xref: /titanic_44/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 25351652d920ae27c5a56c199da581033ce763f6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * VM - Hardware Address Translation management for Spitfire MMU.
28  *
29  * This file implements the machine specific hardware translation
30  * needed by the VM system.  The machine independent interface is
31  * described in <vm/hat.h> while the machine dependent interface
32  * and data structures are described in <vm/hat_sfmmu.h>.
33  *
34  * The hat layer manages the address translation hardware as a cache
35  * driven by calls from the higher levels in the VM system.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/kstat.h>
40 #include <vm/hat.h>
41 #include <vm/hat_sfmmu.h>
42 #include <vm/page.h>
43 #include <sys/pte.h>
44 #include <sys/systm.h>
45 #include <sys/mman.h>
46 #include <sys/sysmacros.h>
47 #include <sys/machparam.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/mmu.h>
51 #include <sys/cmn_err.h>
52 #include <sys/cpu.h>
53 #include <sys/cpuvar.h>
54 #include <sys/debug.h>
55 #include <sys/lgrp.h>
56 #include <sys/archsystm.h>
57 #include <sys/machsystm.h>
58 #include <sys/vmsystm.h>
59 #include <vm/as.h>
60 #include <vm/seg.h>
61 #include <vm/seg_kp.h>
62 #include <vm/seg_kmem.h>
63 #include <vm/seg_kpm.h>
64 #include <vm/rm.h>
65 #include <sys/t_lock.h>
66 #include <sys/obpdefs.h>
67 #include <sys/vm_machparam.h>
68 #include <sys/var.h>
69 #include <sys/trap.h>
70 #include <sys/machtrap.h>
71 #include <sys/scb.h>
72 #include <sys/bitmap.h>
73 #include <sys/machlock.h>
74 #include <sys/membar.h>
75 #include <sys/atomic.h>
76 #include <sys/cpu_module.h>
77 #include <sys/prom_debug.h>
78 #include <sys/ksynch.h>
79 #include <sys/mem_config.h>
80 #include <sys/mem_cage.h>
81 #include <vm/vm_dep.h>
82 #include <vm/xhat_sfmmu.h>
83 #include <sys/fpu/fpusystm.h>
84 #include <vm/mach_kpm.h>
85 #include <sys/callb.h>
86 
87 #ifdef	DEBUG
88 #define	SFMMU_VALIDATE_HMERID(hat, rid, saddr, len)			\
89 	if (SFMMU_IS_SHMERID_VALID(rid)) {				\
90 		caddr_t _eaddr = (saddr) + (len);			\
91 		sf_srd_t *_srdp;					\
92 		sf_region_t *_rgnp;					\
93 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			\
94 		ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid));	\
95 		ASSERT((hat) != ksfmmup);				\
96 		_srdp = (hat)->sfmmu_srdp;				\
97 		ASSERT(_srdp != NULL);					\
98 		ASSERT(_srdp->srd_refcnt != 0);				\
99 		_rgnp = _srdp->srd_hmergnp[(rid)];			\
100 		ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid);		\
101 		ASSERT(_rgnp->rgn_refcnt != 0);				\
102 		ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE));	\
103 		ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	\
104 		    SFMMU_REGION_HME);					\
105 		ASSERT((saddr) >= _rgnp->rgn_saddr);			\
106 		ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size);	\
107 		ASSERT(_eaddr > _rgnp->rgn_saddr);			\
108 		ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size);	\
109 	}
110 
111 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) 	 	 \
112 {						 			 \
113 		caddr_t _hsva;						 \
114 		caddr_t _heva;						 \
115 		caddr_t _rsva;					 	 \
116 		caddr_t _reva;					 	 \
117 		int	_ttesz = get_hblk_ttesz(hmeblkp);		 \
118 		int	_flagtte;					 \
119 		ASSERT((srdp)->srd_refcnt != 0);			 \
120 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			 \
121 		ASSERT((rgnp)->rgn_id == rid);				 \
122 		ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE));	 \
123 		ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	 \
124 		    SFMMU_REGION_HME);					 \
125 		ASSERT(_ttesz <= (rgnp)->rgn_pgszc);			 \
126 		_hsva = (caddr_t)get_hblk_base(hmeblkp);		 \
127 		_heva = get_hblk_endaddr(hmeblkp);			 \
128 		_rsva = (caddr_t)P2ALIGN(				 \
129 		    (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES);	 \
130 		_reva = (caddr_t)P2ROUNDUP(				 \
131 		    (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size),	 \
132 		    HBLK_MIN_BYTES);					 \
133 		ASSERT(_hsva >= _rsva);				 	 \
134 		ASSERT(_hsva < _reva);				 	 \
135 		ASSERT(_heva > _rsva);				 	 \
136 		ASSERT(_heva <= _reva);				 	 \
137 		_flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ :  \
138 			_ttesz;						 \
139 		ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte));		 \
140 }
141 
142 #else /* DEBUG */
143 #define	SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
144 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
145 #endif /* DEBUG */
146 
147 #if defined(SF_ERRATA_57)
148 extern caddr_t errata57_limit;
149 #endif
150 
151 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
152 				(sizeof (int64_t)))
153 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
154 
155 #define	HBLK_RESERVE_CNT	128
156 #define	HBLK_RESERVE_MIN	20
157 
158 static struct hme_blk		*freehblkp;
159 static kmutex_t			freehblkp_lock;
160 static int			freehblkcnt;
161 
162 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
163 static kmutex_t			hblk_reserve_lock;
164 static kthread_t		*hblk_reserve_thread;
165 
166 static nucleus_hblk8_info_t	nucleus_hblk8;
167 static nucleus_hblk1_info_t	nucleus_hblk1;
168 
169 /*
170  * SFMMU specific hat functions
171  */
172 void	hat_pagecachectl(struct page *, int);
173 
174 /* flags for hat_pagecachectl */
175 #define	HAT_CACHE	0x1
176 #define	HAT_UNCACHE	0x2
177 #define	HAT_TMPNC	0x4
178 
179 /*
180  * This flag is set to 0 via the MD in platforms that do not support
181  * I-cache coherency in hardware. Used to enable "soft exec" mode.
182  * The MD "coherency" property is optional, and defaults to 1 (because
183  * coherent I-cache is the norm.)
184  */
185 uint_t	icache_is_coherent = 1;
186 
187 /*
188  * Flag to allow the creation of non-cacheable translations
189  * to system memory. It is off by default. At the moment this
190  * flag is used by the ecache error injector. The error injector
191  * will turn it on when creating such a translation then shut it
192  * off when it's finished.
193  */
194 
195 int	sfmmu_allow_nc_trans = 0;
196 
197 /*
198  * Flag to disable large page support.
199  * 	value of 1 => disable all large pages.
200  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
201  *
202  * For example, use the value 0x4 to disable 512K pages.
203  *
204  */
205 #define	LARGE_PAGES_OFF		0x1
206 
207 /*
208  * The disable_large_pages and disable_ism_large_pages variables control
209  * hat_memload_array and the page sizes to be used by ISM and the kernel.
210  *
211  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
212  * are only used to control which OOB pages to use at upper VM segment creation
213  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
214  * Their values may come from platform or CPU specific code to disable page
215  * sizes that should not be used.
216  *
217  * WARNING: 512K pages are currently not supported for ISM/DISM.
218  */
219 uint_t	disable_large_pages = 0;
220 uint_t	disable_ism_large_pages = (1 << TTE512K);
221 uint_t	disable_auto_data_large_pages = 0;
222 uint_t	disable_auto_text_large_pages = 0;
223 
224 /*
225  * Private sfmmu data structures for hat management
226  */
227 static struct kmem_cache *sfmmuid_cache;
228 static struct kmem_cache *mmuctxdom_cache;
229 
230 /*
231  * Private sfmmu data structures for tsb management
232  */
233 static struct kmem_cache *sfmmu_tsbinfo_cache;
234 static struct kmem_cache *sfmmu_tsb8k_cache;
235 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
236 static vmem_t *kmem_bigtsb_arena;
237 static vmem_t *kmem_tsb_arena;
238 
239 /*
240  * sfmmu static variables for hmeblk resource management.
241  */
242 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
243 static struct kmem_cache *sfmmu8_cache;
244 static struct kmem_cache *sfmmu1_cache;
245 static struct kmem_cache *pa_hment_cache;
246 
247 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
248 /*
249  * private data for ism
250  */
251 static struct kmem_cache *ism_blk_cache;
252 static struct kmem_cache *ism_ment_cache;
253 #define	ISMID_STARTADDR	NULL
254 
255 /*
256  * Region management data structures and function declarations.
257  */
258 
259 static void	sfmmu_leave_srd(sfmmu_t *);
260 static int	sfmmu_srdcache_constructor(void *, void *, int);
261 static void	sfmmu_srdcache_destructor(void *, void *);
262 static int	sfmmu_rgncache_constructor(void *, void *, int);
263 static void	sfmmu_rgncache_destructor(void *, void *);
264 static int	sfrgnmap_isnull(sf_region_map_t *);
265 static int	sfhmergnmap_isnull(sf_hmeregion_map_t *);
266 static int	sfmmu_scdcache_constructor(void *, void *, int);
267 static void	sfmmu_scdcache_destructor(void *, void *);
268 static void	sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
269     size_t, void *, u_offset_t);
270 
271 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
272 static sf_srd_bucket_t *srd_buckets;
273 static struct kmem_cache *srd_cache;
274 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
275 static struct kmem_cache *region_cache;
276 static struct kmem_cache *scd_cache;
277 
278 #ifdef sun4v
279 int use_bigtsb_arena = 1;
280 #else
281 int use_bigtsb_arena = 0;
282 #endif
283 
284 /* External /etc/system tunable, for turning on&off the shctx support */
285 int disable_shctx = 0;
286 /* Internal variable, set by MD if the HW supports shctx feature */
287 int shctx_on = 0;
288 
289 #ifdef DEBUG
290 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
291 #endif
292 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
293 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
294 
295 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
296 static void sfmmu_find_scd(sfmmu_t *);
297 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
298 static void sfmmu_finish_join_scd(sfmmu_t *);
299 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
300 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
301 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
302 static void sfmmu_free_scd_tsbs(sfmmu_t *);
303 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
304 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
305 static void sfmmu_ism_hatflags(sfmmu_t *, int);
306 static int sfmmu_srd_lock_held(sf_srd_t *);
307 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
308 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
309 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
310 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
311 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
312 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
313 
314 /*
315  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
316  * HAT flags, synchronizing TLB/TSB coherency, and context management.
317  * The lock is hashed on the sfmmup since the case where we need to lock
318  * all processes is rare but does occur (e.g. we need to unload a shared
319  * mapping from all processes using the mapping).  We have a lot of buckets,
320  * and each slab of sfmmu_t's can use about a quarter of them, giving us
321  * a fairly good distribution without wasting too much space and overhead
322  * when we have to grab them all.
323  */
324 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
325 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
326 
327 /*
328  * Hash algorithm optimized for a small number of slabs.
329  *  7 is (highbit((sizeof sfmmu_t)) - 1)
330  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
331  * kmem_cache, and thus they will be sequential within that cache.  In
332  * addition, each new slab will have a different "color" up to cache_maxcolor
333  * which will skew the hashing for each successive slab which is allocated.
334  * If the size of sfmmu_t changed to a larger size, this algorithm may need
335  * to be revisited.
336  */
337 #define	TSB_HASH_SHIFT_BITS (7)
338 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
339 
340 #ifdef DEBUG
341 int tsb_hash_debug = 0;
342 #define	TSB_HASH(sfmmup)	\
343 	(tsb_hash_debug ? &hat_lock[0] : \
344 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
345 #else	/* DEBUG */
346 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
347 #endif	/* DEBUG */
348 
349 
350 /* sfmmu_replace_tsb() return codes. */
351 typedef enum tsb_replace_rc {
352 	TSB_SUCCESS,
353 	TSB_ALLOCFAIL,
354 	TSB_LOSTRACE,
355 	TSB_ALREADY_SWAPPED,
356 	TSB_CANTGROW
357 } tsb_replace_rc_t;
358 
359 /*
360  * Flags for TSB allocation routines.
361  */
362 #define	TSB_ALLOC	0x01
363 #define	TSB_FORCEALLOC	0x02
364 #define	TSB_GROW	0x04
365 #define	TSB_SHRINK	0x08
366 #define	TSB_SWAPIN	0x10
367 
368 /*
369  * Support for HAT callbacks.
370  */
371 #define	SFMMU_MAX_RELOC_CALLBACKS	10
372 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
373 static id_t sfmmu_cb_nextid = 0;
374 static id_t sfmmu_tsb_cb_id;
375 struct sfmmu_callback *sfmmu_cb_table;
376 
377 /*
378  * Kernel page relocation is enabled by default for non-caged
379  * kernel pages.  This has little effect unless segkmem_reloc is
380  * set, since by default kernel memory comes from inside the
381  * kernel cage.
382  */
383 int hat_kpr_enabled = 1;
384 
385 kmutex_t	kpr_mutex;
386 kmutex_t	kpr_suspendlock;
387 kthread_t	*kreloc_thread;
388 
389 /*
390  * Enable VA->PA translation sanity checking on DEBUG kernels.
391  * Disabled by default.  This is incompatible with some
392  * drivers (error injector, RSM) so if it breaks you get
393  * to keep both pieces.
394  */
395 int hat_check_vtop = 0;
396 
397 /*
398  * Private sfmmu routines (prototypes)
399  */
400 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
401 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
402 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
403 			uint_t);
404 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
405 			caddr_t, demap_range_t *, uint_t);
406 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
407 			caddr_t, int);
408 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
409 			uint64_t, struct hme_blk **);
410 static void	sfmmu_hblks_list_purge(struct hme_blk **);
411 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
412 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
413 static struct hme_blk *sfmmu_hblk_steal(int);
414 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
415 			struct hme_blk *, uint64_t, uint64_t,
416 			struct hme_blk *);
417 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
418 
419 static void	hat_do_memload_array(struct hat *, caddr_t, size_t,
420 		    struct page **, uint_t, uint_t, uint_t);
421 static void	hat_do_memload(struct hat *, caddr_t, struct page *,
422 		    uint_t, uint_t, uint_t);
423 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
424 		    uint_t, uint_t, pgcnt_t, uint_t);
425 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
426 			uint_t);
427 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
428 			uint_t, uint_t);
429 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
430 					caddr_t, int, uint_t);
431 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
432 			struct hmehash_bucket *, caddr_t, uint_t, uint_t,
433 			uint_t);
434 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
435 			caddr_t, page_t **, uint_t, uint_t);
436 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
437 
438 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
439 static pfn_t	sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
440 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
441 #ifdef VAC
442 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
443 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
444 int	tst_tnc(page_t *pp, pgcnt_t);
445 void	conv_tnc(page_t *pp, int);
446 #endif
447 
448 static void	sfmmu_get_ctx(sfmmu_t *);
449 static void	sfmmu_free_sfmmu(sfmmu_t *);
450 
451 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
452 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
453 
454 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
455 static void	hat_pagereload(struct page *, struct page *);
456 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
457 #ifdef VAC
458 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
459 static void	sfmmu_page_cache(page_t *, int, int, int);
460 #endif
461 
462 cpuset_t	sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
463     struct hme_blk *, int);
464 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
465 			pfn_t, int, int, int, int);
466 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
467 			pfn_t, int);
468 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
469 static void	sfmmu_tlb_range_demap(demap_range_t *);
470 static void	sfmmu_invalidate_ctx(sfmmu_t *);
471 static void	sfmmu_sync_mmustate(sfmmu_t *);
472 
473 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
474 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
475 			sfmmu_t *);
476 static void	sfmmu_tsb_free(struct tsb_info *);
477 static void	sfmmu_tsbinfo_free(struct tsb_info *);
478 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
479 			sfmmu_t *);
480 static void	sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
481 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
482 static int	sfmmu_select_tsb_szc(pgcnt_t);
483 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
484 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
485 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
486 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
487 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
488 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
489 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
490     hatlock_t *, uint_t);
491 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
492 
493 #ifdef VAC
494 void	sfmmu_cache_flush(pfn_t, int);
495 void	sfmmu_cache_flushcolor(int, pfn_t);
496 #endif
497 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
498 			caddr_t, demap_range_t *, uint_t, int);
499 
500 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
501 static uint_t	sfmmu_ptov_attr(tte_t *);
502 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
503 			caddr_t, demap_range_t *, uint_t);
504 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
505 static int	sfmmu_idcache_constructor(void *, void *, int);
506 static void	sfmmu_idcache_destructor(void *, void *);
507 static int	sfmmu_hblkcache_constructor(void *, void *, int);
508 static void	sfmmu_hblkcache_destructor(void *, void *);
509 static void	sfmmu_hblkcache_reclaim(void *);
510 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
511 			struct hmehash_bucket *);
512 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
513 static void	sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
514 static void	sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
515 			int, caddr_t *);
516 static void	sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
517 
518 static void	sfmmu_rm_large_mappings(page_t *, int);
519 
520 static void	hat_lock_init(void);
521 static void	hat_kstat_init(void);
522 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
523 static void	sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
524 static	int	sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
525 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
526 int	fnd_mapping_sz(page_t *);
527 static void	iment_add(struct ism_ment *,  struct hat *);
528 static void	iment_sub(struct ism_ment *, struct hat *);
529 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
530 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
531 extern void	sfmmu_clear_utsbinfo(void);
532 
533 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
534 
535 /* kpm globals */
536 #ifdef	DEBUG
537 /*
538  * Enable trap level tsbmiss handling
539  */
540 int	kpm_tsbmtl = 1;
541 
542 /*
543  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
544  * required TLB shootdowns in this case, so handle w/ care. Off by default.
545  */
546 int	kpm_tlb_flush;
547 #endif	/* DEBUG */
548 
549 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
550 
551 #ifdef DEBUG
552 static void	sfmmu_check_hblk_flist();
553 #endif
554 
555 /*
556  * Semi-private sfmmu data structures.  Some of them are initialize in
557  * startup or in hat_init. Some of them are private but accessed by
558  * assembly code or mach_sfmmu.c
559  */
560 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
561 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
562 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
563 uint64_t	khme_hash_pa;		/* PA of khme_hash */
564 int 		uhmehash_num;		/* # of buckets in user hash table */
565 int 		khmehash_num;		/* # of buckets in kernel hash table */
566 
567 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
568 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
569 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
570 
571 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
572 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
573 
574 int		cache;			/* describes system cache */
575 
576 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
577 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
578 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
579 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
580 
581 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
582 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
583 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
584 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
585 
586 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
587 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
588 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
589 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
590 
591 #ifndef sun4v
592 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
593 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
594 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
595 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
596 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
597 #endif /* sun4v */
598 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
599 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
600 vmem_t		*kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
601 
602 /*
603  * Size to use for TSB slabs.  Future platforms that support page sizes
604  * larger than 4M may wish to change these values, and provide their own
605  * assembly macros for building and decoding the TSB base register contents.
606  * Note disable_large_pages will override the value set here.
607  */
608 static	uint_t tsb_slab_ttesz = TTE4M;
609 size_t	tsb_slab_size = MMU_PAGESIZE4M;
610 uint_t	tsb_slab_shift = MMU_PAGESHIFT4M;
611 /* PFN mask for TTE */
612 size_t	tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
613 
614 /*
615  * Size to use for TSB slabs.  These are used only when 256M tsb arenas
616  * exist.
617  */
618 static uint_t	bigtsb_slab_ttesz = TTE256M;
619 static size_t	bigtsb_slab_size = MMU_PAGESIZE256M;
620 static uint_t	bigtsb_slab_shift = MMU_PAGESHIFT256M;
621 /* 256M page alignment for 8K pfn */
622 static size_t	bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
623 
624 /* largest TSB size to grow to, will be smaller on smaller memory systems */
625 static int	tsb_max_growsize = 0;
626 
627 /*
628  * Tunable parameters dealing with TSB policies.
629  */
630 
631 /*
632  * This undocumented tunable forces all 8K TSBs to be allocated from
633  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
634  */
635 #ifdef	DEBUG
636 int	tsb_forceheap = 0;
637 #endif	/* DEBUG */
638 
639 /*
640  * Decide whether to use per-lgroup arenas, or one global set of
641  * TSB arenas.  The default is not to break up per-lgroup, since
642  * most platforms don't recognize any tangible benefit from it.
643  */
644 int	tsb_lgrp_affinity = 0;
645 
646 /*
647  * Used for growing the TSB based on the process RSS.
648  * tsb_rss_factor is based on the smallest TSB, and is
649  * shifted by the TSB size to determine if we need to grow.
650  * The default will grow the TSB if the number of TTEs for
651  * this page size exceeds 75% of the number of TSB entries,
652  * which should _almost_ eliminate all conflict misses
653  * (at the expense of using up lots and lots of memory).
654  */
655 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
656 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
657 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
658 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
659 	default_tsb_size)
660 #define	TSB_OK_SHRINK()	\
661 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
662 #define	TSB_OK_GROW()	\
663 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
664 
665 int	enable_tsb_rss_sizing = 1;
666 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
667 
668 /* which TSB size code to use for new address spaces or if rss sizing off */
669 int default_tsb_size = TSB_8K_SZCODE;
670 
671 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
672 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
673 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
674 
675 #ifdef DEBUG
676 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
677 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
678 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
679 static int tsb_alloc_fail_mtbf = 0;
680 static int tsb_alloc_count = 0;
681 #endif /* DEBUG */
682 
683 /* if set to 1, will remap valid TTEs when growing TSB. */
684 int tsb_remap_ttes = 1;
685 
686 /*
687  * If we have more than this many mappings, allocate a second TSB.
688  * This default is chosen because the I/D fully associative TLBs are
689  * assumed to have at least 8 available entries. Platforms with a
690  * larger fully-associative TLB could probably override the default.
691  */
692 
693 #ifdef sun4v
694 int tsb_sectsb_threshold = 0;
695 #else
696 int tsb_sectsb_threshold = 8;
697 #endif
698 
699 /*
700  * kstat data
701  */
702 struct sfmmu_global_stat sfmmu_global_stat;
703 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
704 
705 /*
706  * Global data
707  */
708 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
709 
710 #ifdef DEBUG
711 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
712 #endif
713 
714 /* sfmmu locking operations */
715 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
716 static int	sfmmu_mlspl_held(struct page *, int);
717 
718 kmutex_t *sfmmu_page_enter(page_t *);
719 void	sfmmu_page_exit(kmutex_t *);
720 int	sfmmu_page_spl_held(struct page *);
721 
722 /* sfmmu internal locking operations - accessed directly */
723 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
724 				kmutex_t **, kmutex_t **);
725 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
726 static hatlock_t *
727 		sfmmu_hat_enter(sfmmu_t *);
728 static hatlock_t *
729 		sfmmu_hat_tryenter(sfmmu_t *);
730 static void	sfmmu_hat_exit(hatlock_t *);
731 static void	sfmmu_hat_lock_all(void);
732 static void	sfmmu_hat_unlock_all(void);
733 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
734 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
735 
736 /*
737  * Array of mutexes protecting a page's mapping list and p_nrm field.
738  *
739  * The hash function looks complicated, but is made up so that:
740  *
741  * "pp" not shifted, so adjacent pp values will hash to different cache lines
742  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
743  *
744  * "pp" >> mml_shift, incorporates more source bits into the hash result
745  *
746  *  "& (mml_table_size - 1), should be faster than using remainder "%"
747  *
748  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
749  * cacheline, since they get declared next to each other below. We'll trust
750  * ld not to do something random.
751  */
752 #ifdef	DEBUG
753 int mlist_hash_debug = 0;
754 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
755 	&mml_table[((uintptr_t)(pp) + \
756 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
757 #else	/* !DEBUG */
758 #define	MLIST_HASH(pp)   &mml_table[ \
759 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
760 #endif	/* !DEBUG */
761 
762 kmutex_t		*mml_table;
763 uint_t			mml_table_sz;	/* must be a power of 2 */
764 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
765 
766 kpm_hlk_t	*kpmp_table;
767 uint_t		kpmp_table_sz;	/* must be a power of 2 */
768 uchar_t		kpmp_shift;
769 
770 kpm_shlk_t	*kpmp_stable;
771 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
772 
773 /*
774  * SPL_HASH was improved to avoid false cache line sharing
775  */
776 #define	SPL_TABLE_SIZE	128
777 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
778 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
779 
780 #define	SPL_INDEX(pp) \
781 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
782 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
783 	(SPL_TABLE_SIZE - 1))
784 
785 #define	SPL_HASH(pp)    \
786 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
787 
788 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
789 
790 
791 /*
792  * hat_unload_callback() will group together callbacks in order
793  * to avoid xt_sync() calls.  This is the maximum size of the group.
794  */
795 #define	MAX_CB_ADDR	32
796 
797 tte_t	hw_tte;
798 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
799 
800 static char	*mmu_ctx_kstat_names[] = {
801 	"mmu_ctx_tsb_exceptions",
802 	"mmu_ctx_tsb_raise_exception",
803 	"mmu_ctx_wrap_around",
804 };
805 
806 /*
807  * Wrapper for vmem_xalloc since vmem_create only allows limited
808  * parameters for vm_source_alloc functions.  This function allows us
809  * to specify alignment consistent with the size of the object being
810  * allocated.
811  */
812 static void *
813 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
814 {
815 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
816 }
817 
818 /* Common code for setting tsb_alloc_hiwater. */
819 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
820 		ptob(pages) / tsb_alloc_hiwater_factor
821 
822 /*
823  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
824  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
825  * TTEs to represent all those physical pages.  We round this up by using
826  * 1<<highbit().  To figure out which size code to use, remember that the size
827  * code is just an amount to shift the smallest TSB size to get the size of
828  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
829  * highbit() - 1) to get the size code for the smallest TSB that can represent
830  * all of physical memory, while erring on the side of too much.
831  *
832  * Restrict tsb_max_growsize to make sure that:
833  *	1) TSBs can't grow larger than the TSB slab size
834  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
835  */
836 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
837 	int	_i, _szc, _slabszc, _tsbszc;				\
838 									\
839 	_i = highbit(pages);						\
840 	if ((1 << (_i - 1)) == (pages))					\
841 		_i--;		/* 2^n case, round down */              \
842 	_szc = _i - TSB_START_SIZE;					\
843 	_slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
844 	_tsbszc = MIN(_szc, _slabszc);                                  \
845 	tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE);               \
846 }
847 
848 /*
849  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
850  * tsb_info which handles that TTE size.
851  */
852 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) {			\
853 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
854 	ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) ||		\
855 	    sfmmu_hat_lock_held(sfmmup));				\
856 	if ((tte_szc) >= TTE4M)	{					\
857 		ASSERT((tsbinfop) != NULL);				\
858 		(tsbinfop) = (tsbinfop)->tsb_next;			\
859 	}								\
860 }
861 
862 /*
863  * Macro to use to unload entries from the TSB.
864  * It has knowledge of which page sizes get replicated in the TSB
865  * and will call the appropriate unload routine for the appropriate size.
866  */
867 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat)		\
868 {									\
869 	int ttesz = get_hblk_ttesz(hmeblkp);				\
870 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
871 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
872 	} else {							\
873 		caddr_t sva = ismhat ? addr : 				\
874 		    (caddr_t)get_hblk_base(hmeblkp);			\
875 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
876 		ASSERT(addr >= sva && addr < eva);			\
877 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
878 	}								\
879 }
880 
881 
882 /* Update tsb_alloc_hiwater after memory is configured. */
883 /*ARGSUSED*/
884 static void
885 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
886 {
887 	/* Assumes physmem has already been updated. */
888 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
889 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
890 }
891 
892 /*
893  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
894  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
895  * deleted.
896  */
897 /*ARGSUSED*/
898 static int
899 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
900 {
901 	return (0);
902 }
903 
904 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
905 /*ARGSUSED*/
906 static void
907 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
908 {
909 	/*
910 	 * Whether the delete was cancelled or not, just go ahead and update
911 	 * tsb_alloc_hiwater and tsb_max_growsize.
912 	 */
913 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
914 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
915 }
916 
917 static kphysm_setup_vector_t sfmmu_update_vec = {
918 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
919 	sfmmu_update_post_add,		/* post_add */
920 	sfmmu_update_pre_del,		/* pre_del */
921 	sfmmu_update_post_del		/* post_del */
922 };
923 
924 
925 /*
926  * HME_BLK HASH PRIMITIVES
927  */
928 
929 /*
930  * Enter a hme on the mapping list for page pp.
931  * When large pages are more prevalent in the system we might want to
932  * keep the mapping list in ascending order by the hment size. For now,
933  * small pages are more frequent, so don't slow it down.
934  */
935 #define	HME_ADD(hme, pp)					\
936 {								\
937 	ASSERT(sfmmu_mlist_held(pp));				\
938 								\
939 	hme->hme_prev = NULL;					\
940 	hme->hme_next = pp->p_mapping;				\
941 	hme->hme_page = pp;					\
942 	if (pp->p_mapping) {					\
943 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
944 		ASSERT(pp->p_share > 0);			\
945 	} else  {						\
946 		/* EMPTY */					\
947 		ASSERT(pp->p_share == 0);			\
948 	}							\
949 	pp->p_mapping = hme;					\
950 	pp->p_share++;						\
951 }
952 
953 /*
954  * Enter a hme on the mapping list for page pp.
955  * If we are unmapping a large translation, we need to make sure that the
956  * change is reflect in the corresponding bit of the p_index field.
957  */
958 #define	HME_SUB(hme, pp)					\
959 {								\
960 	ASSERT(sfmmu_mlist_held(pp));				\
961 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
962 								\
963 	if (pp->p_mapping == NULL) {				\
964 		panic("hme_remove - no mappings");		\
965 	}							\
966 								\
967 	membar_stst();	/* ensure previous stores finish */	\
968 								\
969 	ASSERT(pp->p_share > 0);				\
970 	pp->p_share--;						\
971 								\
972 	if (hme->hme_prev) {					\
973 		ASSERT(pp->p_mapping != hme);			\
974 		ASSERT(hme->hme_prev->hme_page == pp ||		\
975 			IS_PAHME(hme->hme_prev));		\
976 		hme->hme_prev->hme_next = hme->hme_next;	\
977 	} else {						\
978 		ASSERT(pp->p_mapping == hme);			\
979 		pp->p_mapping = hme->hme_next;			\
980 		ASSERT((pp->p_mapping == NULL) ?		\
981 			(pp->p_share == 0) : 1);		\
982 	}							\
983 								\
984 	if (hme->hme_next) {					\
985 		ASSERT(hme->hme_next->hme_page == pp ||		\
986 			IS_PAHME(hme->hme_next));		\
987 		hme->hme_next->hme_prev = hme->hme_prev;	\
988 	}							\
989 								\
990 	/* zero out the entry */				\
991 	hme->hme_next = NULL;					\
992 	hme->hme_prev = NULL;					\
993 	hme->hme_page = NULL;					\
994 								\
995 	if (hme_size(hme) > TTE8K) {				\
996 		/* remove mappings for remainder of large pg */	\
997 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
998 	}							\
999 }
1000 
1001 /*
1002  * This function returns the hment given the hme_blk and a vaddr.
1003  * It assumes addr has already been checked to belong to hme_blk's
1004  * range.
1005  */
1006 #define	HBLKTOHME(hment, hmeblkp, addr)					\
1007 {									\
1008 	int index;							\
1009 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
1010 }
1011 
1012 /*
1013  * Version of HBLKTOHME that also returns the index in hmeblkp
1014  * of the hment.
1015  */
1016 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
1017 {									\
1018 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
1019 									\
1020 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
1021 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1022 	} else								\
1023 		idx = 0;						\
1024 									\
1025 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
1026 }
1027 
1028 /*
1029  * Disable any page sizes not supported by the CPU
1030  */
1031 void
1032 hat_init_pagesizes()
1033 {
1034 	int 		i;
1035 
1036 	mmu_exported_page_sizes = 0;
1037 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1038 
1039 		szc_2_userszc[i] = (uint_t)-1;
1040 		userszc_2_szc[i] = (uint_t)-1;
1041 
1042 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1043 			disable_large_pages |= (1 << i);
1044 		} else {
1045 			szc_2_userszc[i] = mmu_exported_page_sizes;
1046 			userszc_2_szc[mmu_exported_page_sizes] = i;
1047 			mmu_exported_page_sizes++;
1048 		}
1049 	}
1050 
1051 	disable_ism_large_pages |= disable_large_pages;
1052 	disable_auto_data_large_pages = disable_large_pages;
1053 	disable_auto_text_large_pages = disable_large_pages;
1054 
1055 	/*
1056 	 * Initialize mmu-specific large page sizes.
1057 	 */
1058 	if (&mmu_large_pages_disabled) {
1059 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1060 		disable_ism_large_pages |=
1061 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
1062 		disable_auto_data_large_pages |=
1063 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
1064 		disable_auto_text_large_pages |=
1065 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
1066 	}
1067 }
1068 
1069 /*
1070  * Initialize the hardware address translation structures.
1071  */
1072 void
1073 hat_init(void)
1074 {
1075 	int 		i;
1076 	uint_t		sz;
1077 	size_t		size;
1078 
1079 	hat_lock_init();
1080 	hat_kstat_init();
1081 
1082 	/*
1083 	 * Hardware-only bits in a TTE
1084 	 */
1085 	MAKE_TTE_MASK(&hw_tte);
1086 
1087 	hat_init_pagesizes();
1088 
1089 	/* Initialize the hash locks */
1090 	for (i = 0; i < khmehash_num; i++) {
1091 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1092 		    MUTEX_DEFAULT, NULL);
1093 	}
1094 	for (i = 0; i < uhmehash_num; i++) {
1095 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1096 		    MUTEX_DEFAULT, NULL);
1097 	}
1098 	khmehash_num--;		/* make sure counter starts from 0 */
1099 	uhmehash_num--;		/* make sure counter starts from 0 */
1100 
1101 	/*
1102 	 * Allocate context domain structures.
1103 	 *
1104 	 * A platform may choose to modify max_mmu_ctxdoms in
1105 	 * set_platform_defaults(). If a platform does not define
1106 	 * a set_platform_defaults() or does not choose to modify
1107 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1108 	 *
1109 	 * For sun4v, there will be one global context domain, this is to
1110 	 * avoid the ldom cpu substitution problem.
1111 	 *
1112 	 * For all platforms that have CPUs sharing MMUs, this
1113 	 * value must be defined.
1114 	 */
1115 	if (max_mmu_ctxdoms == 0) {
1116 #ifndef sun4v
1117 		max_mmu_ctxdoms = max_ncpus;
1118 #else /* sun4v */
1119 		max_mmu_ctxdoms = 1;
1120 #endif /* sun4v */
1121 	}
1122 
1123 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1124 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1125 
1126 	/* mmu_ctx_t is 64 bytes aligned */
1127 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1128 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1129 	/*
1130 	 * MMU context domain initialization for the Boot CPU.
1131 	 * This needs the context domains array allocated above.
1132 	 */
1133 	mutex_enter(&cpu_lock);
1134 	sfmmu_cpu_init(CPU);
1135 	mutex_exit(&cpu_lock);
1136 
1137 	/*
1138 	 * Intialize ism mapping list lock.
1139 	 */
1140 
1141 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1142 
1143 	/*
1144 	 * Each sfmmu structure carries an array of MMU context info
1145 	 * structures, one per context domain. The size of this array depends
1146 	 * on the maximum number of context domains. So, the size of the
1147 	 * sfmmu structure varies per platform.
1148 	 *
1149 	 * sfmmu is allocated from static arena, because trap
1150 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1151 	 * memory. sfmmu's alignment is changed to 64 bytes from
1152 	 * default 8 bytes, as the lower 6 bits will be used to pass
1153 	 * pgcnt to vtag_flush_pgcnt_tl1.
1154 	 */
1155 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1156 
1157 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1158 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1159 	    NULL, NULL, static_arena, 0);
1160 
1161 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1162 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1163 
1164 	/*
1165 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1166 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1167 	 * specified, don't use magazines to cache them--we want to return
1168 	 * them to the system as quickly as possible.
1169 	 */
1170 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1171 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1172 	    static_arena, KMC_NOMAGAZINE);
1173 
1174 	/*
1175 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1176 	 * memory, which corresponds to the old static reserve for TSBs.
1177 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1178 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1179 	 * allocations will be taken from the kernel heap (via
1180 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1181 	 * consumer.
1182 	 */
1183 	if (tsb_alloc_hiwater_factor == 0) {
1184 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1185 	}
1186 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1187 
1188 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1189 		if (!(disable_large_pages & (1 << sz)))
1190 			break;
1191 	}
1192 
1193 	if (sz < tsb_slab_ttesz) {
1194 		tsb_slab_ttesz = sz;
1195 		tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1196 		tsb_slab_size = 1 << tsb_slab_shift;
1197 		tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1198 		use_bigtsb_arena = 0;
1199 	} else if (use_bigtsb_arena &&
1200 	    (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1201 		use_bigtsb_arena = 0;
1202 	}
1203 
1204 	if (!use_bigtsb_arena) {
1205 		bigtsb_slab_shift = tsb_slab_shift;
1206 	}
1207 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1208 
1209 	/*
1210 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1211 	 * than the default 4M slab size. We also honor disable_large_pages
1212 	 * here.
1213 	 *
1214 	 * The trap handlers need to be patched with the final slab shift,
1215 	 * since they need to be able to construct the TSB pointer at runtime.
1216 	 */
1217 	if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1218 	    !(disable_large_pages & (1 << TTE512K))) {
1219 		tsb_slab_ttesz = TTE512K;
1220 		tsb_slab_shift = MMU_PAGESHIFT512K;
1221 		tsb_slab_size = MMU_PAGESIZE512K;
1222 		tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1223 		use_bigtsb_arena = 0;
1224 	}
1225 
1226 	if (!use_bigtsb_arena) {
1227 		bigtsb_slab_ttesz = tsb_slab_ttesz;
1228 		bigtsb_slab_shift = tsb_slab_shift;
1229 		bigtsb_slab_size = tsb_slab_size;
1230 		bigtsb_slab_mask = tsb_slab_mask;
1231 	}
1232 
1233 
1234 	/*
1235 	 * Set up memory callback to update tsb_alloc_hiwater and
1236 	 * tsb_max_growsize.
1237 	 */
1238 	i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1239 	ASSERT(i == 0);
1240 
1241 	/*
1242 	 * kmem_tsb_arena is the source from which large TSB slabs are
1243 	 * drawn.  The quantum of this arena corresponds to the largest
1244 	 * TSB size we can dynamically allocate for user processes.
1245 	 * Currently it must also be a supported page size since we
1246 	 * use exactly one translation entry to map each slab page.
1247 	 *
1248 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1249 	 * which most TSBs are allocated.  Since most TSB allocations are
1250 	 * typically 8K we have a kmem cache we stack on top of each
1251 	 * kmem_tsb_default_arena to speed up those allocations.
1252 	 *
1253 	 * Note the two-level scheme of arenas is required only
1254 	 * because vmem_create doesn't allow us to specify alignment
1255 	 * requirements.  If this ever changes the code could be
1256 	 * simplified to use only one level of arenas.
1257 	 *
1258 	 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1259 	 * will be provided in addition to the 4M kmem_tsb_arena.
1260 	 */
1261 	if (use_bigtsb_arena) {
1262 		kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1263 		    bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1264 		    vmem_xfree, heap_arena, 0, VM_SLEEP);
1265 	}
1266 
1267 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1268 	    sfmmu_vmem_xalloc_aligned_wrapper,
1269 	    vmem_xfree, heap_arena, 0, VM_SLEEP);
1270 
1271 	if (tsb_lgrp_affinity) {
1272 		char s[50];
1273 		for (i = 0; i < NLGRPS_MAX; i++) {
1274 			if (use_bigtsb_arena) {
1275 				(void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1276 				kmem_bigtsb_default_arena[i] = vmem_create(s,
1277 				    NULL, 0, 2 * tsb_slab_size,
1278 				    sfmmu_tsb_segkmem_alloc,
1279 				    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1280 				    0, VM_SLEEP | VM_BESTFIT);
1281 			}
1282 
1283 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1284 			kmem_tsb_default_arena[i] = vmem_create(s,
1285 			    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1286 			    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1287 			    VM_SLEEP | VM_BESTFIT);
1288 
1289 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1290 			sfmmu_tsb_cache[i] = kmem_cache_create(s,
1291 			    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1292 			    kmem_tsb_default_arena[i], 0);
1293 		}
1294 	} else {
1295 		if (use_bigtsb_arena) {
1296 			kmem_bigtsb_default_arena[0] =
1297 			    vmem_create("kmem_bigtsb_default", NULL, 0,
1298 			    2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1299 			    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1300 			    VM_SLEEP | VM_BESTFIT);
1301 		}
1302 
1303 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1304 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1305 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1306 		    VM_SLEEP | VM_BESTFIT);
1307 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1308 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1309 		    kmem_tsb_default_arena[0], 0);
1310 	}
1311 
1312 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1313 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1314 	    sfmmu_hblkcache_destructor,
1315 	    sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1316 	    hat_memload_arena, KMC_NOHASH);
1317 
1318 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1319 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1320 
1321 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1322 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1323 	    sfmmu_hblkcache_destructor,
1324 	    NULL, (void *)HME1BLK_SZ,
1325 	    hat_memload1_arena, KMC_NOHASH);
1326 
1327 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1328 	    0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1329 
1330 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1331 	    sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1332 	    NULL, NULL, static_arena, KMC_NOHASH);
1333 
1334 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1335 	    sizeof (ism_ment_t), 0, NULL, NULL,
1336 	    NULL, NULL, NULL, 0);
1337 
1338 	/*
1339 	 * We grab the first hat for the kernel,
1340 	 */
1341 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1342 	kas.a_hat = hat_alloc(&kas);
1343 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1344 
1345 	/*
1346 	 * Initialize hblk_reserve.
1347 	 */
1348 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1349 	    va_to_pa((caddr_t)hblk_reserve);
1350 
1351 #ifndef UTSB_PHYS
1352 	/*
1353 	 * Reserve some kernel virtual address space for the locked TTEs
1354 	 * that allow us to probe the TSB from TL>0.
1355 	 */
1356 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1357 	    0, 0, NULL, NULL, VM_SLEEP);
1358 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1359 	    0, 0, NULL, NULL, VM_SLEEP);
1360 #endif
1361 
1362 #ifdef VAC
1363 	/*
1364 	 * The big page VAC handling code assumes VAC
1365 	 * will not be bigger than the smallest big
1366 	 * page- which is 64K.
1367 	 */
1368 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1369 		cmn_err(CE_PANIC, "VAC too big!");
1370 	}
1371 #endif
1372 
1373 	(void) xhat_init();
1374 
1375 	uhme_hash_pa = va_to_pa(uhme_hash);
1376 	khme_hash_pa = va_to_pa(khme_hash);
1377 
1378 	/*
1379 	 * Initialize relocation locks. kpr_suspendlock is held
1380 	 * at PIL_MAX to prevent interrupts from pinning the holder
1381 	 * of a suspended TTE which may access it leading to a
1382 	 * deadlock condition.
1383 	 */
1384 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1385 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1386 
1387 	/*
1388 	 * If Shared context support is disabled via /etc/system
1389 	 * set shctx_on to 0 here if it was set to 1 earlier in boot
1390 	 * sequence by cpu module initialization code.
1391 	 */
1392 	if (shctx_on && disable_shctx) {
1393 		shctx_on = 0;
1394 	}
1395 
1396 	if (shctx_on) {
1397 		srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1398 		    sizeof (srd_buckets[0]), KM_SLEEP);
1399 		for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1400 			mutex_init(&srd_buckets[i].srdb_lock, NULL,
1401 			    MUTEX_DEFAULT, NULL);
1402 		}
1403 
1404 		srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1405 		    0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1406 		    NULL, NULL, NULL, 0);
1407 		region_cache = kmem_cache_create("region_cache",
1408 		    sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1409 		    sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1410 		scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1411 		    0, sfmmu_scdcache_constructor,  sfmmu_scdcache_destructor,
1412 		    NULL, NULL, NULL, 0);
1413 	}
1414 
1415 	/*
1416 	 * Pre-allocate hrm_hashtab before enabling the collection of
1417 	 * refmod statistics.  Allocating on the fly would mean us
1418 	 * running the risk of suffering recursive mutex enters or
1419 	 * deadlocks.
1420 	 */
1421 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1422 	    KM_SLEEP);
1423 }
1424 
1425 /*
1426  * Initialize locking for the hat layer, called early during boot.
1427  */
1428 static void
1429 hat_lock_init()
1430 {
1431 	int i;
1432 
1433 	/*
1434 	 * initialize the array of mutexes protecting a page's mapping
1435 	 * list and p_nrm field.
1436 	 */
1437 	for (i = 0; i < mml_table_sz; i++)
1438 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1439 
1440 	if (kpm_enable) {
1441 		for (i = 0; i < kpmp_table_sz; i++) {
1442 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1443 			    MUTEX_DEFAULT, NULL);
1444 		}
1445 	}
1446 
1447 	/*
1448 	 * Initialize array of mutex locks that protects sfmmu fields and
1449 	 * TSB lists.
1450 	 */
1451 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1452 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1453 		    NULL);
1454 }
1455 
1456 #define	SFMMU_KERNEL_MAXVA \
1457 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1458 
1459 /*
1460  * Allocate a hat structure.
1461  * Called when an address space first uses a hat.
1462  */
1463 struct hat *
1464 hat_alloc(struct as *as)
1465 {
1466 	sfmmu_t *sfmmup;
1467 	int i;
1468 	uint64_t cnum;
1469 	extern uint_t get_color_start(struct as *);
1470 
1471 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1472 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1473 	sfmmup->sfmmu_as = as;
1474 	sfmmup->sfmmu_flags = 0;
1475 	sfmmup->sfmmu_tteflags = 0;
1476 	sfmmup->sfmmu_rtteflags = 0;
1477 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1478 
1479 	if (as == &kas) {
1480 		ksfmmup = sfmmup;
1481 		sfmmup->sfmmu_cext = 0;
1482 		cnum = KCONTEXT;
1483 
1484 		sfmmup->sfmmu_clrstart = 0;
1485 		sfmmup->sfmmu_tsb = NULL;
1486 		/*
1487 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1488 		 * to setup tsb_info for ksfmmup.
1489 		 */
1490 	} else {
1491 
1492 		/*
1493 		 * Just set to invalid ctx. When it faults, it will
1494 		 * get a valid ctx. This would avoid the situation
1495 		 * where we get a ctx, but it gets stolen and then
1496 		 * we fault when we try to run and so have to get
1497 		 * another ctx.
1498 		 */
1499 		sfmmup->sfmmu_cext = 0;
1500 		cnum = INVALID_CONTEXT;
1501 
1502 		/* initialize original physical page coloring bin */
1503 		sfmmup->sfmmu_clrstart = get_color_start(as);
1504 #ifdef DEBUG
1505 		if (tsb_random_size) {
1506 			uint32_t randval = (uint32_t)gettick() >> 4;
1507 			int size = randval % (tsb_max_growsize + 1);
1508 
1509 			/* chose a random tsb size for stress testing */
1510 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1511 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1512 		} else
1513 #endif /* DEBUG */
1514 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1515 			    default_tsb_size,
1516 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1517 		sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1518 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1519 	}
1520 
1521 	ASSERT(max_mmu_ctxdoms > 0);
1522 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1523 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1524 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1525 	}
1526 
1527 	for (i = 0; i < max_mmu_page_sizes; i++) {
1528 		sfmmup->sfmmu_ttecnt[i] = 0;
1529 		sfmmup->sfmmu_scdrttecnt[i] = 0;
1530 		sfmmup->sfmmu_ismttecnt[i] = 0;
1531 		sfmmup->sfmmu_scdismttecnt[i] = 0;
1532 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1533 	}
1534 	sfmmup->sfmmu_tsb0_4minflcnt = 0;
1535 	sfmmup->sfmmu_iblk = NULL;
1536 	sfmmup->sfmmu_ismhat = 0;
1537 	sfmmup->sfmmu_scdhat = 0;
1538 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1539 	if (sfmmup == ksfmmup) {
1540 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1541 	} else {
1542 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1543 	}
1544 	sfmmup->sfmmu_free = 0;
1545 	sfmmup->sfmmu_rmstat = 0;
1546 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1547 	sfmmup->sfmmu_xhat_provider = NULL;
1548 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1549 	sfmmup->sfmmu_srdp = NULL;
1550 	SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1551 	bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1552 	sfmmup->sfmmu_scdp = NULL;
1553 	sfmmup->sfmmu_scd_link.next = NULL;
1554 	sfmmup->sfmmu_scd_link.prev = NULL;
1555 	return (sfmmup);
1556 }
1557 
1558 /*
1559  * Create per-MMU context domain kstats for a given MMU ctx.
1560  */
1561 static void
1562 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1563 {
1564 	mmu_ctx_stat_t	stat;
1565 	kstat_t		*mmu_kstat;
1566 
1567 	ASSERT(MUTEX_HELD(&cpu_lock));
1568 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1569 
1570 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1571 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1572 
1573 	if (mmu_kstat == NULL) {
1574 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1575 		    mmu_ctxp->mmu_idx);
1576 	} else {
1577 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1578 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1579 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1580 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1581 		mmu_ctxp->mmu_kstat = mmu_kstat;
1582 		kstat_install(mmu_kstat);
1583 	}
1584 }
1585 
1586 /*
1587  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1588  * context domain information for a given CPU. If a platform does not
1589  * specify that interface, then the function below is used instead to return
1590  * default information. The defaults are as follows:
1591  *
1592  *	- For sun4u systems there's one MMU context domain per CPU.
1593  *	  This default is used by all sun4u systems except OPL. OPL systems
1594  *	  provide platform specific interface to map CPU ids to MMU ids
1595  *	  because on OPL more than 1 CPU shares a single MMU.
1596  *        Note that on sun4v, there is one global context domain for
1597  *	  the entire system. This is to avoid running into potential problem
1598  *	  with ldom physical cpu substitution feature.
1599  *	- The number of MMU context IDs supported on any CPU in the
1600  *	  system is 8K.
1601  */
1602 /*ARGSUSED*/
1603 static void
1604 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1605 {
1606 	infop->mmu_nctxs = nctxs;
1607 #ifndef sun4v
1608 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1609 #else /* sun4v */
1610 	infop->mmu_idx = 0;
1611 #endif /* sun4v */
1612 }
1613 
1614 /*
1615  * Called during CPU initialization to set the MMU context-related information
1616  * for a CPU.
1617  *
1618  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1619  */
1620 void
1621 sfmmu_cpu_init(cpu_t *cp)
1622 {
1623 	mmu_ctx_info_t	info;
1624 	mmu_ctx_t	*mmu_ctxp;
1625 
1626 	ASSERT(MUTEX_HELD(&cpu_lock));
1627 
1628 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1629 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1630 	else
1631 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1632 
1633 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1634 
1635 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1636 		/* Each mmu_ctx is cacheline aligned. */
1637 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1638 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1639 
1640 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1641 		    (void *)ipltospl(DISP_LEVEL));
1642 		mmu_ctxp->mmu_idx = info.mmu_idx;
1643 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1644 		/*
1645 		 * Globally for lifetime of a system,
1646 		 * gnum must always increase.
