * point.
6007 	 */
6008 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6009 	if (ret != 0) {
6010 		/*
6011 		 * EIO translates to fatal error, for all others cleanup
6012 		 * and return EAGAIN.
6013 		 */
6014 		ASSERT(ret != EIO);
6015 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6016 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6017 		kreloc_thread = NULL;
6018 		mutex_exit(&kpr_mutex);
6019 		return (EAGAIN);
6020 	}
6021 
6022 	/*
6023 	 * acquire p_mapping list lock for both the target and replacement
6024 	 * root pages.
6025 	 *
6026 	 * low and high refer to the need to grab the mlist locks in a
6027 	 * specific order in order to prevent race conditions.  Thus the
6028 	 * lower lock must be grabbed before the higher lock.
6029 	 *
6030 	 * This will block hat_unload's accessing p_mapping list.  Since
6031 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6032 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6033 	 * while we suspend and reload the locked mapping below.
6034 	 */
6035 	tpp = targ;
6036 	rpp = repl;
6037 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6038 
6039 	kpreempt_disable();
6040 
6041 	/*
6042 	 * If the replacement page is of a different virtual color
6043 	 * than the page it is replacing, we need to handle the VAC
6044 	 * consistency for it just as we would if we were setting up
6045 	 * a new mapping to a page.
6046 	 */
6047 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6048 		if (tpp->p_vcolor != rpp->p_vcolor) {
6049 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6050 			    rpp->p_pagenum);
6051 		}
6052 	}
6053 
6054 	/*
6055 	 * We raise our PIL to 13 so that we don't get captured by
6056 	 * another CPU or pinned by an interrupt thread.  We can't go to
6057 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6058 	 * that level in the case of IOMMU pseudo mappings.
6059 	 */
6060 	cpuset = cpu_ready_set;
6061 	CPUSET_DEL(cpuset, CPU->cpu_id);
6062 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6063 		old_pil = splr(XCALL_PIL);
6064 	} else {
6065 		old_pil = -1;
6066 		xc_attention(cpuset);
6067 	}
6068 	ASSERT(getpil() == XCALL_PIL);
6069 
6070 	/*
6071 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6072 	 * this will suspend all DMA activity to the page while it is
6073 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6074 	 * may be captured at this point we should have acquired any needed
6075 	 * locks in the presuspend callback.
6076 	 */
6077 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6078 	if (ret != 0) {
6079 		repl = targ;
6080 		goto suspend_fail;
6081 	}
6082 
6083 	/*
6084 	 * Raise the PIL yet again, this time to block all high-level
6085 	 * interrupts on this CPU. This is necessary to prevent an
6086 	 * interrupt routine from pinning the thread which holds the
6087 	 * mapping suspended and then touching the suspended page.
6088 	 *
6089 	 * Once the page is suspended we also need to be careful to
6090 	 * avoid calling any functions which touch any seg_kmem memory
6091 	 * since that memory may be backed by the very page we are
6092 	 * relocating in here!
6093 	 */
6094 	hat_pagesuspend(targ);
6095 
6096 	/*
6097 	 * Now that we are confident everybody has stopped using this page,
6098 	 * copy the page contents.  Note we use a physical copy to prevent
6099 	 * locking issues and to avoid fpRAS because we can't handle it in
6100 	 * this context.
6101 	 */
6102 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6103 		/*
6104 		 * Copy the contents of the page.
6105 		 */
6106 		ppcopy_kernel(tpp, rpp);
6107 	}
6108 
6109 	tpp = targ;
6110 	rpp = repl;
6111 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6112 		/*
6113 		 * Copy attributes.  VAC consistency was handled above,
6114 		 * if required.
6115 		 */
6116 		rpp->p_nrm = tpp->p_nrm;
6117 		tpp->p_nrm = 0;
6118 		rpp->p_index = tpp->p_index;
6119 		tpp->p_index = 0;
6120 		rpp->p_vcolor = tpp->p_vcolor;
6121 	}
6122 
6123 	/*
6124 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6125 	 * the mapping list from the target page to the replacement page.
6126 	 * Next process postcallbacks; since pa_hment's are linked only to the
6127 	 * p_mapping list of root page, we don't iterate over the constituent
6128 	 * pages.
6129 	 */
6130 	hat_pagereload(targ, repl);
6131 
6132 suspend_fail:
6133 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6134 
6135 	/*
6136 	 * Now lower our PIL and release any captured CPUs since we
6137 	 * are out of the "danger zone".  After this it will again be
6138 	 * safe to acquire adaptive mutex locks, or to drop them...
6139 	 */
6140 	if (old_pil != -1) {
6141 		splx(old_pil);
6142 	} else {
6143 		xc_dismissed(cpuset);
6144 	}
6145 
6146 	kpreempt_enable();
6147 
6148 	sfmmu_mlist_reloc_exit(low, high);
6149 
6150 	/*
6151 	 * Postsuspend callbacks should drop any locks held across
6152 	 * the suspend callbacks.  As before, we don't hold the mapping
6153 	 * list lock at this point.. our assumption is that the mapping
6154 	 * list still can't change due to our holding SE_EXCL lock and
6155 	 * there being no unlocked mappings left. Hence the restriction
6156 	 * on calling context to hat_delete_callback()
6157 	 */
6158 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6159 	if (ret != 0) {
6160 		/*
6161 		 * The second presuspend call failed: we got here through
6162 		 * the suspend_fail label above.
6163 		 */
6164 		ASSERT(ret != EIO);
6165 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6166 		kreloc_thread = NULL;
6167 		mutex_exit(&kpr_mutex);
6168 		return (EAGAIN);
6169 	}
6170 
6171 	/*
6172 	 * Now that we're out of the performance critical section we can
6173 	 * take care of updating the hash table, since we still
6174 	 * hold all the pages locked SE_EXCL at this point we
6175 	 * needn't worry about things changing out from under us.
6176 	 */
6177 	tpp = targ;
6178 	rpp = repl;
6179 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6180 
6181 		/*
6182 		 * replace targ with replacement in page_hash table
6183 		 */
6184 		targ = tpp;
6185 		page_relocate_hash(rpp, targ);
6186 
6187 		/*
6188 		 * concatenate target; caller of platform_page_relocate()
6189 		 * expects target to be concatenated after returning.
6190 		 */
6191 		ASSERT(targ->p_next == targ);
6192 		ASSERT(targ->p_prev == targ);
6193 		page_list_concat(&pl, &targ);
6194 	}
6195 
6196 	ASSERT(*target == pl);
6197 	*nrelocp = npages;
6198 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6199 	kreloc_thread = NULL;
6200 	mutex_exit(&kpr_mutex);
6201 	return (0);
6202 }
6203 
6204 /*
6205  * Called when stray pa_hments are found attached to a page which is
6206  * being freed.  Notify the subsystem which attached the pa_hment of
6207  * the error if it registered a suitable handler, else panic.
6208  */
6209 static void
6210 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6211 {
6212 	id_t cb_id = pahmep->cb_id;
6213 
6214 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6215 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6216 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6217 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6218 			return;		/* non-fatal */
6219 	}
6220 	panic("pa_hment leaked: 0x%p", pahmep);
6221 }
6222 
6223 /*
6224  * Remove all mappings to page 'pp'.
6225  */
6226 int
6227 hat_pageunload(struct page *pp, uint_t forceflag)
6228 {
6229 	struct page *origpp = pp;
6230 	struct sf_hment *sfhme, *tmphme;
6231 	struct hme_blk *hmeblkp;
6232 	kmutex_t *pml, *pmtx;
6233 	cpuset_t cpuset, tset;
6234 	int index, cons;
6235 	int xhme_blks;
6236 	int pa_hments;
6237 
6238 	ASSERT(PAGE_EXCL(pp));
6239 
6240 retry_xhat:
6241 	tmphme = NULL;
6242 	xhme_blks = 0;
6243 	pa_hments = 0;
6244 	CPUSET_ZERO(cpuset);
6245 
6246 	pml = sfmmu_mlist_enter(pp);
6247 
6248 	if (pp->p_kpmref)
6249 		sfmmu_kpm_pageunload(pp);
6250 	ASSERT(!PP_ISMAPPED_KPM(pp));
6251 
6252 	index = PP_MAPINDEX(pp);
6253 	cons = TTE8K;
6254 retry:
6255 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6256 		tmphme = sfhme->hme_next;
6257 
6258 		if (IS_PAHME(sfhme)) {
6259 			ASSERT(sfhme->hme_data != NULL);
6260 			pa_hments++;
6261 			continue;
6262 		}
6263 
6264 		hmeblkp = sfmmu_hmetohblk(sfhme);
6265 		if (hmeblkp->hblk_xhat_bit) {
6266 			struct xhat_hme_blk *xblk =
6267 			    (struct xhat_hme_blk *)hmeblkp;
6268 
6269 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6270 			    pp, forceflag, XBLK2PROVBLK(xblk));
6271 
6272 			xhme_blks = 1;
6273 			continue;
6274 		}
6275 
6276 		/*
6277 		 * If there are kernel mappings don't unload them, they will
6278 		 * be suspended.
6279 		 */
6280 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6281 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6282 			continue;
6283 
6284 		tset = sfmmu_pageunload(pp, sfhme, cons);
6285 		CPUSET_OR(cpuset, tset);
6286 	}
6287 
6288 	while (index != 0) {
6289 		index = index >> 1;
6290 		if (index != 0)
6291 			cons++;
6292 		if (index & 0x1) {
6293 			/* Go to leading page */
6294 			pp = PP_GROUPLEADER(pp, cons);
6295 			ASSERT(sfmmu_mlist_held(pp));
6296 			goto retry;
6297 		}
6298 	}
6299 
6300 	/*
6301 	 * cpuset may be empty if the page was only mapped by segkpm,
6302 	 * in which case we won't actually cross-trap.
6303 	 */
6304 	xt_sync(cpuset);
6305 
6306 	/*
6307 	 * The page should have no mappings at this point, unless
6308 	 * we were called from hat_page_relocate() in which case we
6309 	 * leave the locked mappings which will be suspended later.
6310 	 */
6311 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6312 	    (forceflag == SFMMU_KERNEL_RELOC));
6313 
6314 	if (PP_ISTNC(pp)) {
6315 		if (cons == TTE8K) {
6316 			pmtx = sfmmu_page_enter(pp);
6317 			PP_CLRTNC(pp);
6318 			sfmmu_page_exit(pmtx);
6319 		} else {
6320 			conv_tnc(pp, cons);
6321 		}
6322 	}
6323 
6324 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6325 		/*
6326 		 * Unlink any pa_hments and free them, calling back
6327 		 * the responsible subsystem to notify it of the error.
6328 		 * This can occur in situations such as drivers leaking
6329 		 * DMA handles: naughty, but common enough that we'd like
6330 		 * to keep the system running rather than bringing it
6331 		 * down with an obscure error like "pa_hment leaked"
6332 		 * which doesn't aid the user in debugging their driver.
6333 		 */
6334 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6335 			tmphme = sfhme->hme_next;
6336 			if (IS_PAHME(sfhme)) {
6337 				struct pa_hment *pahmep = sfhme->hme_data;
6338 				sfmmu_pahment_leaked(pahmep);
6339 				HME_SUB(sfhme, pp);
6340 				kmem_cache_free(pa_hment_cache, pahmep);
6341 			}
6342 		}
6343 
6344 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6345 	}
6346 
6347 	sfmmu_mlist_exit(pml);
6348 
6349 	/*
6350 	 * XHAT may not have finished unloading pages
6351 	 * because some other thread was waiting for
6352 	 * mlist lock and XHAT_PAGEUNLOAD let it do
6353 	 * the job.
6354 	 */
6355 	if (xhme_blks) {
6356 		pp = origpp;
6357 		goto retry_xhat;
6358 	}
6359 
6360 	return (0);
6361 }
6362 
6363 static cpuset_t
6364 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6365 {
6366 	struct hme_blk *hmeblkp;
6367 	sfmmu_t *sfmmup;
6368 	tte_t tte, ttemod;
6369 #ifdef DEBUG
6370 	tte_t orig_old;
6371 #endif /* DEBUG */
6372 	caddr_t addr;
6373 	int ttesz;
6374 	int ret;
6375 	cpuset_t cpuset;
6376 
6377 	ASSERT(pp != NULL);
6378 	ASSERT(sfmmu_mlist_held(pp));
6379 	ASSERT(pp->p_vnode != &kvp);
6380 
6381 	CPUSET_ZERO(cpuset);
6382 
6383 	hmeblkp = sfmmu_hmetohblk(sfhme);
6384 
6385 readtte:
6386 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6387 	if (TTE_IS_VALID(&tte)) {
6388 		sfmmup = hblktosfmmu(hmeblkp);
6389 		ttesz = get_hblk_ttesz(hmeblkp);
6390 		/*
6391 		 * Only unload mappings of 'cons' size.
6392 		 */
6393 		if (ttesz != cons)
6394 			return (cpuset);
6395 
6396 		/*
6397 		 * Note that we have p_mapping lock, but no hash lock here.
6398 		 * hblk_unload() has to have both hash lock AND p_mapping
6399 		 * lock before it tries to modify tte. So, the tte could
6400 		 * not become invalid in the sfmmu_modifytte_try() below.
6401 		 */
6402 		ttemod = tte;
6403 #ifdef DEBUG
6404 		orig_old = tte;
6405 #endif /* DEBUG */
6406 
6407 		TTE_SET_INVALID(&ttemod);
6408 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6409 		if (ret < 0) {
6410 #ifdef DEBUG
6411 			/* only R/M bits can change. */
6412 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6413 #endif /* DEBUG */
6414 			goto readtte;
6415 		}
6416 
6417 		if (ret == 0) {
6418 			panic("pageunload: cas failed?");
6419 		}
6420 
6421 		addr = tte_to_vaddr(hmeblkp, tte);
6422 
6423 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6424 
6425 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6426 
6427 		/*
6428 		 * We need to flush the page from the virtual cache
6429 		 * in order to prevent a virtual cache alias
6430 		 * inconsistency. The particular scenario we need
6431 		 * to worry about is:
6432 		 * Given:  va1 and va2 are two virtual address that
6433 		 * alias and will map the same physical address.
6434 		 * 1.	mapping exists from va1 to pa and data has
6435 		 *	been read into the cache.
6436 		 * 2.	unload va1.
6437 		 * 3.	load va2 and modify data using va2.
6438 		 * 4	unload va2.
6439 		 * 5.	load va1 and reference data.  Unless we flush
6440 		 *	the data cache when we unload we will get
6441 		 *	stale data.
6442 		 * This scenario is taken care of by using virtual
6443 		 * page coloring.
6444 		 */
6445 		if (sfmmup->sfmmu_ismhat) {
6446 			/*
6447 			 * Flush TSBs, TLBs and caches
6448 			 * of every process
6449 			 * sharing this ism segment.
6450 			 */
6451 			sfmmu_hat_lock_all();
6452 			mutex_enter(&ism_mlist_lock);
6453 			kpreempt_disable();
6454 			if (do_virtual_coloring)
6455 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6456 					pp->p_pagenum, CACHE_NO_FLUSH);
6457 			else
6458 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6459 					pp->p_pagenum, CACHE_FLUSH);
6460 			kpreempt_enable();
6461 			mutex_exit(&ism_mlist_lock);
6462 			sfmmu_hat_unlock_all();
6463 			cpuset = cpu_ready_set;
6464 		} else if (do_virtual_coloring) {
6465 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6466 			cpuset = sfmmup->sfmmu_cpusran;
6467 		} else {
6468 			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6469 				pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6470 				CACHE_FLUSH, 0);
6471 			cpuset = sfmmup->sfmmu_cpusran;
6472 		}
6473 
6474 		/*
6475 		 * Hme_sub has to run after ttesync() and a_rss update.
6476 		 * See hblk_unload().
6477 		 */
6478 		HME_SUB(sfhme, pp);
6479 		membar_stst();
6480 
6481 		/*
6482 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6483 		 * since pteload may have done a HME_ADD() right after
6484 		 * we did the HME_SUB() above. Hmecnt is now maintained
6485 		 * by cas only. no lock guranteed its value. The only
6486 		 * gurantee we have is the hmecnt should not be less than
6487 		 * what it should be so the hblk will not be taken away.
6488 		 * It's also important that we decremented the hmecnt after
6489 		 * we are done with hmeblkp so that this hmeblk won't be
6490 		 * stolen.
6491 		 */
6492 		ASSERT(hmeblkp->hblk_hmecnt > 0);
6493 		ASSERT(hmeblkp->hblk_vcnt > 0);
6494 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6495 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6496 		/*
6497 		 * This is bug 4063182.
6498 		 * XXX: fixme
6499 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6500 		 *	!hmeblkp->hblk_lckcnt);
6501 		 */
6502 	} else {
6503 		panic("invalid tte? pp %p &tte %p",
6504 		    (void *)pp, (void *)&tte);
6505 	}
6506 
6507 	return (cpuset);
6508 }
6509 
6510 /*
6511  * While relocating a kernel page, this function will move the mappings
6512  * from tpp to dpp and modify any associated data with these mappings.
6513  * It also unsuspends the suspended kernel mapping.
6514  */
6515 static void
6516 hat_pagereload(struct page *tpp, struct page *dpp)
6517 {
6518 	struct sf_hment *sfhme;
6519 	tte_t tte, ttemod;
6520 	int index, cons;
6521 
6522 	ASSERT(getpil() == PIL_MAX);
6523 	ASSERT(sfmmu_mlist_held(tpp));
6524 	ASSERT(sfmmu_mlist_held(dpp));
6525 
6526 	index = PP_MAPINDEX(tpp);
6527 	cons = TTE8K;
6528 
6529 	/* Update real mappings to the page */
6530 retry:
6531 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6532 		if (IS_PAHME(sfhme))
6533 			continue;
6534 		sfmmu_copytte(&sfhme->hme_tte, &tte);
6535 		ttemod = tte;
6536 
6537 		/*
6538 		 * replace old pfn with new pfn in TTE
6539 		 */
6540 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6541 
6542 		/*
6543 		 * clear suspend bit
6544 		 */
6545 		ASSERT(TTE_IS_SUSPEND(&ttemod));
6546 		TTE_CLR_SUSPEND(&ttemod);
6547 
6548 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6549 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6550 
6551 		/*
6552 		 * set hme_page point to new page
6553 		 */
6554 		sfhme->hme_page = dpp;
6555 	}
6556 
6557 	/*
6558 	 * move p_mapping list from old page to new page
6559 	 */
6560 	dpp->p_mapping = tpp->p_mapping;
6561 	tpp->p_mapping = NULL;
6562 	dpp->p_share = tpp->p_share;
6563 	tpp->p_share = 0;
6564 
6565 	while (index != 0) {
6566 		index = index >> 1;
6567 		if (index != 0)
6568 			cons++;
6569 		if (index & 0x1) {
6570 			tpp = PP_GROUPLEADER(tpp, cons);
6571 			dpp = PP_GROUPLEADER(dpp, cons);
6572 			goto retry;
6573 		}
6574 	}
6575 
6576 	if (dtrace_kreloc_fini)
6577 		(*dtrace_kreloc_fini)();
6578 	mutex_exit(&kpr_suspendlock);
6579 }
6580 
6581 uint_t
6582 hat_pagesync(struct page *pp, uint_t clearflag)
6583 {
6584 	struct sf_hment *sfhme, *tmphme = NULL;
6585 	struct hme_blk *hmeblkp;
6586 	kmutex_t *pml;
6587 	cpuset_t cpuset, tset;
6588 	int	index, cons;
6589 	extern	ulong_t po_share;
6590 	page_t	*save_pp = pp;
6591 
6592 	CPUSET_ZERO(cpuset);
6593 
6594 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6595 		return (PP_GENERIC_ATTR(pp));
6596 	}
6597 
6598 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6599 	    PP_ISREF(pp)) {
6600 		return (PP_GENERIC_ATTR(pp));
6601 	}
6602 
6603 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6604 	    PP_ISMOD(pp)) {
6605 		return (PP_GENERIC_ATTR(pp));
6606 	}
6607 
6608 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6609 	    (pp->p_share > po_share) &&
6610 	    !(clearflag & HAT_SYNC_ZERORM)) {
6611 		if (PP_ISRO(pp))
6612 			hat_page_setattr(pp, P_REF);
6613 		return (PP_GENERIC_ATTR(pp));
6614 	}
6615 
6616 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6617 	pml = sfmmu_mlist_enter(pp);
6618 	index = PP_MAPINDEX(pp);
6619 	cons = TTE8K;
6620 retry:
6621 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6622 		/*
6623 		 * We need to save the next hment on the list since
6624 		 * it is possible for pagesync to remove an invalid hment
6625 		 * from the list.
6626 		 */
6627 		tmphme = sfhme->hme_next;
6628 		/*
6629 		 * If we are looking for large mappings and this hme doesn't
6630 		 * reach the range we are seeking, just ignore its.
6631 		 */
6632 		hmeblkp = sfmmu_hmetohblk(sfhme);
6633 		if (hmeblkp->hblk_xhat_bit)
6634 			continue;
6635 
6636 		if (hme_size(sfhme) < cons)
6637 			continue;
6638 		tset = sfmmu_pagesync(pp, sfhme,
6639 			clearflag & ~HAT_SYNC_STOPON_RM);
6640 		CPUSET_OR(cpuset, tset);
6641 		/*
6642 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6643 		 * as the "ref" or "mod" is set.
6644 		 */
6645 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6646 		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6647 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6648 			index = 0;
6649 			break;
6650 		}
6651 	}
6652 
6653 	while (index) {
6654 		index = index >> 1;
6655 		cons++;
6656 		if (index & 0x1) {
6657 			/* Go to leading page */
6658 			pp = PP_GROUPLEADER(pp, cons);
6659 			goto retry;
6660 		}
6661 	}
6662 
6663 	xt_sync(cpuset);
6664 	sfmmu_mlist_exit(pml);
6665 	return (PP_GENERIC_ATTR(save_pp));
6666 }
6667 
6668 /*
6669  * Get all the hardware dependent attributes for a page struct
6670  */
6671 static cpuset_t
6672 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6673 	uint_t clearflag)
6674 {
6675 	caddr_t addr;
6676 	tte_t tte, ttemod;
6677 	struct hme_blk *hmeblkp;
6678 	int ret;
6679 	sfmmu_t *sfmmup;
6680 	cpuset_t cpuset;
6681 
6682 	ASSERT(pp != NULL);
6683 	ASSERT(sfmmu_mlist_held(pp));
6684 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6685 		(clearflag == HAT_SYNC_ZERORM));
6686 
6687 	SFMMU_STAT(sf_pagesync);
6688 
6689 	CPUSET_ZERO(cpuset);
6690 
6691 sfmmu_pagesync_retry:
6692 
6693 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6694 	if (TTE_IS_VALID(&tte)) {
6695 		hmeblkp = sfmmu_hmetohblk(sfhme);
6696 		sfmmup = hblktosfmmu(hmeblkp);
6697 		addr = tte_to_vaddr(hmeblkp, tte);
6698 		if (clearflag == HAT_SYNC_ZERORM) {
6699 			ttemod = tte;
6700 			TTE_CLR_RM(&ttemod);
6701 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6702 				&sfhme->hme_tte);
6703 			if (ret < 0) {
6704 				/*
6705 				 * cas failed and the new value is not what
6706 				 * we want.
6707 				 */
6708 				goto sfmmu_pagesync_retry;
6709 			}
6710 
6711 			if (ret > 0) {
6712 				/* we win the cas */
6713 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6714 				cpuset = sfmmup->sfmmu_cpusran;
6715 			}
6716 		}
6717 
6718 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6719 	}
6720 	return (cpuset);
6721 }
6722 
6723 /*
6724  * Remove write permission from a mappings to a page, so that
6725  * we can detect the next modification of it. This requires modifying
6726  * the TTE then invalidating (demap) any TLB entry using that TTE.
6727  * This code is similar to sfmmu_pagesync().
6728  */
6729 static cpuset_t
6730 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6731 {
6732 	caddr_t addr;
6733 	tte_t tte;
6734 	tte_t ttemod;
6735 	struct hme_blk *hmeblkp;
6736 	int ret;
6737 	sfmmu_t *sfmmup;
6738 	cpuset_t cpuset;
6739 
6740 	ASSERT(pp != NULL);
6741 	ASSERT(sfmmu_mlist_held(pp));
6742 
6743 	CPUSET_ZERO(cpuset);
6744 	SFMMU_STAT(sf_clrwrt);
6745 
6746 retry:
6747 
6748 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6749 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6750 		hmeblkp = sfmmu_hmetohblk(sfhme);
6751 
6752 		/*
6753 		 * xhat mappings should never be to a VMODSORT page.
6754 		 */
6755 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6756 
6757 		sfmmup = hblktosfmmu(hmeblkp);
6758 		addr = tte_to_vaddr(hmeblkp, tte);
6759 
6760 		ttemod = tte;
6761 		TTE_CLR_WRT(&ttemod);
6762 		TTE_CLR_MOD(&ttemod);
6763 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6764 
6765 		/*
6766 		 * if cas failed and the new value is not what
6767 		 * we want retry
6768 		 */
6769 		if (ret < 0)
6770 			goto retry;
6771 
6772 		/* we win the cas */
6773 		if (ret > 0) {
6774 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6775 			cpuset = sfmmup->sfmmu_cpusran;
6776 		}
6777 	}
6778 
6779 	return (cpuset);
6780 }
6781 
6782 /*
6783  * Walk all mappings of a page, removing write permission and clearing the
6784  * ref/mod bits. This code is similar to hat_pagesync()
6785  */
6786 static void
6787 hat_page_clrwrt(page_t *pp)
6788 {
6789 	struct sf_hment *sfhme;
6790 	struct sf_hment *tmphme = NULL;
6791 	kmutex_t *pml;
6792 	cpuset_t cpuset;
6793 	cpuset_t tset;
6794 	int	index;
6795 	int	 cons;
6796 
6797 	CPUSET_ZERO(cpuset);
6798 
6799 	pml = sfmmu_mlist_enter(pp);
6800 	index = PP_MAPINDEX(pp);
6801 	cons = TTE8K;
6802 retry:
6803 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6804 		tmphme = sfhme->hme_next;
6805 
6806 		/*
6807 		 * If we are looking for large mappings and this hme doesn't
6808 		 * reach the range we are seeking, just ignore its.
6809 		 */
6810 
6811 		if (hme_size(sfhme) < cons)
6812 			continue;
6813 
6814 		tset = sfmmu_pageclrwrt(pp, sfhme);
6815 		CPUSET_OR(cpuset, tset);
6816 	}
6817 
6818 	while (index) {
6819 		index = index >> 1;
6820 		cons++;
6821 		if (index & 0x1) {
6822 			/* Go to leading page */
6823 			pp = PP_GROUPLEADER(pp, cons);
6824 			goto retry;
6825 		}
6826 	}
6827 
6828 	xt_sync(cpuset);
6829 	sfmmu_mlist_exit(pml);
6830 }
6831 
6832 /*
6833  * Set the given REF/MOD/RO bits for the given page.
6834  * For a vnode with a sorted v_pages list, we need to change
6835  * the attributes and the v_pages list together under page_vnode_mutex.
6836  */
6837 void
6838 hat_page_setattr(page_t *pp, uint_t flag)
6839 {
6840 	vnode_t		*vp = pp->p_vnode;
6841 	page_t		**listp;
6842 	kmutex_t	*pmtx;
6843 	kmutex_t	*vphm = NULL;
6844 
6845 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6846 
6847 	/*
6848 	 * nothing to do if attribute already set
6849 	 */
6850 	if ((pp->p_nrm & flag) == flag)
6851 		return;
6852 
6853 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6854 		vphm = page_vnode_mutex(vp);
6855 		mutex_enter(vphm);
6856 	}
6857 
6858 	pmtx = sfmmu_page_enter(pp);
6859 	pp->p_nrm |= flag;
6860 	sfmmu_page_exit(pmtx);
6861 
6862 	if (vphm != NULL) {
6863 		/*
6864 		 * Some File Systems examine v_pages for NULL w/o
6865 		 * grabbing the vphm mutex. Must not let it become NULL when
6866 		 * pp is the only page on the list.
6867 		 */
6868 		if (pp->p_vpnext != pp) {
6869 			page_vpsub(&vp->v_pages, pp);
6870 			if (vp->v_pages != NULL)
6871 				listp = &vp->v_pages->p_vpprev->p_vpnext;
6872 			else
6873 				listp = &vp->v_pages;
6874 			page_vpadd(listp, pp);
6875 		}
6876 		mutex_exit(vphm);
6877 	}
6878 }
6879 
6880 void
6881 hat_page_clrattr(page_t *pp, uint_t flag)
6882 {
6883 	vnode_t		*vp = pp->p_vnode;
6884 	kmutex_t	*vphm = NULL;
6885 	kmutex_t	*pmtx;
6886 
6887 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6888 
6889 	/*
6890 	 * For vnode with a sorted v_pages list, we need to change
6891 	 * the attributes and the v_pages list together under page_vnode_mutex.
6892 	 */
6893 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6894 		vphm = page_vnode_mutex(vp);
6895 		mutex_enter(vphm);
6896 	}
6897 
6898 	pmtx = sfmmu_page_enter(pp);
6899 	pp->p_nrm &= ~flag;
6900 	sfmmu_page_exit(pmtx);
6901 
6902 	if (vphm != NULL) {
6903 		/*
6904 		 * Some File Systems examine v_pages for NULL w/o
6905 		 * grabbing the vphm mutex. Must not let it become NULL when
6906 		 * pp is the only page on the list.
6907 		 */
6908 		if (pp->p_vpnext != pp) {
6909 			page_vpsub(&vp->v_pages, pp);
6910 			page_vpadd(&vp->v_pages, pp);
6911 		}
6912 		mutex_exit(vphm);
6913 
6914 		/*
6915 		 * VMODSORT works by removing write permissions and getting
6916 		 * a fault when a page is made dirty. At this point
6917 		 * we need to remove write permission from all mappings
6918 		 * to this page.
6919 		 */
6920 		hat_page_clrwrt(pp);
6921 	}
6922 }
6923 
6924 
6925 uint_t
6926 hat_page_getattr(page_t *pp, uint_t flag)
6927 {
6928 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6929 	return ((uint_t)(pp->p_nrm & flag));
6930 }
6931 
6932 /*
6933  * DEBUG kernels: verify that a kernel va<->pa translation
6934  * is safe by checking the underlying page_t is in a page
6935  * relocation-safe state.
6936  */
6937 #ifdef	DEBUG
6938 void
6939 sfmmu_check_kpfn(pfn_t pfn)
6940 {
6941 	page_t *pp;
6942 	int index, cons;
6943 
6944 	if (hat_check_vtop == 0)
6945 		return;
6946 
6947 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
6948 		return;
6949 
6950 	pp = page_numtopp_nolock(pfn);
6951 	if (!pp)
6952 		return;
6953 
6954 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
6955 		return;
6956 
6957 	/*
6958 	 * Handed a large kernel page, we dig up the root page since we
6959 	 * know the root page might have the lock also.
6960 	 */
6961 	if (pp->p_szc != 0) {
6962 		index = PP_MAPINDEX(pp);
6963 		cons = TTE8K;
6964 again:
6965 		while (index != 0) {
6966 			index >>= 1;
6967 			if (index != 0)
6968 				cons++;
6969 			if (index & 0x1) {
6970 				pp = PP_GROUPLEADER(pp, cons);
6971 				goto again;
6972 			}
6973 		}
6974 	}
6975 
6976 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
6977 		return;
6978 
6979 	/*
6980 	 * Pages need to be locked or allocated "permanent" (either from
6981 	 * static_arena arena or explicitly setting PG_NORELOC when calling
6982 	 * page_create_va()) for VA->PA translations to be valid.
6983 	 */
6984 	if (!PP_ISNORELOC(pp))
6985 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
6986 	else
6987 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
6988 }
6989 #endif	/* DEBUG */
6990 
6991 /*
6992  * Returns a page frame number for a given virtual address.
6993  * Returns PFN_INVALID to indicate an invalid mapping
6994  */
6995 pfn_t
6996 hat_getpfnum(struct hat *hat, caddr_t addr)
6997 {
6998 	pfn_t pfn;
6999 	tte_t tte;
7000 
7001 	/*
7002 	 * We would like to
7003 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7004 	 * but we can't because the iommu driver will call this
7005 	 * routine at interrupt time and it can't grab the as lock
7006 	 * or it will deadlock: A thread could have the as lock
7007 	 * and be waiting for io.  The io can't complete
7008 	 * because the interrupt thread is blocked trying to grab
7009 	 * the as lock.
7010 	 */
7011 
7012 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7013 
7014 	if (hat == ksfmmup) {
7015 		if (segkpm && IS_KPM_ADDR(addr))
7016 			return (sfmmu_kpm_vatopfn(addr));
7017 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7018 		    == PFN_SUSPENDED) {
7019 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7020 		}
7021 		sfmmu_check_kpfn(pfn);
7022 		return (pfn);
7023 	} else {
7024 		return (sfmmu_uvatopfn(addr, hat));
7025 	}
7026 }
7027 
7028 /*
7029  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7030  * Use hat_getpfnum(kas.a_hat, ...) instead.
7031  *
7032  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7033  * but can't right now due to the fact that some software has grown to use
7034  * this interface incorrectly. So for now when the interface is misused,
7035  * return a warning to the user that in the future it won't work in the
7036  * way they're abusing it, and carry on (after disabling page relocation).
7037  */
7038 pfn_t
7039 hat_getkpfnum(caddr_t addr)
7040 {
7041 	pfn_t pfn;
7042 	tte_t tte;
7043 	int badcaller = 0;
7044 	extern int segkmem_reloc;
7045 
7046 	if (segkpm && IS_KPM_ADDR(addr)) {
7047 		badcaller = 1;
7048 		pfn = sfmmu_kpm_vatopfn(addr);
7049 	} else {
7050 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7051 		    == PFN_SUSPENDED) {
7052 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7053 		}
7054 		badcaller = pf_is_memory(pfn);
7055 	}
7056 
7057 	if (badcaller) {
7058 		/*
7059 		 * We can't return PFN_INVALID or the caller may panic
7060 		 * or corrupt the system.  The only alternative is to
7061 		 * disable page relocation at this point for all kernel
7062 		 * memory.  This will impact any callers of page_relocate()
7063 		 * such as FMA or DR.
7064 		 *
7065 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7066 		 * can be advised that he should upgrade his device driver
7067 		 * so that this doesn't happen.
7068 		 */
7069 		hat_getkpfnum_badcall(caller());
7070 		if (hat_kpr_enabled && segkmem_reloc) {
7071 			hat_kpr_enabled = 0;
7072 			segkmem_reloc = 0;
7073 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7074 		}
7075 	}
7076 	return (pfn);
7077 }
7078 
7079 pfn_t
7080 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7081 {
7082 	struct hmehash_bucket *hmebp;
7083 	hmeblk_tag hblktag;
7084 	int hmeshift, hashno = 1;
7085 	struct hme_blk *hmeblkp = NULL;
7086 
7087 	struct sf_hment *sfhmep;
7088 	tte_t tte;
7089 	pfn_t pfn;
7090 
7091 	/* support for ISM */
7092 	ism_map_t	*ism_map;
7093 	ism_blk_t	*ism_blkp;
7094 	int		i;
7095 	sfmmu_t *ism_hatid = NULL;
7096 	sfmmu_t *locked_hatid = NULL;
7097 
7098 
7099 	ASSERT(sfmmup != ksfmmup);
7100 	SFMMU_STAT(sf_user_vtop);
7101 	/*
7102 	 * Set ism_hatid if vaddr falls in a ISM segment.
7103 	 */
7104 	ism_blkp = sfmmup->sfmmu_iblk;
7105 	if (ism_blkp) {
7106 		sfmmu_ismhat_enter(sfmmup, 0);
7107 		locked_hatid = sfmmup;
7108 	}
7109 	while (ism_blkp && ism_hatid == NULL) {
7110 		ism_map = ism_blkp->iblk_maps;
7111 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7112 			if (vaddr >= ism_start(ism_map[i]) &&
7113 			    vaddr < ism_end(ism_map[i])) {
7114 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7115 				vaddr = (caddr_t)(vaddr -
7116 					ism_start(ism_map[i]));
7117 				break;
7118 			}
7119 		}
7120 		ism_blkp = ism_blkp->iblk_next;
7121 	}
7122 	if (locked_hatid) {
7123 		sfmmu_ismhat_exit(locked_hatid, 0);
7124 	}
7125 
7126 	hblktag.htag_id = sfmmup;
7127 	do {
7128 		hmeshift = HME_HASH_SHIFT(hashno);
7129 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7130 		hblktag.htag_rehash = hashno;
7131 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7132 
7133 		SFMMU_HASH_LOCK(hmebp);
7134 
7135 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7136 		if (hmeblkp != NULL) {
7137 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7138 			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7139 			if (TTE_IS_VALID(&tte)) {
7140 				pfn = TTE_TO_PFN(vaddr, &tte);
7141 			} else {
7142 				pfn = PFN_INVALID;
7143 			}
7144 			SFMMU_HASH_UNLOCK(hmebp);
7145 			return (pfn);
7146 		}
7147 		SFMMU_HASH_UNLOCK(hmebp);
7148 		hashno++;
7149 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7150 	return (PFN_INVALID);
7151 }
7152 
7153 
7154 /*
7155  * For compatability with AT&T and later optimizations
7156  */
7157 /* ARGSUSED */
7158 void
7159 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7160 {
7161 	ASSERT(hat != NULL);
7162 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7163 }
7164 
7165 /*
7166  * Return the number of mappings to a particular page.
7167  * This number is an approximation of the number of
7168  * number of people sharing the page.
7169  */
7170 ulong_t
7171 hat_page_getshare(page_t *pp)
7172 {
7173 	page_t *spp = pp;	/* start page */
7174 	kmutex_t *pml;
7175 	ulong_t	cnt;
7176 	int index, sz = TTE64K;
7177 
7178 	/*
7179 	 * We need to grab the mlist lock to make sure any outstanding
7180 	 * load/unloads complete.  Otherwise we could return zero
7181 	 * even though the unload(s) hasn't finished yet.