1647 		 * mmu_saved_gnum is protected by the cpu_lock.
1648 		 */
1649 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1650 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1651 
1652 		sfmmu_mmu_kstat_create(mmu_ctxp);
1653 
1654 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1655 	} else {
1656 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1657 	}
1658 
1659 	/*
1660 	 * The mmu_lock is acquired here to prevent races with
1661 	 * the wrap-around code.
1662 	 */
1663 	mutex_enter(&mmu_ctxp->mmu_lock);
1664 
1665 
1666 	mmu_ctxp->mmu_ncpus++;
1667 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1668 	CPU_MMU_IDX(cp) = info.mmu_idx;
1669 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1670 
1671 	mutex_exit(&mmu_ctxp->mmu_lock);
1672 }
1673 
1674 /*
1675  * Called to perform MMU context-related cleanup for a CPU.
1676  */
1677 void
1678 sfmmu_cpu_cleanup(cpu_t *cp)
1679 {
1680 	mmu_ctx_t	*mmu_ctxp;
1681 
1682 	ASSERT(MUTEX_HELD(&cpu_lock));
1683 
1684 	mmu_ctxp = CPU_MMU_CTXP(cp);
1685 	ASSERT(mmu_ctxp != NULL);
1686 
1687 	/*
1688 	 * The mmu_lock is acquired here to prevent races with
1689 	 * the wrap-around code.
1690 	 */
1691 	mutex_enter(&mmu_ctxp->mmu_lock);
1692 
1693 	CPU_MMU_CTXP(cp) = NULL;
1694 
1695 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1696 	if (--mmu_ctxp->mmu_ncpus == 0) {
1697 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1698 		mutex_exit(&mmu_ctxp->mmu_lock);
1699 		mutex_destroy(&mmu_ctxp->mmu_lock);
1700 
1701 		if (mmu_ctxp->mmu_kstat)
1702 			kstat_delete(mmu_ctxp->mmu_kstat);
1703 
1704 		/* mmu_saved_gnum is protected by the cpu_lock. */
1705 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1706 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1707 
1708 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1709 
1710 		return;
1711 	}
1712 
1713 	mutex_exit(&mmu_ctxp->mmu_lock);
1714 }
1715 
1716 /*
1717  * Hat_setup, makes an address space context the current active one.
1718  * In sfmmu this translates to setting the secondary context with the
1719  * corresponding context.
1720  */
1721 void
1722 hat_setup(struct hat *sfmmup, int allocflag)
1723 {
1724 	hatlock_t *hatlockp;
1725 
1726 	/* Init needs some special treatment. */
1727 	if (allocflag == HAT_INIT) {
1728 		/*
1729 		 * Make sure that we have
1730 		 * 1. a TSB
1731 		 * 2. a valid ctx that doesn't get stolen after this point.
1732 		 */
1733 		hatlockp = sfmmu_hat_enter(sfmmup);
1734 
1735 		/*
1736 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1737 		 * TSBs, but we need one for init, since the kernel does some
1738 		 * special things to set up its stack and needs the TSB to
1739 		 * resolve page faults.
1740 		 */
1741 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1742 
1743 		sfmmu_get_ctx(sfmmup);
1744 
1745 		sfmmu_hat_exit(hatlockp);
1746 	} else {
1747 		ASSERT(allocflag == HAT_ALLOC);
1748 
1749 		hatlockp = sfmmu_hat_enter(sfmmup);
1750 		kpreempt_disable();
1751 
1752 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1753 		/*
1754 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1755 		 * pagesize bits don't matter in this case since we are passing
1756 		 * INVALID_CONTEXT to it.
1757 		 * Compatibility Note: hw takes care of MMU_SCONTEXT1
1758 		 */
1759 		sfmmu_setctx_sec(INVALID_CONTEXT);
1760 		sfmmu_clear_utsbinfo();
1761 
1762 		kpreempt_enable();
1763 		sfmmu_hat_exit(hatlockp);
1764 	}
1765 }
1766 
1767 /*
1768  * Free all the translation resources for the specified address space.
1769  * Called from as_free when an address space is being destroyed.
1770  */
1771 void
1772 hat_free_start(struct hat *sfmmup)
1773 {
1774 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1775 	ASSERT(sfmmup != ksfmmup);
1776 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1777 
1778 	sfmmup->sfmmu_free = 1;
1779 	if (sfmmup->sfmmu_scdp != NULL) {
1780 		sfmmu_leave_scd(sfmmup, 0);
1781 	}
1782 
1783 	ASSERT(sfmmup->sfmmu_scdp == NULL);
1784 }
1785 
1786 void
1787 hat_free_end(struct hat *sfmmup)
1788 {
1789 	int i;
1790 
1791 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1792 	ASSERT(sfmmup->sfmmu_free == 1);
1793 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1794 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1795 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1796 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1797 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1798 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1799 
1800 	if (sfmmup->sfmmu_rmstat) {
1801 		hat_freestat(sfmmup->sfmmu_as, NULL);
1802 	}
1803 
1804 	while (sfmmup->sfmmu_tsb != NULL) {
1805 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1806 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1807 		sfmmup->sfmmu_tsb = next;
1808 	}
1809 
1810 	if (sfmmup->sfmmu_srdp != NULL) {
1811 		sfmmu_leave_srd(sfmmup);
1812 		ASSERT(sfmmup->sfmmu_srdp == NULL);
1813 		for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1814 			if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1815 				kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1816 				    SFMMU_L2_HMERLINKS_SIZE);
1817 				sfmmup->sfmmu_hmeregion_links[i] = NULL;
1818 			}
1819 		}
1820 	}
1821 	sfmmu_free_sfmmu(sfmmup);
1822 
1823 #ifdef DEBUG
1824 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1825 		ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1826 	}
1827 #endif
1828 
1829 	kmem_cache_free(sfmmuid_cache, sfmmup);
1830 }
1831 
1832 /*
1833  * Set up any translation structures, for the specified address space,
1834  * that are needed or preferred when the process is being swapped in.
1835  */
1836 /* ARGSUSED */
1837 void
1838 hat_swapin(struct hat *hat)
1839 {
1840 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1841 }
1842 
1843 /*
1844  * Free all of the translation resources, for the specified address space,
1845  * that can be freed while the process is swapped out. Called from as_swapout.
1846  * Also, free up the ctx that this process was using.
1847  */
1848 void
1849 hat_swapout(struct hat *sfmmup)
1850 {
1851 	struct hmehash_bucket *hmebp;
1852 	struct hme_blk *hmeblkp;
1853 	struct hme_blk *pr_hblk = NULL;
1854 	struct hme_blk *nx_hblk;
1855 	int i;
1856 	uint64_t hblkpa, prevpa, nx_pa;
1857 	struct hme_blk *list = NULL;
1858 	hatlock_t *hatlockp;
1859 	struct tsb_info *tsbinfop;
1860 	struct free_tsb {
1861 		struct free_tsb *next;
1862 		struct tsb_info *tsbinfop;
1863 	};			/* free list of TSBs */
1864 	struct free_tsb *freelist, *last, *next;
1865 
1866 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1867 	SFMMU_STAT(sf_swapout);
1868 
1869 	/*
1870 	 * There is no way to go from an as to all its translations in sfmmu.
1871 	 * Here is one of the times when we take the big hit and traverse
1872 	 * the hash looking for hme_blks to free up.  Not only do we free up
1873 	 * this as hme_blks but all those that are free.  We are obviously
1874 	 * swapping because we need memory so let's free up as much
1875 	 * as we can.
1876 	 *
1877 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1878 	 * because:
1879 	 *  1) we free the ctx we're using and throw away the TSB(s);
1880 	 *  2) processes aren't runnable while being swapped out.
1881 	 */
1882 	ASSERT(sfmmup != KHATID);
1883 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1884 		hmebp = &uhme_hash[i];
1885 		SFMMU_HASH_LOCK(hmebp);
1886 		hmeblkp = hmebp->hmeblkp;
1887 		hblkpa = hmebp->hmeh_nextpa;
1888 		prevpa = 0;
1889 		pr_hblk = NULL;
1890 		while (hmeblkp) {
1891 
1892 			ASSERT(!hmeblkp->hblk_xhat_bit);
1893 
1894 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1895 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1896 				ASSERT(!hmeblkp->hblk_shared);
1897 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1898 				    (caddr_t)get_hblk_base(hmeblkp),
1899 				    get_hblk_endaddr(hmeblkp),
1900 				    NULL, HAT_UNLOAD);
1901 			}
1902 			nx_hblk = hmeblkp->hblk_next;
1903 			nx_pa = hmeblkp->hblk_nextpa;
1904 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1905 				ASSERT(!hmeblkp->hblk_lckcnt);
1906 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1907 				    prevpa, pr_hblk);
1908 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1909 			} else {
1910 				pr_hblk = hmeblkp;
1911 				prevpa = hblkpa;
1912 			}
1913 			hmeblkp = nx_hblk;
1914 			hblkpa = nx_pa;
1915 		}
1916 		SFMMU_HASH_UNLOCK(hmebp);
1917 	}
1918 
1919 	sfmmu_hblks_list_purge(&list);
1920 
1921 	/*
1922 	 * Now free up the ctx so that others can reuse it.
1923 	 */
1924 	hatlockp = sfmmu_hat_enter(sfmmup);
1925 
1926 	sfmmu_invalidate_ctx(sfmmup);
1927 
1928 	/*
1929 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1930 	 * If TSBs were never swapped in, just return.
1931 	 * This implies that we don't support partial swapping
1932 	 * of TSBs -- either all are swapped out, or none are.
1933 	 *
1934 	 * We must hold the HAT lock here to prevent racing with another
1935 	 * thread trying to unmap TTEs from the TSB or running the post-
1936 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1937 	 * can't free memory while holding the HAT lock or we could
1938 	 * deadlock, so we build a list of TSBs to be freed after marking
1939 	 * the tsbinfos as swapped out and free them after dropping the
1940 	 * lock.
1941 	 */
1942 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1943 		sfmmu_hat_exit(hatlockp);
1944 		return;
1945 	}
1946 
1947 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1948 	last = freelist = NULL;
1949 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1950 	    tsbinfop = tsbinfop->tsb_next) {
1951 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1952 
1953 		/*
1954 		 * Cast the TSB into a struct free_tsb and put it on the free
1955 		 * list.
1956 		 */
1957 		if (freelist == NULL) {
1958 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1959 		} else {
1960 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1961 			last = last->next;
1962 		}
1963 		last->next = NULL;
1964 		last->tsbinfop = tsbinfop;
1965 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1966 		/*
1967 		 * Zero out the TTE to clear the valid bit.
1968 		 * Note we can't use a value like 0xbad because we want to
1969 		 * ensure diagnostic bits are NEVER set on TTEs that might
1970 		 * be loaded.  The intent is to catch any invalid access
1971 		 * to the swapped TSB, such as a thread running with a valid
1972 		 * context without first calling sfmmu_tsb_swapin() to
1973 		 * allocate TSB memory.
1974 		 */
1975 		tsbinfop->tsb_tte.ll = 0;
1976 	}
1977 
1978 	/* Now we can drop the lock and free the TSB memory. */
1979 	sfmmu_hat_exit(hatlockp);
1980 	for (; freelist != NULL; freelist = next) {
1981 		next = freelist->next;
1982 		sfmmu_tsb_free(freelist->tsbinfop);
1983 	}
1984 }
1985 
1986 /*
1987  * Duplicate the translations of an as into another newas
1988  */
1989 /* ARGSUSED */
1990 int
1991 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1992 	uint_t flag)
1993 {
1994 	sf_srd_t *srdp;
1995 	sf_scd_t *scdp;
1996 	int i;
1997 	extern uint_t get_color_start(struct as *);
1998 
1999 	ASSERT(hat->sfmmu_xhat_provider == NULL);
2000 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
2001 	    (flag == HAT_DUP_SRD));
2002 	ASSERT(hat != ksfmmup);
2003 	ASSERT(newhat != ksfmmup);
2004 	ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
2005 
2006 	if (flag == HAT_DUP_COW) {
2007 		panic("hat_dup: HAT_DUP_COW not supported");
2008 	}
2009 
2010 	if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2011 		ASSERT(srdp->srd_evp != NULL);
2012 		VN_HOLD(srdp->srd_evp);
2013 		ASSERT(srdp->srd_refcnt > 0);
2014 		newhat->sfmmu_srdp = srdp;
2015 		atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
2016 	}
2017 
2018 	/*
2019 	 * HAT_DUP_ALL flag is used after as duplication is done.
2020 	 */
2021 	if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2022 		ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2023 		newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2024 		if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2025 			newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2026 		}
2027 
2028 		/* check if need to join scd */
2029 		if ((scdp = hat->sfmmu_scdp) != NULL &&
2030 		    newhat->sfmmu_scdp != scdp) {
2031 			int ret;
2032 			SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2033 			    &scdp->scd_region_map, ret);
2034 			ASSERT(ret);
2035 			sfmmu_join_scd(scdp, newhat);
2036 			ASSERT(newhat->sfmmu_scdp == scdp &&
2037 			    scdp->scd_refcnt >= 2);
2038 			for (i = 0; i < max_mmu_page_sizes; i++) {
2039 				newhat->sfmmu_ismttecnt[i] =
2040 				    hat->sfmmu_ismttecnt[i];
2041 				newhat->sfmmu_scdismttecnt[i] =
2042 				    hat->sfmmu_scdismttecnt[i];
2043 			}
2044 		}
2045 
2046 		sfmmu_check_page_sizes(newhat, 1);
2047 	}
2048 
2049 	if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2050 	    update_proc_pgcolorbase_after_fork != 0) {
2051 		hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2052 	}
2053 	return (0);
2054 }
2055 
2056 void
2057 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2058 	uint_t attr, uint_t flags)
2059 {
2060 	hat_do_memload(hat, addr, pp, attr, flags,
2061 	    SFMMU_INVALID_SHMERID);
2062 }
2063 
2064 void
2065 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2066 	uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2067 {
2068 	uint_t rid;
2069 	if (rcookie == HAT_INVALID_REGION_COOKIE ||
2070 	    hat->sfmmu_xhat_provider != NULL) {
2071 		hat_do_memload(hat, addr, pp, attr, flags,
2072 		    SFMMU_INVALID_SHMERID);
2073 		return;
2074 	}
2075 	rid = (uint_t)((uint64_t)rcookie);
2076 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2077 	hat_do_memload(hat, addr, pp, attr, flags, rid);
2078 }
2079 
2080 /*
2081  * Set up addr to map to page pp with protection prot.
2082  * As an optimization we also load the TSB with the
2083  * corresponding tte but it is no big deal if  the tte gets kicked out.
2084  */
2085 static void
2086 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2087 	uint_t attr, uint_t flags, uint_t rid)
2088 {
2089 	tte_t tte;
2090 
2091 
2092 	ASSERT(hat != NULL);
2093 	ASSERT(PAGE_LOCKED(pp));
2094 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2095 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2096 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2097 	SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2098 
2099 	if (PP_ISFREE(pp)) {
2100 		panic("hat_memload: loading a mapping to free page %p",
2101 		    (void *)pp);
2102 	}
2103 
2104 	if (hat->sfmmu_xhat_provider) {
2105 		/* no regions for xhats */
2106 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2107 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
2108 		return;
2109 	}
2110 
2111 	ASSERT((hat == ksfmmup) ||
2112 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2113 
2114 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2115 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2116 		    flags & ~SFMMU_LOAD_ALLFLAG);
2117 
2118 	if (hat->sfmmu_rmstat)
2119 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2120 
2121 #if defined(SF_ERRATA_57)
2122 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2123 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2124 	    !(flags & HAT_LOAD_SHARE)) {
2125 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2126 		    " page executable");
2127 		attr &= ~PROT_EXEC;
2128 	}
2129 #endif
2130 
2131 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2132 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2133 
2134 	/*
2135 	 * Check TSB and TLB page sizes.
2136 	 */
2137 	if ((flags & HAT_LOAD_SHARE) == 0) {
2138 		sfmmu_check_page_sizes(hat, 1);
2139 	}
2140 }
2141 
2142 /*
2143  * hat_devload can be called to map real memory (e.g.
2144  * /dev/kmem) and even though hat_devload will determine pf is
2145  * for memory, it will be unable to get a shared lock on the
2146  * page (because someone else has it exclusively) and will
2147  * pass dp = NULL.  If tteload doesn't get a non-NULL
2148  * page pointer it can't cache memory.
2149  */
2150 void
2151 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2152 	uint_t attr, int flags)
2153 {
2154 	tte_t tte;
2155 	struct page *pp = NULL;
2156 	int use_lgpg = 0;
2157 
2158 	ASSERT(hat != NULL);
2159 
2160 	if (hat->sfmmu_xhat_provider) {
2161 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
2162 		return;
2163 	}
2164 
2165 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2166 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2167 	ASSERT((hat == ksfmmup) ||
2168 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2169 	if (len == 0)
2170 		panic("hat_devload: zero len");
2171 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2172 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2173 		    flags & ~SFMMU_LOAD_ALLFLAG);
2174 
2175 #if defined(SF_ERRATA_57)
2176 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2177 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2178 	    !(flags & HAT_LOAD_SHARE)) {
2179 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2180 		    " page executable");
2181 		attr &= ~PROT_EXEC;
2182 	}
2183 #endif
2184 
2185 	/*
2186 	 * If it's a memory page find its pp
2187 	 */
2188 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2189 		pp = page_numtopp_nolock(pfn);
2190 		if (pp == NULL) {
2191 			flags |= HAT_LOAD_NOCONSIST;
2192 		} else {
2193 			if (PP_ISFREE(pp)) {
2194 				panic("hat_memload: loading "
2195 				    "a mapping to free page %p",
2196 				    (void *)pp);
2197 			}
2198 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2199 				panic("hat_memload: loading a mapping "
2200 				    "to unlocked relocatable page %p",
2201 				    (void *)pp);
2202 			}
2203 			ASSERT(len == MMU_PAGESIZE);
2204 		}
2205 	}
2206 
2207 	if (hat->sfmmu_rmstat)
2208 		hat_resvstat(len, hat->sfmmu_as, addr);
2209 
2210 	if (flags & HAT_LOAD_NOCONSIST) {
2211 		attr |= SFMMU_UNCACHEVTTE;
2212 		use_lgpg = 1;
2213 	}
2214 	if (!pf_is_memory(pfn)) {
2215 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2216 		use_lgpg = 1;
2217 		switch (attr & HAT_ORDER_MASK) {
2218 			case HAT_STRICTORDER:
2219 			case HAT_UNORDERED_OK:
2220 				/*
2221 				 * we set the side effect bit for all non
2222 				 * memory mappings unless merging is ok
2223 				 */
2224 				attr |= SFMMU_SIDEFFECT;
2225 				break;
2226 			case HAT_MERGING_OK:
2227 			case HAT_LOADCACHING_OK:
2228 			case HAT_STORECACHING_OK:
2229 				break;
2230 			default:
2231 				panic("hat_devload: bad attr");
2232 				break;
2233 		}
2234 	}
2235 	while (len) {
2236 		if (!use_lgpg) {
2237 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2238 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2239 			    flags, SFMMU_INVALID_SHMERID);
2240 			len -= MMU_PAGESIZE;
2241 			addr += MMU_PAGESIZE;
2242 			pfn++;
2243 			continue;
2244 		}
2245 		/*
2246 		 *  try to use large pages, check va/pa alignments
2247 		 *  Note that 32M/256M page sizes are not (yet) supported.
2248 		 */
2249 		if ((len >= MMU_PAGESIZE4M) &&
2250 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2251 		    !(disable_large_pages & (1 << TTE4M)) &&
2252 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2253 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
2254 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2255 			    flags, SFMMU_INVALID_SHMERID);
2256 			len -= MMU_PAGESIZE4M;
2257 			addr += MMU_PAGESIZE4M;
2258 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2259 		} else if ((len >= MMU_PAGESIZE512K) &&
2260 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2261 		    !(disable_large_pages & (1 << TTE512K)) &&
2262 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2263 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
2264 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2265 			    flags, SFMMU_INVALID_SHMERID);
2266 			len -= MMU_PAGESIZE512K;
2267 			addr += MMU_PAGESIZE512K;
2268 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2269 		} else if ((len >= MMU_PAGESIZE64K) &&
2270 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2271 		    !(disable_large_pages & (1 << TTE64K)) &&
2272 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2273 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
2274 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2275 			    flags, SFMMU_INVALID_SHMERID);
2276 			len -= MMU_PAGESIZE64K;
2277 			addr += MMU_PAGESIZE64K;
2278 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2279 		} else {
2280 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2281 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2282 			    flags, SFMMU_INVALID_SHMERID);
2283 			len -= MMU_PAGESIZE;
2284 			addr += MMU_PAGESIZE;
2285 			pfn++;
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * Check TSB and TLB page sizes.
2291 	 */
2292 	if ((flags & HAT_LOAD_SHARE) == 0) {
2293 		sfmmu_check_page_sizes(hat, 1);
2294 	}
2295 }
2296 
2297 void
2298 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2299 	struct page **pps, uint_t attr, uint_t flags)
2300 {
2301 	hat_do_memload_array(hat, addr, len, pps, attr, flags,
2302 	    SFMMU_INVALID_SHMERID);
2303 }
2304 
2305 void
2306 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2307 	struct page **pps, uint_t attr, uint_t flags,
2308 	hat_region_cookie_t rcookie)
2309 {
2310 	uint_t rid;
2311 	if (rcookie == HAT_INVALID_REGION_COOKIE ||
2312 	    hat->sfmmu_xhat_provider != NULL) {
2313 		hat_do_memload_array(hat, addr, len, pps, attr, flags,
2314 		    SFMMU_INVALID_SHMERID);
2315 		return;
2316 	}
2317 	rid = (uint_t)((uint64_t)rcookie);
2318 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2319 	hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2320 }
2321 
2322 /*
2323  * Map the largest extend possible out of the page array. The array may NOT
2324  * be in order.  The largest possible mapping a page can have
2325  * is specified in the p_szc field.  The p_szc field
2326  * cannot change as long as there any mappings (large or small)
2327  * to any of the pages that make up the large page. (ie. any
2328  * promotion/demotion of page size is not up to the hat but up to
2329  * the page free list manager).  The array
2330  * should consist of properly aligned contigous pages that are
2331  * part of a big page for a large mapping to be created.
2332  */
2333 static void
2334 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2335 	struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2336 {
2337 	int  ttesz;
2338 	size_t mapsz;
2339 	pgcnt_t	numpg, npgs;
2340 	tte_t tte;
2341 	page_t *pp;
2342 	uint_t large_pages_disable;
2343 
2344 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2345 	SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2346 
2347 	if (hat->sfmmu_xhat_provider) {
2348 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2349 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2350 		return;
2351 	}
2352 
2353 	if (hat->sfmmu_rmstat)
2354 		hat_resvstat(len, hat->sfmmu_as, addr);
2355 
2356 #if defined(SF_ERRATA_57)
2357 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2358 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2359 	    !(flags & HAT_LOAD_SHARE)) {
2360 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2361 		    "user page executable");
2362 		attr &= ~PROT_EXEC;
2363 	}
2364 #endif
2365 
2366 	/* Get number of pages */
2367 	npgs = len >> MMU_PAGESHIFT;
2368 
2369 	if (flags & HAT_LOAD_SHARE) {
2370 		large_pages_disable = disable_ism_large_pages;
2371 	} else {
2372 		large_pages_disable = disable_large_pages;
2373 	}
2374 
2375 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2376 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2377 		    rid);
2378 		return;
2379 	}
2380 
2381 	while (npgs >= NHMENTS) {
2382 		pp = *pps;
2383 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2384 			/*
2385 			 * Check if this page size is disabled.
2386 			 */
2387 			if (large_pages_disable & (1 << ttesz))
2388 				continue;
2389 
2390 			numpg = TTEPAGES(ttesz);
2391 			mapsz = numpg << MMU_PAGESHIFT;
2392 			if ((npgs >= numpg) &&
2393 			    IS_P2ALIGNED(addr, mapsz) &&
2394 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2395 				/*
2396 				 * At this point we have enough pages and
2397 				 * we know the virtual address and the pfn
2398 				 * are properly aligned.  We still need
2399 				 * to check for physical contiguity but since
2400 				 * it is very likely that this is the case
2401 				 * we will assume they are so and undo
2402 				 * the request if necessary.  It would
2403 				 * be great if we could get a hint flag
2404 				 * like HAT_CONTIG which would tell us
2405 				 * the pages are contigous for sure.
2406 				 */
2407 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2408 				    attr, ttesz);
2409 				if (!sfmmu_tteload_array(hat, &tte, addr,
2410 				    pps, flags, rid)) {
2411 					break;
2412 				}
2413 			}
2414 		}
2415 		if (ttesz == TTE8K) {
2416 			/*
2417 			 * We were not able to map array using a large page
2418 			 * batch a hmeblk or fraction at a time.
2419 			 */
2420 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2421 			    & (NHMENTS-1);
2422 			numpg = NHMENTS - numpg;
2423 			ASSERT(numpg <= npgs);
2424 			mapsz = numpg * MMU_PAGESIZE;
2425 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2426 			    numpg, rid);
2427 		}
2428 		addr += mapsz;
2429 		npgs -= numpg;
2430 		pps += numpg;
2431 	}
2432 
2433 	if (npgs) {
2434 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2435 		    rid);
2436 	}
2437 
2438 	/*
2439 	 * Check TSB and TLB page sizes.
2440 	 */
2441 	if ((flags & HAT_LOAD_SHARE) == 0) {
2442 		sfmmu_check_page_sizes(hat, 1);
2443 	}
2444 }
2445 
2446 /*
2447  * Function tries to batch 8K pages into the same hme blk.
2448  */
2449 static void
2450 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2451 		    uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2452 {
2453 	tte_t	tte;
2454 	page_t *pp;
2455 	struct hmehash_bucket *hmebp;
2456 	struct hme_blk *hmeblkp;
2457 	int	index;
2458 
2459 	while (npgs) {
2460 		/*
2461 		 * Acquire the hash bucket.
2462 		 */
2463 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2464 		    rid);
2465 		ASSERT(hmebp);
2466 
2467 		/*
2468 		 * Find the hment block.
2469 		 */
2470 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2471 		    TTE8K, flags, rid);
2472 		ASSERT(hmeblkp);
2473 
2474 		do {
2475 			/*
2476 			 * Make the tte.
2477 			 */
2478 			pp = *pps;
2479 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2480 
2481 			/*
2482 			 * Add the translation.
2483 			 */
2484 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2485 			    vaddr, pps, flags, rid);
2486 
2487 			/*
2488 			 * Goto next page.
2489 			 */
2490 			pps++;
2491 			npgs--;
2492 
2493 			/*
2494 			 * Goto next address.
2495 			 */
2496 			vaddr += MMU_PAGESIZE;
2497 
2498 			/*
2499 			 * Don't crossover into a different hmentblk.
2500 			 */
2501 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2502 			    (NHMENTS-1));
2503 
2504 		} while (index != 0 && npgs != 0);
2505 
2506 		/*
2507 		 * Release the hash bucket.
2508 		 */
2509 
2510 		sfmmu_tteload_release_hashbucket(hmebp);
2511 	}
2512 }
2513 
2514 /*
2515  * Construct a tte for a page:
2516  *
2517  * tte_valid = 1
2518  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2519  * tte_size = size
2520  * tte_nfo = attr & HAT_NOFAULT
2521  * tte_ie = attr & HAT_STRUCTURE_LE
2522  * tte_hmenum = hmenum
2523  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2524  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2525  * tte_ref = 1 (optimization)
2526  * tte_wr_perm = attr & PROT_WRITE;
2527  * tte_no_sync = attr & HAT_NOSYNC
2528  * tte_lock = attr & SFMMU_LOCKTTE
2529  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2530  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2531  * tte_e = attr & SFMMU_SIDEFFECT
2532  * tte_priv = !(attr & PROT_USER)
2533  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2534  * tte_glb = 0
2535  */
2536 void
2537 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2538 {
2539 	ASSERT((attr & ~(SFMMU_LOAD_ALLATTR | HAT_ATTR_NOSOFTEXEC)) == 0);
2540 
2541 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2542 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2543 
2544 	if (TTE_IS_NOSYNC(ttep)) {
2545 		TTE_SET_REF(ttep);
2546 		if (TTE_IS_WRITABLE(ttep)) {
2547 			TTE_SET_MOD(ttep);
2548 		}
2549 	}
2550 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2551 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2552 	}
2553 
2554 	/*
2555 	 * Disable hardware execute permission to force a fault if
2556 	 * this page is executed, so we can detect the execution.  Set
2557 	 * the soft exec bit to remember that this TTE has execute
2558 	 * permission.
2559 	 */
2560 	if (TTE_IS_EXECUTABLE(ttep) && (attr & HAT_ATTR_NOSOFTEXEC) == 0 &&
2561 	    icache_is_coherent == 0) {
2562 		TTE_CLR_EXEC(ttep);
2563 		TTE_SET_SOFTEXEC(ttep);
2564 	}
2565 }
2566 
2567 /*
2568  * This function will add a translation to the hme_blk and allocate the
2569  * hme_blk if one does not exist.
2570  * If a page structure is specified then it will add the
2571  * corresponding hment to the mapping list.
2572  * It will also update the hmenum field for the tte.
2573  *
2574  * Currently this function is only used for kernel mappings.
2575  * So pass invalid region to sfmmu_tteload_array().
2576  */
2577 void
2578 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2579 	uint_t flags)
2580 {
2581 	ASSERT(sfmmup == ksfmmup);
2582 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2583 	    SFMMU_INVALID_SHMERID);
2584 }
2585 
2586 /*
2587  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2588  * Assumes that a particular page size may only be resident in one TSB.
2589  */
2590 static void
2591 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2592 {
2593 	struct tsb_info *tsbinfop = NULL;
2594 	uint64_t tag;
2595 	struct tsbe *tsbe_addr;
2596 	uint64_t tsb_base;
2597 	uint_t tsb_size;
2598 	int vpshift = MMU_PAGESHIFT;
2599 	int phys = 0;
2600 
2601 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2602 		phys = ktsb_phys;
2603 		if (ttesz >= TTE4M) {
2604 #ifndef sun4v
2605 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2606 #endif
2607 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2608 			tsb_size = ktsb4m_szcode;
2609 		} else {
2610 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2611 			tsb_size = ktsb_szcode;
2612 		}
2613 	} else {
2614 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2615 
2616 		/*
2617 		 * If there isn't a TSB for this page size, or the TSB is
2618 		 * swapped out, there is nothing to do.  Note that the latter
2619 		 * case seems impossible but can occur if hat_pageunload()
2620 		 * is called on an ISM mapping while the process is swapped
2621 		 * out.
2622 		 */
2623 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2624 			return;
2625 
2626 		/*
2627 		 * If another thread is in the middle of relocating a TSB
2628 		 * we can't unload the entry so set a flag so that the
2629 		 * TSB will be flushed before it can be accessed by the
2630 		 * process.
2631 		 */
2632 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2633 			if (ttep == NULL)
2634 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2635 			return;
2636 		}
2637 #if defined(UTSB_PHYS)
2638 		phys = 1;
2639 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2640 #else
2641 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2642 #endif
2643 		tsb_size = tsbinfop->tsb_szc;
2644 	}
2645 	if (ttesz >= TTE4M)
2646 		vpshift = MMU_PAGESHIFT4M;
2647 
2648 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2649 	tag = sfmmu_make_tsbtag(vaddr);
2650 
2651 	if (ttep == NULL) {
2652 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2653 	} else {
2654 		if (ttesz >= TTE4M) {
2655 			SFMMU_STAT(sf_tsb_load4m);
2656 		} else {
2657 			SFMMU_STAT(sf_tsb_load8k);
2658 		}
2659 
2660 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2661 	}
2662 }
2663 
2664 /*
2665  * Unmap all entries from [start, end) matching the given page size.
2666  *
2667  * This function is used primarily to unmap replicated 64K or 512K entries
2668  * from the TSB that are inserted using the base page size TSB pointer, but
2669  * it may also be called to unmap a range of addresses from the TSB.
2670  */
2671 void
2672 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2673 {
2674 	struct tsb_info *tsbinfop;
2675 	uint64_t tag;
2676 	struct tsbe *tsbe_addr;
2677 	caddr_t vaddr;
2678 	uint64_t tsb_base;
2679 	int vpshift, vpgsz;
2680 	uint_t tsb_size;
2681 	int phys = 0;
2682 
2683 	/*
2684 	 * Assumptions:
2685 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2686 	 *  at a time shooting down any valid entries we encounter.
2687 	 *
2688 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2689 	 *  down any valid mappings we find.
2690 	 */
2691 	if (sfmmup == ksfmmup) {
2692 		phys = ktsb_phys;
2693 		if (ttesz >= TTE4M) {
2694 #ifndef sun4v
2695 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2696 #endif
2697 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2698 			tsb_size = ktsb4m_szcode;
2699 		} else {
2700 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2701 			tsb_size = ktsb_szcode;
2702 		}
2703 	} else {
2704 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2705 
2706 		/*
2707 		 * If there isn't a TSB for this page size, or the TSB is
2708 		 * swapped out, there is nothing to do.  Note that the latter
2709 		 * case seems impossible but can occur if hat_pageunload()
2710 		 * is called on an ISM mapping while the process is swapped
2711 		 * out.
2712 		 */
2713 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2714 			return;
2715 
2716 		/*
2717 		 * If another thread is in the middle of relocating a TSB
2718 		 * we can't unload the entry so set a flag so that the
2719 		 * TSB will be flushed before it can be accessed by the
2720 		 * process.
2721 		 */
2722 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2723 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2724 			return;
2725 		}
2726 #if defined(UTSB_PHYS)
2727 		phys = 1;
2728 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2729 #else
2730 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2731 #endif
2732 		tsb_size = tsbinfop->tsb_szc;
2733 	}
2734 	if (ttesz >= TTE4M) {
2735 		vpshift = MMU_PAGESHIFT4M;
2736 		vpgsz = MMU_PAGESIZE4M;
2737 	} else {
2738 		vpshift = MMU_PAGESHIFT;
2739 		vpgsz = MMU_PAGESIZE;
2740 	}
2741 
2742 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2743 		tag = sfmmu_make_tsbtag(vaddr);
2744 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2745 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2746 	}
2747 }
2748 
2749 /*
2750  * Select the optimum TSB size given the number of mappings
2751  * that need to be cached.
2752  */
2753 static int
2754 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2755 {
2756 	int szc = 0;
2757 
2758 #ifdef DEBUG
2759 	if (tsb_grow_stress) {
2760 		uint32_t randval = (uint32_t)gettick() >> 4;
2761 		return (randval % (tsb_max_growsize + 1));
2762 	}
2763 #endif	/* DEBUG */
2764 
2765 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2766 		szc++;
2767 	return (szc);
2768 }
2769 
2770 /*
2771  * This function will add a translation to the hme_blk and allocate the
2772  * hme_blk if one does not exist.
2773  * If a page structure is specified then it will add the
2774  * corresponding hment to the mapping list.
2775  * It will also update the hmenum field for the tte.
2776  * Furthermore, it attempts to create a large page translation
2777  * for <addr,hat> at page array pps.  It assumes addr and first
2778  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2779  */
2780 static int
2781 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2782 	page_t **pps, uint_t flags, uint_t rid)
2783 {
2784 	struct hmehash_bucket *hmebp;
2785 	struct hme_blk *hmeblkp;
2786 	int 	ret;
2787 	uint_t	size;
2788 
2789 	/*
2790 	 * Get mapping size.
2791 	 */
2792 	size = TTE_CSZ(ttep);
2793 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2794 
2795 	/*
2796 	 * Acquire the hash bucket.
2797 	 */
2798 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2799 	ASSERT(hmebp);
2800 
2801 	/*
2802 	 * Find the hment block.
2803 	 */
2804 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2805 	    rid);
2806 	ASSERT(hmeblkp);
2807 
2808 	/*
2809 	 * Add the translation.
2810 	 */
2811 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2812 	    rid);
2813 
2814 	/*
2815 	 * Release the hash bucket.
2816 	 */
2817 	sfmmu_tteload_release_hashbucket(hmebp);
2818 
2819 	return (ret);
2820 }
2821 
2822 /*
2823  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2824  */
2825 static struct hmehash_bucket *
2826 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2827     uint_t rid)
2828 {
2829 	struct hmehash_bucket *hmebp;
2830 	int hmeshift;
2831 	void *htagid = sfmmutohtagid(sfmmup, rid);
2832 
2833 	ASSERT(htagid != NULL);
2834 
2835 	hmeshift = HME_HASH_SHIFT(size);
2836 
2837 	hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2838 
2839 	SFMMU_HASH_LOCK(hmebp);
2840 
2841 	return (hmebp);
2842 }
2843 
2844 /*
2845  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2846  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2847  * allocated.
2848  */
2849 static struct hme_blk *
2850 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2851 	caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2852 {
2853 	hmeblk_tag hblktag;
2854 	int hmeshift;
2855 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2856 	uint64_t hblkpa, prevpa;
2857 	struct kmem_cache *sfmmu_cache;
2858 	uint_t forcefree;
2859 
2860 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2861 
2862 	hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2863 	ASSERT(hblktag.htag_id != NULL);
2864 	hmeshift = HME_HASH_SHIFT(size);
2865 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2866 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2867 	hblktag.htag_rid = rid;
2868 
2869 ttearray_realloc:
2870 
2871 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2872 	    pr_hblk, prevpa, &list);
2873 
2874 	/*
2875 	 * We block until hblk_reserve_lock is released; it's held by
2876 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2877 	 * replaced by a hblk from sfmmu8_cache.
2878 	 */
2879 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2880 	    hblk_reserve_thread != curthread) {
2881 		SFMMU_HASH_UNLOCK(hmebp);
2882 		mutex_enter(&hblk_reserve_lock);
2883 		mutex_exit(&hblk_reserve_lock);
2884 		SFMMU_STAT(sf_hblk_reserve_hit);
2885 		SFMMU_HASH_LOCK(hmebp);
2886 		goto ttearray_realloc;
2887 	}
2888 
2889 	if (hmeblkp == NULL) {
2890 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2891 		    hblktag, flags, rid);
2892 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2893 		ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2894 	} else {
2895 		/*
2896 		 * It is possible for 8k and 64k hblks to collide since they
2897 		 * have the same rehash value. This is because we
2898 		 * lazily free hblks and 8K/64K blks could be lingering.
2899 		 * If we find size mismatch we free the block and & try again.
2900 		 */
2901 		if (get_hblk_ttesz(hmeblkp) != size) {
2902 			ASSERT(!hmeblkp->hblk_vcnt);
2903 			ASSERT(!hmeblkp->hblk_hmecnt);
2904 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2905 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2906 			goto ttearray_realloc;
2907 		}
2908 		if (hmeblkp->hblk_shw_bit) {
2909 			/*
2910 			 * if the hblk was previously used as a shadow hblk then
2911 			 * we will change it to a normal hblk
2912 			 */
2913 			ASSERT(!hmeblkp->hblk_shared);
2914 			if (hmeblkp->hblk_shw_mask) {
2915 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2916 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2917 				goto ttearray_realloc;
2918 			} else {
2919 				hmeblkp->hblk_shw_bit = 0;
2920 			}
2921 		}
2922 		SFMMU_STAT(sf_hblk_hit);
2923 	}
2924 
2925 	/*
2926 	 * hat_memload() should never call kmem_cache_free(); see block
2927 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2928 	 * enqueue each hblk in the list to reserve list if it's created
2929 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2930 	 */
2931 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2932 	while ((pr_hblk = list) != NULL) {
2933 		list = pr_hblk->hblk_next;
2934 		sfmmu_cache = get_hblk_cache(pr_hblk);
2935 		if ((sfmmu_cache == sfmmu8_cache) &&
2936 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2937 			continue;
2938 
2939 		ASSERT(sfmmup != KHATID);
2940 		kmem_cache_free(sfmmu_cache, pr_hblk);
2941 	}
2942 
2943 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2944 	ASSERT(!hmeblkp->hblk_shw_bit);
2945 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2946 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2947 	ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
2948 
2949 	return (hmeblkp);
2950 }
2951 
2952 /*
2953  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2954  * otherwise.
2955  */
2956 static int
2957 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2958 	caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
2959 {
2960 	page_t *pp = *pps;
2961 	int hmenum, size, remap;
2962 	tte_t tteold, flush_tte;
2963 #ifdef DEBUG
2964 	tte_t orig_old;
2965 #endif /* DEBUG */
2966 	struct sf_hment *sfhme;
2967 	kmutex_t *pml, *pmtx;
2968 	hatlock_t *hatlockp;
2969 	int myflt;
2970 
2971 	/*
2972 	 * remove this panic when we decide to let user virtual address
2973 	 * space be >= USERLIMIT.
2974 	 */
2975 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2976 		panic("user addr %p in kernel space", (void *)vaddr);
2977 #if defined(TTE_IS_GLOBAL)
2978 	if (TTE_IS_GLOBAL(ttep))
2979 		panic("sfmmu_tteload: creating global tte");
2980 #endif
2981 
2982 #ifdef DEBUG
2983 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2984 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2985 		panic("sfmmu_tteload: non cacheable memory tte");
2986 #endif /* DEBUG */
2987 
2988 	/* don't simulate dirty bit for writeable ISM/DISM mappings */
2989 	if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
2990 		TTE_SET_REF(ttep);
2991 		TTE_SET_MOD(ttep);
2992 	}
2993 
2994 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2995 	    !TTE_IS_MOD(ttep)) {
2996 		/*
2997 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2998 		 * the TSB if the TTE isn't writable since we're likely to
2999 		 * fault on it again -- preloading can be fairly expensive.
3000 		 */
3001 		flags |= SFMMU_NO_TSBLOAD;
3002 	}
3003 
3004 	size = TTE_CSZ(ttep);
3005 	switch (size) {
3006 	case TTE8K:
3007 		SFMMU_STAT(sf_tteload8k);
3008 		break;
3009 	case TTE64K:
3010 		SFMMU_STAT(sf_tteload64k);
3011 		break;
3012 	case TTE512K:
3013 		SFMMU_STAT(sf_tteload512k);
3014 		break;
3015 	case TTE4M:
3016 		SFMMU_STAT(sf_tteload4m);
3017 		break;
3018 	case (TTE32M):
3019 		SFMMU_STAT(sf_tteload32m);
3020 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3021 		break;
3022 	case (TTE256M):
3023 		SFMMU_STAT(sf_tteload256m);
3024 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3025 		break;
3026 	}
3027 
3028 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3029 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3030 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3031 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3032 
3033 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3034 
3035 	/*
3036 	 * Need to grab mlist lock here so that pageunload
3037 	 * will not change tte behind us.
3038 	 */
3039 	if (pp) {
3040 		pml = sfmmu_mlist_enter(pp);
3041 	}
3042 
3043 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
3044 	/*
3045 	 * Look for corresponding hment and if valid verify
3046 	 * pfns are equal.
3047 	 */
3048 	remap = TTE_IS_VALID(&tteold);
3049 	if (remap) {
3050 		pfn_t	new_pfn, old_pfn;
3051 
3052 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
3053 		new_pfn = TTE_TO_PFN(vaddr, ttep);
3054 
3055 		if (flags & HAT_LOAD_REMAP) {
3056 			/* make sure we are remapping same type of pages */
3057 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3058 				panic("sfmmu_tteload - tte remap io<->memory");
3059 			}
3060 			if (old_pfn != new_pfn &&
3061 			    (pp != NULL || sfhme->hme_page != NULL)) {
3062 				panic("sfmmu_tteload - tte remap pp != NULL");
3063 			}
3064 		} else if (old_pfn != new_pfn) {
3065 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3066 			    (void *)hmeblkp);
3067 		}
3068 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3069 
3070 		if (TTE_IS_EXECUTABLE(&tteold) && TTE_IS_SOFTEXEC(ttep)) {
3071 			TTE_SET_EXEC(ttep);
3072 		}
3073 	}
3074 
3075 	if (pp) {
3076 		/*
3077 		 * If we know that this page will be executed, because
3078 		 * it was in the past (PP_ISEXEC is already true), or
3079 		 * if the caller says it will likely be executed
3080 		 * (HAT_LOAD_TEXT is true), then there is no need to
3081 		 * dynamically detect execution with a soft exec
3082 		 * fault. Enable hardware execute permission now.
3083 		 */
3084 		if ((PP_ISEXEC(pp) || (flags & HAT_LOAD_TEXT)) &&
3085 		    TTE_IS_SOFTEXEC(ttep)) {
3086 			TTE_SET_EXEC(ttep);
3087 		}
3088 
3089 		if (size == TTE8K) {
3090 #ifdef VAC
3091 			/*
3092 			 * Handle VAC consistency
3093 			 */
3094 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3095 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
3096 			}
3097 #endif
3098 
3099 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3100 				pmtx = sfmmu_page_enter(pp);
3101 				PP_CLRRO(pp);
3102 				sfmmu_page_exit(pmtx);
3103 			} else if (!PP_ISMAPPED(pp) &&
3104 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3105 				pmtx = sfmmu_page_enter(pp);
3106 				if (!(PP_ISMOD(pp))) {
3107 					PP_SETRO(pp);
3108 				}
3109 				sfmmu_page_exit(pmtx);
3110 			}
3111 
3112 			if (TTE_EXECUTED(ttep)) {
3113 				pmtx = sfmmu_page_enter(pp);
3114 				PP_SETEXEC(pp);
3115 				sfmmu_page_exit(pmtx);
3116 			}
3117 
3118 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3119 			/*
3120 			 * sfmmu_pagearray_setup failed so return
3121 			 */
3122 			sfmmu_mlist_exit(pml);
3123 			return (1);
3124 		}
3125 
3126 	} else if (TTE_IS_SOFTEXEC(ttep)) {
3127 		TTE_SET_EXEC(ttep);
3128 	}
3129 
3130 	/*
3131 	 * Make sure hment is not on a mapping list.
3132 	 */
3133 	ASSERT(remap || (sfhme->hme_page == NULL));
3134 
3135 	/* if it is not a remap then hme->next better be NULL */
3136 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3137 
3138 	if (flags & HAT_LOAD_LOCK) {
3139 		if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3140 			panic("too high lckcnt-hmeblk %p",
3141 			    (void *)hmeblkp);
3142 		}
3143 		atomic_add_32(&hmeblkp->hblk_lckcnt, 1);
3144 
3145 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3146 	}
3147 
3148 #ifdef VAC
3149 	if (pp && PP_ISNC(pp)) {
3150 		/*
3151 		 * If the physical page is marked to be uncacheable, like
3152 		 * by a vac conflict, make sure the new mapping is also
3153 		 * uncacheable.
3154 		 */
3155 		TTE_CLR_VCACHEABLE(ttep);
3156 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3157 	}
3158 #endif
3159 	ttep->tte_hmenum = hmenum;
3160 
3161 #ifdef DEBUG
3162 	orig_old = tteold;
3163 #endif /* DEBUG */
3164 
3165 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3166 		if ((sfmmup == KHATID) &&
3167 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3168 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
3169 		}
3170 #ifdef DEBUG
3171 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3172 #endif /* DEBUG */
3173 	}
3174 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3175 
3176 	if (!TTE_IS_VALID(&tteold)) {
3177 
3178 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
3179 		if (rid == SFMMU_INVALID_SHMERID) {
3180 			atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
3181 		} else {
3182 			sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3183 			sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3184 			/*
3185 			 * We already accounted for region ttecnt's in sfmmu
3186 			 * during hat_join_region() processing. Here we
3187 			 * only update ttecnt's in region struture.
3188 			 */
3189 			atomic_add_long(&rgnp->rgn_ttecnt[size], 1);
3190 		}
3191 	}
3192 
3193 	myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3194 	if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3195 	    sfmmup != ksfmmup) {
3196 		uchar_t tteflag = 1 << size;
3197 		if (rid == SFMMU_INVALID_SHMERID) {
3198 			if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3199 				hatlockp = sfmmu_hat_enter(sfmmup);
3200 				sfmmup->sfmmu_tteflags |= tteflag;
3201 				sfmmu_hat_exit(hatlockp);
3202 			}
3203 		} else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3204 			hatlockp = sfmmu_hat_enter(sfmmup);
3205 			sfmmup->sfmmu_rtteflags |= tteflag;
3206 			sfmmu_hat_exit(hatlockp);
3207 		}
3208 		/*
3209 		 * Update the current CPU tsbmiss area, so the current thread
3210 		 * won't need to take the tsbmiss for the new pagesize.
3211 		 * The other threads in the process will update their tsb
3212 		 * miss area lazily in sfmmu_tsbmiss_exception() when they
3213 		 * fail to find the translation for a newly added pagesize.
3214 		 */
3215 		if (size > TTE64K && myflt) {
3216 			struct tsbmiss *tsbmp;
3217 			kpreempt_disable();
3218 			tsbmp = &tsbmiss_area[CPU->cpu_id];
3219 			if (rid == SFMMU_INVALID_SHMERID) {
3220 				if (!(tsbmp->uhat_tteflags & tteflag)) {
3221 					tsbmp->uhat_tteflags |= tteflag;
3222 				}
3223 			} else {
3224 				if (!(tsbmp->uhat_rtteflags & tteflag)) {
3225 					tsbmp->uhat_rtteflags |= tteflag;
3226 				}
3227 			}
3228 			kpreempt_enable();
3229 		}
3230 	}
3231 
3232 	if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3233 	    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3234 		hatlockp = sfmmu_hat_enter(sfmmup);
3235 		SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3236 		sfmmu_hat_exit(hatlockp);
3237 	}
3238 
3239 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3240 	    hw_tte.tte_intlo;
3241 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3242 	    hw_tte.tte_inthi;
3243 
3244 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3245 		/*
3246 		 * If remap and new tte differs from old tte we need
3247 		 * to sync the mod bit and flush TLB/TSB.  We don't
3248 		 * need to sync ref bit because we currently always set
3249 		 * ref bit in tteload.
3250 		 */
3251 		ASSERT(TTE_IS_REF(ttep));
3252 		if (TTE_IS_MOD(&tteold) || (TTE_EXECUTED(&tteold) &&
3253 		    !TTE_IS_EXECUTABLE(ttep))) {
3254 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3255 		}
3256 		/*
3257 		 * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3258 		 * hmes are only used for read only text. Adding this code for
3259 		 * completeness and future use of shared hmeblks with writable
3260 		 * mappings of VMODSORT vnodes.
3261 		 */
3262 		if (hmeblkp->hblk_shared) {
3263 			cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3264 			    sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3265 			xt_sync(cpuset);
3266 			SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3267 		} else {
3268 			sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3269 			xt_sync(sfmmup->sfmmu_cpusran);
3270 		}
3271 	}
3272 
3273 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3274 		/*
3275 		 * We only preload 8K and 4M mappings into the TSB, since
3276 		 * 64K and 512K mappings are replicated and hence don't
3277 		 * have a single, unique TSB entry. Ditto for 32M/256M.
3278 		 */
3279 		if (size == TTE8K || size == TTE4M) {
3280 			sf_scd_t *scdp;
3281 			hatlockp = sfmmu_hat_enter(sfmmup);
3282 			/*
3283 			 * Don't preload private TSB if the mapping is used
3284 			 * by the shctx in the SCD.
3285 			 */
3286 			scdp = sfmmup->sfmmu_scdp;
3287 			if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3288 			    !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3289 				sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3290 				    size);
3291 			}
3292 			sfmmu_hat_exit(hatlockp);
3293 		}
3294 	}
3295 	if (pp) {
3296 		if (!remap) {
3297 			HME_ADD(sfhme, pp);
3298 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
3299 			ASSERT(hmeblkp->hblk_hmecnt > 0);
3300 
3301 			/*
3302 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3303 			 * see pageunload() for comment.
3304 			 */
3305 		}
3306 		sfmmu_mlist_exit(pml);
3307 	}
3308 
3309 	return (0);
3310 }
3311 /*
3312  * Function unlocks hash bucket.
3313  */
3314 static void
3315 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3316 {
3317 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3318 	SFMMU_HASH_UNLOCK(hmebp);
3319 }
3320 
3321 /*
3322  * function which checks and sets up page array for a large
3323  * translation.  Will set p_vcolor, p_index, p_ro fields.
3324  * Assumes addr and pfnum of first page are properly aligned.
3325  * Will check for physical contiguity. If check fails it return
3326  * non null.
3327  */
3328 static int
3329 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3330 {
3331 	int 	i, index, ttesz;
3332 	pfn_t	pfnum;
3333 	pgcnt_t	npgs;
3334 	page_t *pp, *pp1;
3335 	kmutex_t *pmtx;
3336 #ifdef VAC
3337 	int osz;
3338 	int cflags = 0;
3339 	int vac_err = 0;
3340 #endif
3341 	int newidx = 0;
3342 
3343 	ttesz = TTE_CSZ(ttep);
3344 
3345 	ASSERT(ttesz > TTE8K);
3346 
3347 	npgs = TTEPAGES(ttesz);
3348 	index = PAGESZ_TO_INDEX(ttesz);
3349 
3350 	pfnum = (*pps)->p_pagenum;
3351 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
3352 
3353 	/*
3354 	 * Save the first pp so we can do HAT_TMPNC at the end.
3355 	 */
3356 	pp1 = *pps;
3357 #ifdef VAC
3358 	osz = fnd_mapping_sz(pp1);
3359 #endif
3360 
3361 	for (i = 0; i < npgs; i++, pps++) {
3362 		pp = *pps;
3363 		ASSERT(PAGE_LOCKED(pp));
3364 		ASSERT(pp->p_szc >= ttesz);
3365 		ASSERT(pp->p_szc == pp1->p_szc);
3366 		ASSERT(sfmmu_mlist_held(pp));
3367 
3368 		/*
3369 		 * XXX is it possible to maintain P_RO on the root only?
3370 		 */
3371 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3372 			pmtx = sfmmu_page_enter(pp);
3373 			PP_CLRRO(pp);
3374 			sfmmu_page_exit(pmtx);
3375 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3376 		    !PP_ISMOD(pp)) {
3377 			pmtx = sfmmu_page_enter(pp);
3378 			if (!(PP_ISMOD(pp))) {
3379 				PP_SETRO(pp);
3380 			}
3381 			sfmmu_page_exit(pmtx);
3382 		}
3383 
3384 		if (TTE_EXECUTED(ttep)) {
3385 			pmtx = sfmmu_page_enter(pp);
3386 			PP_SETEXEC(pp);
3387 			sfmmu_page_exit(pmtx);
3388 		}
3389 
3390 		/*
3391 		 * If this is a remap we skip vac & contiguity checks.
3392 		 */
3393 		if (remap)
3394 			continue;
3395 
3396 		/*
3397 		 * set p_vcolor and detect any vac conflicts.
3398 		 */
3399 #ifdef VAC
3400 		if (vac_err == 0) {
3401 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3402 
3403 		}
3404 #endif
3405 
3406 		/*
3407 		 * Save current index in case we need to undo it.
3408 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
3409 		 *	"SFMMU_INDEX_SHIFT	6"
3410 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
3411 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
3412 		 *
3413 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
3414 		 *	if ttesz == 1 then index = 0x2
3415 		 *		    2 then index = 0x4
3416 		 *		    3 then index = 0x8
3417 		 *		    4 then index = 0x10
3418 		 *		    5 then index = 0x20
3419 		 * The code below checks if it's a new pagesize (ie, newidx)
3420 		 * in case we need to take it back out of p_index,
3421 		 * and then or's the new index into the existing index.
3422 		 */
3423 		if ((PP_MAPINDEX(pp) & index) == 0)
3424 			newidx = 1;
3425 		pp->p_index = (PP_MAPINDEX(pp) | index);
3426 
3427 		/*
3428 		 * contiguity check
3429 		 */
3430 		if (pp->p_pagenum != pfnum) {
3431 			/*
3432 			 * If we fail the contiguity test then
3433 			 * the only thing we need to fix is the p_index field.
3434 			 * We might get a few extra flushes but since this
3435 			 * path is rare that is ok.  The p_ro field will
3436 			 * get automatically fixed on the next tteload to
3437 			 * the page.  NO TNC bit is set yet.
3438 			 */
3439 			while (i >= 0) {
3440 				pp = *pps;
3441 				if (newidx)
3442 					pp->p_index = (PP_MAPINDEX(pp) &
3443 					    ~index);
3444 				pps--;
3445 				i--;
3446 			}
3447 			return (1);
3448 		}
3449 		pfnum++;
3450 		addr += MMU_PAGESIZE;
3451 	}
3452 
3453 #ifdef VAC
3454 	if (vac_err) {
3455 		if (ttesz > osz) {
3456 			/*
3457 			 * There are some smaller mappings that causes vac
3458 			 * conflicts. Convert all existing small mappings to
3459 			 * TNC.
3460 			 */
3461 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3462 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3463 			    npgs);
3464 		} else {
3465 			/* EMPTY */
3466 			/*
3467 			 * If there exists an big page mapping,
3468 			 * that means the whole existing big page
3469 			 * has TNC setting already. No need to covert to
3470 			 * TNC again.
3471 			 */
3472 			ASSERT(PP_ISTNC(pp1));
3473 		}
3474 	}
3475 #endif	/* VAC */
3476 
3477 	return (0);
3478 }
3479 
3480 #ifdef VAC
3481 /*
3482  * Routine that detects vac consistency for a large page. It also
3483  * sets virtual color for all pp's for this big mapping.
3484  */
3485 static int
3486 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3487 {
3488 	int vcolor, ocolor;
3489 
3490 	ASSERT(sfmmu_mlist_held(pp));
3491 
3492 	if (PP_ISNC(pp)) {
3493 		return (HAT_TMPNC);
3494 	}
3495 
3496 	vcolor = addr_to_vcolor(addr);
3497 	if (PP_NEWPAGE(pp)) {
3498 		PP_SET_VCOLOR(pp, vcolor);
3499 		return (0);
3500 	}
3501 
3502 	ocolor = PP_GET_VCOLOR(pp);
3503 	if (ocolor == vcolor) {
3504 		return (0);
3505 	}
3506 
3507 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3508 		/*
3509 		 * Previous user of page had a differnet color
3510 		 * but since there are no current users
3511 		 * we just flush the cache and change the color.
3512 		 * As an optimization for large pages we flush the
3513 		 * entire cache of that color and set a flag.
3514 		 */
3515 		SFMMU_STAT(sf_pgcolor_conflict);
3516 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3517 			CacheColor_SetFlushed(*cflags, ocolor);
3518 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3519 		}
3520 		PP_SET_VCOLOR(pp, vcolor);
3521 		return (0);
3522 	}
3523 
3524 	/*
3525 	 * We got a real conflict with a current mapping.
3526 	 * set flags to start unencaching all mappings
3527 	 * and return failure so we restart looping
3528 	 * the pp array from the beginning.
3529 	 */
3530 	return (HAT_TMPNC);
3531 }
3532 #endif	/* VAC */
3533 
3534 /*
3535  * creates a large page shadow hmeblk for a tte.
3536  * The purpose of this routine is to allow us to do quick unloads because
3537  * the vm layer can easily pass a very large but sparsely populated range.
3538  */
3539 static struct hme_blk *
3540 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3541 {
3542 	struct hmehash_bucket *hmebp;
3543 	hmeblk_tag hblktag;
3544 	int hmeshift, size, vshift;
3545 	uint_t shw_mask, newshw_mask;
3546 	struct hme_blk *hmeblkp;
3547 
3548 	ASSERT(sfmmup != KHATID);
3549 	if (mmu_page_sizes == max_mmu_page_sizes) {
3550 		ASSERT(ttesz < TTE256M);
3551 	} else {
3552 		ASSERT(ttesz < TTE4M);
3553 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3554 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3555 	}
3556 
3557 	if (ttesz == TTE8K) {
3558 		size = TTE512K;
3559 	} else {
3560 		size = ++ttesz;
3561 	}
3562 
3563 	hblktag.htag_id = sfmmup;
3564 	hmeshift = HME_HASH_SHIFT(size);
3565 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3566 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3567 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3568 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3569 
3570 	SFMMU_HASH_LOCK(hmebp);
3571 
3572 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3573 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3574 	if (hmeblkp == NULL) {
3575 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3576 		    hblktag, flags, SFMMU_INVALID_SHMERID);
3577 	}
3578 	ASSERT(hmeblkp);
3579 	if (!hmeblkp->hblk_shw_mask) {
3580 		/*
3581 		 * if this is a unused hblk it was just allocated or could
3582 		 * potentially be a previous large page hblk so we need to
3583 		 * set the shadow bit.
3584 		 */
3585 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3586 		hmeblkp->hblk_shw_bit = 1;
3587 	} else if (hmeblkp->hblk_shw_bit == 0) {
3588 		panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3589 		    (void *)hmeblkp);
3590 	}
3591 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3592 	ASSERT(!hmeblkp->hblk_shared);
3593 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3594 	ASSERT(vshift < 8);
3595 	/*
3596 	 * Atomically set shw mask bit
3597 	 */
3598 	do {
3599 		shw_mask = hmeblkp->hblk_shw_mask;
3600 		newshw_mask = shw_mask | (1 << vshift);
3601 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3602 		    newshw_mask);
3603 	} while (newshw_mask != shw_mask);
3604 
3605 	SFMMU_HASH_UNLOCK(hmebp);
3606 
3607 	return (hmeblkp);
3608 }
3609 
3610 /*
3611  * This routine cleanup a previous shadow hmeblk and changes it to
3612  * a regular hblk.  This happens rarely but it is possible
3613  * when a process wants to use large pages and there are hblks still
3614  * lying around from the previous as that used these hmeblks.
3615  * The alternative was to cleanup the shadow hblks at unload time
3616  * but since so few user processes actually use large pages, it is
3617  * better to be lazy and cleanup at this time.
3618  */
3619 static void
3620 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3621 	struct hmehash_bucket *hmebp)
3622 {
3623 	caddr_t addr, endaddr;
3624 	int hashno, size;
3625 
3626 	ASSERT(hmeblkp->hblk_shw_bit);
3627 	ASSERT(!hmeblkp->hblk_shared);
3628 
3629 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3630 
3631 	if (!hmeblkp->hblk_shw_mask) {
3632 		hmeblkp->hblk_shw_bit = 0;
3633 		return;
3634 	}
3635 	addr = (caddr_t)get_hblk_base(hmeblkp);
3636 	endaddr = get_hblk_endaddr(hmeblkp);
3637 	size = get_hblk_ttesz(hmeblkp);
3638 	hashno = size - 1;
3639 	ASSERT(hashno > 0);
3640 	SFMMU_HASH_UNLOCK(hmebp);
3641 
3642 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3643 
3644 	SFMMU_HASH_LOCK(hmebp);
3645 }
3646 
3647 static void
3648 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3649 	int hashno)
3650 {
3651 	int hmeshift, shadow = 0;
3652 	hmeblk_tag hblktag;
3653 	struct hmehash_bucket *hmebp;
3654 	struct hme_blk *hmeblkp;
3655 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3656 	uint64_t hblkpa, prevpa, nx_pa;
3657 
3658 	ASSERT(hashno > 0);
3659 	hblktag.htag_id = sfmmup;
3660 	hblktag.htag_rehash = hashno;
3661 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3662 
3663 	hmeshift = HME_HASH_SHIFT(hashno);
3664 
3665 	while (addr < endaddr) {
3666 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3667 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3668 		SFMMU_HASH_LOCK(hmebp);
3669 		/* inline HME_HASH_SEARCH */
3670 		hmeblkp = hmebp->hmeblkp;
3671 		hblkpa = hmebp->hmeh_nextpa;
3672 		prevpa = 0;
3673 		pr_hblk = NULL;
3674 		while (hmeblkp) {
3675 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3676 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3677 				/* found hme_blk */
3678 				ASSERT(!hmeblkp->hblk_shared);
3679 				if (hmeblkp->hblk_shw_bit) {
3680 					if (hmeblkp->hblk_shw_mask) {
3681 						shadow = 1;
3682 						sfmmu_shadow_hcleanup(sfmmup,
3683 						    hmeblkp, hmebp);
3684 						break;
3685 					} else {
3686 						hmeblkp->hblk_shw_bit = 0;
3687 					}
3688 				}
3689 
3690 				/*
3691 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3692 				 * since hblk_unload() does not gurantee that.
3693 				 *
3694 				 * XXX - this could cause tteload() to spin
3695 				 * where sfmmu_shadow_hcleanup() is called.
3696 				 */
3697 			}
3698 
3699 			nx_hblk = hmeblkp->hblk_next;
3700 			nx_pa = hmeblkp->hblk_nextpa;
3701 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3702 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3703 				    pr_hblk);
3704 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3705 			} else {
3706 				pr_hblk = hmeblkp;
3707 				prevpa = hblkpa;
3708 			}
3709 			hmeblkp = nx_hblk;
3710 			hblkpa = nx_pa;
3711 		}
3712 
3713 		SFMMU_HASH_UNLOCK(hmebp);
3714 
3715 		if (shadow) {
3716 			/*
3717 			 * We found another shadow hblk so cleaned its
3718 			 * children.  We need to go back and cleanup
3719 			 * the original hblk so we don't change the
3720 			 * addr.
3721 			 */
3722 			shadow = 0;
3723 		} else {
3724 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3725 			    (1 << hmeshift));
3726 		}
3727 	}
3728 	sfmmu_hblks_list_purge(&list);
3729 }
3730 
3731 /*
3732  * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3733  * may still linger on after pageunload.
3734  */
3735 static void
3736 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3737 {
3738 	int hmeshift;
3739 	hmeblk_tag hblktag;
3740 	struct hmehash_bucket *hmebp;
3741 	struct hme_blk *hmeblkp;
3742 	struct hme_blk *pr_hblk;
3743 	struct hme_blk *list = NULL;
3744 	uint64_t hblkpa, prevpa;
3745 
3746 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3747 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3748 
3749 	hmeshift = HME_HASH_SHIFT(ttesz);
3750 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3751 	hblktag.htag_rehash = ttesz;
3752 	hblktag.htag_rid = rid;
3753 	hblktag.htag_id = srdp;
3754 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3755 
3756 	SFMMU_HASH_LOCK(hmebp);
3757 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
3758 	    prevpa, &list);
3759 	if (hmeblkp != NULL) {
3760 		ASSERT(hmeblkp->hblk_shared);
3761 		ASSERT(!hmeblkp->hblk_shw_bit);
3762 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3763 			panic("sfmmu_cleanup_rhblk: valid hmeblk");
3764 		}
3765 		ASSERT(!hmeblkp->hblk_lckcnt);
3766 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
3767 		sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3768 	}
3769 	SFMMU_HASH_UNLOCK(hmebp);
3770 	sfmmu_hblks_list_purge(&list);
3771 }
3772 
3773 /* ARGSUSED */
3774 static void
3775 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3776     size_t r_size, void *r_obj, u_offset_t r_objoff)
3777 {
3778 }
3779 
3780 /*
3781  * Searches for an hmeblk which maps addr, then unloads this mapping
3782  * and updates *eaddrp, if the hmeblk is found.
3783  */
3784 static void
3785 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3786     caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3787 {
3788 	int hmeshift;
3789 	hmeblk_tag hblktag;
3790 	struct hmehash_bucket *hmebp;
3791 	struct hme_blk *hmeblkp;
3792 	struct hme_blk *pr_hblk;
3793 	struct hme_blk *list = NULL;
3794 	uint64_t hblkpa, prevpa;
3795 
3796 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3797 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3798 	ASSERT(ttesz >= HBLK_MIN_TTESZ);
3799 
3800 	hmeshift = HME_HASH_SHIFT(ttesz);
3801 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3802 	hblktag.htag_rehash = ttesz;
3803 	hblktag.htag_rid = rid;
3804 	hblktag.htag_id = srdp;
3805 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3806 
3807 	SFMMU_HASH_LOCK(hmebp);
3808 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
3809 	    prevpa, &list);
3810 	if (hmeblkp != NULL) {
3811 		ASSERT(hmeblkp->hblk_shared);
3812 		ASSERT(!hmeblkp->hblk_lckcnt);
3813 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3814 			*eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3815 			    eaddr, NULL, HAT_UNLOAD);
3816 			ASSERT(*eaddrp > addr);
3817 		}
3818 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3819 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
3820 		sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3821 	}
3822 	SFMMU_HASH_UNLOCK(hmebp);
3823 	sfmmu_hblks_list_purge(&list);
3824 }
3825 
3826 static void
3827 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3828 {
3829 	int ttesz = rgnp->rgn_pgszc;
3830 	size_t rsz = rgnp->rgn_size;
3831 	caddr_t rsaddr = rgnp->rgn_saddr;
3832 	caddr_t readdr = rsaddr + rsz;
3833 	caddr_t rhsaddr;
3834 	caddr_t va;
3835 	uint_t rid = rgnp->rgn_id;
3836 	caddr_t cbsaddr;
3837 	caddr_t cbeaddr;
3838 	hat_rgn_cb_func_t rcbfunc;
3839 	ulong_t cnt;
3840 
3841 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3842 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3843 
3844 	ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3845 	ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3846 	if (ttesz < HBLK_MIN_TTESZ) {
3847 		ttesz = HBLK_MIN_TTESZ;
3848 		rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3849 	} else {
3850 		rhsaddr = rsaddr;
3851 	}
3852 
3853 	if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3854 		rcbfunc = sfmmu_rgn_cb_noop;
3855 	}
3856 
3857 	while (ttesz >= HBLK_MIN_TTESZ) {
3858 		cbsaddr = rsaddr;
3859 		cbeaddr = rsaddr;
3860 		if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3861 			ttesz--;
3862 			continue;
3863 		}
3864 		cnt = 0;
3865 		va = rsaddr;
3866 		while (va < readdr) {
3867 			ASSERT(va >= rhsaddr);
3868 			if (va != cbeaddr) {
3869 				if (cbeaddr != cbsaddr) {
3870 					ASSERT(cbeaddr > cbsaddr);
3871 					(*rcbfunc)(cbsaddr, cbeaddr,
3872 					    rsaddr, rsz, rgnp->rgn_obj,
3873 					    rgnp->rgn_objoff);
3874 				}
3875 				cbsaddr = va;
3876 				cbeaddr = va;
3877 			}
3878 			sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3879 			    ttesz, &cbeaddr);
3880 			cnt++;
3881 			va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3882 		}
3883 		if (cbeaddr != cbsaddr) {
3884 			ASSERT(cbeaddr > cbsaddr);
3885 			(*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3886 			    rsz, rgnp->rgn_obj,
3887 			    rgnp->rgn_objoff);
3888 		}
3889 		ttesz--;
3890 	}
3891 }
3892 
3893 /*
3894  * Release one hardware address translation lock on the given address range.
3895  */
3896 void
3897 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3898 {
3899 	struct hmehash_bucket *hmebp;
3900 	hmeblk_tag hblktag;
3901 	int hmeshift, hashno = 1;
3902 	struct hme_blk *hmeblkp, *list = NULL;
3903 	caddr_t endaddr;
3904 
3905 	ASSERT(sfmmup != NULL);
3906 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3907 
3908 	ASSERT((sfmmup == ksfmmup) ||
3909 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3910 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3911 	endaddr = addr + len;
3912 	hblktag.htag_id = sfmmup;
3913 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3914 
3915 	/*
3916 	 * Spitfire supports 4 page sizes.
3917 	 * Most pages are expected to be of the smallest page size (8K) and
3918 	 * these will not need to be rehashed. 64K pages also don't need to be
3919 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3920 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3921 	 */
3922 	while (addr < endaddr) {
3923 		hmeshift = HME_HASH_SHIFT(hashno);
3924 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3925 		hblktag.htag_rehash = hashno;
3926 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3927 
3928 		SFMMU_HASH_LOCK(hmebp);
3929 
3930 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3931 		if (hmeblkp != NULL) {
3932 			ASSERT(!hmeblkp->hblk_shared);
3933 			/*
3934 			 * If we encounter a shadow hmeblk then
3935 			 * we know there are no valid hmeblks mapping
3936 			 * this address at this size or larger.
3937 			 * Just increment address by the smallest
3938 			 * page size.
3939 			 */
3940 			if (hmeblkp->hblk_shw_bit) {
3941 				addr += MMU_PAGESIZE;
3942 			} else {
3943 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3944 				    endaddr);
3945 			}
3946 			SFMMU_HASH_UNLOCK(hmebp);
3947 			hashno = 1;
3948 			continue;
3949 		}
3950 		SFMMU_HASH_UNLOCK(hmebp);
3951 
3952 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3953 			/*
3954 			 * We have traversed the whole list and rehashed
3955 			 * if necessary without finding the address to unlock
3956 			 * which should never happen.
3957 			 */
3958 			panic("sfmmu_unlock: addr not found. "
3959 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3960 		} else {
3961 			hashno++;
3962 		}
3963 	}
3964 
3965 	sfmmu_hblks_list_purge(&list);
3966 }
3967 
3968 void
3969 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
3970     hat_region_cookie_t rcookie)
3971 {
3972 	sf_srd_t *srdp;
3973 	sf_region_t *rgnp;
3974 	int ttesz;
3975 	uint_t rid;
3976 	caddr_t eaddr;
3977 	caddr_t va;
3978 	int hmeshift;
3979 	hmeblk_tag hblktag;
3980 	struct hmehash_bucket *hmebp;
3981 	struct hme_blk *hmeblkp;
3982 	struct hme_blk *pr_hblk;
3983 	struct hme_blk *list;
3984 	uint64_t hblkpa, prevpa;
3985 
3986 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
3987 		hat_unlock(sfmmup, addr, len);
3988 		return;
3989 	}
3990 
3991 	ASSERT(sfmmup != NULL);
3992 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3993 	ASSERT(sfmmup != ksfmmup);
3994 
3995 	srdp = sfmmup->sfmmu_srdp;
3996 	rid = (uint_t)((uint64_t)rcookie);
3997 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3998 	eaddr = addr + len;
3999 	va = addr;
4000 	list = NULL;
4001 	rgnp = srdp->srd_hmergnp[rid];
4002 	SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
4003 
4004 	ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
4005 	ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
4006 	if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
4007 		ttesz = HBLK_MIN_TTESZ;
4008 	} else {
4009 		ttesz = rgnp->rgn_pgszc;
4010 	}
4011 	while (va < eaddr) {
4012 		while (ttesz < rgnp->rgn_pgszc &&
4013 		    IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
4014 			ttesz++;
4015 		}
4016 		while (ttesz >= HBLK_MIN_TTESZ) {
4017 			if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
4018 				ttesz--;
4019 				continue;
4020 			}
4021 			hmeshift = HME_HASH_SHIFT(ttesz);
4022 			hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
4023 			hblktag.htag_rehash = ttesz;
4024 			hblktag.htag_rid = rid;
4025 			hblktag.htag_id = srdp;
4026 			hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
4027 			SFMMU_HASH_LOCK(hmebp);
4028 			HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
4029 			    pr_hblk, prevpa, &list);
4030 			if (hmeblkp == NULL) {
4031 				SFMMU_HASH_UNLOCK(hmebp);
4032 				ttesz--;
4033 				continue;
4034 			}
4035 			ASSERT(hmeblkp->hblk_shared);
4036 			va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
4037 			ASSERT(va >= eaddr ||
4038 			    IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
4039 			SFMMU_HASH_UNLOCK(hmebp);
4040 			break;
4041 		}
4042 		if (ttesz < HBLK_MIN_TTESZ) {
4043 			panic("hat_unlock_region: addr not found "
4044 			    "addr %p hat %p", (void *)va, (void *)sfmmup);
4045 		}
4046 	}
4047 	sfmmu_hblks_list_purge(&list);
4048 }
4049 
4050 /*
4051  * Function to unlock a range of addresses in an hmeblk.  It returns the
4052  * next address that needs to be unlocked.
4053  * Should be called with the hash lock held.
4054  */
4055 static caddr_t
4056 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4057 {
4058 	struct sf_hment *sfhme;
4059 	tte_t tteold, ttemod;
4060 	int ttesz, ret;
4061 
4062 	ASSERT(in_hblk_range(hmeblkp, addr));
4063 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4064 
4065 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4066 	ttesz = get_hblk_ttesz(hmeblkp);
4067 
4068 	HBLKTOHME(sfhme, hmeblkp, addr);
4069 	while (addr < endaddr) {
4070 readtte:
4071 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
4072 		if (TTE_IS_VALID(&tteold)) {
4073 
4074 			ttemod = tteold;
4075 
4076 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
4077 			    &sfhme->hme_tte);
4078 
4079 			if (ret < 0)
4080 				goto readtte;
4081 
4082 			if (hmeblkp->hblk_lckcnt == 0)
4083 				panic("zero hblk lckcnt");
4084 
4085 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4086 			    (uintptr_t)endaddr)
4087 				panic("can't unlock large tte");
4088 
4089 			ASSERT(hmeblkp->hblk_lckcnt > 0);
4090 			atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
4091 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4092 		} else {
4093 			panic("sfmmu_hblk_unlock: invalid tte");
4094 		}
4095 		addr += TTEBYTES(ttesz);
4096 		sfhme++;
4097 	}
4098 	return (addr);
4099 }
4100 
4101 /*
4102  * Physical Address Mapping Framework
4103  *
4104  * General rules:
4105  *
4106  * (1) Applies only to seg_kmem memory pages. To make things easier,
4107  *     seg_kpm addresses are also accepted by the routines, but nothing
4108  *     is done with them since by definition their PA mappings are static.
4109  * (2) hat_add_callback() may only be called while holding the page lock
4110  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4111  *     or passing HAC_PAGELOCK flag.
4112  * (3) prehandler() and posthandler() may not call hat_add_callback() or
4113  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
4114  *     callbacks may not sleep or acquire adaptive mutex locks.
4115  * (4) Either prehandler() or posthandler() (but not both) may be specified
4116  *     as being NULL.  Specifying an errhandler() is optional.
4117  *
4118  * Details of using the framework:
4119  *
4120  * registering a callback (hat_register_callback())
4121  *
4122  *	Pass prehandler, posthandler, errhandler addresses
4123  *	as described below. If capture_cpus argument is nonzero,
4124  *	suspend callback to the prehandler will occur with CPUs
4125  *	captured and executing xc_loop() and CPUs will remain
4126  *	captured until after the posthandler suspend callback
4127  *	occurs.
4128  *
4129  * adding a callback (hat_add_callback())
4130  *
4131  *      as_pagelock();
4132  *	hat_add_callback();
4133  *      save returned pfn in private data structures or program registers;
4134  *      as_pageunlock();
4135  *
4136  * prehandler()
4137  *
4138  *	Stop all accesses by physical address to this memory page.
4139  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
4140  *	adaptive locks. The second, SUSPEND, is called at high PIL with
4141  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
4142  *	locks must be XCALL_PIL or higher locks).
4143  *
4144  *	May return the following errors:
4145  *		EIO:	A fatal error has occurred. This will result in panic.
4146  *		EAGAIN:	The page cannot be suspended. This will fail the
4147  *			relocation.
4148  *		0:	Success.
4149  *
4150  * posthandler()
4151  *
4152  *      Save new pfn in private data structures or program registers;
4153  *	not allowed to fail (non-zero return values will result in panic).
4154  *
4155  * errhandler()
4156  *
4157  *	called when an error occurs related to the callback.  Currently
4158  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
4159  *	a page is being freed, but there are still outstanding callback(s)
4160  *	registered on the page.
4161  *
4162  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4163  *
4164  *	stop using physical address
4165  *	hat_delete_callback();
4166  *
4167  */
4168 
4169 /*
4170  * Register a callback class.  Each subsystem should do this once and
4171  * cache the id_t returned for use in setting up and tearing down callbacks.
4172  *
4173  * There is no facility for removing callback IDs once they are created;
4174  * the "key" should be unique for each module, so in case a module is unloaded
4175  * and subsequently re-loaded, we can recycle the module's previous entry.
4176  */
4177 id_t
4178 hat_register_callback(int key,
4179 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4180 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4181 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4182 	int capture_cpus)
4183 {
4184 	id_t id;
4185 
4186 	/*
4187 	 * Search the table for a pre-existing callback associated with
4188 	 * the identifier "key".  If one exists, we re-use that entry in
4189 	 * the table for this instance, otherwise we assign the next
4190 	 * available table slot.
4191 	 */
4192 	for (id = 0; id < sfmmu_max_cb_id; id++) {
4193 		if (sfmmu_cb_table[id].key == key)
4194 			break;
4195 	}
4196 
4197 	if (id == sfmmu_max_cb_id) {
4198 		id = sfmmu_cb_nextid++;
4199 		if (id >= sfmmu_max_cb_id)
4200 			panic("hat_register_callback: out of callback IDs");
4201 	}
4202 
4203 	ASSERT(prehandler != NULL || posthandler != NULL);
4204 
4205 	sfmmu_cb_table[id].key = key;
4206 	sfmmu_cb_table[id].prehandler = prehandler;
4207 	sfmmu_cb_table[id].posthandler = posthandler;
4208 	sfmmu_cb_table[id].errhandler = errhandler;
4209 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
4210 
4211 	return (id);
4212 }
4213 
4214 #define	HAC_COOKIE_NONE	(void *)-1
4215 
4216 /*
4217  * Add relocation callbacks to the specified addr/len which will be called
4218  * when relocating the associated page. See the description of pre and
4219  * posthandler above for more details.
4220  *
4221  * If HAC_PAGELOCK is included in flags, the underlying memory page is
4222  * locked internally so the caller must be able to deal with the callback
4223  * running even before this function has returned.  If HAC_PAGELOCK is not
4224  * set, it is assumed that the underlying memory pages are locked.
4225  *
4226  * Since the caller must track the individual page boundaries anyway,
4227  * we only allow a callback to be added to a single page (large
4228  * or small).  Thus [addr, addr + len) MUST be contained within a single
4229  * page.
4230  *
4231  * Registering multiple callbacks on the same [addr, addr+len) is supported,
4232  * _provided_that_ a unique parameter is specified for each callback.
4233  * If multiple callbacks are registered on the same range the callback will
4234  * be invoked with each unique parameter. Registering the same callback with
4235  * the same argument more than once will result in corrupted kernel state.
4236  *
4237  * Returns the pfn of the underlying kernel page in *rpfn
4238  * on success, or PFN_INVALID on failure.
4239  *
4240  * cookiep (if passed) provides storage space for an opaque cookie
4241  * to return later to hat_delete_callback(). This cookie makes the callback
4242  * deletion significantly quicker by avoiding a potentially lengthy hash
4243  * search.
4244  *
4245  * Returns values:
4246  *    0:      success
4247  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4248  *    EINVAL: callback ID is not valid
4249  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4250  *            space
4251  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4252  */
4253 int
4254 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4255 	void *pvt, pfn_t *rpfn, void **cookiep)
4256 {
4257 	struct 		hmehash_bucket *hmebp;
4258 	hmeblk_tag 	hblktag;
4259 	struct hme_blk	*hmeblkp;
4260 	int 		hmeshift, hashno;
4261 	caddr_t 	saddr, eaddr, baseaddr;
4262 	struct pa_hment *pahmep;
4263 	struct sf_hment *sfhmep, *osfhmep;
4264 	kmutex_t	*pml;
4265 	tte_t   	tte;
4266 	page_t		*pp;
4267 	vnode_t		*vp;
4268 	u_offset_t	off;
4269 	pfn_t		pfn;
4270 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4271 	int		locked = 0;
4272 
4273 	/*
4274 	 * For KPM mappings, just return the physical address since we
4275 	 * don't need to register any callbacks.
4276 	 */
4277 	if (IS_KPM_ADDR(vaddr)) {
4278 		uint64_t paddr;
4279 		SFMMU_KPM_VTOP(vaddr, paddr);
4280 		*rpfn = btop(paddr);
4281 		if (cookiep != NULL)
4282 			*cookiep = HAC_COOKIE_NONE;
4283 		return (0);
4284 	}
4285 
4286 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4287 		*rpfn = PFN_INVALID;
4288 		return (EINVAL);
4289 	}
4290 
4291 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4292 		*rpfn = PFN_INVALID;
4293 		return (ENOMEM);
4294 	}
4295 
4296 	sfhmep = &pahmep->sfment;
4297 
4298 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4299 	eaddr = saddr + len;
4300 
4301 rehash:
4302 	/* Find the mapping(s) for this page */
4303 	for (hashno = TTE64K, hmeblkp = NULL;
4304 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4305 	    hashno++) {
4306 		hmeshift = HME_HASH_SHIFT(hashno);
4307 		hblktag.htag_id = ksfmmup;
4308 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4309 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4310 		hblktag.htag_rehash = hashno;
4311 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4312 
4313 		SFMMU_HASH_LOCK(hmebp);
4314 
4315 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4316 
4317 		if (hmeblkp == NULL)
4318 			SFMMU_HASH_UNLOCK(hmebp);
4319 	}
4320 
4321 	if (hmeblkp == NULL) {
4322 		kmem_cache_free(pa_hment_cache, pahmep);
4323 		*rpfn = PFN_INVALID;
4324 		return (ENXIO);
4325 	}
4326 
4327 	ASSERT(!hmeblkp->hblk_shared);
4328 
4329 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4330 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4331 
4332 	if (!TTE_IS_VALID(&tte)) {
4333 		SFMMU_HASH_UNLOCK(hmebp);
4334 		kmem_cache_free(pa_hment_cache, pahmep);
4335 		*rpfn = PFN_INVALID;
4336 		return (ENXIO);
4337 	}
4338 
4339 	/*
4340 	 * Make sure the boundaries for the callback fall within this
4341 	 * single mapping.
4342 	 */
4343 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4344 	ASSERT(saddr >= baseaddr);
4345 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4346 		SFMMU_HASH_UNLOCK(hmebp);
4347 		kmem_cache_free(pa_hment_cache, pahmep);
4348 		*rpfn = PFN_INVALID;
4349 		return (ERANGE);
4350 	}
4351 
4352 	pfn = sfmmu_ttetopfn(&tte, vaddr);
4353 
4354 	/*
4355 	 * The pfn may not have a page_t underneath in which case we
4356 	 * just return it. This can happen if we are doing I/O to a
4357 	 * static portion of the kernel's address space, for instance.
4358 	 */
4359 	pp = osfhmep->hme_page;
4360 	if (pp == NULL) {
4361 		SFMMU_HASH_UNLOCK(hmebp);
4362 		kmem_cache_free(pa_hment_cache, pahmep);
4363 		*rpfn = pfn;
4364 		if (cookiep)
4365 			*cookiep = HAC_COOKIE_NONE;
4366 		return (0);
4367 	}
4368 	ASSERT(pp == PP_PAGEROOT(pp));
4369 
4370 	vp = pp->p_vnode;
4371 	off = pp->p_offset;
4372 
4373 	pml = sfmmu_mlist_enter(pp);
4374 
4375 	if (flags & HAC_PAGELOCK) {
4376 		if (!page_trylock(pp, SE_SHARED)) {
4377 			/*
4378 			 * Somebody is holding SE_EXCL lock. Might
4379 			 * even be hat_page_relocate(). Drop all
4380 			 * our locks, lookup the page in &kvp, and
4381 			 * retry. If it doesn't exist in &kvp and &zvp,
4382 			 * then we must be dealing with a kernel mapped
4383 			 * page which doesn't actually belong to
4384 			 * segkmem so we punt.
4385 			 */
4386 			sfmmu_mlist_exit(pml);
4387 			SFMMU_HASH_UNLOCK(hmebp);
4388 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4389 
4390 			/* check zvp before giving up */
4391 			if (pp == NULL)
4392 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4393 				    SE_SHARED);
4394 
4395 			/* Okay, we didn't find it, give up */
4396 			if (pp == NULL) {
4397 				kmem_cache_free(pa_hment_cache, pahmep);
4398 				*rpfn = pfn;
4399 				if (cookiep)
4400 					*cookiep = HAC_COOKIE_NONE;
4401 				return (0);
4402 			}
4403 			page_unlock(pp);
4404 			goto rehash;
4405 		}
4406 		locked = 1;
4407 	}
4408 
4409 	if (!PAGE_LOCKED(pp) && !panicstr)
4410 		panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4411 
4412 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4413 	    pp->p_offset != off) {
4414 		/*
4415 		 * The page moved before we got our hands on it.  Drop
4416 		 * all the locks and try again.
4417 		 */
4418 		ASSERT((flags & HAC_PAGELOCK) != 0);
4419 		sfmmu_mlist_exit(pml);
4420 		SFMMU_HASH_UNLOCK(hmebp);
4421 		page_unlock(pp);
4422 		locked = 0;
4423 		goto rehash;
4424 	}
4425 
4426 	if (!VN_ISKAS(vp)) {
4427 		/*
4428 		 * This is not a segkmem page but another page which
4429 		 * has been kernel mapped. It had better have at least
4430 		 * a share lock on it. Return the pfn.
4431 		 */
4432 		sfmmu_mlist_exit(pml);
4433 		SFMMU_HASH_UNLOCK(hmebp);
4434 		if (locked)
4435 			page_unlock(pp);
4436 		kmem_cache_free(pa_hment_cache, pahmep);
4437 		ASSERT(PAGE_LOCKED(pp));
4438 		*rpfn = pfn;
4439 		if (cookiep)
4440 			*cookiep = HAC_COOKIE_NONE;
4441 		return (0);
4442 	}
4443 
4444 	/*
4445 	 * Setup this pa_hment and link its embedded dummy sf_hment into
4446 	 * the mapping list.
4447 	 */
4448 	pp->p_share++;
4449 	pahmep->cb_id = callback_id;
4450 	pahmep->addr = vaddr;
4451 	pahmep->len = len;
4452 	pahmep->refcnt = 1;
4453 	pahmep->flags = 0;
4454 	pahmep->pvt = pvt;
4455 
4456 	sfhmep->hme_tte.ll = 0;
4457 	sfhmep->hme_data = pahmep;
4458 	sfhmep->hme_prev = osfhmep;
4459 	sfhmep->hme_next = osfhmep->hme_next;
4460 
4461 	if (osfhmep->hme_next)
4462 		osfhmep->hme_next->hme_prev = sfhmep;
4463 
4464 	osfhmep->hme_next = sfhmep;
4465 
4466 	sfmmu_mlist_exit(pml);
4467 	SFMMU_HASH_UNLOCK(hmebp);
4468 
4469 	if (locked)
4470 		page_unlock(pp);
4471 
4472 	*rpfn = pfn;
4473 	if (cookiep)
4474 		*cookiep = (void *)pahmep;
4475 
4476 	return (0);
4477 }
4478 
4479 /*
4480  * Remove the relocation callbacks from the specified addr/len.
4481  */
4482 void
4483 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4484 	void *cookie)
4485 {
4486 	struct		hmehash_bucket *hmebp;
4487 	hmeblk_tag	hblktag;
4488 	struct hme_blk	*hmeblkp;
4489 	int		hmeshift, hashno;
4490 	caddr_t		saddr;
4491 	struct pa_hment	*pahmep;
4492 	struct sf_hment	*sfhmep, *osfhmep;
4493 	kmutex_t	*pml;
4494 	tte_t		tte;
4495 	page_t		*pp;
4496 	vnode_t		*vp;
4497 	u_offset_t	off;
4498 	int		locked = 0;
4499 
4500 	/*
4501 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4502 	 * remove so just return.
4503 	 */
4504 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4505 		return;
4506 
4507 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4508 
4509 rehash:
4510 	/* Find the mapping(s) for this page */
4511 	for (hashno = TTE64K, hmeblkp = NULL;
4512 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4513 	    hashno++) {
4514 		hmeshift = HME_HASH_SHIFT(hashno);
4515 		hblktag.htag_id = ksfmmup;
4516 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4517 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4518 		hblktag.htag_rehash = hashno;
4519 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4520 
4521 		SFMMU_HASH_LOCK(hmebp);
4522 
4523 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4524 
4525 		if (hmeblkp == NULL)
4526 			SFMMU_HASH_UNLOCK(hmebp);
4527 	}
4528 
4529 	if (hmeblkp == NULL)
4530 		return;
4531 
4532 	ASSERT(!hmeblkp->hblk_shared);
4533 
4534 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4535 
4536 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4537 	if (!TTE_IS_VALID(&tte)) {
4538 		SFMMU_HASH_UNLOCK(hmebp);
4539 		return;
4540 	}
4541 
4542 	pp = osfhmep->hme_page;
4543 	if (pp == NULL) {
4544 		SFMMU_HASH_UNLOCK(hmebp);
4545 		ASSERT(cookie == NULL);
4546 		return;
4547 	}
4548 
4549 	vp = pp->p_vnode;
4550 	off = pp->p_offset;
4551 
4552 	pml = sfmmu_mlist_enter(pp);
4553 
4554 	if (flags & HAC_PAGELOCK) {
4555 		if (!page_trylock(pp, SE_SHARED)) {
4556 			/*
4557 			 * Somebody is holding SE_EXCL lock. Might
4558 			 * even be hat_page_relocate(). Drop all
4559 			 * our locks, lookup the page in &kvp, and
4560 			 * retry. If it doesn't exist in &kvp and &zvp,
4561 			 * then we must be dealing with a kernel mapped
4562 			 * page which doesn't actually belong to
4563 			 * segkmem so we punt.
4564 			 */
4565 			sfmmu_mlist_exit(pml);
4566 			SFMMU_HASH_UNLOCK(hmebp);
4567 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4568 			/* check zvp before giving up */
4569 			if (pp == NULL)
4570 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4571 				    SE_SHARED);
4572 
4573 			if (pp == NULL) {
4574 				ASSERT(cookie == NULL);
4575 				return;
4576 			}
4577 			page_unlock(pp);
4578 			goto rehash;
4579 		}
4580 		locked = 1;
4581 	}
4582 
4583 	ASSERT(PAGE_LOCKED(pp));
4584 
4585 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4586 	    pp->p_offset != off) {
4587 		/*
4588 		 * The page moved before we got our hands on it.  Drop
4589 		 * all the locks and try again.
4590 		 */
4591 		ASSERT((flags & HAC_PAGELOCK) != 0);
4592 		sfmmu_mlist_exit(pml);
4593 		SFMMU_HASH_UNLOCK(hmebp);
4594 		page_unlock(pp);
4595 		locked = 0;
4596 		goto rehash;
4597 	}
4598 
4599 	if (!VN_ISKAS(vp)) {
4600 		/*
4601 		 * This is not a segkmem page but another page which
4602 		 * has been kernel mapped.
4603 		 */
4604 		sfmmu_mlist_exit(pml);
4605 		SFMMU_HASH_UNLOCK(hmebp);
4606 		if (locked)
4607 			page_unlock(pp);
4608 		ASSERT(cookie == NULL);
4609 		return;
4610 	}
4611 
4612 	if (cookie != NULL) {
4613 		pahmep = (struct pa_hment *)cookie;
4614 		sfhmep = &pahmep->sfment;
4615 	} else {
4616 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
4617 		    sfhmep = sfhmep->hme_next) {
4618 
4619 			/*
4620 			 * skip va<->pa mappings
4621 			 */
4622 			if (!IS_PAHME(sfhmep))
4623 				continue;
4624 
4625 			pahmep = sfhmep->hme_data;
4626 			ASSERT(pahmep != NULL);
4627 
4628 			/*
4629 			 * if pa_hment matches, remove it
4630 			 */
4631 			if ((pahmep->pvt == pvt) &&
4632 			    (pahmep->addr == vaddr) &&
4633 			    (pahmep->len == len)) {
4634 				break;
4635 			}
4636 		}
4637 	}
4638 
4639 	if (sfhmep == NULL) {
4640 		if (!panicstr) {
4641 			panic("hat_delete_callback: pa_hment not found, pp %p",
4642 			    (void *)pp);
4643 		}
4644 		return;
4645 	}
4646 
4647 	/*
4648 	 * Note: at this point a valid kernel mapping must still be
4649 	 * present on this page.
4650 	 */
4651 	pp->p_share--;
4652 	if (pp->p_share <= 0)
4653 		panic("hat_delete_callback: zero p_share");
4654 
4655 	if (--pahmep->refcnt == 0) {
4656 		if (pahmep->flags != 0)
4657 			panic("hat_delete_callback: pa_hment is busy");
4658 
4659 		/*
4660 		 * Remove sfhmep from the mapping list for the page.
4661 		 */
4662 		if (sfhmep->hme_prev) {
4663 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4664 		} else {
4665 			pp->p_mapping = sfhmep->hme_next;
4666 		}
4667 
4668 		if (sfhmep->hme_next)
4669 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4670 
4671 		sfmmu_mlist_exit(pml);
4672 		SFMMU_HASH_UNLOCK(hmebp);
4673 
4674 		if (locked)
4675 			page_unlock(pp);
4676 
4677 		kmem_cache_free(pa_hment_cache, pahmep);
4678 		return;
4679 	}
4680 
4681 	sfmmu_mlist_exit(pml);
4682 	SFMMU_HASH_UNLOCK(hmebp);
4683 	if (locked)
4684 		page_unlock(pp);
4685 }
4686 
4687 /*
4688  * hat_probe returns 1 if the translation for the address 'addr' is
4689  * loaded, zero otherwise.
4690  *
4691  * hat_probe should be used only for advisorary purposes because it may
4692  * occasionally return the wrong value. The implementation must guarantee that
4693  * returning the wrong value is a very rare event. hat_probe is used
4694  * to implement optimizations in the segment drivers.
4695  *
4696  */
4697 int
4698 hat_probe(struct hat *sfmmup, caddr_t addr)
4699 {
4700 	pfn_t pfn;
4701 	tte_t tte;
4702 
4703 	ASSERT(sfmmup != NULL);
4704 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4705 
4706 	ASSERT((sfmmup == ksfmmup) ||
4707 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4708 
4709 	if (sfmmup == ksfmmup) {
4710 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4711 		    == PFN_SUSPENDED) {
4712 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4713 		}
4714 	} else {
4715 		pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4716 	}
4717 
4718 	if (pfn != PFN_INVALID)
4719 		return (1);
4720 	else
4721 		return (0);
4722 }
4723 
4724 ssize_t
4725 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4726 {
4727 	tte_t tte;
4728 
4729 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4730 
4731 	if (sfmmup == ksfmmup) {
4732 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4733 			return (-1);
4734 		}
4735 	} else {
4736 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4737 			return (-1);
4738 		}
4739 	}
4740 
4741 	ASSERT(TTE_IS_VALID(&tte));
4742 	return (TTEBYTES(TTE_CSZ(&tte)));
4743 }
4744 
4745 uint_t
4746 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4747 {
4748 	tte_t tte;
4749 
4750 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4751 
4752 	if (sfmmup == ksfmmup) {
4753 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4754 			tte.ll = 0;
4755 		}
4756 	} else {
4757 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4758 			tte.ll = 0;
4759 		}
4760 	}
4761 	if (TTE_IS_VALID(&tte)) {
4762 		*attr = sfmmu_ptov_attr(&tte);
4763 		return (0);
4764 	}
4765 	*attr = 0;
4766 	return ((uint_t)0xffffffff);
4767 }
4768 
4769 /*
4770  * Enables more attributes on specified address range (ie. logical OR)
4771  */
4772 void
4773 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4774 {
4775 	if (hat->sfmmu_xhat_provider) {
4776 		XHAT_SETATTR(hat, addr, len, attr);
4777 		return;
4778 	} else {
4779 		/*
4780 		 * This must be a CPU HAT. If the address space has
4781 		 * XHATs attached, change attributes for all of them,
4782 		 * just in case
4783 		 */
4784 		ASSERT(hat->sfmmu_as != NULL);
4785 		if (hat->sfmmu_as->a_xhat != NULL)
4786 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4787 	}
4788 
4789 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4790 }
4791 
4792 /*
4793  * Assigns attributes to the specified address range.  All the attributes
4794  * are specified.
4795  */
4796 void
4797 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4798 {
4799 	if (hat->sfmmu_xhat_provider) {
4800 		XHAT_CHGATTR(hat, addr, len, attr);
4801 		return;
4802 	} else {
4803 		/*
4804 		 * This must be a CPU HAT. If the address space has
4805 		 * XHATs attached, change attributes for all of them,
4806 		 * just in case
4807 		 */
4808 		ASSERT(hat->sfmmu_as != NULL);
4809 		if (hat->sfmmu_as->a_xhat != NULL)
4810 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4811 	}
4812 
4813 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4814 }
4815 
4816 /*
4817  * Remove attributes on the specified address range (ie. loginal NAND)
4818  */
4819 void
4820 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4821 {
4822 	if (hat->sfmmu_xhat_provider) {
4823 		XHAT_CLRATTR(hat, addr, len, attr);
4824 		return;
4825 	} else {
4826 		/*
4827 		 * This must be a CPU HAT. If the address space has
4828 		 * XHATs attached, change attributes for all of them,
4829 		 * just in case
4830 		 */
4831 		ASSERT(hat->sfmmu_as != NULL);
4832 		if (hat->sfmmu_as->a_xhat != NULL)
4833 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4834 	}
4835 
4836 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4837 }
4838 
4839 /*
4840  * Change attributes on an address range to that specified by attr and mode.