7182 	 */
7183 	pml = sfmmu_mlist_enter(spp);
7184 	cnt = spp->p_share;
7185 
7186 	if (kpm_enable)
7187 		cnt += spp->p_kpmref;
7188 
7189 	/*
7190 	 * If we have any large mappings, we count the number of
7191 	 * mappings that this large page is part of.
7192 	 */
7193 	index = PP_MAPINDEX(spp);
7194 	index >>= 1;
7195 	while (index) {
7196 		pp = PP_GROUPLEADER(spp, sz);
7197 		if ((index & 0x1) && pp != spp) {
7198 			cnt += pp->p_share;
7199 			spp = pp;
7200 		}
7201 		index >>= 1;
7202 		sz++;
7203 	}
7204 	sfmmu_mlist_exit(pml);
7205 	return (cnt);
7206 }
7207 
7208 /*
7209  * Unload all large mappings to the pp and reset the p_szc field of every
7210  * constituent page according to the remaining mappings.
7211  *
7212  * pp must be locked SE_EXCL. Even though no other constituent pages are
7213  * locked it's legal to unload the large mappings to the pp because all
7214  * constituent pages of large locked mappings have to be locked SE_SHARED.
7215  * This means if we have SE_EXCL lock on one of constituent pages none of the
7216  * large mappings to pp are locked.
7217  *
7218  * Decrease p_szc field starting from the last constituent page and ending
7219  * with the root page. This method is used because other threads rely on the
7220  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7221  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7222  * ensures that p_szc changes of the constituent pages appears atomic for all
7223  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7224  *
7225  * This mechanism is only used for file system pages where it's not always
7226  * possible to get SE_EXCL locks on all constituent pages to demote the size
7227  * code (as is done for anonymous or kernel large pages).
7228  *
7229  * See more comments in front of sfmmu_mlspl_enter().
7230  */
7231 void
7232 hat_page_demote(page_t *pp)
7233 {
7234 	int index;
7235 	int sz;
7236 	cpuset_t cpuset;
7237 	int sync = 0;
7238 	page_t *rootpp;
7239 	struct sf_hment *sfhme;
7240 	struct sf_hment *tmphme = NULL;
7241 	struct hme_blk *hmeblkp;
7242 	uint_t pszc;
7243 	page_t *lastpp;
7244 	cpuset_t tset;
7245 	pgcnt_t npgs;
7246 	kmutex_t *pml;
7247 	kmutex_t *pmtx = NULL;
7248 
7249 	ASSERT(PAGE_EXCL(pp));
7250 	ASSERT(!PP_ISFREE(pp));
7251 	ASSERT(page_szc_lock_assert(pp));
7252 	pml = sfmmu_mlist_enter(pp);
7253 
7254 	pszc = pp->p_szc;
7255 	if (pszc == 0) {
7256 		goto out;
7257 	}
7258 
7259 	index = PP_MAPINDEX(pp) >> 1;
7260 
7261 	if (index) {
7262 		CPUSET_ZERO(cpuset);
7263 		sz = TTE64K;
7264 		sync = 1;
7265 	}
7266 
7267 	while (index) {
7268 		if (!(index & 0x1)) {
7269 			index >>= 1;
7270 			sz++;
7271 			continue;
7272 		}
7273 		ASSERT(sz <= pszc);
7274 		rootpp = PP_GROUPLEADER(pp, sz);
7275 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7276 			tmphme = sfhme->hme_next;
7277 			hmeblkp = sfmmu_hmetohblk(sfhme);
7278 			if (hme_size(sfhme) != sz) {
7279 				continue;
7280 			}
7281 			if (hmeblkp->hblk_xhat_bit) {
7282 				cmn_err(CE_PANIC,
7283 				    "hat_page_demote: xhat hmeblk");
7284 			}
7285 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7286 			CPUSET_OR(cpuset, tset);
7287 		}
7288 		if (index >>= 1) {
7289 			sz++;
7290 		}
7291 	}
7292 
7293 	ASSERT(!PP_ISMAPPED_LARGE(pp));
7294 
7295 	if (sync) {
7296 		xt_sync(cpuset);
7297 		if (PP_ISTNC(pp)) {
7298 			conv_tnc(rootpp, sz);
7299 		}
7300 	}
7301 
7302 	pmtx = sfmmu_page_enter(pp);
7303 
7304 	ASSERT(pp->p_szc == pszc);
7305 	rootpp = PP_PAGEROOT(pp);
7306 	ASSERT(rootpp->p_szc == pszc);
7307 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7308 
7309 	while (lastpp != rootpp) {
7310 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7311 		ASSERT(sz < pszc);
7312 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7313 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7314 		while (--npgs > 0) {
7315 			lastpp->p_szc = (uchar_t)sz;
7316 			lastpp = PP_PAGEPREV(lastpp);
7317 		}
7318 		if (sz) {
7319 			/*
7320 			 * make sure before current root's pszc
7321 			 * is updated all updates to constituent pages pszc
7322 			 * fields are globally visible.
7323 			 */
7324 			membar_producer();
7325 		}
7326 		lastpp->p_szc = sz;
7327 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7328 		if (lastpp != rootpp) {
7329 			lastpp = PP_PAGEPREV(lastpp);
7330 		}
7331 	}
7332 	if (sz == 0) {
7333 		/* the loop above doesn't cover this case */
7334 		rootpp->p_szc = 0;
7335 	}
7336 out:
7337 	ASSERT(pp->p_szc == 0);
7338 	if (pmtx != NULL) {
7339 		sfmmu_page_exit(pmtx);
7340 	}
7341 	sfmmu_mlist_exit(pml);
7342 }
7343 
7344 /*
7345  * Refresh the HAT ismttecnt[] element for size szc.
7346  * Caller must have set ISM busy flag to prevent mapping
7347  * lists from changing while we're traversing them.
7348  */
7349 pgcnt_t
7350 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7351 {
7352 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7353 	ism_map_t	*ism_map;
7354 	pgcnt_t		npgs = 0;
7355 	int		j;
7356 
7357 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7358 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7359 		ism_map = ism_blkp->iblk_maps;
7360 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7361 			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7362 	}
7363 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7364 	return (npgs);
7365 }
7366 
7367 /*
7368  * Yield the memory claim requirement for an address space.
7369  *
7370  * This is currently implemented as the number of bytes that have active
7371  * hardware translations that have page structures.  Therefore, it can
7372  * underestimate the traditional resident set size, eg, if the
7373  * physical page is present and the hardware translation is missing;
7374  * and it can overestimate the rss, eg, if there are active
7375  * translations to a frame buffer with page structs.
7376  * Also, it does not take sharing into account.
7377  *
7378  * Note that we don't acquire locks here since this function is most often
7379  * called from the clock thread.
7380  */
7381 size_t
7382 hat_get_mapped_size(struct hat *hat)
7383 {
7384 	size_t		assize = 0;
7385 	int 		i;
7386 
7387 	if (hat == NULL)
7388 		return (0);
7389 
7390 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7391 
7392 	for (i = 0; i < mmu_page_sizes; i++)
7393 		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7394 
7395 	if (hat->sfmmu_iblk == NULL)
7396 		return (assize);
7397 
7398 	for (i = 0; i < mmu_page_sizes; i++)
7399 		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7400 
7401 	return (assize);
7402 }
7403 
7404 int
7405 hat_stats_enable(struct hat *hat)
7406 {
7407 	hatlock_t	*hatlockp;
7408 
7409 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7410 
7411 	hatlockp = sfmmu_hat_enter(hat);
7412 	hat->sfmmu_rmstat++;
7413 	sfmmu_hat_exit(hatlockp);
7414 	return (1);
7415 }
7416 
7417 void
7418 hat_stats_disable(struct hat *hat)
7419 {
7420 	hatlock_t	*hatlockp;
7421 
7422 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7423 
7424 	hatlockp = sfmmu_hat_enter(hat);
7425 	hat->sfmmu_rmstat--;
7426 	sfmmu_hat_exit(hatlockp);
7427 }
7428 
7429 /*
7430  * Routines for entering or removing  ourselves from the
7431  * ism_hat's mapping list.
7432  */
7433 static void
7434 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7435 {
7436 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7437 
7438 	iment->iment_prev = NULL;
7439 	iment->iment_next = ism_hat->sfmmu_iment;
7440 	if (ism_hat->sfmmu_iment) {
7441 		ism_hat->sfmmu_iment->iment_prev = iment;
7442 	}
7443 	ism_hat->sfmmu_iment = iment;
7444 }
7445 
7446 static void
7447 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7448 {
7449 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7450 
7451 	if (ism_hat->sfmmu_iment == NULL) {
7452 		panic("ism map entry remove - no entries");
7453 	}
7454 
7455 	if (iment->iment_prev) {
7456 		ASSERT(ism_hat->sfmmu_iment != iment);
7457 		iment->iment_prev->iment_next = iment->iment_next;
7458 	} else {
7459 		ASSERT(ism_hat->sfmmu_iment == iment);
7460 		ism_hat->sfmmu_iment = iment->iment_next;
7461 	}
7462 
7463 	if (iment->iment_next) {
7464 		iment->iment_next->iment_prev = iment->iment_prev;
7465 	}
7466 
7467 	/*
7468 	 * zero out the entry
7469 	 */
7470 	iment->iment_next = NULL;
7471 	iment->iment_prev = NULL;
7472 	iment->iment_hat =  NULL;
7473 }
7474 
7475 /*
7476  * Hat_share()/unshare() return an (non-zero) error
7477  * when saddr and daddr are not properly aligned.
7478  *
7479  * The top level mapping element determines the alignment
7480  * requirement for saddr and daddr, depending on different
7481  * architectures.
7482  *
7483  * When hat_share()/unshare() are not supported,
7484  * HATOP_SHARE()/UNSHARE() return 0
7485  */
7486 int
7487 hat_share(struct hat *sfmmup, caddr_t addr,
7488 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7489 {
7490 	ism_blk_t	*ism_blkp;
7491 	ism_blk_t	*new_iblk;
7492 	ism_map_t 	*ism_map;
7493 	ism_ment_t	*ism_ment;
7494 	int		i, added;
7495 	hatlock_t	*hatlockp;
7496 	int		reload_mmu = 0;
7497 	uint_t		ismshift = page_get_shift(ismszc);
7498 	size_t		ismpgsz = page_get_pagesize(ismszc);
7499 	uint_t		ismmask = (uint_t)ismpgsz - 1;
7500 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7501 	ushort_t	ismhatflag;
7502 
7503 #ifdef DEBUG
7504 	caddr_t		eaddr = addr + len;
7505 #endif /* DEBUG */
7506 
7507 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7508 	ASSERT(sptaddr == ISMID_STARTADDR);
7509 	/*
7510 	 * Check the alignment.
7511 	 */
7512 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7513 		return (EINVAL);
7514 
7515 	/*
7516 	 * Check size alignment.
7517 	 */
7518 	if (!ISM_ALIGNED(ismshift, len))
7519 		return (EINVAL);
7520 
7521 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7522 
7523 	/*
7524 	 * Allocate ism_ment for the ism_hat's mapping list, and an
7525 	 * ism map blk in case we need one.  We must do our
7526 	 * allocations before acquiring locks to prevent a deadlock
7527 	 * in the kmem allocator on the mapping list lock.
7528 	 */
7529 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7530 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7531 
7532 	/*
7533 	 * Serialize ISM mappings with the ISM busy flag, and also the
7534 	 * trap handlers.
7535 	 */
7536 	sfmmu_ismhat_enter(sfmmup, 0);
7537 
7538 	/*
7539 	 * Allocate an ism map blk if necessary.
7540 	 */
7541 	if (sfmmup->sfmmu_iblk == NULL) {
7542 		sfmmup->sfmmu_iblk = new_iblk;
7543 		bzero(new_iblk, sizeof (*new_iblk));
7544 		new_iblk->iblk_nextpa = (uint64_t)-1;
7545 		membar_stst();	/* make sure next ptr visible to all CPUs */
7546 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7547 		reload_mmu = 1;
7548 		new_iblk = NULL;
7549 	}
7550 
7551 #ifdef DEBUG
7552 	/*
7553 	 * Make sure mapping does not already exist.
7554 	 */
7555 	ism_blkp = sfmmup->sfmmu_iblk;
7556 	while (ism_blkp) {
7557 		ism_map = ism_blkp->iblk_maps;
7558 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7559 			if ((addr >= ism_start(ism_map[i]) &&
7560 			    addr < ism_end(ism_map[i])) ||
7561 			    eaddr > ism_start(ism_map[i]) &&
7562 			    eaddr <= ism_end(ism_map[i])) {
7563 				panic("sfmmu_share: Already mapped!");
7564 			}
7565 		}
7566 		ism_blkp = ism_blkp->iblk_next;
7567 	}
7568 #endif /* DEBUG */
7569 
7570 	ASSERT(ismszc >= TTE4M);
7571 	if (ismszc == TTE4M) {
7572 		ismhatflag = HAT_4M_FLAG;
7573 	} else if (ismszc == TTE32M) {
7574 		ismhatflag = HAT_32M_FLAG;
7575 	} else if (ismszc == TTE256M) {
7576 		ismhatflag = HAT_256M_FLAG;
7577 	}
7578 	/*
7579 	 * Add mapping to first available mapping slot.
7580 	 */
7581 	ism_blkp = sfmmup->sfmmu_iblk;
7582 	added = 0;
7583 	while (!added) {
7584 		ism_map = ism_blkp->iblk_maps;
7585 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7586 			if (ism_map[i].imap_ismhat == NULL) {
7587 
7588 				ism_map[i].imap_ismhat = ism_hatid;
7589 				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7590 				ism_map[i].imap_hatflags = ismhatflag;
7591 				ism_map[i].imap_sz_mask = ismmask;
7592 				/*
7593 				 * imap_seg is checked in ISM_CHECK to see if
7594 				 * non-NULL, then other info assumed valid.
7595 				 */
7596 				membar_stst();
7597 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7598 				ism_map[i].imap_ment = ism_ment;
7599 
7600 				/*
7601 				 * Now add ourselves to the ism_hat's
7602 				 * mapping list.
7603 				 */
7604 				ism_ment->iment_hat = sfmmup;
7605 				ism_ment->iment_base_va = addr;
7606 				ism_hatid->sfmmu_ismhat = 1;
7607 				ism_hatid->sfmmu_flags = 0;
7608 				mutex_enter(&ism_mlist_lock);
7609 				iment_add(ism_ment, ism_hatid);
7610 				mutex_exit(&ism_mlist_lock);
7611 				added = 1;
7612 				break;
7613 			}
7614 		}
7615 		if (!added && ism_blkp->iblk_next == NULL) {
7616 			ism_blkp->iblk_next = new_iblk;
7617 			new_iblk = NULL;
7618 			bzero(ism_blkp->iblk_next,
7619 			    sizeof (*ism_blkp->iblk_next));
7620 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7621 			membar_stst();
7622 			ism_blkp->iblk_nextpa =
7623 				va_to_pa((caddr_t)ism_blkp->iblk_next);
7624 		}
7625 		ism_blkp = ism_blkp->iblk_next;
7626 	}
7627 
7628 	/*
7629 	 * Update our counters for this sfmmup's ism mappings.
7630 	 */
7631 	for (i = 0; i <= ismszc; i++) {
7632 		if (!(disable_ism_large_pages & (1 << i)))
7633 			(void) ism_tsb_entries(sfmmup, i);
7634 	}
7635 
7636 	hatlockp = sfmmu_hat_enter(sfmmup);
7637 
7638 	/*
7639 	 * For ISM and DISM we do not support 512K pages, so we only
7640 	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7641 	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7642 	 */
7643 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7644 
7645 	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7646 		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7647 
7648 	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7649 		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7650 
7651 	/*
7652 	 * If we updated the ismblkpa for this HAT or we need
7653 	 * to start searching the 256M or 32M or 4M hash, we must
7654 	 * make sure all CPUs running this process reload their
7655 	 * tsbmiss area.  Otherwise they will fail to load the mappings
7656 	 * in the tsbmiss handler and will loop calling pagefault().
7657 	 */
7658 	switch (ismszc) {
7659 	case TTE256M:
7660 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7661 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7662 			sfmmu_sync_mmustate(sfmmup);
7663 		}
7664 		break;
7665 	case TTE32M:
7666 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7667 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7668 			sfmmu_sync_mmustate(sfmmup);
7669 		}
7670 		break;
7671 	case TTE4M:
7672 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7673 			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7674 			sfmmu_sync_mmustate(sfmmup);
7675 		}
7676 		break;
7677 	default:
7678 		break;
7679 	}
7680 
7681 	/*
7682 	 * Now we can drop the locks.
7683 	 */
7684 	sfmmu_ismhat_exit(sfmmup, 1);
7685 	sfmmu_hat_exit(hatlockp);
7686 
7687 	/*
7688 	 * Free up ismblk if we didn't use it.
7689 	 */
7690 	if (new_iblk != NULL)
7691 		kmem_cache_free(ism_blk_cache, new_iblk);
7692 
7693 	/*
7694 	 * Check TSB and TLB page sizes.
7695 	 */
7696 	sfmmu_check_page_sizes(sfmmup, 1);
7697 
7698 	return (0);
7699 }
7700 
7701 /*
7702  * hat_unshare removes exactly one ism_map from
7703  * this process's as.  It expects multiple calls
7704  * to hat_unshare for multiple shm segments.
7705  */
7706 void
7707 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7708 {
7709 	ism_map_t 	*ism_map;
7710 	ism_ment_t	*free_ment = NULL;
7711 	ism_blk_t	*ism_blkp;
7712 	struct hat	*ism_hatid;
7713 	struct ctx	*ctx;
7714 	int 		cnum, found, i;
7715 	hatlock_t	*hatlockp;
7716 	struct tsb_info	*tsbinfo;
7717 	uint_t		ismshift = page_get_shift(ismszc);
7718 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7719 
7720 	ASSERT(ISM_ALIGNED(ismshift, addr));
7721 	ASSERT(ISM_ALIGNED(ismshift, len));
7722 	ASSERT(sfmmup != NULL);
7723 	ASSERT(sfmmup != ksfmmup);
7724 
7725 	if (sfmmup->sfmmu_xhat_provider) {
7726 		XHAT_UNSHARE(sfmmup, addr, len);
7727 		return;
7728 	} else {
7729 		/*
7730 		 * This must be a CPU HAT. If the address space has
7731 		 * XHATs attached, inform all XHATs that ISM segment
7732 		 * is going away
7733 		 */
7734 		ASSERT(sfmmup->sfmmu_as != NULL);
7735 		if (sfmmup->sfmmu_as->a_xhat != NULL)
7736 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7737 	}
7738 
7739 	/*
7740 	 * Make sure that during the entire time ISM mappings are removed,
7741 	 * the trap handlers serialize behind us, and that no one else
7742 	 * can be mucking with ISM mappings.  This also lets us get away
7743 	 * with not doing expensive cross calls to flush the TLB -- we
7744 	 * just discard the context, flush the entire TSB, and call it
7745 	 * a day.
7746 	 */
7747 	sfmmu_ismhat_enter(sfmmup, 0);
7748 
7749 	/*
7750 	 * Remove the mapping.
7751 	 *
7752 	 * We can't have any holes in the ism map.
7753 	 * The tsb miss code while searching the ism map will
7754 	 * stop on an empty map slot.  So we must move
7755 	 * everyone past the hole up 1 if any.
7756 	 *
7757 	 * Also empty ism map blks are not freed until the
7758 	 * process exits. This is to prevent a MT race condition
7759 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7760 	 */
7761 	found = 0;
7762 	ism_blkp = sfmmup->sfmmu_iblk;
7763 	while (!found && ism_blkp) {
7764 		ism_map = ism_blkp->iblk_maps;
7765 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7766 			if (addr == ism_start(ism_map[i]) &&
7767 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7768 				found = 1;
7769 				break;
7770 			}
7771 		}
7772 		if (!found)
7773 			ism_blkp = ism_blkp->iblk_next;
7774 	}
7775 
7776 	if (found) {
7777 		ism_hatid = ism_map[i].imap_ismhat;
7778 		ASSERT(ism_hatid != NULL);
7779 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7780 		ASSERT(ism_hatid->sfmmu_cnum == INVALID_CONTEXT);
7781 
7782 		/*
7783 		 * First remove ourselves from the ism mapping list.
7784 		 */
7785 		mutex_enter(&ism_mlist_lock);
7786 		iment_sub(ism_map[i].imap_ment, ism_hatid);
7787 		mutex_exit(&ism_mlist_lock);
7788 		free_ment = ism_map[i].imap_ment;
7789 
7790 		/*
7791 		 * Now gurantee that any other cpu
7792 		 * that tries to process an ISM miss
7793 		 * will go to tl=0.
7794 		 */
7795 		hatlockp = sfmmu_hat_enter(sfmmup);
7796 		ctx = sfmmutoctx(sfmmup);
7797 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
7798 		cnum = sfmmutoctxnum(sfmmup);
7799 
7800 		if (cnum != INVALID_CONTEXT) {
7801 			sfmmu_tlb_swap_ctx(sfmmup, ctx);
7802 		}
7803 		rw_exit(&ctx->ctx_rwlock);
7804 		sfmmu_hat_exit(hatlockp);
7805 
7806 		/*
7807 		 * We delete the ism map by copying
7808 		 * the next map over the current one.
7809 		 * We will take the next one in the maps
7810 		 * array or from the next ism_blk.
7811 		 */
7812 		while (ism_blkp) {
7813 			ism_map = ism_blkp->iblk_maps;
7814 			while (i < (ISM_MAP_SLOTS - 1)) {
7815 				ism_map[i] = ism_map[i + 1];
7816 				i++;
7817 			}
7818 			/* i == (ISM_MAP_SLOTS - 1) */
7819 			ism_blkp = ism_blkp->iblk_next;
7820 			if (ism_blkp) {
7821 				ism_map[i] = ism_blkp->iblk_maps[0];
7822 				i = 0;
7823 			} else {
7824 				ism_map[i].imap_seg = 0;
7825 				ism_map[i].imap_vb_shift = 0;
7826 				ism_map[i].imap_hatflags = 0;
7827 				ism_map[i].imap_sz_mask = 0;
7828 				ism_map[i].imap_ismhat = NULL;
7829 				ism_map[i].imap_ment = NULL;
7830 			}
7831 		}
7832 
7833 		/*
7834 		 * Now flush entire TSB for the process, since
7835 		 * demapping page by page can be too expensive.
7836 		 * We don't have to flush the TLB here anymore
7837 		 * since we switch to a new TLB ctx instead.
7838 		 * Also, there is no need to flush if the process
7839 		 * is exiting since the TSB will be freed later.
7840 		 */
7841 		if (!sfmmup->sfmmu_free) {
7842 			hatlockp = sfmmu_hat_enter(sfmmup);
7843 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
7844 			    tsbinfo = tsbinfo->tsb_next) {
7845 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
7846 					continue;
7847 				sfmmu_inv_tsb(tsbinfo->tsb_va,
7848 				    TSB_BYTES(tsbinfo->tsb_szc));
7849 			}
7850 			sfmmu_hat_exit(hatlockp);
7851 		}
7852 	}
7853 
7854 	/*
7855 	 * Update our counters for this sfmmup's ism mappings.
7856 	 */
7857 	for (i = 0; i <= ismszc; i++) {
7858 		if (!(disable_ism_large_pages & (1 << i)))
7859 			(void) ism_tsb_entries(sfmmup, i);
7860 	}
7861 
7862 	sfmmu_ismhat_exit(sfmmup, 0);
7863 
7864 	/*
7865 	 * We must do our freeing here after dropping locks
7866 	 * to prevent a deadlock in the kmem allocator on the
7867 	 * mapping list lock.
7868 	 */
7869 	if (free_ment != NULL)
7870 		kmem_cache_free(ism_ment_cache, free_ment);
7871 
7872 	/*
7873 	 * Check TSB and TLB page sizes if the process isn't exiting.
7874 	 */
7875 	if (!sfmmup->sfmmu_free)
7876 		sfmmu_check_page_sizes(sfmmup, 0);
7877 }
7878 
7879 /* ARGSUSED */
7880 static int
7881 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
7882 {
7883 	/* void *buf is sfmmu_t pointer */
7884 	return (0);
7885 }
7886 
7887 /* ARGSUSED */
7888 static void
7889 sfmmu_idcache_destructor(void *buf, void *cdrarg)
7890 {
7891 	/* void *buf is sfmmu_t pointer */
7892 }
7893 
7894 /*
7895  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
7896  * field to be the pa of this hmeblk
7897  */
7898 /* ARGSUSED */
7899 static int
7900 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
7901 {
7902 	struct hme_blk *hmeblkp;
7903 
7904 	bzero(buf, (size_t)cdrarg);
7905 	hmeblkp = (struct hme_blk *)buf;
7906 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
7907 
7908 #ifdef	HBLK_TRACE
7909 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
7910 #endif	/* HBLK_TRACE */
7911 
7912 	return (0);
7913 }
7914 
7915 /* ARGSUSED */
7916 static void
7917 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
7918 {
7919 
7920 #ifdef	HBLK_TRACE
7921 
7922 	struct hme_blk *hmeblkp;
7923 
7924 	hmeblkp = (struct hme_blk *)buf;
7925 	mutex_destroy(&hmeblkp->hblk_audit_lock);
7926 
7927 #endif	/* HBLK_TRACE */
7928 }
7929 
7930 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
7931 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
7932 /*
7933  * The kmem allocator will callback into our reclaim routine when the system
7934  * is running low in memory.  We traverse the hash and free up all unused but
7935  * still cached hme_blks.  We also traverse the free list and free them up
7936  * as well.
7937  */
7938 /*ARGSUSED*/
7939 static void
7940 sfmmu_hblkcache_reclaim(void *cdrarg)
7941 {
7942 	int i;
7943 	uint64_t hblkpa, prevpa, nx_pa;
7944 	struct hmehash_bucket *hmebp;
7945 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
7946 	static struct hmehash_bucket *uhmehash_reclaim_hand;
7947 	static struct hmehash_bucket *khmehash_reclaim_hand;
7948 	struct hme_blk *list = NULL;
7949 
7950 	hmebp = uhmehash_reclaim_hand;
7951 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
7952 		uhmehash_reclaim_hand = hmebp = uhme_hash;
7953 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
7954 
7955 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
7956 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
7957 			hmeblkp = hmebp->hmeblkp;
7958 			hblkpa = hmebp->hmeh_nextpa;
7959 			prevpa = 0;
7960 			pr_hblk = NULL;
7961 			while (hmeblkp) {
7962 				nx_hblk = hmeblkp->hblk_next;
7963 				nx_pa = hmeblkp->hblk_nextpa;
7964 				if (!hmeblkp->hblk_vcnt &&
7965 				    !hmeblkp->hblk_hmecnt) {
7966 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
7967 						prevpa, pr_hblk);
7968 					sfmmu_hblk_free(hmebp, hmeblkp,
7969 					    hblkpa, &list);
7970 				} else {
7971 					pr_hblk = hmeblkp;
7972 					prevpa = hblkpa;
7973 				}
7974 				hmeblkp = nx_hblk;
7975 				hblkpa = nx_pa;
7976 			}
7977 			SFMMU_HASH_UNLOCK(hmebp);
7978 		}
7979 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
7980 			hmebp = uhme_hash;
7981 	}
7982 
7983 	hmebp = khmehash_reclaim_hand;
7984 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
7985 		khmehash_reclaim_hand = hmebp = khme_hash;
7986 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
7987 
7988 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
7989 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
7990 			hmeblkp = hmebp->hmeblkp;
7991 			hblkpa = hmebp->hmeh_nextpa;
7992 			prevpa = 0;
7993 			pr_hblk = NULL;
7994 			while (hmeblkp) {
7995 				nx_hblk = hmeblkp->hblk_next;
7996 				nx_pa = hmeblkp->hblk_nextpa;
7997 				if (!hmeblkp->hblk_vcnt &&
7998 				    !hmeblkp->hblk_hmecnt) {
7999 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8000 						prevpa, pr_hblk);
8001 					sfmmu_hblk_free(hmebp, hmeblkp,
8002 					    hblkpa, &list);
8003 				} else {
8004 					pr_hblk = hmeblkp;
8005 					prevpa = hblkpa;
8006 				}
8007 				hmeblkp = nx_hblk;
8008 				hblkpa = nx_pa;
8009 			}
8010 			SFMMU_HASH_UNLOCK(hmebp);
8011 		}
8012 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
8013 			hmebp = khme_hash;
8014 	}
8015 	sfmmu_hblks_list_purge(&list);
8016 }
8017 
8018 /*
8019  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
8020  * same goes for sfmmu_get_addrvcolor().
8021  *
8022  * This function will return the virtual color for the specified page. The
8023  * virtual color corresponds to this page current mapping or its last mapping.
8024  * It is used by memory allocators to choose addresses with the correct
8025  * alignment so vac consistency is automatically maintained.  If the page
8026  * has no color it returns -1.
8027  */
8028 int
8029 sfmmu_get_ppvcolor(struct page *pp)
8030 {
8031 	int color;
8032 
8033 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8034 		return (-1);
8035 	}
8036 	color = PP_GET_VCOLOR(pp);
8037 	ASSERT(color < mmu_btop(shm_alignment));
8038 	return (color);
8039 }
8040 
8041 /*
8042  * This function will return the desired alignment for vac consistency
8043  * (vac color) given a virtual address.  If no vac is present it returns -1.
8044  */
8045 int
8046 sfmmu_get_addrvcolor(caddr_t vaddr)
8047 {
8048 	if (cache & CACHE_VAC) {
8049 		return (addr_to_vcolor(vaddr));
8050 	} else {
8051 		return (-1);
8052 	}
8053 
8054 }
8055 
8056 /*
8057  * Check for conflicts.
8058  * A conflict exists if the new and existent mappings do not match in
8059  * their "shm_alignment fields. If conflicts exist, the existant mappings
8060  * are flushed unless one of them is locked. If one of them is locked, then
8061  * the mappings are flushed and converted to non-cacheable mappings.
8062  */
8063 static void
8064 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8065 {
8066 	struct hat *tmphat;
8067 	struct sf_hment *sfhmep, *tmphme = NULL;
8068 	struct hme_blk *hmeblkp;
8069 	int vcolor;
8070 	tte_t tte;
8071 
8072 	ASSERT(sfmmu_mlist_held(pp));
8073 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8074 
8075 	vcolor = addr_to_vcolor(addr);
8076 	if (PP_NEWPAGE(pp)) {
8077 		PP_SET_VCOLOR(pp, vcolor);
8078 		return;
8079 	}
8080 
8081 	if (PP_GET_VCOLOR(pp) == vcolor) {
8082 		return;
8083 	}
8084 
8085 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8086 		/*
8087 		 * Previous user of page had a different color
8088 		 * but since there are no current users
8089 		 * we just flush the cache and change the color.
8090 		 */
8091 		SFMMU_STAT(sf_pgcolor_conflict);
8092 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8093 		PP_SET_VCOLOR(pp, vcolor);
8094 		return;
8095 	}
8096 
8097 	/*
8098 	 * If we get here we have a vac conflict with a current
8099 	 * mapping.  VAC conflict policy is as follows.
8100 	 * - The default is to unload the other mappings unless:
8101 	 * - If we have a large mapping we uncache the page.
8102 	 * We need to uncache the rest of the large page too.
8103 	 * - If any of the mappings are locked we uncache the page.
8104 	 * - If the requested mapping is inconsistent
8105 	 * with another mapping and that mapping
8106 	 * is in the same address space we have to
8107 	 * make it non-cached.  The default thing
8108 	 * to do is unload the inconsistent mapping
8109 	 * but if they are in the same address space
8110 	 * we run the risk of unmapping the pc or the
8111 	 * stack which we will use as we return to the user,
8112 	 * in which case we can then fault on the thing
8113 	 * we just unloaded and get into an infinite loop.
8114 	 */
8115 	if (PP_ISMAPPED_LARGE(pp)) {
8116 		int sz;
8117 
8118 		/*
8119 		 * Existing mapping is for big pages. We don't unload
8120 		 * existing big mappings to satisfy new mappings.
8121 		 * Always convert all mappings to TNC.
8122 		 */
8123 		sz = fnd_mapping_sz(pp);
8124 		pp = PP_GROUPLEADER(pp, sz);
8125 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8126 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8127 			TTEPAGES(sz));
8128 
8129 		return;
8130 	}
8131 
8132 	/*
8133 	 * check if any mapping is in same as or if it is locked
8134 	 * since in that case we need to uncache.
8135 	 */
8136 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8137 		tmphme = sfhmep->hme_next;
8138 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8139 		if (hmeblkp->hblk_xhat_bit)
8140 			continue;
8141 		tmphat = hblktosfmmu(hmeblkp);
8142 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8143 		ASSERT(TTE_IS_VALID(&tte));
8144 		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8145 			/*
8146 			 * We have an uncache conflict
8147 			 */
8148 			SFMMU_STAT(sf_uncache_conflict);
8149 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8150 			return;
8151 		}
8152 	}
8153 
8154 	/*
8155 	 * We have an unload conflict
8156 	 * We have already checked for LARGE mappings, therefore
8157 	 * the remaining mapping(s) must be TTE8K.
8158 	 */
8159 	SFMMU_STAT(sf_unload_conflict);
8160 
8161 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8162 		tmphme = sfhmep->hme_next;
8163 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8164 		if (hmeblkp->hblk_xhat_bit)
8165 			continue;
8166 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8167 	}
8168 
8169 	if (PP_ISMAPPED_KPM(pp))
8170 		sfmmu_kpm_vac_unload(pp, addr);
8171 
8172 	/*
8173 	 * Unloads only do TLB flushes so we need to flush the
8174 	 * cache here.
8175 	 */
8176 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8177 	PP_SET_VCOLOR(pp, vcolor);
8178 }
8179 
8180 /*
8181  * Whenever a mapping is unloaded and the page is in TNC state,
8182  * we see if the page can be made cacheable again. 'pp' is
8183  * the page that we just unloaded a mapping from, the size
8184  * of mapping that was unloaded is 'ottesz'.
8185  * Remark:
8186  * The recache policy for mpss pages can leave a performance problem
8187  * under the following circumstances:
8188  * . A large page in uncached mode has just been unmapped.
8189  * . All constituent pages are TNC due to a conflicting small mapping.
8190  * . There are many other, non conflicting, small mappings around for
8191  *   a lot of the constituent pages.
8192  * . We're called w/ the "old" groupleader page and the old ottesz,
8193  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8194  *   we end up w/ TTE8K or npages == 1.
8195  * . We call tst_tnc w/ the old groupleader only, and if there is no
8196  *   conflict, we re-cache only this page.
8197  * . All other small mappings are not checked and will be left in TNC mode.
8198  * The problem is not very serious because:
8199  * . mpss is actually only defined for heap and stack, so the probability
8200  *   is not very high that a large page mapping exists in parallel to a small
8201  *   one (this is possible, but seems to be bad programming style in the
8202  *   appl).
8203  * . The problem gets a little bit more serious, when those TNC pages
8204  *   have to be mapped into kernel space, e.g. for networking.
8205  * . When VAC alias conflicts occur in applications, this is regarded
8206  *   as an application bug. So if kstat's show them, the appl should
8207  *   be changed anyway.
8208  */
8209 static void
8210 conv_tnc(page_t *pp, int ottesz)
8211 {
8212 	int cursz, dosz;
8213 	pgcnt_t curnpgs, dopgs;
8214 	pgcnt_t pg64k;
8215 	page_t *pp2;
8216 
8217 	/*
8218 	 * Determine how big a range we check for TNC and find
8219 	 * leader page. cursz is the size of the biggest
8220 	 * mapping that still exist on 'pp'.
8221 	 */
8222 	if (PP_ISMAPPED_LARGE(pp)) {
8223 		cursz = fnd_mapping_sz(pp);
8224 	} else {
8225 		cursz = TTE8K;
8226 	}
8227 
8228 	if (ottesz >= cursz) {
8229 		dosz = ottesz;
8230 		pp2 = pp;
8231 	} else {
8232 		dosz = cursz;
8233 		pp2 = PP_GROUPLEADER(pp, dosz);
8234 	}
8235 
8236 	pg64k = TTEPAGES(TTE64K);
8237 	dopgs = TTEPAGES(dosz);
8238 
8239 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8240 
8241 	while (dopgs != 0) {
8242 		curnpgs = TTEPAGES(cursz);
8243 		if (tst_tnc(pp2, curnpgs)) {
8244 			SFMMU_STAT_ADD(sf_recache, curnpgs);
8245 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8246 				curnpgs);
8247 		}
8248 
8249 		ASSERT(dopgs >= curnpgs);
8250 		dopgs -= curnpgs;
8251 
8252 		if (dopgs == 0) {
8253 			break;
8254 		}
8255 
8256 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8257 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8258 			cursz = fnd_mapping_sz(pp2);
8259 		} else {
8260 			cursz = TTE8K;
8261 		}
8262 	}
8263 }
8264 
8265 /*
8266  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8267  * returns 0 otherwise. Note that oaddr argument is valid for only
8268  * 8k pages.
8269  */
8270 static int
8271 tst_tnc(page_t *pp, pgcnt_t npages)
8272 {
8273 	struct	sf_hment *sfhme;
8274 	struct	hme_blk *hmeblkp;
8275 	tte_t	tte;
8276 	caddr_t	vaddr;
8277 	int	clr_valid = 0;
8278 	int 	color, color1, bcolor;
8279 	int	i, ncolors;
8280 
8281 	ASSERT(pp != NULL);
8282 	ASSERT(!(cache & CACHE_WRITEBACK));
8283 
8284 	if (npages > 1) {
8285 		ncolors = CACHE_NUM_COLOR;
8286 	}
8287 
8288 	for (i = 0; i < npages; i++) {
8289 		ASSERT(sfmmu_mlist_held(pp));
8290 		ASSERT(PP_ISTNC(pp));
8291 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8292 
8293 		if (PP_ISPNC(pp)) {
8294 			return (0);
8295 		}
8296 
8297 		clr_valid = 0;
8298 		if (PP_ISMAPPED_KPM(pp)) {
8299 			caddr_t kpmvaddr;
8300 
8301 			ASSERT(kpm_enable);
8302 			kpmvaddr = hat_kpm_page2va(pp, 1);
8303 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8304 			color1 = addr_to_vcolor(kpmvaddr);
8305 			clr_valid = 1;
8306 		}
8307 
8308 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8309 			hmeblkp = sfmmu_hmetohblk(sfhme);
8310 			if (hmeblkp->hblk_xhat_bit)
8311 				continue;
8312 
8313 			sfmmu_copytte(&sfhme->hme_tte, &tte);
8314 			ASSERT(TTE_IS_VALID(&tte));
8315 
8316 			vaddr = tte_to_vaddr(hmeblkp, tte);
8317 			color = addr_to_vcolor(vaddr);
8318 
8319 			if (npages > 1) {
8320 				/*
8321 				 * If there is a big mapping, make sure
8322 				 * 8K mapping is consistent with the big
8323 				 * mapping.