4841  */
4842 static void
4843 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4844 	int mode)
4845 {
4846 	struct hmehash_bucket *hmebp;
4847 	hmeblk_tag hblktag;
4848 	int hmeshift, hashno = 1;
4849 	struct hme_blk *hmeblkp, *list = NULL;
4850 	caddr_t endaddr;
4851 	cpuset_t cpuset;
4852 	demap_range_t dmr;
4853 
4854 	CPUSET_ZERO(cpuset);
4855 
4856 	ASSERT((sfmmup == ksfmmup) ||
4857 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4858 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4859 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4860 
4861 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4862 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4863 		panic("user addr %p in kernel space",
4864 		    (void *)addr);
4865 	}
4866 
4867 	endaddr = addr + len;
4868 	hblktag.htag_id = sfmmup;
4869 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4870 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4871 
4872 	while (addr < endaddr) {
4873 		hmeshift = HME_HASH_SHIFT(hashno);
4874 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4875 		hblktag.htag_rehash = hashno;
4876 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4877 
4878 		SFMMU_HASH_LOCK(hmebp);
4879 
4880 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4881 		if (hmeblkp != NULL) {
4882 			ASSERT(!hmeblkp->hblk_shared);
4883 			/*
4884 			 * We've encountered a shadow hmeblk so skip the range
4885 			 * of the next smaller mapping size.
4886 			 */
4887 			if (hmeblkp->hblk_shw_bit) {
4888 				ASSERT(sfmmup != ksfmmup);
4889 				ASSERT(hashno > 1);
4890 				addr = (caddr_t)P2END((uintptr_t)addr,
4891 				    TTEBYTES(hashno - 1));
4892 			} else {
4893 				addr = sfmmu_hblk_chgattr(sfmmup,
4894 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4895 			}
4896 			SFMMU_HASH_UNLOCK(hmebp);
4897 			hashno = 1;
4898 			continue;
4899 		}
4900 		SFMMU_HASH_UNLOCK(hmebp);
4901 
4902 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4903 			/*
4904 			 * We have traversed the whole list and rehashed
4905 			 * if necessary without finding the address to chgattr.
4906 			 * This is ok, so we increment the address by the
4907 			 * smallest hmeblk range for kernel mappings or for
4908 			 * user mappings with no large pages, and the largest
4909 			 * hmeblk range, to account for shadow hmeblks, for
4910 			 * user mappings with large pages and continue.
4911 			 */
4912 			if (sfmmup == ksfmmup)
4913 				addr = (caddr_t)P2END((uintptr_t)addr,
4914 				    TTEBYTES(1));
4915 			else
4916 				addr = (caddr_t)P2END((uintptr_t)addr,
4917 				    TTEBYTES(hashno));
4918 			hashno = 1;
4919 		} else {
4920 			hashno++;
4921 		}
4922 	}
4923 
4924 	sfmmu_hblks_list_purge(&list);
4925 	DEMAP_RANGE_FLUSH(&dmr);
4926 	cpuset = sfmmup->sfmmu_cpusran;
4927 	xt_sync(cpuset);
4928 }
4929 
4930 /*
4931  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4932  * next addres that needs to be chgattr.
4933  * It should be called with the hash lock held.
4934  * XXX It should be possible to optimize chgattr by not flushing every time but
4935  * on the other hand:
4936  * 1. do one flush crosscall.
4937  * 2. only flush if we are increasing permissions (make sure this will work)
4938  */
4939 static caddr_t
4940 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4941 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4942 {
4943 	tte_t tte, tteattr, tteflags, ttemod;
4944 	struct sf_hment *sfhmep;
4945 	int ttesz;
4946 	struct page *pp = NULL;
4947 	kmutex_t *pml, *pmtx;
4948 	int ret;
4949 	int use_demap_range;
4950 #if defined(SF_ERRATA_57)
4951 	int check_exec;
4952 #endif
4953 
4954 	ASSERT(in_hblk_range(hmeblkp, addr));
4955 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4956 	ASSERT(!hmeblkp->hblk_shared);
4957 
4958 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4959 	ttesz = get_hblk_ttesz(hmeblkp);
4960 
4961 	/*
4962 	 * Flush the current demap region if addresses have been
4963 	 * skipped or the page size doesn't match.
4964 	 */
4965 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4966 	if (use_demap_range) {
4967 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4968 	} else {
4969 		DEMAP_RANGE_FLUSH(dmrp);
4970 	}
4971 
4972 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4973 #if defined(SF_ERRATA_57)
4974 	check_exec = (sfmmup != ksfmmup) &&
4975 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4976 	    TTE_IS_EXECUTABLE(&tteattr);
4977 #endif
4978 	HBLKTOHME(sfhmep, hmeblkp, addr);
4979 	while (addr < endaddr) {
4980 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4981 		if (TTE_IS_VALID(&tte)) {
4982 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4983 				/*
4984 				 * if the new attr is the same as old
4985 				 * continue
4986 				 */
4987 				goto next_addr;
4988 			}
4989 			if (!TTE_IS_WRITABLE(&tteattr)) {
4990 				/*
4991 				 * make sure we clear hw modify bit if we
4992 				 * removing write protections
4993 				 */
4994 				tteflags.tte_intlo |= TTE_HWWR_INT;
4995 			}
4996 
4997 			pml = NULL;
4998 			pp = sfhmep->hme_page;
4999 			if (pp) {
5000 				pml = sfmmu_mlist_enter(pp);
5001 			}
5002 
5003 			if (pp != sfhmep->hme_page) {
5004 				/*
5005 				 * tte must have been unloaded.
5006 				 */
5007 				ASSERT(pml);
5008 				sfmmu_mlist_exit(pml);
5009 				continue;
5010 			}
5011 
5012 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5013 
5014 			ttemod = tte;
5015 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
5016 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
5017 
5018 #if defined(SF_ERRATA_57)
5019 			if (check_exec && addr < errata57_limit)
5020 				ttemod.tte_exec_perm = 0;
5021 #endif
5022 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5023 			    &sfhmep->hme_tte);
5024 
5025 			if (ret < 0) {
5026 				/* tte changed underneath us */
5027 				if (pml) {
5028 					sfmmu_mlist_exit(pml);
5029 				}
5030 				continue;
5031 			}
5032 
5033 			if ((tteflags.tte_intlo & TTE_HWWR_INT) ||
5034 			    (TTE_EXECUTED(&tte) &&
5035 			    !TTE_IS_EXECUTABLE(&ttemod))) {
5036 				/*
5037 				 * need to sync if clearing modify/exec bit.
5038 				 */
5039 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5040 			}
5041 
5042 			if (pp && PP_ISRO(pp)) {
5043 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
5044 					pmtx = sfmmu_page_enter(pp);
5045 					PP_CLRRO(pp);
5046 					sfmmu_page_exit(pmtx);
5047 				}
5048 			}
5049 
5050 			if (ret > 0 && use_demap_range) {
5051 				DEMAP_RANGE_MARKPG(dmrp, addr);
5052 			} else if (ret > 0) {
5053 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5054 			}
5055 
5056 			if (pml) {
5057 				sfmmu_mlist_exit(pml);
5058 			}
5059 		}
5060 next_addr:
5061 		addr += TTEBYTES(ttesz);
5062 		sfhmep++;
5063 		DEMAP_RANGE_NEXTPG(dmrp);
5064 	}
5065 	return (addr);
5066 }
5067 
5068 /*
5069  * This routine converts virtual attributes to physical ones.  It will
5070  * update the tteflags field with the tte mask corresponding to the attributes
5071  * affected and it returns the new attributes.  It will also clear the modify
5072  * bit if we are taking away write permission.  This is necessary since the
5073  * modify bit is the hardware permission bit and we need to clear it in order
5074  * to detect write faults.
5075  */
5076 static uint64_t
5077 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5078 {
5079 	tte_t ttevalue;
5080 
5081 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5082 
5083 	switch (mode) {
5084 	case SFMMU_CHGATTR:
5085 		/* all attributes specified */
5086 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5087 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5088 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
5089 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
5090 		if (!icache_is_coherent) {
5091 			if (!(attr & PROT_EXEC)) {
5092 				TTE_SET_SOFTEXEC(ttemaskp);
5093 			} else {
5094 				TTE_CLR_EXEC(ttemaskp);
5095 				TTE_SET_SOFTEXEC(&ttevalue);
5096 			}
5097 		}
5098 		break;
5099 	case SFMMU_SETATTR:
5100 		ASSERT(!(attr & ~HAT_PROT_MASK));
5101 		ttemaskp->ll = 0;
5102 		ttevalue.ll = 0;
5103 		/*
5104 		 * a valid tte implies exec and read for sfmmu
5105 		 * so no need to do anything about them.
5106 		 * since priviledged access implies user access
5107 		 * PROT_USER doesn't make sense either.
5108 		 */
5109 		if (attr & PROT_WRITE) {
5110 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5111 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
5112 		}
5113 		break;
5114 	case SFMMU_CLRATTR:
5115 		/* attributes will be nand with current ones */
5116 		if (attr & ~(PROT_WRITE | PROT_USER)) {
5117 			panic("sfmmu: attr %x not supported", attr);
5118 		}
5119 		ttemaskp->ll = 0;
5120 		ttevalue.ll = 0;
5121 		if (attr & PROT_WRITE) {
5122 			/* clear both writable and modify bit */
5123 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5124 		}
5125 		if (attr & PROT_USER) {
5126 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
5127 			ttevalue.tte_intlo |= TTE_PRIV_INT;
5128 		}
5129 		break;
5130 	default:
5131 		panic("sfmmu_vtop_attr: bad mode %x", mode);
5132 	}
5133 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5134 	return (ttevalue.ll);
5135 }
5136 
5137 static uint_t
5138 sfmmu_ptov_attr(tte_t *ttep)
5139 {
5140 	uint_t attr;
5141 
5142 	ASSERT(TTE_IS_VALID(ttep));
5143 
5144 	attr = PROT_READ;
5145 
5146 	if (TTE_IS_WRITABLE(ttep)) {
5147 		attr |= PROT_WRITE;
5148 	}
5149 	if (TTE_IS_EXECUTABLE(ttep)) {
5150 		attr |= PROT_EXEC;
5151 	}
5152 	if (TTE_IS_SOFTEXEC(ttep)) {
5153 		attr |= PROT_EXEC;
5154 	}
5155 	if (!TTE_IS_PRIVILEGED(ttep)) {
5156 		attr |= PROT_USER;
5157 	}
5158 	if (TTE_IS_NFO(ttep)) {
5159 		attr |= HAT_NOFAULT;
5160 	}
5161 	if (TTE_IS_NOSYNC(ttep)) {
5162 		attr |= HAT_NOSYNC;
5163 	}
5164 	if (TTE_IS_SIDEFFECT(ttep)) {
5165 		attr |= SFMMU_SIDEFFECT;
5166 	}
5167 	if (!TTE_IS_VCACHEABLE(ttep)) {
5168 		attr |= SFMMU_UNCACHEVTTE;
5169 	}
5170 	if (!TTE_IS_PCACHEABLE(ttep)) {
5171 		attr |= SFMMU_UNCACHEPTTE;
5172 	}
5173 	return (attr);
5174 }
5175 
5176 /*
5177  * hat_chgprot is a deprecated hat call.  New segment drivers
5178  * should store all attributes and use hat_*attr calls.
5179  *
5180  * Change the protections in the virtual address range
5181  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
5182  * then remove write permission, leaving the other
5183  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
5184  *
5185  */
5186 void
5187 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5188 {
5189 	struct hmehash_bucket *hmebp;
5190 	hmeblk_tag hblktag;
5191 	int hmeshift, hashno = 1;
5192 	struct hme_blk *hmeblkp, *list = NULL;
5193 	caddr_t endaddr;
5194 	cpuset_t cpuset;
5195 	demap_range_t dmr;
5196 
5197 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5198 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5199 
5200 	if (sfmmup->sfmmu_xhat_provider) {
5201 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
5202 		return;
5203 	} else {
5204 		/*
5205 		 * This must be a CPU HAT. If the address space has
5206 		 * XHATs attached, change attributes for all of them,
5207 		 * just in case
5208 		 */
5209 		ASSERT(sfmmup->sfmmu_as != NULL);
5210 		if (sfmmup->sfmmu_as->a_xhat != NULL)
5211 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
5212 	}
5213 
5214 	CPUSET_ZERO(cpuset);
5215 
5216 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5217 	    ((addr + len) > (caddr_t)USERLIMIT)) {
5218 		panic("user addr %p vprot %x in kernel space",
5219 		    (void *)addr, vprot);
5220 	}
5221 	endaddr = addr + len;
5222 	hblktag.htag_id = sfmmup;
5223 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5224 	DEMAP_RANGE_INIT(sfmmup, &dmr);
5225 
5226 	while (addr < endaddr) {
5227 		hmeshift = HME_HASH_SHIFT(hashno);
5228 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5229 		hblktag.htag_rehash = hashno;
5230 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5231 
5232 		SFMMU_HASH_LOCK(hmebp);
5233 
5234 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5235 		if (hmeblkp != NULL) {
5236 			ASSERT(!hmeblkp->hblk_shared);
5237 			/*
5238 			 * We've encountered a shadow hmeblk so skip the range
5239 			 * of the next smaller mapping size.
5240 			 */
5241 			if (hmeblkp->hblk_shw_bit) {
5242 				ASSERT(sfmmup != ksfmmup);
5243 				ASSERT(hashno > 1);
5244 				addr = (caddr_t)P2END((uintptr_t)addr,
5245 				    TTEBYTES(hashno - 1));
5246 			} else {
5247 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5248 				    addr, endaddr, &dmr, vprot);
5249 			}
5250 			SFMMU_HASH_UNLOCK(hmebp);
5251 			hashno = 1;
5252 			continue;
5253 		}
5254 		SFMMU_HASH_UNLOCK(hmebp);
5255 
5256 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5257 			/*
5258 			 * We have traversed the whole list and rehashed
5259 			 * if necessary without finding the address to chgprot.
5260 			 * This is ok so we increment the address by the
5261 			 * smallest hmeblk range for kernel mappings and the
5262 			 * largest hmeblk range, to account for shadow hmeblks,
5263 			 * for user mappings and continue.
5264 			 */
5265 			if (sfmmup == ksfmmup)
5266 				addr = (caddr_t)P2END((uintptr_t)addr,
5267 				    TTEBYTES(1));
5268 			else
5269 				addr = (caddr_t)P2END((uintptr_t)addr,
5270 				    TTEBYTES(hashno));
5271 			hashno = 1;
5272 		} else {
5273 			hashno++;
5274 		}
5275 	}
5276 
5277 	sfmmu_hblks_list_purge(&list);
5278 	DEMAP_RANGE_FLUSH(&dmr);
5279 	cpuset = sfmmup->sfmmu_cpusran;
5280 	xt_sync(cpuset);
5281 }
5282 
5283 /*
5284  * This function chgprots a range of addresses in an hmeblk.  It returns the
5285  * next addres that needs to be chgprot.
5286  * It should be called with the hash lock held.
5287  * XXX It shold be possible to optimize chgprot by not flushing every time but
5288  * on the other hand:
5289  * 1. do one flush crosscall.
5290  * 2. only flush if we are increasing permissions (make sure this will work)
5291  */
5292 static caddr_t
5293 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5294 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5295 {
5296 	uint_t pprot;
5297 	tte_t tte, ttemod;
5298 	struct sf_hment *sfhmep;
5299 	uint_t tteflags;
5300 	int ttesz;
5301 	struct page *pp = NULL;
5302 	kmutex_t *pml, *pmtx;
5303 	int ret;
5304 	int use_demap_range;
5305 #if defined(SF_ERRATA_57)
5306 	int check_exec;
5307 #endif
5308 
5309 	ASSERT(in_hblk_range(hmeblkp, addr));
5310 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5311 	ASSERT(!hmeblkp->hblk_shared);
5312 
5313 #ifdef DEBUG
5314 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5315 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5316 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5317 	}
5318 #endif /* DEBUG */
5319 
5320 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5321 	ttesz = get_hblk_ttesz(hmeblkp);
5322 
5323 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
5324 #if defined(SF_ERRATA_57)
5325 	check_exec = (sfmmup != ksfmmup) &&
5326 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5327 	    ((vprot & PROT_EXEC) == PROT_EXEC);
5328 #endif
5329 	HBLKTOHME(sfhmep, hmeblkp, addr);
5330 
5331 	/*
5332 	 * Flush the current demap region if addresses have been
5333 	 * skipped or the page size doesn't match.
5334 	 */
5335 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5336 	if (use_demap_range) {
5337 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5338 	} else {
5339 		DEMAP_RANGE_FLUSH(dmrp);
5340 	}
5341 
5342 	while (addr < endaddr) {
5343 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5344 		if (TTE_IS_VALID(&tte)) {
5345 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5346 				/*
5347 				 * if the new protection is the same as old
5348 				 * continue
5349 				 */
5350 				goto next_addr;
5351 			}
5352 			pml = NULL;
5353 			pp = sfhmep->hme_page;
5354 			if (pp) {
5355 				pml = sfmmu_mlist_enter(pp);
5356 			}
5357 			if (pp != sfhmep->hme_page) {
5358 				/*
5359 				 * tte most have been unloaded
5360 				 * underneath us.  Recheck
5361 				 */
5362 				ASSERT(pml);
5363 				sfmmu_mlist_exit(pml);
5364 				continue;
5365 			}
5366 
5367 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5368 
5369 			ttemod = tte;
5370 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5371 			ASSERT(TTE_IS_SOFTEXEC(&tte) ==
5372 			    TTE_IS_SOFTEXEC(&ttemod));
5373 			ASSERT(TTE_IS_EXECUTABLE(&tte) ==
5374 			    TTE_IS_EXECUTABLE(&ttemod));
5375 
5376 #if defined(SF_ERRATA_57)
5377 			if (check_exec && addr < errata57_limit)
5378 				ttemod.tte_exec_perm = 0;
5379 #endif
5380 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5381 			    &sfhmep->hme_tte);
5382 
5383 			if (ret < 0) {
5384 				/* tte changed underneath us */
5385 				if (pml) {
5386 					sfmmu_mlist_exit(pml);
5387 				}
5388 				continue;
5389 			}
5390 
5391 			if (tteflags & TTE_HWWR_INT) {
5392 				/*
5393 				 * need to sync if we are clearing modify bit.
5394 				 */
5395 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5396 			}
5397 
5398 			if (pp && PP_ISRO(pp)) {
5399 				if (pprot & TTE_WRPRM_INT) {
5400 					pmtx = sfmmu_page_enter(pp);
5401 					PP_CLRRO(pp);
5402 					sfmmu_page_exit(pmtx);
5403 				}
5404 			}
5405 
5406 			if (ret > 0 && use_demap_range) {
5407 				DEMAP_RANGE_MARKPG(dmrp, addr);
5408 			} else if (ret > 0) {
5409 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5410 			}
5411 
5412 			if (pml) {
5413 				sfmmu_mlist_exit(pml);
5414 			}
5415 		}
5416 next_addr:
5417 		addr += TTEBYTES(ttesz);
5418 		sfhmep++;
5419 		DEMAP_RANGE_NEXTPG(dmrp);
5420 	}
5421 	return (addr);
5422 }
5423 
5424 /*
5425  * This routine is deprecated and should only be used by hat_chgprot.
5426  * The correct routine is sfmmu_vtop_attr.
5427  * This routine converts virtual page protections to physical ones.  It will
5428  * update the tteflags field with the tte mask corresponding to the protections
5429  * affected and it returns the new protections.  It will also clear the modify
5430  * bit if we are taking away write permission.  This is necessary since the
5431  * modify bit is the hardware permission bit and we need to clear it in order
5432  * to detect write faults.
5433  * It accepts the following special protections:
5434  * ~PROT_WRITE = remove write permissions.
5435  * ~PROT_USER = remove user permissions.
5436  */
5437 static uint_t
5438 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5439 {
5440 	if (vprot == (uint_t)~PROT_WRITE) {
5441 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5442 		return (0);		/* will cause wrprm to be cleared */
5443 	}
5444 	if (vprot == (uint_t)~PROT_USER) {
5445 		*tteflagsp = TTE_PRIV_INT;
5446 		return (0);		/* will cause privprm to be cleared */
5447 	}
5448 	if ((vprot == 0) || (vprot == PROT_USER) ||
5449 	    ((vprot & PROT_ALL) != vprot)) {
5450 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5451 	}
5452 
5453 	switch (vprot) {
5454 	case (PROT_READ):
5455 	case (PROT_EXEC):
5456 	case (PROT_EXEC | PROT_READ):
5457 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5458 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
5459 	case (PROT_WRITE):
5460 	case (PROT_WRITE | PROT_READ):
5461 	case (PROT_EXEC | PROT_WRITE):
5462 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
5463 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5464 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
5465 	case (PROT_USER | PROT_READ):
5466 	case (PROT_USER | PROT_EXEC):
5467 	case (PROT_USER | PROT_EXEC | PROT_READ):
5468 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5469 		return (0); 			/* clr prv and wrt */
5470 	case (PROT_USER | PROT_WRITE):
5471 	case (PROT_USER | PROT_WRITE | PROT_READ):
5472 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
5473 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5474 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5475 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
5476 	default:
5477 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5478 	}
5479 	return (0);
5480 }
5481 
5482 /*
5483  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5484  * the normal algorithm would take too long for a very large VA range with
5485  * few real mappings. This routine just walks thru all HMEs in the global
5486  * hash table to find and remove mappings.
5487  */
5488 static void
5489 hat_unload_large_virtual(
5490 	struct hat		*sfmmup,
5491 	caddr_t			startaddr,
5492 	size_t			len,
5493 	uint_t			flags,
5494 	hat_callback_t		*callback)
5495 {
5496 	struct hmehash_bucket *hmebp;
5497 	struct hme_blk *hmeblkp;
5498 	struct hme_blk *pr_hblk = NULL;
5499 	struct hme_blk *nx_hblk;
5500 	struct hme_blk *list = NULL;
5501 	int i;
5502 	uint64_t hblkpa, prevpa, nx_pa;
5503 	demap_range_t dmr, *dmrp;
5504 	cpuset_t cpuset;
5505 	caddr_t	endaddr = startaddr + len;
5506 	caddr_t	sa;
5507 	caddr_t	ea;
5508 	caddr_t	cb_sa[MAX_CB_ADDR];
5509 	caddr_t	cb_ea[MAX_CB_ADDR];
5510 	int	addr_cnt = 0;
5511 	int	a = 0;
5512 
5513 	if (sfmmup->sfmmu_free) {
5514 		dmrp = NULL;
5515 	} else {
5516 		dmrp = &dmr;
5517 		DEMAP_RANGE_INIT(sfmmup, dmrp);
5518 	}
5519 
5520 	/*
5521 	 * Loop through all the hash buckets of HME blocks looking for matches.
5522 	 */
5523 	for (i = 0; i <= UHMEHASH_SZ; i++) {
5524 		hmebp = &uhme_hash[i];
5525 		SFMMU_HASH_LOCK(hmebp);
5526 		hmeblkp = hmebp->hmeblkp;
5527 		hblkpa = hmebp->hmeh_nextpa;
5528 		prevpa = 0;
5529 		pr_hblk = NULL;
5530 		while (hmeblkp) {
5531 			nx_hblk = hmeblkp->hblk_next;
5532 			nx_pa = hmeblkp->hblk_nextpa;
5533 
5534 			/*
5535 			 * skip if not this context, if a shadow block or
5536 			 * if the mapping is not in the requested range
5537 			 */
5538 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5539 			    hmeblkp->hblk_shw_bit ||
5540 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5541 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5542 				pr_hblk = hmeblkp;
5543 				prevpa = hblkpa;
5544 				goto next_block;
5545 			}
5546 
5547 			ASSERT(!hmeblkp->hblk_shared);
5548 			/*
5549 			 * unload if there are any current valid mappings
5550 			 */
5551 			if (hmeblkp->hblk_vcnt != 0 ||
5552 			    hmeblkp->hblk_hmecnt != 0)
5553 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5554 				    sa, ea, dmrp, flags);
5555 
5556 			/*
5557 			 * on unmap we also release the HME block itself, once
5558 			 * all mappings are gone.
5559 			 */
5560 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5561 			    !hmeblkp->hblk_vcnt &&
5562 			    !hmeblkp->hblk_hmecnt) {
5563 				ASSERT(!hmeblkp->hblk_lckcnt);
5564 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
5565 				    prevpa, pr_hblk);
5566 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5567 			} else {
5568 				pr_hblk = hmeblkp;
5569 				prevpa = hblkpa;
5570 			}
5571 
5572 			if (callback == NULL)
5573 				goto next_block;
5574 
5575 			/*
5576 			 * HME blocks may span more than one page, but we may be
5577 			 * unmapping only one page, so check for a smaller range
5578 			 * for the callback
5579 			 */
5580 			if (sa < startaddr)
5581 				sa = startaddr;
5582 			if (--ea > endaddr)
5583 				ea = endaddr - 1;
5584 
5585 			cb_sa[addr_cnt] = sa;
5586 			cb_ea[addr_cnt] = ea;
5587 			if (++addr_cnt == MAX_CB_ADDR) {
5588 				if (dmrp != NULL) {
5589 					DEMAP_RANGE_FLUSH(dmrp);
5590 					cpuset = sfmmup->sfmmu_cpusran;
5591 					xt_sync(cpuset);
5592 				}
5593 
5594 				for (a = 0; a < MAX_CB_ADDR; ++a) {
5595 					callback->hcb_start_addr = cb_sa[a];
5596 					callback->hcb_end_addr = cb_ea[a];
5597 					callback->hcb_function(callback);
5598 				}
5599 				addr_cnt = 0;
5600 			}
5601 
5602 next_block:
5603 			hmeblkp = nx_hblk;
5604 			hblkpa = nx_pa;
5605 		}
5606 		SFMMU_HASH_UNLOCK(hmebp);
5607 	}
5608 
5609 	sfmmu_hblks_list_purge(&list);
5610 	if (dmrp != NULL) {
5611 		DEMAP_RANGE_FLUSH(dmrp);
5612 		cpuset = sfmmup->sfmmu_cpusran;
5613 		xt_sync(cpuset);
5614 	}
5615 
5616 	for (a = 0; a < addr_cnt; ++a) {
5617 		callback->hcb_start_addr = cb_sa[a];
5618 		callback->hcb_end_addr = cb_ea[a];
5619 		callback->hcb_function(callback);
5620 	}
5621 
5622 	/*
5623 	 * Check TSB and TLB page sizes if the process isn't exiting.
5624 	 */
5625 	if (!sfmmup->sfmmu_free)
5626 		sfmmu_check_page_sizes(sfmmup, 0);
5627 }
5628 
5629 /*
5630  * Unload all the mappings in the range [addr..addr+len). addr and len must
5631  * be MMU_PAGESIZE aligned.
5632  */
5633 
5634 extern struct seg *segkmap;
5635 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5636 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5637 
5638 
5639 void
5640 hat_unload_callback(
5641 	struct hat *sfmmup,
5642 	caddr_t addr,
5643 	size_t len,
5644 	uint_t flags,
5645 	hat_callback_t *callback)
5646 {
5647 	struct hmehash_bucket *hmebp;
5648 	hmeblk_tag hblktag;
5649 	int hmeshift, hashno, iskernel;
5650 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5651 	caddr_t endaddr;
5652 	cpuset_t cpuset;
5653 	uint64_t hblkpa, prevpa;
5654 	int addr_count = 0;
5655 	int a;
5656 	caddr_t cb_start_addr[MAX_CB_ADDR];
5657 	caddr_t cb_end_addr[MAX_CB_ADDR];
5658 	int issegkmap = ISSEGKMAP(sfmmup, addr);
5659 	demap_range_t dmr, *dmrp;
5660 
5661 	if (sfmmup->sfmmu_xhat_provider) {
5662 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
5663 		return;
5664 	} else {
5665 		/*
5666 		 * This must be a CPU HAT. If the address space has
5667 		 * XHATs attached, unload the mappings for all of them,
5668 		 * just in case
5669 		 */
5670 		ASSERT(sfmmup->sfmmu_as != NULL);
5671 		if (sfmmup->sfmmu_as->a_xhat != NULL)
5672 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
5673 			    len, flags, callback);
5674 	}
5675 
5676 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5677 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5678 
5679 	ASSERT(sfmmup != NULL);
5680 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5681 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5682 
5683 	/*
5684 	 * Probing through a large VA range (say 63 bits) will be slow, even
5685 	 * at 4 Meg steps between the probes. So, when the virtual address range
5686 	 * is very large, search the HME entries for what to unload.
5687 	 *
5688 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5689 	 *
5690 	 *	UHMEHASH_SZ is number of hash buckets to examine
5691 	 *
5692 	 */
5693 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5694 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5695 		return;
5696 	}
5697 
5698 	CPUSET_ZERO(cpuset);
5699 
5700 	/*
5701 	 * If the process is exiting, we can save a lot of fuss since
5702 	 * we'll flush the TLB when we free the ctx anyway.
5703 	 */
5704 	if (sfmmup->sfmmu_free)
5705 		dmrp = NULL;
5706 	else
5707 		dmrp = &dmr;
5708 
5709 	DEMAP_RANGE_INIT(sfmmup, dmrp);
5710 	endaddr = addr + len;
5711 	hblktag.htag_id = sfmmup;
5712 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5713 
5714 	/*
5715 	 * It is likely for the vm to call unload over a wide range of
5716 	 * addresses that are actually very sparsely populated by
5717 	 * translations.  In order to speed this up the sfmmu hat supports
5718 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5719 	 * correspond to actual small translations are allocated at tteload
5720 	 * time and are referred to as shadow hmeblks.  Now, during unload
5721 	 * time, we first check if we have a shadow hmeblk for that
5722 	 * translation.  The absence of one means the corresponding address
5723 	 * range is empty and can be skipped.
5724 	 *
5725 	 * The kernel is an exception to above statement and that is why
5726 	 * we don't use shadow hmeblks and hash starting from the smallest
5727 	 * page size.
5728 	 */
5729 	if (sfmmup == KHATID) {
5730 		iskernel = 1;
5731 		hashno = TTE64K;
5732 	} else {
5733 		iskernel = 0;
5734 		if (mmu_page_sizes == max_mmu_page_sizes) {
5735 			hashno = TTE256M;
5736 		} else {
5737 			hashno = TTE4M;
5738 		}
5739 	}
5740 	while (addr < endaddr) {
5741 		hmeshift = HME_HASH_SHIFT(hashno);
5742 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5743 		hblktag.htag_rehash = hashno;
5744 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5745 
5746 		SFMMU_HASH_LOCK(hmebp);
5747 
5748 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5749 		    prevpa, &list);
5750 		if (hmeblkp == NULL) {
5751 			/*
5752 			 * didn't find an hmeblk. skip the appropiate
5753 			 * address range.
5754 			 */
5755 			SFMMU_HASH_UNLOCK(hmebp);
5756 			if (iskernel) {
5757 				if (hashno < mmu_hashcnt) {
5758 					hashno++;
5759 					continue;
5760 				} else {
5761 					hashno = TTE64K;
5762 					addr = (caddr_t)roundup((uintptr_t)addr
5763 					    + 1, MMU_PAGESIZE64K);
5764 					continue;
5765 				}
5766 			}
5767 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5768 			    (1 << hmeshift));
5769 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5770 				ASSERT(hashno == TTE64K);
5771 				continue;
5772 			}
5773 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5774 				hashno = TTE512K;
5775 				continue;
5776 			}
5777 			if (mmu_page_sizes == max_mmu_page_sizes) {
5778 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5779 					hashno = TTE4M;
5780 					continue;
5781 				}
5782 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5783 					hashno = TTE32M;
5784 					continue;
5785 				}
5786 				hashno = TTE256M;
5787 				continue;
5788 			} else {
5789 				hashno = TTE4M;
5790 				continue;
5791 			}
5792 		}
5793 		ASSERT(hmeblkp);
5794 		ASSERT(!hmeblkp->hblk_shared);
5795 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5796 			/*
5797 			 * If the valid count is zero we can skip the range
5798 			 * mapped by this hmeblk.
5799 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5800 			 * is used by segment drivers as a hint
5801 			 * that the mapping resource won't be used any longer.
5802 			 * The best example of this is during exit().
5803 			 */
5804 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5805 			    get_hblk_span(hmeblkp));
5806 			if ((flags & HAT_UNLOAD_UNMAP) ||
5807 			    (iskernel && !issegkmap)) {
5808 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5809 				    pr_hblk);
5810 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5811 			}
5812 			SFMMU_HASH_UNLOCK(hmebp);
5813 
5814 			if (iskernel) {
5815 				hashno = TTE64K;
5816 				continue;
5817 			}
5818 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5819 				ASSERT(hashno == TTE64K);
5820 				continue;
5821 			}
5822 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5823 				hashno = TTE512K;
5824 				continue;
5825 			}
5826 			if (mmu_page_sizes == max_mmu_page_sizes) {
5827 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5828 					hashno = TTE4M;
5829 					continue;
5830 				}
5831 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5832 					hashno = TTE32M;
5833 					continue;
5834 				}
5835 				hashno = TTE256M;
5836 				continue;
5837 			} else {
5838 				hashno = TTE4M;
5839 				continue;
5840 			}
5841 		}
5842 		if (hmeblkp->hblk_shw_bit) {
5843 			/*
5844 			 * If we encounter a shadow hmeblk we know there is
5845 			 * smaller sized hmeblks mapping the same address space.
5846 			 * Decrement the hash size and rehash.
5847 			 */
5848 			ASSERT(sfmmup != KHATID);
5849 			hashno--;
5850 			SFMMU_HASH_UNLOCK(hmebp);
5851 			continue;
5852 		}
5853 
5854 		/*
5855 		 * track callback address ranges.
5856 		 * only start a new range when it's not contiguous
5857 		 */
5858 		if (callback != NULL) {
5859 			if (addr_count > 0 &&
5860 			    addr == cb_end_addr[addr_count - 1])
5861 				--addr_count;
5862 			else
5863 				cb_start_addr[addr_count] = addr;
5864 		}
5865 
5866 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5867 		    dmrp, flags);
5868 
5869 		if (callback != NULL)
5870 			cb_end_addr[addr_count++] = addr;
5871 
5872 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5873 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5874 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5875 			    pr_hblk);
5876 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5877 		}
5878 		SFMMU_HASH_UNLOCK(hmebp);
5879 
5880 		/*
5881 		 * Notify our caller as to exactly which pages
5882 		 * have been unloaded. We do these in clumps,
5883 		 * to minimize the number of xt_sync()s that need to occur.
5884 		 */
5885 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5886 			DEMAP_RANGE_FLUSH(dmrp);
5887 			if (dmrp != NULL) {
5888 				cpuset = sfmmup->sfmmu_cpusran;
5889 				xt_sync(cpuset);
5890 			}
5891 
5892 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5893 				callback->hcb_start_addr = cb_start_addr[a];
5894 				callback->hcb_end_addr = cb_end_addr[a];
5895 				callback->hcb_function(callback);
5896 			}
5897 			addr_count = 0;
5898 		}
5899 		if (iskernel) {
5900 			hashno = TTE64K;
5901 			continue;
5902 		}
5903 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5904 			ASSERT(hashno == TTE64K);
5905 			continue;
5906 		}
5907 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5908 			hashno = TTE512K;
5909 			continue;
5910 		}
5911 		if (mmu_page_sizes == max_mmu_page_sizes) {
5912 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5913 				hashno = TTE4M;
5914 				continue;
5915 			}
5916 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5917 				hashno = TTE32M;
5918 				continue;
5919 			}
5920 			hashno = TTE256M;
5921 		} else {
5922 			hashno = TTE4M;
5923 		}
5924 	}
5925 
5926 	sfmmu_hblks_list_purge(&list);
5927 	DEMAP_RANGE_FLUSH(dmrp);
5928 	if (dmrp != NULL) {
5929 		cpuset = sfmmup->sfmmu_cpusran;
5930 		xt_sync(cpuset);
5931 	}
5932 	if (callback && addr_count != 0) {
5933 		for (a = 0; a < addr_count; ++a) {
5934 			callback->hcb_start_addr = cb_start_addr[a];
5935 			callback->hcb_end_addr = cb_end_addr[a];
5936 			callback->hcb_function(callback);
5937 		}
5938 	}
5939 
5940 	/*
5941 	 * Check TSB and TLB page sizes if the process isn't exiting.
5942 	 */
5943 	if (!sfmmup->sfmmu_free)
5944 		sfmmu_check_page_sizes(sfmmup, 0);
5945 }
5946 
5947 /*
5948  * Unload all the mappings in the range [addr..addr+len). addr and len must
5949  * be MMU_PAGESIZE aligned.
5950  */
5951 void
5952 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5953 {
5954 	if (sfmmup->sfmmu_xhat_provider) {
5955 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5956 		return;
5957 	}
5958 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5959 }
5960 
5961 
5962 /*
5963  * Find the largest mapping size for this page.
5964  */
5965 int
5966 fnd_mapping_sz(page_t *pp)
5967 {
5968 	int sz;
5969 	int p_index;
5970 
5971 	p_index = PP_MAPINDEX(pp);
5972 
5973 	sz = 0;
5974 	p_index >>= 1;	/* don't care about 8K bit */
5975 	for (; p_index; p_index >>= 1) {
5976 		sz++;
5977 	}
5978 
5979 	return (sz);
5980 }
5981 
5982 /*
5983  * This function unloads a range of addresses for an hmeblk.
5984  * It returns the next address to be unloaded.
5985  * It should be called with the hash lock held.
5986  */
5987 static caddr_t
5988 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5989 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5990 {
5991 	tte_t	tte, ttemod;
5992 	struct	sf_hment *sfhmep;
5993 	int	ttesz;
5994 	long	ttecnt;
5995 	page_t *pp;
5996 	kmutex_t *pml;
5997 	int ret;
5998 	int use_demap_range;
5999 
6000 	ASSERT(in_hblk_range(hmeblkp, addr));
6001 	ASSERT(!hmeblkp->hblk_shw_bit);
6002 	ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
6003 	ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
6004 	ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
6005 
6006 #ifdef DEBUG
6007 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
6008 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
6009 		panic("sfmmu_hblk_unload: partial unload of large page");
6010 	}
6011 #endif /* DEBUG */
6012 
6013 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6014 	ttesz = get_hblk_ttesz(hmeblkp);
6015 
6016 	use_demap_range = ((dmrp == NULL) ||
6017 	    (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
6018 
6019 	if (use_demap_range) {
6020 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
6021 	} else {
6022 		DEMAP_RANGE_FLUSH(dmrp);
6023 	}
6024 	ttecnt = 0;
6025 	HBLKTOHME(sfhmep, hmeblkp, addr);
6026 
6027 	while (addr < endaddr) {
6028 		pml = NULL;
6029 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6030 		if (TTE_IS_VALID(&tte)) {
6031 			pp = sfhmep->hme_page;
6032 			if (pp != NULL) {
6033 				pml = sfmmu_mlist_enter(pp);
6034 			}
6035 
6036 			/*
6037 			 * Verify if hme still points to 'pp' now that
6038 			 * we have p_mapping lock.
6039 			 */
6040 			if (sfhmep->hme_page != pp) {
6041 				if (pp != NULL && sfhmep->hme_page != NULL) {
6042 					ASSERT(pml != NULL);
6043 					sfmmu_mlist_exit(pml);
6044 					/* Re-start this iteration. */
6045 					continue;
6046 				}
6047 				ASSERT((pp != NULL) &&
6048 				    (sfhmep->hme_page == NULL));
6049 				goto tte_unloaded;
6050 			}
6051 
6052 			/*
6053 			 * This point on we have both HASH and p_mapping
6054 			 * lock.
6055 			 */
6056 			ASSERT(pp == sfhmep->hme_page);
6057 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6058 
6059 			/*
6060 			 * We need to loop on modify tte because it is
6061 			 * possible for pagesync to come along and
6062 			 * change the software bits beneath us.
6063 			 *
6064 			 * Page_unload can also invalidate the tte after
6065 			 * we read tte outside of p_mapping lock.
6066 			 */
6067 again:
6068 			ttemod = tte;
6069 
6070 			TTE_SET_INVALID(&ttemod);
6071 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6072 			    &sfhmep->hme_tte);
6073 
6074 			if (ret <= 0) {
6075 				if (TTE_IS_VALID(&tte)) {
6076 					ASSERT(ret < 0);
6077 					goto again;
6078 				}
6079 				if (pp != NULL) {
6080 					panic("sfmmu_hblk_unload: pp = 0x%p "
6081 					    "tte became invalid under mlist"
6082 					    " lock = 0x%p", (void *)pp,
6083 					    (void *)pml);
6084 				}
6085 				continue;
6086 			}
6087 
6088 			if (!(flags & HAT_UNLOAD_NOSYNC) ||
6089 			    (pp != NULL && TTE_EXECUTED(&tte))) {
6090 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
6091 			}
6092 
6093 			/*
6094 			 * Ok- we invalidated the tte. Do the rest of the job.
6095 			 */
6096 			ttecnt++;
6097 
6098 			if (flags & HAT_UNLOAD_UNLOCK) {
6099 				ASSERT(hmeblkp->hblk_lckcnt > 0);
6100 				atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
6101 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6102 			}
6103 
6104 			/*
6105 			 * Normally we would need to flush the page
6106 			 * from the virtual cache at this point in
6107 			 * order to prevent a potential cache alias
6108 			 * inconsistency.
6109 			 * The particular scenario we need to worry
6110 			 * about is:
6111 			 * Given:  va1 and va2 are two virtual address
6112 			 * that alias and map the same physical
6113 			 * address.
6114 			 * 1.   mapping exists from va1 to pa and data
6115 			 * has been read into the cache.
6116 			 * 2.   unload va1.
6117 			 * 3.   load va2 and modify data using va2.
6118 			 * 4    unload va2.
6119 			 * 5.   load va1 and reference data.  Unless we
6120 			 * flush the data cache when we unload we will
6121 			 * get stale data.
6122 			 * Fortunately, page coloring eliminates the
6123 			 * above scenario by remembering the color a
6124 			 * physical page was last or is currently
6125 			 * mapped to.  Now, we delay the flush until
6126 			 * the loading of translations.  Only when the
6127 			 * new translation is of a different color
6128 			 * are we forced to flush.
6129 			 */
6130 			if (use_demap_range) {
6131 				/*
6132 				 * Mark this page as needing a demap.
6133 				 */
6134 				DEMAP_RANGE_MARKPG(dmrp, addr);
6135 			} else {
6136 				ASSERT(sfmmup != NULL);
6137 				ASSERT(!hmeblkp->hblk_shared);
6138 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6139 				    sfmmup->sfmmu_free, 0);
6140 			}
6141 
6142 			if (pp) {
6143 				/*
6144 				 * Remove the hment from the mapping list
6145 				 */
6146 				ASSERT(hmeblkp->hblk_hmecnt > 0);
6147 
6148 				/*
6149 				 * Again, we cannot
6150 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6151 				 */
6152 				HME_SUB(sfhmep, pp);
6153 				membar_stst();
6154 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6155 			}
6156 
6157 			ASSERT(hmeblkp->hblk_vcnt > 0);
6158 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6159 
6160 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6161 			    !hmeblkp->hblk_lckcnt);
6162 
6163 #ifdef VAC
6164 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6165 				if (PP_ISTNC(pp)) {
6166 					/*
6167 					 * If page was temporary
6168 					 * uncached, try to recache
6169 					 * it. Note that HME_SUB() was
6170 					 * called above so p_index and
6171 					 * mlist had been updated.
6172 					 */
6173 					conv_tnc(pp, ttesz);
6174 				} else if (pp->p_mapping == NULL) {
6175 					ASSERT(kpm_enable);
6176 					/*
6177 					 * Page is marked to be in VAC conflict
6178 					 * to an existing kpm mapping and/or is
6179 					 * kpm mapped using only the regular
6180 					 * pagesize.
6181 					 */
6182 					sfmmu_kpm_hme_unload(pp);
6183 				}
6184 			}
6185 #endif	/* VAC */
6186 		} else if ((pp = sfhmep->hme_page) != NULL) {
6187 				/*
6188 				 * TTE is invalid but the hme
6189 				 * still exists. let pageunload
6190 				 * complete its job.
6191 				 */
6192 				ASSERT(pml == NULL);
6193 				pml = sfmmu_mlist_enter(pp);
6194 				if (sfhmep->hme_page != NULL) {
6195 					sfmmu_mlist_exit(pml);
6196 					continue;
6197 				}
6198 				ASSERT(sfhmep->hme_page == NULL);
6199 		} else if (hmeblkp->hblk_hmecnt != 0) {
6200 			/*
6201 			 * pageunload may have not finished decrementing
6202 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6203 			 * wait for pageunload to finish. Rely on pageunload
6204 			 * to decrement hblk_hmecnt after hblk_vcnt.
6205 			 */
6206 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
6207 			ASSERT(pml == NULL);
6208 			if (pf_is_memory(pfn)) {
6209 				pp = page_numtopp_nolock(pfn);
6210 				if (pp != NULL) {
6211 					pml = sfmmu_mlist_enter(pp);
6212 					sfmmu_mlist_exit(pml);
6213 					pml = NULL;
6214 				}
6215 			}
6216 		}
6217 
6218 tte_unloaded:
6219 		/*
6220 		 * At this point, the tte we are looking at
6221 		 * should be unloaded, and hme has been unlinked
6222 		 * from page too. This is important because in
6223 		 * pageunload, it does ttesync() then HME_SUB.
6224 		 * We need to make sure HME_SUB has been completed
6225 		 * so we know ttesync() has been completed. Otherwise,
6226 		 * at exit time, after return from hat layer, VM will
6227 		 * release as structure which hat_setstat() (called
6228 		 * by ttesync()) needs.
6229 		 */
6230 #ifdef DEBUG
6231 		{
6232 			tte_t	dtte;
6233 
6234 			ASSERT(sfhmep->hme_page == NULL);
6235 
6236 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6237 			ASSERT(!TTE_IS_VALID(&dtte));
6238 		}
6239 #endif
6240 
6241 		if (pml) {
6242 			sfmmu_mlist_exit(pml);
6243 		}
6244 
6245 		addr += TTEBYTES(ttesz);
6246 		sfhmep++;
6247 		DEMAP_RANGE_NEXTPG(dmrp);
6248 	}
6249 	/*
6250 	 * For shared hmeblks this routine is only called when region is freed
6251 	 * and no longer referenced.  So no need to decrement ttecnt
6252 	 * in the region structure here.
6253 	 */
6254 	if (ttecnt > 0 && sfmmup != NULL) {
6255 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6256 	}
6257 	return (addr);
6258 }
6259 
6260 /*
6261  * Synchronize all the mappings in the range [addr..addr+len).
6262  * Can be called with clearflag having two states:
6263  * HAT_SYNC_DONTZERO means just return the rm stats
6264  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6265  */
6266 void
6267 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6268 {
6269 	struct hmehash_bucket *hmebp;
6270 	hmeblk_tag hblktag;
6271 	int hmeshift, hashno = 1;
6272 	struct hme_blk *hmeblkp, *list = NULL;
6273 	caddr_t endaddr;
6274 	cpuset_t cpuset;
6275 
6276 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
6277 	ASSERT((sfmmup == ksfmmup) ||
6278 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
6279 	ASSERT((len & MMU_PAGEOFFSET) == 0);
6280 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6281 	    (clearflag == HAT_SYNC_ZERORM));
6282 
6283 	CPUSET_ZERO(cpuset);
6284 
6285 	endaddr = addr + len;
6286 	hblktag.htag_id = sfmmup;
6287 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6288 
6289 	/*
6290 	 * Spitfire supports 4 page sizes.
6291 	 * Most pages are expected to be of the smallest page
6292 	 * size (8K) and these will not need to be rehashed. 64K
6293 	 * pages also don't need to be rehashed because the an hmeblk
6294 	 * spans 64K of address space. 512K pages might need 1 rehash and
6295 	 * and 4M pages 2 rehashes.
6296 	 */
6297 	while (addr < endaddr) {
6298 		hmeshift = HME_HASH_SHIFT(hashno);
6299 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6300 		hblktag.htag_rehash = hashno;
6301 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6302 
6303 		SFMMU_HASH_LOCK(hmebp);
6304 
6305 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6306 		if (hmeblkp != NULL) {
6307 			ASSERT(!hmeblkp->hblk_shared);
6308 			/*
6309 			 * We've encountered a shadow hmeblk so skip the range
6310 			 * of the next smaller mapping size.
6311 			 */
6312 			if (hmeblkp->hblk_shw_bit) {
6313 				ASSERT(sfmmup != ksfmmup);
6314 				ASSERT(hashno > 1);
6315 				addr = (caddr_t)P2END((uintptr_t)addr,
6316 				    TTEBYTES(hashno - 1));
6317 			} else {
6318 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6319 				    addr, endaddr, clearflag);
6320 			}
6321 			SFMMU_HASH_UNLOCK(hmebp);
6322 			hashno = 1;
6323 			continue;
6324 		}
6325 		SFMMU_HASH_UNLOCK(hmebp);
6326 
6327 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6328 			/*
6329 			 * We have traversed the whole list and rehashed
6330 			 * if necessary without finding the address to sync.
6331 			 * This is ok so we increment the address by the
6332 			 * smallest hmeblk range for kernel mappings and the
6333 			 * largest hmeblk range, to account for shadow hmeblks,
6334 			 * for user mappings and continue.
6335 			 */
6336 			if (sfmmup == ksfmmup)
6337 				addr = (caddr_t)P2END((uintptr_t)addr,
6338 				    TTEBYTES(1));
6339 			else
6340 				addr = (caddr_t)P2END((uintptr_t)addr,
6341 				    TTEBYTES(hashno));
6342 			hashno = 1;
6343 		} else {
6344 			hashno++;
6345 		}
6346 	}
6347 	sfmmu_hblks_list_purge(&list);
6348 	cpuset = sfmmup->sfmmu_cpusran;
6349 	xt_sync(cpuset);
6350 }
6351 
6352 static caddr_t
6353 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6354 	caddr_t endaddr, int clearflag)
6355 {
6356 	tte_t	tte, ttemod;
6357 	struct sf_hment *sfhmep;
6358 	int ttesz;
6359 	struct page *pp;
6360 	kmutex_t *pml;
6361 	int ret;
6362 
6363 	ASSERT(hmeblkp->hblk_shw_bit == 0);
6364 	ASSERT(!hmeblkp->hblk_shared);
6365 
6366 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6367 
6368 	ttesz = get_hblk_ttesz(hmeblkp);
6369 	HBLKTOHME(sfhmep, hmeblkp, addr);
6370 
6371 	while (addr < endaddr) {
6372 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6373 		if (TTE_IS_VALID(&tte)) {
6374 			pml = NULL;
6375 			pp = sfhmep->hme_page;
6376 			if (pp) {
6377 				pml = sfmmu_mlist_enter(pp);
6378 			}
6379 			if (pp != sfhmep->hme_page) {
6380 				/*
6381 				 * tte most have been unloaded
6382 				 * underneath us.  Recheck
6383 				 */
6384 				ASSERT(pml);
6385 				sfmmu_mlist_exit(pml);
6386 				continue;
6387 			}
6388 
6389 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6390 
6391 			if (clearflag == HAT_SYNC_ZERORM) {
6392 				ttemod = tte;
6393 				TTE_CLR_RM(&ttemod);
6394 				ret = sfmmu_modifytte_try(&tte, &ttemod,
6395 				    &sfhmep->hme_tte);
6396 				if (ret < 0) {
6397 					if (pml) {
6398 						sfmmu_mlist_exit(pml);
6399 					}
6400 					continue;
6401 				}
6402 
6403 				if (ret > 0) {
6404 					sfmmu_tlb_demap(addr, sfmmup,
6405 					    hmeblkp, 0, 0);
6406 				}
6407 			}
6408 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
6409 			if (pml) {
6410 				sfmmu_mlist_exit(pml);
6411 			}
6412 		}
6413 		addr += TTEBYTES(ttesz);
6414 		sfhmep++;
6415 	}
6416 	return (addr);
6417 }
6418 
6419 /*
6420  * This function will sync a tte to the page struct and it will
6421  * update the hat stats. Currently it allows us to pass a NULL pp
6422  * and we will simply update the stats.  We may want to change this
6423  * so we only keep stats for pages backed by pp's.