8324 				 */
8325 				bcolor = i % ncolors;
8326 				if (color != bcolor) {
8327 					return (0);
8328 				}
8329 			}
8330 			if (!clr_valid) {
8331 				clr_valid = 1;
8332 				color1 = color;
8333 			}
8334 
8335 			if (color1 != color) {
8336 				return (0);
8337 			}
8338 		}
8339 
8340 		pp = PP_PAGENEXT(pp);
8341 	}
8342 
8343 	return (1);
8344 }
8345 
8346 static void
8347 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8348 	pgcnt_t npages)
8349 {
8350 	kmutex_t *pmtx;
8351 	int i, ncolors, bcolor;
8352 	kpm_hlk_t *kpmp;
8353 	cpuset_t cpuset;
8354 
8355 	ASSERT(pp != NULL);
8356 	ASSERT(!(cache & CACHE_WRITEBACK));
8357 
8358 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8359 	pmtx = sfmmu_page_enter(pp);
8360 
8361 	/*
8362 	 * Fast path caching single unmapped page
8363 	 */
8364 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8365 	    flags == HAT_CACHE) {
8366 		PP_CLRTNC(pp);
8367 		PP_CLRPNC(pp);
8368 		sfmmu_page_exit(pmtx);
8369 		sfmmu_kpm_kpmp_exit(kpmp);
8370 		return;
8371 	}
8372 
8373 	/*
8374 	 * We need to capture all cpus in order to change cacheability
8375 	 * because we can't allow one cpu to access the same physical
8376 	 * page using a cacheable and a non-cachebale mapping at the same
8377 	 * time. Since we may end up walking the ism mapping list
8378 	 * have to grab it's lock now since we can't after all the
8379 	 * cpus have been captured.
8380 	 */
8381 	sfmmu_hat_lock_all();
8382 	mutex_enter(&ism_mlist_lock);
8383 	kpreempt_disable();
8384 	cpuset = cpu_ready_set;
8385 	xc_attention(cpuset);
8386 
8387 	if (npages > 1) {
8388 		/*
8389 		 * Make sure all colors are flushed since the
8390 		 * sfmmu_page_cache() only flushes one color-
8391 		 * it does not know big pages.
8392 		 */
8393 		ncolors = CACHE_NUM_COLOR;
8394 		if (flags & HAT_TMPNC) {
8395 			for (i = 0; i < ncolors; i++) {
8396 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8397 			}
8398 			cache_flush_flag = CACHE_NO_FLUSH;
8399 		}
8400 	}
8401 
8402 	for (i = 0; i < npages; i++) {
8403 
8404 		ASSERT(sfmmu_mlist_held(pp));
8405 
8406 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8407 
8408 			if (npages > 1) {
8409 				bcolor = i % ncolors;
8410 			} else {
8411 				bcolor = NO_VCOLOR;
8412 			}
8413 
8414 			sfmmu_page_cache(pp, flags, cache_flush_flag,
8415 			    bcolor);
8416 		}
8417 
8418 		pp = PP_PAGENEXT(pp);
8419 	}
8420 
8421 	xt_sync(cpuset);
8422 	xc_dismissed(cpuset);
8423 	mutex_exit(&ism_mlist_lock);
8424 	sfmmu_hat_unlock_all();
8425 	sfmmu_page_exit(pmtx);
8426 	sfmmu_kpm_kpmp_exit(kpmp);
8427 	kpreempt_enable();
8428 }
8429 
8430 /*
8431  * This function changes the virtual cacheability of all mappings to a
8432  * particular page.  When changing from uncache to cacheable the mappings will
8433  * only be changed if all of them have the same virtual color.
8434  * We need to flush the cache in all cpus.  It is possible that
8435  * a process referenced a page as cacheable but has sinced exited
8436  * and cleared the mapping list.  We still to flush it but have no
8437  * state so all cpus is the only alternative.
8438  */
8439 static void
8440 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8441 {
8442 	struct	sf_hment *sfhme;
8443 	struct	hme_blk *hmeblkp;
8444 	sfmmu_t *sfmmup;
8445 	tte_t	tte, ttemod;
8446 	caddr_t	vaddr;
8447 	int	ret, color;
8448 	pfn_t	pfn;
8449 
8450 	color = bcolor;
8451 	pfn = pp->p_pagenum;
8452 
8453 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8454 
8455 		hmeblkp = sfmmu_hmetohblk(sfhme);
8456 
8457 		if (hmeblkp->hblk_xhat_bit)
8458 			continue;
8459 
8460 		sfmmu_copytte(&sfhme->hme_tte, &tte);
8461 		ASSERT(TTE_IS_VALID(&tte));
8462 		vaddr = tte_to_vaddr(hmeblkp, tte);
8463 		color = addr_to_vcolor(vaddr);
8464 
8465 #ifdef DEBUG
8466 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8467 			ASSERT(color == bcolor);
8468 		}
8469 #endif
8470 
8471 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8472 
8473 		ttemod = tte;
8474 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8475 			TTE_CLR_VCACHEABLE(&ttemod);
8476 		} else {	/* flags & HAT_CACHE */
8477 			TTE_SET_VCACHEABLE(&ttemod);
8478 		}
8479 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8480 		if (ret < 0) {
8481 			/*
8482 			 * Since all cpus are captured modifytte should not
8483 			 * fail.
8484 			 */
8485 			panic("sfmmu_page_cache: write to tte failed");
8486 		}
8487 
8488 		sfmmup = hblktosfmmu(hmeblkp);
8489 		if (cache_flush_flag == CACHE_FLUSH) {
8490 			/*
8491 			 * Flush TSBs, TLBs and caches
8492 			 */
8493 			if (sfmmup->sfmmu_ismhat) {
8494 				if (flags & HAT_CACHE) {
8495 					SFMMU_STAT(sf_ism_recache);
8496 				} else {
8497 					SFMMU_STAT(sf_ism_uncache);
8498 				}
8499 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8500 				    pfn, CACHE_FLUSH);
8501 			} else {
8502 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8503 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8504 			}
8505 
8506 			/*
8507 			 * all cache entries belonging to this pfn are
8508 			 * now flushed.
8509 			 */
8510 			cache_flush_flag = CACHE_NO_FLUSH;
8511 		} else {
8512 
8513 			/*
8514 			 * Flush only TSBs and TLBs.
8515 			 */
8516 			if (sfmmup->sfmmu_ismhat) {
8517 				if (flags & HAT_CACHE) {
8518 					SFMMU_STAT(sf_ism_recache);
8519 				} else {
8520 					SFMMU_STAT(sf_ism_uncache);
8521 				}
8522 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8523 				    pfn, CACHE_NO_FLUSH);
8524 			} else {
8525 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8526 			}
8527 		}
8528 	}
8529 
8530 	if (PP_ISMAPPED_KPM(pp))
8531 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8532 
8533 	switch (flags) {
8534 
8535 		default:
8536 			panic("sfmmu_pagecache: unknown flags");
8537 			break;
8538 
8539 		case HAT_CACHE:
8540 			PP_CLRTNC(pp);
8541 			PP_CLRPNC(pp);
8542 			PP_SET_VCOLOR(pp, color);
8543 			break;
8544 
8545 		case HAT_TMPNC:
8546 			PP_SETTNC(pp);
8547 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8548 			break;
8549 
8550 		case HAT_UNCACHE:
8551 			PP_SETPNC(pp);
8552 			PP_CLRTNC(pp);
8553 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8554 			break;
8555 	}
8556 }
8557 
8558 /*
8559  * This routine gets called when the system has run out of free contexts.
8560  * This will simply choose context passed to it to be stolen and reused.
8561  */
8562 /* ARGSUSED */
8563 static void
8564 sfmmu_reuse_ctx(struct ctx *ctx, sfmmu_t *sfmmup)
8565 {
8566 	sfmmu_t *stolen_sfmmup;
8567 	cpuset_t cpuset;
8568 	ushort_t	cnum = ctxtoctxnum(ctx);
8569 
8570 	ASSERT(cnum != KCONTEXT);
8571 	ASSERT(rw_read_locked(&ctx->ctx_rwlock) == 0);	/* write locked */
8572 
8573 	/*
8574 	 * simply steal and reuse the ctx passed to us.
8575 	 */
8576 	stolen_sfmmup = ctx->ctx_sfmmu;
8577 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8578 	ASSERT(stolen_sfmmup->sfmmu_cnum == cnum);
8579 	ASSERT(stolen_sfmmup != ksfmmup);
8580 
8581 	TRACE_CTXS(&ctx_trace_mutex, ctx_trace_ptr, cnum, stolen_sfmmup,
8582 	    sfmmup, CTX_TRC_STEAL);
8583 	SFMMU_STAT(sf_ctxsteal);
8584 
8585 	/*
8586 	 * Update sfmmu and ctx structs. After this point all threads
8587 	 * belonging to this hat/proc will fault and not use the ctx
8588 	 * being stolen.
8589 	 */
8590 	kpreempt_disable();
8591 	/*
8592 	 * Enforce reverse order of assignments from sfmmu_get_ctx().  This
8593 	 * is done to prevent a race where a thread faults with the context
8594 	 * but the TSB has changed.
8595 	 */
8596 	stolen_sfmmup->sfmmu_cnum = INVALID_CONTEXT;
8597 	membar_enter();
8598 	ctx->ctx_sfmmu = NULL;
8599 
8600 	/*
8601 	 * 1. flush TLB in all CPUs that ran the process whose ctx
8602 	 * we are stealing.
8603 	 * 2. change context for all other CPUs to INVALID_CONTEXT,
8604 	 * if they are running in the context that we are going to steal.
8605 	 */
8606 	cpuset = stolen_sfmmup->sfmmu_cpusran;
8607 	CPUSET_DEL(cpuset, CPU->cpu_id);
8608 	CPUSET_AND(cpuset, cpu_ready_set);
8609 	SFMMU_XCALL_STATS(cnum);
8610 	xt_some(cpuset, sfmmu_ctx_steal_tl1, cnum, INVALID_CONTEXT);
8611 	xt_sync(cpuset);
8612 
8613 	/*
8614 	 * flush TLB of local processor
8615 	 */
8616 	vtag_flushctx(cnum);
8617 
8618 	/*
8619 	 * If we just stole the ctx from the current process
8620 	 * on local cpu then we also invalidate his context
8621 	 * here.
8622 	 */
8623 	if (sfmmu_getctx_sec() == cnum) {
8624 		sfmmu_setctx_sec(INVALID_CONTEXT);
8625 		sfmmu_clear_utsbinfo();
8626 	}
8627 
8628 	kpreempt_enable();
8629 	SFMMU_STAT(sf_tlbflush_ctx);
8630 }
8631 
8632 /*
8633  * Returns a context with the reader lock held.
8634  *
8635  * We maintain 2 different list of contexts.  The first list
8636  * is the free list and it is headed by ctxfree.  These contexts
8637  * are ready to use.  The second list is the dirty list and is
8638  * headed by ctxdirty. These contexts have been freed but haven't
8639  * been flushed from the TLB.
8640  *
8641  * It's the responsibility of the caller to guarantee that the
8642  * process serializes on calls here by taking the HAT lock for
8643  * the hat.
8644  *
8645  * Changing the page size is a rather complicated process, so
8646  * rather than jump through lots of hoops to special case it,
8647  * the easiest way to go about it is to tell the MMU we want
8648  * to change page sizes and then switch to using a different
8649  * context.  When we program the context registers for the
8650  * process, we can take care of setting up the (new) page size
8651  * for that context at that point.
8652  */
8653 
8654 static struct ctx *
8655 sfmmu_get_ctx(sfmmu_t *sfmmup)
8656 {
8657 	struct ctx *ctx;
8658 	ushort_t cnum;
8659 	struct ctx *lastctx = &ctxs[nctxs-1];
8660 	struct ctx *firstctx = &ctxs[NUM_LOCKED_CTXS];
8661 	uint_t	found_stealable_ctx;
8662 	uint_t	retry_count = 0;
8663 
8664 #define	NEXT_CTX(ctx)   (((ctx) >= lastctx) ? firstctx : ((ctx) + 1))
8665 
8666 retry:
8667 
8668 	ASSERT(sfmmup->sfmmu_cnum != KCONTEXT);
8669 	/*
8670 	 * Check to see if this process has already got a ctx.
8671 	 * In that case just set the sec-ctx, grab a readers lock, and
8672 	 * return.
8673 	 *
8674 	 * We have to double check after we get the readers lock on the
8675 	 * context, since it could be stolen in this short window.
8676 	 */
8677 	if (sfmmup->sfmmu_cnum >= NUM_LOCKED_CTXS) {
8678 		ctx = sfmmutoctx(sfmmup);
8679 		rw_enter(&ctx->ctx_rwlock, RW_READER);
8680 		if (ctx->ctx_sfmmu == sfmmup) {
8681 			return (ctx);
8682 		} else {
8683 			rw_exit(&ctx->ctx_rwlock);
8684 		}
8685 	}
8686 
8687 	found_stealable_ctx = 0;
8688 	mutex_enter(&ctx_list_lock);
8689 	if ((ctx = ctxfree) != NULL) {
8690 		/*
8691 		 * Found a ctx in free list. Delete it from the list and
8692 		 * use it.  There's a short window where the stealer can
8693 		 * look at the context before we grab the lock on the
8694 		 * context, so we have to handle that with the free flag.
8695 		 */
8696 		SFMMU_STAT(sf_ctxfree);
8697 		ctxfree = ctx->ctx_free;
8698 		ctx->ctx_sfmmu = NULL;
8699 		mutex_exit(&ctx_list_lock);
8700 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
8701 		ASSERT(ctx->ctx_sfmmu == NULL);
8702 		ASSERT((ctx->ctx_flags & CTX_FREE_FLAG) != 0);
8703 	} else if ((ctx = ctxdirty) != NULL) {
8704 		/*
8705 		 * No free contexts.  If we have at least one dirty ctx
8706 		 * then flush the TLBs on all cpus if necessary and move
8707 		 * the dirty list to the free list.
8708 		 */
8709 		SFMMU_STAT(sf_ctxdirty);
8710 		ctxdirty = NULL;
8711 		if (delay_tlb_flush)
8712 			sfmmu_tlb_all_demap();
8713 		ctxfree = ctx->ctx_free;
8714 		ctx->ctx_sfmmu = NULL;
8715 		mutex_exit(&ctx_list_lock);
8716 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
8717 		ASSERT(ctx->ctx_sfmmu == NULL);
8718 		ASSERT((ctx->ctx_flags & CTX_FREE_FLAG) != 0);
8719 	} else {
8720 		/*
8721 		 * No free context available, so steal one.
8722 		 *
8723 		 * The policy to choose the appropriate context is simple;
8724 		 * just sweep all the ctxs using ctxhand. This will steal
8725 		 * the LRU ctx.
8726 		 *
8727 		 * We however only steal a non-free context that can be
8728 		 * write locked.  Keep searching till we find a stealable
8729 		 * ctx.
8730 		 */
8731 		mutex_exit(&ctx_list_lock);
8732 		ctx = ctxhand;
8733 		do {
8734 			/*
8735 			 * If you get the writers lock, and the ctx isn't
8736 			 * a free ctx, THEN you can steal this ctx.
8737 			 */
8738 			if ((ctx->ctx_flags & CTX_FREE_FLAG) == 0 &&
8739 			    rw_tryenter(&ctx->ctx_rwlock, RW_WRITER) != 0) {
8740 				if (ctx->ctx_flags & CTX_FREE_FLAG) {
8741 					/* let the first guy have it */
8742 					rw_exit(&ctx->ctx_rwlock);
8743 				} else {
8744 					found_stealable_ctx = 1;
8745 					break;
8746 				}
8747 			}
8748 			ctx = NEXT_CTX(ctx);
8749 		} while (ctx != ctxhand);
8750 
8751 		if (found_stealable_ctx) {
8752 			/*
8753 			 * Try and reuse the ctx.
8754 			 */
8755 			sfmmu_reuse_ctx(ctx, sfmmup);
8756 
8757 		} else if (retry_count++ < GET_CTX_RETRY_CNT) {
8758 			goto retry;
8759 
8760 		} else {
8761 			panic("Can't find any stealable context");
8762 		}
8763 	}
8764 
8765 	ASSERT(rw_read_locked(&ctx->ctx_rwlock) == 0);	/* write locked */
8766 	ctx->ctx_sfmmu = sfmmup;
8767 
8768 	/*
8769 	 * Clear the ctx_flags field.
8770 	 */
8771 	ctx->ctx_flags = 0;
8772 
8773 	cnum = ctxtoctxnum(ctx);
8774 	membar_exit();
8775 	sfmmup->sfmmu_cnum = cnum;
8776 
8777 	/*
8778 	 * Let the MMU set up the page sizes to use for
8779 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8780 	 */
8781 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0))
8782 		mmu_set_ctx_page_sizes(sfmmup);
8783 
8784 	/*
8785 	 * Downgrade to reader's lock.
8786 	 */
8787 	rw_downgrade(&ctx->ctx_rwlock);
8788 
8789 	/*
8790 	 * If this value doesn't get set to what we want
8791 	 * it won't matter, so don't worry about locking.
8792 	 */
8793 	ctxhand = NEXT_CTX(ctx);
8794 
8795 	/*
8796 	 * Better not have been stolen while we held the ctx'
8797 	 * lock or we're hosed.
8798 	 */
8799 	ASSERT(sfmmup == sfmmutoctx(sfmmup)->ctx_sfmmu);
8800 
8801 	return (ctx);
8802 
8803 #undef NEXT_CTX
8804 }
8805 
8806 
8807 /*
8808  * Set the process context to INVALID_CONTEXT (but
8809  * without stealing the ctx) so that it faults and
8810  * reloads the MMU state from TL=0.  Caller must
8811  * hold the hat lock since we don't acquire it here.
8812  */
8813 static void
8814 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8815 {
8816 	int cnum;
8817 	cpuset_t cpuset;
8818 
8819 	ASSERT(sfmmup != ksfmmup);
8820 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8821 
8822 	kpreempt_disable();
8823 
8824 	cnum = sfmmutoctxnum(sfmmup);
8825 	if (cnum != INVALID_CONTEXT) {
8826 		cpuset = sfmmup->sfmmu_cpusran;
8827 		CPUSET_DEL(cpuset, CPU->cpu_id);
8828 		CPUSET_AND(cpuset, cpu_ready_set);
8829 		SFMMU_XCALL_STATS(cnum);
8830 
8831 		xt_some(cpuset, sfmmu_raise_tsb_exception,
8832 		    cnum, INVALID_CONTEXT);
8833 		xt_sync(cpuset);
8834 
8835 		/*
8836 		 * If the process is running on the local CPU
8837 		 * we need to update the MMU state here as well.
8838 		 */
8839 		if (sfmmu_getctx_sec() == cnum)
8840 			sfmmu_load_mmustate(sfmmup);
8841 
8842 		SFMMU_STAT(sf_tsb_raise_exception);
8843 	}
8844 
8845 	kpreempt_enable();
8846 }
8847 
8848 
8849 /*
8850  * Replace the specified TSB with a new TSB.  This function gets called when
8851  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8852  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8853  * (8K).
8854  *
8855  * Caller must hold the HAT lock, but should assume any tsb_info
8856  * pointers it has are no longer valid after calling this function.
8857  *
8858  * Return values:
8859  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8860  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8861  *			something to this tsbinfo/TSB
8862  *	TSB_SUCCESS	Operation succeeded
8863  */
8864 static tsb_replace_rc_t
8865 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8866     hatlock_t *hatlockp, uint_t flags)
8867 {
8868 	struct tsb_info *new_tsbinfo = NULL;
8869 	struct tsb_info *curtsb, *prevtsb;
8870 	uint_t tte_sz_mask;
8871 	cpuset_t cpuset;
8872 	struct ctx *ctx = NULL;
8873 	int ctxnum;
8874 
8875 	ASSERT(sfmmup != ksfmmup);
8876 	ASSERT(sfmmup->sfmmu_ismhat == 0);
8877 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8878 	ASSERT(szc <= tsb_max_growsize);
8879 
8880 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8881 		return (TSB_LOSTRACE);
8882 
8883 	/*
8884 	 * Find the tsb_info ahead of this one in the list, and
8885 	 * also make sure that the tsb_info passed in really
8886 	 * exists!
8887 	 */
8888 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8889 	    curtsb != old_tsbinfo && curtsb != NULL;
8890 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8891 	ASSERT(curtsb != NULL);
8892 
8893 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8894 		/*
8895 		 * The process is swapped out, so just set the new size
8896 		 * code.  When it swaps back in, we'll allocate a new one
8897 		 * of the new chosen size.
8898 		 */
8899 		curtsb->tsb_szc = szc;
8900 		return (TSB_SUCCESS);
8901 	}
8902 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8903 
8904 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8905 
8906 	/*
8907 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8908 	 * If we fail to allocate a TSB, exit.
8909 	 */
8910 	sfmmu_hat_exit(hatlockp);
8911 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8912 	    flags, sfmmup)) {
8913 		(void) sfmmu_hat_enter(sfmmup);
8914 		if (!(flags & TSB_SWAPIN))
8915 			SFMMU_STAT(sf_tsb_resize_failures);
8916 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8917 		return (TSB_ALLOCFAIL);
8918 	}
8919 	(void) sfmmu_hat_enter(sfmmup);
8920 
8921 	/*
8922 	 * Re-check to make sure somebody else didn't muck with us while we
8923 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8924 	 * exit; this can happen if we try to shrink the TSB from the context
8925 	 * of another process (such as on an ISM unmap), though it is rare.
8926 	 */
8927 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8928 		SFMMU_STAT(sf_tsb_resize_failures);
8929 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8930 		sfmmu_hat_exit(hatlockp);
8931 		sfmmu_tsbinfo_free(new_tsbinfo);
8932 		(void) sfmmu_hat_enter(sfmmup);
8933 		return (TSB_LOSTRACE);
8934 	}
8935 
8936 #ifdef	DEBUG
8937 	/* Reverify that the tsb_info still exists.. for debugging only */
8938 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8939 	    curtsb != old_tsbinfo && curtsb != NULL;
8940 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8941 	ASSERT(curtsb != NULL);
8942 #endif	/* DEBUG */
8943 
8944 	/*
8945 	 * Quiesce any CPUs running this process on their next TLB miss
8946 	 * so they atomically see the new tsb_info.  We temporarily set the
8947 	 * context to invalid context so new threads that come on processor
8948 	 * after we do the xcall to cpusran will also serialize behind the
8949 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
8950 	 * race with a new thread coming on processor is relatively rare,
8951 	 * this synchronization mechanism should be cheaper than always
8952 	 * pausing all CPUs for the duration of the setup, which is what
8953 	 * the old implementation did.  This is particuarly true if we are
8954 	 * copying a huge chunk of memory around during that window.
8955 	 *
8956 	 * The memory barriers are to make sure things stay consistent
8957 	 * with resume() since it does not hold the HAT lock while
8958 	 * walking the list of tsb_info structures.
8959 	 */
8960 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
8961 		/* The TSB is either growing or shrinking. */
8962 		ctx = sfmmutoctx(sfmmup);
8963 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
8964 
8965 		ctxnum = sfmmutoctxnum(sfmmup);
8966 		sfmmup->sfmmu_cnum = INVALID_CONTEXT;
8967 		membar_enter();	/* make sure visible on all CPUs */
8968 
8969 		kpreempt_disable();
8970 		if (ctxnum != INVALID_CONTEXT) {
8971 			cpuset = sfmmup->sfmmu_cpusran;
8972 			CPUSET_DEL(cpuset, CPU->cpu_id);
8973 			CPUSET_AND(cpuset, cpu_ready_set);
8974 			SFMMU_XCALL_STATS(ctxnum);
8975 
8976 			xt_some(cpuset, sfmmu_raise_tsb_exception,
8977 			    ctxnum, INVALID_CONTEXT);
8978 			xt_sync(cpuset);
8979 
8980 			SFMMU_STAT(sf_tsb_raise_exception);
8981 		}
8982 		kpreempt_enable();
8983 	} else {
8984 		/*
8985 		 * It is illegal to swap in TSBs from a process other
8986 		 * than a process being swapped in.  This in turn
8987 		 * implies we do not have a valid MMU context here
8988 		 * since a process needs one to resolve translation
8989 		 * misses.
8990 		 */
8991 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
8992 		ASSERT(sfmmutoctxnum(sfmmup) == INVALID_CONTEXT);
8993 	}
8994 
8995 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
8996 	membar_stst();	/* strict ordering required */
8997 	if (prevtsb)
8998 		prevtsb->tsb_next = new_tsbinfo;
8999 	else
9000 		sfmmup->sfmmu_tsb = new_tsbinfo;
9001 	membar_enter();	/* make sure new TSB globally visible */
9002 	sfmmu_setup_tsbinfo(sfmmup);
9003 
9004 	/*
9005 	 * We need to migrate TSB entries from the old TSB to the new TSB
9006 	 * if tsb_remap_ttes is set and the TSB is growing.
9007 	 */
9008 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9009 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9010 
9011 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9012 		kpreempt_disable();
9013 		membar_exit();
9014 		sfmmup->sfmmu_cnum = ctxnum;
9015 		if (ctxnum != INVALID_CONTEXT &&
9016 		    sfmmu_getctx_sec() == ctxnum) {
9017 			sfmmu_load_mmustate(sfmmup);
9018 		}
9019 		kpreempt_enable();
9020 		rw_exit(&ctx->ctx_rwlock);
9021 	}
9022 
9023 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9024 
9025 	/*
9026 	 * Drop the HAT lock to free our old tsb_info.
9027 	 */
9028 	sfmmu_hat_exit(hatlockp);
9029 
9030 	if ((flags & TSB_GROW) == TSB_GROW) {
9031 		SFMMU_STAT(sf_tsb_grow);
9032 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9033 		SFMMU_STAT(sf_tsb_shrink);
9034 	}
9035 
9036 	sfmmu_tsbinfo_free(old_tsbinfo);
9037 
9038 	(void) sfmmu_hat_enter(sfmmup);
9039 	return (TSB_SUCCESS);
9040 }
9041 
9042 /*
9043  * Steal context from process, forcing the process to switch to another
9044  * context on the next TLB miss, and therefore start using the TLB that
9045  * is reprogrammed for the new page sizes.
9046  */
9047 void
9048 sfmmu_steal_context(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9049 {
9050 	struct ctx *ctx;
9051 	int i, cnum;
9052 	hatlock_t *hatlockp = NULL;
9053 
9054 	hatlockp = sfmmu_hat_enter(sfmmup);
9055 	/* USIII+-IV+ optimization, requires hat lock */
9056 	if (tmp_pgsz) {
9057 		for (i = 0; i < mmu_page_sizes; i++)
9058 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9059 	}
9060 	SFMMU_STAT(sf_tlb_reprog_pgsz);
9061 	ctx = sfmmutoctx(sfmmup);
9062 	rw_enter(&ctx->ctx_rwlock, RW_WRITER);
9063 	cnum = sfmmutoctxnum(sfmmup);
9064 
9065 	if (cnum != INVALID_CONTEXT) {
9066 		sfmmu_tlb_swap_ctx(sfmmup, ctx);
9067 	}
9068 	rw_exit(&ctx->ctx_rwlock);
9069 	sfmmu_hat_exit(hatlockp);
9070 }
9071 
9072 /*
9073  * This function assumes that there are either four or six supported page
9074  * sizes and at most two programmable TLBs, so we need to decide which
9075  * page sizes are most important and then tell the MMU layer so it
9076  * can adjust the TLB page sizes accordingly (if supported).
9077  *
9078  * If these assumptions change, this function will need to be
9079  * updated to support whatever the new limits are.
9080  *
9081  * The growing flag is nonzero if we are growing the address space,
9082  * and zero if it is shrinking.  This allows us to decide whether
9083  * to grow or shrink our TSB, depending upon available memory
9084  * conditions.
9085  */
9086 static void
9087 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9088 {
9089 	uint64_t ttecnt[MMU_PAGE_SIZES];
9090 	uint64_t tte8k_cnt, tte4m_cnt;
9091 	uint8_t i;
9092 	int sectsb_thresh;
9093 
9094 	/*
9095 	 * Kernel threads, processes with small address spaces not using
9096 	 * large pages, and dummy ISM HATs need not apply.
9097 	 */
9098 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9099 		return;
9100 
9101 	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9102 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9103 		return;
9104 
9105 	for (i = 0; i < mmu_page_sizes; i++) {
9106 		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9107 	}
9108 
9109 	/* Check pagesizes in use, and possibly reprogram DTLB. */
9110 	if (&mmu_check_page_sizes)
9111 		mmu_check_page_sizes(sfmmup, ttecnt);
9112 
9113 	/*
9114 	 * Calculate the number of 8k ttes to represent the span of these
9115 	 * pages.
9116 	 */
9117 	tte8k_cnt = ttecnt[TTE8K] +
9118 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9119 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9120 	if (mmu_page_sizes == max_mmu_page_sizes) {
9121 		tte4m_cnt = ttecnt[TTE4M] +
9122 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9123 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9124 	} else {
9125 		tte4m_cnt = ttecnt[TTE4M];
9126 	}
9127 
9128 	/*
9129 	 * Inflate TSB sizes by a factor of 2 if this process
9130 	 * uses 4M text pages to minimize extra conflict misses
9131 	 * in the first TSB since without counting text pages
9132 	 * 8K TSB may become too small.
9133 	 *
9134 	 * Also double the size of the second TSB to minimize
9135 	 * extra conflict misses due to competition between 4M text pages
9136 	 * and data pages.
9137 	 *
9138 	 * We need to adjust the second TSB allocation threshold by the
9139 	 * inflation factor, since there is no point in creating a second
9140 	 * TSB when we know all the mappings can fit in the I/D TLBs.
9141 	 */
9142 	sectsb_thresh = tsb_sectsb_threshold;
9143 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9144 		tte8k_cnt <<= 1;
9145 		tte4m_cnt <<= 1;
9146 		sectsb_thresh <<= 1;
9147 	}
9148 
9149 	/*
9150 	 * Check to see if our TSB is the right size; we may need to
9151 	 * grow or shrink it.  If the process is small, our work is
9152 	 * finished at this point.
9153 	 */
9154 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9155 		return;
9156 	}
9157 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9158 }
9159 
9160 static void
9161 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9162 	uint64_t tte4m_cnt, int sectsb_thresh)
9163 {
9164 	int tsb_bits;
9165 	uint_t tsb_szc;
9166 	struct tsb_info *tsbinfop;
9167 	hatlock_t *hatlockp = NULL;
9168 
9169 	hatlockp = sfmmu_hat_enter(sfmmup);
9170 	ASSERT(hatlockp != NULL);
9171 	tsbinfop = sfmmup->sfmmu_tsb;
9172 	ASSERT(tsbinfop != NULL);
9173 
9174 	/*
9175 	 * If we're growing, select the size based on RSS.  If we're
9176 	 * shrinking, leave some room so we don't have to turn around and
9177 	 * grow again immediately.
9178 	 */
9179 	if (growing)
9180 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9181 	else
9182 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9183 
9184 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9185 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9186 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9187 		    hatlockp, TSB_SHRINK);
9188 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9189 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9190 		    hatlockp, TSB_GROW);
9191 	}
9192 	tsbinfop = sfmmup->sfmmu_tsb;
9193 
9194 	/*
9195 	 * With the TLB and first TSB out of the way, we need to see if
9196 	 * we need a second TSB for 4M pages.  If we managed to reprogram
9197 	 * the TLB page sizes above, the process will start using this new
9198 	 * TSB right away; otherwise, it will start using it on the next
9199 	 * context switch.  Either way, it's no big deal so there's no
9200 	 * synchronization with the trap handlers here unless we grow the
9201 	 * TSB (in which case it's required to prevent using the old one
9202 	 * after it's freed). Note: second tsb is required for 32M/256M
9203 	 * page sizes.
9204 	 */
9205 	if (tte4m_cnt > sectsb_thresh) {
9206 		/*
9207 		 * If we're growing, select the size based on RSS.  If we're
9208 		 * shrinking, leave some room so we don't have to turn
9209 		 * around and grow again immediately.
9210 		 */
9211 		if (growing)
9212 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9213 		else
9214 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9215 		if (tsbinfop->tsb_next == NULL) {
9216 			struct tsb_info *newtsb;
9217 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9218 			    0 : TSB_ALLOC;
9219 
9220 			sfmmu_hat_exit(hatlockp);
9221 
9222 			/*
9223 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9224 			 * can't get the size we want, retry w/a minimum sized
9225 			 * TSB.  If that still didn't work, give up; we can
9226 			 * still run without one.
9227 			 */
9228 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9229 			    TSB4M|TSB32M|TSB256M:TSB4M;
9230 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9231 			    allocflags, sfmmup) != 0) &&
9232 			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9233 			    tsb_bits, allocflags, sfmmup) != 0)) {
9234 				return;
9235 			}
9236 
9237 			hatlockp = sfmmu_hat_enter(sfmmup);
9238 
9239 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9240 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9241 				SFMMU_STAT(sf_tsb_sectsb_create);
9242 				sfmmu_setup_tsbinfo(sfmmup);
9243 				sfmmu_hat_exit(hatlockp);
9244 				return;
9245 			} else {
9246 				/*
9247 				 * It's annoying, but possible for us
9248 				 * to get here.. we dropped the HAT lock
9249 				 * because of locking order in the kmem
9250 				 * allocator, and while we were off getting
9251 				 * our memory, some other thread decided to
9252 				 * do us a favor and won the race to get a
9253 				 * second TSB for this process.  Sigh.
9254 				 */
9255 				sfmmu_hat_exit(hatlockp);
9256 				sfmmu_tsbinfo_free(newtsb);
9257 				return;
9258 			}
9259 		}
9260 
9261 		/*
9262 		 * We have a second TSB, see if it's big enough.
9263 		 */
9264 		tsbinfop = tsbinfop->tsb_next;
9265 
9266 		/*
9267 		 * Check to see if our second TSB is the right size;
9268 		 * we may need to grow or shrink it.
9269 		 * To prevent thrashing (e.g. growing the TSB on a
9270 		 * subsequent map operation), only try to shrink if
9271 		 * the TSB reach exceeds twice the virtual address
9272 		 * space size.
9273 		 */
9274 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9275 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9276 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9277 			    tsb_szc, hatlockp, TSB_SHRINK);
9278 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9279 		    TSB_OK_GROW()) {
9280 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9281 			    tsb_szc, hatlockp, TSB_GROW);
9282 		}
9283 	}
9284 
9285 	sfmmu_hat_exit(hatlockp);
9286 }
9287 
9288 /*
9289  * Get the preferred page size code for a hat.
9290  * This is only advice, so locking is not done;
9291  * this transitory information could change
9292  * following the call anyway.  This interface is
9293  * sun4 private.
9294  */
9295 /*ARGSUSED*/
9296 uint_t
9297 hat_preferred_pgsz(struct hat *hat, caddr_t vaddr, size_t maplen, int maptype)
9298 {
9299 	sfmmu_t *sfmmup = (sfmmu_t *)hat;
9300 	uint_t szc, maxszc = mmu_page_sizes - 1;
9301 	size_t pgsz;
9302 
9303 	if (maptype == MAPPGSZ_ISM) {
9304 		for (szc = maxszc; szc >= TTE4M; szc--) {
9305 			if (disable_ism_large_pages & (1 << szc))
9306 				continue;
9307 
9308 			pgsz = hw_page_array[szc].hp_size;
9309 			if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
9310 				return (szc);
9311 		}
9312 		return (TTE4M);
9313 	} else if (&mmu_preferred_pgsz) { /* USIII+-USIV+ */
9314 		return (mmu_preferred_pgsz(sfmmup, vaddr, maplen));
9315 	} else {	/* USIII, USII, Niagara */
9316 		for (szc = maxszc; szc > TTE8K; szc--) {
9317 			if (disable_large_pages & (1 << szc))
9318 				continue;
9319 
9320 			pgsz = hw_page_array[szc].hp_size;
9321 			if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
9322 				return (szc);
9323 		}
9324 		return (TTE8K);
9325 	}
9326 }
9327 
9328 /*
9329  * Free up a ctx
9330  */
9331 static void
9332 sfmmu_free_ctx(sfmmu_t *sfmmup, struct ctx *ctx)
9333 {
9334 	int ctxnum;
9335 
9336 	rw_enter(&ctx->ctx_rwlock, RW_WRITER);
9337 
9338 	TRACE_CTXS(&ctx_trace_mutex, ctx_trace_ptr, sfmmup->sfmmu_cnum,
9339 	    sfmmup, 0, CTX_TRC_FREE);
9340 
9341 	if (sfmmup->sfmmu_cnum == INVALID_CONTEXT) {
9342 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
9343 		rw_exit(&ctx->ctx_rwlock);
9344 		return;
9345 	}
9346 
9347 	ASSERT(sfmmup == ctx->ctx_sfmmu);
9348 
9349 	ctx->ctx_sfmmu = NULL;
9350 	ctx->ctx_flags = 0;
9351 	sfmmup->sfmmu_cnum = INVALID_CONTEXT;
9352 	membar_enter();
9353 	CPUSET_ZERO(sfmmup->sfmmu_cpusran);
9354 	ctxnum = sfmmu_getctx_sec();
9355 	if (ctxnum == ctxtoctxnum(ctx)) {
9356 		sfmmu_setctx_sec(INVALID_CONTEXT);
9357 		sfmmu_clear_utsbinfo();
9358 	}
9359 
9360 	/*
9361 	 * Put the freed ctx on the dirty list
9362 	 */
9363 	mutex_enter(&ctx_list_lock);
9364 	CTX_SET_FLAGS(ctx, CTX_FREE_FLAG);
9365 	ctx->ctx_free = ctxdirty;
9366 	ctxdirty = ctx;
9367 	mutex_exit(&ctx_list_lock);
9368 
9369 	rw_exit(&ctx->ctx_rwlock);
9370 }
9371 
9372 /*
9373  * Free up a sfmmu
9374  * Since the sfmmu is currently embedded in the hat struct we simply zero
9375  * out our fields and free up the ism map blk list if any.