6424  */
6425 static void
6426 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6427 {
6428 	uint_t rm = 0;
6429 	int sz = TTE_CSZ(ttep);
6430 	pgcnt_t	npgs;
6431 
6432 	ASSERT(TTE_IS_VALID(ttep));
6433 
6434 	if (!TTE_IS_NOSYNC(ttep)) {
6435 
6436 		if (TTE_IS_REF(ttep))
6437 			rm |= P_REF;
6438 
6439 		if (TTE_IS_MOD(ttep))
6440 			rm |= P_MOD;
6441 
6442 		if (rm != 0) {
6443 			if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6444 				int i;
6445 				caddr_t	vaddr = addr;
6446 
6447 				for (i = 0; i < TTEPAGES(sz); i++) {
6448 					hat_setstat(sfmmup->sfmmu_as, vaddr,
6449 					    MMU_PAGESIZE, rm);
6450 					vaddr += MMU_PAGESIZE;
6451 				}
6452 			}
6453 		}
6454 	}
6455 
6456 	if (!pp)
6457 		return;
6458 
6459 	/*
6460 	 * If software says this page is executable, and the page was
6461 	 * in fact executed (indicated by hardware exec permission
6462 	 * being enabled), then set P_EXEC on the page to remember
6463 	 * that it was executed. The I$ will be flushed when the page
6464 	 * is reassigned.
6465 	 */
6466 	if (TTE_EXECUTED(ttep)) {
6467 		rm |= P_EXEC;
6468 	} else if (rm == 0) {
6469 		return;
6470 	}
6471 
6472 	/*
6473 	 * XXX I want to use cas to update nrm bits but they
6474 	 * currently belong in common/vm and not in hat where
6475 	 * they should be.
6476 	 * The nrm bits are protected by the same mutex as
6477 	 * the one that protects the page's mapping list.
6478 	 */
6479 	ASSERT(sfmmu_mlist_held(pp));
6480 	/*
6481 	 * If the tte is for a large page, we need to sync all the
6482 	 * pages covered by the tte.
6483 	 */
6484 	if (sz != TTE8K) {
6485 		ASSERT(pp->p_szc != 0);
6486 		pp = PP_GROUPLEADER(pp, sz);
6487 		ASSERT(sfmmu_mlist_held(pp));
6488 	}
6489 
6490 	/* Get number of pages from tte size. */
6491 	npgs = TTEPAGES(sz);
6492 
6493 	do {
6494 		ASSERT(pp);
6495 		ASSERT(sfmmu_mlist_held(pp));
6496 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6497 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)) ||
6498 		    ((rm & P_EXEC) != 0 && !PP_ISEXEC(pp)))
6499 			hat_page_setattr(pp, rm);
6500 
6501 		/*
6502 		 * Are we done? If not, we must have a large mapping.
6503 		 * For large mappings we need to sync the rest of the pages
6504 		 * covered by this tte; goto the next page.
6505 		 */
6506 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6507 }
6508 
6509 /*
6510  * Execute pre-callback handler of each pa_hment linked to pp
6511  *
6512  * Inputs:
6513  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6514  *   capture_cpus: pointer to return value (below)
6515  *
6516  * Returns:
6517  *   Propagates the subsystem callback return values back to the caller;
6518  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
6519  *   is zero if all of the pa_hments are of a type that do not require
6520  *   capturing CPUs prior to suspending the mapping, else it is 1.
6521  */
6522 static int
6523 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6524 {
6525 	struct sf_hment	*sfhmep;
6526 	struct pa_hment *pahmep;
6527 	int (*f)(caddr_t, uint_t, uint_t, void *);
6528 	int		ret;
6529 	id_t		id;
6530 	int		locked = 0;
6531 	kmutex_t	*pml;
6532 
6533 	ASSERT(PAGE_EXCL(pp));
6534 	if (!sfmmu_mlist_held(pp)) {
6535 		pml = sfmmu_mlist_enter(pp);
6536 		locked = 1;
6537 	}
6538 
6539 	if (capture_cpus)
6540 		*capture_cpus = 0;
6541 
6542 top:
6543 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6544 		/*
6545 		 * skip sf_hments corresponding to VA<->PA mappings;
6546 		 * for pa_hment's, hme_tte.ll is zero
6547 		 */
6548 		if (!IS_PAHME(sfhmep))
6549 			continue;
6550 
6551 		pahmep = sfhmep->hme_data;
6552 		ASSERT(pahmep != NULL);
6553 
6554 		/*
6555 		 * skip if pre-handler has been called earlier in this loop
6556 		 */
6557 		if (pahmep->flags & flag)
6558 			continue;
6559 
6560 		id = pahmep->cb_id;
6561 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6562 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6563 			*capture_cpus = 1;
6564 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6565 			pahmep->flags |= flag;
6566 			continue;
6567 		}
6568 
6569 		/*
6570 		 * Drop the mapping list lock to avoid locking order issues.
6571 		 */
6572 		if (locked)
6573 			sfmmu_mlist_exit(pml);
6574 
6575 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6576 		if (ret != 0)
6577 			return (ret);	/* caller must do the cleanup */
6578 
6579 		if (locked) {
6580 			pml = sfmmu_mlist_enter(pp);
6581 			pahmep->flags |= flag;
6582 			goto top;
6583 		}
6584 
6585 		pahmep->flags |= flag;
6586 	}
6587 
6588 	if (locked)
6589 		sfmmu_mlist_exit(pml);
6590 
6591 	return (0);
6592 }
6593 
6594 /*
6595  * Execute post-callback handler of each pa_hment linked to pp
6596  *
6597  * Same overall assumptions and restrictions apply as for
6598  * hat_pageprocess_precallbacks().
6599  */
6600 static void
6601 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6602 {
6603 	pfn_t pgpfn = pp->p_pagenum;
6604 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6605 	pfn_t newpfn;
6606 	struct sf_hment *sfhmep;
6607 	struct pa_hment *pahmep;
6608 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6609 	id_t	id;
6610 	int	locked = 0;
6611 	kmutex_t *pml;
6612 
6613 	ASSERT(PAGE_EXCL(pp));
6614 	if (!sfmmu_mlist_held(pp)) {
6615 		pml = sfmmu_mlist_enter(pp);
6616 		locked = 1;
6617 	}
6618 
6619 top:
6620 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6621 		/*
6622 		 * skip sf_hments corresponding to VA<->PA mappings;
6623 		 * for pa_hment's, hme_tte.ll is zero
6624 		 */
6625 		if (!IS_PAHME(sfhmep))
6626 			continue;
6627 
6628 		pahmep = sfhmep->hme_data;
6629 		ASSERT(pahmep != NULL);
6630 
6631 		if ((pahmep->flags & flag) == 0)
6632 			continue;
6633 
6634 		pahmep->flags &= ~flag;
6635 
6636 		id = pahmep->cb_id;
6637 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6638 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6639 			continue;
6640 
6641 		/*
6642 		 * Convert the base page PFN into the constituent PFN
6643 		 * which is needed by the callback handler.
6644 		 */
6645 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6646 
6647 		/*
6648 		 * Drop the mapping list lock to avoid locking order issues.
6649 		 */
6650 		if (locked)
6651 			sfmmu_mlist_exit(pml);
6652 
6653 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6654 		    != 0)
6655 			panic("sfmmu: posthandler failed");
6656 
6657 		if (locked) {
6658 			pml = sfmmu_mlist_enter(pp);
6659 			goto top;
6660 		}
6661 	}
6662 
6663 	if (locked)
6664 		sfmmu_mlist_exit(pml);
6665 }
6666 
6667 /*
6668  * Suspend locked kernel mapping
6669  */
6670 void
6671 hat_pagesuspend(struct page *pp)
6672 {
6673 	struct sf_hment *sfhmep;
6674 	sfmmu_t *sfmmup;
6675 	tte_t tte, ttemod;
6676 	struct hme_blk *hmeblkp;
6677 	caddr_t addr;
6678 	int index, cons;
6679 	cpuset_t cpuset;
6680 
6681 	ASSERT(PAGE_EXCL(pp));
6682 	ASSERT(sfmmu_mlist_held(pp));
6683 
6684 	mutex_enter(&kpr_suspendlock);
6685 
6686 	/*
6687 	 * We're about to suspend a kernel mapping so mark this thread as
6688 	 * non-traceable by DTrace. This prevents us from running into issues
6689 	 * with probe context trying to touch a suspended page
6690 	 * in the relocation codepath itself.
6691 	 */
6692 	curthread->t_flag |= T_DONTDTRACE;
6693 
6694 	index = PP_MAPINDEX(pp);
6695 	cons = TTE8K;
6696 
6697 retry:
6698 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6699 
6700 		if (IS_PAHME(sfhmep))
6701 			continue;
6702 
6703 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6704 			continue;
6705 
6706 		/*
6707 		 * Loop until we successfully set the suspend bit in
6708 		 * the TTE.
6709 		 */
6710 again:
6711 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6712 		ASSERT(TTE_IS_VALID(&tte));
6713 
6714 		ttemod = tte;
6715 		TTE_SET_SUSPEND(&ttemod);
6716 		if (sfmmu_modifytte_try(&tte, &ttemod,
6717 		    &sfhmep->hme_tte) < 0)
6718 			goto again;
6719 
6720 		/*
6721 		 * Invalidate TSB entry
6722 		 */
6723 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6724 
6725 		sfmmup = hblktosfmmu(hmeblkp);
6726 		ASSERT(sfmmup == ksfmmup);
6727 		ASSERT(!hmeblkp->hblk_shared);
6728 
6729 		addr = tte_to_vaddr(hmeblkp, tte);
6730 
6731 		/*
6732 		 * No need to make sure that the TSB for this sfmmu is
6733 		 * not being relocated since it is ksfmmup and thus it
6734 		 * will never be relocated.
6735 		 */
6736 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6737 
6738 		/*
6739 		 * Update xcall stats
6740 		 */
6741 		cpuset = cpu_ready_set;
6742 		CPUSET_DEL(cpuset, CPU->cpu_id);
6743 
6744 		/* LINTED: constant in conditional context */
6745 		SFMMU_XCALL_STATS(ksfmmup);
6746 
6747 		/*
6748 		 * Flush TLB entry on remote CPU's
6749 		 */
6750 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6751 		    (uint64_t)ksfmmup);
6752 		xt_sync(cpuset);
6753 
6754 		/*
6755 		 * Flush TLB entry on local CPU
6756 		 */
6757 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6758 	}
6759 
6760 	while (index != 0) {
6761 		index = index >> 1;
6762 		if (index != 0)
6763 			cons++;
6764 		if (index & 0x1) {
6765 			pp = PP_GROUPLEADER(pp, cons);
6766 			goto retry;
6767 		}
6768 	}
6769 }
6770 
6771 #ifdef	DEBUG
6772 
6773 #define	N_PRLE	1024
6774 struct prle {
6775 	page_t *targ;
6776 	page_t *repl;
6777 	int status;
6778 	int pausecpus;
6779 	hrtime_t whence;
6780 };
6781 
6782 static struct prle page_relocate_log[N_PRLE];
6783 static int prl_entry;
6784 static kmutex_t prl_mutex;
6785 
6786 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6787 	mutex_enter(&prl_mutex);					\
6788 	page_relocate_log[prl_entry].targ = *(t);			\
6789 	page_relocate_log[prl_entry].repl = *(r);			\
6790 	page_relocate_log[prl_entry].status = (s);			\
6791 	page_relocate_log[prl_entry].pausecpus = (p);			\
6792 	page_relocate_log[prl_entry].whence = gethrtime();		\
6793 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6794 	mutex_exit(&prl_mutex);
6795 
6796 #else	/* !DEBUG */
6797 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6798 #endif
6799 
6800 /*
6801  * Core Kernel Page Relocation Algorithm
6802  *
6803  * Input:
6804  *
6805  * target : 	constituent pages are SE_EXCL locked.
6806  * replacement:	constituent pages are SE_EXCL locked.
6807  *
6808  * Output:
6809  *
6810  * nrelocp:	number of pages relocated
6811  */
6812 int
6813 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6814 {
6815 	page_t		*targ, *repl;
6816 	page_t		*tpp, *rpp;
6817 	kmutex_t	*low, *high;
6818 	spgcnt_t	npages, i;
6819 	page_t		*pl = NULL;
6820 	uint_t		ppattr;
6821 	int		old_pil;
6822 	cpuset_t	cpuset;
6823 	int		cap_cpus;
6824 	int		ret;
6825 #ifdef VAC
6826 	int		cflags = 0;
6827 #endif
6828 
6829 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6830 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6831 		return (EAGAIN);
6832 	}
6833 
6834 	mutex_enter(&kpr_mutex);
6835 	kreloc_thread = curthread;
6836 
6837 	targ = *target;
6838 	repl = *replacement;
6839 	ASSERT(repl != NULL);
6840 	ASSERT(targ->p_szc == repl->p_szc);
6841 
6842 	npages = page_get_pagecnt(targ->p_szc);
6843 
6844 	/*
6845 	 * unload VA<->PA mappings that are not locked
6846 	 */
6847 	tpp = targ;
6848 	for (i = 0; i < npages; i++) {
6849 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6850 		tpp++;
6851 	}
6852 
6853 	/*
6854 	 * Do "presuspend" callbacks, in a context from which we can still
6855 	 * block as needed. Note that we don't hold the mapping list lock
6856 	 * of "targ" at this point due to potential locking order issues;
6857 	 * we assume that between the hat_pageunload() above and holding
6858 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6859 	 * point.
6860 	 */
6861 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6862 	if (ret != 0) {
6863 		/*
6864 		 * EIO translates to fatal error, for all others cleanup
6865 		 * and return EAGAIN.
6866 		 */
6867 		ASSERT(ret != EIO);
6868 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6869 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6870 		kreloc_thread = NULL;
6871 		mutex_exit(&kpr_mutex);
6872 		return (EAGAIN);
6873 	}
6874 
6875 	/*
6876 	 * acquire p_mapping list lock for both the target and replacement
6877 	 * root pages.
6878 	 *
6879 	 * low and high refer to the need to grab the mlist locks in a
6880 	 * specific order in order to prevent race conditions.  Thus the
6881 	 * lower lock must be grabbed before the higher lock.
6882 	 *
6883 	 * This will block hat_unload's accessing p_mapping list.  Since
6884 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6885 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6886 	 * while we suspend and reload the locked mapping below.
6887 	 */
6888 	tpp = targ;
6889 	rpp = repl;
6890 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6891 
6892 	kpreempt_disable();
6893 
6894 	/*
6895 	 * We raise our PIL to 13 so that we don't get captured by
6896 	 * another CPU or pinned by an interrupt thread.  We can't go to
6897 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6898 	 * that level in the case of IOMMU pseudo mappings.
6899 	 */
6900 	cpuset = cpu_ready_set;
6901 	CPUSET_DEL(cpuset, CPU->cpu_id);
6902 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6903 		old_pil = splr(XCALL_PIL);
6904 	} else {
6905 		old_pil = -1;
6906 		xc_attention(cpuset);
6907 	}
6908 	ASSERT(getpil() == XCALL_PIL);
6909 
6910 	/*
6911 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6912 	 * this will suspend all DMA activity to the page while it is
6913 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6914 	 * may be captured at this point we should have acquired any needed
6915 	 * locks in the presuspend callback.
6916 	 */
6917 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6918 	if (ret != 0) {
6919 		repl = targ;
6920 		goto suspend_fail;
6921 	}
6922 
6923 	/*
6924 	 * Raise the PIL yet again, this time to block all high-level
6925 	 * interrupts on this CPU. This is necessary to prevent an
6926 	 * interrupt routine from pinning the thread which holds the
6927 	 * mapping suspended and then touching the suspended page.
6928 	 *
6929 	 * Once the page is suspended we also need to be careful to
6930 	 * avoid calling any functions which touch any seg_kmem memory
6931 	 * since that memory may be backed by the very page we are
6932 	 * relocating in here!
6933 	 */
6934 	hat_pagesuspend(targ);
6935 
6936 	/*
6937 	 * Now that we are confident everybody has stopped using this page,
6938 	 * copy the page contents.  Note we use a physical copy to prevent
6939 	 * locking issues and to avoid fpRAS because we can't handle it in
6940 	 * this context.
6941 	 */
6942 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6943 #ifdef VAC
6944 		/*
6945 		 * If the replacement has a different vcolor than
6946 		 * the one being replacd, we need to handle VAC
6947 		 * consistency for it just as we were setting up
6948 		 * a new mapping to it.
6949 		 */
6950 		if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
6951 		    (tpp->p_vcolor != rpp->p_vcolor) &&
6952 		    !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
6953 			CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
6954 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6955 			    rpp->p_pagenum);
6956 		}
6957 #endif
6958 		/*
6959 		 * Copy the contents of the page.
6960 		 */
6961 		ppcopy_kernel(tpp, rpp);
6962 	}
6963 
6964 	tpp = targ;
6965 	rpp = repl;
6966 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6967 		/*
6968 		 * Copy attributes.  VAC consistency was handled above,
6969 		 * if required.
6970 		 */
6971 		ppattr = hat_page_getattr(tpp, (P_MOD | P_REF | P_RO));
6972 		page_clr_all_props(rpp, 0);
6973 		page_set_props(rpp, ppattr);
6974 		rpp->p_index = tpp->p_index;
6975 		tpp->p_index = 0;
6976 #ifdef VAC
6977 		rpp->p_vcolor = tpp->p_vcolor;
6978 #endif
6979 	}
6980 
6981 	/*
6982 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6983 	 * the mapping list from the target page to the replacement page.
6984 	 * Next process postcallbacks; since pa_hment's are linked only to the
6985 	 * p_mapping list of root page, we don't iterate over the constituent
6986 	 * pages.
6987 	 */
6988 	hat_pagereload(targ, repl);
6989 
6990 suspend_fail:
6991 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6992 
6993 	/*
6994 	 * Now lower our PIL and release any captured CPUs since we
6995 	 * are out of the "danger zone".  After this it will again be
6996 	 * safe to acquire adaptive mutex locks, or to drop them...
6997 	 */
6998 	if (old_pil != -1) {
6999 		splx(old_pil);
7000 	} else {
7001 		xc_dismissed(cpuset);
7002 	}
7003 
7004 	kpreempt_enable();
7005 
7006 	sfmmu_mlist_reloc_exit(low, high);
7007 
7008 	/*
7009 	 * Postsuspend callbacks should drop any locks held across
7010 	 * the suspend callbacks.  As before, we don't hold the mapping
7011 	 * list lock at this point.. our assumption is that the mapping
7012 	 * list still can't change due to our holding SE_EXCL lock and
7013 	 * there being no unlocked mappings left. Hence the restriction
7014 	 * on calling context to hat_delete_callback()
7015 	 */
7016 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
7017 	if (ret != 0) {
7018 		/*
7019 		 * The second presuspend call failed: we got here through
7020 		 * the suspend_fail label above.
7021 		 */
7022 		ASSERT(ret != EIO);
7023 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
7024 		kreloc_thread = NULL;
7025 		mutex_exit(&kpr_mutex);
7026 		return (EAGAIN);
7027 	}
7028 
7029 	/*
7030 	 * Now that we're out of the performance critical section we can
7031 	 * take care of updating the hash table, since we still
7032 	 * hold all the pages locked SE_EXCL at this point we
7033 	 * needn't worry about things changing out from under us.
7034 	 */
7035 	tpp = targ;
7036 	rpp = repl;
7037 	for (i = 0; i < npages; i++, tpp++, rpp++) {
7038 
7039 		/*
7040 		 * replace targ with replacement in page_hash table
7041 		 */
7042 		targ = tpp;
7043 		page_relocate_hash(rpp, targ);
7044 
7045 		/*
7046 		 * concatenate target; caller of platform_page_relocate()
7047 		 * expects target to be concatenated after returning.
7048 		 */
7049 		ASSERT(targ->p_next == targ);
7050 		ASSERT(targ->p_prev == targ);
7051 		page_list_concat(&pl, &targ);
7052 	}
7053 
7054 	ASSERT(*target == pl);
7055 	*nrelocp = npages;
7056 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
7057 	kreloc_thread = NULL;
7058 	mutex_exit(&kpr_mutex);
7059 	return (0);
7060 }
7061 
7062 /*
7063  * Called when stray pa_hments are found attached to a page which is
7064  * being freed.  Notify the subsystem which attached the pa_hment of
7065  * the error if it registered a suitable handler, else panic.
7066  */
7067 static void
7068 sfmmu_pahment_leaked(struct pa_hment *pahmep)
7069 {
7070 	id_t cb_id = pahmep->cb_id;
7071 
7072 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
7073 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
7074 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
7075 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
7076 			return;		/* non-fatal */
7077 	}
7078 	panic("pa_hment leaked: 0x%p", (void *)pahmep);
7079 }
7080 
7081 /*
7082  * Remove all mappings to page 'pp'.
7083  */
7084 int
7085 hat_pageunload(struct page *pp, uint_t forceflag)
7086 {
7087 	struct page *origpp = pp;
7088 	struct sf_hment *sfhme, *tmphme;
7089 	struct hme_blk *hmeblkp;
7090 	kmutex_t *pml;
7091 #ifdef VAC
7092 	kmutex_t *pmtx;
7093 #endif
7094 	cpuset_t cpuset, tset;
7095 	int index, cons;
7096 	int xhme_blks;
7097 	int pa_hments;
7098 
7099 	ASSERT(PAGE_EXCL(pp));
7100 
7101 retry_xhat:
7102 	tmphme = NULL;
7103 	xhme_blks = 0;
7104 	pa_hments = 0;
7105 	CPUSET_ZERO(cpuset);
7106 
7107 	pml = sfmmu_mlist_enter(pp);
7108 
7109 #ifdef VAC
7110 	if (pp->p_kpmref)
7111 		sfmmu_kpm_pageunload(pp);
7112 	ASSERT(!PP_ISMAPPED_KPM(pp));
7113 #endif
7114 
7115 	index = PP_MAPINDEX(pp);
7116 	cons = TTE8K;
7117 retry:
7118 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7119 		tmphme = sfhme->hme_next;
7120 
7121 		if (IS_PAHME(sfhme)) {
7122 			ASSERT(sfhme->hme_data != NULL);
7123 			pa_hments++;
7124 			continue;
7125 		}
7126 
7127 		hmeblkp = sfmmu_hmetohblk(sfhme);
7128 		if (hmeblkp->hblk_xhat_bit) {
7129 			struct xhat_hme_blk *xblk =
7130 			    (struct xhat_hme_blk *)hmeblkp;
7131 
7132 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
7133 			    pp, forceflag, XBLK2PROVBLK(xblk));
7134 
7135 			xhme_blks = 1;
7136 			continue;
7137 		}
7138 
7139 		/*
7140 		 * If there are kernel mappings don't unload them, they will
7141 		 * be suspended.
7142 		 */
7143 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7144 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
7145 			continue;
7146 
7147 		tset = sfmmu_pageunload(pp, sfhme, cons);
7148 		CPUSET_OR(cpuset, tset);
7149 	}
7150 
7151 	while (index != 0) {
7152 		index = index >> 1;
7153 		if (index != 0)
7154 			cons++;
7155 		if (index & 0x1) {
7156 			/* Go to leading page */
7157 			pp = PP_GROUPLEADER(pp, cons);
7158 			ASSERT(sfmmu_mlist_held(pp));
7159 			goto retry;
7160 		}
7161 	}
7162 
7163 	/*
7164 	 * cpuset may be empty if the page was only mapped by segkpm,
7165 	 * in which case we won't actually cross-trap.
7166 	 */
7167 	xt_sync(cpuset);
7168 
7169 	/*
7170 	 * The page should have no mappings at this point, unless
7171 	 * we were called from hat_page_relocate() in which case we
7172 	 * leave the locked mappings which will be suspended later.
7173 	 */
7174 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
7175 	    (forceflag == SFMMU_KERNEL_RELOC));
7176 
7177 #ifdef VAC
7178 	if (PP_ISTNC(pp)) {
7179 		if (cons == TTE8K) {
7180 			pmtx = sfmmu_page_enter(pp);
7181 			PP_CLRTNC(pp);
7182 			sfmmu_page_exit(pmtx);
7183 		} else {
7184 			conv_tnc(pp, cons);
7185 		}
7186 	}
7187 #endif	/* VAC */
7188 
7189 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7190 		/*
7191 		 * Unlink any pa_hments and free them, calling back
7192 		 * the responsible subsystem to notify it of the error.
7193 		 * This can occur in situations such as drivers leaking
7194 		 * DMA handles: naughty, but common enough that we'd like
7195 		 * to keep the system running rather than bringing it
7196 		 * down with an obscure error like "pa_hment leaked"
7197 		 * which doesn't aid the user in debugging their driver.
7198 		 */
7199 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7200 			tmphme = sfhme->hme_next;
7201 			if (IS_PAHME(sfhme)) {
7202 				struct pa_hment *pahmep = sfhme->hme_data;
7203 				sfmmu_pahment_leaked(pahmep);
7204 				HME_SUB(sfhme, pp);
7205 				kmem_cache_free(pa_hment_cache, pahmep);
7206 			}
7207 		}
7208 
7209 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
7210 	}
7211 
7212 	sfmmu_mlist_exit(pml);
7213 
7214 	/*
7215 	 * XHAT may not have finished unloading pages
7216 	 * because some other thread was waiting for
7217 	 * mlist lock and XHAT_PAGEUNLOAD let it do
7218 	 * the job.
7219 	 */
7220 	if (xhme_blks) {
7221 		pp = origpp;
7222 		goto retry_xhat;
7223 	}
7224 
7225 	return (0);
7226 }
7227 
7228 cpuset_t
7229 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7230 {
7231 	struct hme_blk *hmeblkp;
7232 	sfmmu_t *sfmmup;
7233 	tte_t tte, ttemod;
7234 #ifdef DEBUG
7235 	tte_t orig_old;
7236 #endif /* DEBUG */
7237 	caddr_t addr;
7238 	int ttesz;
7239 	int ret;
7240 	cpuset_t cpuset;
7241 
7242 	ASSERT(pp != NULL);
7243 	ASSERT(sfmmu_mlist_held(pp));
7244 	ASSERT(!PP_ISKAS(pp));
7245 
7246 	CPUSET_ZERO(cpuset);
7247 
7248 	hmeblkp = sfmmu_hmetohblk(sfhme);
7249 
7250 readtte:
7251 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7252 	if (TTE_IS_VALID(&tte)) {
7253 		sfmmup = hblktosfmmu(hmeblkp);
7254 		ttesz = get_hblk_ttesz(hmeblkp);
7255 		/*
7256 		 * Only unload mappings of 'cons' size.
7257 		 */
7258 		if (ttesz != cons)
7259 			return (cpuset);
7260 
7261 		/*
7262 		 * Note that we have p_mapping lock, but no hash lock here.
7263 		 * hblk_unload() has to have both hash lock AND p_mapping
7264 		 * lock before it tries to modify tte. So, the tte could
7265 		 * not become invalid in the sfmmu_modifytte_try() below.
7266 		 */
7267 		ttemod = tte;
7268 #ifdef DEBUG
7269 		orig_old = tte;
7270 #endif /* DEBUG */
7271 
7272 		TTE_SET_INVALID(&ttemod);
7273 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7274 		if (ret < 0) {
7275 #ifdef DEBUG
7276 			/* only R/M bits can change. */
7277 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7278 #endif /* DEBUG */
7279 			goto readtte;
7280 		}
7281 
7282 		if (ret == 0) {
7283 			panic("pageunload: cas failed?");
7284 		}
7285 
7286 		addr = tte_to_vaddr(hmeblkp, tte);
7287 
7288 		if (hmeblkp->hblk_shared) {
7289 			sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7290 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
7291 			sf_region_t *rgnp;
7292 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7293 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7294 			ASSERT(srdp != NULL);
7295 			rgnp = srdp->srd_hmergnp[rid];
7296 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7297 			cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7298 			sfmmu_ttesync(NULL, addr, &tte, pp);
7299 			ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7300 			atomic_add_long(&rgnp->rgn_ttecnt[ttesz], -1);
7301 		} else {
7302 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
7303 			atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
7304 
7305 			/*
7306 			 * We need to flush the page from the virtual cache
7307 			 * in order to prevent a virtual cache alias
7308 			 * inconsistency. The particular scenario we need
7309 			 * to worry about is:
7310 			 * Given:  va1 and va2 are two virtual address that
7311 			 * alias and will map the same physical address.
7312 			 * 1.   mapping exists from va1 to pa and data has
7313 			 *	been read into the cache.
7314 			 * 2.   unload va1.
7315 			 * 3.   load va2 and modify data using va2.
7316 			 * 4    unload va2.
7317 			 * 5.   load va1 and reference data.  Unless we flush
7318 			 *	the data cache when we unload we will get
7319 			 *	stale data.
7320 			 * This scenario is taken care of by using virtual
7321 			 * page coloring.
7322 			 */
7323 			if (sfmmup->sfmmu_ismhat) {
7324 				/*
7325 				 * Flush TSBs, TLBs and caches
7326 				 * of every process
7327 				 * sharing this ism segment.
7328 				 */
7329 				sfmmu_hat_lock_all();
7330 				mutex_enter(&ism_mlist_lock);
7331 				kpreempt_disable();
7332 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7333 				    pp->p_pagenum, CACHE_NO_FLUSH);
7334 				kpreempt_enable();
7335 				mutex_exit(&ism_mlist_lock);
7336 				sfmmu_hat_unlock_all();
7337 				cpuset = cpu_ready_set;
7338 			} else {
7339 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7340 				cpuset = sfmmup->sfmmu_cpusran;
7341 			}
7342 		}
7343 
7344 		/*
7345 		 * Hme_sub has to run after ttesync() and a_rss update.
7346 		 * See hblk_unload().
7347 		 */
7348 		HME_SUB(sfhme, pp);
7349 		membar_stst();
7350 
7351 		/*
7352 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7353 		 * since pteload may have done a HME_ADD() right after
7354 		 * we did the HME_SUB() above. Hmecnt is now maintained
7355 		 * by cas only. no lock guranteed its value. The only
7356 		 * gurantee we have is the hmecnt should not be less than
7357 		 * what it should be so the hblk will not be taken away.
7358 		 * It's also important that we decremented the hmecnt after
7359 		 * we are done with hmeblkp so that this hmeblk won't be
7360 		 * stolen.
7361 		 */
7362 		ASSERT(hmeblkp->hblk_hmecnt > 0);
7363 		ASSERT(hmeblkp->hblk_vcnt > 0);
7364 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
7365 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
7366 		/*
7367 		 * This is bug 4063182.
7368 		 * XXX: fixme
7369 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7370 		 *	!hmeblkp->hblk_lckcnt);
7371 		 */
7372 	} else {
7373 		panic("invalid tte? pp %p &tte %p",
7374 		    (void *)pp, (void *)&tte);
7375 	}
7376 
7377 	return (cpuset);
7378 }
7379 
7380 /*
7381  * While relocating a kernel page, this function will move the mappings
7382  * from tpp to dpp and modify any associated data with these mappings.
7383  * It also unsuspends the suspended kernel mapping.
7384  */
7385 static void
7386 hat_pagereload(struct page *tpp, struct page *dpp)
7387 {
7388 	struct sf_hment *sfhme;
7389 	tte_t tte, ttemod;
7390 	int index, cons;
7391 
7392 	ASSERT(getpil() == PIL_MAX);
7393 	ASSERT(sfmmu_mlist_held(tpp));
7394 	ASSERT(sfmmu_mlist_held(dpp));
7395 
7396 	index = PP_MAPINDEX(tpp);
7397 	cons = TTE8K;
7398 
7399 	/* Update real mappings to the page */
7400 retry:
7401 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7402 		if (IS_PAHME(sfhme))
7403 			continue;
7404 		sfmmu_copytte(&sfhme->hme_tte, &tte);
7405 		ttemod = tte;
7406 
7407 		/*
7408 		 * replace old pfn with new pfn in TTE
7409 		 */
7410 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
7411 
7412 		/*
7413 		 * clear suspend bit
7414 		 */
7415 		ASSERT(TTE_IS_SUSPEND(&ttemod));
7416 		TTE_CLR_SUSPEND(&ttemod);
7417 
7418 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7419 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7420 
7421 		/*
7422 		 * set hme_page point to new page
7423 		 */
7424 		sfhme->hme_page = dpp;
7425 	}
7426 
7427 	/*
7428 	 * move p_mapping list from old page to new page
7429 	 */
7430 	dpp->p_mapping = tpp->p_mapping;
7431 	tpp->p_mapping = NULL;
7432 	dpp->p_share = tpp->p_share;
7433 	tpp->p_share = 0;
7434 
7435 	while (index != 0) {
7436 		index = index >> 1;
7437 		if (index != 0)
7438 			cons++;
7439 		if (index & 0x1) {
7440 			tpp = PP_GROUPLEADER(tpp, cons);
7441 			dpp = PP_GROUPLEADER(dpp, cons);
7442 			goto retry;
7443 		}
7444 	}
7445 
7446 	curthread->t_flag &= ~T_DONTDTRACE;
7447 	mutex_exit(&kpr_suspendlock);
7448 }
7449 
7450 uint_t
7451 hat_pagesync(struct page *pp, uint_t clearflag)
7452 {
7453 	struct sf_hment *sfhme, *tmphme = NULL;
7454 	struct hme_blk *hmeblkp;
7455 	kmutex_t *pml;
7456 	cpuset_t cpuset, tset;
7457 	int	index, cons;
7458 	extern	ulong_t po_share;
7459 	page_t	*save_pp = pp;
7460 	int	stop_on_sh = 0;
7461 	uint_t	shcnt;
7462 
7463 	CPUSET_ZERO(cpuset);
7464 
7465 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7466 		return (PP_GENERIC_ATTR(pp));
7467 	}
7468 
7469 	if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7470 		if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7471 			return (PP_GENERIC_ATTR(pp));
7472 		}
7473 		if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7474 			return (PP_GENERIC_ATTR(pp));
7475 		}
7476 		if (clearflag & HAT_SYNC_STOPON_SHARED) {
7477 			if (pp->p_share > po_share) {
7478 				hat_page_setattr(pp, P_REF);
7479 				return (PP_GENERIC_ATTR(pp));
7480 			}
7481 			stop_on_sh = 1;
7482 			shcnt = 0;
7483 		}
7484 	}
7485 
7486 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
7487 	pml = sfmmu_mlist_enter(pp);
7488 	index = PP_MAPINDEX(pp);
7489 	cons = TTE8K;
7490 retry:
7491 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7492 		/*
7493 		 * We need to save the next hment on the list since
7494 		 * it is possible for pagesync to remove an invalid hment
7495 		 * from the list.
7496 		 */
7497 		tmphme = sfhme->hme_next;
7498 		if (IS_PAHME(sfhme))
7499 			continue;
7500 		/*
7501 		 * If we are looking for large mappings and this hme doesn't
7502 		 * reach the range we are seeking, just ignore it.
7503 		 */
7504 		hmeblkp = sfmmu_hmetohblk(sfhme);
7505 		if (hmeblkp->hblk_xhat_bit)
7506 			continue;
7507 
7508 		if (hme_size(sfhme) < cons)
7509 			continue;
7510 
7511 		if (stop_on_sh) {
7512 			if (hmeblkp->hblk_shared) {
7513 				sf_srd_t *srdp = hblktosrd(hmeblkp);
7514 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7515 				sf_region_t *rgnp;
7516 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7517 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7518 				ASSERT(srdp != NULL);
7519 				rgnp = srdp->srd_hmergnp[rid];
7520 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7521 				    rgnp, rid);
7522 				shcnt += rgnp->rgn_refcnt;
7523 			} else {
7524 				shcnt++;
7525 			}
7526 			if (shcnt > po_share) {
7527 				/*
7528 				 * tell the pager to spare the page this time
7529 				 * around.
7530 				 */
7531 				hat_page_setattr(save_pp, P_REF);
7532 				index = 0;
7533 				break;
7534 			}
7535 		}
7536 		tset = sfmmu_pagesync(pp, sfhme,
7537 		    clearflag & ~HAT_SYNC_STOPON_RM);
7538 		CPUSET_OR(cpuset, tset);
7539 
7540 		/*
7541 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7542 		 * as the "ref" or "mod" is set or share cnt exceeds po_share.
7543 		 */
7544 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7545 		    (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7546 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7547 			index = 0;
7548 			break;
7549 		}
7550 	}
7551 
7552 	while (index) {
7553 		index = index >> 1;
7554 		cons++;
7555 		if (index & 0x1) {
7556 			/* Go to leading page */
7557 			pp = PP_GROUPLEADER(pp, cons);
7558 			goto retry;
7559 		}
7560 	}
7561 
7562 	xt_sync(cpuset);
7563 	sfmmu_mlist_exit(pml);
7564 	return (PP_GENERIC_ATTR(save_pp));
7565 }
7566 
7567 /*
7568  * Get all the hardware dependent attributes for a page struct
7569  */
7570 static cpuset_t
7571 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7572 	uint_t clearflag)
7573 {
7574 	caddr_t addr;
7575 	tte_t tte, ttemod;
7576 	struct hme_blk *hmeblkp;
7577 	int ret;
7578 	sfmmu_t *sfmmup;
7579 	cpuset_t cpuset;
7580 
7581 	ASSERT(pp != NULL);
7582 	ASSERT(sfmmu_mlist_held(pp));
7583 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7584 	    (clearflag == HAT_SYNC_ZERORM));
7585 
7586 	SFMMU_STAT(sf_pagesync);
7587 
7588 	CPUSET_ZERO(cpuset);
7589 
7590 sfmmu_pagesync_retry:
7591 
7592 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7593 	if (TTE_IS_VALID(&tte)) {
7594 		hmeblkp = sfmmu_hmetohblk(sfhme);
7595 		sfmmup = hblktosfmmu(hmeblkp);
7596 		addr = tte_to_vaddr(hmeblkp, tte);
7597 		if (clearflag == HAT_SYNC_ZERORM) {
7598 			ttemod = tte;
7599 			TTE_CLR_RM(&ttemod);
7600 			ret = sfmmu_modifytte_try(&tte, &ttemod,
7601 			    &sfhme->hme_tte);
7602 			if (ret < 0) {
7603 				/*
7604 				 * cas failed and the new value is not what
7605 				 * we want.
7606 				 */
7607 				goto sfmmu_pagesync_retry;
7608 			}
7609 
7610 			if (ret > 0) {
7611 				/* we win the cas */
7612 				if (hmeblkp->hblk_shared) {
7613 					sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7614 					uint_t rid =
7615 					    hmeblkp->hblk_tag.htag_rid;
7616 					sf_region_t *rgnp;
7617 					ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7618 					ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7619 					ASSERT(srdp != NULL);
7620 					rgnp = srdp->srd_hmergnp[rid];
7621 					SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7622 					    srdp, rgnp, rid);
7623 					cpuset = sfmmu_rgntlb_demap(addr,
7624 					    rgnp, hmeblkp, 1);
7625 				} else {
7626 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7627 					    0, 0);
7628 					cpuset = sfmmup->sfmmu_cpusran;
7629 				}
7630 			}
7631 		}
7632 		sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7633 		    &tte, pp);
7634 	}
7635 	return (cpuset);
7636 }
7637 
7638 /*
7639  * Remove write permission from a mappings to a page, so that
7640  * we can detect the next modification of it. This requires modifying
7641  * the TTE then invalidating (demap) any TLB entry using that TTE.
7642  * This code is similar to sfmmu_pagesync().
7643  */
7644 static cpuset_t
7645 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7646 {
7647 	caddr_t addr;
7648 	tte_t tte;
7649 	tte_t ttemod;
7650 	struct hme_blk *hmeblkp;
7651 	int ret;
7652 	sfmmu_t *sfmmup;
7653 	cpuset_t cpuset;
7654 
7655 	ASSERT(pp != NULL);
7656 	ASSERT(sfmmu_mlist_held(pp));
7657 
7658 	CPUSET_ZERO(cpuset);
7659 	SFMMU_STAT(sf_clrwrt);
7660 
7661 retry:
7662 
7663 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7664 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7665 		hmeblkp = sfmmu_hmetohblk(sfhme);
7666 
7667 		/*
7668 		 * xhat mappings should never be to a VMODSORT page.
7669 		 */
7670 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
7671 
7672 		sfmmup = hblktosfmmu(hmeblkp);
7673 		addr = tte_to_vaddr(hmeblkp, tte);
7674 
7675 		ttemod = tte;
7676 		TTE_CLR_WRT(&ttemod);
7677 		TTE_CLR_MOD(&ttemod);
7678 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7679 
7680 		/*
7681 		 * if cas failed and the new value is not what
7682 		 * we want retry
7683 		 */
7684 		if (ret < 0)
7685 			goto retry;
7686 
7687 		/* we win the cas */
7688 		if (ret > 0) {
7689 			if (hmeblkp->hblk_shared) {
7690 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7691 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7692 				sf_region_t *rgnp;
7693 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7694 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7695 				ASSERT(srdp != NULL);
7696 				rgnp = srdp->srd_hmergnp[rid];
7697 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7698 				    srdp, rgnp, rid);
7699 				cpuset = sfmmu_rgntlb_demap(addr,
7700 				    rgnp, hmeblkp, 1);
7701 			} else {
7702 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7703 				cpuset = sfmmup->sfmmu_cpusran;
7704 			}
7705 		}
7706 	}
7707 
7708 	return (cpuset);
7709 }
7710 
7711 /*
7712  * Walk all mappings of a page, removing write permission and clearing the
7713  * ref/mod bits. This code is similar to hat_pagesync()
7714  */
7715 static void
7716 hat_page_clrwrt(page_t *pp)
7717 {
7718 	struct sf_hment *sfhme;
7719 	struct sf_hment *tmphme = NULL;
7720 	kmutex_t *pml;
7721 	cpuset_t cpuset;
7722 	cpuset_t tset;
7723 	int	index;
7724 	int	 cons;
7725 
7726 	CPUSET_ZERO(cpuset);
7727 
7728 	pml = sfmmu_mlist_enter(pp);
7729 	index = PP_MAPINDEX(pp);
7730 	cons = TTE8K;
7731 retry:
7732 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7733 		tmphme = sfhme->hme_next;
7734 
7735 		/*
7736 		 * If we are looking for large mappings and this hme doesn't
7737 		 * reach the range we are seeking, just ignore its.
7738 		 */
7739 
7740 		if (hme_size(sfhme) < cons)
7741 			continue;
7742 
7743 		tset = sfmmu_pageclrwrt(pp, sfhme);
7744 		CPUSET_OR(cpuset, tset);
7745 	}
7746 
7747 	while (index) {
7748 		index = index >> 1;
7749 		cons++;
7750 		if (index & 0x1) {
7751 			/* Go to leading page */
7752 			pp = PP_GROUPLEADER(pp, cons);
7753 			goto retry;
7754 		}
7755 	}
7756 
7757 	xt_sync(cpuset);
7758 	sfmmu_mlist_exit(pml);
7759 }
7760 
7761 /*
7762  * Set the given REF/MOD/RO bits for the given page.
7763  * For a vnode with a sorted v_pages list, we need to change
7764  * the attributes and the v_pages list together under page_vnode_mutex.
7765  */
7766 void
7767 hat_page_setattr(page_t *pp, uint_t flag)
7768 {
7769 	vnode_t		*vp = pp->p_vnode;
7770 	page_t		**listp;
7771 	kmutex_t	*pmtx;
7772 	kmutex_t	*vphm = NULL;
7773 	int		noshuffle;
7774 
7775 	noshuffle = flag & P_NSH;
7776 	flag &= ~P_NSH;
7777 
7778 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO | P_EXEC)));
7779 
7780 	/*
7781 	 * nothing to do if attribute already set
7782 	 */
7783 	if ((pp->p_nrm & flag) == flag)
7784 		return;
7785 
7786 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7787 	    !noshuffle) {
7788 		vphm = page_vnode_mutex(vp);
7789 		mutex_enter(vphm);
7790 	}
7791 
7792 	pmtx = sfmmu_page_enter(pp);
7793 	pp->p_nrm |= flag;
7794 	sfmmu_page_exit(pmtx);
7795 
7796 	if (vphm != NULL) {
7797 		/*
7798 		 * Some File Systems examine v_pages for NULL w/o
7799 		 * grabbing the vphm mutex. Must not let it become NULL when
7800 		 * pp is the only page on the list.
7801 		 */
7802 		if (pp->p_vpnext != pp) {
7803 			page_vpsub(&vp->v_pages, pp);
7804 			if (vp->v_pages != NULL)
7805 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7806 			else
7807 				listp = &vp->v_pages;
7808 			page_vpadd(listp, pp);
7809 		}
7810 		mutex_exit(vphm);
7811 	}
7812 }
7813 
7814 void
7815 hat_page_clrattr(page_t *pp, uint_t flag)
7816 {
7817 	vnode_t		*vp = pp->p_vnode;
7818 	kmutex_t	*pmtx;
7819 
7820 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7821 
7822 	pmtx = sfmmu_page_enter(pp);
7823 
7824 	/*
7825 	 * Caller is expected to hold page's io lock for VMODSORT to work
7826 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7827 	 * bit is cleared.
7828 	 * We don't have assert to avoid tripping some existing third party
7829 	 * code. The dirty page is moved back to top of the v_page list
7830 	 * after IO is done in pvn_write_done().
7831 	 */
7832 	pp->p_nrm &= ~flag;
7833 	sfmmu_page_exit(pmtx);
7834 
7835 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7836 
7837 		/*
7838 		 * VMODSORT works by removing write permissions and getting
7839 		 * a fault when a page is made dirty. At this point
7840 		 * we need to remove write permission from all mappings
7841 		 * to this page.
7842 		 */
7843 		hat_page_clrwrt(pp);
7844 	}
7845 }
7846 
7847 uint_t
7848 hat_page_getattr(page_t *pp, uint_t flag)
7849 {
7850 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7851 	return ((uint_t)(pp->p_nrm & flag));
7852 }
7853 
7854 /*
7855  * DEBUG kernels: verify that a kernel va<->pa translation
7856  * is safe by checking the underlying page_t is in a page
7857  * relocation-safe state.
7858  */
7859 #ifdef	DEBUG
7860 void
7861 sfmmu_check_kpfn(pfn_t pfn)
7862 {
7863 	page_t *pp;
7864 	int index, cons;
7865 
7866 	if (hat_check_vtop == 0)
7867 		return;
7868 
7869 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7870 		return;
7871 
7872 	pp = page_numtopp_nolock(pfn);
7873 	if (!pp)
7874 		return;
7875 
7876 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7877 		return;
7878 
7879 	/*
7880 	 * Handed a large kernel page, we dig up the root page since we
7881 	 * know the root page might have the lock also.
7882 	 */
7883 	if (pp->p_szc != 0) {
7884 		index = PP_MAPINDEX(pp);
7885 		cons = TTE8K;
7886 again:
7887 		while (index != 0) {
7888 			index >>= 1;
7889 			if (index != 0)
7890 				cons++;
7891 			if (index & 0x1) {
7892 				pp = PP_GROUPLEADER(pp, cons);
7893 				goto again;
7894 			}
7895 		}
7896 	}
7897 
7898 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7899 		return;
7900 
7901 	/*
7902 	 * Pages need to be locked or allocated "permanent" (either from
7903 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7904 	 * page_create_va()) for VA->PA translations to be valid.
7905 	 */
7906 	if (!PP_ISNORELOC(pp))
7907 		panic("Illegal VA->PA translation, pp 0x%p not permanent",
7908 		    (void *)pp);
7909 	else
7910 		panic("Illegal VA->PA translation, pp 0x%p not locked",
7911 		    (void *)pp);
7912 }
7913 #endif	/* DEBUG */
7914 
7915 /*
7916  * Returns a page frame number for a given virtual address.
7917  * Returns PFN_INVALID to indicate an invalid mapping
7918  */
7919 pfn_t
7920 hat_getpfnum(struct hat *hat, caddr_t addr)
7921 {
7922 	pfn_t pfn;
7923 	tte_t tte;
7924 
7925 	/*
7926 	 * We would like to
7927 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7928 	 * but we can't because the iommu driver will call this
7929 	 * routine at interrupt time and it can't grab the as lock
7930 	 * or it will deadlock: A thread could have the as lock
7931 	 * and be waiting for io.  The io can't complete
7932 	 * because the interrupt thread is blocked trying to grab
7933 	 * the as lock.
7934 	 */
7935 
7936 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7937 
7938 	if (hat == ksfmmup) {
7939 		if (IS_KMEM_VA_LARGEPAGE(addr)) {
7940 			ASSERT(segkmem_lpszc > 0);
7941 			pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7942 			if (pfn != PFN_INVALID) {
7943 				sfmmu_check_kpfn(pfn);
7944 				return (pfn);
7945 			}
7946 		} else if (segkpm && IS_KPM_ADDR(addr)) {
7947 			return (sfmmu_kpm_vatopfn(addr));
7948 		}
7949 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7950 		    == PFN_SUSPENDED) {
7951 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7952 		}
7953 		sfmmu_check_kpfn(pfn);
7954 		return (pfn);
7955 	} else {
7956 		return (sfmmu_uvatopfn(addr, hat, NULL));
7957 	}
7958 }
7959 
7960 /*
7961  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7962  * Use hat_getpfnum(kas.a_hat, ...) instead.
7963  *
7964  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7965  * but can't right now due to the fact that some software has grown to use
7966  * this interface incorrectly. So for now when the interface is misused,
7967  * return a warning to the user that in the future it won't work in the
7968  * way they're abusing it, and carry on (after disabling page relocation).