9376  */
9377 static void
9378 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9379 {
9380 	ism_blk_t	*blkp, *nx_blkp;
9381 #ifdef	DEBUG
9382 	ism_map_t	*map;
9383 	int 		i;
9384 #endif
9385 
9386 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9387 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9388 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9389 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9390 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9391 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9392 	ASSERT(sfmmup->sfmmu_cnum == INVALID_CONTEXT);
9393 	sfmmup->sfmmu_free = 0;
9394 	sfmmup->sfmmu_ismhat = 0;
9395 
9396 	blkp = sfmmup->sfmmu_iblk;
9397 	sfmmup->sfmmu_iblk = NULL;
9398 
9399 	while (blkp) {
9400 #ifdef	DEBUG
9401 		map = blkp->iblk_maps;
9402 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9403 			ASSERT(map[i].imap_seg == 0);
9404 			ASSERT(map[i].imap_ismhat == NULL);
9405 			ASSERT(map[i].imap_ment == NULL);
9406 		}
9407 #endif
9408 		nx_blkp = blkp->iblk_next;
9409 		blkp->iblk_next = NULL;
9410 		blkp->iblk_nextpa = (uint64_t)-1;
9411 		kmem_cache_free(ism_blk_cache, blkp);
9412 		blkp = nx_blkp;
9413 	}
9414 }
9415 
9416 /*
9417  * Locking primitves accessed by HATLOCK macros
9418  */
9419 
9420 #define	SFMMU_SPL_MTX	(0x0)
9421 #define	SFMMU_ML_MTX	(0x1)
9422 
9423 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9424 					    SPL_HASH(pg) : MLIST_HASH(pg))
9425 
9426 kmutex_t *
9427 sfmmu_page_enter(struct page *pp)
9428 {
9429 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9430 }
9431 
9432 static void
9433 sfmmu_page_exit(kmutex_t *spl)
9434 {
9435 	mutex_exit(spl);
9436 }
9437 
9438 static int
9439 sfmmu_page_spl_held(struct page *pp)
9440 {
9441 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9442 }
9443 
9444 kmutex_t *
9445 sfmmu_mlist_enter(struct page *pp)
9446 {
9447 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9448 }
9449 
9450 void
9451 sfmmu_mlist_exit(kmutex_t *mml)
9452 {
9453 	mutex_exit(mml);
9454 }
9455 
9456 int
9457 sfmmu_mlist_held(struct page *pp)
9458 {
9459 
9460 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9461 }
9462 
9463 /*
9464  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9465  * sfmmu_mlist_enter() case mml_table lock array is used and for
9466  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9467  *
9468  * The lock is taken on a root page so that it protects an operation on all
9469  * constituent pages of a large page pp belongs to.
9470  *
9471  * The routine takes a lock from the appropriate array. The lock is determined
9472  * by hashing the root page. After taking the lock this routine checks if the
9473  * root page has the same size code that was used to determine the root (i.e
9474  * that root hasn't changed).  If root page has the expected p_szc field we
9475  * have the right lock and it's returned to the caller. If root's p_szc
9476  * decreased we release the lock and retry from the beginning.  This case can
9477  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9478  * value and taking the lock. The number of retries due to p_szc decrease is
9479  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9480  * determined by hashing pp itself.
9481  *
9482  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9483  * possible that p_szc can increase. To increase p_szc a thread has to lock
9484  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9485  * callers that don't hold a page locked recheck if hmeblk through which pp
9486  * was found still maps this pp.  If it doesn't map it anymore returned lock
9487  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9488  * p_szc increase after taking the lock it returns this lock without further
9489  * retries because in this case the caller doesn't care about which lock was
9490  * taken. The caller will drop it right away.
9491  *
9492  * After the routine returns it's guaranteed that hat_page_demote() can't
9493  * change p_szc field of any of constituent pages of a large page pp belongs
9494  * to as long as pp was either locked at least SHARED prior to this call or
9495  * the caller finds that hment that pointed to this pp still references this
9496  * pp (this also assumes that the caller holds hme hash bucket lock so that
9497  * the same pp can't be remapped into the same hmeblk after it was unmapped by
9498  * hat_pageunload()).
9499  */
9500 static kmutex_t *
9501 sfmmu_mlspl_enter(struct page *pp, int type)
9502 {
9503 	kmutex_t	*mtx;
9504 	uint_t		prev_rszc = UINT_MAX;
9505 	page_t		*rootpp;
9506 	uint_t		szc;
9507 	uint_t		rszc;
9508 	uint_t		pszc = pp->p_szc;
9509 
9510 	ASSERT(pp != NULL);
9511 
9512 again:
9513 	if (pszc == 0) {
9514 		mtx = SFMMU_MLSPL_MTX(type, pp);
9515 		mutex_enter(mtx);
9516 		return (mtx);
9517 	}
9518 
9519 	/* The lock lives in the root page */
9520 	rootpp = PP_GROUPLEADER(pp, pszc);
9521 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9522 	mutex_enter(mtx);
9523 
9524 	/*
9525 	 * Return mml in the following 3 cases:
9526 	 *
9527 	 * 1) If pp itself is root since if its p_szc decreased before we took
9528 	 * the lock pp is still the root of smaller szc page. And if its p_szc
9529 	 * increased it doesn't matter what lock we return (see comment in
9530 	 * front of this routine).
9531 	 *
9532 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9533 	 * large page we have the right lock since any previous potential
9534 	 * hat_page_demote() is done demoting from greater than current root's
9535 	 * p_szc because hat_page_demote() changes root's p_szc last. No
9536 	 * further hat_page_demote() can start or be in progress since it
9537 	 * would need the same lock we currently hold.
9538 	 *
9539 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9540 	 * matter what lock we return (see comment in front of this routine).
9541 	 */
9542 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9543 	    rszc >= prev_rszc) {
9544 		return (mtx);
9545 	}
9546 
9547 	/*
9548 	 * hat_page_demote() could have decreased root's p_szc.
9549 	 * In this case pp's p_szc must also be smaller than pszc.
9550 	 * Retry.
9551 	 */
9552 	if (rszc < pszc) {
9553 		szc = pp->p_szc;
9554 		if (szc < pszc) {
9555 			mutex_exit(mtx);
9556 			pszc = szc;
9557 			goto again;
9558 		}
9559 		/*
9560 		 * pp's p_szc increased after it was decreased.
9561 		 * page cannot be mapped. Return current lock. The caller
9562 		 * will drop it right away.
9563 		 */
9564 		return (mtx);
9565 	}
9566 
9567 	/*
9568 	 * root's p_szc is greater than pp's p_szc.
9569 	 * hat_page_demote() is not done with all pages
9570 	 * yet. Wait for it to complete.
9571 	 */
9572 	mutex_exit(mtx);
9573 	rootpp = PP_GROUPLEADER(rootpp, rszc);
9574 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9575 	mutex_enter(mtx);
9576 	mutex_exit(mtx);
9577 	prev_rszc = rszc;
9578 	goto again;
9579 }
9580 
9581 static int
9582 sfmmu_mlspl_held(struct page *pp, int type)
9583 {
9584 	kmutex_t	*mtx;
9585 
9586 	ASSERT(pp != NULL);
9587 	/* The lock lives in the root page */
9588 	pp = PP_PAGEROOT(pp);
9589 	ASSERT(pp != NULL);
9590 
9591 	mtx = SFMMU_MLSPL_MTX(type, pp);
9592 	return (MUTEX_HELD(mtx));
9593 }
9594 
9595 static uint_t
9596 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9597 {
9598 	struct  hme_blk *hblkp;
9599 
9600 	if (freehblkp != NULL) {
9601 		mutex_enter(&freehblkp_lock);
9602 		if (freehblkp != NULL) {
9603 			/*
9604 			 * If the current thread is owning hblk_reserve,
9605 			 * let it succede even if freehblkcnt is really low.
9606 			 */
9607 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9608 				SFMMU_STAT(sf_get_free_throttle);
9609 				mutex_exit(&freehblkp_lock);
9610 				return (0);
9611 			}
9612 			freehblkcnt--;
9613 			*hmeblkpp = freehblkp;
9614 			hblkp = *hmeblkpp;
9615 			freehblkp = hblkp->hblk_next;
9616 			mutex_exit(&freehblkp_lock);
9617 			hblkp->hblk_next = NULL;
9618 			SFMMU_STAT(sf_get_free_success);
9619 			return (1);
9620 		}
9621 		mutex_exit(&freehblkp_lock);
9622 	}
9623 	SFMMU_STAT(sf_get_free_fail);
9624 	return (0);
9625 }
9626 
9627 static uint_t
9628 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9629 {
9630 	struct  hme_blk *hblkp;
9631 
9632 	/*
9633 	 * If the current thread is mapping into kernel space,
9634 	 * let it succede even if freehblkcnt is max
9635 	 * so that it will avoid freeing it to kmem.
9636 	 * This will prevent stack overflow due to
9637 	 * possible recursion since kmem_cache_free()
9638 	 * might require creation of a slab which
9639 	 * in turn needs an hmeblk to map that slab;
9640 	 * let's break this vicious chain at the first
9641 	 * opportunity.
9642 	 */
9643 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9644 		mutex_enter(&freehblkp_lock);
9645 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9646 			SFMMU_STAT(sf_put_free_success);
9647 			freehblkcnt++;
9648 			hmeblkp->hblk_next = freehblkp;
9649 			freehblkp = hmeblkp;
9650 			mutex_exit(&freehblkp_lock);
9651 			return (1);
9652 		}
9653 		mutex_exit(&freehblkp_lock);
9654 	}
9655 
9656 	/*
9657 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9658 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9659 	 * we are not in the process of mapping into kernel space.
9660 	 */
9661 	ASSERT(!critical);
9662 	while (freehblkcnt > HBLK_RESERVE_CNT) {
9663 		mutex_enter(&freehblkp_lock);
9664 		if (freehblkcnt > HBLK_RESERVE_CNT) {
9665 			freehblkcnt--;
9666 			hblkp = freehblkp;
9667 			freehblkp = hblkp->hblk_next;
9668 			mutex_exit(&freehblkp_lock);
9669 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9670 			kmem_cache_free(sfmmu8_cache, hblkp);
9671 			continue;
9672 		}
9673 		mutex_exit(&freehblkp_lock);
9674 	}
9675 	SFMMU_STAT(sf_put_free_fail);
9676 	return (0);
9677 }
9678 
9679 static void
9680 sfmmu_hblk_swap(struct hme_blk *new)
9681 {
9682 	struct hme_blk *old, *hblkp, *prev;
9683 	uint64_t hblkpa, prevpa, newpa;
9684 	caddr_t	base, vaddr, endaddr;
9685 	struct hmehash_bucket *hmebp;
9686 	struct sf_hment *osfhme, *nsfhme;
9687 	page_t *pp;
9688 	kmutex_t *pml;
9689 	tte_t tte;
9690 
9691 #ifdef	DEBUG
9692 	hmeblk_tag		hblktag;
9693 	struct hme_blk		*found;
9694 #endif
9695 	old = HBLK_RESERVE;
9696 
9697 	/*
9698 	 * save pa before bcopy clobbers it
9699 	 */
9700 	newpa = new->hblk_nextpa;
9701 
9702 	base = (caddr_t)get_hblk_base(old);
9703 	endaddr = base + get_hblk_span(old);
9704 
9705 	/*
9706 	 * acquire hash bucket lock.
9707 	 */
9708 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9709 
9710 	/*
9711 	 * copy contents from old to new
9712 	 */
9713 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9714 
9715 	/*
9716 	 * add new to hash chain
9717 	 */
9718 	sfmmu_hblk_hash_add(hmebp, new, newpa);
9719 
9720 	/*
9721 	 * search hash chain for hblk_reserve; this needs to be performed
9722 	 * after adding new, otherwise prevpa and prev won't correspond
9723 	 * to the hblk which is prior to old in hash chain when we call
9724 	 * sfmmu_hblk_hash_rm to remove old later.
9725 	 */
9726 	for (prevpa = 0, prev = NULL,
9727 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9728 	    hblkp != NULL && hblkp != old;
9729 	    prevpa = hblkpa, prev = hblkp,
9730 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
9731 
9732 	if (hblkp != old)
9733 		panic("sfmmu_hblk_swap: hblk_reserve not found");
9734 
9735 	/*
9736 	 * p_mapping list is still pointing to hments in hblk_reserve;
9737 	 * fix up p_mapping list so that they point to hments in new.
9738 	 *
9739 	 * Since all these mappings are created by hblk_reserve_thread
9740 	 * on the way and it's using at least one of the buffers from each of
9741 	 * the newly minted slabs, there is no danger of any of these
9742 	 * mappings getting unloaded by another thread.
9743 	 *
9744 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9745 	 * Since all of these hments hold mappings established by segkmem
9746 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9747 	 * have no meaning for the mappings in hblk_reserve.  hments in
9748 	 * old and new are identical except for ref/mod bits.
9749 	 */
9750 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9751 
9752 		HBLKTOHME(osfhme, old, vaddr);
9753 		sfmmu_copytte(&osfhme->hme_tte, &tte);
9754 
9755 		if (TTE_IS_VALID(&tte)) {
9756 			if ((pp = osfhme->hme_page) == NULL)
9757 				panic("sfmmu_hblk_swap: page not mapped");
9758 
9759 			pml = sfmmu_mlist_enter(pp);
9760 
9761 			if (pp != osfhme->hme_page)
9762 				panic("sfmmu_hblk_swap: mapping changed");
9763 
9764 			HBLKTOHME(nsfhme, new, vaddr);
9765 
9766 			HME_ADD(nsfhme, pp);
9767 			HME_SUB(osfhme, pp);
9768 
9769 			sfmmu_mlist_exit(pml);
9770 		}
9771 	}
9772 
9773 	/*
9774 	 * remove old from hash chain
9775 	 */
9776 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9777 
9778 #ifdef	DEBUG
9779 
9780 	hblktag.htag_id = ksfmmup;
9781 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9782 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9783 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9784 
9785 	if (found != new)
9786 		panic("sfmmu_hblk_swap: new hblk not found");
9787 #endif
9788 
9789 	SFMMU_HASH_UNLOCK(hmebp);
9790 
9791 	/*
9792 	 * Reset hblk_reserve
9793 	 */
9794 	bzero((void *)old, HME8BLK_SZ);
9795 	old->hblk_nextpa = va_to_pa((caddr_t)old);
9796 }
9797 
9798 /*
9799  * Grab the mlist mutex for both pages passed in.
9800  *
9801  * low and high will be returned as pointers to the mutexes for these pages.
9802  * low refers to the mutex residing in the lower bin of the mlist hash, while
9803  * high refers to the mutex residing in the higher bin of the mlist hash.  This
9804  * is due to the locking order restrictions on the same thread grabbing
9805  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9806  *
9807  * If both pages hash to the same mutex, only grab that single mutex, and
9808  * high will be returned as NULL
9809  * If the pages hash to different bins in the hash, grab the lower addressed
9810  * lock first and then the higher addressed lock in order to follow the locking
9811  * rules involved with the same thread grabbing multiple mlist mutexes.
9812  * low and high will both have non-NULL values.
9813  */
9814 static void
9815 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9816     kmutex_t **low, kmutex_t **high)
9817 {
9818 	kmutex_t	*mml_targ, *mml_repl;
9819 
9820 	/*
9821 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9822 	 * because this routine is only called by hat_page_relocate() and all
9823 	 * targ and repl pages are already locked EXCL so szc can't change.
9824 	 */
9825 
9826 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9827 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9828 
9829 	if (mml_targ == mml_repl) {
9830 		*low = mml_targ;
9831 		*high = NULL;
9832 	} else {
9833 		if (mml_targ < mml_repl) {
9834 			*low = mml_targ;
9835 			*high = mml_repl;
9836 		} else {
9837 			*low = mml_repl;
9838 			*high = mml_targ;
9839 		}
9840 	}
9841 
9842 	mutex_enter(*low);
9843 	if (*high)
9844 		mutex_enter(*high);
9845 }
9846 
9847 static void
9848 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9849 {
9850 	if (high)
9851 		mutex_exit(high);
9852 	mutex_exit(low);
9853 }
9854 
9855 static hatlock_t *
9856 sfmmu_hat_enter(sfmmu_t *sfmmup)
9857 {
9858 	hatlock_t	*hatlockp;
9859 
9860 	if (sfmmup != ksfmmup) {
9861 		hatlockp = TSB_HASH(sfmmup);
9862 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9863 		return (hatlockp);
9864 	}
9865 	return (NULL);
9866 }
9867 
9868 static hatlock_t *
9869 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9870 {
9871 	hatlock_t	*hatlockp;
9872 
9873 	if (sfmmup != ksfmmup) {
9874 		hatlockp = TSB_HASH(sfmmup);
9875 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9876 			return (NULL);
9877 		return (hatlockp);
9878 	}
9879 	return (NULL);
9880 }
9881 
9882 static void
9883 sfmmu_hat_exit(hatlock_t *hatlockp)
9884 {
9885 	if (hatlockp != NULL)
9886 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9887 }
9888 
9889 static void
9890 sfmmu_hat_lock_all(void)
9891 {
9892 	int i;
9893 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9894 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9895 }
9896 
9897 static void
9898 sfmmu_hat_unlock_all(void)
9899 {
9900 	int i;
9901 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9902 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9903 }
9904 
9905 int
9906 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9907 {
9908 	ASSERT(sfmmup != ksfmmup);
9909 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9910 }
9911 
9912 /*
9913  * Locking primitives to provide consistency between ISM unmap
9914  * and other operations.  Since ISM unmap can take a long time, we
9915  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9916  * contention on the hatlock buckets while ISM segments are being
9917  * unmapped.  The tradeoff is that the flags don't prevent priority
9918  * inversion from occurring, so we must request kernel priority in
9919  * case we have to sleep to keep from getting buried while holding
9920  * the HAT_ISMBUSY flag set, which in turn could block other kernel
9921  * threads from running (for example, in sfmmu_uvatopfn()).
9922  */
9923 static void
9924 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9925 {
9926 	hatlock_t *hatlockp;
9927 
9928 	THREAD_KPRI_REQUEST();
9929 	if (!hatlock_held)
9930 		hatlockp = sfmmu_hat_enter(sfmmup);
9931 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9932 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9933 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9934 	if (!hatlock_held)
9935 		sfmmu_hat_exit(hatlockp);
9936 }
9937 
9938 static void
9939 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9940 {
9941 	hatlock_t *hatlockp;
9942 
9943 	if (!hatlock_held)
9944 		hatlockp = sfmmu_hat_enter(sfmmup);
9945 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9946 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9947 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9948 	if (!hatlock_held)
9949 		sfmmu_hat_exit(hatlockp);
9950 	THREAD_KPRI_RELEASE();
9951 }
9952 
9953 /*
9954  *
9955  * Algorithm:
9956  *
9957  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9958  *	hblks.
9959  *
9960  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9961  *
9962  * 		(a) try to return an hblk from reserve pool of free hblks;
9963  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9964  *		    and return hblk_reserve.
9965  *
9966  * (3) call kmem_cache_alloc() to allocate hblk;
9967  *
9968  *		(a) if hblk_reserve_lock is held by the current thread,
9969  *		    atomically replace hblk_reserve by the hblk that is
9970  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9971  *		    and call kmem_cache_alloc() again.
9972  *		(b) if reserve pool is not full, add the hblk that is
9973  *		    returned by kmem_cache_alloc to reserve pool and
9974  *		    call kmem_cache_alloc again.
9975  *
9976  */
9977 static struct hme_blk *
9978 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9979 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9980 	uint_t flags)
9981 {
9982 	struct hme_blk *hmeblkp = NULL;
9983 	struct hme_blk *newhblkp;
9984 	struct hme_blk *shw_hblkp = NULL;
9985 	struct kmem_cache *sfmmu_cache = NULL;
9986 	uint64_t hblkpa;
9987 	ulong_t index;
9988 	uint_t owner;		/* set to 1 if using hblk_reserve */
9989 	uint_t forcefree;
9990 	int sleep;
9991 
9992 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9993 
9994 	/*
9995 	 * If segkmem is not created yet, allocate from static hmeblks
9996 	 * created at the end of startup_modules().  See the block comment
9997 	 * in startup_modules() describing how we estimate the number of
9998 	 * static hmeblks that will be needed during re-map.
9999 	 */
10000 	if (!hblk_alloc_dynamic) {
10001 
10002 		if (size == TTE8K) {
10003 			index = nucleus_hblk8.index;
10004 			if (index >= nucleus_hblk8.len) {
10005 				/*
10006 				 * If we panic here, see startup_modules() to
10007 				 * make sure that we are calculating the
10008 				 * number of hblk8's that we need correctly.
10009 				 */
10010 				panic("no nucleus hblk8 to allocate");
10011 			}
10012 			hmeblkp =
10013 			    (struct hme_blk *)&nucleus_hblk8.list[index];
10014 			nucleus_hblk8.index++;
10015 			SFMMU_STAT(sf_hblk8_nalloc);
10016 		} else {
10017 			index = nucleus_hblk1.index;
10018 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
10019 				/*
10020 				 * If we panic here, see startup_modules()
10021 				 * and H8TOH1; most likely you need to
10022 				 * update the calculation of the number
10023 				 * of hblk1's the kernel needs to boot.
10024 				 */
10025 				panic("no nucleus hblk1 to allocate");
10026 			}
10027 			hmeblkp =
10028 			    (struct hme_blk *)&nucleus_hblk1.list[index];
10029 			nucleus_hblk1.index++;
10030 			SFMMU_STAT(sf_hblk1_nalloc);
10031 		}
10032 
10033 		goto hblk_init;
10034 	}
10035 
10036 	SFMMU_HASH_UNLOCK(hmebp);
10037 
10038 	if (sfmmup != KHATID) {
10039 		if (mmu_page_sizes == max_mmu_page_sizes) {
10040 			if (size < TTE256M)
10041 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10042 				    size, flags);
10043 		} else {
10044 			if (size < TTE4M)
10045 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10046 				    size, flags);
10047 		}
10048 	}
10049 
10050 fill_hblk:
10051 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
10052 
10053 	if (owner && size == TTE8K) {
10054 
10055 		/*
10056 		 * We are really in a tight spot. We already own
10057 		 * hblk_reserve and we need another hblk.  In anticipation
10058 		 * of this kind of scenario, we specifically set aside
10059 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
10060 		 * by owner of hblk_reserve.
10061 		 */
10062 		SFMMU_STAT(sf_hblk_recurse_cnt);
10063 
10064 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
10065 			panic("sfmmu_hblk_alloc: reserve list is empty");
10066 
10067 		goto hblk_verify;
10068 	}
10069 
10070 	ASSERT(!owner);
10071 
10072 	if ((flags & HAT_NO_KALLOC) == 0) {
10073 
10074 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10075 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10076 
10077 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10078 			hmeblkp = sfmmu_hblk_steal(size);
10079 		} else {
10080 			/*
10081 			 * if we are the owner of hblk_reserve,
10082 			 * swap hblk_reserve with hmeblkp and
10083 			 * start a fresh life.  Hope things go
10084 			 * better this time.
10085 			 */
10086 			if (hblk_reserve_thread == curthread) {
10087 				ASSERT(sfmmu_cache == sfmmu8_cache);
10088 				sfmmu_hblk_swap(hmeblkp);
10089 				hblk_reserve_thread = NULL;
10090 				mutex_exit(&hblk_reserve_lock);
10091 				goto fill_hblk;
10092 			}
10093 			/*
10094 			 * let's donate this hblk to our reserve list if
10095 			 * we are not mapping kernel range
10096 			 */
10097 			if (size == TTE8K && sfmmup != KHATID)
10098 				if (sfmmu_put_free_hblk(hmeblkp, 0))
10099 					goto fill_hblk;
10100 		}
10101 	} else {
10102 		/*
10103 		 * We are here to map the slab in sfmmu8_cache; let's
10104 		 * check if we could tap our reserve list; if successful,
10105 		 * this will avoid the pain of going thru sfmmu_hblk_swap
10106 		 */
10107 		SFMMU_STAT(sf_hblk_slab_cnt);
10108 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10109 			/*
10110 			 * let's start hblk_reserve dance
10111 			 */
10112 			SFMMU_STAT(sf_hblk_reserve_cnt);
10113 			owner = 1;
10114 			mutex_enter(&hblk_reserve_lock);
10115 			hmeblkp = HBLK_RESERVE;
10116 			hblk_reserve_thread = curthread;
10117 		}
10118 	}
10119 
10120 hblk_verify:
10121 	ASSERT(hmeblkp != NULL);
10122 	set_hblk_sz(hmeblkp, size);
10123 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10124 	SFMMU_HASH_LOCK(hmebp);
10125 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10126 	if (newhblkp != NULL) {
10127 		SFMMU_HASH_UNLOCK(hmebp);
10128 		if (hmeblkp != HBLK_RESERVE) {
10129 			/*
10130 			 * This is really tricky!
10131 			 *
10132 			 * vmem_alloc(vmem_seg_arena)
10133 			 *  vmem_alloc(vmem_internal_arena)
10134 			 *   segkmem_alloc(heap_arena)
10135 			 *    vmem_alloc(heap_arena)
10136 			 *    page_create()
10137 			 *    hat_memload()
10138 			 *	kmem_cache_free()
10139 			 *	 kmem_cache_alloc()
10140 			 *	  kmem_slab_create()
10141 			 *	   vmem_alloc(kmem_internal_arena)
10142 			 *	    segkmem_alloc(heap_arena)
10143 			 *		vmem_alloc(heap_arena)
10144 			 *		page_create()
10145 			 *		hat_memload()
10146 			 *		  kmem_cache_free()
10147 			 *		...
10148 			 *
10149 			 * Thus, hat_memload() could call kmem_cache_free
10150 			 * for enough number of times that we could easily
10151 			 * hit the bottom of the stack or run out of reserve
10152 			 * list of vmem_seg structs.  So, we must donate
10153 			 * this hblk to reserve list if it's allocated
10154 			 * from sfmmu8_cache *and* mapping kernel range.
10155 			 * We don't need to worry about freeing hmeblk1's
10156 			 * to kmem since they don't map any kmem slabs.
10157 			 *
10158 			 * Note: When segkmem supports largepages, we must
10159 			 * free hmeblk1's to reserve list as well.
10160 			 */
10161 			forcefree = (sfmmup == KHATID) ? 1 : 0;
10162 			if (size == TTE8K &&
10163 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10164 				goto re_verify;
10165 			}
10166 			ASSERT(sfmmup != KHATID);
10167 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10168 		} else {
10169 			/*
10170 			 * Hey! we don't need hblk_reserve any more.
10171 			 */
10172 			ASSERT(owner);
10173 			hblk_reserve_thread = NULL;
10174 			mutex_exit(&hblk_reserve_lock);
10175 			owner = 0;
10176 		}
10177 re_verify:
10178 		/*
10179 		 * let's check if the goodies are still present
10180 		 */
10181 		SFMMU_HASH_LOCK(hmebp);
10182 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10183 		if (newhblkp != NULL) {
10184 			/*
10185 			 * return newhblkp if it's not hblk_reserve;
10186 			 * if newhblkp is hblk_reserve, return it
10187 			 * _only if_ we are the owner of hblk_reserve.
10188 			 */
10189 			if (newhblkp != HBLK_RESERVE || owner) {
10190 				return (newhblkp);
10191 			} else {
10192 				/*
10193 				 * we just hit hblk_reserve in the hash and
10194 				 * we are not the owner of that;
10195 				 *
10196 				 * block until hblk_reserve_thread completes
10197 				 * swapping hblk_reserve and try the dance
10198 				 * once again.
10199 				 */
10200 				SFMMU_HASH_UNLOCK(hmebp);
10201 				mutex_enter(&hblk_reserve_lock);
10202 				mutex_exit(&hblk_reserve_lock);
10203 				SFMMU_STAT(sf_hblk_reserve_hit);
10204 				goto fill_hblk;
10205 			}
10206 		} else {
10207 			/*
10208 			 * it's no more! try the dance once again.
10209 			 */
10210 			SFMMU_HASH_UNLOCK(hmebp);
10211 			goto fill_hblk;
10212 		}
10213 	}
10214 
10215 hblk_init:
10216 	set_hblk_sz(hmeblkp, size);
10217 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10218 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10219 	hmeblkp->hblk_tag = hblktag;
10220 	hmeblkp->hblk_shadow = shw_hblkp;
10221 	hblkpa = hmeblkp->hblk_nextpa;
10222 	hmeblkp->hblk_nextpa = 0;
10223 
10224 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10225 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10226 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10227 	ASSERT(hmeblkp->hblk_vcnt == 0);
10228 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10229 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10230 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10231 	return (hmeblkp);
10232 }
10233 
10234 /*
10235  * This function performs any cleanup required on the hme_blk
10236  * and returns it to the free list.
10237  */
10238 /* ARGSUSED */
10239 static void
10240 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10241 	uint64_t hblkpa, struct hme_blk **listp)
10242 {
10243 	int shw_size, vshift;
10244 	struct hme_blk *shw_hblkp;
10245 	uint_t		shw_mask, newshw_mask;
10246 	uintptr_t	vaddr;
10247 	int		size;
10248 	uint_t		critical;
10249 
10250 	ASSERT(hmeblkp);
10251 	ASSERT(!hmeblkp->hblk_hmecnt);
10252 	ASSERT(!hmeblkp->hblk_vcnt);
10253 	ASSERT(!hmeblkp->hblk_lckcnt);
10254 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10255 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10256 
10257 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10258 
10259 	size = get_hblk_ttesz(hmeblkp);
10260 	shw_hblkp = hmeblkp->hblk_shadow;
10261 	if (shw_hblkp) {
10262 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10263 		if (mmu_page_sizes == max_mmu_page_sizes) {
10264 			ASSERT(size < TTE256M);
10265 		} else {
10266 			ASSERT(size < TTE4M);
10267 		}
10268 
10269 		shw_size = get_hblk_ttesz(shw_hblkp);
10270 		vaddr = get_hblk_base(hmeblkp);
10271 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10272 		ASSERT(vshift < 8);
10273 		/*
10274 		 * Atomically clear shadow mask bit
10275 		 */
10276 		do {
10277 			shw_mask = shw_hblkp->hblk_shw_mask;
10278 			ASSERT(shw_mask & (1 << vshift));
10279 			newshw_mask = shw_mask & ~(1 << vshift);
10280 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10281 				shw_mask, newshw_mask);
10282 		} while (newshw_mask != shw_mask);
10283 		hmeblkp->hblk_shadow = NULL;
10284 	}
10285 	hmeblkp->hblk_next = NULL;
10286 	hmeblkp->hblk_nextpa = hblkpa;
10287 	hmeblkp->hblk_shw_bit = 0;
10288 
10289 	if (hmeblkp->hblk_nuc_bit == 0) {
10290 
10291 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10292 			return;
10293 
10294 		hmeblkp->hblk_next = *listp;
10295 		*listp = hmeblkp;
10296 	}
10297 }
10298 
10299 static void
10300 sfmmu_hblks_list_purge(struct hme_blk **listp)
10301 {
10302 	struct hme_blk	*hmeblkp;
10303 
10304 	while ((hmeblkp = *listp) != NULL) {
10305 		*listp = hmeblkp->hblk_next;
10306 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10307 	}
10308 }
10309 
10310 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10311 
10312 static uint_t sfmmu_hblk_steal_twice;
10313 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10314 
10315 /*
10316  * Steal a hmeblk
10317  * Enough hmeblks were allocated at startup (nucleus hmeblks) and also
10318  * hmeblks were added dynamically. We should never ever not be able to
10319  * find one. Look for an unused/unlocked hmeblk in user hash table.
10320  */
10321 static struct hme_blk *
10322 sfmmu_hblk_steal(int size)
10323 {
10324 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10325 	struct hmehash_bucket *hmebp;
10326 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10327 	uint64_t hblkpa, prevpa;
10328 	int i;
10329 
10330 	for (;;) {
10331 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10332 			uhmehash_steal_hand;
10333 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10334 
10335 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10336 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10337 			SFMMU_HASH_LOCK(hmebp);
10338 			hmeblkp = hmebp->hmeblkp;
10339 			hblkpa = hmebp->hmeh_nextpa;
10340 			prevpa = 0;
10341 			pr_hblk = NULL;
10342 			while (hmeblkp) {
10343 				/*
10344 				 * check if it is a hmeblk that is not locked
10345 				 * and not shared. skip shadow hmeblks with
10346 				 * shadow_mask set i.e valid count non zero.
10347 				 */
10348 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10349 				    (hmeblkp->hblk_shw_bit == 0 ||
10350 					hmeblkp->hblk_vcnt == 0) &&
10351 				    (hmeblkp->hblk_lckcnt == 0)) {
10352 					/*
10353 					 * there is a high probability that we
10354 					 * will find a free one. search some
10355 					 * buckets for a free hmeblk initially
10356 					 * before unloading a valid hmeblk.
10357 					 */
10358 					if ((hmeblkp->hblk_vcnt == 0 &&
10359 					    hmeblkp->hblk_hmecnt == 0) || (i >=
10360 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10361 						if (sfmmu_steal_this_hblk(hmebp,
10362 						    hmeblkp, hblkpa, prevpa,
10363 						    pr_hblk)) {
10364 							/*
10365 							 * Hblk is unloaded
10366 							 * successfully
10367 							 */
10368 							break;
10369 						}
10370 					}
10371 				}
10372 				pr_hblk = hmeblkp;
10373 				prevpa = hblkpa;
10374 				hblkpa = hmeblkp->hblk_nextpa;
10375 				hmeblkp = hmeblkp->hblk_next;
10376 			}
10377 
10378 			SFMMU_HASH_UNLOCK(hmebp);
10379 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10380 				hmebp = uhme_hash;
10381 		}
10382 		uhmehash_steal_hand = hmebp;
10383 
10384 		if (hmeblkp != NULL)
10385 			break;
10386 
10387 		/*
10388 		 * in the worst case, look for a free one in the kernel
10389 		 * hash table.
10390 		 */
10391 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10392 			SFMMU_HASH_LOCK(hmebp);
10393 			hmeblkp = hmebp->hmeblkp;
10394 			hblkpa = hmebp->hmeh_nextpa;
10395 			prevpa = 0;
10396 			pr_hblk = NULL;
10397 			while (hmeblkp) {
10398 				/*
10399 				 * check if it is free hmeblk
10400 				 */
10401 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10402 				    (hmeblkp->hblk_lckcnt == 0) &&
10403 				    (hmeblkp->hblk_vcnt == 0) &&
10404 				    (hmeblkp->hblk_hmecnt == 0)) {
10405 					if (sfmmu_steal_this_hblk(hmebp,
10406 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10407 						break;
10408 					} else {
10409 						/*
10410 						 * Cannot fail since we have
10411 						 * hash lock.
10412 						 */
10413 						panic("fail to steal?");
10414 					}
10415 				}
10416 
10417 				pr_hblk = hmeblkp;
10418 				prevpa = hblkpa;
10419 				hblkpa = hmeblkp->hblk_nextpa;
10420 				hmeblkp = hmeblkp->hblk_next;
10421 			}
10422 
10423 			SFMMU_HASH_UNLOCK(hmebp);
10424 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10425 				hmebp = khme_hash;
10426 		}
10427 
10428 		if (hmeblkp != NULL)
10429 			break;
10430 		sfmmu_hblk_steal_twice++;
10431 	}
10432 	return (hmeblkp);
10433 }
10434 
10435 /*
10436  * This routine does real work to prepare a hblk to be "stolen" by
10437  * unloading the mappings, updating shadow counts ....
10438  * It returns 1 if the block is ready to be reused (stolen), or 0
10439  * means the block cannot be stolen yet- pageunload is still working
10440  * on this hblk.
10441  */
10442 static int
10443 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10444 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10445 {
10446 	int shw_size, vshift;
10447 	struct hme_blk *shw_hblkp;
10448 	uintptr_t vaddr;
10449 	uint_t shw_mask, newshw_mask;
10450 
10451 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10452 
10453 	/*
10454 	 * check if the hmeblk is free, unload if necessary
10455 	 */
10456 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10457 		sfmmu_t *sfmmup;
10458 		demap_range_t dmr;
10459 
10460 		sfmmup = hblktosfmmu(hmeblkp);
10461 		DEMAP_RANGE_INIT(sfmmup, &dmr);
10462 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10463 		    (caddr_t)get_hblk_base(hmeblkp),
10464 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10465 		DEMAP_RANGE_FLUSH(&dmr);
10466 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10467 			/*
10468 			 * Pageunload is working on the same hblk.
10469 			 */
10470 			return (0);
10471 		}
10472 
10473 		sfmmu_hblk_steal_unload_count++;
10474 	}
10475 
10476 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10477 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10478 
10479 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10480 	hmeblkp->hblk_nextpa = hblkpa;
10481 
10482 	shw_hblkp = hmeblkp->hblk_shadow;
10483 	if (shw_hblkp) {
10484 		shw_size = get_hblk_ttesz(shw_hblkp);
10485 		vaddr = get_hblk_base(hmeblkp);
10486 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10487 		ASSERT(vshift < 8);
10488 		/*
10489 		 * Atomically clear shadow mask bit
10490 		 */
10491 		do {
10492 			shw_mask = shw_hblkp->hblk_shw_mask;
10493 			ASSERT(shw_mask & (1 << vshift));
10494 			newshw_mask = shw_mask & ~(1 << vshift);
10495 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10496 				shw_mask, newshw_mask);
10497 		} while (newshw_mask != shw_mask);
10498 		hmeblkp->hblk_shadow = NULL;
10499 	}
10500 
10501 	/*
10502 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10503 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10504 	 * we are indeed allocating a shadow hmeblk.