7969  */
7970 pfn_t
7971 hat_getkpfnum(caddr_t addr)
7972 {
7973 	pfn_t pfn;
7974 	tte_t tte;
7975 	int badcaller = 0;
7976 	extern int segkmem_reloc;
7977 
7978 	if (segkpm && IS_KPM_ADDR(addr)) {
7979 		badcaller = 1;
7980 		pfn = sfmmu_kpm_vatopfn(addr);
7981 	} else {
7982 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7983 		    == PFN_SUSPENDED) {
7984 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7985 		}
7986 		badcaller = pf_is_memory(pfn);
7987 	}
7988 
7989 	if (badcaller) {
7990 		/*
7991 		 * We can't return PFN_INVALID or the caller may panic
7992 		 * or corrupt the system.  The only alternative is to
7993 		 * disable page relocation at this point for all kernel
7994 		 * memory.  This will impact any callers of page_relocate()
7995 		 * such as FMA or DR.
7996 		 *
7997 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7998 		 * can be advised that he should upgrade his device driver
7999 		 * so that this doesn't happen.
8000 		 */
8001 		hat_getkpfnum_badcall(caller());
8002 		if (hat_kpr_enabled && segkmem_reloc) {
8003 			hat_kpr_enabled = 0;
8004 			segkmem_reloc = 0;
8005 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
8006 		}
8007 	}
8008 	return (pfn);
8009 }
8010 
8011 /*
8012  * This routine will return both pfn and tte for the vaddr.
8013  */
8014 static pfn_t
8015 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
8016 {
8017 	struct hmehash_bucket *hmebp;
8018 	hmeblk_tag hblktag;
8019 	int hmeshift, hashno = 1;
8020 	struct hme_blk *hmeblkp = NULL;
8021 	tte_t tte;
8022 
8023 	struct sf_hment *sfhmep;
8024 	pfn_t pfn;
8025 
8026 	/* support for ISM */
8027 	ism_map_t	*ism_map;
8028 	ism_blk_t	*ism_blkp;
8029 	int		i;
8030 	sfmmu_t *ism_hatid = NULL;
8031 	sfmmu_t *locked_hatid = NULL;
8032 	sfmmu_t	*sv_sfmmup = sfmmup;
8033 	caddr_t	sv_vaddr = vaddr;
8034 	sf_srd_t *srdp;
8035 
8036 	if (ttep == NULL) {
8037 		ttep = &tte;
8038 	} else {
8039 		ttep->ll = 0;
8040 	}
8041 
8042 	ASSERT(sfmmup != ksfmmup);
8043 	SFMMU_STAT(sf_user_vtop);
8044 	/*
8045 	 * Set ism_hatid if vaddr falls in a ISM segment.
8046 	 */
8047 	ism_blkp = sfmmup->sfmmu_iblk;
8048 	if (ism_blkp != NULL) {
8049 		sfmmu_ismhat_enter(sfmmup, 0);
8050 		locked_hatid = sfmmup;
8051 	}
8052 	while (ism_blkp != NULL && ism_hatid == NULL) {
8053 		ism_map = ism_blkp->iblk_maps;
8054 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
8055 			if (vaddr >= ism_start(ism_map[i]) &&
8056 			    vaddr < ism_end(ism_map[i])) {
8057 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
8058 				vaddr = (caddr_t)(vaddr -
8059 				    ism_start(ism_map[i]));
8060 				break;
8061 			}
8062 		}
8063 		ism_blkp = ism_blkp->iblk_next;
8064 	}
8065 	if (locked_hatid) {
8066 		sfmmu_ismhat_exit(locked_hatid, 0);
8067 	}
8068 
8069 	hblktag.htag_id = sfmmup;
8070 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
8071 	do {
8072 		hmeshift = HME_HASH_SHIFT(hashno);
8073 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
8074 		hblktag.htag_rehash = hashno;
8075 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
8076 
8077 		SFMMU_HASH_LOCK(hmebp);
8078 
8079 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
8080 		if (hmeblkp != NULL) {
8081 			ASSERT(!hmeblkp->hblk_shared);
8082 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
8083 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
8084 			SFMMU_HASH_UNLOCK(hmebp);
8085 			if (TTE_IS_VALID(ttep)) {
8086 				pfn = TTE_TO_PFN(vaddr, ttep);
8087 				return (pfn);
8088 			}
8089 			break;
8090 		}
8091 		SFMMU_HASH_UNLOCK(hmebp);
8092 		hashno++;
8093 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
8094 
8095 	if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
8096 		return (PFN_INVALID);
8097 	}
8098 	srdp = sv_sfmmup->sfmmu_srdp;
8099 	ASSERT(srdp != NULL);
8100 	ASSERT(srdp->srd_refcnt != 0);
8101 	hblktag.htag_id = srdp;
8102 	hashno = 1;
8103 	do {
8104 		hmeshift = HME_HASH_SHIFT(hashno);
8105 		hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
8106 		hblktag.htag_rehash = hashno;
8107 		hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
8108 
8109 		SFMMU_HASH_LOCK(hmebp);
8110 		for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
8111 		    hmeblkp = hmeblkp->hblk_next) {
8112 			uint_t rid;
8113 			sf_region_t *rgnp;
8114 			caddr_t rsaddr;
8115 			caddr_t readdr;
8116 
8117 			if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
8118 			    sv_sfmmup->sfmmu_hmeregion_map)) {
8119 				continue;
8120 			}
8121 			ASSERT(hmeblkp->hblk_shared);
8122 			rid = hmeblkp->hblk_tag.htag_rid;
8123 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8124 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8125 			rgnp = srdp->srd_hmergnp[rid];
8126 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
8127 			HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
8128 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
8129 			rsaddr = rgnp->rgn_saddr;
8130 			readdr = rsaddr + rgnp->rgn_size;
8131 #ifdef DEBUG
8132 			if (TTE_IS_VALID(ttep) ||
8133 			    get_hblk_ttesz(hmeblkp) > TTE8K) {
8134 				caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
8135 				ASSERT(eva > sv_vaddr);
8136 				ASSERT(sv_vaddr >= rsaddr);
8137 				ASSERT(sv_vaddr < readdr);
8138 				ASSERT(eva <= readdr);
8139 			}
8140 #endif /* DEBUG */
8141 			/*
8142 			 * Continue the search if we
8143 			 * found an invalid 8K tte outside of the area
8144 			 * covered by this hmeblk's region.
8145 			 */
8146 			if (TTE_IS_VALID(ttep)) {
8147 				SFMMU_HASH_UNLOCK(hmebp);
8148 				pfn = TTE_TO_PFN(sv_vaddr, ttep);
8149 				return (pfn);
8150 			} else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8151 			    (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8152 				SFMMU_HASH_UNLOCK(hmebp);
8153 				pfn = PFN_INVALID;
8154 				return (pfn);
8155 			}
8156 		}
8157 		SFMMU_HASH_UNLOCK(hmebp);
8158 		hashno++;
8159 	} while (hashno <= mmu_hashcnt);
8160 	return (PFN_INVALID);
8161 }
8162 
8163 
8164 /*
8165  * For compatability with AT&T and later optimizations
8166  */
8167 /* ARGSUSED */
8168 void
8169 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8170 {
8171 	ASSERT(hat != NULL);
8172 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8173 }
8174 
8175 /*
8176  * Return the number of mappings to a particular page.  This number is an
8177  * approximation of the number of people sharing the page.
8178  *
8179  * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8180  * hat_page_checkshare() can be used to compare threshold to share
8181  * count that reflects the number of region sharers albeit at higher cost.
8182  */
8183 ulong_t
8184 hat_page_getshare(page_t *pp)
8185 {
8186 	page_t *spp = pp;	/* start page */
8187 	kmutex_t *pml;
8188 	ulong_t	cnt;
8189 	int index, sz = TTE64K;
8190 
8191 	/*
8192 	 * We need to grab the mlist lock to make sure any outstanding
8193 	 * load/unloads complete.  Otherwise we could return zero
8194 	 * even though the unload(s) hasn't finished yet.
8195 	 */
8196 	pml = sfmmu_mlist_enter(spp);
8197 	cnt = spp->p_share;
8198 
8199 #ifdef VAC
8200 	if (kpm_enable)
8201 		cnt += spp->p_kpmref;
8202 #endif
8203 
8204 	/*
8205 	 * If we have any large mappings, we count the number of
8206 	 * mappings that this large page is part of.
8207 	 */
8208 	index = PP_MAPINDEX(spp);
8209 	index >>= 1;
8210 	while (index) {
8211 		pp = PP_GROUPLEADER(spp, sz);
8212 		if ((index & 0x1) && pp != spp) {
8213 			cnt += pp->p_share;
8214 			spp = pp;
8215 		}
8216 		index >>= 1;
8217 		sz++;
8218 	}
8219 	sfmmu_mlist_exit(pml);
8220 	return (cnt);
8221 }
8222 
8223 /*
8224  * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8225  * otherwise. Count shared hmeblks by region's refcnt.
8226  */
8227 int
8228 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8229 {
8230 	kmutex_t *pml;
8231 	ulong_t	cnt = 0;
8232 	int index, sz = TTE8K;
8233 	struct sf_hment *sfhme, *tmphme = NULL;
8234 	struct hme_blk *hmeblkp;
8235 
8236 	pml = sfmmu_mlist_enter(pp);
8237 
8238 	if (kpm_enable)
8239 		cnt = pp->p_kpmref;
8240 
8241 	if (pp->p_share + cnt > sh_thresh) {
8242 		sfmmu_mlist_exit(pml);
8243 		return (1);
8244 	}
8245 
8246 	index = PP_MAPINDEX(pp);
8247 
8248 again:
8249 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8250 		tmphme = sfhme->hme_next;
8251 		if (IS_PAHME(sfhme)) {
8252 			continue;
8253 		}
8254 
8255 		hmeblkp = sfmmu_hmetohblk(sfhme);
8256 		if (hmeblkp->hblk_xhat_bit) {
8257 			cnt++;
8258 			if (cnt > sh_thresh) {
8259 				sfmmu_mlist_exit(pml);
8260 				return (1);
8261 			}
8262 			continue;
8263 		}
8264 		if (hme_size(sfhme) != sz) {
8265 			continue;
8266 		}
8267 
8268 		if (hmeblkp->hblk_shared) {
8269 			sf_srd_t *srdp = hblktosrd(hmeblkp);
8270 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
8271 			sf_region_t *rgnp;
8272 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8273 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8274 			ASSERT(srdp != NULL);
8275 			rgnp = srdp->srd_hmergnp[rid];
8276 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8277 			    rgnp, rid);
8278 			cnt += rgnp->rgn_refcnt;
8279 		} else {
8280 			cnt++;
8281 		}
8282 		if (cnt > sh_thresh) {
8283 			sfmmu_mlist_exit(pml);
8284 			return (1);
8285 		}
8286 	}
8287 
8288 	index >>= 1;
8289 	sz++;
8290 	while (index) {
8291 		pp = PP_GROUPLEADER(pp, sz);
8292 		ASSERT(sfmmu_mlist_held(pp));
8293 		if (index & 0x1) {
8294 			goto again;
8295 		}
8296 		index >>= 1;
8297 		sz++;
8298 	}
8299 	sfmmu_mlist_exit(pml);
8300 	return (0);
8301 }
8302 
8303 /*
8304  * Unload all large mappings to the pp and reset the p_szc field of every
8305  * constituent page according to the remaining mappings.
8306  *
8307  * pp must be locked SE_EXCL. Even though no other constituent pages are
8308  * locked it's legal to unload the large mappings to the pp because all
8309  * constituent pages of large locked mappings have to be locked SE_SHARED.
8310  * This means if we have SE_EXCL lock on one of constituent pages none of the
8311  * large mappings to pp are locked.
8312  *
8313  * Decrease p_szc field starting from the last constituent page and ending
8314  * with the root page. This method is used because other threads rely on the
8315  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8316  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8317  * ensures that p_szc changes of the constituent pages appears atomic for all
8318  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8319  *
8320  * This mechanism is only used for file system pages where it's not always
8321  * possible to get SE_EXCL locks on all constituent pages to demote the size
8322  * code (as is done for anonymous or kernel large pages).
8323  *
8324  * See more comments in front of sfmmu_mlspl_enter().
8325  */
8326 void
8327 hat_page_demote(page_t *pp)
8328 {
8329 	int index;
8330 	int sz;
8331 	cpuset_t cpuset;
8332 	int sync = 0;
8333 	page_t *rootpp;
8334 	struct sf_hment *sfhme;
8335 	struct sf_hment *tmphme = NULL;
8336 	struct hme_blk *hmeblkp;
8337 	uint_t pszc;
8338 	page_t *lastpp;
8339 	cpuset_t tset;
8340 	pgcnt_t npgs;
8341 	kmutex_t *pml;
8342 	kmutex_t *pmtx = NULL;
8343 
8344 	ASSERT(PAGE_EXCL(pp));
8345 	ASSERT(!PP_ISFREE(pp));
8346 	ASSERT(!PP_ISKAS(pp));
8347 	ASSERT(page_szc_lock_assert(pp));
8348 	pml = sfmmu_mlist_enter(pp);
8349 
8350 	pszc = pp->p_szc;
8351 	if (pszc == 0) {
8352 		goto out;
8353 	}
8354 
8355 	index = PP_MAPINDEX(pp) >> 1;
8356 
8357 	if (index) {
8358 		CPUSET_ZERO(cpuset);
8359 		sz = TTE64K;
8360 		sync = 1;
8361 	}
8362 
8363 	while (index) {
8364 		if (!(index & 0x1)) {
8365 			index >>= 1;
8366 			sz++;
8367 			continue;
8368 		}
8369 		ASSERT(sz <= pszc);
8370 		rootpp = PP_GROUPLEADER(pp, sz);
8371 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8372 			tmphme = sfhme->hme_next;
8373 			ASSERT(!IS_PAHME(sfhme));
8374 			hmeblkp = sfmmu_hmetohblk(sfhme);
8375 			if (hme_size(sfhme) != sz) {
8376 				continue;
8377 			}
8378 			if (hmeblkp->hblk_xhat_bit) {
8379 				cmn_err(CE_PANIC,
8380 				    "hat_page_demote: xhat hmeblk");
8381 			}
8382 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
8383 			CPUSET_OR(cpuset, tset);
8384 		}
8385 		if (index >>= 1) {
8386 			sz++;
8387 		}
8388 	}
8389 
8390 	ASSERT(!PP_ISMAPPED_LARGE(pp));
8391 
8392 	if (sync) {
8393 		xt_sync(cpuset);
8394 #ifdef VAC
8395 		if (PP_ISTNC(pp)) {
8396 			conv_tnc(rootpp, sz);
8397 		}
8398 #endif	/* VAC */
8399 	}
8400 
8401 	pmtx = sfmmu_page_enter(pp);
8402 
8403 	ASSERT(pp->p_szc == pszc);
8404 	rootpp = PP_PAGEROOT(pp);
8405 	ASSERT(rootpp->p_szc == pszc);
8406 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8407 
8408 	while (lastpp != rootpp) {
8409 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8410 		ASSERT(sz < pszc);
8411 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8412 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8413 		while (--npgs > 0) {
8414 			lastpp->p_szc = (uchar_t)sz;
8415 			lastpp = PP_PAGEPREV(lastpp);
8416 		}
8417 		if (sz) {
8418 			/*
8419 			 * make sure before current root's pszc
8420 			 * is updated all updates to constituent pages pszc
8421 			 * fields are globally visible.
8422 			 */
8423 			membar_producer();
8424 		}
8425 		lastpp->p_szc = sz;
8426 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8427 		if (lastpp != rootpp) {
8428 			lastpp = PP_PAGEPREV(lastpp);
8429 		}
8430 	}
8431 	if (sz == 0) {
8432 		/* the loop above doesn't cover this case */
8433 		rootpp->p_szc = 0;
8434 	}
8435 out:
8436 	ASSERT(pp->p_szc == 0);
8437 	if (pmtx != NULL) {
8438 		sfmmu_page_exit(pmtx);
8439 	}
8440 	sfmmu_mlist_exit(pml);
8441 }
8442 
8443 /*
8444  * Refresh the HAT ismttecnt[] element for size szc.
8445  * Caller must have set ISM busy flag to prevent mapping
8446  * lists from changing while we're traversing them.
8447  */
8448 pgcnt_t
8449 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8450 {
8451 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
8452 	ism_map_t	*ism_map;
8453 	pgcnt_t		npgs = 0;
8454 	pgcnt_t		npgs_scd = 0;
8455 	int		j;
8456 	sf_scd_t	*scdp;
8457 	uchar_t		rid;
8458 
8459 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8460 	scdp = sfmmup->sfmmu_scdp;
8461 
8462 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8463 		ism_map = ism_blkp->iblk_maps;
8464 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8465 			rid = ism_map[j].imap_rid;
8466 			ASSERT(rid == SFMMU_INVALID_ISMRID ||
8467 			    rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8468 
8469 			if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8470 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8471 				/* ISM is in sfmmup's SCD */
8472 				npgs_scd +=
8473 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8474 			} else {
8475 				/* ISMs is not in SCD */
8476 				npgs +=
8477 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8478 			}
8479 		}
8480 	}
8481 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
8482 	sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8483 	return (npgs);
8484 }
8485 
8486 /*
8487  * Yield the memory claim requirement for an address space.
8488  *
8489  * This is currently implemented as the number of bytes that have active
8490  * hardware translations that have page structures.  Therefore, it can
8491  * underestimate the traditional resident set size, eg, if the
8492  * physical page is present and the hardware translation is missing;
8493  * and it can overestimate the rss, eg, if there are active
8494  * translations to a frame buffer with page structs.
8495  * Also, it does not take sharing into account.
8496  *
8497  * Note that we don't acquire locks here since this function is most often
8498  * called from the clock thread.
8499  */
8500 size_t
8501 hat_get_mapped_size(struct hat *hat)
8502 {
8503 	size_t		assize = 0;
8504 	int 		i;
8505 
8506 	if (hat == NULL)
8507 		return (0);
8508 
8509 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8510 
8511 	for (i = 0; i < mmu_page_sizes; i++)
8512 		assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8513 		    (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8514 
8515 	if (hat->sfmmu_iblk == NULL)
8516 		return (assize);
8517 
8518 	for (i = 0; i < mmu_page_sizes; i++)
8519 		assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8520 		    (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8521 
8522 	return (assize);
8523 }
8524 
8525 int
8526 hat_stats_enable(struct hat *hat)
8527 {
8528 	hatlock_t	*hatlockp;
8529 
8530 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8531 
8532 	hatlockp = sfmmu_hat_enter(hat);
8533 	hat->sfmmu_rmstat++;
8534 	sfmmu_hat_exit(hatlockp);
8535 	return (1);
8536 }
8537 
8538 void
8539 hat_stats_disable(struct hat *hat)
8540 {
8541 	hatlock_t	*hatlockp;
8542 
8543 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8544 
8545 	hatlockp = sfmmu_hat_enter(hat);
8546 	hat->sfmmu_rmstat--;
8547 	sfmmu_hat_exit(hatlockp);
8548 }
8549 
8550 /*
8551  * Routines for entering or removing  ourselves from the
8552  * ism_hat's mapping list. This is used for both private and
8553  * SCD hats.
8554  */
8555 static void
8556 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
8557 {
8558 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8559 
8560 	iment->iment_prev = NULL;
8561 	iment->iment_next = ism_hat->sfmmu_iment;
8562 	if (ism_hat->sfmmu_iment) {
8563 		ism_hat->sfmmu_iment->iment_prev = iment;
8564 	}
8565 	ism_hat->sfmmu_iment = iment;
8566 }
8567 
8568 static void
8569 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8570 {
8571 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8572 
8573 	if (ism_hat->sfmmu_iment == NULL) {
8574 		panic("ism map entry remove - no entries");
8575 	}
8576 
8577 	if (iment->iment_prev) {
8578 		ASSERT(ism_hat->sfmmu_iment != iment);
8579 		iment->iment_prev->iment_next = iment->iment_next;
8580 	} else {
8581 		ASSERT(ism_hat->sfmmu_iment == iment);
8582 		ism_hat->sfmmu_iment = iment->iment_next;
8583 	}
8584 
8585 	if (iment->iment_next) {
8586 		iment->iment_next->iment_prev = iment->iment_prev;
8587 	}
8588 
8589 	/*
8590 	 * zero out the entry
8591 	 */
8592 	iment->iment_next = NULL;
8593 	iment->iment_prev = NULL;
8594 	iment->iment_hat =  NULL;
8595 }
8596 
8597 /*
8598  * Hat_share()/unshare() return an (non-zero) error
8599  * when saddr and daddr are not properly aligned.
8600  *
8601  * The top level mapping element determines the alignment
8602  * requirement for saddr and daddr, depending on different
8603  * architectures.
8604  *
8605  * When hat_share()/unshare() are not supported,
8606  * HATOP_SHARE()/UNSHARE() return 0
8607  */
8608 int
8609 hat_share(struct hat *sfmmup, caddr_t addr,
8610 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
8611 {
8612 	ism_blk_t	*ism_blkp;
8613 	ism_blk_t	*new_iblk;
8614 	ism_map_t 	*ism_map;
8615 	ism_ment_t	*ism_ment;
8616 	int		i, added;
8617 	hatlock_t	*hatlockp;
8618 	int		reload_mmu = 0;
8619 	uint_t		ismshift = page_get_shift(ismszc);
8620 	size_t		ismpgsz = page_get_pagesize(ismszc);
8621 	uint_t		ismmask = (uint_t)ismpgsz - 1;
8622 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8623 	ushort_t	ismhatflag;
8624 	hat_region_cookie_t rcookie;
8625 	sf_scd_t	*old_scdp;
8626 
8627 #ifdef DEBUG
8628 	caddr_t		eaddr = addr + len;
8629 #endif /* DEBUG */
8630 
8631 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
8632 	ASSERT(sptaddr == ISMID_STARTADDR);
8633 	/*
8634 	 * Check the alignment.
8635 	 */
8636 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8637 		return (EINVAL);
8638 
8639 	/*
8640 	 * Check size alignment.
8641 	 */
8642 	if (!ISM_ALIGNED(ismshift, len))
8643 		return (EINVAL);
8644 
8645 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
8646 
8647 	/*
8648 	 * Allocate ism_ment for the ism_hat's mapping list, and an
8649 	 * ism map blk in case we need one.  We must do our
8650 	 * allocations before acquiring locks to prevent a deadlock
8651 	 * in the kmem allocator on the mapping list lock.
8652 	 */
8653 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8654 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8655 
8656 	/*
8657 	 * Serialize ISM mappings with the ISM busy flag, and also the
8658 	 * trap handlers.
8659 	 */
8660 	sfmmu_ismhat_enter(sfmmup, 0);
8661 
8662 	/*
8663 	 * Allocate an ism map blk if necessary.
8664 	 */
8665 	if (sfmmup->sfmmu_iblk == NULL) {
8666 		sfmmup->sfmmu_iblk = new_iblk;
8667 		bzero(new_iblk, sizeof (*new_iblk));
8668 		new_iblk->iblk_nextpa = (uint64_t)-1;
8669 		membar_stst();	/* make sure next ptr visible to all CPUs */
8670 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8671 		reload_mmu = 1;
8672 		new_iblk = NULL;
8673 	}
8674 
8675 #ifdef DEBUG
8676 	/*
8677 	 * Make sure mapping does not already exist.
8678 	 */
8679 	ism_blkp = sfmmup->sfmmu_iblk;
8680 	while (ism_blkp != NULL) {
8681 		ism_map = ism_blkp->iblk_maps;
8682 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8683 			if ((addr >= ism_start(ism_map[i]) &&
8684 			    addr < ism_end(ism_map[i])) ||
8685 			    eaddr > ism_start(ism_map[i]) &&
8686 			    eaddr <= ism_end(ism_map[i])) {
8687 				panic("sfmmu_share: Already mapped!");
8688 			}
8689 		}
8690 		ism_blkp = ism_blkp->iblk_next;
8691 	}
8692 #endif /* DEBUG */
8693 
8694 	ASSERT(ismszc >= TTE4M);
8695 	if (ismszc == TTE4M) {
8696 		ismhatflag = HAT_4M_FLAG;
8697 	} else if (ismszc == TTE32M) {
8698 		ismhatflag = HAT_32M_FLAG;
8699 	} else if (ismszc == TTE256M) {
8700 		ismhatflag = HAT_256M_FLAG;
8701 	}
8702 	/*
8703 	 * Add mapping to first available mapping slot.
8704 	 */
8705 	ism_blkp = sfmmup->sfmmu_iblk;
8706 	added = 0;
8707 	while (!added) {
8708 		ism_map = ism_blkp->iblk_maps;
8709 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
8710 			if (ism_map[i].imap_ismhat == NULL) {
8711 
8712 				ism_map[i].imap_ismhat = ism_hatid;
8713 				ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8714 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8715 				ism_map[i].imap_hatflags = ismhatflag;
8716 				ism_map[i].imap_sz_mask = ismmask;
8717 				/*
8718 				 * imap_seg is checked in ISM_CHECK to see if
8719 				 * non-NULL, then other info assumed valid.
8720 				 */
8721 				membar_stst();
8722 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8723 				ism_map[i].imap_ment = ism_ment;
8724 
8725 				/*
8726 				 * Now add ourselves to the ism_hat's
8727 				 * mapping list.
8728 				 */
8729 				ism_ment->iment_hat = sfmmup;
8730 				ism_ment->iment_base_va = addr;
8731 				ism_hatid->sfmmu_ismhat = 1;
8732 				mutex_enter(&ism_mlist_lock);
8733 				iment_add(ism_ment, ism_hatid);
8734 				mutex_exit(&ism_mlist_lock);
8735 				added = 1;
8736 				break;
8737 			}
8738 		}
8739 		if (!added && ism_blkp->iblk_next == NULL) {
8740 			ism_blkp->iblk_next = new_iblk;
8741 			new_iblk = NULL;
8742 			bzero(ism_blkp->iblk_next,
8743 			    sizeof (*ism_blkp->iblk_next));
8744 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8745 			membar_stst();
8746 			ism_blkp->iblk_nextpa =
8747 			    va_to_pa((caddr_t)ism_blkp->iblk_next);
8748 		}
8749 		ism_blkp = ism_blkp->iblk_next;
8750 	}
8751 
8752 	/*
8753 	 * After calling hat_join_region, sfmmup may join a new SCD or
8754 	 * move from the old scd to a new scd, in which case, we want to
8755 	 * shrink the sfmmup's private tsb size, i.e., pass shrink to
8756 	 * sfmmu_check_page_sizes at the end of this routine.
8757 	 */
8758 	old_scdp = sfmmup->sfmmu_scdp;
8759 
8760 	rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8761 	    PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8762 	if (rcookie != HAT_INVALID_REGION_COOKIE) {
8763 		ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8764 	}
8765 	/*
8766 	 * Update our counters for this sfmmup's ism mappings.
8767 	 */
8768 	for (i = 0; i <= ismszc; i++) {
8769 		if (!(disable_ism_large_pages & (1 << i)))
8770 			(void) ism_tsb_entries(sfmmup, i);
8771 	}
8772 
8773 	/*
8774 	 * For ISM and DISM we do not support 512K pages, so we only only
8775 	 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8776 	 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8777 	 *
8778 	 * Need to set 32M/256M ISM flags to make sure
8779 	 * sfmmu_check_page_sizes() enables them on Panther.
8780 	 */
8781 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8782 
8783 	switch (ismszc) {
8784 	case TTE256M:
8785 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8786 			hatlockp = sfmmu_hat_enter(sfmmup);
8787 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8788 			sfmmu_hat_exit(hatlockp);
8789 		}
8790 		break;
8791 	case TTE32M:
8792 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8793 			hatlockp = sfmmu_hat_enter(sfmmup);
8794 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8795 			sfmmu_hat_exit(hatlockp);
8796 		}
8797 		break;
8798 	default:
8799 		break;
8800 	}
8801 
8802 	/*
8803 	 * If we updated the ismblkpa for this HAT we must make
8804 	 * sure all CPUs running this process reload their tsbmiss area.
8805 	 * Otherwise they will fail to load the mappings in the tsbmiss
8806 	 * handler and will loop calling pagefault().
8807 	 */
8808 	if (reload_mmu) {
8809 		hatlockp = sfmmu_hat_enter(sfmmup);
8810 		sfmmu_sync_mmustate(sfmmup);
8811 		sfmmu_hat_exit(hatlockp);
8812 	}
8813 
8814 	sfmmu_ismhat_exit(sfmmup, 0);
8815 
8816 	/*
8817 	 * Free up ismblk if we didn't use it.
8818 	 */
8819 	if (new_iblk != NULL)
8820 		kmem_cache_free(ism_blk_cache, new_iblk);
8821 
8822 	/*
8823 	 * Check TSB and TLB page sizes.
8824 	 */
8825 	if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8826 		sfmmu_check_page_sizes(sfmmup, 0);
8827 	} else {
8828 		sfmmu_check_page_sizes(sfmmup, 1);
8829 	}
8830 	return (0);
8831 }
8832 
8833 /*
8834  * hat_unshare removes exactly one ism_map from
8835  * this process's as.  It expects multiple calls
8836  * to hat_unshare for multiple shm segments.
8837  */
8838 void
8839 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8840 {
8841 	ism_map_t 	*ism_map;
8842 	ism_ment_t	*free_ment = NULL;
8843 	ism_blk_t	*ism_blkp;
8844 	struct hat	*ism_hatid;
8845 	int 		found, i;
8846 	hatlock_t	*hatlockp;
8847 	struct tsb_info	*tsbinfo;
8848 	uint_t		ismshift = page_get_shift(ismszc);
8849 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8850 	uchar_t		ism_rid;
8851 	sf_scd_t	*old_scdp;
8852 
8853 	ASSERT(ISM_ALIGNED(ismshift, addr));
8854 	ASSERT(ISM_ALIGNED(ismshift, len));
8855 	ASSERT(sfmmup != NULL);
8856 	ASSERT(sfmmup != ksfmmup);
8857 
8858 	if (sfmmup->sfmmu_xhat_provider) {
8859 		XHAT_UNSHARE(sfmmup, addr, len);
8860 		return;
8861 	} else {
8862 		/*
8863 		 * This must be a CPU HAT. If the address space has
8864 		 * XHATs attached, inform all XHATs that ISM segment
8865 		 * is going away
8866 		 */
8867 		ASSERT(sfmmup->sfmmu_as != NULL);
8868 		if (sfmmup->sfmmu_as->a_xhat != NULL)
8869 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
8870 	}
8871 
8872 	/*
8873 	 * Make sure that during the entire time ISM mappings are removed,
8874 	 * the trap handlers serialize behind us, and that no one else
8875 	 * can be mucking with ISM mappings.  This also lets us get away
8876 	 * with not doing expensive cross calls to flush the TLB -- we
8877 	 * just discard the context, flush the entire TSB, and call it
8878 	 * a day.
8879 	 */
8880 	sfmmu_ismhat_enter(sfmmup, 0);
8881 
8882 	/*
8883 	 * Remove the mapping.
8884 	 *
8885 	 * We can't have any holes in the ism map.
8886 	 * The tsb miss code while searching the ism map will
8887 	 * stop on an empty map slot.  So we must move
8888 	 * everyone past the hole up 1 if any.
8889 	 *
8890 	 * Also empty ism map blks are not freed until the
8891 	 * process exits. This is to prevent a MT race condition
8892 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8893 	 */
8894 	found = 0;
8895 	ism_blkp = sfmmup->sfmmu_iblk;
8896 	while (!found && ism_blkp != NULL) {
8897 		ism_map = ism_blkp->iblk_maps;
8898 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
8899 			if (addr == ism_start(ism_map[i]) &&
8900 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
8901 				found = 1;
8902 				break;
8903 			}
8904 		}
8905 		if (!found)
8906 			ism_blkp = ism_blkp->iblk_next;
8907 	}
8908 
8909 	if (found) {
8910 		ism_hatid = ism_map[i].imap_ismhat;
8911 		ism_rid = ism_map[i].imap_rid;
8912 		ASSERT(ism_hatid != NULL);
8913 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
8914 
8915 		/*
8916 		 * After hat_leave_region, the sfmmup may leave SCD,
8917 		 * in which case, we want to grow the private tsb size when
8918 		 * calling sfmmu_check_page_sizes at the end of the routine.
8919 		 */
8920 		old_scdp = sfmmup->sfmmu_scdp;
8921 		/*
8922 		 * Then remove ourselves from the region.
8923 		 */
8924 		if (ism_rid != SFMMU_INVALID_ISMRID) {
8925 			hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8926 			    HAT_REGION_ISM);
8927 		}
8928 
8929 		/*
8930 		 * And now guarantee that any other cpu
8931 		 * that tries to process an ISM miss
8932 		 * will go to tl=0.
8933 		 */
8934 		hatlockp = sfmmu_hat_enter(sfmmup);
8935 		sfmmu_invalidate_ctx(sfmmup);
8936 		sfmmu_hat_exit(hatlockp);
8937 
8938 		/*
8939 		 * Remove ourselves from the ism mapping list.
8940 		 */
8941 		mutex_enter(&ism_mlist_lock);
8942 		iment_sub(ism_map[i].imap_ment, ism_hatid);
8943 		mutex_exit(&ism_mlist_lock);
8944 		free_ment = ism_map[i].imap_ment;
8945 
8946 		/*
8947 		 * We delete the ism map by copying
8948 		 * the next map over the current one.
8949 		 * We will take the next one in the maps
8950 		 * array or from the next ism_blk.
8951 		 */
8952 		while (ism_blkp != NULL) {
8953 			ism_map = ism_blkp->iblk_maps;
8954 			while (i < (ISM_MAP_SLOTS - 1)) {
8955 				ism_map[i] = ism_map[i + 1];
8956 				i++;
8957 			}
8958 			/* i == (ISM_MAP_SLOTS - 1) */
8959 			ism_blkp = ism_blkp->iblk_next;
8960 			if (ism_blkp != NULL) {
8961 				ism_map[i] = ism_blkp->iblk_maps[0];
8962 				i = 0;
8963 			} else {
8964 				ism_map[i].imap_seg = 0;
8965 				ism_map[i].imap_vb_shift = 0;
8966 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8967 				ism_map[i].imap_hatflags = 0;
8968 				ism_map[i].imap_sz_mask = 0;
8969 				ism_map[i].imap_ismhat = NULL;
8970 				ism_map[i].imap_ment = NULL;
8971 			}
8972 		}
8973 
8974 		/*
8975 		 * Now flush entire TSB for the process, since
8976 		 * demapping page by page can be too expensive.
8977 		 * We don't have to flush the TLB here anymore
8978 		 * since we switch to a new TLB ctx instead.
8979 		 * Also, there is no need to flush if the process
8980 		 * is exiting since the TSB will be freed later.
8981 		 */
8982 		if (!sfmmup->sfmmu_free) {
8983 			hatlockp = sfmmu_hat_enter(sfmmup);
8984 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8985 			    tsbinfo = tsbinfo->tsb_next) {
8986 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
8987 					continue;
8988 				if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
8989 					tsbinfo->tsb_flags |=
8990 					    TSB_FLUSH_NEEDED;
8991 					continue;
8992 				}
8993 
8994 				sfmmu_inv_tsb(tsbinfo->tsb_va,
8995 				    TSB_BYTES(tsbinfo->tsb_szc));
8996 			}
8997 			sfmmu_hat_exit(hatlockp);
8998 		}
8999 	}
9000 
9001 	/*
9002 	 * Update our counters for this sfmmup's ism mappings.
9003 	 */
9004 	for (i = 0; i <= ismszc; i++) {
9005 		if (!(disable_ism_large_pages & (1 << i)))
9006 			(void) ism_tsb_entries(sfmmup, i);
9007 	}
9008 
9009 	sfmmu_ismhat_exit(sfmmup, 0);
9010 
9011 	/*
9012 	 * We must do our freeing here after dropping locks
9013 	 * to prevent a deadlock in the kmem allocator on the
9014 	 * mapping list lock.
9015 	 */
9016 	if (free_ment != NULL)
9017 		kmem_cache_free(ism_ment_cache, free_ment);
9018 
9019 	/*
9020 	 * Check TSB and TLB page sizes if the process isn't exiting.
9021 	 */
9022 	if (!sfmmup->sfmmu_free) {
9023 		if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
9024 			sfmmu_check_page_sizes(sfmmup, 1);
9025 		} else {
9026 			sfmmu_check_page_sizes(sfmmup, 0);
9027 		}
9028 	}
9029 }
9030 
9031 /* ARGSUSED */
9032 static int
9033 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
9034 {
9035 	/* void *buf is sfmmu_t pointer */
9036 	bzero(buf, sizeof (sfmmu_t));
9037 
9038 	return (0);
9039 }
9040 
9041 /* ARGSUSED */
9042 static void
9043 sfmmu_idcache_destructor(void *buf, void *cdrarg)
9044 {
9045 	/* void *buf is sfmmu_t pointer */
9046 }
9047 
9048 /*
9049  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
9050  * field to be the pa of this hmeblk
9051  */
9052 /* ARGSUSED */
9053 static int
9054 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
9055 {
9056 	struct hme_blk *hmeblkp;
9057 
9058 	bzero(buf, (size_t)cdrarg);
9059 	hmeblkp = (struct hme_blk *)buf;
9060 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
9061 
9062 #ifdef	HBLK_TRACE
9063 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
9064 #endif	/* HBLK_TRACE */
9065 
9066 	return (0);
9067 }
9068 
9069 /* ARGSUSED */
9070 static void
9071 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
9072 {
9073 
9074 #ifdef	HBLK_TRACE
9075 
9076 	struct hme_blk *hmeblkp;
9077 
9078 	hmeblkp = (struct hme_blk *)buf;
9079 	mutex_destroy(&hmeblkp->hblk_audit_lock);
9080 
9081 #endif	/* HBLK_TRACE */
9082 }
9083 
9084 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
9085 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
9086 /*
9087  * The kmem allocator will callback into our reclaim routine when the system
9088  * is running low in memory.  We traverse the hash and free up all unused but
9089  * still cached hme_blks.  We also traverse the free list and free them up
9090  * as well.
9091  */
9092 /*ARGSUSED*/
9093 static void
9094 sfmmu_hblkcache_reclaim(void *cdrarg)
9095 {
9096 	int i;
9097 	uint64_t hblkpa, prevpa, nx_pa;
9098 	struct hmehash_bucket *hmebp;
9099 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
9100 	static struct hmehash_bucket *uhmehash_reclaim_hand;
9101 	static struct hmehash_bucket *khmehash_reclaim_hand;
9102 	struct hme_blk *list = NULL;
9103 
9104 	hmebp = uhmehash_reclaim_hand;
9105 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
9106 		uhmehash_reclaim_hand = hmebp = uhme_hash;
9107 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9108 
9109 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9110 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9111 			hmeblkp = hmebp->hmeblkp;
9112 			hblkpa = hmebp->hmeh_nextpa;
9113 			prevpa = 0;
9114 			pr_hblk = NULL;
9115 			while (hmeblkp) {
9116 				nx_hblk = hmeblkp->hblk_next;
9117 				nx_pa = hmeblkp->hblk_nextpa;
9118 				if (!hmeblkp->hblk_vcnt &&
9119 				    !hmeblkp->hblk_hmecnt) {
9120 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9121 					    prevpa, pr_hblk);
9122 					sfmmu_hblk_free(hmebp, hmeblkp,
9123 					    hblkpa, &list);
9124 				} else {
9125 					pr_hblk = hmeblkp;
9126 					prevpa = hblkpa;
9127 				}
9128 				hmeblkp = nx_hblk;
9129 				hblkpa = nx_pa;
9130 			}
9131 			SFMMU_HASH_UNLOCK(hmebp);
9132 		}
9133 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
9134 			hmebp = uhme_hash;
9135 	}
9136 
9137 	hmebp = khmehash_reclaim_hand;
9138 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
9139 		khmehash_reclaim_hand = hmebp = khme_hash;
9140 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9141 
9142 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9143 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9144 			hmeblkp = hmebp->hmeblkp;
9145 			hblkpa = hmebp->hmeh_nextpa;
9146 			prevpa = 0;
9147 			pr_hblk = NULL;
9148 			while (hmeblkp) {
9149 				nx_hblk = hmeblkp->hblk_next;
9150 				nx_pa = hmeblkp->hblk_nextpa;
9151 				if (!hmeblkp->hblk_vcnt &&
9152 				    !hmeblkp->hblk_hmecnt) {
9153 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9154 					    prevpa, pr_hblk);
9155 					sfmmu_hblk_free(hmebp, hmeblkp,
9156 					    hblkpa, &list);
9157 				} else {
9158 					pr_hblk = hmeblkp;
9159 					prevpa = hblkpa;
9160 				}
9161 				hmeblkp = nx_hblk;
9162 				hblkpa = nx_pa;
9163 			}
9164 			SFMMU_HASH_UNLOCK(hmebp);
9165 		}
9166 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9167 			hmebp = khme_hash;
9168 	}
9169 	sfmmu_hblks_list_purge(&list);
9170 }
9171 
9172 /*
9173  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9174  * same goes for sfmmu_get_addrvcolor().
9175  *
9176  * This function will return the virtual color for the specified page. The
9177  * virtual color corresponds to this page current mapping or its last mapping.
9178  * It is used by memory allocators to choose addresses with the correct
9179  * alignment so vac consistency is automatically maintained.  If the page
9180  * has no color it returns -1.
9181  */
9182 /*ARGSUSED*/
9183 int
9184 sfmmu_get_ppvcolor(struct page *pp)
9185 {
9186 #ifdef VAC
9187 	int color;
9188 
9189 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9190 		return (-1);
9191 	}
9192 	color = PP_GET_VCOLOR(pp);
9193 	ASSERT(color < mmu_btop(shm_alignment));
9194 	return (color);
9195 #else
9196 	return (-1);
9197 #endif	/* VAC */
9198 }
9199 
9200 /*
9201  * This function will return the desired alignment for vac consistency
9202  * (vac color) given a virtual address.  If no vac is present it returns -1.
9203  */
9204 /*ARGSUSED*/
9205 int
9206 sfmmu_get_addrvcolor(caddr_t vaddr)
9207 {
9208 #ifdef VAC
9209 	if (cache & CACHE_VAC) {
9210 		return (addr_to_vcolor(vaddr));
9211 	} else {
9212 		return (-1);
9213 	}
9214 #else
9215 	return (-1);
9216 #endif	/* VAC */
9217 }
9218 
9219 #ifdef VAC
9220 /*
9221  * Check for conflicts.
9222  * A conflict exists if the new and existent mappings do not match in
9223  * their "shm_alignment fields. If conflicts exist, the existant mappings
9224  * are flushed unless one of them is locked. If one of them is locked, then
9225  * the mappings are flushed and converted to non-cacheable mappings.
9226  */
9227 static void
9228 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9229 {
9230 	struct hat *tmphat;
9231 	struct sf_hment *sfhmep, *tmphme = NULL;
9232 	struct hme_blk *hmeblkp;
9233 	int vcolor;
9234 	tte_t tte;
9235 
9236 	ASSERT(sfmmu_mlist_held(pp));
9237 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
9238 
9239 	vcolor = addr_to_vcolor(addr);
9240 	if (PP_NEWPAGE(pp)) {
9241 		PP_SET_VCOLOR(pp, vcolor);
9242 		return;
9243 	}
9244 
9245 	if (PP_GET_VCOLOR(pp) == vcolor) {
9246 		return;
9247 	}
9248 
9249 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9250 		/*
9251 		 * Previous user of page had a different color
9252 		 * but since there are no current users
9253 		 * we just flush the cache and change the color.
9254 		 */
9255 		SFMMU_STAT(sf_pgcolor_conflict);
9256 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9257 		PP_SET_VCOLOR(pp, vcolor);
9258 		return;
9259 	}
9260 
9261 	/*
9262 	 * If we get here we have a vac conflict with a current
9263 	 * mapping.  VAC conflict policy is as follows.
9264 	 * - The default is to unload the other mappings unless:
9265 	 * - If we have a large mapping we uncache the page.
9266 	 * We need to uncache the rest of the large page too.
9267 	 * - If any of the mappings are locked we uncache the page.
9268 	 * - If the requested mapping is inconsistent
9269 	 * with another mapping and that mapping
9270 	 * is in the same address space we have to
9271 	 * make it non-cached.  The default thing
9272 	 * to do is unload the inconsistent mapping
9273 	 * but if they are in the same address space
9274 	 * we run the risk of unmapping the pc or the
9275 	 * stack which we will use as we return to the user,
9276 	 * in which case we can then fault on the thing
9277 	 * we just unloaded and get into an infinite loop.
9278 	 */
9279 	if (PP_ISMAPPED_LARGE(pp)) {
9280 		int sz;
9281 
9282 		/*
9283 		 * Existing mapping is for big pages. We don't unload
9284 		 * existing big mappings to satisfy new mappings.
9285 		 * Always convert all mappings to TNC.
9286 		 */
9287 		sz = fnd_mapping_sz(pp);
9288 		pp = PP_GROUPLEADER(pp, sz);
9289 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9290 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9291 		    TTEPAGES(sz));
9292 
9293 		return;
9294 	}
9295 
9296 	/*
9297 	 * check if any mapping is in same as or if it is locked
9298 	 * since in that case we need to uncache.
9299 	 */
9300 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9301 		tmphme = sfhmep->hme_next;
9302 		if (IS_PAHME(sfhmep))
9303 			continue;
9304 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9305 		if (hmeblkp->hblk_xhat_bit)
9306 			continue;
9307 		tmphat = hblktosfmmu(hmeblkp);
9308 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
9309 		ASSERT(TTE_IS_VALID(&tte));
9310 		if (hmeblkp->hblk_shared || tmphat == hat ||
9311 		    hmeblkp->hblk_lckcnt) {
9312 			/*
9313 			 * We have an uncache conflict
9314 			 */
9315 			SFMMU_STAT(sf_uncache_conflict);
9316 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9317 			return;
9318 		}
9319 	}
9320 
9321 	/*
9322 	 * We have an unload conflict
9323 	 * We have already checked for LARGE mappings, therefore
9324 	 * the remaining mapping(s) must be TTE8K.
9325 	 */
9326 	SFMMU_STAT(sf_unload_conflict);
9327 
9328 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9329 		tmphme = sfhmep->hme_next;
9330 		if (IS_PAHME(sfhmep))
9331 			continue;
9332 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9333 		if (hmeblkp->hblk_xhat_bit)
9334 			continue;
9335 		ASSERT(!hmeblkp->hblk_shared);
9336 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9337 	}
9338 
9339 	if (PP_ISMAPPED_KPM(pp))
9340 		sfmmu_kpm_vac_unload(pp, addr);
9341 
9342 	/*
9343 	 * Unloads only do TLB flushes so we need to flush the
9344 	 * cache here.
9345 	 */
9346 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9347 	PP_SET_VCOLOR(pp, vcolor);
9348 }
9349 
9350 /*
9351  * Whenever a mapping is unloaded and the page is in TNC state,
9352  * we see if the page can be made cacheable again. 'pp' is
9353  * the page that we just unloaded a mapping from, the size
9354  * of mapping that was unloaded is 'ottesz'.
9355  * Remark:
9356  * The recache policy for mpss pages can leave a performance problem
9357  * under the following circumstances:
9358  * . A large page in uncached mode has just been unmapped.
9359  * . All constituent pages are TNC due to a conflicting small mapping.
9360  * . There are many other, non conflicting, small mappings around for
9361  *   a lot of the constituent pages.
9362  * . We're called w/ the "old" groupleader page and the old ottesz,
9363  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9364  *   we end up w/ TTE8K or npages == 1.
9365  * . We call tst_tnc w/ the old groupleader only, and if there is no
9366  *   conflict, we re-cache only this page.
9367  * . All other small mappings are not checked and will be left in TNC mode.
9368  * The problem is not very serious because:
9369  * . mpss is actually only defined for heap and stack, so the probability
9370  *   is not very high that a large page mapping exists in parallel to a small
9371  *   one (this is possible, but seems to be bad programming style in the
9372  *   appl).
9373  * . The problem gets a little bit more serious, when those TNC pages
9374  *   have to be mapped into kernel space, e.g. for networking.
9375  * . When VAC alias conflicts occur in applications, this is regarded
9376  *   as an application bug. So if kstat's show them, the appl should
9377  *   be changed anyway.
9378  */
9379 void
9380 conv_tnc(page_t *pp, int ottesz)
9381 {
9382 	int cursz, dosz;
9383 	pgcnt_t curnpgs, dopgs;
9384 	pgcnt_t pg64k;
9385 	page_t *pp2;
9386 
9387 	/*
9388 	 * Determine how big a range we check for TNC and find
9389 	 * leader page. cursz is the size of the biggest
9390 	 * mapping that still exist on 'pp'.
9391 	 */
9392 	if (PP_ISMAPPED_LARGE(pp)) {
9393 		cursz = fnd_mapping_sz(pp);
9394 	} else {
9395 		cursz = TTE8K;
9396 	}
9397 
9398 	if (ottesz >= cursz) {
9399 		dosz = ottesz;
9400 		pp2 = pp;
9401 	} else {
9402 		dosz = cursz;
9403 		pp2 = PP_GROUPLEADER(pp, dosz);
9404 	}
9405 
9406 	pg64k = TTEPAGES(TTE64K);
9407 	dopgs = TTEPAGES(dosz);
9408 
9409 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9410 
9411 	while (dopgs != 0) {
9412 		curnpgs = TTEPAGES(cursz);
9413 		if (tst_tnc(pp2, curnpgs)) {
9414 			SFMMU_STAT_ADD(sf_recache, curnpgs);
9415 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9416 			    curnpgs);
9417 		}
9418 
9419 		ASSERT(dopgs >= curnpgs);
9420 		dopgs -= curnpgs;
9421 
9422 		if (dopgs == 0) {
9423 			break;
9424 		}
9425 
9426 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9427 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9428 			cursz = fnd_mapping_sz(pp2);
9429 		} else {
9430 			cursz = TTE8K;
9431 		}
9432 	}
9433 }
9434 
9435 /*
9436  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9437  * returns 0 otherwise. Note that oaddr argument is valid for only
9438  * 8k pages.
9439  */
9440 int
9441 tst_tnc(page_t *pp, pgcnt_t npages)
9442 {
9443 	struct	sf_hment *sfhme;
9444 	struct	hme_blk *hmeblkp;
9445 	tte_t	tte;
9446 	caddr_t	vaddr;
9447 	int	clr_valid = 0;
9448 	int 	color, color1, bcolor;
9449 	int	i, ncolors;
9450 
9451 	ASSERT(pp != NULL);
9452 	ASSERT(!(cache & CACHE_WRITEBACK));
9453 
9454 	if (npages > 1) {
9455 		ncolors = CACHE_NUM_COLOR;
9456 	}
9457 
9458 	for (i = 0; i < npages; i++) {
9459 		ASSERT(sfmmu_mlist_held(pp));
9460 		ASSERT(PP_ISTNC(pp));
9461 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9462 
9463 		if (PP_ISPNC(pp)) {
9464 			return (0);
9465 		}
9466 
9467 		clr_valid = 0;
9468 		if (PP_ISMAPPED_KPM(pp)) {
9469 			caddr_t kpmvaddr;
9470 
9471 			ASSERT(kpm_enable);
9472 			kpmvaddr = hat_kpm_page2va(pp, 1);
9473 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9474 			color1 = addr_to_vcolor(kpmvaddr);
9475 			clr_valid = 1;
9476 		}
9477 
9478 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9479 			if (IS_PAHME(sfhme))
9480 				continue;
9481 			hmeblkp = sfmmu_hmetohblk(sfhme);
9482 			if (hmeblkp->hblk_xhat_bit)
9483 				continue;
9484 
9485 			sfmmu_copytte(&sfhme->hme_tte, &tte);
9486 			ASSERT(TTE_IS_VALID(&tte));
9487 
9488 			vaddr = tte_to_vaddr(hmeblkp, tte);
9489 			color = addr_to_vcolor(vaddr);
9490 
9491 			if (npages > 1) {
9492 				/*
9493 				 * If there is a big mapping, make sure
9494 				 * 8K mapping is consistent with the big
9495 				 * mapping.
9496 				 */
9497 				bcolor = i % ncolors;
9498 				if (color != bcolor) {
9499 					return (0);
9500 				}
9501 			}
9502 			if (!clr_valid) {
9503 				clr_valid = 1;
9504 				color1 = color;
9505 			}
9506 
9507 			if (color1 != color) {
9508 				return (0);
9509 			}
9510 		}
9511 
9512 		pp = PP_PAGENEXT(pp);
9513 	}
9514 
9515 	return (1);
9516 }
9517 
9518 void
9519 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9520 	pgcnt_t npages)
9521 {
9522 	kmutex_t *pmtx;
9523 	int i, ncolors, bcolor;
9524 	kpm_hlk_t *kpmp;
9525 	cpuset_t cpuset;
9526 
9527 	ASSERT(pp != NULL);
9528 	ASSERT(!(cache & CACHE_WRITEBACK));
9529 
9530 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9531 	pmtx = sfmmu_page_enter(pp);
9532 
9533 	/*
9534 	 * Fast path caching single unmapped page
9535 	 */
9536 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9537 	    flags == HAT_CACHE) {
9538 		PP_CLRTNC(pp);
9539 		PP_CLRPNC(pp);
9540 		sfmmu_page_exit(pmtx);
9541 		sfmmu_kpm_kpmp_exit(kpmp);
9542 		return;
9543 	}
9544 
9545 	/*
9546 	 * We need to capture all cpus in order to change cacheability
9547 	 * because we can't allow one cpu to access the same physical
9548 	 * page using a cacheable and a non-cachebale mapping at the same
9549 	 * time. Since we may end up walking the ism mapping list
9550 	 * have to grab it's lock now since we can't after all the
9551 	 * cpus have been captured.
9552 	 */
9553 	sfmmu_hat_lock_all();
9554 	mutex_enter(&ism_mlist_lock);
9555 	kpreempt_disable();
9556 	cpuset = cpu_ready_set;
9557 	xc_attention(cpuset);
9558 
9559 	if (npages > 1) {
9560 		/*
9561 		 * Make sure all colors are flushed since the
9562 		 * sfmmu_page_cache() only flushes one color-
9563 		 * it does not know big pages.
9564 		 */
9565 		ncolors = CACHE_NUM_COLOR;
9566 		if (flags & HAT_TMPNC) {
9567 			for (i = 0; i < ncolors; i++) {
9568 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
9569 			}
9570 			cache_flush_flag = CACHE_NO_FLUSH;
9571 		}
9572 	}
9573 
9574 	for (i = 0; i < npages; i++) {
9575 
9576 		ASSERT(sfmmu_mlist_held(pp));
9577 
9578 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9579 
9580 			if (npages > 1) {
9581 				bcolor = i % ncolors;
9582 			} else {
9583 				bcolor = NO_VCOLOR;
9584 			}
9585 
9586 			sfmmu_page_cache(pp, flags, cache_flush_flag,
9587 			    bcolor);
9588 		}
9589 
9590 		pp = PP_PAGENEXT(pp);
9591 	}
9592 
9593 	xt_sync(cpuset);
9594 	xc_dismissed(cpuset);
9595 	mutex_exit(&ism_mlist_lock);
9596 	sfmmu_hat_unlock_all();
9597 	sfmmu_page_exit(pmtx);
9598 	sfmmu_kpm_kpmp_exit(kpmp);
9599 	kpreempt_enable();
9600 }
9601 
9602 /*
9603  * This function changes the virtual cacheability of all mappings to a
9604  * particular page.  When changing from uncache to cacheable the mappings will
9605  * only be changed if all of them have the same virtual color.
9606  * We need to flush the cache in all cpus.  It is possible that
9607  * a process referenced a page as cacheable but has sinced exited
9608  * and cleared the mapping list.  We still to flush it but have no
9609  * state so all cpus is the only alternative.
9610  */
9611 static void
9612 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9613 {
9614 	struct	sf_hment *sfhme;
9615 	struct	hme_blk *hmeblkp;
9616 	sfmmu_t *sfmmup;
9617 	tte_t	tte, ttemod;
9618 	caddr_t	vaddr;
9619 	int	ret, color;
9620 	pfn_t	pfn;
9621 
9622 	color = bcolor;
9623 	pfn = pp->p_pagenum;
9624 
9625 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9626 
9627 		if (IS_PAHME(sfhme))
9628 			continue;
9629 		hmeblkp = sfmmu_hmetohblk(sfhme);
9630 
9631 		if (hmeblkp->hblk_xhat_bit)
9632 			continue;
9633 
9634 		sfmmu_copytte(&sfhme->hme_tte, &tte);
9635 		ASSERT(TTE_IS_VALID(&tte));
9636 		vaddr = tte_to_vaddr(hmeblkp, tte);
9637 		color = addr_to_vcolor(vaddr);
9638 
9639 #ifdef DEBUG
9640 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9641 			ASSERT(color == bcolor);
9642 		}
9643 #endif
9644 
9645 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9646 
9647 		ttemod = tte;
9648 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9649 			TTE_CLR_VCACHEABLE(&ttemod);
9650 		} else {	/* flags & HAT_CACHE */
9651 			TTE_SET_VCACHEABLE(&ttemod);
9652 		}
9653 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9654 		if (ret < 0) {
9655 			/*
9656 			 * Since all cpus are captured modifytte should not
9657 			 * fail.
9658 			 */
9659 			panic("sfmmu_page_cache: write to tte failed");
9660 		}
9661 
9662 		sfmmup = hblktosfmmu(hmeblkp);
9663 		if (cache_flush_flag == CACHE_FLUSH) {
9664 			/*
9665 			 * Flush TSBs, TLBs and caches
9666 			 */
9667 			if (hmeblkp->hblk_shared) {
9668 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9669 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9670 				sf_region_t *rgnp;
9671 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9672 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9673 				ASSERT(srdp != NULL);
9674 				rgnp = srdp->srd_hmergnp[rid];
9675 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9676 				    srdp, rgnp, rid);
9677 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9678 				    hmeblkp, 0);
9679 				sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9680 			} else if (sfmmup->sfmmu_ismhat) {
9681 				if (flags & HAT_CACHE) {
9682 					SFMMU_STAT(sf_ism_recache);
9683 				} else {
9684 					SFMMU_STAT(sf_ism_uncache);
9685 				}
9686 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9687 				    pfn, CACHE_FLUSH);
9688 			} else {
9689 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9690 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9691 			}
9692 
9693 			/*
9694 			 * all cache entries belonging to this pfn are
9695 			 * now flushed.
9696 			 */
9697 			cache_flush_flag = CACHE_NO_FLUSH;
9698 		} else {
9699 			/*
9700 			 * Flush only TSBs and TLBs.
9701 			 */
9702 			if (hmeblkp->hblk_shared) {
9703 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9704 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9705 				sf_region_t *rgnp;
9706 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9707 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9708 				ASSERT(srdp != NULL);
9709 				rgnp = srdp->srd_hmergnp[rid];
9710 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9711 				    srdp, rgnp, rid);
9712 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9713 				    hmeblkp, 0);
9714 			} else if (sfmmup->sfmmu_ismhat) {
9715 				if (flags & HAT_CACHE) {
9716 					SFMMU_STAT(sf_ism_recache);
9717 				} else {
9718 					SFMMU_STAT(sf_ism_uncache);
9719 				}
9720 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9721 				    pfn, CACHE_NO_FLUSH);
9722 			} else {
9723 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9724 			}
9725 		}
9726 	}
9727 
9728 	if (PP_ISMAPPED_KPM(pp))
9729 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9730 
9731 	switch (flags) {
9732 
9733 		default:
9734 			panic("sfmmu_pagecache: unknown flags");
9735 			break;
9736 
9737 		case HAT_CACHE:
9738 			PP_CLRTNC(pp);
9739 			PP_CLRPNC(pp);
9740 			PP_SET_VCOLOR(pp, color);
9741 			break;
9742 
9743 		case HAT_TMPNC:
9744 			PP_SETTNC(pp);
9745 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9746 			break;
9747 
9748 		case HAT_UNCACHE:
9749 			PP_SETPNC(pp);
9750 			PP_CLRTNC(pp);
9751 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9752 			break;
9753 	}
9754 }
9755 #endif	/* VAC */
9756 
9757 
9758 /*
9759  * Wrapper routine used to return a context.
9760  *
9761  * It's the responsibility of the caller to guarantee that the
9762  * process serializes on calls here by taking the HAT lock for
9763  * the hat.
9764  *
9765  */
9766 static void
9767 sfmmu_get_ctx(sfmmu_t *sfmmup)
9768 {
9769 	mmu_ctx_t *mmu_ctxp;
9770 	uint_t pstate_save;
9771 	int ret;
9772 
9773 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9774 	ASSERT(sfmmup != ksfmmup);
9775 
9776 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9777 		sfmmu_setup_tsbinfo(sfmmup);
9778 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9779 	}
9780 
9781 	kpreempt_disable();
9782 
9783 	mmu_ctxp = CPU_MMU_CTXP(CPU);
9784 	ASSERT(mmu_ctxp);
9785 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9786 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9787 
9788 	/*
9789 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9790 	 */
9791 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9792 		sfmmu_ctx_wrap_around(mmu_ctxp);
9793 
9794 	/*
9795 	 * Let the MMU set up the page sizes to use for
9796 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
9797 	 */
9798 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9799 		mmu_set_ctx_page_sizes(sfmmup);
9800 	}
9801 
9802 	/*
9803 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9804 	 * interrupts disabled to prevent race condition with wrap-around
9805 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
9806 	 * a HV call to set the number of TSBs to 0. If interrupts are not
9807 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
9808 	 * become assigned to INVALID_CONTEXT. This is not allowed.
9809 	 */
9810 	pstate_save = sfmmu_disable_intrs();
9811 
9812 	if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9813 	    sfmmup->sfmmu_scdp != NULL) {
9814 		sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9815 		sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9816 		ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9817 		/* debug purpose only */
9818 		ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9819 		    != INVALID_CONTEXT);
9820 	}
9821 	sfmmu_load_mmustate(sfmmup);
9822 
9823 	sfmmu_enable_intrs(pstate_save);
9824 
9825 	kpreempt_enable();
9826 }
9827 
9828 /*
9829  * When all cnums are used up in a MMU, cnum will wrap around to the
9830  * next generation and start from 2.
9831  */
9832 static void
9833 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
9834 {
9835 
9836 	/* caller must have disabled the preemption */
9837 	ASSERT(curthread->t_preempt >= 1);
9838 	ASSERT(mmu_ctxp != NULL);
9839 
9840 	/* acquire Per-MMU (PM) spin lock */
9841 	mutex_enter(&mmu_ctxp->mmu_lock);
9842 
9843 	/* re-check to see if wrap-around is needed */
9844 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9845 		goto done;
9846 
9847 	SFMMU_MMU_STAT(mmu_wrap_around);
9848 
9849 	/* update gnum */
9850 	ASSERT(mmu_ctxp->mmu_gnum != 0);
9851 	mmu_ctxp->mmu_gnum++;
9852 	if (mmu_ctxp->mmu_gnum == 0 ||
9853 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9854 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9855 		    (void *)mmu_ctxp);
9856 	}
9857 
9858 	if (mmu_ctxp->mmu_ncpus > 1) {
9859 		cpuset_t cpuset;
9860 
9861 		membar_enter(); /* make sure updated gnum visible */
9862 
9863 		SFMMU_XCALL_STATS(NULL);
9864 
9865 		/* xcall to others on the same MMU to invalidate ctx */
9866 		cpuset = mmu_ctxp->mmu_cpuset;
9867 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
9868 		CPUSET_DEL(cpuset, CPU->cpu_id);
9869 		CPUSET_AND(cpuset, cpu_ready_set);
9870 
9871 		/*
9872 		 * Pass in INVALID_CONTEXT as the first parameter to
9873 		 * sfmmu_raise_tsb_exception, which invalidates the context
9874 		 * of any process running on the CPUs in the MMU.
9875 		 */
9876 		xt_some(cpuset, sfmmu_raise_tsb_exception,
9877 		    INVALID_CONTEXT, INVALID_CONTEXT);
9878 		xt_sync(cpuset);
9879 
9880 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9881 	}
9882 
9883 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9884 		sfmmu_setctx_sec(INVALID_CONTEXT);
9885 		sfmmu_clear_utsbinfo();
9886 	}
9887 
9888 	/*
9889 	 * No xcall is needed here. For sun4u systems all CPUs in context
9890 	 * domain share a single physical MMU therefore it's enough to flush
9891 	 * TLB on local CPU. On sun4v systems we use 1 global context
9892 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9893 	 * handler. Note that vtag_flushall_uctxs() is called
9894 	 * for Ultra II machine, where the equivalent flushall functionality
9895 	 * is implemented in SW, and only user ctx TLB entries are flushed.
9896 	 */
9897 	if (&vtag_flushall_uctxs != NULL) {
9898 		vtag_flushall_uctxs();
9899 	} else {
9900 		vtag_flushall();
9901 	}
9902 
9903 	/* reset mmu cnum, skips cnum 0 and 1 */
9904 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9905 
9906 done:
9907 	mutex_exit(&mmu_ctxp->mmu_lock);
9908 }
9909 
9910 
9911 /*
9912  * For multi-threaded process, set the process context to INVALID_CONTEXT
9913  * so that it faults and reloads the MMU state from TL=0. For single-threaded
9914  * process, we can just load the MMU state directly without having to
9915  * set context invalid. Caller must hold the hat lock since we don't
9916  * acquire it here.
9917  */
9918 static void
9919 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9920 {
9921 	uint_t cnum;
9922 	uint_t pstate_save;
9923 
9924 	ASSERT(sfmmup != ksfmmup);
9925 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9926 
9927 	kpreempt_disable();
9928 
9929 	/*
9930 	 * We check whether the pass'ed-in sfmmup is the same as the
9931 	 * current running proc. This is to makes sure the current proc
9932 	 * stays single-threaded if it already is.
9933 	 */
9934 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
9935 	    (curthread->t_procp->p_lwpcnt == 1)) {
9936 		/* single-thread */
9937 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
9938 		if (cnum != INVALID_CONTEXT) {
9939 			uint_t curcnum;
9940 			/*
9941 			 * Disable interrupts to prevent race condition
9942 			 * with sfmmu_ctx_wrap_around ctx invalidation.
9943 			 * In sun4v, ctx invalidation involves setting
9944 			 * TSB to NULL, hence, interrupts should be disabled
9945 			 * untill after sfmmu_load_mmustate is completed.
9946 			 */
9947 			pstate_save = sfmmu_disable_intrs();
9948 			curcnum = sfmmu_getctx_sec();
9949 			if (curcnum == cnum)
9950 				sfmmu_load_mmustate(sfmmup);
9951 			sfmmu_enable_intrs(pstate_save);
9952 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
9953 		}
9954 	} else {
9955 		/*
9956 		 * multi-thread
9957 		 * or when sfmmup is not the same as the curproc.
9958 		 */
9959 		sfmmu_invalidate_ctx(sfmmup);
9960 	}
9961 
9962 	kpreempt_enable();
9963 }
9964 
9965 
9966 /*
9967  * Replace the specified TSB with a new TSB.  This function gets called when
9968  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
9969  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
9970  * (8K).
9971  *
9972  * Caller must hold the HAT lock, but should assume any tsb_info
9973  * pointers it has are no longer valid after calling this function.
9974  *
9975  * Return values:
9976  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
9977  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
9978  *			something to this tsbinfo/TSB
9979  *	TSB_SUCCESS	Operation succeeded
9980  */
9981 static tsb_replace_rc_t
9982 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
9983     hatlock_t *hatlockp, uint_t flags)
9984 {
9985 	struct tsb_info *new_tsbinfo = NULL;
9986 	struct tsb_info *curtsb, *prevtsb;
9987 	uint_t tte_sz_mask;
9988 	int i;
9989 
9990 	ASSERT(sfmmup != ksfmmup);
9991 	ASSERT(sfmmup->sfmmu_ismhat == 0);
9992 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9993 	ASSERT(szc <= tsb_max_growsize);
9994 
9995 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
9996 		return (TSB_LOSTRACE);
9997 
9998 	/*
9999 	 * Find the tsb_info ahead of this one in the list, and
10000 	 * also make sure that the tsb_info passed in really
10001 	 * exists!
10002 	 */
10003 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
10004 	    curtsb != old_tsbinfo && curtsb != NULL;
10005 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
10006 		;
10007 	ASSERT(curtsb != NULL);
10008 
10009 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10010 		/*
10011 		 * The process is swapped out, so just set the new size
10012 		 * code.  When it swaps back in, we'll allocate a new one
10013 		 * of the new chosen size.
10014 		 */
10015 		curtsb->tsb_szc = szc;
10016 		return (TSB_SUCCESS);
10017 	}
10018 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
10019 
10020 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
10021 
10022 	/*
10023 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
10024 	 * If we fail to allocate a TSB, exit.
10025 	 *
10026 	 * If tsb grows with new tsb size > 4M and old tsb size < 4M,
10027 	 * then try 4M slab after the initial alloc fails.
10028 	 *
10029 	 * If tsb swapin with tsb size > 4M, then try 4M after the
10030 	 * initial alloc fails.
10031 	 */
10032 	sfmmu_hat_exit(hatlockp);
10033 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
10034 	    tte_sz_mask, flags, sfmmup) &&
10035 	    (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
10036 	    (!(flags & TSB_SWAPIN) &&
10037 	    (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
10038 	    sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
10039 	    tte_sz_mask, flags, sfmmup))) {
10040 		(void) sfmmu_hat_enter(sfmmup);
10041 		if (!(flags & TSB_SWAPIN))
10042 			SFMMU_STAT(sf_tsb_resize_failures);
10043 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10044 		return (TSB_ALLOCFAIL);
10045 	}
10046 	(void) sfmmu_hat_enter(sfmmup);
10047 
10048 	/*
10049 	 * Re-check to make sure somebody else didn't muck with us while we
10050 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
10051 	 * exit; this can happen if we try to shrink the TSB from the context
10052 	 * of another process (such as on an ISM unmap), though it is rare.
10053 	 */
10054 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10055 		SFMMU_STAT(sf_tsb_resize_failures);
10056 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10057 		sfmmu_hat_exit(hatlockp);
10058 		sfmmu_tsbinfo_free(new_tsbinfo);
10059 		(void) sfmmu_hat_enter(sfmmup);
10060 		return (TSB_LOSTRACE);
10061 	}
10062 
10063 #ifdef	DEBUG
10064 	/* Reverify that the tsb_info still exists.. for debugging only */
10065 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
10066 	    curtsb != old_tsbinfo && curtsb != NULL;
10067 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
10068 		;
10069 	ASSERT(curtsb != NULL);
10070 #endif	/* DEBUG */
10071 
10072 	/*
10073 	 * Quiesce any CPUs running this process on their next TLB miss
10074 	 * so they atomically see the new tsb_info.  We temporarily set the
10075 	 * context to invalid context so new threads that come on processor
10076 	 * after we do the xcall to cpusran will also serialize behind the
10077 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
10078 	 * race with a new thread coming on processor is relatively rare,
10079 	 * this synchronization mechanism should be cheaper than always
10080 	 * pausing all CPUs for the duration of the setup, which is what
10081 	 * the old implementation did.  This is particuarly true if we are
10082 	 * copying a huge chunk of memory around during that window.
10083 	 *
10084 	 * The memory barriers are to make sure things stay consistent
10085 	 * with resume() since it does not hold the HAT lock while
10086 	 * walking the list of tsb_info structures.
10087 	 */
10088 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
10089 		/* The TSB is either growing or shrinking. */
10090 		sfmmu_invalidate_ctx(sfmmup);
10091 	} else {
10092 		/*
10093 		 * It is illegal to swap in TSBs from a process other
10094 		 * than a process being swapped in.  This in turn
10095 		 * implies we do not have a valid MMU context here
10096 		 * since a process needs one to resolve translation
10097 		 * misses.
10098 		 */
10099 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
10100 	}
10101 
10102 #ifdef DEBUG
10103 	ASSERT(max_mmu_ctxdoms > 0);
10104 
10105 	/*
10106 	 * Process should have INVALID_CONTEXT on all MMUs
10107 	 */
10108 	for (i = 0; i < max_mmu_ctxdoms; i++) {
10109 
10110 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
10111 	}
10112 #endif
10113 
10114 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
10115 	membar_stst();	/* strict ordering required */
10116 	if (prevtsb)
10117 		prevtsb->tsb_next = new_tsbinfo;
10118 	else
10119 		sfmmup->sfmmu_tsb = new_tsbinfo;
10120 	membar_enter();	/* make sure new TSB globally visible */
10121 
10122 	/*
10123 	 * We need to migrate TSB entries from the old TSB to the new TSB
10124 	 * if tsb_remap_ttes is set and the TSB is growing.
10125 	 */
10126 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
10127 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
10128 
10129 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10130 
10131 	/*
10132 	 * Drop the HAT lock to free our old tsb_info.
10133 	 */
10134 	sfmmu_hat_exit(hatlockp);
10135 
10136 	if ((flags & TSB_GROW) == TSB_GROW) {
10137 		SFMMU_STAT(sf_tsb_grow);
10138 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
10139 		SFMMU_STAT(sf_tsb_shrink);
10140 	}
10141 
10142 	sfmmu_tsbinfo_free(old_tsbinfo);
10143 
10144 	(void) sfmmu_hat_enter(sfmmup);
10145 	return (TSB_SUCCESS);
10146 }
10147 
10148 /*
10149  * This function will re-program hat pgsz array, and invalidate the
10150  * process' context, forcing the process to switch to another
10151  * context on the next TLB miss, and therefore start using the
10152  * TLB that is reprogrammed for the new page sizes.
10153  */
10154 void
10155 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
10156 {
10157 	int i;
10158 	hatlock_t *hatlockp = NULL;
10159 
10160 	hatlockp = sfmmu_hat_enter(sfmmup);
10161 	/* USIII+-IV+ optimization, requires hat lock */
10162 	if (tmp_pgsz) {
10163 		for (i = 0; i < mmu_page_sizes; i++)
10164 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10165 	}
10166 	SFMMU_STAT(sf_tlb_reprog_pgsz);
10167 
10168 	sfmmu_invalidate_ctx(sfmmup);
10169 
10170 	sfmmu_hat_exit(hatlockp);
10171 }
10172 
10173 /*
10174  * The scd_rttecnt field in the SCD must be updated to take account of the
10175  * regions which it contains.
10176  */
10177 static void
10178 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10179 {
10180 	uint_t rid;
10181 	uint_t i, j;
10182 	ulong_t w;
10183 	sf_region_t *rgnp;
10184 
10185 	ASSERT(srdp != NULL);
10186 
10187 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10188 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10189 			continue;
10190 		}
10191 
10192 		j = 0;
10193 		while (w) {
10194 			if (!(w & 0x1)) {
10195 				j++;
10196 				w >>= 1;
10197 				continue;
10198 			}
10199 			rid = (i << BT_ULSHIFT) | j;
10200 			j++;
10201 			w >>= 1;
10202 
10203 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10204 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10205 			rgnp = srdp->srd_hmergnp[rid];
10206 			ASSERT(rgnp->rgn_refcnt > 0);
10207 			ASSERT(rgnp->rgn_id == rid);
10208 
10209 			scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10210 			    rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10211 
10212 			/*
10213 			 * Maintain the tsb0 inflation cnt for the regions
10214 			 * in the SCD.
10215 			 */
10216 			if (rgnp->rgn_pgszc >= TTE4M) {
10217 				scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10218 				    rgnp->rgn_size >>
10219 				    (TTE_PAGE_SHIFT(TTE8K) + 2);
10220 			}
10221 		}
10222 	}
10223 }
10224 
10225 /*
10226  * This function assumes that there are either four or six supported page
10227  * sizes and at most two programmable TLBs, so we need to decide which
10228  * page sizes are most important and then tell the MMU layer so it
10229  * can adjust the TLB page sizes accordingly (if supported).
10230  *
10231  * If these assumptions change, this function will need to be
10232  * updated to support whatever the new limits are.
10233  *
10234  * The growing flag is nonzero if we are growing the address space,
10235  * and zero if it is shrinking.  This allows us to decide whether
10236  * to grow or shrink our TSB, depending upon available memory
10237  * conditions.
10238  */
10239 static void
10240 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10241 {
10242 	uint64_t ttecnt[MMU_PAGE_SIZES];
10243 	uint64_t tte8k_cnt, tte4m_cnt;
10244 	uint8_t i;
10245 	int sectsb_thresh;
10246 
10247 	/*
10248 	 * Kernel threads, processes with small address spaces not using
10249 	 * large pages, and dummy ISM HATs need not apply.
10250 	 */
10251 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
10252 		return;
10253 
10254 	if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10255 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10256 		return;
10257 
10258 	for (i = 0; i < mmu_page_sizes; i++) {
10259 		ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10260 		    sfmmup->sfmmu_ismttecnt[i];
10261 	}
10262 
10263 	/* Check pagesizes in use, and possibly reprogram DTLB. */
10264 	if (&mmu_check_page_sizes)
10265 		mmu_check_page_sizes(sfmmup, ttecnt);
10266 
10267 	/*
10268 	 * Calculate the number of 8k ttes to represent the span of these
10269 	 * pages.
10270 	 */
10271 	tte8k_cnt = ttecnt[TTE8K] +
10272 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10273 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10274 	if (mmu_page_sizes == max_mmu_page_sizes) {
10275 		tte4m_cnt = ttecnt[TTE4M] +
10276 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10277 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10278 	} else {
10279 		tte4m_cnt = ttecnt[TTE4M];
10280 	}
10281 
10282 	/*
10283 	 * Inflate tte8k_cnt to allow for region large page allocation failure.
10284 	 */
10285 	tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10286 
10287 	/*
10288 	 * Inflate TSB sizes by a factor of 2 if this process
10289 	 * uses 4M text pages to minimize extra conflict misses
10290 	 * in the first TSB since without counting text pages
10291 	 * 8K TSB may become too small.
10292 	 *
10293 	 * Also double the size of the second TSB to minimize
10294 	 * extra conflict misses due to competition between 4M text pages
10295 	 * and data pages.
10296 	 *
10297 	 * We need to adjust the second TSB allocation threshold by the
10298 	 * inflation factor, since there is no point in creating a second
10299 	 * TSB when we know all the mappings can fit in the I/D TLBs.
10300 	 */
10301 	sectsb_thresh = tsb_sectsb_threshold;
10302 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10303 		tte8k_cnt <<= 1;
10304 		tte4m_cnt <<= 1;
10305 		sectsb_thresh <<= 1;
10306 	}
10307 
10308 	/*
10309 	 * Check to see if our TSB is the right size; we may need to
10310 	 * grow or shrink it.  If the process is small, our work is
10311 	 * finished at this point.
10312 	 */
10313 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10314 		return;
10315 	}
10316 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10317 }
10318 
10319 static void
10320 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10321 	uint64_t tte4m_cnt, int sectsb_thresh)
10322 {
10323 	int tsb_bits;
10324 	uint_t tsb_szc;
10325 	struct tsb_info *tsbinfop;
10326 	hatlock_t *hatlockp = NULL;
10327 
10328 	hatlockp = sfmmu_hat_enter(sfmmup);
10329 	ASSERT(hatlockp != NULL);
10330 	tsbinfop = sfmmup->sfmmu_tsb;
10331 	ASSERT(tsbinfop != NULL);
10332 
10333 	/*
10334 	 * If we're growing, select the size based on RSS.  If we're
10335 	 * shrinking, leave some room so we don't have to turn around and
10336 	 * grow again immediately.
10337 	 */
10338 	if (growing)
10339 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10340 	else
10341 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10342 
10343 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10344 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10345 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10346 		    hatlockp, TSB_SHRINK);
10347 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10348 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10349 		    hatlockp, TSB_GROW);
10350 	}
10351 	tsbinfop = sfmmup->sfmmu_tsb;
10352 
10353 	/*
10354 	 * With the TLB and first TSB out of the way, we need to see if
10355 	 * we need a second TSB for 4M pages.  If we managed to reprogram
10356 	 * the TLB page sizes above, the process will start using this new
10357 	 * TSB right away; otherwise, it will start using it on the next
10358 	 * context switch.  Either way, it's no big deal so there's no
10359 	 * synchronization with the trap handlers here unless we grow the
10360 	 * TSB (in which case it's required to prevent using the old one
10361 	 * after it's freed). Note: second tsb is required for 32M/256M
10362 	 * page sizes.
10363 	 */
10364 	if (tte4m_cnt > sectsb_thresh) {
10365 		/*
10366 		 * If we're growing, select the size based on RSS.  If we're
10367 		 * shrinking, leave some room so we don't have to turn
10368 		 * around and grow again immediately.
10369 		 */
10370 		if (growing)
10371 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10372 		else
10373 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10374 		if (tsbinfop->tsb_next == NULL) {
10375 			struct tsb_info *newtsb;
10376 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10377 			    0 : TSB_ALLOC;
10378 
10379 			sfmmu_hat_exit(hatlockp);
10380 
10381 			/*
10382 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
10383 			 * can't get the size we want, retry w/a minimum sized
10384 			 * TSB.  If that still didn't work, give up; we can
10385 			 * still run without one.
10386 			 */
10387 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10388 			    TSB4M|TSB32M|TSB256M:TSB4M;
10389 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10390 			    allocflags, sfmmup)) &&
10391 			    (tsb_szc <= TSB_4M_SZCODE ||
10392 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10393 			    tsb_bits, allocflags, sfmmup)) &&
10394 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10395 			    tsb_bits, allocflags, sfmmup)) {
10396 				return;
10397 			}
10398 
10399 			hatlockp = sfmmu_hat_enter(sfmmup);
10400 
10401 			sfmmu_invalidate_ctx(sfmmup);
10402 
10403 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10404 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
10405 				SFMMU_STAT(sf_tsb_sectsb_create);
10406 				sfmmu_hat_exit(hatlockp);
10407 				return;
10408 			} else {
10409 				/*
10410 				 * It's annoying, but possible for us
10411 				 * to get here.. we dropped the HAT lock
10412 				 * because of locking order in the kmem
10413 				 * allocator, and while we were off getting
10414 				 * our memory, some other thread decided to
10415 				 * do us a favor and won the race to get a
10416 				 * second TSB for this process.  Sigh.
10417 				 */
10418 				sfmmu_hat_exit(hatlockp);
10419 				sfmmu_tsbinfo_free(newtsb);
10420 				return;
10421 			}
10422 		}
10423 
10424 		/*
10425 		 * We have a second TSB, see if it's big enough.
10426 		 */
10427 		tsbinfop = tsbinfop->tsb_next;
10428 
10429 		/*
10430 		 * Check to see if our second TSB is the right size;
10431 		 * we may need to grow or shrink it.
10432 		 * To prevent thrashing (e.g. growing the TSB on a
10433 		 * subsequent map operation), only try to shrink if
10434 		 * the TSB reach exceeds twice the virtual address
10435 		 * space size.
10436 		 */
10437 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10438 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10439 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10440 			    tsb_szc, hatlockp, TSB_SHRINK);
10441 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10442 		    TSB_OK_GROW()) {
10443 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10444 			    tsb_szc, hatlockp, TSB_GROW);
10445 		}
10446 	}
10447 
10448 	sfmmu_hat_exit(hatlockp);
10449 }
10450 
10451 /*
10452  * Free up a sfmmu
10453  * Since the sfmmu is currently embedded in the hat struct we simply zero
10454  * out our fields and free up the ism map blk list if any.
10455  */
10456 static void
10457 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10458 {
10459 	ism_blk_t	*blkp, *nx_blkp;
10460 #ifdef	DEBUG
10461 	ism_map_t	*map;
10462 	int 		i;
10463 #endif
10464 
10465 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10466 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10467 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10468 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10469 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10470 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10471 	ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10472 
10473 	sfmmup->sfmmu_free = 0;
10474 	sfmmup->sfmmu_ismhat = 0;
10475 
10476 	blkp = sfmmup->sfmmu_iblk;
10477 	sfmmup->sfmmu_iblk = NULL;
10478 
10479 	while (blkp) {
10480 #ifdef	DEBUG
10481 		map = blkp->iblk_maps;
10482 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
10483 			ASSERT(map[i].imap_seg == 0);
10484 			ASSERT(map[i].imap_ismhat == NULL);
10485 			ASSERT(map[i].imap_ment == NULL);
10486 		}
10487 #endif
10488 		nx_blkp = blkp->iblk_next;
10489 		blkp->iblk_next = NULL;
10490 		blkp->iblk_nextpa = (uint64_t)-1;
10491 		kmem_cache_free(ism_blk_cache, blkp);
10492 		blkp = nx_blkp;
10493 	}
10494 }
10495 
10496 /*
10497  * Locking primitves accessed by HATLOCK macros
10498  */
10499 
10500 #define	SFMMU_SPL_MTX	(0x0)
10501 #define	SFMMU_ML_MTX	(0x1)
10502 
10503 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
10504 					    SPL_HASH(pg) : MLIST_HASH(pg))
10505 
10506 kmutex_t *
10507 sfmmu_page_enter(struct page *pp)
10508 {
10509 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10510 }
10511 
10512 void
10513 sfmmu_page_exit(kmutex_t *spl)
10514 {
10515 	mutex_exit(spl);
10516 }
10517 
10518 int
10519 sfmmu_page_spl_held(struct page *pp)
10520 {
10521 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10522 }
10523 
10524 kmutex_t *
10525 sfmmu_mlist_enter(struct page *pp)
10526 {
10527 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10528 }
10529 
10530 void
10531 sfmmu_mlist_exit(kmutex_t *mml)
10532 {
10533 	mutex_exit(mml);
10534 }
10535 
10536 int
10537 sfmmu_mlist_held(struct page *pp)
10538 {
10539 
10540 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10541 }
10542 
10543 /*
10544  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
10545  * sfmmu_mlist_enter() case mml_table lock array is used and for
10546  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10547  *
10548  * The lock is taken on a root page so that it protects an operation on all
10549  * constituent pages of a large page pp belongs to.
10550  *
10551  * The routine takes a lock from the appropriate array. The lock is determined
10552  * by hashing the root page. After taking the lock this routine checks if the
10553  * root page has the same size code that was used to determine the root (i.e
10554  * that root hasn't changed).  If root page has the expected p_szc field we
10555  * have the right lock and it's returned to the caller. If root's p_szc
10556  * decreased we release the lock and retry from the beginning.  This case can
10557  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10558  * value and taking the lock. The number of retries due to p_szc decrease is
10559  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10560  * determined by hashing pp itself.
10561  *
10562  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10563  * possible that p_szc can increase. To increase p_szc a thread has to lock
10564  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10565  * callers that don't hold a page locked recheck if hmeblk through which pp
10566  * was found still maps this pp.  If it doesn't map it anymore returned lock
10567  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10568  * p_szc increase after taking the lock it returns this lock without further
10569  * retries because in this case the caller doesn't care about which lock was
10570  * taken. The caller will drop it right away.
10571  *
10572  * After the routine returns it's guaranteed that hat_page_demote() can't
10573  * change p_szc field of any of constituent pages of a large page pp belongs
10574  * to as long as pp was either locked at least SHARED prior to this call or
10575  * the caller finds that hment that pointed to this pp still references this
10576  * pp (this also assumes that the caller holds hme hash bucket lock so that
10577  * the same pp can't be remapped into the same hmeblk after it was unmapped by
10578  * hat_pageunload()).
10579  */
10580 static kmutex_t *
10581 sfmmu_mlspl_enter(struct page *pp, int type)
10582 {
10583 	kmutex_t	*mtx;
10584 	uint_t		prev_rszc = UINT_MAX;
10585 	page_t		*rootpp;
10586 	uint_t		szc;
10587 	uint_t		rszc;
10588 	uint_t		pszc = pp->p_szc;
10589 
10590 	ASSERT(pp != NULL);
10591 
10592 again:
10593 	if (pszc == 0) {
10594 		mtx = SFMMU_MLSPL_MTX(type, pp);
10595 		mutex_enter(mtx);
10596 		return (mtx);
10597 	}
10598 
10599 	/* The lock lives in the root page */
10600 	rootpp = PP_GROUPLEADER(pp, pszc);
10601 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10602 	mutex_enter(mtx);
10603 
10604 	/*
10605 	 * Return mml in the following 3 cases:
10606 	 *
10607 	 * 1) If pp itself is root since if its p_szc decreased before we took
10608 	 * the lock pp is still the root of smaller szc page. And if its p_szc
10609 	 * increased it doesn't matter what lock we return (see comment in
10610 	 * front of this routine).
10611 	 *
10612 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10613 	 * large page we have the right lock since any previous potential
10614 	 * hat_page_demote() is done demoting from greater than current root's
10615 	 * p_szc because hat_page_demote() changes root's p_szc last. No
10616 	 * further hat_page_demote() can start or be in progress since it
10617 	 * would need the same lock we currently hold.
10618 	 *
10619 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
10620 	 * matter what lock we return (see comment in front of this routine).
10621 	 */
10622 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10623 	    rszc >= prev_rszc) {
10624 		return (mtx);
10625 	}
10626 
10627 	/*
10628 	 * hat_page_demote() could have decreased root's p_szc.
10629 	 * In this case pp's p_szc must also be smaller than pszc.
10630 	 * Retry.
10631 	 */
10632 	if (rszc < pszc) {
10633 		szc = pp->p_szc;
10634 		if (szc < pszc) {
10635 			mutex_exit(mtx);
10636 			pszc = szc;
10637 			goto again;
10638 		}
10639 		/*
10640 		 * pp's p_szc increased after it was decreased.
10641 		 * page cannot be mapped. Return current lock. The caller
10642 		 * will drop it right away.
10643 		 */
10644 		return (mtx);
10645 	}
10646 
10647 	/*
10648 	 * root's p_szc is greater than pp's p_szc.
10649 	 * hat_page_demote() is not done with all pages
10650 	 * yet. Wait for it to complete.
10651 	 */
10652 	mutex_exit(mtx);
10653 	rootpp = PP_GROUPLEADER(rootpp, rszc);
10654 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10655 	mutex_enter(mtx);
10656 	mutex_exit(mtx);
10657 	prev_rszc = rszc;
10658 	goto again;
10659 }
10660 
10661 static int
10662 sfmmu_mlspl_held(struct page *pp, int type)
10663 {
10664 	kmutex_t	*mtx;
10665 
10666 	ASSERT(pp != NULL);
10667 	/* The lock lives in the root page */
10668 	pp = PP_PAGEROOT(pp);
10669 	ASSERT(pp != NULL);
10670 
10671 	mtx = SFMMU_MLSPL_MTX(type, pp);
10672 	return (MUTEX_HELD(mtx));
10673 }
10674 
10675 static uint_t
10676 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10677 {
10678 	struct  hme_blk *hblkp;
10679 
10680 	if (freehblkp != NULL) {
10681 		mutex_enter(&freehblkp_lock);
10682 		if (freehblkp != NULL) {
10683 			/*
10684 			 * If the current thread is owning hblk_reserve OR
10685 			 * critical request from sfmmu_hblk_steal()
10686 			 * let it succeed even if freehblkcnt is really low.
10687 			 */
10688 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10689 				SFMMU_STAT(sf_get_free_throttle);
10690 				mutex_exit(&freehblkp_lock);
10691 				return (0);
10692 			}
10693 			freehblkcnt--;
10694 			*hmeblkpp = freehblkp;
10695 			hblkp = *hmeblkpp;
10696 			freehblkp = hblkp->hblk_next;
10697 			mutex_exit(&freehblkp_lock);
10698 			hblkp->hblk_next = NULL;
10699 			SFMMU_STAT(sf_get_free_success);
10700 			return (1);
10701 		}
10702 		mutex_exit(&freehblkp_lock);
10703 	}
10704 	SFMMU_STAT(sf_get_free_fail);
10705 	return (0);
10706 }
10707 
10708 static uint_t
10709 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10710 {
10711 	struct  hme_blk *hblkp;
10712 
10713 	/*
10714 	 * If the current thread is mapping into kernel space,
10715 	 * let it succede even if freehblkcnt is max
10716 	 * so that it will avoid freeing it to kmem.
10717 	 * This will prevent stack overflow due to
10718 	 * possible recursion since kmem_cache_free()
10719 	 * might require creation of a slab which
10720 	 * in turn needs an hmeblk to map that slab;
10721 	 * let's break this vicious chain at the first
10722 	 * opportunity.
10723 	 */
10724 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10725 		mutex_enter(&freehblkp_lock);
10726 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10727 			SFMMU_STAT(sf_put_free_success);
10728 			freehblkcnt++;
10729 			hmeblkp->hblk_next = freehblkp;
10730 			freehblkp = hmeblkp;
10731 			mutex_exit(&freehblkp_lock);
10732 			return (1);
10733 		}
10734 		mutex_exit(&freehblkp_lock);
10735 	}
10736 
10737 	/*
10738 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10739 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10740 	 * we are not in the process of mapping into kernel space.
10741 	 */
10742 	ASSERT(!critical);
10743 	while (freehblkcnt > HBLK_RESERVE_CNT) {
10744 		mutex_enter(&freehblkp_lock);
10745 		if (freehblkcnt > HBLK_RESERVE_CNT) {
10746 			freehblkcnt--;
10747 			hblkp = freehblkp;
10748 			freehblkp = hblkp->hblk_next;
10749 			mutex_exit(&freehblkp_lock);
10750 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10751 			kmem_cache_free(sfmmu8_cache, hblkp);
10752 			continue;
10753 		}
10754 		mutex_exit(&freehblkp_lock);
10755 	}
10756 	SFMMU_STAT(sf_put_free_fail);
10757 	return (0);
10758 }
10759 
10760 static void
10761 sfmmu_hblk_swap(struct hme_blk *new)
10762 {
10763 	struct hme_blk *old, *hblkp, *prev;
10764 	uint64_t hblkpa, prevpa, newpa;
10765 	caddr_t	base, vaddr, endaddr;
10766 	struct hmehash_bucket *hmebp;
10767 	struct sf_hment *osfhme, *nsfhme;
10768 	page_t *pp;
10769 	kmutex_t *pml;
10770 	tte_t tte;
10771 
10772 #ifdef	DEBUG
10773 	hmeblk_tag		hblktag;
10774 	struct hme_blk		*found;
10775 #endif
10776 	old = HBLK_RESERVE;
10777 	ASSERT(!old->hblk_shared);
10778 
10779 	/*
10780 	 * save pa before bcopy clobbers it
10781 	 */
10782 	newpa = new->hblk_nextpa;
10783 
10784 	base = (caddr_t)get_hblk_base(old);
10785 	endaddr = base + get_hblk_span(old);
10786 
10787 	/*
10788 	 * acquire hash bucket lock.
10789 	 */
10790 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10791 	    SFMMU_INVALID_SHMERID);
10792 
10793 	/*
10794 	 * copy contents from old to new
10795 	 */
10796 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
10797 
10798 	/*
10799 	 * add new to hash chain
10800 	 */
10801 	sfmmu_hblk_hash_add(hmebp, new, newpa);
10802 
10803 	/*
10804 	 * search hash chain for hblk_reserve; this needs to be performed
10805 	 * after adding new, otherwise prevpa and prev won't correspond
10806 	 * to the hblk which is prior to old in hash chain when we call
10807 	 * sfmmu_hblk_hash_rm to remove old later.
10808 	 */
10809 	for (prevpa = 0, prev = NULL,
10810 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
10811 	    hblkp != NULL && hblkp != old;
10812 	    prevpa = hblkpa, prev = hblkp,
10813 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next)
10814 		;
10815 
10816 	if (hblkp != old)
10817 		panic("sfmmu_hblk_swap: hblk_reserve not found");
10818 
10819 	/*
10820 	 * p_mapping list is still pointing to hments in hblk_reserve;
10821 	 * fix up p_mapping list so that they point to hments in new.
10822 	 *
10823 	 * Since all these mappings are created by hblk_reserve_thread
10824 	 * on the way and it's using at least one of the buffers from each of
10825 	 * the newly minted slabs, there is no danger of any of these
10826 	 * mappings getting unloaded by another thread.
10827 	 *
10828 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
10829 	 * Since all of these hments hold mappings established by segkmem
10830 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10831 	 * have no meaning for the mappings in hblk_reserve.  hments in
10832 	 * old and new are identical except for ref/mod bits.
10833 	 */
10834 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10835 
10836 		HBLKTOHME(osfhme, old, vaddr);
10837 		sfmmu_copytte(&osfhme->hme_tte, &tte);
10838 
10839 		if (TTE_IS_VALID(&tte)) {
10840 			if ((pp = osfhme->hme_page) == NULL)
10841 				panic("sfmmu_hblk_swap: page not mapped");
10842 
10843 			pml = sfmmu_mlist_enter(pp);
10844 
10845 			if (pp != osfhme->hme_page)
10846 				panic("sfmmu_hblk_swap: mapping changed");
10847 
10848 			HBLKTOHME(nsfhme, new, vaddr);
10849 
10850 			HME_ADD(nsfhme, pp);
10851 			HME_SUB(osfhme, pp);
10852 
10853 			sfmmu_mlist_exit(pml);
10854 		}
10855 	}
10856 
10857 	/*
10858 	 * remove old from hash chain
10859 	 */
10860 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
10861 
10862 #ifdef	DEBUG
10863 
10864 	hblktag.htag_id = ksfmmup;
10865 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10866 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10867 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10868 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10869 
10870 	if (found != new)
10871 		panic("sfmmu_hblk_swap: new hblk not found");
10872 #endif
10873 
10874 	SFMMU_HASH_UNLOCK(hmebp);
10875 
10876 	/*
10877 	 * Reset hblk_reserve
10878 	 */
10879 	bzero((void *)old, HME8BLK_SZ);
10880 	old->hblk_nextpa = va_to_pa((caddr_t)old);
10881 }
10882 
10883 /*
10884  * Grab the mlist mutex for both pages passed in.
10885  *
10886  * low and high will be returned as pointers to the mutexes for these pages.
10887  * low refers to the mutex residing in the lower bin of the mlist hash, while
10888  * high refers to the mutex residing in the higher bin of the mlist hash.  This
10889  * is due to the locking order restrictions on the same thread grabbing
10890  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
10891  *
10892  * If both pages hash to the same mutex, only grab that single mutex, and
10893  * high will be returned as NULL
10894  * If the pages hash to different bins in the hash, grab the lower addressed
10895  * lock first and then the higher addressed lock in order to follow the locking
10896  * rules involved with the same thread grabbing multiple mlist mutexes.
10897  * low and high will both have non-NULL values.
10898  */
10899 static void
10900 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10901     kmutex_t **low, kmutex_t **high)
10902 {
10903 	kmutex_t	*mml_targ, *mml_repl;
10904 
10905 	/*
10906 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
10907 	 * because this routine is only called by hat_page_relocate() and all
10908 	 * targ and repl pages are already locked EXCL so szc can't change.
10909 	 */
10910 
10911 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
10912 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
10913 
10914 	if (mml_targ == mml_repl) {
10915 		*low = mml_targ;
10916 		*high = NULL;
10917 	} else {
10918 		if (mml_targ < mml_repl) {
10919 			*low = mml_targ;
10920 			*high = mml_repl;
10921 		} else {
10922 			*low = mml_repl;
10923 			*high = mml_targ;
10924 		}
10925 	}
10926 
10927 	mutex_enter(*low);
10928 	if (*high)
10929 		mutex_enter(*high);
10930 }
10931 
10932 static void
10933 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
10934 {
10935 	if (high)
10936 		mutex_exit(high);
10937 	mutex_exit(low);
10938 }
10939 
10940 static hatlock_t *
10941 sfmmu_hat_enter(sfmmu_t *sfmmup)
10942 {
10943 	hatlock_t	*hatlockp;
10944 
10945 	if (sfmmup != ksfmmup) {
10946 		hatlockp = TSB_HASH(sfmmup);
10947 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
10948 		return (hatlockp);
10949 	}
10950 	return (NULL);
10951 }
10952 
10953 static hatlock_t *
10954 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
10955 {
10956 	hatlock_t	*hatlockp;
10957 
10958 	if (sfmmup != ksfmmup) {
10959 		hatlockp = TSB_HASH(sfmmup);
10960 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
10961 			return (NULL);
10962 		return (hatlockp);
10963 	}
10964 	return (NULL);
10965 }
10966 
10967 static void
10968 sfmmu_hat_exit(hatlock_t *hatlockp)
10969 {
10970 	if (hatlockp != NULL)
10971 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
10972 }
10973 
10974 static void
10975 sfmmu_hat_lock_all(void)
10976 {
10977 	int i;
10978 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
10979 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
10980 }
10981 
10982 static void
10983 sfmmu_hat_unlock_all(void)
10984 {
10985 	int i;
10986 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
10987 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
10988 }
10989 
10990 int
10991 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
10992 {
10993 	ASSERT(sfmmup != ksfmmup);
10994 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
10995 }
10996 
10997 /*
10998  * Locking primitives to provide consistency between ISM unmap
10999  * and other operations.  Since ISM unmap can take a long time, we
11000  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
11001  * contention on the hatlock buckets while ISM segments are being
11002  * unmapped.  The tradeoff is that the flags don't prevent priority
11003  * inversion from occurring, so we must request kernel priority in
11004  * case we have to sleep to keep from getting buried while holding
11005  * the HAT_ISMBUSY flag set, which in turn could block other kernel
11006  * threads from running (for example, in sfmmu_uvatopfn()).