10505 	 */
10506 	hmeblkp->hblk_shw_bit = 0;
10507 
10508 	sfmmu_hblk_steal_count++;
10509 	SFMMU_STAT(sf_steal_count);
10510 
10511 	return (1);
10512 }
10513 
10514 struct hme_blk *
10515 sfmmu_hmetohblk(struct sf_hment *sfhme)
10516 {
10517 	struct hme_blk *hmeblkp;
10518 	struct sf_hment *sfhme0;
10519 	struct hme_blk *hblk_dummy = 0;
10520 
10521 	/*
10522 	 * No dummy sf_hments, please.
10523 	 */
10524 	ASSERT(sfhme->hme_tte.ll != 0);
10525 
10526 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10527 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10528 		(uintptr_t)&hblk_dummy->hblk_hme[0]);
10529 
10530 	return (hmeblkp);
10531 }
10532 
10533 /*
10534  * Make sure that there is a valid ctx, if not get a ctx.
10535  * Also, get a readers lock on the ctx, so that the ctx cannot
10536  * be stolen underneath us.
10537  */
10538 static void
10539 sfmmu_disallow_ctx_steal(sfmmu_t *sfmmup)
10540 {
10541 	struct	ctx *ctx;
10542 
10543 	ASSERT(sfmmup != ksfmmup);
10544 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10545 
10546 	/*
10547 	 * If ctx has been stolen, get a ctx.
10548 	 */
10549 	if (sfmmup->sfmmu_cnum == INVALID_CONTEXT) {
10550 		/*
10551 		 * Our ctx was stolen. Get a ctx with rlock.
10552 		 */
10553 		ctx = sfmmu_get_ctx(sfmmup);
10554 		return;
10555 	} else {
10556 		ctx = sfmmutoctx(sfmmup);
10557 	}
10558 
10559 	/*
10560 	 * Get the reader lock.
10561 	 */
10562 	rw_enter(&ctx->ctx_rwlock, RW_READER);
10563 	if (ctx->ctx_sfmmu != sfmmup) {
10564 		/*
10565 		 * The ctx got stolen, so spin again.
10566 		 */
10567 		rw_exit(&ctx->ctx_rwlock);
10568 		ctx = sfmmu_get_ctx(sfmmup);
10569 	}
10570 
10571 	ASSERT(sfmmup->sfmmu_cnum >= NUM_LOCKED_CTXS);
10572 }
10573 
10574 /*
10575  * Decrement reference count for our ctx. If the reference count
10576  * becomes 0, our ctx can be stolen by someone.
10577  */
10578 static void
10579 sfmmu_allow_ctx_steal(sfmmu_t *sfmmup)
10580 {
10581 	struct	ctx *ctx;
10582 
10583 	ASSERT(sfmmup != ksfmmup);
10584 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10585 	ctx = sfmmutoctx(sfmmup);
10586 
10587 	ASSERT(sfmmup == ctx->ctx_sfmmu);
10588 	ASSERT(sfmmup->sfmmu_cnum != INVALID_CONTEXT);
10589 	rw_exit(&ctx->ctx_rwlock);
10590 }
10591 
10592 /*
10593  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10594  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10595  * KM_SLEEP allocation.
10596  *
10597  * Return 0 on success, -1 otherwise.
10598  */
10599 static void
10600 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10601 {
10602 	struct tsb_info *tsbinfop, *next;
10603 	tsb_replace_rc_t rc;
10604 	boolean_t gotfirst = B_FALSE;
10605 
10606 	ASSERT(sfmmup != ksfmmup);
10607 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10608 
10609 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10610 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10611 	}
10612 
10613 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10614 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10615 	} else {
10616 		return;
10617 	}
10618 
10619 	ASSERT(sfmmup->sfmmu_tsb != NULL);
10620 
10621 	/*
10622 	 * Loop over all tsbinfo's replacing them with ones that actually have
10623 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10624 	 */
10625 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10626 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10627 		next = tsbinfop->tsb_next;
10628 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10629 		    hatlockp, TSB_SWAPIN);
10630 		if (rc != TSB_SUCCESS) {
10631 			break;
10632 		}
10633 		gotfirst = B_TRUE;
10634 	}
10635 
10636 	switch (rc) {
10637 	case TSB_SUCCESS:
10638 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10639 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10640 		return;
10641 	case TSB_ALLOCFAIL:
10642 		break;
10643 	default:
10644 		panic("sfmmu_replace_tsb returned unrecognized failure code "
10645 		    "%d", rc);
10646 	}
10647 
10648 	/*
10649 	 * In this case, we failed to get one of our TSBs.  If we failed to
10650 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10651 	 * and throw away the tsbinfos, starting where the allocation failed;
10652 	 * we can get by with just one TSB as long as we don't leave the
10653 	 * SWAPPED tsbinfo structures lying around.
10654 	 */
10655 	tsbinfop = sfmmup->sfmmu_tsb;
10656 	next = tsbinfop->tsb_next;
10657 	tsbinfop->tsb_next = NULL;
10658 
10659 	sfmmu_hat_exit(hatlockp);
10660 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10661 		next = tsbinfop->tsb_next;
10662 		sfmmu_tsbinfo_free(tsbinfop);
10663 	}
10664 	hatlockp = sfmmu_hat_enter(sfmmup);
10665 
10666 	/*
10667 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10668 	 * pages.
10669 	 */
10670 	if (!gotfirst) {
10671 		tsbinfop = sfmmup->sfmmu_tsb;
10672 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10673 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10674 		ASSERT(rc == TSB_SUCCESS);
10675 	}
10676 
10677 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10678 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10679 }
10680 
10681 /*
10682  * Handle exceptions for low level tsb_handler.
10683  *
10684  * There are many scenarios that could land us here:
10685  *
10686  *	1) Process has no context.  In this case, ctx is
10687  *         INVALID_CONTEXT and sfmmup->sfmmu_cnum == 1 so
10688  *         we will acquire a context before returning.
10689  *      2) Need to re-load our MMU state.  In this case,
10690  *         ctx is INVALID_CONTEXT and sfmmup->sfmmu_cnum != 1.
10691  *      3) ISM mappings are being updated.  This is handled
10692  *         just like case #2.
10693  *      4) We wish to program a new page size into the TLB.
10694  *         This is handled just like case #1, since changing
10695  *         TLB page size requires us to flush the TLB.
10696  *	5) Window fault and no valid translation found.
10697  *
10698  * Cases 1-4, ctx is INVALID_CONTEXT so we handle it and then
10699  * exit which will retry the trapped instruction.  Case #5 we
10700  * punt to trap() which will raise us a trap level and handle
10701  * the fault before unwinding.
10702  *
10703  * Note that the process will run in INVALID_CONTEXT before
10704  * faulting into here and subsequently loading the MMU registers
10705  * (including the TSB base register) associated with this process.
10706  * For this reason, the trap handlers must all test for
10707  * INVALID_CONTEXT before attempting to access any registers other
10708  * than the context registers.
10709  */
10710 void
10711 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10712 {
10713 	sfmmu_t *sfmmup;
10714 	uint_t ctxnum;
10715 	klwp_id_t lwp;
10716 	char lwp_save_state;
10717 	hatlock_t *hatlockp;
10718 	struct tsb_info *tsbinfop;
10719 
10720 	SFMMU_STAT(sf_tsb_exceptions);
10721 	sfmmup = astosfmmu(curthread->t_procp->p_as);
10722 	ctxnum = tagaccess & TAGACC_CTX_MASK;
10723 
10724 	ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT);
10725 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10726 	/*
10727 	 * First, make sure we come out of here with a valid ctx,
10728 	 * since if we don't get one we'll simply loop on the
10729 	 * faulting instruction.
10730 	 *
10731 	 * If the ISM mappings are changing, the TSB is being relocated, or
10732 	 * the process is swapped out we serialize behind the controlling
10733 	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10734 	 * Otherwise we synchronize with the context stealer or the thread
10735 	 * that required us to change out our MMU registers (such
10736 	 * as a thread changing out our TSB while we were running) by
10737 	 * locking the HAT and grabbing the rwlock on the context as a
10738 	 * reader temporarily.
10739 	 */
10740 	if (ctxnum == INVALID_CONTEXT ||
10741 	    SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10742 		/*
10743 		 * Must set lwp state to LWP_SYS before
10744 		 * trying to acquire any adaptive lock
10745 		 */
10746 		lwp = ttolwp(curthread);
10747 		ASSERT(lwp);
10748 		lwp_save_state = lwp->lwp_state;
10749 		lwp->lwp_state = LWP_SYS;
10750 
10751 		hatlockp = sfmmu_hat_enter(sfmmup);
10752 retry:
10753 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10754 		    tsbinfop = tsbinfop->tsb_next) {
10755 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10756 				cv_wait(&sfmmup->sfmmu_tsb_cv,
10757 				    HATLOCK_MUTEXP(hatlockp));
10758 				goto retry;
10759 			}
10760 		}
10761 
10762 		/*
10763 		 * Wait for ISM maps to be updated.
10764 		 */
10765 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10766 			cv_wait(&sfmmup->sfmmu_tsb_cv,
10767 				    HATLOCK_MUTEXP(hatlockp));
10768 			goto retry;
10769 		}
10770 
10771 		/*
10772 		 * If we're swapping in, get TSB(s).  Note that we must do
10773 		 * this before we get a ctx or load the MMU state.  Once
10774 		 * we swap in we have to recheck to make sure the TSB(s) and
10775 		 * ISM mappings didn't change while we slept.
10776 		 */
10777 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10778 			sfmmu_tsb_swapin(sfmmup, hatlockp);
10779 			goto retry;
10780 		}
10781 
10782 		sfmmu_disallow_ctx_steal(sfmmup);
10783 		ctxnum = sfmmup->sfmmu_cnum;
10784 		kpreempt_disable();
10785 		sfmmu_setctx_sec(ctxnum);
10786 		sfmmu_load_mmustate(sfmmup);
10787 		kpreempt_enable();
10788 		sfmmu_allow_ctx_steal(sfmmup);
10789 		sfmmu_hat_exit(hatlockp);
10790 		/*
10791 		 * Must restore lwp_state if not calling
10792 		 * trap() for further processing. Restore
10793 		 * it anyway.
10794 		 */
10795 		lwp->lwp_state = lwp_save_state;
10796 		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10797 		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10798 		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10799 		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10800 		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10801 		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10802 			return;
10803 		}
10804 		if (traptype == T_DATA_PROT) {
10805 			traptype = T_DATA_MMU_MISS;
10806 		}
10807 	}
10808 	trap(rp, (caddr_t)tagaccess, traptype, 0);
10809 }
10810 
10811 /*
10812  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10813  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10814  * rather than spinning to avoid send mondo timeouts with
10815  * interrupts enabled. When the lock is acquired it is immediately
10816  * released and we return back to sfmmu_vatopfn just after
10817  * the GET_TTE call.
10818  */
10819 void
10820 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10821 {
10822 	struct page	**pp;
10823 
10824 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10825 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10826 }
10827 
10828 /*
10829  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10830  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10831  * cross traps which cannot be handled while spinning in the
10832  * trap handlers. Simply enter and exit the kpr_suspendlock spin
10833  * mutex, which is held by the holder of the suspend bit, and then
10834  * retry the trapped instruction after unwinding.
10835  */
10836 /*ARGSUSED*/
10837 void
10838 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10839 {
10840 	ASSERT(curthread != kreloc_thread);
10841 	mutex_enter(&kpr_suspendlock);
10842 	mutex_exit(&kpr_suspendlock);
10843 }
10844 
10845 /*
10846  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10847  * This routine may be called with all cpu's captured. Therefore, the
10848  * caller is responsible for holding all locks and disabling kernel
10849  * preemption.
10850  */
10851 /* ARGSUSED */
10852 static void
10853 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10854 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10855 {
10856 	cpuset_t 	cpuset;
10857 	caddr_t 	va;
10858 	ism_ment_t	*ment;
10859 	sfmmu_t		*sfmmup;
10860 	int 		ctxnum;
10861 	int 		vcolor;
10862 	int		ttesz;
10863 
10864 	/*
10865 	 * Walk the ism_hat's mapping list and flush the page
10866 	 * from every hat sharing this ism_hat. This routine
10867 	 * may be called while all cpu's have been captured.
10868 	 * Therefore we can't attempt to grab any locks. For now
10869 	 * this means we will protect the ism mapping list under
10870 	 * a single lock which will be grabbed by the caller.
10871 	 * If hat_share/unshare scalibility becomes a performance
10872 	 * problem then we may need to re-think ism mapping list locking.
10873 	 */
10874 	ASSERT(ism_sfmmup->sfmmu_ismhat);
10875 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10876 	addr = addr - ISMID_STARTADDR;
10877 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10878 
10879 		sfmmup = ment->iment_hat;
10880 		ctxnum = sfmmup->sfmmu_cnum;
10881 		va = ment->iment_base_va;
10882 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10883 
10884 		/*
10885 		 * Flush TSB of ISM mappings.
10886 		 */
10887 		ttesz = get_hblk_ttesz(hmeblkp);
10888 		if (ttesz == TTE8K || ttesz == TTE4M) {
10889 			sfmmu_unload_tsb(sfmmup, va, ttesz);
10890 		} else {
10891 			caddr_t sva = va;
10892 			caddr_t eva;
10893 			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10894 			eva = sva + get_hblk_span(hmeblkp);
10895 			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10896 		}
10897 
10898 		if (ctxnum != INVALID_CONTEXT) {
10899 			/*
10900 			 * Flush TLBs.  We don't need to do this for
10901 			 * invalid context since the flushing is already
10902 			 * done as part of context stealing.
10903 			 */
10904 			cpuset = sfmmup->sfmmu_cpusran;
10905 			CPUSET_AND(cpuset, cpu_ready_set);
10906 			CPUSET_DEL(cpuset, CPU->cpu_id);
10907 			SFMMU_XCALL_STATS(ctxnum);
10908 			xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10909 			    ctxnum);
10910 			vtag_flushpage(va, ctxnum);
10911 		}
10912 
10913 		/*
10914 		 * Flush D$
10915 		 * When flushing D$ we must flush all
10916 		 * cpu's. See sfmmu_cache_flush().
10917 		 */
10918 		if (cache_flush_flag == CACHE_FLUSH) {
10919 			cpuset = cpu_ready_set;
10920 			CPUSET_DEL(cpuset, CPU->cpu_id);
10921 			SFMMU_XCALL_STATS(ctxnum);
10922 			vcolor = addr_to_vcolor(va);
10923 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10924 			vac_flushpage(pfnum, vcolor);
10925 		}
10926 	}
10927 }
10928 
10929 /*
10930  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10931  * a particular virtual address and ctx.  If noflush is set we do not
10932  * flush the TLB/TSB.  This function may or may not be called with the
10933  * HAT lock held.
10934  */
10935 static void
10936 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10937 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10938 	int hat_lock_held)
10939 {
10940 	int ctxnum, vcolor;
10941 	cpuset_t cpuset;
10942 	hatlock_t *hatlockp;
10943 
10944 	/*
10945 	 * There is no longer a need to protect against ctx being
10946 	 * stolen here since we don't store the ctx in the TSB anymore.
10947 	 */
10948 	vcolor = addr_to_vcolor(addr);
10949 
10950 	kpreempt_disable();
10951 	if (!tlb_noflush) {
10952 		/*
10953 		 * Flush the TSB.
10954 		 */
10955 		if (!hat_lock_held)
10956 			hatlockp = sfmmu_hat_enter(sfmmup);
10957 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10958 		ctxnum = (int)sfmmutoctxnum(sfmmup);
10959 		if (!hat_lock_held)
10960 			sfmmu_hat_exit(hatlockp);
10961 
10962 		if (ctxnum != INVALID_CONTEXT) {
10963 			/*
10964 			 * Flush TLBs.  We don't need to do this if our
10965 			 * context is invalid context.  Since we hold the
10966 			 * HAT lock the context must have been stolen and
10967 			 * hence will be flushed before re-use.
10968 			 */
10969 			cpuset = sfmmup->sfmmu_cpusran;
10970 			CPUSET_AND(cpuset, cpu_ready_set);
10971 			CPUSET_DEL(cpuset, CPU->cpu_id);
10972 			SFMMU_XCALL_STATS(ctxnum);
10973 			xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10974 				ctxnum);
10975 			vtag_flushpage(addr, ctxnum);
10976 		}
10977 	}
10978 
10979 	/*
10980 	 * Flush the D$
10981 	 *
10982 	 * Even if the ctx is stolen, we need to flush the
10983 	 * cache. Our ctx stealer only flushes the TLBs.
10984 	 */
10985 	if (cache_flush_flag == CACHE_FLUSH) {
10986 		if (cpu_flag & FLUSH_ALL_CPUS) {
10987 			cpuset = cpu_ready_set;
10988 		} else {
10989 			cpuset = sfmmup->sfmmu_cpusran;
10990 			CPUSET_AND(cpuset, cpu_ready_set);
10991 		}
10992 		CPUSET_DEL(cpuset, CPU->cpu_id);
10993 		SFMMU_XCALL_STATS(sfmmutoctxnum(sfmmup));
10994 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10995 		vac_flushpage(pfnum, vcolor);
10996 	}
10997 	kpreempt_enable();
10998 }
10999 
11000 /*
11001  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
11002  * address and ctx.  If noflush is set we do not currently do anything.
11003  * This function may or may not be called with the HAT lock held.
11004  */
11005 static void
11006 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
11007 	int tlb_noflush, int hat_lock_held)
11008 {
11009 	int ctxnum;
11010 	cpuset_t cpuset;
11011 	hatlock_t *hatlockp;
11012 
11013 	/*
11014 	 * If the process is exiting we have nothing to do.
11015 	 */
11016 	if (tlb_noflush)
11017 		return;
11018 
11019 	/*
11020 	 * Flush TSB.
11021 	 */
11022 	if (!hat_lock_held)
11023 		hatlockp = sfmmu_hat_enter(sfmmup);
11024 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
11025 	ctxnum = sfmmutoctxnum(sfmmup);
11026 	if (!hat_lock_held)
11027 		sfmmu_hat_exit(hatlockp);
11028 
11029 	/*
11030 	 * Flush TLBs.  We don't need to do this if our context is invalid
11031 	 * context.  Since we hold the HAT lock the context must have been
11032 	 * stolen and hence will be flushed before re-use.
11033 	 */
11034 	if (ctxnum != INVALID_CONTEXT) {
11035 		/*
11036 		 * There is no need to protect against ctx being stolen.
11037 		 * If the ctx is stolen we will simply get an extra flush.
11038 		 */
11039 		kpreempt_disable();
11040 		cpuset = sfmmup->sfmmu_cpusran;
11041 		CPUSET_AND(cpuset, cpu_ready_set);
11042 		CPUSET_DEL(cpuset, CPU->cpu_id);
11043 		SFMMU_XCALL_STATS(ctxnum);
11044 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, ctxnum);
11045 		vtag_flushpage(addr, ctxnum);
11046 		kpreempt_enable();
11047 	}
11048 }
11049 
11050 /*
11051  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
11052  * call handler that can flush a range of pages to save on xcalls.
11053  */
11054 static int sfmmu_xcall_save;
11055 
11056 static void
11057 sfmmu_tlb_range_demap(demap_range_t *dmrp)
11058 {
11059 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
11060 	int ctxnum;
11061 	hatlock_t *hatlockp;
11062 	cpuset_t cpuset;
11063 	uint64_t ctx_pgcnt;
11064 	pgcnt_t pgcnt = 0;
11065 	int pgunload = 0;
11066 	int dirtypg = 0;
11067 	caddr_t addr = dmrp->dmr_addr;
11068 	caddr_t eaddr;
11069 	uint64_t bitvec = dmrp->dmr_bitvec;
11070 
11071 	ASSERT(bitvec & 1);
11072 
11073 	/*
11074 	 * Flush TSB and calculate number of pages to flush.
11075 	 */
11076 	while (bitvec != 0) {
11077 		dirtypg = 0;
11078 		/*
11079 		 * Find the first page to flush and then count how many
11080 		 * pages there are after it that also need to be flushed.
11081 		 * This way the number of TSB flushes is minimized.
11082 		 */
11083 		while ((bitvec & 1) == 0) {
11084 			pgcnt++;
11085 			addr += MMU_PAGESIZE;
11086 			bitvec >>= 1;
11087 		}
11088 		while (bitvec & 1) {
11089 			dirtypg++;
11090 			bitvec >>= 1;
11091 		}
11092 		eaddr = addr + ptob(dirtypg);
11093 		hatlockp = sfmmu_hat_enter(sfmmup);
11094 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
11095 		sfmmu_hat_exit(hatlockp);
11096 		pgunload += dirtypg;
11097 		addr = eaddr;
11098 		pgcnt += dirtypg;
11099 	}
11100 
11101 	/*
11102 	 * In the case where context is invalid context, bail.
11103 	 * We hold the hat lock while checking the ctx to prevent
11104 	 * a race with sfmmu_replace_tsb() which temporarily sets
11105 	 * the ctx to INVALID_CONTEXT to force processes to enter
11106 	 * sfmmu_tsbmiss_exception().
11107 	 */
11108 	hatlockp = sfmmu_hat_enter(sfmmup);
11109 	ctxnum = sfmmutoctxnum(sfmmup);
11110 	sfmmu_hat_exit(hatlockp);
11111 	if (ctxnum == INVALID_CONTEXT) {
11112 		dmrp->dmr_bitvec = 0;
11113 		return;
11114 	}
11115 
11116 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
11117 	if (sfmmup->sfmmu_free == 0) {
11118 		addr = dmrp->dmr_addr;
11119 		bitvec = dmrp->dmr_bitvec;
11120 		ctx_pgcnt = (uint64_t)((ctxnum << 16) | pgcnt);
11121 		kpreempt_disable();
11122 		cpuset = sfmmup->sfmmu_cpusran;
11123 		CPUSET_AND(cpuset, cpu_ready_set);
11124 		CPUSET_DEL(cpuset, CPU->cpu_id);
11125 		SFMMU_XCALL_STATS(ctxnum);
11126 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11127 			ctx_pgcnt);
11128 		for (; bitvec != 0; bitvec >>= 1) {
11129 			if (bitvec & 1)
11130 				vtag_flushpage(addr, ctxnum);
11131 			addr += MMU_PAGESIZE;
11132 		}
11133 		kpreempt_enable();
11134 		sfmmu_xcall_save += (pgunload-1);
11135 	}
11136 	dmrp->dmr_bitvec = 0;
11137 }
11138 
11139 /*
11140  * Flushes only TLB.
11141  */
11142 static void
11143 sfmmu_tlb_ctx_demap(sfmmu_t *sfmmup)
11144 {
11145 	int ctxnum;
11146 	cpuset_t cpuset;
11147 
11148 	ctxnum = (int)sfmmutoctxnum(sfmmup);
11149 	if (ctxnum == INVALID_CONTEXT) {
11150 		/*
11151 		 * if ctx was stolen then simply return
11152 		 * whoever stole ctx is responsible for flush.
11153 		 */
11154 		return;
11155 	}
11156 	ASSERT(ctxnum != KCONTEXT);
11157 	/*
11158 	 * There is no need to protect against ctx being stolen.  If the
11159 	 * ctx is stolen we will simply get an extra flush.
11160 	 */
11161 	kpreempt_disable();
11162 
11163 	cpuset = sfmmup->sfmmu_cpusran;
11164 	CPUSET_DEL(cpuset, CPU->cpu_id);
11165 	CPUSET_AND(cpuset, cpu_ready_set);
11166 	SFMMU_XCALL_STATS(ctxnum);
11167 
11168 	/*
11169 	 * Flush TLB.
11170 	 * RFE: it might be worth delaying the TLB flush as well. In that
11171 	 * case each cpu would have to traverse the dirty list and flush
11172 	 * each one of those ctx from the TLB.
11173 	 */
11174 	vtag_flushctx(ctxnum);
11175 	xt_some(cpuset, vtag_flushctx_tl1, ctxnum, 0);
11176 
11177 	kpreempt_enable();
11178 	SFMMU_STAT(sf_tlbflush_ctx);
11179 }
11180 
11181 /*
11182  * Flushes all TLBs.
11183  */
11184 static void
11185 sfmmu_tlb_all_demap(void)
11186 {
11187 	cpuset_t cpuset;
11188 
11189 	/*
11190 	 * There is no need to protect against ctx being stolen.  If the
11191 	 * ctx is stolen we will simply get an extra flush.
11192 	 */
11193 	kpreempt_disable();
11194 
11195 	cpuset = cpu_ready_set;
11196 	CPUSET_DEL(cpuset, CPU->cpu_id);
11197 	/* LINTED: constant in conditional context */
11198 	SFMMU_XCALL_STATS(INVALID_CONTEXT);
11199 
11200 	vtag_flushall();
11201 	xt_some(cpuset, vtag_flushall_tl1, 0, 0);
11202 	xt_sync(cpuset);
11203 
11204 	kpreempt_enable();
11205 	SFMMU_STAT(sf_tlbflush_all);
11206 }
11207 
11208 /*
11209  * In cases where we need to synchronize with TLB/TSB miss trap
11210  * handlers, _and_ need to flush the TLB, it's a lot easier to
11211  * steal the context from the process and free it than to do a
11212  * special song and dance to keep things consistent for the
11213  * handlers.
11214  *
11215  * Since the process suddenly ends up without a context and our caller
11216  * holds the hat lock, threads that fault after this function is called
11217  * will pile up on the lock.  We can then do whatever we need to
11218  * atomically from the context of the caller.  The first blocked thread
11219  * to resume executing will get the process a new context, and the
11220  * process will resume executing.
11221  *
11222  * One added advantage of this approach is that on MMUs that
11223  * support a "flush all" operation, we will delay the flush until
11224  * we run out of contexts, and then flush the TLB one time.  This
11225  * is rather rare, so it's a lot less expensive than making 8000
11226  * x-calls to flush the TLB 8000 times.  Another is that we can do
11227  * all of this without pausing CPUs, due to some knowledge of how
11228  * resume() loads processes onto the processor; it sets the thread
11229  * into cpusran, and _then_ looks at cnum.  Because we do things in
11230  * the reverse order here, we guarantee exactly one of the following
11231  * statements is always true:
11232  *
11233  *   1) Nobody is in resume() so we have nothing to worry about anyway.
11234  *   2) The thread in resume() isn't in cpusran when we do the xcall,
11235  *      so we know when it does set itself it'll see cnum is
11236  *      INVALID_CONTEXT.
11237  *   3) The thread in resume() is in cpusran, and already might have
11238  *      looked at the old cnum.  That's OK, because we'll xcall it
11239  *      and, if necessary, flush the TLB along with the rest of the
11240  *      crowd.
11241  */
11242 static void
11243 sfmmu_tlb_swap_ctx(sfmmu_t *sfmmup, struct ctx *ctx)
11244 {
11245 	cpuset_t cpuset;
11246 	int cnum;
11247 
11248 	if (sfmmup->sfmmu_cnum == INVALID_CONTEXT)
11249 		return;
11250 
11251 	SFMMU_STAT(sf_ctx_swap);
11252 
11253 	kpreempt_disable();
11254 
11255 	ASSERT(rw_read_locked(&ctx->ctx_rwlock) == 0);
11256 	ASSERT(ctx->ctx_sfmmu == sfmmup);
11257 
11258 	cnum = ctxtoctxnum(ctx);
11259 	ASSERT(sfmmup->sfmmu_cnum == cnum);
11260 	ASSERT(cnum >= NUM_LOCKED_CTXS);
11261 
11262 	sfmmup->sfmmu_cnum = INVALID_CONTEXT;
11263 	membar_enter();	/* make sure visible on all CPUs */
11264 	ctx->ctx_sfmmu = NULL;
11265 
11266 	cpuset = sfmmup->sfmmu_cpusran;
11267 	CPUSET_DEL(cpuset, CPU->cpu_id);
11268 	CPUSET_AND(cpuset, cpu_ready_set);
11269 	SFMMU_XCALL_STATS(cnum);
11270 
11271 	/*
11272 	 * Force anybody running this process on CPU
11273 	 * to enter sfmmu_tsbmiss_exception() on the
11274 	 * next TLB miss, synchronize behind us on
11275 	 * the HAT lock, and grab a new context.  At
11276 	 * that point the new page size will become
11277 	 * active in the TLB for the new context.
11278 	 * See sfmmu_get_ctx() for details.
11279 	 */
11280 	if (delay_tlb_flush) {
11281 		xt_some(cpuset, sfmmu_raise_tsb_exception,
11282 		    cnum, INVALID_CONTEXT);
11283 		SFMMU_STAT(sf_tlbflush_deferred);
11284 	} else {
11285 		xt_some(cpuset, sfmmu_ctx_steal_tl1, cnum, INVALID_CONTEXT);
11286 		vtag_flushctx(cnum);
11287 		SFMMU_STAT(sf_tlbflush_ctx);
11288 	}
11289 	xt_sync(cpuset);
11290 
11291 	/*
11292 	 * If we just stole the ctx from the current
11293 	 * process on local CPU we need to invalidate
11294 	 * this CPU context as well.
11295 	 */
11296 	if (sfmmu_getctx_sec() == cnum) {
11297 		sfmmu_setctx_sec(INVALID_CONTEXT);
11298 		sfmmu_clear_utsbinfo();
11299 	}
11300 
11301 	kpreempt_enable();
11302 
11303 	/*
11304 	 * Now put old ctx on the dirty list since we may not
11305 	 * have flushed the context out of the TLB.  We'll let
11306 	 * the next guy who uses this ctx flush it instead.
11307 	 */
11308 	mutex_enter(&ctx_list_lock);
11309 	CTX_SET_FLAGS(ctx, CTX_FREE_FLAG);
11310 	ctx->ctx_free = ctxdirty;
11311 	ctxdirty = ctx;
11312 	mutex_exit(&ctx_list_lock);
11313 }
11314 
11315 /*
11316  * We need to flush the cache in all cpus.  It is possible that
11317  * a process referenced a page as cacheable but has sinced exited
11318  * and cleared the mapping list.  We still to flush it but have no
11319  * state so all cpus is the only alternative.
11320  */
11321 void
11322 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11323 {
11324 	cpuset_t cpuset;
11325 	int	ctxnum = INVALID_CONTEXT;
11326 
11327 	kpreempt_disable();
11328 	cpuset = cpu_ready_set;
11329 	CPUSET_DEL(cpuset, CPU->cpu_id);
11330 	SFMMU_XCALL_STATS(ctxnum);	/* account to any ctx */
11331 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11332 	xt_sync(cpuset);
11333 	vac_flushpage(pfnum, vcolor);
11334 	kpreempt_enable();
11335 }
11336 
11337 void
11338 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11339 {
11340 	cpuset_t cpuset;
11341 	int	ctxnum = INVALID_CONTEXT;
11342 
11343 	ASSERT(vcolor >= 0);
11344 
11345 	kpreempt_disable();
11346 	cpuset = cpu_ready_set;
11347 	CPUSET_DEL(cpuset, CPU->cpu_id);
11348 	SFMMU_XCALL_STATS(ctxnum);	/* account to any ctx */
11349 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11350 	xt_sync(cpuset);
11351 	vac_flushcolor(vcolor, pfnum);
11352 	kpreempt_enable();
11353 }
11354 
11355 /*
11356  * We need to prevent processes from accessing the TSB using a cached physical
11357  * address.  It's alright if they try to access the TSB via virtual address
11358  * since they will just fault on that virtual address once the mapping has
11359  * been suspended.
11360  */
11361 #pragma weak sendmondo_in_recover
11362 
11363 /* ARGSUSED */
11364 static int
11365 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11366 {
11367 	hatlock_t *hatlockp;
11368 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11369 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11370 	struct ctx *ctx;
11371 	int cnum;
11372 	extern uint32_t sendmondo_in_recover;
11373 
11374 	if (flags != HAT_PRESUSPEND)
11375 		return (0);
11376 
11377 	hatlockp = sfmmu_hat_enter(sfmmup);
11378 
11379 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11380 
11381 	/*
11382 	 * For Cheetah+ Erratum 25:
11383 	 * Wait for any active recovery to finish.  We can't risk
11384 	 * relocating the TSB of the thread running mondo_recover_proc()
11385 	 * since, if we did that, we would deadlock.  The scenario we are
11386 	 * trying to avoid is as follows:
11387 	 *
11388 	 * THIS CPU			RECOVER CPU
11389 	 * --------			-----------
11390 	 *				Begins recovery, walking through TSB
11391 	 * hat_pagesuspend() TSB TTE
11392 	 *				TLB miss on TSB TTE, spins at TL1
11393 	 * xt_sync()
11394 	 *	send_mondo_timeout()
11395 	 *	mondo_recover_proc()
11396 	 *	((deadlocked))
11397 	 *
11398 	 * The second half of the workaround is that mondo_recover_proc()
11399 	 * checks to see if the tsb_info has the RELOC flag set, and if it
11400 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11401 	 * and hence avoiding the TLB miss that could result in a deadlock.
11402 	 */
11403 	if (&sendmondo_in_recover) {
11404 		membar_enter();	/* make sure RELOC flag visible */
11405 		while (sendmondo_in_recover) {
11406 			drv_usecwait(1);
11407 			membar_consumer();
11408 		}
11409 	}
11410 
11411 	ctx = sfmmutoctx(sfmmup);
11412 	rw_enter(&ctx->ctx_rwlock, RW_WRITER);
11413 	cnum = sfmmutoctxnum(sfmmup);
11414 
11415 	if (cnum != INVALID_CONTEXT) {
11416 		/*
11417 		 * Force all threads for this sfmmu to sfmmu_tsbmiss_exception
11418 		 * on their next TLB miss.
11419 		 */
11420 		sfmmu_tlb_swap_ctx(sfmmup, ctx);
11421 	}
11422 
11423 	rw_exit(&ctx->ctx_rwlock);
11424 
11425 	sfmmu_hat_exit(hatlockp);
11426 
11427 	return (0);
11428 }
11429 
11430 /* ARGSUSED */
11431 static int
11432 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11433 	void *tsbinfo, pfn_t newpfn)
11434 {
11435 	hatlock_t *hatlockp;
11436 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11437 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11438 
11439 	if (flags != HAT_POSTUNSUSPEND)
11440 		return (0);
11441 
11442 	hatlockp = sfmmu_hat_enter(sfmmup);
11443 
11444 	SFMMU_STAT(sf_tsb_reloc);
11445 
11446 	/*
11447 	 * The process may have swapped out while we were relocating one
11448 	 * of its TSBs.  If so, don't bother doing the setup since the
11449 	 * process can't be using the memory anymore.
11450 	 */
11451 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11452 		ASSERT(va == tsbinfop->tsb_va);
11453 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11454 		sfmmu_setup_tsbinfo(sfmmup);
11455 
11456 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11457 			sfmmu_inv_tsb(tsbinfop->tsb_va,
11458 			    TSB_BYTES(tsbinfop->tsb_szc));
11459 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11460 		}
11461 	}
11462 
11463 	membar_exit();
11464 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11465 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11466 
11467 	sfmmu_hat_exit(hatlockp);
11468 
11469 	return (0);
11470 }
11471 
11472 /*
11473  * Allocate and initialize a tsb_info structure.  Note that we may or may not
11474  * allocate a TSB here, depending on the flags passed in.
11475  */
11476 static int
11477 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11478 	uint_t flags, sfmmu_t *sfmmup)
11479 {
11480 	int err;
11481 
11482 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11483 	    sfmmu_tsbinfo_cache, KM_SLEEP);
11484 
11485 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11486 	    tsb_szc, flags, sfmmup)) != 0) {
11487 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11488 		SFMMU_STAT(sf_tsb_allocfail);
11489 		*tsbinfopp = NULL;
11490 		return (err);
11491 	}
11492 	SFMMU_STAT(sf_tsb_alloc);
11493 
11494 	/*
11495 	 * Bump the TSB size counters for this TSB size.
11496 	 */
11497 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11498 	return (0);
11499 }
11500 
11501 static void
11502 sfmmu_tsb_free(struct tsb_info *tsbinfo)
11503 {
11504 	caddr_t tsbva = tsbinfo->tsb_va;
11505 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11506 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11507 	vmem_t	*vmp = tsbinfo->tsb_vmp;
11508 
11509 	/*
11510 	 * If we allocated this TSB from relocatable kernel memory, then we
11511 	 * need to uninstall the callback handler.
11512 	 */
11513 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11514 		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11515 		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11516 		page_t **ppl;
11517 		int ret;
11518 
11519 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11520 		ASSERT(ret == 0);
11521 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11522 		    0);
11523 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11524 	}
11525 
11526 	if (kmem_cachep != NULL) {
11527 		kmem_cache_free(kmem_cachep, tsbva);
11528 	} else {
11529 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11530 	}
11531 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11532 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11533 }
11534 
11535 static void
11536 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11537 {
11538 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11539 		sfmmu_tsb_free(tsbinfo);
11540 	}
11541 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11542 
11543 }
11544 
11545 /*
11546  * Setup all the references to physical memory for this tsbinfo.
11547  * The underlying page(s) must be locked.
11548  */
11549 static void
11550 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11551 {
11552 	ASSERT(pfn != PFN_INVALID);
11553 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11554 
11555 #ifndef sun4v
11556 	if (tsbinfo->tsb_szc == 0) {
11557 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11558 		    PROT_WRITE|PROT_READ, TTE8K);
11559 	} else {
11560 		/*
11561 		 * Round down PA and use a large mapping; the handlers will
11562 		 * compute the TSB pointer at the correct offset into the
11563 		 * big virtual page.  NOTE: this assumes all TSBs larger
11564 		 * than 8K must come from physically contiguous slabs of
11565 		 * size tsb_slab_size.
11566 		 */
11567 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11568 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11569 	}
11570 	tsbinfo->tsb_pa = ptob(pfn);
11571 
11572 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11573 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11574 
11575 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11576 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11577 #else /* sun4v */
11578 	tsbinfo->tsb_pa = ptob(pfn);
11579 #endif /* sun4v */
11580 }
11581 
11582 
11583 /*
11584  * Returns zero on success, ENOMEM if over the high water mark,
11585  * or EAGAIN if the caller needs to retry with a smaller TSB
11586  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11587  *
11588  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11589  * is specified and the TSB requested is PAGESIZE, though it
11590  * may sleep waiting for memory if sufficient memory is not
11591  * available.
11592  */
11593 static int
11594 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11595     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11596 {
11597 	caddr_t vaddr = NULL;
11598 	caddr_t slab_vaddr;
11599 	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11600 	int tsbbytes = TSB_BYTES(tsbcode);
11601 	int lowmem = 0;
11602 	struct kmem_cache *kmem_cachep = NULL;
11603 	vmem_t *vmp = NULL;
11604 	lgrp_id_t lgrpid = LGRP_NONE;
11605 	pfn_t pfn;
11606 	uint_t cbflags = HAC_SLEEP;
11607 	page_t **pplist;
11608 	int ret;
11609 
11610 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11611 		flags |= TSB_ALLOC;
11612 
11613 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11614 
11615 	tsbinfo->tsb_sfmmu = sfmmup;
11616 
11617 	/*
11618 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11619 	 * return.
11620 	 */
11621 	if ((flags & TSB_ALLOC) == 0) {
11622 		tsbinfo->tsb_szc = tsbcode;
11623 		tsbinfo->tsb_ttesz_mask = tteszmask;
11624 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11625 		tsbinfo->tsb_pa = -1;
11626 		tsbinfo->tsb_tte.ll = 0;
11627 		tsbinfo->tsb_next = NULL;
11628 		tsbinfo->tsb_flags = TSB_SWAPPED;
11629 		tsbinfo->tsb_cache = NULL;
11630 		tsbinfo->tsb_vmp = NULL;
11631 		return (0);
11632 	}
11633 
11634 #ifdef DEBUG
11635 	/*
11636 	 * For debugging:
11637 	 * Randomly force allocation failures every tsb_alloc_mtbf
11638 	 * tries if TSB_FORCEALLOC is not specified.  This will
11639 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11640 	 * it is even, to allow testing of both failure paths...
11641 	 */
11642 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11643 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11644 		tsb_alloc_count = 0;
11645 		tsb_alloc_fail_mtbf++;
11646 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11647 	}
11648 #endif	/* DEBUG */
11649 
11650 	/*
11651 	 * Enforce high water mark if we are not doing a forced allocation
11652 	 * and are not shrinking a process' TSB.
11653 	 */
11654 	if ((flags & TSB_SHRINK) == 0 &&
11655 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11656 		if ((flags & TSB_FORCEALLOC) == 0)
11657 			return (ENOMEM);
11658 		lowmem = 1;
11659 	}
11660 
11661 	/*
11662 	 * Allocate from the correct location based upon the size of the TSB
11663 	 * compared to the base page size, and what memory conditions dictate.
11664 	 * Note we always do nonblocking allocations from the TSB arena since
11665 	 * we don't want memory fragmentation to cause processes to block
11666 	 * indefinitely waiting for memory; until the kernel algorithms that
11667 	 * coalesce large pages are improved this is our best option.
11668 	 *
11669 	 * Algorithm:
11670 	 *	If allocating a "large" TSB (>8K), allocate from the
11671 	 *		appropriate kmem_tsb_default_arena vmem arena
11672 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11673 	 *	tsb_forceheap is set
11674 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11675 	 *		KM_SLEEP (never fails)
11676 	 *	else
11677 	 *		Allocate from appropriate sfmmu_tsb_cache with
11678 	 *		KM_NOSLEEP
11679 	 *	endif
11680 	 */
11681 	if (tsb_lgrp_affinity)
11682 		lgrpid = lgrp_home_id(curthread);
11683 	if (lgrpid == LGRP_NONE)
11684 		lgrpid = 0;	/* use lgrp of boot CPU */
11685 
11686 	if (tsbbytes > MMU_PAGESIZE) {
11687 		vmp = kmem_tsb_default_arena[lgrpid];
11688 		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11689 		    NULL, NULL, VM_NOSLEEP);
11690 #ifdef	DEBUG
11691 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11692 #else	/* !DEBUG */
11693 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11694 #endif	/* DEBUG */
11695 		kmem_cachep = sfmmu_tsb8k_cache;
11696 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11697 		ASSERT(vaddr != NULL);
11698 	} else {
11699 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11700 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11701 	}
11702 
11703 	tsbinfo->tsb_cache = kmem_cachep;
11704 	tsbinfo->tsb_vmp = vmp;
11705 
11706 	if (vaddr == NULL) {
11707 		return (EAGAIN);
11708 	}
11709 
11710 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11711 	kmem_cachep = tsbinfo->tsb_cache;
11712 
11713 	/*
11714 	 * If we are allocating from outside the cage, then we need to
11715 	 * register a relocation callback handler.  Note that for now
11716 	 * since pseudo mappings always hang off of the slab's root page,
11717 	 * we need only lock the first 8K of the TSB slab.  This is a bit
11718 	 * hacky but it is good for performance.
11719 	 */
11720 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11721 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11722 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11723 		ASSERT(ret == 0);
11724 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11725 		    cbflags, (void *)tsbinfo, &pfn);
11726 
11727 		/*
11728 		 * Need to free up resources if we could not successfully
11729 		 * add the callback function and return an error condition.
11730 		 */
11731 		if (ret != 0) {
11732 			if (kmem_cachep) {
11733 				kmem_cache_free(kmem_cachep, vaddr);
11734 			} else {
11735 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11736 			}
11737 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11738 			    S_WRITE);
11739 			return (EAGAIN);
11740 		}
11741 	} else {
11742 		/*
11743 		 * Since allocation of 8K TSBs from heap is rare and occurs
11744 		 * during memory pressure we allocate them from permanent
11745 		 * memory rather than using callbacks to get the PFN.
11746 		 */
11747 		pfn = hat_getpfnum(kas.a_hat, vaddr);
11748 	}
11749 
11750 	tsbinfo->tsb_va = vaddr;
11751 	tsbinfo->tsb_szc = tsbcode;
11752 	tsbinfo->tsb_ttesz_mask = tteszmask;
11753 	tsbinfo->tsb_next = NULL;
11754 	tsbinfo->tsb_flags = 0;
11755 
11756 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11757 
11758 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11759 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11760 	}
11761 
11762 	sfmmu_inv_tsb(vaddr, tsbbytes);
11763 	return (0);
11764 }
11765 
11766 /*
11767  * Initialize per cpu tsb and per cpu tsbmiss_area
11768  */
11769 void
11770 sfmmu_init_tsbs(void)
11771 {
11772 	int i;
11773 	struct tsbmiss	*tsbmissp;
11774 	struct kpmtsbm	*kpmtsbmp;
11775 #ifndef sun4v
11776 	extern int	dcache_line_mask;
11777 #endif /* sun4v */
11778 	extern uint_t	vac_colors;
11779 
11780 	/*
11781 	 * Init. tsb miss area.
11782 	 */
11783 	tsbmissp = tsbmiss_area;
11784 
11785 	for (i = 0; i < NCPU; tsbmissp++, i++) {
11786 		/*
11787 		 * initialize the tsbmiss area.
11788 		 * Do this for all possible CPUs as some may be added
11789 		 * while the system is running. There is no cost to this.
11790 		 */
11791 		tsbmissp->ksfmmup = ksfmmup;
11792 #ifndef sun4v
11793 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11794 #endif /* sun4v */
11795 		tsbmissp->khashstart =
11796 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11797 		tsbmissp->uhashstart =
11798 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11799 		tsbmissp->khashsz = khmehash_num;
11800 		tsbmissp->uhashsz = uhmehash_num;
11801 	}
11802 
11803 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11804 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11805 
11806 	if (kpm_enable == 0)
11807 		return;
11808 
11809 	/* -- Begin KPM specific init -- */
11810 
11811 	if (kpm_smallpages) {
11812 		/*
11813 		 * If we're using base pagesize pages for seg_kpm
11814 		 * mappings, we use the kernel TSB since we can't afford
11815 		 * to allocate a second huge TSB for these mappings.
11816 		 */
11817 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11818 		kpm_tsbsz = ktsb_szcode;
11819 		kpmsm_tsbbase = kpm_tsbbase;
11820 		kpmsm_tsbsz = kpm_tsbsz;
11821 	} else {
11822 		/*
11823 		 * In VAC conflict case, just put the entries in the
11824 		 * kernel 8K indexed TSB for now so we can find them.
11825 		 * This could really be changed in the future if we feel
11826 		 * the need...
11827 		 */
11828 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11829 		kpmsm_tsbsz = ktsb_szcode;
11830 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11831 		kpm_tsbsz = ktsb4m_szcode;
11832 	}
11833 
11834 	kpmtsbmp = kpmtsbm_area;
11835 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11836 		/*
11837 		 * Initialize the kpmtsbm area.
11838 		 * Do this for all possible CPUs as some may be added
11839 		 * while the system is running. There is no cost to this.
11840 		 */
11841 		kpmtsbmp->vbase = kpm_vbase;
11842 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11843 		kpmtsbmp->sz_shift = kpm_size_shift;
11844 		kpmtsbmp->kpmp_shift = kpmp_shift;
11845 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11846 		if (kpm_smallpages == 0) {
11847 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11848 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11849 		} else {
11850 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11851 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11852 		}
11853 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11854 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11855 #ifdef	DEBUG
11856 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11857 #endif	/* DEBUG */
11858 		if (ktsb_phys)
11859 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11860 	}
11861 
11862 	/* -- End KPM specific init -- */
11863 }
11864 
11865 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11866 struct tsb_info ktsb_info[2];
11867 
11868 /*
11869  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11870  */
11871 void
11872 sfmmu_init_ktsbinfo()
11873 {
11874 	ASSERT(ksfmmup != NULL);
11875 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11876 	/*
11877 	 * Allocate tsbinfos for kernel and copy in data
11878 	 * to make debug easier and sun4v setup easier.
11879 	 */
11880 	ktsb_info[0].tsb_sfmmu = ksfmmup;
11881 	ktsb_info[0].tsb_szc = ktsb_szcode;
11882 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11883 	ktsb_info[0].tsb_va = ktsb_base;
11884 	ktsb_info[0].tsb_pa = ktsb_pbase;
11885 	ktsb_info[0].tsb_flags = 0;
11886 	ktsb_info[0].tsb_tte.ll = 0;
11887 	ktsb_info[0].tsb_cache = NULL;
11888 
11889 	ktsb_info[1].tsb_sfmmu = ksfmmup;
11890 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11891 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11892 	ktsb_info[1].tsb_va = ktsb4m_base;
11893 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11894 	ktsb_info[1].tsb_flags = 0;
11895 	ktsb_info[1].tsb_tte.ll = 0;
11896 	ktsb_info[1].tsb_cache = NULL;
11897 
11898 	/* Link them into ksfmmup. */
11899 	ktsb_info[0].tsb_next = &ktsb_info[1];
11900 	ktsb_info[1].tsb_next = NULL;
11901 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11902 
11903 	sfmmu_setup_tsbinfo(ksfmmup);
11904 }
11905 
11906 /*
11907  * Cache the last value returned from va_to_pa().  If the VA specified
11908  * in the current call to cached_va_to_pa() maps to the same Page (as the
11909  * previous call to cached_va_to_pa()), then compute the PA using
11910  * cached info, else call va_to_pa().
11911  *
11912  * Note: this function is neither MT-safe nor consistent in the presence
11913  * of multiple, interleaved threads.  This function was created to enable
11914  * an optimization used during boot (at a point when there's only one thread
11915  * executing on the "boot CPU", and before startup_vm() has been called).
11916  */
11917 static uint64_t
11918 cached_va_to_pa(void *vaddr)
11919 {
11920 	static uint64_t prev_vaddr_base = 0;
11921 	static uint64_t prev_pfn = 0;
11922 
11923 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11924 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11925 	} else {
11926 		uint64_t pa = va_to_pa(vaddr);
11927 
11928 		if (pa != ((uint64_t)-1)) {
11929 			/*
11930 			 * Computed physical address is valid.  Cache its
11931 			 * related info for the next cached_va_to_pa() call.
11932 			 */
11933 			prev_pfn = pa & MMU_PAGEMASK;
11934 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11935 		}
11936 
11937 		return (pa);
11938 	}
11939 }
11940 
11941 /*
11942  * Carve up our nucleus hblk region.  We may allocate more hblks than
11943  * asked due to rounding errors but we are guaranteed to have at least
11944  * enough space to allocate the requested number of hblk8's and hblk1's.
11945  */
11946 void
11947 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11948 {
11949 	struct hme_blk *hmeblkp;
11950 	size_t hme8blk_sz, hme1blk_sz;
11951 	size_t i;
11952 	size_t hblk8_bound;
11953 	ulong_t j = 0, k = 0;
11954 
11955 	ASSERT(addr != NULL && size != 0);
11956 
11957 	/* Need to use proper structure alignment */
11958 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11959 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11960 
11961 	nucleus_hblk8.list = (void *)addr;
11962 	nucleus_hblk8.index = 0;
11963 
11964 	/*
11965 	 * Use as much memory as possible for hblk8's since we
11966 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11967 	 * We need to hold back enough space for the hblk1's which
11968 	 * we'll allocate next.
11969 	 */
11970 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11971 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11972 		hmeblkp = (struct hme_blk *)addr;
11973 		addr += hme8blk_sz;
11974 		hmeblkp->hblk_nuc_bit = 1;
11975 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11976 	}
11977 	nucleus_hblk8.len = j;
11978 	ASSERT(j >= nhblk8);
11979 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11980 
11981 	nucleus_hblk1.list = (void *)addr;
11982 	nucleus_hblk1.index = 0;
11983 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11984 		hmeblkp = (struct hme_blk *)addr;
11985 		addr += hme1blk_sz;
11986 		hmeblkp->hblk_nuc_bit = 1;
11987 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11988 	}
11989 	ASSERT(k >= nhblk1);
11990 	nucleus_hblk1.len = k;
11991 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11992 }
11993 
11994 /*
11995  * This function is currently not supported on this platform. For what
11996  * it's supposed to do, see hat.c and hat_srmmu.c
11997  */
11998 /* ARGSUSED */
11999 faultcode_t
12000 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
12001     uint_t flags)
12002 {
12003 	ASSERT(hat->sfmmu_xhat_provider == NULL);
12004 	return (FC_NOSUPPORT);
12005 }
12006 
12007 /*
12008  * Searchs the mapping list of the page for a mapping of the same size. If not
12009  * found the corresponding bit is cleared in the p_index field. When large
12010  * pages are more prevalent in the system, we can maintain the mapping list
12011  * in order and we don't have to traverse the list each time. Just check the
12012  * next and prev entries, and if both are of different size, we clear the bit.
12013  */
12014 static void
12015 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
12016 {
12017 	struct sf_hment *sfhmep;
12018 	struct hme_blk *hmeblkp;
12019 	int	index;
12020 	pgcnt_t	npgs;
12021 
12022 	ASSERT(ttesz > TTE8K);
12023 
12024 	ASSERT(sfmmu_mlist_held(pp));
12025 
12026 	ASSERT(PP_ISMAPPED_LARGE(pp));
12027 
12028 	/*
12029 	 * Traverse mapping list looking for another mapping of same size.
12030 	 * since we only want to clear index field if all mappings of
12031 	 * that size are gone.
12032 	 */
12033 
12034 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
12035 		hmeblkp = sfmmu_hmetohblk(sfhmep);
12036 		if (hmeblkp->hblk_xhat_bit)
12037 			continue;
12038 		if (hme_size(sfhmep) == ttesz) {
12039 			/*
12040 			 * another mapping of the same size. don't clear index.
12041 			 */
12042 			return;
12043 		}
12044 	}
12045 
12046 	/*
12047 	 * Clear the p_index bit for large page.
12048 	 */
12049 	index = PAGESZ_TO_INDEX(ttesz);
12050 	npgs = TTEPAGES(ttesz);
12051 	while (npgs-- > 0) {
12052 		ASSERT(pp->p_index & index);
12053 		pp->p_index &= ~index;
12054 		pp = PP_PAGENEXT(pp);
12055 	}
12056 }
12057 
12058 /*
12059  * return supported features
12060  */
12061 /* ARGSUSED */
12062 int
12063 hat_supported(enum hat_features feature, void *arg)
12064 {
12065 	switch (feature) {
12066 	case    HAT_SHARED_PT:
12067 	case	HAT_DYNAMIC_ISM_UNMAP:
12068 	case	HAT_VMODSORT:
12069 		return (1);
12070 	default:
12071 		return (0);
12072 	}
12073 }
12074 
12075 void
12076 hat_enter(struct hat *hat)
12077 {
12078 	hatlock_t	*hatlockp;
12079 
12080 	if (hat != ksfmmup) {
12081 		hatlockp = TSB_HASH(hat);
12082 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
12083 	}
12084 }
12085 
12086 void
12087 hat_exit(struct hat *hat)
12088 {
12089 	hatlock_t	*hatlockp;
12090 
12091 	if (hat != ksfmmup) {
12092 		hatlockp = TSB_HASH(hat);
12093 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
12094 	}
12095 }
12096 
12097 /*ARGSUSED*/
12098 void
12099 hat_reserve(struct as *as, caddr_t addr, size_t len)
12100 {
12101 }
12102 
12103 static void
12104 hat_kstat_init(void)
12105 {
12106 	kstat_t *ksp;
12107 
12108 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
12109 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
12110 		KSTAT_FLAG_VIRTUAL);
12111 	if (ksp) {
12112 		ksp->ks_data = (void *) &sfmmu_global_stat;
12113 		kstat_install(ksp);
12114 	}
12115 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
12116 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
12117 		KSTAT_FLAG_VIRTUAL);
12118 	if (ksp) {
12119 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
12120 		kstat_install(ksp);
12121 	}
12122 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
12123 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
12124 		KSTAT_FLAG_WRITABLE);
12125 	if (ksp) {
12126 		ksp->ks_update = sfmmu_kstat_percpu_update;
12127 		kstat_install(ksp);
12128 	}
12129 }
12130 
12131 /* ARGSUSED */
12132 static int
12133 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
12134 {
12135 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
12136 	struct tsbmiss *tsbm = tsbmiss_area;
12137 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
12138 	int i;
12139 
12140 	ASSERT(cpu_kstat);
12141 	if (rw == KSTAT_READ) {
12142 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
12143 			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
12144 			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
12145 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
12146 				tsbm->uprot_traps;
12147 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
12148 				kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
12149 
12150 			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
12151 				cpu_kstat->sf_tsb_hits =
12152 				(tsbm->itlb_misses + tsbm->dtlb_misses) -
12153 				(tsbm->utsb_misses + tsbm->ktsb_misses +
12154 				kpmtsbm->kpm_tsb_misses);
12155 			} else {
12156 				cpu_kstat->sf_tsb_hits = 0;
12157 			}
12158 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
12159 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
12160 		}
12161 	} else {
12162 		/* KSTAT_WRITE is used to clear stats */
12163 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
12164 			tsbm->itlb_misses = 0;
12165 			tsbm->dtlb_misses = 0;
12166 			tsbm->utsb_misses = 0;
12167 			tsbm->ktsb_misses = 0;
12168 			tsbm->uprot_traps = 0;
12169 			tsbm->kprot_traps = 0;
12170 			kpmtsbm->kpm_dtlb_misses = 0;
12171 			kpmtsbm->kpm_tsb_misses = 0;
12172 		}
12173 	}
12174 	return (0);
12175 }
12176 
12177 #ifdef	DEBUG
12178 
12179 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
12180 
12181 /*
12182  * A tte checker. *orig_old is the value we read before cas.
12183  *	*cur is the value returned by cas.
12184  *	*new is the desired value when we do the cas.
12185  *
12186  *	*hmeblkp is currently unused.
12187  */
12188 
12189 /* ARGSUSED */
12190 void
12191 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
12192 {
12193 	uint_t i, j, k;
12194 	int cpuid = CPU->cpu_id;
12195 
12196 	gorig[cpuid] = orig_old;
12197 	gcur[cpuid] = cur;
12198 	gnew[cpuid] = new;
12199 
12200 #ifdef lint
12201 	hmeblkp = hmeblkp;
12202 #endif
12203 
12204 	if (TTE_IS_VALID(orig_old)) {
12205 		if (TTE_IS_VALID(cur)) {
12206 			i = TTE_TO_TTEPFN(orig_old);
12207 			j = TTE_TO_TTEPFN(cur);
12208 			k = TTE_TO_TTEPFN(new);
12209 			if (i != j) {
12210 				/* remap error? */
12211 				panic("chk_tte: bad pfn, 0x%x, 0x%x",
12212 					i, j);
12213 			}
12214 
12215 			if (i != k) {
12216 				/* remap error? */
12217 				panic("chk_tte: bad pfn2, 0x%x, 0x%x",
12218 					i, k);
12219 			}
12220 		} else {
12221 			if (TTE_IS_VALID(new)) {
12222 				panic("chk_tte: invalid cur? ");
12223 			}
12224 
12225 			i = TTE_TO_TTEPFN(orig_old);
12226 			k = TTE_TO_TTEPFN(new);
12227 			if (i != k) {
12228 				panic("chk_tte: bad pfn3, 0x%x, 0x%x",
12229 					i, k);
12230 			}
12231 		}
12232 	} else {
12233 		if (TTE_IS_VALID(cur)) {
12234 			j = TTE_TO_TTEPFN(cur);
12235 			if (TTE_IS_VALID(new)) {
12236 				k = TTE_TO_TTEPFN(new);
12237 				if (j != k) {
12238 					panic("chk_tte: bad pfn4, 0x%x, 0x%x",
12239 						j, k);
12240 				}
12241 			} else {
12242 				panic("chk_tte: why here?");
12243 			}
12244 		} else {
12245 			if (!TTE_IS_VALID(new)) {
12246 				panic("chk_tte: why here2 ?");
12247 			}
12248 		}
12249 	}
12250 }
12251 
12252 #endif /* DEBUG */
12253 
12254 extern void prefetch_tsbe_read(struct tsbe *);
12255 extern void prefetch_tsbe_write(struct tsbe *);
12256 
12257 
12258 /*
12259  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12260  * us optimal performance on Cheetah+.  You can only have 8 outstanding
12261  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12262  * prefetch to make the most utilization of the prefetch capability.
12263  */
12264 #define	TSBE_PREFETCH_STRIDE (7)
12265 
12266 void
12267 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12268 {
12269 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12270 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12271 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12272 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12273 	struct tsbe *old;
12274 	struct tsbe *new;
12275 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12276 	uint64_t va;
12277 	int new_offset;
12278 	int i;
12279 	int vpshift;
12280 	int last_prefetch;
12281 
12282 	if (old_bytes == new_bytes) {
12283 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12284 	} else {
12285 
12286 		/*
12287 		 * A TSBE is 16 bytes which means there are four TSBE's per
12288 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12289 		 */
12290 		old = (struct tsbe *)old_tsbinfo->tsb_va;
12291 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12292 		for (i = 0; i < old_entries; i++, old++) {
12293 			if (((i & (4-1)) == 0) && (i < last_prefetch))
12294 				prefetch_tsbe_read(old);
12295 			if (!old->tte_tag.tag_invalid) {
12296 				/*
12297 				 * We have a valid TTE to remap.  Check the
12298 				 * size.  We won't remap 64K or 512K TTEs
12299 				 * because they span more than one TSB entry
12300 				 * and are indexed using an 8K virt. page.
12301 				 * Ditto for 32M and 256M TTEs.
12302 				 */
12303 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12304 				    TTE_CSZ(&old->tte_data) == TTE512K)
12305 					continue;
12306 				if (mmu_page_sizes == max_mmu_page_sizes) {
12307 				    if (TTE_CSZ(&old->tte_data) == TTE32M ||
12308 					TTE_CSZ(&old->tte_data) == TTE256M)
12309 					    continue;
12310 				}
12311 
12312 				/* clear the lower 22 bits of the va */
12313 				va = *(uint64_t *)old << 22;
12314 				/* turn va into a virtual pfn */
12315 				va >>= 22 - TSB_START_SIZE;
12316 				/*
12317 				 * or in bits from the offset in the tsb
12318 				 * to get the real virtual pfn. These
12319 				 * correspond to bits [21:13] in the va
12320 				 */
12321 				vpshift =
12322 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12323 				    0x1ff;
12324 				va |= (i << vpshift);
12325 				va >>= vpshift;
12326 				new_offset = va & (new_entries - 1);
12327 				new = new_base + new_offset;
12328 				prefetch_tsbe_write(new);
12329 				*new = *old;
12330 			}
12331 		}
12332 	}
12333 }
12334 
12335 /*
12336  * Kernel Physical Mapping (kpm) facility
12337  */
12338 
12339 /* -- hat_kpm interface section -- */
12340 
12341 /*
12342  * Mapin a locked page and return the vaddr.
12343  * When a kpme is provided by the caller it is added to
12344  * the page p_kpmelist. The page to be mapped in must
12345  * be at least read locked (p_selock).
12346  */
12347 caddr_t
12348 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
12349 {
12350 	kmutex_t	*pml;
12351 	caddr_t		vaddr;
12352 
12353 	if (kpm_enable == 0) {
12354 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set");
12355 		return ((caddr_t)NULL);
12356 	}
12357 
12358 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
12359 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked");
12360 		return ((caddr_t)NULL);
12361 	}
12362 
12363 	pml = sfmmu_mlist_enter(pp);
12364 	ASSERT(pp->p_kpmref >= 0);
12365 
12366 	vaddr = (pp->p_kpmref == 0) ?
12367 		sfmmu_kpm_mapin(pp) : hat_kpm_page2va(pp, 1);
12368 
12369 	if (kpme != NULL) {
12370 		/*
12371 		 * Tolerate multiple mapins for the same kpme to avoid
12372 		 * the need for an extra serialization.
12373 		 */
12374 		if ((sfmmu_kpme_lookup(kpme, pp)) == 0)
12375 			sfmmu_kpme_add(kpme, pp);
12376 
12377 		ASSERT(pp->p_kpmref > 0);
12378 
12379 	} else {
12380 		pp->p_kpmref++;
12381 	}
12382 
12383 	sfmmu_mlist_exit(pml);
12384 	return (vaddr);
12385 }
12386 
12387 /*
12388  * Mapout a locked page.
12389  * When a kpme is provided by the caller it is removed from
12390  * the page p_kpmelist. The page to be mapped out must be at
12391  * least read locked (p_selock).
12392  * Note: The seg_kpm layer provides a mapout interface for the
12393  * case that a kpme is used and the underlying page is unlocked.
12394  * This can be used instead of calling this function directly.
12395  */
12396 void
12397 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
12398 {
12399 	kmutex_t	*pml;
12400 
12401 	if (kpm_enable == 0) {
12402 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set");
12403 		return;
12404 	}
12405 
12406 	if (IS_KPM_ADDR(vaddr) == 0) {
12407 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address");
12408 		return;
12409 	}
12410 
12411 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
12412 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked");
12413 		return;
12414 	}
12415 
12416 	if (kpme != NULL) {
12417 		ASSERT(pp == kpme->kpe_page);
12418 		pp = kpme->kpe_page;
12419 		pml = sfmmu_mlist_enter(pp);
12420 
12421 		if (sfmmu_kpme_lookup(kpme, pp) == 0)
12422 			panic("hat_kpm_mapout: kpme not found pp=%p",
12423 				(void *)pp);
12424 
12425 		ASSERT(pp->p_kpmref > 0);
12426 		sfmmu_kpme_sub(kpme, pp);
12427 
12428 	} else {
12429 		pml = sfmmu_mlist_enter(pp);
12430 		pp->p_kpmref--;
12431 	}
12432 
12433 	ASSERT(pp->p_kpmref >= 0);
12434 	if (pp->p_kpmref == 0)
12435 		sfmmu_kpm_mapout(pp, vaddr);
12436 
12437 	sfmmu_mlist_exit(pml);
12438 }
12439 
12440 /*
12441  * Return the kpm virtual address for the page at pp.
12442  * If checkswap is non zero and the page is backed by a
12443  * swap vnode the physical address is used rather than
12444  * p_offset to determine the kpm region.
12445  * Note: The function has to be used w/ extreme care. The
12446  * stability of the page identity is in the responsibility
12447  * of the caller.
12448  */
12449 caddr_t
12450 hat_kpm_page2va(struct page *pp, int checkswap)
12451 {
12452 	int		vcolor, vcolor_pa;
12453 	uintptr_t	paddr, vaddr;
12454 
12455 	ASSERT(kpm_enable);
12456 
12457 	paddr = ptob(pp->p_pagenum);
12458 	vcolor_pa = addr_to_vcolor(paddr);
12459 
12460 	if (checkswap && pp->p_vnode && IS_SWAPFSVP(pp->p_vnode))
12461 		vcolor = (PP_ISNC(pp)) ? vcolor_pa : PP_GET_VCOLOR(pp);
12462 	else
12463 		vcolor = addr_to_vcolor(pp->p_offset);
12464 
12465 	vaddr = (uintptr_t)kpm_vbase + paddr;
12466 
12467 	if (vcolor_pa != vcolor) {
12468 		vaddr += ((uintptr_t)(vcolor - vcolor_pa) << MMU_PAGESHIFT);
12469 		vaddr += (vcolor_pa > vcolor) ?
12470 			((uintptr_t)vcolor_pa << kpm_size_shift) :
12471 			((uintptr_t)(vcolor - vcolor_pa) << kpm_size_shift);
12472 	}
12473 
12474 	return ((caddr_t)vaddr);
12475 }
12476 
12477 /*
12478  * Return the page for the kpm virtual address vaddr.
12479  * Caller is responsible for the kpm mapping and lock
12480  * state of the page.
12481  */
12482 page_t *
12483 hat_kpm_vaddr2page(caddr_t vaddr)
12484 {
12485 	uintptr_t	paddr;
12486 	pfn_t		pfn;
12487 
12488 	ASSERT(IS_KPM_ADDR(vaddr));
12489 
12490 	SFMMU_KPM_VTOP(vaddr, paddr);
12491 	pfn = (pfn_t)btop(paddr);
12492 
12493 	return (page_numtopp_nolock(pfn));
12494 }
12495 
12496 /* page to kpm_page */
12497 #define	PP2KPMPG(pp, kp) {						\
12498 	struct memseg	*mseg;						\
12499 	pgcnt_t		inx;						\
12500 	pfn_t		pfn;						\
12501 									\
12502 	pfn = pp->p_pagenum;						\
12503 	mseg = page_numtomemseg_nolock(pfn);				\
12504 	ASSERT(mseg);							\
12505 	inx = ptokpmp(kpmptop(ptokpmp(pfn)) - mseg->kpm_pbase);		\
12506 	ASSERT(inx < mseg->kpm_nkpmpgs);				\
12507 	kp = &mseg->kpm_pages[inx];					\
12508 }
12509 
12510 /* page to kpm_spage */
12511 #define	PP2KPMSPG(pp, ksp) {						\
12512 	struct memseg	*mseg;						\
12513 	pgcnt_t		inx;						\
12514 	pfn_t		pfn;						\
12515 									\
12516 	pfn = pp->p_pagenum;						\
12517 	mseg = page_numtomemseg_nolock(pfn);				\
12518 	ASSERT(mseg);							\
12519 	inx = pfn - mseg->kpm_pbase;					\
12520 	ksp = &mseg->kpm_spages[inx];					\
12521 }
12522 
12523 /*
12524  * hat_kpm_fault is called from segkpm_fault when a kpm tsbmiss occurred
12525  * which could not be resolved by the trap level tsbmiss handler for the
12526  * following reasons:
12527  * . The vaddr is in VAC alias range (always PAGESIZE mapping size).
12528  * . The kpm (s)page range of vaddr is in a VAC alias prevention state.
12529  * . tsbmiss handling at trap level is not desired (DEBUG kernel only,
12530  *   kpm_tsbmtl == 0).
12531  */
12532 int
12533 hat_kpm_fault(struct hat *hat, caddr_t vaddr)
12534 {
12535 	int		error;
12536 	uintptr_t	paddr;
12537 	pfn_t		pfn;
12538 	struct memseg	*mseg;
12539 	page_t	*pp;
12540 
12541 	if (kpm_enable == 0) {
12542 		cmn_err(CE_WARN, "hat_kpm_fault: kpm_enable not set");
12543 		return (ENOTSUP);
12544 	}
12545 
12546 	ASSERT(hat == ksfmmup);
12547 	ASSERT(IS_KPM_ADDR(vaddr));
12548 
12549 	SFMMU_KPM_VTOP(vaddr, paddr);
12550 	pfn = (pfn_t)btop(paddr);
12551 	mseg = page_numtomemseg_nolock(pfn);
12552 	if (mseg == NULL)
12553 		return (EFAULT);
12554 
12555 	pp = &mseg->pages[(pgcnt_t)(pfn - mseg->pages_base)];
12556 	ASSERT((pfn_t)pp->p_pagenum == pfn);
12557 
12558 	if (!PAGE_LOCKED(pp))
12559 		return (EFAULT);
12560 
12561 	if (kpm_smallpages == 0)
12562 		error = sfmmu_kpm_fault(vaddr, mseg, pp);
12563 	else
12564 		error = sfmmu_kpm_fault_small(vaddr, mseg, pp);
12565 
12566 	return (error);
12567 }
12568 
12569 extern  krwlock_t memsegslock;
12570 
12571 /*
12572  * memseg_hash[] was cleared, need to clear memseg_phash[] too.
12573  */
12574 void
12575 hat_kpm_mseghash_clear(int nentries)
12576 {
12577 	pgcnt_t i;
12578 
12579 	if (kpm_enable == 0)
12580 		return;
12581 
12582 	for (i = 0; i < nentries; i++)
12583 		memseg_phash[i] = MSEG_NULLPTR_PA;
12584 }
12585 
12586 /*
12587  * Update memseg_phash[inx] when memseg_hash[inx] was changed.
12588  */
12589 void
12590 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
12591 {
12592 	if (kpm_enable == 0)
12593 		return;
12594 
12595 	memseg_phash[inx] = (msp) ? va_to_pa(msp) : MSEG_NULLPTR_PA;
12596 }
12597 
12598 /*
12599  * Update kpm memseg members from basic memseg info.
12600  */
12601 void
12602 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs,
12603 	offset_t kpm_pages_off)
12604 {
12605 	if (kpm_enable == 0)
12606 		return;
12607 
12608 	msp->kpm_pages = (kpm_page_t *)((caddr_t)msp->pages + kpm_pages_off);
12609 	msp->kpm_nkpmpgs = nkpmpgs;
12610 	msp->kpm_pbase = kpmptop(ptokpmp(msp->pages_base));
12611 	msp->pagespa = va_to_pa(msp->pages);
12612 	msp->epagespa = va_to_pa(msp->epages);
12613 	msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
12614 }
12615 
12616 /*
12617  * Setup nextpa when a memseg is inserted.
12618  * Assumes that the memsegslock is already held.
12619  */
12620 void
12621 hat_kpm_addmem_mseg_insert(struct memseg *msp)
12622 {
12623 	if (kpm_enable == 0)
12624 		return;
12625 
12626 	ASSERT(RW_LOCK_HELD(&memsegslock));
12627 	msp->nextpa = (memsegs) ? va_to_pa(memsegs) : MSEG_NULLPTR_PA;
12628 }
12629 
12630 /*
12631  * Setup memsegspa when a memseg is (head) inserted.
12632  * Called before memsegs is updated to complete a
12633  * memseg insert operation.
12634  * Assumes that the memsegslock is already held.
12635  */
12636 void
12637 hat_kpm_addmem_memsegs_update(struct memseg *msp)
12638 {
12639 	if (kpm_enable == 0)
12640 		return;
12641 
12642 	ASSERT(RW_LOCK_HELD(&memsegslock));
12643 	ASSERT(memsegs);
12644 	memsegspa = va_to_pa(msp);
12645 }
12646 
12647 /*
12648  * Return end of metadata for an already setup memseg.
12649  *
12650  * Note: kpm_pages and kpm_spages are aliases and the underlying
12651  * member of struct memseg is a union, therefore they always have
12652  * the same address within a memseg. They must be differentiated
12653  * when pointer arithmetic is used with them.
12654  */
12655 caddr_t
12656 hat_kpm_mseg_reuse(struct memseg *msp)
12657 {
12658 	caddr_t end;
12659 
12660 	if (kpm_smallpages == 0)
12661 		end = (caddr_t)(msp->kpm_pages + msp->kpm_nkpmpgs);
12662 	else
12663 		end = (caddr_t)(msp->kpm_spages + msp->kpm_nkpmpgs);
12664 
12665 	return (end);
12666 }
12667 
12668 /*
12669  * Update memsegspa (when first memseg in list
12670  * is deleted) or nextpa  when a memseg deleted.
12671  * Assumes that the memsegslock is already held.
12672  */
12673 void
12674 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp)
12675 {
12676 	struct memseg *lmsp;
12677 
12678 	if (kpm_enable == 0)
12679 		return;
12680 
12681 	ASSERT(RW_LOCK_HELD(&memsegslock));
12682 
12683 	if (mspp == &memsegs) {
12684 		memsegspa = (msp->next) ?
12685 				va_to_pa(msp->next) : MSEG_NULLPTR_PA;
12686 	} else {
12687 		lmsp = (struct memseg *)
12688 			((uint64_t)mspp - offsetof(struct memseg, next));
12689 		lmsp->nextpa = (msp->next) ?
12690 				va_to_pa(msp->next) : MSEG_NULLPTR_PA;
12691 	}
12692 }
12693 
12694 /*
12695  * Update kpm members for all memseg's involved in a split operation
12696  * and do the atomic update of the physical memseg chain.
12697  *
12698  * Note: kpm_pages and kpm_spages are aliases and the underlying member
12699  * of struct memseg is a union, therefore they always have the same
12700  * address within a memseg. With that the direct assignments and
12701  * va_to_pa conversions below don't have to be distinguished wrt. to
12702  * kpm_smallpages. They must be differentiated when pointer arithmetic
12703  * is used with them.
12704  *
12705  * Assumes that the memsegslock is already held.
12706  */
12707 void
12708 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp,
12709 	struct memseg *lo, struct memseg *mid, struct memseg *hi)
12710 {
12711 	pgcnt_t start, end, kbase, kstart, num;
12712 	struct memseg *lmsp;
12713 
12714 	if (kpm_enable == 0)
12715 		return;
12716 
12717 	ASSERT(RW_LOCK_HELD(&memsegslock));
12718 	ASSERT(msp && mid && msp->kpm_pages);
12719 
12720 	kbase = ptokpmp(msp->kpm_pbase);
12721 
12722 	if (lo) {
12723 		num = lo->pages_end - lo->pages_base;
12724 		start = kpmptop(ptokpmp(lo->pages_base));
12725 		/* align end to kpm page size granularity */
12726 		end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs;
12727 		lo->kpm_pbase = start;
12728 		lo->kpm_nkpmpgs = ptokpmp(end - start);
12729 		lo->kpm_pages = msp->kpm_pages;
12730 		lo->kpm_pagespa = va_to_pa(lo->kpm_pages);
12731 		lo->pagespa = va_to_pa(lo->pages);
12732 		lo->epagespa = va_to_pa(lo->epages);
12733 		lo->nextpa = va_to_pa(lo->next);
12734 	}
12735 
12736 	/* mid */
12737 	num = mid->pages_end - mid->pages_base;
12738 	kstart = ptokpmp(mid->pages_base);
12739 	start = kpmptop(kstart);
12740 	/* align end to kpm page size granularity */
12741 	end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs;
12742 	mid->kpm_pbase = start;
12743 	mid->kpm_nkpmpgs = ptokpmp(end - start);
12744 	if (kpm_smallpages == 0) {
12745 		mid->kpm_pages = msp->kpm_pages + (kstart - kbase);
12746 	} else {
12747 		mid->kpm_spages = msp->kpm_spages + (kstart - kbase);
12748 	}
12749 	mid->kpm_pagespa = va_to_pa(mid->kpm_pages);
12750 	mid->pagespa = va_to_pa(mid->pages);
12751 	mid->epagespa = va_to_pa(mid->epages);
12752 	mid->nextpa = (mid->next) ?  va_to_pa(mid->next) : MSEG_NULLPTR_PA;
12753 
12754 	if (hi) {
12755 		num = hi->pages_end - hi->pages_base;
12756 		kstart = ptokpmp(hi->pages_base);
12757 		start = kpmptop(kstart);
12758 		/* align end to kpm page size granularity */
12759 		end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs;
12760 		hi->kpm_pbase = start;
12761 		hi->kpm_nkpmpgs = ptokpmp(end - start);
12762 		if (kpm_smallpages == 0) {
12763 			hi->kpm_pages = msp->kpm_pages + (kstart - kbase);
12764 		} else {
12765 			hi->kpm_spages = msp->kpm_spages + (kstart - kbase);
12766 		}
12767 		hi->kpm_pagespa = va_to_pa(hi->kpm_pages);
12768 		hi->pagespa = va_to_pa(hi->pages);
12769 		hi->epagespa = va_to_pa(hi->epages);
12770 		hi->nextpa = (hi->next) ? va_to_pa(hi->next) : MSEG_NULLPTR_PA;
12771 	}
12772 
12773 	/*
12774 	 * Atomic update of the physical memseg chain
12775 	 */
12776 	if (mspp == &memsegs) {
12777 		memsegspa = (lo) ? va_to_pa(lo) : va_to_pa(mid);
12778 	} else {
12779 		lmsp = (struct memseg *)
12780 			((uint64_t)mspp - offsetof(struct memseg, next));
12781 		lmsp->nextpa = (lo) ? va_to_pa(lo) : va_to_pa(mid);
12782 	}
12783 }
12784 
12785 /*
12786  * Walk the memsegs chain, applying func to each memseg span and vcolor.
12787  */
12788 void
12789 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg)
12790 {
12791 	pfn_t	pbase, pend;
12792 	int	vcolor;
12793 	void	*base;
12794 	size_t	size;
12795 	struct memseg *msp;
12796 	extern uint_t vac_colors;
12797 
12798 	for (msp = memsegs; msp; msp = msp->next) {
12799 		pbase = msp->pages_base;
12800 		pend = msp->pages_end;
12801 		for (vcolor = 0; vcolor < vac_colors; vcolor++) {
12802 			base = ptob(pbase) + kpm_vbase + kpm_size * vcolor;
12803 			size = ptob(pend - pbase);
12804 			func(arg, base, size);
12805 		}
12806 	}
12807 }
12808 
12809 
12810 /* -- sfmmu_kpm internal section -- */
12811 
12812 /*
12813  * Return the page frame number if a valid segkpm mapping exists
12814  * for vaddr, otherwise return PFN_INVALID. No locks are grabbed.
12815  * Should only be used by other sfmmu routines.
12816  */
12817 pfn_t
12818 sfmmu_kpm_vatopfn(caddr_t vaddr)
12819 {
12820 	uintptr_t	paddr;
12821 	pfn_t		pfn;
12822 	page_t	*pp;
12823 
12824 	ASSERT(kpm_enable && IS_KPM_ADDR(vaddr));
12825 
12826 	SFMMU_KPM_VTOP(vaddr, paddr);
12827 	pfn = (pfn_t)btop(paddr);
12828 	pp = page_numtopp_nolock(pfn);
12829 	if (pp && pp->p_kpmref)
12830 		return (pfn);
12831 	else
12832 		return ((pfn_t)PFN_INVALID);
12833 }
12834 
12835 /*
12836  * Lookup a kpme in the p_kpmelist.
12837  */
12838 static int
12839 sfmmu_kpme_lookup(struct kpme *kpme, page_t *pp)
12840 {
12841 	struct kpme	*p;
12842 
12843 	for (p = pp->p_kpmelist; p; p = p->kpe_next) {
12844 		if (p == kpme)
12845 			return (1);
12846 	}
12847 	return (0);
12848 }
12849 
12850 /*
12851  * Insert a kpme into the p_kpmelist and increment
12852  * the per page kpm reference count.
12853  */
12854 static void
12855 sfmmu_kpme_add(struct kpme *kpme, page_t *pp)
12856 {
12857 	ASSERT(pp->p_kpmref >= 0);
12858 
12859 	/* head insert */
12860 	kpme->kpe_prev = NULL;
12861 	kpme->kpe_next = pp->p_kpmelist;
12862 
12863 	if (pp->p_kpmelist)
12864 		pp->p_kpmelist->kpe_prev = kpme;
12865 
12866 	pp->p_kpmelist = kpme;
12867 	kpme->kpe_page = pp;
12868 	pp->p_kpmref++;
12869 }
12870 
12871 /*
12872  * Remove a kpme from the p_kpmelist and decrement
12873  * the per page kpm reference count.
12874  */
12875 static void
12876 sfmmu_kpme_sub(struct kpme *kpme, page_t *pp)
12877 {
12878 	ASSERT(pp->p_kpmref > 0);
12879 
12880 	if (kpme->kpe_prev) {
12881 		ASSERT(pp->p_kpmelist != kpme);
12882 		ASSERT(kpme->kpe_prev->kpe_page == pp);
12883 		kpme->kpe_prev->kpe_next = kpme->kpe_next;
12884 	} else {
12885 		ASSERT(pp->p_kpmelist == kpme);
12886 		pp->p_kpmelist = kpme->kpe_next;
12887 	}
12888 
12889 	if (kpme->kpe_next) {
12890 		ASSERT(kpme->kpe_next->kpe_page == pp);
12891 		kpme->kpe_next->kpe_prev = kpme->kpe_prev;
12892 	}
12893 
12894 	kpme->kpe_next = kpme->kpe_prev = NULL;
12895 	kpme->kpe_page = NULL;
12896 	pp->p_kpmref--;
12897 }
12898 
12899 /*
12900  * Mapin a single page, it is called every time a page changes it's state
12901  * from kpm-unmapped to kpm-mapped. It may not be called, when only a new
12902  * kpm instance does a mapin and wants to share the mapping.
12903  * Assumes that the mlist mutex is already grabbed.
12904  */
12905 static caddr_t
12906 sfmmu_kpm_mapin(page_t *pp)
12907 {
12908 	kpm_page_t	*kp;
12909 	kpm_hlk_t	*kpmp;
12910 	caddr_t		vaddr;
12911 	int		kpm_vac_range;
12912 	pfn_t		pfn;
12913 	tte_t		tte;
12914 	kmutex_t	*pmtx;
12915 	int		uncached;
12916 	kpm_spage_t	*ksp;
12917 	kpm_shlk_t	*kpmsp;
12918 	int		oldval;
12919 
12920 	ASSERT(sfmmu_mlist_held(pp));
12921 	ASSERT(pp->p_kpmref == 0);
12922 
12923 	vaddr = sfmmu_kpm_getvaddr(pp, &kpm_vac_range);
12924 
12925 	ASSERT(IS_KPM_ADDR(vaddr));
12926 	uncached = PP_ISNC(pp);
12927 	pfn = pp->p_pagenum;
12928 
12929 	if (kpm_smallpages)
12930 		goto smallpages_mapin;
12931 
12932 	PP2KPMPG(pp, kp);
12933 
12934 	kpmp = KPMP_HASH(kp);
12935 	mutex_enter(&kpmp->khl_mutex);
12936 
12937 	ASSERT(PP_ISKPMC(pp) == 0);
12938 	ASSERT(PP_ISKPMS(pp) == 0);
12939 
12940 	if (uncached) {
12941 		/* ASSERT(pp->p_share); XXX use hat_page_getshare */
12942 		if (kpm_vac_range == 0) {
12943 			if (kp->kp_refcnts == 0) {
12944 				/*
12945 				 * Must remove large page mapping if it exists.
12946 				 * Pages in uncached state can only be mapped
12947 				 * small (PAGESIZE) within the regular kpm
12948 				 * range.
12949 				 */
12950 				if (kp->kp_refcntc == -1) {
12951 					/* remove go indication */
12952 					sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
12953 						&kpmp->khl_lock, KPMTSBM_STOP);
12954 				}
12955 				if (kp->kp_refcnt > 0 && kp->kp_refcntc == 0)
12956 					sfmmu_kpm_demap_large(vaddr);
12957 			}
12958 			ASSERT(kp->kp_refcntc >= 0);
12959 			kp->kp_refcntc++;
12960 		}
12961 		pmtx = sfmmu_page_enter(pp);
12962 		PP_SETKPMC(pp);
12963 		sfmmu_page_exit(pmtx);
12964 	}
12965 
12966 	if ((kp->kp_refcntc > 0 || kp->kp_refcnts > 0) && kpm_vac_range == 0) {
12967 		/*
12968 		 * Have to do a small (PAGESIZE) mapin within this kpm_page
12969 		 * range since it is marked to be in VAC conflict mode or
12970 		 * when there are still other small mappings around.
12971 		 */
12972 
12973 		/* tte assembly */
12974 		if (uncached == 0)
12975 			KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
12976 		else
12977 			KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
12978 
12979 		/* tsb dropin */
12980 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
12981 
12982 		pmtx = sfmmu_page_enter(pp);
12983 		PP_SETKPMS(pp);
12984 		sfmmu_page_exit(pmtx);
12985 
12986 		kp->kp_refcnts++;
12987 		ASSERT(kp->kp_refcnts > 0);
12988 		goto exit;
12989 	}
12990 
12991 	if (kpm_vac_range == 0) {
12992 		/*
12993 		 * Fast path / regular case, no VAC conflict handling
12994 		 * in progress within this kpm_page range.
12995 		 */
12996 		if (kp->kp_refcnt == 0) {
12997 
12998 			/* tte assembly */
12999 			KPM_TTE_VCACHED(tte.ll, pfn, TTE4M);
13000 
13001 			/* tsb dropin */
13002 			sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT4M);
13003 
13004 			/* Set go flag for TL tsbmiss handler */
13005 			if (kp->kp_refcntc == 0)
13006 				sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
13007 						&kpmp->khl_lock, KPMTSBM_START);
13008 
13009 			ASSERT(kp->kp_refcntc == -1);
13010 		}
13011 		kp->kp_refcnt++;
13012 		ASSERT(kp->kp_refcnt);
13013 
13014 	} else {
13015 		/*
13016 		 * The page is not setup according to the common VAC
13017 		 * prevention rules for the regular and kpm mapping layer
13018 		 * E.g. the page layer was not able to deliver a right
13019 		 * vcolor'ed page for a given vaddr corresponding to
13020 		 * the wanted p_offset. It has to be mapped in small in
13021 		 * within the corresponding kpm vac range in order to
13022 		 * prevent VAC alias conflicts.
13023 		 */
13024 
13025 		/* tte assembly */
13026 		if (uncached == 0) {
13027 			KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13028 		} else {
13029 			KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13030 		}
13031 
13032 		/* tsb dropin */
13033 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13034 
13035 		kp->kp_refcnta++;
13036 		if (kp->kp_refcntc == -1) {
13037 			ASSERT(kp->kp_refcnt > 0);
13038 
13039 			/* remove go indication */
13040 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc, &kpmp->khl_lock,
13041 					KPMTSBM_STOP);
13042 		}
13043 		ASSERT(kp->kp_refcntc >= 0);
13044 	}
13045 exit:
13046 	mutex_exit(&kpmp->khl_mutex);
13047 	return (vaddr);
13048 
13049 smallpages_mapin:
13050 	if (uncached == 0) {
13051 		/* tte assembly */
13052 		KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13053 	} else {
13054 		/* ASSERT(pp->p_share); XXX use hat_page_getshare */
13055 		pmtx = sfmmu_page_enter(pp);
13056 		PP_SETKPMC(pp);
13057 		sfmmu_page_exit(pmtx);
13058 		/* tte assembly */
13059 		KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13060 	}
13061 
13062 	/* tsb dropin */
13063 	sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13064 
13065 	PP2KPMSPG(pp, ksp);
13066 	kpmsp = KPMP_SHASH(ksp);
13067 
13068 	oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped, &kpmsp->kshl_lock,
13069 				(uncached) ? KPM_MAPPEDSC : KPM_MAPPEDS);
13070 
13071 	if (oldval != 0)
13072 		panic("sfmmu_kpm_mapin: stale smallpages mapping");
13073 
13074 	return (vaddr);
13075 }
13076 
13077 /*
13078  * Mapout a single page, it is called every time a page changes it's state
13079  * from kpm-mapped to kpm-unmapped. It may not be called, when only a kpm
13080  * instance calls mapout and there are still other instances mapping the
13081  * page. Assumes that the mlist mutex is already grabbed.
13082  *
13083  * Note: In normal mode (no VAC conflict prevention pending) TLB's are
13084  * not flushed. This is the core segkpm behavior to avoid xcalls. It is
13085  * no problem because a translation from a segkpm virtual address to a
13086  * physical address is always the same. The only downside is a slighty
13087  * increased window of vulnerability for misbehaving _kernel_ modules.
13088  */
13089 static void
13090 sfmmu_kpm_mapout(page_t *pp, caddr_t vaddr)
13091 {
13092 	kpm_page_t	*kp;
13093 	kpm_hlk_t	*kpmp;
13094 	int		alias_range;
13095 	kmutex_t	*pmtx;
13096 	kpm_spage_t	*ksp;
13097 	kpm_shlk_t	*kpmsp;
13098 	int		oldval;
13099 
13100 	ASSERT(sfmmu_mlist_held(pp));
13101 	ASSERT(pp->p_kpmref == 0);
13102 
13103 	alias_range = IS_KPM_ALIAS_RANGE(vaddr);
13104 
13105 	if (kpm_smallpages)
13106 		goto smallpages_mapout;
13107 
13108 	PP2KPMPG(pp, kp);
13109 	kpmp = KPMP_HASH(kp);
13110 	mutex_enter(&kpmp->khl_mutex);
13111 
13112 	if (alias_range) {
13113 		ASSERT(PP_ISKPMS(pp) == 0);
13114 		if (kp->kp_refcnta <= 0) {
13115 			panic("sfmmu_kpm_mapout: bad refcnta kp=%p",
13116 				(void *)kp);
13117 		}
13118 
13119 		if (PP_ISTNC(pp))  {
13120 			if (PP_ISKPMC(pp) == 0) {
13121 				/*
13122 				 * Uncached kpm mappings must always have
13123 				 * forced "small page" mode.
13124 				 */
13125 				panic("sfmmu_kpm_mapout: uncached page not "
13126 					"kpm marked");
13127 			}
13128 			sfmmu_kpm_demap_small(vaddr);
13129 
13130 			pmtx = sfmmu_page_enter(pp);
13131 			PP_CLRKPMC(pp);
13132 			sfmmu_page_exit(pmtx);
13133 
13134 			/*
13135 			 * Check if we can resume cached mode. This might
13136 			 * be the case if the kpm mapping was the only
13137 			 * mapping in conflict with other non rule
13138 			 * compliant mappings. The page is no more marked
13139 			 * as kpm mapped, so the conv_tnc path will not
13140 			 * change kpm state.
13141 			 */
13142 			conv_tnc(pp, TTE8K);
13143 
13144 		} else if (PP_ISKPMC(pp) == 0) {
13145 			/* remove TSB entry only */
13146 			sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT);
13147 
13148 		} else {
13149 			/* already demapped */
13150 			pmtx = sfmmu_page_enter(pp);
13151 			PP_CLRKPMC(pp);
13152 			sfmmu_page_exit(pmtx);
13153 		}
13154 		kp->kp_refcnta--;
13155 		goto exit;
13156 	}
13157 
13158 	if (kp->kp_refcntc <= 0 && kp->kp_refcnts == 0) {
13159 		/*
13160 		 * Fast path / regular case.
13161 		 */
13162 		ASSERT(kp->kp_refcntc >= -1);
13163 		ASSERT(!(pp->p_nrm & (P_KPMC | P_KPMS | P_TNC | P_PNC)));
13164 
13165 		if (kp->kp_refcnt <= 0)
13166 			panic("sfmmu_kpm_mapout: bad refcnt kp=%p", (void *)kp);
13167 
13168 		if (--kp->kp_refcnt == 0) {
13169 			/* remove go indication */
13170 			if (kp->kp_refcntc == -1) {
13171 				sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
13172 					&kpmp->khl_lock, KPMTSBM_STOP);
13173 			}
13174 			ASSERT(kp->kp_refcntc == 0);
13175 
13176 			/* remove TSB entry */
13177 			sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT4M);
13178 #ifdef	DEBUG
13179 			if (kpm_tlb_flush)
13180 				sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13181 #endif
13182 		}
13183 
13184 	} else {
13185 		/*
13186 		 * The VAC alias path.
13187 		 * We come here if the kpm vaddr is not in any alias_range
13188 		 * and we are unmapping a page within the regular kpm_page
13189 		 * range. The kpm_page either holds conflict pages and/or
13190 		 * is in "small page" mode. If the page is not marked
13191 		 * P_KPMS it couldn't have a valid PAGESIZE sized TSB
13192 		 * entry. Dcache flushing is done lazy and follows the
13193 		 * rules of the regular virtual page coloring scheme.
13194 		 *
13195 		 * Per page states and required actions:
13196 		 *   P_KPMC: remove a kpm mapping that is conflicting.
13197 		 *   P_KPMS: remove a small kpm mapping within a kpm_page.
13198 		 *   P_TNC:  check if we can re-cache the page.
13199 		 *   P_PNC:  we cannot re-cache, sorry.
13200 		 * Per kpm_page:
13201 		 *   kp_refcntc > 0: page is part of a kpm_page with conflicts.
13202 		 *   kp_refcnts > 0: rm a small mapped page within a kpm_page.
13203 		 */
13204 
13205 		if (PP_ISKPMS(pp)) {
13206 			if (kp->kp_refcnts < 1) {
13207 				panic("sfmmu_kpm_mapout: bad refcnts kp=%p",
13208 					(void *)kp);
13209 			}
13210 			sfmmu_kpm_demap_small(vaddr);
13211 
13212 			/*
13213 			 * Check if we can resume cached mode. This might
13214 			 * be the case if the kpm mapping was the only
13215 			 * mapping in conflict with other non rule
13216 			 * compliant mappings. The page is no more marked
13217 			 * as kpm mapped, so the conv_tnc path will not
13218 			 * change kpm state.
13219 			 */
13220 			if (PP_ISTNC(pp))  {
13221 				if (!PP_ISKPMC(pp)) {
13222 					/*
13223 					 * Uncached kpm mappings must always
13224 					 * have forced "small page" mode.
13225 					 */
13226 					panic("sfmmu_kpm_mapout: uncached "
13227 						"page not kpm marked");
13228 				}
13229 				conv_tnc(pp, TTE8K);
13230 			}
13231 			kp->kp_refcnts--;
13232 			kp->kp_refcnt++;
13233 			pmtx = sfmmu_page_enter(pp);
13234 			PP_CLRKPMS(pp);
13235 			sfmmu_page_exit(pmtx);
13236 		}
13237 
13238 		if (PP_ISKPMC(pp)) {
13239 			if (kp->kp_refcntc < 1) {
13240 				panic("sfmmu_kpm_mapout: bad refcntc kp=%p",
13241 					(void *)kp);
13242 			}
13243 			pmtx = sfmmu_page_enter(pp);
13244 			PP_CLRKPMC(pp);
13245 			sfmmu_page_exit(pmtx);
13246 			kp->kp_refcntc--;
13247 		}
13248 
13249 		if (kp->kp_refcnt-- < 1)
13250 			panic("sfmmu_kpm_mapout: bad refcnt kp=%p", (void *)kp);
13251 	}
13252 exit:
13253 	mutex_exit(&kpmp->khl_mutex);
13254 	return;
13255 
13256 smallpages_mapout:
13257 	PP2KPMSPG(pp, ksp);
13258 	kpmsp = KPMP_SHASH(ksp);
13259 
13260 	if (PP_ISKPMC(pp) == 0) {
13261 		oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13262 					&kpmsp->kshl_lock, 0);
13263 
13264 		if (oldval != KPM_MAPPEDS) {
13265 			/*
13266 			 * When we're called after sfmmu_kpm_hme_unload,
13267 			 * KPM_MAPPEDSC is valid too.
13268 			 */
13269 			if (oldval != KPM_MAPPEDSC)
13270 				panic("sfmmu_kpm_mapout: incorrect mapping");
13271 		}
13272 
13273 		/* remove TSB entry */
13274 		sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT);
13275 #ifdef	DEBUG
13276 		if (kpm_tlb_flush)
13277 			sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13278 #endif
13279 
13280 	} else if (PP_ISTNC(pp)) {
13281 		oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13282 					&kpmsp->kshl_lock, 0);
13283 
13284 		if (oldval != KPM_MAPPEDSC || PP_ISKPMC(pp) == 0)
13285 			panic("sfmmu_kpm_mapout: inconsistent TNC mapping");
13286 
13287 		sfmmu_kpm_demap_small(vaddr);
13288 
13289 		pmtx = sfmmu_page_enter(pp);
13290 		PP_CLRKPMC(pp);
13291 		sfmmu_page_exit(pmtx);
13292 
13293 		/*
13294 		 * Check if we can resume cached mode. This might be
13295 		 * the case if the kpm mapping was the only mapping
13296 		 * in conflict with other non rule compliant mappings.
13297 		 * The page is no more marked as kpm mapped, so the
13298 		 * conv_tnc path will not change the kpm state.
13299 		 */
13300 		conv_tnc(pp, TTE8K);
13301 
13302 	} else {
13303 		oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13304 					&kpmsp->kshl_lock, 0);
13305 
13306 		if (oldval != KPM_MAPPEDSC)
13307 			panic("sfmmu_kpm_mapout: inconsistent mapping");
13308 
13309 		pmtx = sfmmu_page_enter(pp);
13310 		PP_CLRKPMC(pp);
13311 		sfmmu_page_exit(pmtx);
13312 	}
13313 }
13314 
13315 #define	abs(x)  ((x) < 0 ? -(x) : (x))
13316 
13317 /*
13318  * Determine appropriate kpm mapping address and handle any kpm/hme
13319  * conflicts. Page mapping list and its vcolor parts must be protected.
13320  */
13321 static caddr_t
13322 sfmmu_kpm_getvaddr(page_t *pp, int *kpm_vac_rangep)
13323 {
13324 	int		vcolor, vcolor_pa;
13325 	caddr_t		vaddr;
13326 	uintptr_t	paddr;
13327 
13328 
13329 	ASSERT(sfmmu_mlist_held(pp));
13330 
13331 	paddr = ptob(pp->p_pagenum);
13332 	vcolor_pa = addr_to_vcolor(paddr);
13333 
13334 	if (pp->p_vnode && IS_SWAPFSVP(pp->p_vnode)) {
13335 		vcolor = (PP_NEWPAGE(pp) || PP_ISNC(pp)) ?
13336 		    vcolor_pa : PP_GET_VCOLOR(pp);
13337 	} else {
13338 		vcolor = addr_to_vcolor(pp->p_offset);
13339 	}
13340 
13341 	vaddr = kpm_vbase + paddr;
13342 	*kpm_vac_rangep = 0;
13343 
13344 	if (vcolor_pa != vcolor) {
13345 		*kpm_vac_rangep = abs(vcolor - vcolor_pa);
13346 		vaddr += ((uintptr_t)(vcolor - vcolor_pa) << MMU_PAGESHIFT);
13347 		vaddr += (vcolor_pa > vcolor) ?
13348 			((uintptr_t)vcolor_pa << kpm_size_shift) :
13349 			((uintptr_t)(vcolor - vcolor_pa) << kpm_size_shift);
13350 
13351 		ASSERT(!PP_ISMAPPED_LARGE(pp));
13352 	}
13353 
13354 	if (PP_ISNC(pp))
13355 		return (vaddr);
13356 
13357 	if (PP_NEWPAGE(pp)) {
13358 		PP_SET_VCOLOR(pp, vcolor);
13359 		return (vaddr);
13360 	}
13361 
13362 	if (PP_GET_VCOLOR(pp) == vcolor)
13363 		return (vaddr);
13364 
13365 	ASSERT(!PP_ISMAPPED_KPM(pp));
13366 	sfmmu_kpm_vac_conflict(pp, vaddr);
13367 
13368 	return (vaddr);
13369 }
13370 
13371 /*
13372  * VAC conflict state bit values.
13373  * The following defines are used to make the handling of the
13374  * various input states more concise. For that the kpm states
13375  * per kpm_page and per page are combined in a summary state.
13376  * Each single state has a corresponding bit value in the
13377  * summary state. These defines only apply for kpm large page
13378  * mappings. Within comments the abbreviations "kc, c, ks, s"
13379  * are used as short form of the actual state, e.g. "kc" for
13380  * "kp_refcntc > 0", etc.
13381  */
13382 #define	KPM_KC	0x00000008	/* kpm_page: kp_refcntc > 0 */
13383 #define	KPM_C	0x00000004	/* page: P_KPMC set */
13384 #define	KPM_KS	0x00000002	/* kpm_page: kp_refcnts > 0 */
13385 #define	KPM_S	0x00000001	/* page: P_KPMS set */
13386 
13387 /*
13388  * Summary states used in sfmmu_kpm_fault (KPM_TSBM_*).
13389  * See also more detailed comments within in the sfmmu_kpm_fault switch.
13390  * Abbreviations used:
13391  * CONFL: VAC conflict(s) within a kpm_page.
13392  * MAPS:  Mapped small: Page mapped in using a regular page size kpm mapping.
13393  * RASM:  Re-assembling of a large page mapping possible.
13394  * RPLS:  Replace: TSB miss due to TSB replacement only.
13395  * BRKO:  Breakup Other: A large kpm mapping has to be broken because another
13396  *        page within the kpm_page is already involved in a VAC conflict.
13397  * BRKT:  Breakup This: A large kpm mapping has to be broken, this page is
13398  *        is involved in a VAC conflict.
13399  */
13400 #define	KPM_TSBM_CONFL_GONE	(0)
13401 #define	KPM_TSBM_MAPS_RASM	(KPM_KS)
13402 #define	KPM_TSBM_RPLS_RASM	(KPM_KS | KPM_S)
13403 #define	KPM_TSBM_MAPS_BRKO	(KPM_KC)
13404 #define	KPM_TSBM_MAPS		(KPM_KC | KPM_KS)
13405 #define	KPM_TSBM_RPLS		(KPM_KC | KPM_KS | KPM_S)
13406 #define	KPM_TSBM_MAPS_BRKT	(KPM_KC | KPM_C)
13407 #define	KPM_TSBM_MAPS_CONFL	(KPM_KC | KPM_C | KPM_KS)
13408 #define	KPM_TSBM_RPLS_CONFL	(KPM_KC | KPM_C | KPM_KS | KPM_S)
13409 
13410 /*
13411  * kpm fault handler for mappings with large page size.
13412  */
13413 int
13414 sfmmu_kpm_fault(caddr_t vaddr, struct memseg *mseg, page_t *pp)
13415 {
13416 	int		error;
13417 	pgcnt_t		inx;
13418 	kpm_page_t	*kp;
13419 	tte_t		tte;
13420 	pfn_t		pfn = pp->p_pagenum;
13421 	kpm_hlk_t	*kpmp;
13422 	kmutex_t	*pml;
13423 	int		alias_range;
13424 	int		uncached = 0;
13425 	kmutex_t	*pmtx;
13426 	int		badstate;
13427 	uint_t		tsbmcase;
13428 
13429 	alias_range = IS_KPM_ALIAS_RANGE(vaddr);
13430 
13431 	inx = ptokpmp(kpmptop(ptokpmp(pfn)) - mseg->kpm_pbase);
13432 	if (inx >= mseg->kpm_nkpmpgs) {
13433 		cmn_err(CE_PANIC, "sfmmu_kpm_fault: kpm overflow in memseg "
13434 			"0x%p  pp 0x%p", (void *)mseg, (void *)pp);
13435 	}
13436 
13437 	kp = &mseg->kpm_pages[inx];
13438 	kpmp = KPMP_HASH(kp);
13439 
13440 	pml = sfmmu_mlist_enter(pp);
13441 
13442 	if (!PP_ISMAPPED_KPM(pp)) {
13443 		sfmmu_mlist_exit(pml);
13444 		return (EFAULT);
13445 	}
13446 
13447 	mutex_enter(&kpmp->khl_mutex);
13448 
13449 	if (alias_range) {
13450 		ASSERT(!PP_ISMAPPED_LARGE(pp));
13451 		if (kp->kp_refcnta > 0) {
13452 			if (PP_ISKPMC(pp)) {
13453 				pmtx = sfmmu_page_enter(pp);
13454 				PP_CLRKPMC(pp);
13455 				sfmmu_page_exit(pmtx);
13456 			}
13457 			/*
13458 			 * Check for vcolor conflicts. Return here
13459 			 * w/ either no conflict (fast path), removed hme
13460 			 * mapping chains (unload conflict) or uncached
13461 			 * (uncache conflict). VACaches are cleaned and
13462 			 * p_vcolor and PP_TNC are set accordingly for the
13463 			 * conflict cases.  Drop kpmp for uncache conflict
13464 			 * cases since it will be grabbed within
13465 			 * sfmmu_kpm_page_cache in case of an uncache
13466 			 * conflict.
13467 			 */
13468 			mutex_exit(&kpmp->khl_mutex);
13469 			sfmmu_kpm_vac_conflict(pp, vaddr);
13470 			mutex_enter(&kpmp->khl_mutex);
13471 
13472 			if (PP_ISNC(pp)) {
13473 				uncached = 1;
13474 				pmtx = sfmmu_page_enter(pp);
13475 				PP_SETKPMC(pp);
13476 				sfmmu_page_exit(pmtx);
13477 			}
13478 			goto smallexit;
13479 
13480 		} else {
13481 			/*
13482 			 * We got a tsbmiss on a not active kpm_page range.
13483 			 * Let segkpm_fault decide how to panic.
13484 			 */
13485 			error = EFAULT;
13486 		}
13487 		goto exit;
13488 	}
13489 
13490 	badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0);
13491 	if (kp->kp_refcntc == -1) {
13492 		/*
13493 		 * We should come here only if trap level tsb miss
13494 		 * handler is disabled.
13495 		 */
13496 		badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 ||
13497 			PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp));
13498 
13499 		if (badstate == 0)
13500 			goto largeexit;
13501 	}
13502 
13503 	if (badstate || kp->kp_refcntc < 0)
13504 		goto badstate_exit;
13505 
13506 	/*
13507 	 * Combine the per kpm_page and per page kpm VAC states to
13508 	 * a summary state in order to make the kpm fault handling
13509 	 * more concise.
13510 	 */
13511 	tsbmcase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) |
13512 			((kp->kp_refcnts > 0) ? KPM_KS : 0) |
13513 			(PP_ISKPMC(pp) ? KPM_C : 0) |
13514 			(PP_ISKPMS(pp) ? KPM_S : 0));
13515 
13516 	switch (tsbmcase) {
13517 	case KPM_TSBM_CONFL_GONE:		/* - - - - */
13518 		/*
13519 		 * That's fine, we either have no more vac conflict in
13520 		 * this kpm page or someone raced in and has solved the
13521 		 * vac conflict for us -- call sfmmu_kpm_vac_conflict
13522 		 * to take care for correcting the vcolor and flushing
13523 		 * the dcache if required.
13524 		 */
13525 		mutex_exit(&kpmp->khl_mutex);
13526 		sfmmu_kpm_vac_conflict(pp, vaddr);
13527 		mutex_enter(&kpmp->khl_mutex);
13528 
13529 		if (PP_ISNC(pp) || kp->kp_refcnt <= 0 ||
13530 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13531 			panic("sfmmu_kpm_fault: inconsistent CONFL_GONE "
13532 				"state, pp=%p", (void *)pp);
13533 		}
13534 		goto largeexit;
13535 
13536 	case KPM_TSBM_MAPS_RASM:		/* - - ks - */
13537 		/*
13538 		 * All conflicts in this kpm page are gone but there are
13539 		 * already small mappings around, so we also map this
13540 		 * page small. This could be the trigger case for a
13541 		 * small mapping reaper, if this is really needed.
13542 		 * For now fall thru to the KPM_TSBM_MAPS handling.
13543 		 */
13544 
13545 	case KPM_TSBM_MAPS:			/* kc - ks - */
13546 		/*
13547 		 * Large page mapping is already broken, this page is not
13548 		 * conflicting, so map it small. Call sfmmu_kpm_vac_conflict
13549 		 * to take care for correcting the vcolor and flushing
13550 		 * the dcache if required.
13551 		 */
13552 		mutex_exit(&kpmp->khl_mutex);
13553 		sfmmu_kpm_vac_conflict(pp, vaddr);
13554 		mutex_enter(&kpmp->khl_mutex);
13555 
13556 		if (PP_ISNC(pp) || kp->kp_refcnt <= 0 ||
13557 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13558 			panic("sfmmu_kpm_fault:  inconsistent MAPS state, "
13559 				"pp=%p", (void *)pp);
13560 		}
13561 		kp->kp_refcnt--;
13562 		kp->kp_refcnts++;
13563 		pmtx = sfmmu_page_enter(pp);
13564 		PP_SETKPMS(pp);
13565 		sfmmu_page_exit(pmtx);
13566 		goto smallexit;
13567 
13568 	case KPM_TSBM_RPLS_RASM:		/* - - ks s */
13569 		/*
13570 		 * All conflicts in this kpm page are gone but this page
13571 		 * is mapped small. This could be the trigger case for a
13572 		 * small mapping reaper, if this is really needed.
13573 		 * For now we drop it in small again. Fall thru to the
13574 		 * KPM_TSBM_RPLS handling.
13575 		 */
13576 
13577 	case KPM_TSBM_RPLS:			/* kc - ks s */
13578 		/*
13579 		 * Large page mapping is already broken, this page is not
13580 		 * conflicting but already mapped small, so drop it in
13581 		 * small again.
13582 		 */
13583 		if (PP_ISNC(pp) ||
13584 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13585 			panic("sfmmu_kpm_fault:  inconsistent RPLS state, "
13586 				"pp=%p", (void *)pp);
13587 		}
13588 		goto smallexit;
13589 
13590 	case KPM_TSBM_MAPS_BRKO:		/* kc - - - */
13591 		/*
13592 		 * The kpm page where we live in is marked conflicting
13593 		 * but this page is not conflicting. So we have to map it
13594 		 * in small. Call sfmmu_kpm_vac_conflict to take care for
13595 		 * correcting the vcolor and flushing the dcache if required.
13596 		 */
13597 		mutex_exit(&kpmp->khl_mutex);
13598 		sfmmu_kpm_vac_conflict(pp, vaddr);
13599 		mutex_enter(&kpmp->khl_mutex);
13600 
13601 		if (PP_ISNC(pp) || kp->kp_refcnt <= 0 ||
13602 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13603 			panic("sfmmu_kpm_fault:  inconsistent MAPS_BRKO state, "
13604 				"pp=%p", (void *)pp);
13605 		}
13606 		kp->kp_refcnt--;
13607 		kp->kp_refcnts++;
13608 		pmtx = sfmmu_page_enter(pp);
13609 		PP_SETKPMS(pp);
13610 		sfmmu_page_exit(pmtx);
13611 		goto smallexit;
13612 
13613 	case KPM_TSBM_MAPS_BRKT:		/* kc c - - */
13614 	case KPM_TSBM_MAPS_CONFL:		/* kc c ks - */
13615 		if (!PP_ISMAPPED(pp)) {
13616 			/*
13617 			 * We got a tsbmiss on kpm large page range that is
13618 			 * marked to contain vac conflicting pages introduced
13619 			 * by hme mappings. The hme mappings are all gone and
13620 			 * must have bypassed the kpm alias prevention logic.
13621 			 */
13622 			panic("sfmmu_kpm_fault: stale VAC conflict, pp=%p",
13623 				(void *)pp);
13624 		}
13625 
13626 		/*
13627 		 * Check for vcolor conflicts. Return here w/ either no
13628 		 * conflict (fast path), removed hme mapping chains
13629 		 * (unload conflict) or uncached (uncache conflict).
13630 		 * Dcache is cleaned and p_vcolor and P_TNC are set
13631 		 * accordingly. Drop kpmp for uncache conflict cases
13632 		 * since it will be grabbed within sfmmu_kpm_page_cache
13633 		 * in case of an uncache conflict.
13634 		 */
13635 		mutex_exit(&kpmp->khl_mutex);
13636 		sfmmu_kpm_vac_conflict(pp, vaddr);
13637 		mutex_enter(&kpmp->khl_mutex);
13638 
13639 		if (kp->kp_refcnt <= 0)
13640 			panic("sfmmu_kpm_fault: bad refcnt kp=%p", (void *)kp);
13641 
13642 		if (PP_ISNC(pp)) {
13643 			uncached = 1;
13644 		} else {
13645 			/*
13646 			 * When an unload conflict is solved and there are
13647 			 * no other small mappings around, we can resume
13648 			 * largepage mode. Otherwise we have to map or drop
13649 			 * in small. This could be a trigger for a small
13650 			 * mapping reaper when this was the last conflict
13651 			 * within the kpm page and when there are only
13652 			 * other small mappings around.
13653 			 */
13654 			ASSERT(addr_to_vcolor(vaddr) == PP_GET_VCOLOR(pp));
13655 			ASSERT(kp->kp_refcntc > 0);
13656 			kp->kp_refcntc--;
13657 			pmtx = sfmmu_page_enter(pp);
13658 			PP_CLRKPMC(pp);
13659 			sfmmu_page_exit(pmtx);
13660 			ASSERT(PP_ISKPMS(pp) == 0);
13661 			if (kp->kp_refcntc == 0 && kp->kp_refcnts == 0)
13662 				goto largeexit;
13663 		}
13664 
13665 		kp->kp_refcnt--;
13666 		kp->kp_refcnts++;
13667 		pmtx = sfmmu_page_enter(pp);
13668 		PP_SETKPMS(pp);
13669 		sfmmu_page_exit(pmtx);
13670 		goto smallexit;
13671 
13672 	case KPM_TSBM_RPLS_CONFL:		/* kc c ks s */
13673 		if (!PP_ISMAPPED(pp)) {
13674 			/*
13675 			 * We got a tsbmiss on kpm large page range that is
13676 			 * marked to contain vac conflicting pages introduced
13677 			 * by hme mappings. They are all gone and must have
13678 			 * somehow bypassed the kpm alias prevention logic.
13679 			 */
13680 			panic("sfmmu_kpm_fault: stale VAC conflict, pp=%p",
13681 				(void *)pp);
13682 		}
13683 
13684 		/*
13685 		 * This state is only possible for an uncached mapping.
13686 		 */
13687 		if (!PP_ISNC(pp)) {
13688 			panic("sfmmu_kpm_fault: page not uncached, pp=%p",
13689 				(void *)pp);
13690 		}
13691 		uncached = 1;
13692 		goto smallexit;
13693 
13694 	default:
13695 badstate_exit:
13696 		panic("sfmmu_kpm_fault: inconsistent VAC state, vaddr=%p kp=%p "
13697 			"pp=%p", (void *)vaddr, (void *)kp, (void *)pp);
13698 	}
13699 
13700 smallexit:
13701 	/* tte assembly */
13702 	if (uncached == 0)
13703 		KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13704 	else
13705 		KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13706 
13707 	/* tsb dropin */
13708 	sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13709 
13710 	error = 0;
13711 	goto exit;
13712 
13713 largeexit:
13714 	if (kp->kp_refcnt > 0) {
13715 
13716 		/* tte assembly */
13717 		KPM_TTE_VCACHED(tte.ll, pfn, TTE4M);
13718 
13719 		/* tsb dropin */
13720 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT4M);
13721 
13722 		if (kp->kp_refcntc == 0) {
13723 			/* Set "go" flag for TL tsbmiss handler */
13724 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc, &kpmp->khl_lock,
13725 					KPMTSBM_START);
13726 		}
13727 		ASSERT(kp->kp_refcntc == -1);
13728 		error = 0;
13729 
13730 	} else
13731 		error = EFAULT;
13732 exit:
13733 	mutex_exit(&kpmp->khl_mutex);
13734 	sfmmu_mlist_exit(pml);
13735 	return (error);
13736 }
13737 
13738 /*
13739  * kpm fault handler for mappings with small page size.
13740  */
13741 int
13742 sfmmu_kpm_fault_small(caddr_t vaddr, struct memseg *mseg, page_t *pp)
13743 {
13744 	int		error = 0;
13745 	pgcnt_t		inx;
13746 	kpm_spage_t	*ksp;
13747 	kpm_shlk_t	*kpmsp;
13748 	kmutex_t	*pml;
13749 	pfn_t		pfn = pp->p_pagenum;
13750 	tte_t		tte;
13751 	kmutex_t	*pmtx;
13752 	int		oldval;
13753 
13754 	inx = pfn - mseg->kpm_pbase;
13755 	ksp = &mseg->kpm_spages[inx];
13756 	kpmsp = KPMP_SHASH(ksp);
13757 
13758 	pml = sfmmu_mlist_enter(pp);
13759 
13760 	if (!PP_ISMAPPED_KPM(pp)) {
13761 		sfmmu_mlist_exit(pml);
13762 		return (EFAULT);
13763 	}
13764 
13765 	/*
13766 	 * kp_mapped lookup protected by mlist mutex
13767 	 */
13768 	if (ksp->kp_mapped == KPM_MAPPEDS) {
13769 		/*
13770 		 * Fast path tsbmiss
13771 		 */
13772 		ASSERT(!PP_ISKPMC(pp));
13773 		ASSERT(!PP_ISNC(pp));
13774 
13775 		/* tte assembly */
13776 		KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13777 
13778 		/* tsb dropin */
13779 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13780 
13781 	} else if (ksp->kp_mapped == KPM_MAPPEDSC) {
13782 		/*
13783 		 * Got here due to existing or gone kpm/hme VAC conflict.
13784 		 * Recheck for vcolor conflicts. Return here w/ either
13785 		 * no conflict, removed hme mapping chain (unload
13786 		 * conflict) or uncached (uncache conflict). VACaches
13787 		 * are cleaned and p_vcolor and PP_TNC are set accordingly
13788 		 * for the conflict cases.
13789 		 */
13790 		sfmmu_kpm_vac_conflict(pp, vaddr);
13791 
13792 		if (PP_ISNC(pp)) {
13793 			/* ASSERT(pp->p_share); XXX use hat_page_getshare */
13794 
13795 			/* tte assembly */
13796 			KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13797 
13798 			/* tsb dropin */
13799 			sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13800 
13801 		} else {
13802 			if (PP_ISKPMC(pp)) {
13803 				pmtx = sfmmu_page_enter(pp);
13804 				PP_CLRKPMC(pp);
13805 				sfmmu_page_exit(pmtx);
13806 			}
13807 
13808 			/* tte assembly */
13809 			KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13810 
13811 			/* tsb dropin */
13812 			sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13813 
13814 			oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13815 					&kpmsp->kshl_lock, KPM_MAPPEDS);
13816 
13817 			if (oldval != KPM_MAPPEDSC)
13818 				panic("sfmmu_kpm_fault_small: "
13819 					"stale smallpages mapping");
13820 		}
13821 
13822 	} else {
13823 		/*
13824 		 * We got a tsbmiss on a not active kpm_page range.
13825 		 * Let decide segkpm_fault how to panic.
13826 		 */
13827 		error = EFAULT;
13828 	}
13829 
13830 	sfmmu_mlist_exit(pml);
13831 	return (error);
13832 }
13833 
13834 /*
13835  * Check/handle potential hme/kpm mapping conflicts
13836  */
13837 static void
13838 sfmmu_kpm_vac_conflict(page_t *pp, caddr_t vaddr)
13839 {
13840 	int		vcolor;
13841 	struct sf_hment	*sfhmep;
13842 	struct hat	*tmphat;
13843 	struct sf_hment	*tmphme = NULL;
13844 	struct hme_blk	*hmeblkp;
13845 	tte_t		tte;
13846 
13847 	ASSERT(sfmmu_mlist_held(pp));
13848 
13849 	if (PP_ISNC(pp))
13850 		return;
13851 
13852 	vcolor = addr_to_vcolor(vaddr);
13853 	if (PP_GET_VCOLOR(pp) == vcolor)
13854 		return;
13855 
13856 	/*
13857 	 * There could be no vcolor conflict between a large cached
13858 	 * hme page and a non alias range kpm page (neither large nor
13859 	 * small mapped). So if a hme conflict already exists between
13860 	 * a constituent page of a large hme mapping and a shared small
13861 	 * conflicting hme mapping, both mappings must be already
13862 	 * uncached at this point.
13863 	 */
13864 	ASSERT(!PP_ISMAPPED_LARGE(pp));
13865 
13866 	if (!PP_ISMAPPED(pp)) {
13867 		/*
13868 		 * Previous hme user of page had a different color
13869 		 * but since there are no current users
13870 		 * we just flush the cache and change the color.
13871 		 */
13872 		SFMMU_STAT(sf_pgcolor_conflict);
13873 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
13874 		PP_SET_VCOLOR(pp, vcolor);
13875 		return;
13876 	}
13877 
13878 	/*
13879 	 * If we get here we have a vac conflict with a current hme
13880 	 * mapping. This must have been established by forcing a wrong
13881 	 * colored mapping, e.g. by using mmap(2) with MAP_FIXED.
13882 	 */
13883 
13884 	/*
13885 	 * Check if any mapping is in same as or if it is locked
13886 	 * since in that case we need to uncache.
13887 	 */
13888 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
13889 		tmphme = sfhmep->hme_next;
13890 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13891 		if (hmeblkp->hblk_xhat_bit)
13892 			continue;
13893 		tmphat = hblktosfmmu(hmeblkp);
13894 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
13895 		ASSERT(TTE_IS_VALID(&tte));
13896 		if ((tmphat == ksfmmup) || hmeblkp->hblk_lckcnt) {
13897 			/*
13898 			 * We have an uncache conflict
13899 			 */
13900 			SFMMU_STAT(sf_uncache_conflict);
13901 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
13902 			return;
13903 		}
13904 	}
13905 
13906 	/*
13907 	 * We have an unload conflict
13908 	 */
13909 	SFMMU_STAT(sf_unload_conflict);
13910 
13911 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
13912 		tmphme = sfhmep->hme_next;
13913 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13914 		if (hmeblkp->hblk_xhat_bit)
13915 			continue;
13916 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
13917 	}
13918 
13919 	/*
13920 	 * Unloads only does tlb flushes so we need to flush the
13921 	 * dcache vcolor here.
13922 	 */
13923 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
13924 	PP_SET_VCOLOR(pp, vcolor);
13925 }
13926 
13927 /*
13928  * Remove all kpm mappings using kpme's for pp and check that
13929  * all kpm mappings (w/ and w/o kpme's) are gone.
13930  */
13931 static void
13932 sfmmu_kpm_pageunload(page_t *pp)
13933 {
13934 	caddr_t		vaddr;
13935 	struct kpme	*kpme, *nkpme;
13936 
13937 	ASSERT(pp != NULL);
13938 	ASSERT(pp->p_kpmref);
13939 	ASSERT(sfmmu_mlist_held(pp));
13940 
13941 	vaddr = hat_kpm_page2va(pp, 1);
13942 
13943 	for (kpme = pp->p_kpmelist; kpme; kpme = nkpme) {
13944 		ASSERT(kpme->kpe_page == pp);
13945 
13946 		if (pp->p_kpmref == 0)
13947 			panic("sfmmu_kpm_pageunload: stale p_kpmref pp=%p "
13948 				"kpme=%p", (void *)pp, (void *)kpme);
13949 
13950 		nkpme = kpme->kpe_next;
13951 
13952 		/* Add instance callback here here if needed later */
13953 		sfmmu_kpme_sub(kpme, pp);
13954 	}
13955 
13956 	/*
13957 	 * Also correct after mixed kpme/nonkpme mappings. If nonkpme
13958 	 * segkpm clients have unlocked the page and forgot to mapout
13959 	 * we panic here.
13960 	 */
13961 	if (pp->p_kpmref != 0)
13962 		panic("sfmmu_kpm_pageunload: bad refcnt pp=%p", (void *)pp);
13963 
13964 	sfmmu_kpm_mapout(pp, vaddr);
13965 }
13966 
13967 /*
13968  * Remove a large kpm mapping from kernel TSB and all TLB's.
13969  */
13970 static void
13971 sfmmu_kpm_demap_large(caddr_t vaddr)
13972 {
13973 	sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT4M);
13974 	sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13975 }
13976 
13977 /*
13978  * Remove a small kpm mapping from kernel TSB and all TLB's.
13979  */
13980 static void
13981 sfmmu_kpm_demap_small(caddr_t vaddr)
13982 {
13983 	sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT);
13984 	sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13985 }
13986 
13987 /*
13988  * Demap a kpm mapping in all TLB's.
13989  */
13990 static void
13991 sfmmu_kpm_demap_tlbs(caddr_t vaddr, int ctxnum)
13992 {
13993 	cpuset_t cpuset;
13994 
13995 	kpreempt_disable();
13996 	cpuset = ksfmmup->sfmmu_cpusran;
13997 	CPUSET_AND(cpuset, cpu_ready_set);
13998 	CPUSET_DEL(cpuset, CPU->cpu_id);
13999 	SFMMU_XCALL_STATS(ctxnum);
14000 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)vaddr, ctxnum);
14001 	vtag_flushpage(vaddr, ctxnum);
14002 	kpreempt_enable();
14003 }
14004 
14005 /*
14006  * Summary states used in sfmmu_kpm_vac_unload (KPM_VUL__*).
14007  * See also more detailed comments within in the sfmmu_kpm_vac_unload switch.
14008  * Abbreviations used:
14009  * BIG:   Large page kpm mapping in use.
14010  * CONFL: VAC conflict(s) within a kpm_page.
14011  * INCR:  Count of conflicts within a kpm_page is going to be incremented.
14012  * DECR:  Count of conflicts within a kpm_page is going to be decremented.
14013  * UNMAP_SMALL: A small (regular page size) mapping is going to be unmapped.
14014  * TNC:   Temporary non cached: a kpm mapped page is mapped in TNC state.
14015  */
14016 #define	KPM_VUL_BIG		(0)
14017 #define	KPM_VUL_CONFL_INCR1	(KPM_KS)
14018 #define	KPM_VUL_UNMAP_SMALL1	(KPM_KS | KPM_S)
14019 #define	KPM_VUL_CONFL_INCR2	(KPM_KC)
14020 #define	KPM_VUL_CONFL_INCR3	(KPM_KC | KPM_KS)
14021 #define	KPM_VUL_UNMAP_SMALL2	(KPM_KC | KPM_KS | KPM_S)
14022 #define	KPM_VUL_CONFL_DECR1	(KPM_KC | KPM_C)
14023 #define	KPM_VUL_CONFL_DECR2	(KPM_KC | KPM_C | KPM_KS)
14024 #define	KPM_VUL_TNC		(KPM_KC | KPM_C | KPM_KS | KPM_S)
14025 
14026 /*
14027  * Handle VAC unload conflicts introduced by hme mappings or vice
14028  * versa when a hme conflict mapping is replaced by a non conflict
14029  * one. Perform actions and state transitions according to the
14030  * various page and kpm_page entry states. VACache flushes are in
14031  * the responsibiliy of the caller. We still hold the mlist lock.
14032  */
14033 static void
14034 sfmmu_kpm_vac_unload(page_t *pp, caddr_t vaddr)
14035 {
14036 	kpm_page_t	*kp;
14037 	kpm_hlk_t	*kpmp;
14038 	caddr_t		kpmvaddr = hat_kpm_page2va(pp, 1);
14039 	int		newcolor;
14040 	kmutex_t	*pmtx;
14041 	uint_t		vacunlcase;
14042 	int		badstate = 0;
14043 	kpm_spage_t	*ksp;
14044 	kpm_shlk_t	*kpmsp;
14045 
14046 	ASSERT(PAGE_LOCKED(pp));
14047 	ASSERT(sfmmu_mlist_held(pp));
14048 	ASSERT(!PP_ISNC(pp));
14049 
14050 	newcolor = addr_to_vcolor(kpmvaddr) != addr_to_vcolor(vaddr);
14051 	if (kpm_smallpages)
14052 		goto smallpages_vac_unload;
14053 
14054 	PP2KPMPG(pp, kp);
14055 	kpmp = KPMP_HASH(kp);
14056 	mutex_enter(&kpmp->khl_mutex);
14057 
14058 	if (IS_KPM_ALIAS_RANGE(kpmvaddr)) {
14059 		if (kp->kp_refcnta < 1) {
14060 			panic("sfmmu_kpm_vac_unload: bad refcnta kpm_page=%p\n",
14061 				(void *)kp);
14062 		}
14063 
14064 		if (PP_ISKPMC(pp) == 0) {
14065 			if (newcolor == 0)
14066 				goto exit;
14067 			sfmmu_kpm_demap_small(kpmvaddr);
14068 			pmtx = sfmmu_page_enter(pp);
14069 			PP_SETKPMC(pp);
14070 			sfmmu_page_exit(pmtx);
14071 
14072 		} else if (newcolor == 0) {
14073 			pmtx = sfmmu_page_enter(pp);
14074 			PP_CLRKPMC(pp);
14075 			sfmmu_page_exit(pmtx);
14076 
14077 		} else {
14078 			badstate++;
14079 		}
14080 
14081 		goto exit;
14082 	}
14083 
14084 	badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0);
14085 	if (kp->kp_refcntc == -1) {
14086 		/*
14087 		 * We should come here only if trap level tsb miss
14088 		 * handler is disabled.
14089 		 */
14090 		badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 ||
14091 			PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp));
14092 	} else {
14093 		badstate |= (kp->kp_refcntc < 0);
14094 	}
14095 
14096 	if (badstate)
14097 		goto exit;
14098 
14099 	if (PP_ISKPMC(pp) == 0 && newcolor == 0) {
14100 		ASSERT(PP_ISKPMS(pp) == 0);
14101 		goto exit;
14102 	}
14103 
14104 	/*
14105 	 * Combine the per kpm_page and per page kpm VAC states
14106 	 * to a summary state in order to make the vac unload
14107 	 * handling more concise.
14108 	 */
14109 	vacunlcase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) |
14110 			((kp->kp_refcnts > 0) ? KPM_KS : 0) |
14111 			(PP_ISKPMC(pp) ? KPM_C : 0) |
14112 			(PP_ISKPMS(pp) ? KPM_S : 0));
14113 
14114 	switch (vacunlcase) {
14115 	case KPM_VUL_BIG:				/* - - - - */
14116 		/*
14117 		 * Have to breakup the large page mapping to be
14118 		 * able to handle the conflicting hme vaddr.
14119 		 */
14120 		if (kp->kp_refcntc == -1) {
14121 			/* remove go indication */
14122 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
14123 					&kpmp->khl_lock, KPMTSBM_STOP);
14124 		}
14125 		sfmmu_kpm_demap_large(kpmvaddr);
14126 
14127 		ASSERT(kp->kp_refcntc == 0);
14128 		kp->kp_refcntc++;
14129 		pmtx = sfmmu_page_enter(pp);
14130 		PP_SETKPMC(pp);
14131 		sfmmu_page_exit(pmtx);
14132 		break;
14133 
14134 	case KPM_VUL_UNMAP_SMALL1:			/* -  - ks s */
14135 	case KPM_VUL_UNMAP_SMALL2:			/* kc - ks s */
14136 		/*
14137 		 * New conflict w/ an active kpm page, actually mapped
14138 		 * in by small TSB/TLB entries. Remove the mapping and
14139 		 * update states.
14140 		 */
14141 		ASSERT(newcolor);
14142 		sfmmu_kpm_demap_small(kpmvaddr);
14143 		kp->kp_refcnts--;
14144 		kp->kp_refcnt++;
14145 		kp->kp_refcntc++;
14146 		pmtx = sfmmu_page_enter(pp);
14147 		PP_CLRKPMS(pp);
14148 		PP_SETKPMC(pp);
14149 		sfmmu_page_exit(pmtx);
14150 		break;
14151 
14152 	case KPM_VUL_CONFL_INCR1:			/* -  - ks - */
14153 	case KPM_VUL_CONFL_INCR2:			/* kc - -  - */
14154 	case KPM_VUL_CONFL_INCR3:			/* kc - ks - */
14155 		/*
14156 		 * New conflict on a active kpm mapped page not yet in
14157 		 * TSB/TLB. Mark page and increment the kpm_page conflict
14158 		 * count.
14159 		 */
14160 		ASSERT(newcolor);
14161 		kp->kp_refcntc++;
14162 		pmtx = sfmmu_page_enter(pp);
14163 		PP_SETKPMC(pp);
14164 		sfmmu_page_exit(pmtx);
14165 		break;
14166 
14167 	case KPM_VUL_CONFL_DECR1:			/* kc c -  - */
14168 	case KPM_VUL_CONFL_DECR2:			/* kc c ks - */
14169 		/*
14170 		 * A conflicting hme mapping is removed for an active
14171 		 * kpm page not yet in TSB/TLB. Unmark page and decrement
14172 		 * the kpm_page conflict count.
14173 		 */
14174 		ASSERT(newcolor == 0);
14175 		kp->kp_refcntc--;
14176 		pmtx = sfmmu_page_enter(pp);
14177 		PP_CLRKPMC(pp);
14178 		sfmmu_page_exit(pmtx);
14179 		break;
14180 
14181 	case KPM_VUL_TNC:				/* kc c ks s */
14182 		cmn_err(CE_NOTE, "sfmmu_kpm_vac_unload: "
14183 			"page not in NC state");
14184 		/* FALLTHRU */
14185 
14186 	default:
14187 		badstate++;
14188 	}
14189 exit:
14190 	if (badstate) {
14191 		panic("sfmmu_kpm_vac_unload: inconsistent VAC state, "
14192 			"kpmvaddr=%p kp=%p pp=%p",
14193 			(void *)kpmvaddr, (void *)kp, (void *)pp);
14194 	}
14195 	mutex_exit(&kpmp->khl_mutex);
14196 
14197 	return;
14198 
14199 smallpages_vac_unload:
14200 	if (newcolor == 0)
14201 		return;
14202 
14203 	PP2KPMSPG(pp, ksp);
14204 	kpmsp = KPMP_SHASH(ksp);
14205 
14206 	if (PP_ISKPMC(pp) == 0) {
14207 		if (ksp->kp_mapped == KPM_MAPPEDS) {
14208 			/*
14209 			 * Stop TL tsbmiss handling
14210 			 */
14211 			(void) sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
14212 					&kpmsp->kshl_lock, KPM_MAPPEDSC);
14213 
14214 			sfmmu_kpm_demap_small(kpmvaddr);
14215 
14216 		} else if (ksp->kp_mapped != KPM_MAPPEDSC) {
14217 			panic("sfmmu_kpm_vac_unload: inconsistent mapping");
14218 		}
14219 
14220 		pmtx = sfmmu_page_enter(pp);
14221 		PP_SETKPMC(pp);
14222 		sfmmu_page_exit(pmtx);
14223 
14224 	} else {
14225 		if (ksp->kp_mapped != KPM_MAPPEDSC)
14226 			panic("sfmmu_kpm_vac_unload: inconsistent mapping");
14227 	}
14228 }
14229 
14230 /*
14231  * Page is marked to be in VAC conflict to an existing kpm mapping
14232  * or is kpm mapped using only the regular pagesize. Called from
14233  * sfmmu_hblk_unload when a mlist is completely removed.
14234  */
14235 static void
14236 sfmmu_kpm_hme_unload(page_t *pp)
14237 {
14238 	/* tte assembly */
14239 	kpm_page_t	*kp;
14240 	kpm_hlk_t	*kpmp;
14241 	caddr_t		vaddr;
14242 	kmutex_t	*pmtx;
14243 	uint_t		flags;
14244 	kpm_spage_t	*ksp;
14245 
14246 	ASSERT(sfmmu_mlist_held(pp));
14247 	ASSERT(PP_ISMAPPED_KPM(pp));
14248 
14249 	flags = pp->p_nrm & (P_KPMC | P_KPMS);
14250 	if (kpm_smallpages)
14251 		goto smallpages_hme_unload;
14252 
14253 	if (flags == (P_KPMC | P_KPMS)) {
14254 		panic("sfmmu_kpm_hme_unload: page should be uncached");
14255 
14256 	} else if (flags == P_KPMS) {
14257 		/*
14258 		 * Page mapped small but not involved in VAC conflict
14259 		 */
14260 		return;
14261 	}
14262 
14263 	vaddr = hat_kpm_page2va(pp, 1);
14264 
14265 	PP2KPMPG(pp, kp);
14266 	kpmp = KPMP_HASH(kp);
14267 	mutex_enter(&kpmp->khl_mutex);
14268 
14269 	if (IS_KPM_ALIAS_RANGE(vaddr)) {
14270 		if (kp->kp_refcnta < 1) {
14271 			panic("sfmmu_kpm_hme_unload: bad refcnta kpm_page=%p\n",
14272 				(void *)kp);
14273 		}
14274 
14275 	} else {
14276 		if (kp->kp_refcntc < 1) {
14277 			panic("sfmmu_kpm_hme_unload: bad refcntc kpm_page=%p\n",
14278 				(void *)kp);
14279 		}
14280 		kp->kp_refcntc--;
14281 	}
14282 
14283 	pmtx = sfmmu_page_enter(pp);
14284 	PP_CLRKPMC(pp);
14285 	sfmmu_page_exit(pmtx);
14286 
14287 	mutex_exit(&kpmp->khl_mutex);
14288 	return;
14289 
14290 smallpages_hme_unload:
14291 	if (flags != P_KPMC)
14292 		panic("sfmmu_kpm_hme_unload: page should be uncached");
14293 
14294 	vaddr = hat_kpm_page2va(pp, 1);
14295 	PP2KPMSPG(pp, ksp);
14296 
14297 	if (ksp->kp_mapped != KPM_MAPPEDSC)
14298 		panic("sfmmu_kpm_hme_unload: inconsistent mapping");
14299 
14300 	/*
14301 	 * Keep KPM_MAPPEDSC until the next kpm tsbmiss where it
14302 	 * prevents TL tsbmiss handling and force a hat_kpm_fault.
14303 	 * There we can start over again.
14304 	 */
14305 
14306 	pmtx = sfmmu_page_enter(pp);
14307 	PP_CLRKPMC(pp);
14308 	sfmmu_page_exit(pmtx);
14309 }
14310 
14311 /*
14312  * Special hooks for sfmmu_page_cache_array() when changing the
14313  * cacheability of a page. It is used to obey the hat_kpm lock
14314  * ordering (mlist -> kpmp -> spl, and back).
14315  */
14316 static kpm_hlk_t *
14317 sfmmu_kpm_kpmp_enter(page_t *pp, pgcnt_t npages)
14318 {
14319 	kpm_page_t	*kp;
14320 	kpm_hlk_t	*kpmp;
14321 
14322 	ASSERT(sfmmu_mlist_held(pp));
14323 
14324 	if (kpm_smallpages || PP_ISMAPPED_KPM(pp) == 0)
14325 		return (NULL);
14326 
14327 	ASSERT(npages <= kpmpnpgs);
14328 
14329 	PP2KPMPG(pp, kp);
14330 	kpmp = KPMP_HASH(kp);
14331 	mutex_enter(&kpmp->khl_mutex);
14332 
14333 	return (kpmp);
14334 }
14335 
14336 static void
14337 sfmmu_kpm_kpmp_exit(kpm_hlk_t *kpmp)
14338 {
14339 	if (kpm_smallpages || kpmp == NULL)
14340 		return;
14341 
14342 	mutex_exit(&kpmp->khl_mutex);
14343 }
14344 
14345 /*
14346  * Summary states used in sfmmu_kpm_page_cache (KPM_*).
14347  * See also more detailed comments within in the sfmmu_kpm_page_cache switch.
14348  * Abbreviations used:
14349  * UNC:     Input state for an uncache request.
14350  *   BIG:     Large page kpm mapping in use.
14351  *   SMALL:   Page has a small kpm mapping within a kpm_page range.
14352  *   NODEMAP: No demap needed.
14353  *   NOP:     No operation needed on this input state.
14354  * CACHE:   Input state for a re-cache request.
14355  *   MAPS:    Page is in TNC and kpm VAC conflict state and kpm mapped small.
14356  *   NOMAP:   Page is in TNC and kpm VAC conflict state, but not small kpm
14357  *            mapped.
14358  *   NOMAPO:  Page is in TNC and kpm VAC conflict state, but not small kpm
14359  *            mapped. There are also other small kpm mappings within this
14360  *            kpm_page.
14361  */
14362 #define	KPM_UNC_BIG		(0)
14363 #define	KPM_UNC_NODEMAP1	(KPM_KS)
14364 #define	KPM_UNC_SMALL1		(KPM_KS | KPM_S)
14365 #define	KPM_UNC_NODEMAP2	(KPM_KC)
14366 #define	KPM_UNC_NODEMAP3	(KPM_KC | KPM_KS)
14367 #define	KPM_UNC_SMALL2		(KPM_KC | KPM_KS | KPM_S)
14368 #define	KPM_UNC_NOP1		(KPM_KC | KPM_C)
14369 #define	KPM_UNC_NOP2		(KPM_KC | KPM_C | KPM_KS)
14370 #define	KPM_CACHE_NOMAP		(KPM_KC | KPM_C)
14371 #define	KPM_CACHE_NOMAPO	(KPM_KC | KPM_C | KPM_KS)
14372 #define	KPM_CACHE_MAPS		(KPM_KC | KPM_C | KPM_KS | KPM_S)
14373 
14374 /*
14375  * This function is called when the virtual cacheability of a page
14376  * is changed and the page has an actice kpm mapping. The mlist mutex,
14377  * the spl hash lock and the kpmp mutex (if needed) are already grabbed.
14378  */
14379 static void
14380 sfmmu_kpm_page_cache(page_t *pp, int flags, int cache_flush_tag)
14381 {
14382 	kpm_page_t	*kp;
14383 	kpm_hlk_t	*kpmp;
14384 	caddr_t		kpmvaddr;
14385 	int		badstate = 0;
14386 	uint_t		pgcacase;
14387 	kpm_spage_t	*ksp;
14388 	kpm_shlk_t	*kpmsp;
14389 	int		oldval;
14390 
14391 	ASSERT(PP_ISMAPPED_KPM(pp));
14392 	ASSERT(sfmmu_mlist_held(pp));
14393 	ASSERT(sfmmu_page_spl_held(pp));
14394 
14395 	if (flags != HAT_TMPNC && flags != HAT_CACHE)
14396 		panic("sfmmu_kpm_page_cache: bad flags");
14397 
14398 	kpmvaddr = hat_kpm_page2va(pp, 1);
14399 
14400 	if (flags == HAT_TMPNC && cache_flush_tag == CACHE_FLUSH) {
14401 		pfn_t pfn = pp->p_pagenum;
14402 		int vcolor = addr_to_vcolor(kpmvaddr);
14403 		cpuset_t cpuset = cpu_ready_set;
14404 
14405 		/* Flush vcolor in DCache */
14406 		CPUSET_DEL(cpuset, CPU->cpu_id);
14407 		SFMMU_XCALL_STATS(ksfmmup->sfmmu_cnum);
14408 		xt_some(cpuset, vac_flushpage_tl1, pfn, vcolor);
14409 		vac_flushpage(pfn, vcolor);
14410 	}
14411 
14412 	if (kpm_smallpages)
14413 		goto smallpages_page_cache;
14414 
14415 	PP2KPMPG(pp, kp);
14416 	kpmp = KPMP_HASH(kp);
14417 	ASSERT(MUTEX_HELD(&kpmp->khl_mutex));
14418 
14419 	if (IS_KPM_ALIAS_RANGE(kpmvaddr)) {
14420 		if (kp->kp_refcnta < 1) {
14421 			panic("sfmmu_kpm_page_cache: bad refcnta "
14422 				"kpm_page=%p\n", (void *)kp);
14423 		}
14424 		sfmmu_kpm_demap_small(kpmvaddr);
14425 		if (flags == HAT_TMPNC) {
14426 			PP_SETKPMC(pp);
14427 			ASSERT(!PP_ISKPMS(pp));
14428 		} else {
14429 			ASSERT(PP_ISKPMC(pp));
14430 			PP_CLRKPMC(pp);
14431 		}
14432 		goto exit;
14433 	}
14434 
14435 	badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0);
14436 	if (kp->kp_refcntc == -1) {
14437 		/*
14438 		 * We should come here only if trap level tsb miss
14439 		 * handler is disabled.
14440 		 */
14441 		badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 ||
14442 			PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp));
14443 	} else {
14444 		badstate |= (kp->kp_refcntc < 0);
14445 	}
14446 
14447 	if (badstate)
14448 		goto exit;
14449 
14450 	/*
14451 	 * Combine the per kpm_page and per page kpm VAC states to
14452 	 * a summary state in order to make the VAC cache/uncache
14453 	 * handling more concise.
14454 	 */
14455 	pgcacase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) |
14456 			((kp->kp_refcnts > 0) ? KPM_KS : 0) |
14457 			(PP_ISKPMC(pp) ? KPM_C : 0) |
14458 			(PP_ISKPMS(pp) ? KPM_S : 0));
14459 
14460 	if (flags == HAT_CACHE) {
14461 		switch (pgcacase) {
14462 		case KPM_CACHE_MAPS:			/* kc c ks s */
14463 			sfmmu_kpm_demap_small(kpmvaddr);
14464 			if (kp->kp_refcnts < 1) {
14465 				panic("sfmmu_kpm_page_cache: bad refcnts "
14466 				"kpm_page=%p\n", (void *)kp);
14467 			}
14468 			kp->kp_refcnts--;
14469 			kp->kp_refcnt++;
14470 			PP_CLRKPMS(pp);
14471 			/* FALLTHRU */
14472 
14473 		case KPM_CACHE_NOMAP:			/* kc c -  - */
14474 		case KPM_CACHE_NOMAPO:			/* kc c ks - */
14475 			kp->kp_refcntc--;
14476 			PP_CLRKPMC(pp);
14477 			break;
14478 
14479 		default:
14480 			badstate++;
14481 		}
14482 		goto exit;
14483 	}
14484 
14485 	switch (pgcacase) {
14486 	case KPM_UNC_BIG:				/* - - - - */
14487 		if (kp->kp_refcnt < 1) {
14488 			panic("sfmmu_kpm_page_cache: bad refcnt "
14489 				"kpm_page=%p\n", (void *)kp);
14490 		}
14491 
14492 		/*
14493 		 * Have to breakup the large page mapping in preparation
14494 		 * to the upcoming TNC mode handled by small mappings.
14495 		 * The demap can already be done due to another conflict
14496 		 * within the kpm_page.
14497 		 */
14498 		if (kp->kp_refcntc == -1) {
14499 			/* remove go indication */
14500 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
14501 				&kpmp->khl_lock, KPMTSBM_STOP);
14502 		}
14503 		ASSERT(kp->kp_refcntc == 0);
14504 		sfmmu_kpm_demap_large(kpmvaddr);
14505 		kp->kp_refcntc++;
14506 		PP_SETKPMC(pp);
14507 		break;
14508 
14509 	case KPM_UNC_SMALL1:				/* -  - ks s */
14510 	case KPM_UNC_SMALL2:				/* kc - ks s */
14511 		/*
14512 		 * Have to demap an already small kpm mapping in preparation
14513 		 * to the upcoming TNC mode. The demap can already be done
14514 		 * due to another conflict within the kpm_page.
14515 		 */
14516 		sfmmu_kpm_demap_small(kpmvaddr);
14517 		kp->kp_refcntc++;
14518 		kp->kp_refcnts--;
14519 		kp->kp_refcnt++;
14520 		PP_CLRKPMS(pp);
14521 		PP_SETKPMC(pp);
14522 		break;
14523 
14524 	case KPM_UNC_NODEMAP1:				/* -  - ks - */
14525 		/* fallthru */
14526 
14527 	case KPM_UNC_NODEMAP2:				/* kc - -  - */
14528 	case KPM_UNC_NODEMAP3:				/* kc - ks - */
14529 		kp->kp_refcntc++;
14530 		PP_SETKPMC(pp);
14531 		break;
14532 
14533 	case KPM_UNC_NOP1:				/* kc c -  - */
14534 	case KPM_UNC_NOP2:				/* kc c ks - */
14535 		break;
14536 
14537 	default:
14538 		badstate++;
14539 	}
14540 exit:
14541 	if (badstate) {
14542 		panic("sfmmu_kpm_page_cache: inconsistent VAC state "
14543 			"kpmvaddr=%p kp=%p pp=%p", (void *)kpmvaddr,
14544 			(void *)kp, (void *)pp);
14545 	}
14546 	return;
14547 
14548 smallpages_page_cache:
14549 	PP2KPMSPG(pp, ksp);
14550 	kpmsp = KPMP_SHASH(ksp);
14551 
14552 	oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
14553 				&kpmsp->kshl_lock, KPM_MAPPEDSC);
14554 
14555 	if (!(oldval == KPM_MAPPEDS || oldval == KPM_MAPPEDSC))
14556 		panic("smallpages_page_cache: inconsistent mapping");
14557 
14558 	sfmmu_kpm_demap_small(kpmvaddr);
14559 
14560 	if (flags == HAT_TMPNC) {
14561 		PP_SETKPMC(pp);
14562 		ASSERT(!PP_ISKPMS(pp));
14563 
14564 	} else {
14565 		ASSERT(PP_ISKPMC(pp));
14566 		PP_CLRKPMC(pp);
14567 	}
14568 
14569 	/*
14570 	 * Keep KPM_MAPPEDSC until the next kpm tsbmiss where it
14571 	 * prevents TL tsbmiss handling and force a hat_kpm_fault.
14572 	 * There we can start over again.
14573 	 */
14574 }
14575 
14576 /*
14577  * unused in sfmmu
14578  */
14579 void
14580 hat_dump(void)
14581 {
14582 }
14583 
14584 /*
14585  * Called when a thread is exiting and we have switched to the kernel address
14586  * space.  Perform the same VM initialization resume() uses when switching
14587  * processes.
14588  *
14589  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
14590  * we call it anyway in case the semantics change in the future.
14591  */
14592 /*ARGSUSED*/
14593 void
14594 hat_thread_exit(kthread_t *thd)
14595 {
14596 	ASSERT(thd->t_procp->p_as == &kas);
14597 
14598 	sfmmu_setctx_sec(KCONTEXT);
14599 	sfmmu_load_mmustate(ksfmmup);
14600 }
14601