11007  */
11008 static void
11009 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
11010 {
11011 	hatlock_t *hatlockp;
11012 
11013 	THREAD_KPRI_REQUEST();
11014 	if (!hatlock_held)
11015 		hatlockp = sfmmu_hat_enter(sfmmup);
11016 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
11017 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11018 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
11019 	if (!hatlock_held)
11020 		sfmmu_hat_exit(hatlockp);
11021 }
11022 
11023 static void
11024 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
11025 {
11026 	hatlock_t *hatlockp;
11027 
11028 	if (!hatlock_held)
11029 		hatlockp = sfmmu_hat_enter(sfmmup);
11030 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
11031 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
11032 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11033 	if (!hatlock_held)
11034 		sfmmu_hat_exit(hatlockp);
11035 	THREAD_KPRI_RELEASE();
11036 }
11037 
11038 /*
11039  *
11040  * Algorithm:
11041  *
11042  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
11043  *	hblks.
11044  *
11045  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
11046  *
11047  * 		(a) try to return an hblk from reserve pool of free hblks;
11048  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
11049  *		    and return hblk_reserve.
11050  *
11051  * (3) call kmem_cache_alloc() to allocate hblk;
11052  *
11053  *		(a) if hblk_reserve_lock is held by the current thread,
11054  *		    atomically replace hblk_reserve by the hblk that is
11055  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
11056  *		    and call kmem_cache_alloc() again.
11057  *		(b) if reserve pool is not full, add the hblk that is
11058  *		    returned by kmem_cache_alloc to reserve pool and
11059  *		    call kmem_cache_alloc again.
11060  *
11061  */
11062 static struct hme_blk *
11063 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
11064 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
11065 	uint_t flags, uint_t rid)
11066 {
11067 	struct hme_blk *hmeblkp = NULL;
11068 	struct hme_blk *newhblkp;
11069 	struct hme_blk *shw_hblkp = NULL;
11070 	struct kmem_cache *sfmmu_cache = NULL;
11071 	uint64_t hblkpa;
11072 	ulong_t index;
11073 	uint_t owner;		/* set to 1 if using hblk_reserve */
11074 	uint_t forcefree;
11075 	int sleep;
11076 	sf_srd_t *srdp;
11077 	sf_region_t *rgnp;
11078 
11079 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11080 	ASSERT(hblktag.htag_rid == rid);
11081 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
11082 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11083 	    IS_P2ALIGNED(vaddr, TTEBYTES(size)));
11084 
11085 	/*
11086 	 * If segkmem is not created yet, allocate from static hmeblks
11087 	 * created at the end of startup_modules().  See the block comment
11088 	 * in startup_modules() describing how we estimate the number of
11089 	 * static hmeblks that will be needed during re-map.
11090 	 */
11091 	if (!hblk_alloc_dynamic) {
11092 
11093 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11094 
11095 		if (size == TTE8K) {
11096 			index = nucleus_hblk8.index;
11097 			if (index >= nucleus_hblk8.len) {
11098 				/*
11099 				 * If we panic here, see startup_modules() to
11100 				 * make sure that we are calculating the
11101 				 * number of hblk8's that we need correctly.
11102 				 */
11103 				prom_panic("no nucleus hblk8 to allocate");
11104 			}
11105 			hmeblkp =
11106 			    (struct hme_blk *)&nucleus_hblk8.list[index];
11107 			nucleus_hblk8.index++;
11108 			SFMMU_STAT(sf_hblk8_nalloc);
11109 		} else {
11110 			index = nucleus_hblk1.index;
11111 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
11112 				/*
11113 				 * If we panic here, see startup_modules().
11114 				 * Most likely you need to update the
11115 				 * calculation of the number of hblk1 elements
11116 				 * that the kernel needs to boot.
11117 				 */
11118 				prom_panic("no nucleus hblk1 to allocate");
11119 			}
11120 			hmeblkp =
11121 			    (struct hme_blk *)&nucleus_hblk1.list[index];
11122 			nucleus_hblk1.index++;
11123 			SFMMU_STAT(sf_hblk1_nalloc);
11124 		}
11125 
11126 		goto hblk_init;
11127 	}
11128 
11129 	SFMMU_HASH_UNLOCK(hmebp);
11130 
11131 	if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
11132 		if (mmu_page_sizes == max_mmu_page_sizes) {
11133 			if (size < TTE256M)
11134 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11135 				    size, flags);
11136 		} else {
11137 			if (size < TTE4M)
11138 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11139 				    size, flags);
11140 		}
11141 	} else if (SFMMU_IS_SHMERID_VALID(rid)) {
11142 		/*
11143 		 * Shared hmes use per region bitmaps in rgn_hmeflag
11144 		 * rather than shadow hmeblks to keep track of the
11145 		 * mapping sizes which have been allocated for the region.
11146 		 * Here we cleanup old invalid hmeblks with this rid,
11147 		 * which may be left around by pageunload().
11148 		 */
11149 		int ttesz;
11150 		caddr_t va;
11151 		caddr_t	eva = vaddr + TTEBYTES(size);
11152 
11153 		ASSERT(sfmmup != KHATID);
11154 
11155 		srdp = sfmmup->sfmmu_srdp;
11156 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11157 		rgnp = srdp->srd_hmergnp[rid];
11158 		ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11159 		ASSERT(rgnp->rgn_refcnt != 0);
11160 		ASSERT(size <= rgnp->rgn_pgszc);
11161 
11162 		ttesz = HBLK_MIN_TTESZ;
11163 		do {
11164 			if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11165 				continue;
11166 			}
11167 
11168 			if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11169 				sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11170 			} else if (ttesz < size) {
11171 				for (va = vaddr; va < eva;
11172 				    va += TTEBYTES(ttesz)) {
11173 					sfmmu_cleanup_rhblk(srdp, va, rid,
11174 					    ttesz);
11175 				}
11176 			}
11177 		} while (++ttesz <= rgnp->rgn_pgszc);
11178 	}
11179 
11180 fill_hblk:
11181 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11182 
11183 	if (owner && size == TTE8K) {
11184 
11185 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11186 		/*
11187 		 * We are really in a tight spot. We already own
11188 		 * hblk_reserve and we need another hblk.  In anticipation
11189 		 * of this kind of scenario, we specifically set aside
11190 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
11191 		 * by owner of hblk_reserve.
11192 		 */
11193 		SFMMU_STAT(sf_hblk_recurse_cnt);
11194 
11195 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11196 			panic("sfmmu_hblk_alloc: reserve list is empty");
11197 
11198 		goto hblk_verify;
11199 	}
11200 
11201 	ASSERT(!owner);
11202 
11203 	if ((flags & HAT_NO_KALLOC) == 0) {
11204 
11205 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11206 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11207 
11208 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11209 			hmeblkp = sfmmu_hblk_steal(size);
11210 		} else {
11211 			/*
11212 			 * if we are the owner of hblk_reserve,
11213 			 * swap hblk_reserve with hmeblkp and
11214 			 * start a fresh life.  Hope things go
11215 			 * better this time.
11216 			 */
11217 			if (hblk_reserve_thread == curthread) {
11218 				ASSERT(sfmmu_cache == sfmmu8_cache);
11219 				sfmmu_hblk_swap(hmeblkp);
11220 				hblk_reserve_thread = NULL;
11221 				mutex_exit(&hblk_reserve_lock);
11222 				goto fill_hblk;
11223 			}
11224 			/*
11225 			 * let's donate this hblk to our reserve list if
11226 			 * we are not mapping kernel range
11227 			 */
11228 			if (size == TTE8K && sfmmup != KHATID)
11229 				if (sfmmu_put_free_hblk(hmeblkp, 0))
11230 					goto fill_hblk;
11231 		}
11232 	} else {
11233 		/*
11234 		 * We are here to map the slab in sfmmu8_cache; let's
11235 		 * check if we could tap our reserve list; if successful,
11236 		 * this will avoid the pain of going thru sfmmu_hblk_swap
11237 		 */
11238 		SFMMU_STAT(sf_hblk_slab_cnt);
11239 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11240 			/*
11241 			 * let's start hblk_reserve dance
11242 			 */
11243 			SFMMU_STAT(sf_hblk_reserve_cnt);
11244 			owner = 1;
11245 			mutex_enter(&hblk_reserve_lock);
11246 			hmeblkp = HBLK_RESERVE;
11247 			hblk_reserve_thread = curthread;
11248 		}
11249 	}
11250 
11251 hblk_verify:
11252 	ASSERT(hmeblkp != NULL);
11253 	set_hblk_sz(hmeblkp, size);
11254 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11255 	SFMMU_HASH_LOCK(hmebp);
11256 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11257 	if (newhblkp != NULL) {
11258 		SFMMU_HASH_UNLOCK(hmebp);
11259 		if (hmeblkp != HBLK_RESERVE) {
11260 			/*
11261 			 * This is really tricky!
11262 			 *
11263 			 * vmem_alloc(vmem_seg_arena)
11264 			 *  vmem_alloc(vmem_internal_arena)
11265 			 *   segkmem_alloc(heap_arena)
11266 			 *    vmem_alloc(heap_arena)
11267 			 *    page_create()
11268 			 *    hat_memload()
11269 			 *	kmem_cache_free()
11270 			 *	 kmem_cache_alloc()
11271 			 *	  kmem_slab_create()
11272 			 *	   vmem_alloc(kmem_internal_arena)
11273 			 *	    segkmem_alloc(heap_arena)
11274 			 *		vmem_alloc(heap_arena)
11275 			 *		page_create()
11276 			 *		hat_memload()
11277 			 *		  kmem_cache_free()
11278 			 *		...
11279 			 *
11280 			 * Thus, hat_memload() could call kmem_cache_free
11281 			 * for enough number of times that we could easily
11282 			 * hit the bottom of the stack or run out of reserve
11283 			 * list of vmem_seg structs.  So, we must donate
11284 			 * this hblk to reserve list if it's allocated
11285 			 * from sfmmu8_cache *and* mapping kernel range.
11286 			 * We don't need to worry about freeing hmeblk1's
11287 			 * to kmem since they don't map any kmem slabs.
11288 			 *
11289 			 * Note: When segkmem supports largepages, we must
11290 			 * free hmeblk1's to reserve list as well.
11291 			 */
11292 			forcefree = (sfmmup == KHATID) ? 1 : 0;
11293 			if (size == TTE8K &&
11294 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11295 				goto re_verify;
11296 			}
11297 			ASSERT(sfmmup != KHATID);
11298 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11299 		} else {
11300 			/*
11301 			 * Hey! we don't need hblk_reserve any more.
11302 			 */
11303 			ASSERT(owner);
11304 			hblk_reserve_thread = NULL;
11305 			mutex_exit(&hblk_reserve_lock);
11306 			owner = 0;
11307 		}
11308 re_verify:
11309 		/*
11310 		 * let's check if the goodies are still present
11311 		 */
11312 		SFMMU_HASH_LOCK(hmebp);
11313 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11314 		if (newhblkp != NULL) {
11315 			/*
11316 			 * return newhblkp if it's not hblk_reserve;
11317 			 * if newhblkp is hblk_reserve, return it
11318 			 * _only if_ we are the owner of hblk_reserve.
11319 			 */
11320 			if (newhblkp != HBLK_RESERVE || owner) {
11321 				ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11322 				    newhblkp->hblk_shared);
11323 				ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11324 				    !newhblkp->hblk_shared);
11325 				return (newhblkp);
11326 			} else {
11327 				/*
11328 				 * we just hit hblk_reserve in the hash and
11329 				 * we are not the owner of that;
11330 				 *
11331 				 * block until hblk_reserve_thread completes
11332 				 * swapping hblk_reserve and try the dance
11333 				 * once again.
11334 				 */
11335 				SFMMU_HASH_UNLOCK(hmebp);
11336 				mutex_enter(&hblk_reserve_lock);
11337 				mutex_exit(&hblk_reserve_lock);
11338 				SFMMU_STAT(sf_hblk_reserve_hit);
11339 				goto fill_hblk;
11340 			}
11341 		} else {
11342 			/*
11343 			 * it's no more! try the dance once again.
11344 			 */
11345 			SFMMU_HASH_UNLOCK(hmebp);
11346 			goto fill_hblk;
11347 		}
11348 	}
11349 
11350 hblk_init:
11351 	if (SFMMU_IS_SHMERID_VALID(rid)) {
11352 		uint16_t tteflag = 0x1 <<
11353 		    ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11354 
11355 		if (!(rgnp->rgn_hmeflags & tteflag)) {
11356 			atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11357 		}
11358 		hmeblkp->hblk_shared = 1;
11359 	} else {
11360 		hmeblkp->hblk_shared = 0;
11361 	}
11362 	set_hblk_sz(hmeblkp, size);
11363 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11364 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
11365 	hmeblkp->hblk_tag = hblktag;
11366 	hmeblkp->hblk_shadow = shw_hblkp;
11367 	hblkpa = hmeblkp->hblk_nextpa;
11368 	hmeblkp->hblk_nextpa = 0;
11369 
11370 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
11371 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11372 	ASSERT(hmeblkp->hblk_hmecnt == 0);
11373 	ASSERT(hmeblkp->hblk_vcnt == 0);
11374 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11375 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11376 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11377 	return (hmeblkp);
11378 }
11379 
11380 /*
11381  * This function performs any cleanup required on the hme_blk
11382  * and returns it to the free list.
11383  */
11384 /* ARGSUSED */
11385 static void
11386 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11387 	uint64_t hblkpa, struct hme_blk **listp)
11388 {
11389 	int shw_size, vshift;
11390 	struct hme_blk *shw_hblkp;
11391 	uint_t		shw_mask, newshw_mask;
11392 	caddr_t		vaddr;
11393 	int		size;
11394 	uint_t		critical;
11395 
11396 	ASSERT(hmeblkp);
11397 	ASSERT(!hmeblkp->hblk_hmecnt);
11398 	ASSERT(!hmeblkp->hblk_vcnt);
11399 	ASSERT(!hmeblkp->hblk_lckcnt);
11400 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11401 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11402 
11403 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11404 
11405 	size = get_hblk_ttesz(hmeblkp);
11406 	shw_hblkp = hmeblkp->hblk_shadow;
11407 	if (shw_hblkp) {
11408 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
11409 		ASSERT(!hmeblkp->hblk_shared);
11410 		if (mmu_page_sizes == max_mmu_page_sizes) {
11411 			ASSERT(size < TTE256M);
11412 		} else {
11413 			ASSERT(size < TTE4M);
11414 		}
11415 
11416 		shw_size = get_hblk_ttesz(shw_hblkp);
11417 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
11418 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11419 		ASSERT(vshift < 8);
11420 		/*
11421 		 * Atomically clear shadow mask bit
11422 		 */
11423 		do {
11424 			shw_mask = shw_hblkp->hblk_shw_mask;
11425 			ASSERT(shw_mask & (1 << vshift));
11426 			newshw_mask = shw_mask & ~(1 << vshift);
11427 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
11428 			    shw_mask, newshw_mask);
11429 		} while (newshw_mask != shw_mask);
11430 		hmeblkp->hblk_shadow = NULL;
11431 	}
11432 	hmeblkp->hblk_next = NULL;
11433 	hmeblkp->hblk_nextpa = hblkpa;
11434 	hmeblkp->hblk_shw_bit = 0;
11435 
11436 	if (hmeblkp->hblk_shared) {
11437 		sf_srd_t	*srdp;
11438 		sf_region_t	*rgnp;
11439 		uint_t		rid;
11440 
11441 		srdp = hblktosrd(hmeblkp);
11442 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11443 		rid = hmeblkp->hblk_tag.htag_rid;
11444 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11445 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11446 		rgnp = srdp->srd_hmergnp[rid];
11447 		ASSERT(rgnp != NULL);
11448 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11449 		hmeblkp->hblk_shared = 0;
11450 	}
11451 
11452 	if (hmeblkp->hblk_nuc_bit == 0) {
11453 
11454 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
11455 			return;
11456 
11457 		hmeblkp->hblk_next = *listp;
11458 		*listp = hmeblkp;
11459 	}
11460 }
11461 
11462 static void
11463 sfmmu_hblks_list_purge(struct hme_blk **listp)
11464 {
11465 	struct hme_blk	*hmeblkp;
11466 
11467 	while ((hmeblkp = *listp) != NULL) {
11468 		*listp = hmeblkp->hblk_next;
11469 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11470 	}
11471 }
11472 
11473 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
11474 #define	SFMMU_HBLK_STEAL_THRESHOLD 5
11475 
11476 static uint_t sfmmu_hblk_steal_twice;
11477 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11478 
11479 /*
11480  * Steal a hmeblk from user or kernel hme hash lists.
11481  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11482  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11483  * tap into critical reserve of freehblkp.
11484  * Note: We remain looping in this routine until we find one.
11485  */
11486 static struct hme_blk *
11487 sfmmu_hblk_steal(int size)
11488 {
11489 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11490 	struct hmehash_bucket *hmebp;
11491 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
11492 	uint64_t hblkpa, prevpa;
11493 	int i;
11494 	uint_t loop_cnt = 0, critical;
11495 
11496 	for (;;) {
11497 		if (size == TTE8K) {
11498 			critical =
11499 			    (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11500 			if (sfmmu_get_free_hblk(&hmeblkp, critical))
11501 				return (hmeblkp);
11502 		}
11503 
11504 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11505 		    uhmehash_steal_hand;
11506 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11507 
11508 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11509 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11510 			SFMMU_HASH_LOCK(hmebp);
11511 			hmeblkp = hmebp->hmeblkp;
11512 			hblkpa = hmebp->hmeh_nextpa;
11513 			prevpa = 0;
11514 			pr_hblk = NULL;
11515 			while (hmeblkp) {
11516 				/*
11517 				 * check if it is a hmeblk that is not locked
11518 				 * and not shared. skip shadow hmeblks with
11519 				 * shadow_mask set i.e valid count non zero.
11520 				 */
11521 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11522 				    (hmeblkp->hblk_shw_bit == 0 ||
11523 				    hmeblkp->hblk_vcnt == 0) &&
11524 				    (hmeblkp->hblk_lckcnt == 0)) {
11525 					/*
11526 					 * there is a high probability that we
11527 					 * will find a free one. search some
11528 					 * buckets for a free hmeblk initially
11529 					 * before unloading a valid hmeblk.
11530 					 */
11531 					if ((hmeblkp->hblk_vcnt == 0 &&
11532 					    hmeblkp->hblk_hmecnt == 0) || (i >=
11533 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11534 						if (sfmmu_steal_this_hblk(hmebp,
11535 						    hmeblkp, hblkpa, prevpa,
11536 						    pr_hblk)) {
11537 							/*
11538 							 * Hblk is unloaded
11539 							 * successfully
11540 							 */
11541 							break;
11542 						}
11543 					}
11544 				}
11545 				pr_hblk = hmeblkp;
11546 				prevpa = hblkpa;
11547 				hblkpa = hmeblkp->hblk_nextpa;
11548 				hmeblkp = hmeblkp->hblk_next;
11549 			}
11550 
11551 			SFMMU_HASH_UNLOCK(hmebp);
11552 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11553 				hmebp = uhme_hash;
11554 		}
11555 		uhmehash_steal_hand = hmebp;
11556 
11557 		if (hmeblkp != NULL)
11558 			break;
11559 
11560 		/*
11561 		 * in the worst case, look for a free one in the kernel
11562 		 * hash table.
11563 		 */
11564 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11565 			SFMMU_HASH_LOCK(hmebp);
11566 			hmeblkp = hmebp->hmeblkp;
11567 			hblkpa = hmebp->hmeh_nextpa;
11568 			prevpa = 0;
11569 			pr_hblk = NULL;
11570 			while (hmeblkp) {
11571 				/*
11572 				 * check if it is free hmeblk
11573 				 */
11574 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11575 				    (hmeblkp->hblk_lckcnt == 0) &&
11576 				    (hmeblkp->hblk_vcnt == 0) &&
11577 				    (hmeblkp->hblk_hmecnt == 0)) {
11578 					if (sfmmu_steal_this_hblk(hmebp,
11579 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
11580 						break;
11581 					} else {
11582 						/*
11583 						 * Cannot fail since we have
11584 						 * hash lock.
11585 						 */
11586 						panic("fail to steal?");
11587 					}
11588 				}
11589 
11590 				pr_hblk = hmeblkp;
11591 				prevpa = hblkpa;
11592 				hblkpa = hmeblkp->hblk_nextpa;
11593 				hmeblkp = hmeblkp->hblk_next;
11594 			}
11595 
11596 			SFMMU_HASH_UNLOCK(hmebp);
11597 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11598 				hmebp = khme_hash;
11599 		}
11600 
11601 		if (hmeblkp != NULL)
11602 			break;
11603 		sfmmu_hblk_steal_twice++;
11604 	}
11605 	return (hmeblkp);
11606 }
11607 
11608 /*
11609  * This routine does real work to prepare a hblk to be "stolen" by
11610  * unloading the mappings, updating shadow counts ....
11611  * It returns 1 if the block is ready to be reused (stolen), or 0
11612  * means the block cannot be stolen yet- pageunload is still working
11613  * on this hblk.
11614  */
11615 static int
11616 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11617 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
11618 {
11619 	int shw_size, vshift;
11620 	struct hme_blk *shw_hblkp;
11621 	caddr_t vaddr;
11622 	uint_t shw_mask, newshw_mask;
11623 
11624 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11625 
11626 	/*
11627 	 * check if the hmeblk is free, unload if necessary
11628 	 */
11629 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11630 		sfmmu_t *sfmmup;
11631 		demap_range_t dmr;
11632 
11633 		sfmmup = hblktosfmmu(hmeblkp);
11634 		if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11635 			return (0);
11636 		}
11637 		DEMAP_RANGE_INIT(sfmmup, &dmr);
11638 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11639 		    (caddr_t)get_hblk_base(hmeblkp),
11640 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11641 		DEMAP_RANGE_FLUSH(&dmr);
11642 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11643 			/*
11644 			 * Pageunload is working on the same hblk.
11645 			 */
11646 			return (0);
11647 		}
11648 
11649 		sfmmu_hblk_steal_unload_count++;
11650 	}
11651 
11652 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11653 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11654 
11655 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
11656 	hmeblkp->hblk_nextpa = hblkpa;
11657 
11658 	shw_hblkp = hmeblkp->hblk_shadow;
11659 	if (shw_hblkp) {
11660 		ASSERT(!hmeblkp->hblk_shared);
11661 		shw_size = get_hblk_ttesz(shw_hblkp);
11662 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
11663 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11664 		ASSERT(vshift < 8);
11665 		/*
11666 		 * Atomically clear shadow mask bit
11667 		 */
11668 		do {
11669 			shw_mask = shw_hblkp->hblk_shw_mask;
11670 			ASSERT(shw_mask & (1 << vshift));
11671 			newshw_mask = shw_mask & ~(1 << vshift);
11672 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
11673 			    shw_mask, newshw_mask);
11674 		} while (newshw_mask != shw_mask);
11675 		hmeblkp->hblk_shadow = NULL;
11676 	}
11677 
11678 	/*
11679 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
11680 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11681 	 * we are indeed allocating a shadow hmeblk.
11682 	 */
11683 	hmeblkp->hblk_shw_bit = 0;
11684 
11685 	if (hmeblkp->hblk_shared) {
11686 		sf_srd_t	*srdp;
11687 		sf_region_t	*rgnp;
11688 		uint_t		rid;
11689 
11690 		srdp = hblktosrd(hmeblkp);
11691 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11692 		rid = hmeblkp->hblk_tag.htag_rid;
11693 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11694 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11695 		rgnp = srdp->srd_hmergnp[rid];
11696 		ASSERT(rgnp != NULL);
11697 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11698 		hmeblkp->hblk_shared = 0;
11699 	}
11700 
11701 	sfmmu_hblk_steal_count++;
11702 	SFMMU_STAT(sf_steal_count);
11703 
11704 	return (1);
11705 }
11706 
11707 struct hme_blk *
11708 sfmmu_hmetohblk(struct sf_hment *sfhme)
11709 {
11710 	struct hme_blk *hmeblkp;
11711 	struct sf_hment *sfhme0;
11712 	struct hme_blk *hblk_dummy = 0;
11713 
11714 	/*
11715 	 * No dummy sf_hments, please.
11716 	 */
11717 	ASSERT(sfhme->hme_tte.ll != 0);
11718 
11719 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11720 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11721 	    (uintptr_t)&hblk_dummy->hblk_hme[0]);
11722 
11723 	return (hmeblkp);
11724 }
11725 
11726 /*
11727  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11728  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11729  * KM_SLEEP allocation.
11730  *
11731  * Return 0 on success, -1 otherwise.
11732  */
11733 static void
11734 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11735 {
11736 	struct tsb_info *tsbinfop, *next;
11737 	tsb_replace_rc_t rc;
11738 	boolean_t gotfirst = B_FALSE;
11739 
11740 	ASSERT(sfmmup != ksfmmup);
11741 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11742 
11743 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11744 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11745 	}
11746 
11747 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11748 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11749 	} else {
11750 		return;
11751 	}
11752 
11753 	ASSERT(sfmmup->sfmmu_tsb != NULL);
11754 
11755 	/*
11756 	 * Loop over all tsbinfo's replacing them with ones that actually have
11757 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
11758 	 */
11759 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11760 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11761 		next = tsbinfop->tsb_next;
11762 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11763 		    hatlockp, TSB_SWAPIN);
11764 		if (rc != TSB_SUCCESS) {
11765 			break;
11766 		}
11767 		gotfirst = B_TRUE;
11768 	}
11769 
11770 	switch (rc) {
11771 	case TSB_SUCCESS:
11772 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11773 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11774 		return;
11775 	case TSB_LOSTRACE:
11776 		break;
11777 	case TSB_ALLOCFAIL:
11778 		break;
11779 	default:
11780 		panic("sfmmu_replace_tsb returned unrecognized failure code "
11781 		    "%d", rc);
11782 	}
11783 
11784 	/*
11785 	 * In this case, we failed to get one of our TSBs.  If we failed to
11786 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
11787 	 * and throw away the tsbinfos, starting where the allocation failed;
11788 	 * we can get by with just one TSB as long as we don't leave the
11789 	 * SWAPPED tsbinfo structures lying around.
11790 	 */
11791 	tsbinfop = sfmmup->sfmmu_tsb;
11792 	next = tsbinfop->tsb_next;
11793 	tsbinfop->tsb_next = NULL;
11794 
11795 	sfmmu_hat_exit(hatlockp);
11796 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11797 		next = tsbinfop->tsb_next;
11798 		sfmmu_tsbinfo_free(tsbinfop);
11799 	}
11800 	hatlockp = sfmmu_hat_enter(sfmmup);
11801 
11802 	/*
11803 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11804 	 * pages.
11805 	 */
11806 	if (!gotfirst) {
11807 		tsbinfop = sfmmup->sfmmu_tsb;
11808 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11809 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11810 		ASSERT(rc == TSB_SUCCESS);
11811 	}
11812 
11813 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11814 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11815 }
11816 
11817 static int
11818 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11819 {
11820 	ulong_t bix = 0;
11821 	uint_t rid;
11822 	sf_region_t *rgnp;
11823 
11824 	ASSERT(srdp != NULL);
11825 	ASSERT(srdp->srd_refcnt != 0);
11826 
11827 	w <<= BT_ULSHIFT;
11828 	while (bmw) {
11829 		if (!(bmw & 0x1)) {
11830 			bix++;
11831 			bmw >>= 1;
11832 			continue;
11833 		}
11834 		rid = w | bix;
11835 		rgnp = srdp->srd_hmergnp[rid];
11836 		ASSERT(rgnp->rgn_refcnt > 0);
11837 		ASSERT(rgnp->rgn_id == rid);
11838 		if (addr < rgnp->rgn_saddr ||
11839 		    addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11840 			bix++;
11841 			bmw >>= 1;
11842 		} else {
11843 			return (1);
11844 		}
11845 	}
11846 	return (0);
11847 }
11848 
11849 /*
11850  * Handle exceptions for low level tsb_handler.
11851  *
11852  * There are many scenarios that could land us here:
11853  *
11854  * If the context is invalid we land here. The context can be invalid
11855  * for 3 reasons: 1) we couldn't allocate a new context and now need to
11856  * perform a wrap around operation in order to allocate a new context.
11857  * 2) Context was invalidated to change pagesize programming 3) ISMs or
11858  * TSBs configuration is changeing for this process and we are forced into
11859  * here to do a syncronization operation. If the context is valid we can
11860  * be here from window trap hanlder. In this case just call trap to handle
11861  * the fault.
11862  *
11863  * Note that the process will run in INVALID_CONTEXT before
11864  * faulting into here and subsequently loading the MMU registers
11865  * (including the TSB base register) associated with this process.
11866  * For this reason, the trap handlers must all test for
11867  * INVALID_CONTEXT before attempting to access any registers other
11868  * than the context registers.
11869  */
11870 void
11871 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11872 {
11873 	sfmmu_t *sfmmup, *shsfmmup;
11874 	uint_t ctxtype;
11875 	klwp_id_t lwp;
11876 	char lwp_save_state;
11877 	hatlock_t *hatlockp, *shatlockp;
11878 	struct tsb_info *tsbinfop;
11879 	struct tsbmiss *tsbmp;
11880 	sf_scd_t *scdp;
11881 
11882 	SFMMU_STAT(sf_tsb_exceptions);
11883 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
11884 	sfmmup = astosfmmu(curthread->t_procp->p_as);
11885 	/*
11886 	 * note that in sun4u, tagacces register contains ctxnum
11887 	 * while sun4v passes ctxtype in the tagaccess register.
11888 	 */
11889 	ctxtype = tagaccess & TAGACC_CTX_MASK;
11890 
11891 	ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11892 	ASSERT(sfmmup->sfmmu_ismhat == 0);
11893 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11894 	    ctxtype == INVALID_CONTEXT);
11895 
11896 	if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11897 		/*
11898 		 * We may land here because shme bitmap and pagesize
11899 		 * flags are updated lazily in tsbmiss area on other cpus.
11900 		 * If we detect here that tsbmiss area is out of sync with
11901 		 * sfmmu update it and retry the trapped instruction.
11902 		 * Otherwise call trap().
11903 		 */
11904 		int ret = 0;
11905 		uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11906 		caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11907 
11908 		/*
11909 		 * Must set lwp state to LWP_SYS before
11910 		 * trying to acquire any adaptive lock
11911 		 */
11912 		lwp = ttolwp(curthread);
11913 		ASSERT(lwp);
11914 		lwp_save_state = lwp->lwp_state;
11915 		lwp->lwp_state = LWP_SYS;
11916 
11917 		hatlockp = sfmmu_hat_enter(sfmmup);
11918 		kpreempt_disable();
11919 		tsbmp = &tsbmiss_area[CPU->cpu_id];
11920 		ASSERT(sfmmup == tsbmp->usfmmup);
11921 		if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11922 		    ~tteflag_mask) ||
11923 		    ((tsbmp->uhat_rtteflags ^  sfmmup->sfmmu_rtteflags) &
11924 		    ~tteflag_mask)) {
11925 			tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11926 			tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11927 			ret = 1;
11928 		}
11929 		if (sfmmup->sfmmu_srdp != NULL) {
11930 			ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11931 			ulong_t *tm = tsbmp->shmermap;
11932 			ulong_t i;
11933 			for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11934 				ulong_t d = tm[i] ^ sm[i];
11935 				if (d) {
11936 					if (d & sm[i]) {
11937 						if (!ret && sfmmu_is_rgnva(
11938 						    sfmmup->sfmmu_srdp,
11939 						    addr, i, d & sm[i])) {
11940 							ret = 1;
11941 						}
11942 					}
11943 					tm[i] = sm[i];
11944 				}
11945 			}
11946 		}
11947 		kpreempt_enable();
11948 		sfmmu_hat_exit(hatlockp);
11949 		lwp->lwp_state = lwp_save_state;
11950 		if (ret) {
11951 			return;
11952 		}
11953 	} else if (ctxtype == INVALID_CONTEXT) {
11954 		/*
11955 		 * First, make sure we come out of here with a valid ctx,
11956 		 * since if we don't get one we'll simply loop on the
11957 		 * faulting instruction.
11958 		 *
11959 		 * If the ISM mappings are changing, the TSB is relocated,
11960 		 * the process is swapped, the process is joining SCD or
11961 		 * leaving SCD or shared regions we serialize behind the
11962 		 * controlling thread with hat lock, sfmmu_flags and
11963 		 * sfmmu_tsb_cv condition variable.
11964 		 */
11965 
11966 		/*
11967 		 * Must set lwp state to LWP_SYS before
11968 		 * trying to acquire any adaptive lock
11969 		 */
11970 		lwp = ttolwp(curthread);
11971 		ASSERT(lwp);
11972 		lwp_save_state = lwp->lwp_state;
11973 		lwp->lwp_state = LWP_SYS;
11974 
11975 		hatlockp = sfmmu_hat_enter(sfmmup);
11976 retry:
11977 		if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
11978 			shsfmmup = scdp->scd_sfmmup;
11979 			ASSERT(shsfmmup != NULL);
11980 
11981 			for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
11982 			    tsbinfop = tsbinfop->tsb_next) {
11983 				if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11984 					/* drop the private hat lock */
11985 					sfmmu_hat_exit(hatlockp);
11986 					/* acquire the shared hat lock */
11987 					shatlockp = sfmmu_hat_enter(shsfmmup);
11988 					/*
11989 					 * recheck to see if anything changed
11990 					 * after we drop the private hat lock.
11991 					 */
11992 					if (sfmmup->sfmmu_scdp == scdp &&
11993 					    shsfmmup == scdp->scd_sfmmup) {
11994 						sfmmu_tsb_chk_reloc(shsfmmup,
11995 						    shatlockp);
11996 					}
11997 					sfmmu_hat_exit(shatlockp);
11998 					hatlockp = sfmmu_hat_enter(sfmmup);
11999 					goto retry;
12000 				}
12001 			}
12002 		}
12003 
12004 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
12005 		    tsbinfop = tsbinfop->tsb_next) {
12006 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
12007 				cv_wait(&sfmmup->sfmmu_tsb_cv,
12008 				    HATLOCK_MUTEXP(hatlockp));
12009 				goto retry;
12010 			}
12011 		}
12012 
12013 		/*
12014 		 * Wait for ISM maps to be updated.
12015 		 */
12016 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12017 			cv_wait(&sfmmup->sfmmu_tsb_cv,
12018 			    HATLOCK_MUTEXP(hatlockp));
12019 			goto retry;
12020 		}
12021 
12022 		/* Is this process joining an SCD? */
12023 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12024 			/*
12025 			 * Flush private TSB and setup shared TSB.
12026 			 * sfmmu_finish_join_scd() does not drop the
12027 			 * hat lock.
12028 			 */
12029 			sfmmu_finish_join_scd(sfmmup);
12030 			SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
12031 		}
12032 
12033 		/*
12034 		 * If we're swapping in, get TSB(s).  Note that we must do
12035 		 * this before we get a ctx or load the MMU state.  Once
12036 		 * we swap in we have to recheck to make sure the TSB(s) and
12037 		 * ISM mappings didn't change while we slept.
12038 		 */
12039 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
12040 			sfmmu_tsb_swapin(sfmmup, hatlockp);
12041 			goto retry;
12042 		}
12043 
12044 		sfmmu_get_ctx(sfmmup);
12045 
12046 		sfmmu_hat_exit(hatlockp);
12047 		/*
12048 		 * Must restore lwp_state if not calling
12049 		 * trap() for further processing. Restore
12050 		 * it anyway.
12051 		 */
12052 		lwp->lwp_state = lwp_save_state;
12053 		return;
12054 	}
12055 	trap(rp, (caddr_t)tagaccess, traptype, 0);
12056 }
12057 
12058 static void
12059 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
12060 {
12061 	struct tsb_info *tp;
12062 
12063 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12064 
12065 	for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
12066 		if (tp->tsb_flags & TSB_RELOC_FLAG) {
12067 			cv_wait(&sfmmup->sfmmu_tsb_cv,
12068 			    HATLOCK_MUTEXP(hatlockp));
12069 			break;
12070 		}
12071 	}
12072 }
12073 
12074 /*
12075  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
12076  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
12077  * rather than spinning to avoid send mondo timeouts with
12078  * interrupts enabled. When the lock is acquired it is immediately
12079  * released and we return back to sfmmu_vatopfn just after
12080  * the GET_TTE call.
12081  */
12082 void
12083 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
12084 {
12085 	struct page	**pp;
12086 
12087 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12088 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12089 }
12090 
12091 /*
12092  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
12093  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
12094  * cross traps which cannot be handled while spinning in the
12095  * trap handlers. Simply enter and exit the kpr_suspendlock spin
12096  * mutex, which is held by the holder of the suspend bit, and then
12097  * retry the trapped instruction after unwinding.
12098  */
12099 /*ARGSUSED*/
12100 void
12101 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
12102 {
12103 	ASSERT(curthread != kreloc_thread);
12104 	mutex_enter(&kpr_suspendlock);
12105 	mutex_exit(&kpr_suspendlock);
12106 }
12107 
12108 /*
12109  * This routine could be optimized to reduce the number of xcalls by flushing
12110  * the entire TLBs if region reference count is above some threshold but the
12111  * tradeoff will depend on the size of the TLB. So for now flush the specific
12112  * page a context at a time.
12113  *
12114  * If uselocks is 0 then it's called after all cpus were captured and all the
12115  * hat locks were taken. In this case don't take the region lock by relying on
12116  * the order of list region update operations in hat_join_region(),
12117  * hat_leave_region() and hat_dup_region(). The ordering in those routines
12118  * guarantees that list is always forward walkable and reaches active sfmmus
12119  * regardless of where xc_attention() captures a cpu.
12120  */
12121 cpuset_t
12122 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
12123     struct hme_blk *hmeblkp, int uselocks)
12124 {
12125 	sfmmu_t	*sfmmup;
12126 	cpuset_t cpuset;
12127 	cpuset_t rcpuset;
12128 	hatlock_t *hatlockp;
12129 	uint_t rid = rgnp->rgn_id;
12130 	sf_rgn_link_t *rlink;
12131 	sf_scd_t *scdp;
12132 
12133 	ASSERT(hmeblkp->hblk_shared);
12134 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
12135 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
12136 
12137 	CPUSET_ZERO(rcpuset);
12138 	if (uselocks) {
12139 		mutex_enter(&rgnp->rgn_mutex);
12140 	}
12141 	sfmmup = rgnp->rgn_sfmmu_head;
12142 	while (sfmmup != NULL) {
12143 		if (uselocks) {
12144 			hatlockp = sfmmu_hat_enter(sfmmup);
12145 		}
12146 
12147 		/*
12148 		 * When an SCD is created the SCD hat is linked on the sfmmu
12149 		 * region lists for each hme region which is part of the
12150 		 * SCD. If we find an SCD hat, when walking these lists,
12151 		 * then we flush the shared TSBs, if we find a private hat,
12152 		 * which is part of an SCD, but where the region
12153 		 * is not part of the SCD then we flush the private TSBs.
12154 		 */
12155 		if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12156 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12157 			scdp = sfmmup->sfmmu_scdp;
12158 			if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
12159 				if (uselocks) {
12160 					sfmmu_hat_exit(hatlockp);
12161 				}
12162 				goto next;
12163 			}
12164 		}
12165 
12166 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12167 
12168 		kpreempt_disable();
12169 		cpuset = sfmmup->sfmmu_cpusran;
12170 		CPUSET_AND(cpuset, cpu_ready_set);
12171 		CPUSET_DEL(cpuset, CPU->cpu_id);
12172 		SFMMU_XCALL_STATS(sfmmup);
12173 		xt_some(cpuset, vtag_flushpage_tl1,
12174 		    (uint64_t)addr, (uint64_t)sfmmup);
12175 		vtag_flushpage(addr, (uint64_t)sfmmup);
12176 		if (uselocks) {
12177 			sfmmu_hat_exit(hatlockp);
12178 		}
12179 		kpreempt_enable();
12180 		CPUSET_OR(rcpuset, cpuset);
12181 
12182 next:
12183 		/* LINTED: constant in conditional context */
12184 		SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
12185 		ASSERT(rlink != NULL);
12186 		sfmmup = rlink->next;
12187 	}
12188 	if (uselocks) {
12189 		mutex_exit(&rgnp->rgn_mutex);
12190 	}
12191 	return (rcpuset);
12192 }
12193 
12194 /*
12195  * This routine takes an sfmmu pointer and the va for an adddress in an
12196  * ISM region as input and returns the corresponding region id in ism_rid.
12197  * The return value of 1 indicates that a region has been found and ism_rid
12198  * is valid, otherwise 0 is returned.
12199  */
12200 static int
12201 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12202 {
12203 	ism_blk_t	*ism_blkp;
12204 	int		i;
12205 	ism_map_t	*ism_map;
12206 #ifdef DEBUG
12207 	struct hat	*ism_hatid;
12208 #endif
12209 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12210 
12211 	ism_blkp = sfmmup->sfmmu_iblk;
12212 	while (ism_blkp != NULL) {
12213 		ism_map = ism_blkp->iblk_maps;
12214 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12215 			if ((va >= ism_start(ism_map[i])) &&
12216 			    (va < ism_end(ism_map[i]))) {
12217 
12218 				*ism_rid = ism_map[i].imap_rid;
12219 #ifdef DEBUG
12220 				ism_hatid = ism_map[i].imap_ismhat;
12221 				ASSERT(ism_hatid == ism_sfmmup);
12222 				ASSERT(ism_hatid->sfmmu_ismhat);
12223 #endif
12224 				return (1);
12225 			}
12226 		}
12227 		ism_blkp = ism_blkp->iblk_next;
12228 	}
12229 	return (0);
12230 }
12231 
12232 /*
12233  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12234  * This routine may be called with all cpu's captured. Therefore, the
12235  * caller is responsible for holding all locks and disabling kernel
12236  * preemption.
12237  */
12238 /* ARGSUSED */
12239 static void
12240 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12241 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12242 {
12243 	cpuset_t 	cpuset;
12244 	caddr_t 	va;
12245 	ism_ment_t	*ment;
12246 	sfmmu_t		*sfmmup;
12247 #ifdef VAC
12248 	int 		vcolor;
12249 #endif
12250 
12251 	sf_scd_t	*scdp;
12252 	uint_t		ism_rid;
12253 
12254 	ASSERT(!hmeblkp->hblk_shared);
12255 	/*
12256 	 * Walk the ism_hat's mapping list and flush the page
12257 	 * from every hat sharing this ism_hat. This routine
12258 	 * may be called while all cpu's have been captured.
12259 	 * Therefore we can't attempt to grab any locks. For now
12260 	 * this means we will protect the ism mapping list under
12261 	 * a single lock which will be grabbed by the caller.
12262 	 * If hat_share/unshare scalibility becomes a performance
12263 	 * problem then we may need to re-think ism mapping list locking.
12264 	 */
12265 	ASSERT(ism_sfmmup->sfmmu_ismhat);
12266 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
12267 	addr = addr - ISMID_STARTADDR;
12268 
12269 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12270 
12271 		sfmmup = ment->iment_hat;
12272 
12273 		va = ment->iment_base_va;
12274 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
12275 
12276 		/*
12277 		 * When an SCD is created the SCD hat is linked on the ism
12278 		 * mapping lists for each ISM segment which is part of the
12279 		 * SCD. If we find an SCD hat, when walking these lists,
12280 		 * then we flush the shared TSBs, if we find a private hat,
12281 		 * which is part of an SCD, but where the region
12282 		 * corresponding to this va is not part of the SCD then we
12283 		 * flush the private TSBs.
12284 		 */
12285 		if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12286 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12287 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12288 			if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12289 			    &ism_rid)) {
12290 				cmn_err(CE_PANIC,
12291 				    "can't find matching ISM rid!");
12292 			}
12293 
12294 			scdp = sfmmup->sfmmu_scdp;
12295 			if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12296 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12297 			    ism_rid)) {
12298 				continue;
12299 			}
12300 		}
12301 		SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12302 
12303 		cpuset = sfmmup->sfmmu_cpusran;
12304 		CPUSET_AND(cpuset, cpu_ready_set);
12305 		CPUSET_DEL(cpuset, CPU->cpu_id);
12306 		SFMMU_XCALL_STATS(sfmmup);
12307 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12308 		    (uint64_t)sfmmup);
12309 		vtag_flushpage(va, (uint64_t)sfmmup);
12310 
12311 #ifdef VAC
12312 		/*
12313 		 * Flush D$
12314 		 * When flushing D$ we must flush all
12315 		 * cpu's. See sfmmu_cache_flush().
12316 		 */
12317 		if (cache_flush_flag == CACHE_FLUSH) {
12318 			cpuset = cpu_ready_set;
12319 			CPUSET_DEL(cpuset, CPU->cpu_id);
12320 
12321 			SFMMU_XCALL_STATS(sfmmup);
12322 			vcolor = addr_to_vcolor(va);
12323 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12324 			vac_flushpage(pfnum, vcolor);
12325 		}
12326 #endif	/* VAC */
12327 	}
12328 }
12329 
12330 /*
12331  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12332  * a particular virtual address and ctx.  If noflush is set we do not
12333  * flush the TLB/TSB.  This function may or may not be called with the
12334  * HAT lock held.
12335  */
12336 static void
12337 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12338 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12339 	int hat_lock_held)
12340 {
12341 #ifdef VAC
12342 	int vcolor;
12343 #endif
12344 	cpuset_t cpuset;
12345 	hatlock_t *hatlockp;
12346 
12347 	ASSERT(!hmeblkp->hblk_shared);
12348 
12349 #if defined(lint) && !defined(VAC)
12350 	pfnum = pfnum;
12351 	cpu_flag = cpu_flag;
12352 	cache_flush_flag = cache_flush_flag;
12353 #endif
12354 
12355 	/*
12356 	 * There is no longer a need to protect against ctx being
12357 	 * stolen here since we don't store the ctx in the TSB anymore.
12358 	 */
12359 #ifdef VAC
12360 	vcolor = addr_to_vcolor(addr);
12361 #endif
12362 
12363 	/*
12364 	 * We must hold the hat lock during the flush of TLB,
12365 	 * to avoid a race with sfmmu_invalidate_ctx(), where
12366 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12367 	 * causing TLB demap routine to skip flush on that MMU.
12368 	 * If the context on a MMU has already been set to
12369 	 * INVALID_CONTEXT, we just get an extra flush on
12370 	 * that MMU.
12371 	 */
12372 	if (!hat_lock_held && !tlb_noflush)
12373 		hatlockp = sfmmu_hat_enter(sfmmup);
12374 
12375 	kpreempt_disable();
12376 	if (!tlb_noflush) {
12377 		/*
12378 		 * Flush the TSB and TLB.
12379 		 */
12380 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12381 
12382 		cpuset = sfmmup->sfmmu_cpusran;
12383 		CPUSET_AND(cpuset, cpu_ready_set);
12384 		CPUSET_DEL(cpuset, CPU->cpu_id);
12385 
12386 		SFMMU_XCALL_STATS(sfmmup);
12387 
12388 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12389 		    (uint64_t)sfmmup);
12390 
12391 		vtag_flushpage(addr, (uint64_t)sfmmup);
12392 	}
12393 
12394 	if (!hat_lock_held && !tlb_noflush)
12395 		sfmmu_hat_exit(hatlockp);
12396 
12397 #ifdef VAC
12398 	/*
12399 	 * Flush the D$
12400 	 *
12401 	 * Even if the ctx is stolen, we need to flush the
12402 	 * cache. Our ctx stealer only flushes the TLBs.
12403 	 */
12404 	if (cache_flush_flag == CACHE_FLUSH) {
12405 		if (cpu_flag & FLUSH_ALL_CPUS) {
12406 			cpuset = cpu_ready_set;
12407 		} else {
12408 			cpuset = sfmmup->sfmmu_cpusran;
12409 			CPUSET_AND(cpuset, cpu_ready_set);
12410 		}
12411 		CPUSET_DEL(cpuset, CPU->cpu_id);
12412 		SFMMU_XCALL_STATS(sfmmup);
12413 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12414 		vac_flushpage(pfnum, vcolor);
12415 	}
12416 #endif	/* VAC */
12417 	kpreempt_enable();
12418 }
12419 
12420 /*
12421  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12422  * address and ctx.  If noflush is set we do not currently do anything.
12423  * This function may or may not be called with the HAT lock held.
12424  */
12425 static void
12426 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12427 	int tlb_noflush, int hat_lock_held)
12428 {
12429 	cpuset_t cpuset;
12430 	hatlock_t *hatlockp;
12431 
12432 	ASSERT(!hmeblkp->hblk_shared);
12433 
12434 	/*
12435 	 * If the process is exiting we have nothing to do.
12436 	 */
12437 	if (tlb_noflush)
12438 		return;
12439 
12440 	/*
12441 	 * Flush TSB.
12442 	 */
12443 	if (!hat_lock_held)
12444 		hatlockp = sfmmu_hat_enter(sfmmup);
12445 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12446 
12447 	kpreempt_disable();
12448 
12449 	cpuset = sfmmup->sfmmu_cpusran;
12450 	CPUSET_AND(cpuset, cpu_ready_set);
12451 	CPUSET_DEL(cpuset, CPU->cpu_id);
12452 
12453 	SFMMU_XCALL_STATS(sfmmup);
12454 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12455 
12456 	vtag_flushpage(addr, (uint64_t)sfmmup);
12457 
12458 	if (!hat_lock_held)
12459 		sfmmu_hat_exit(hatlockp);
12460 
12461 	kpreempt_enable();
12462 
12463 }
12464 
12465 /*
12466  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12467  * call handler that can flush a range of pages to save on xcalls.
12468  */
12469 static int sfmmu_xcall_save;
12470 
12471 /*
12472  * this routine is never used for demaping addresses backed by SRD hmeblks.
12473  */
12474 static void
12475 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12476 {
12477 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12478 	hatlock_t *hatlockp;
12479 	cpuset_t cpuset;
12480 	uint64_t sfmmu_pgcnt;
12481 	pgcnt_t pgcnt = 0;
12482 	int pgunload = 0;
12483 	int dirtypg = 0;
12484 	caddr_t addr = dmrp->dmr_addr;
12485 	caddr_t eaddr;
12486 	uint64_t bitvec = dmrp->dmr_bitvec;
12487 
12488 	ASSERT(bitvec & 1);
12489 
12490 	/*
12491 	 * Flush TSB and calculate number of pages to flush.
12492 	 */
12493 	while (bitvec != 0) {
12494 		dirtypg = 0;
12495 		/*
12496 		 * Find the first page to flush and then count how many
12497 		 * pages there are after it that also need to be flushed.
12498 		 * This way the number of TSB flushes is minimized.
12499 		 */
12500 		while ((bitvec & 1) == 0) {
12501 			pgcnt++;
12502 			addr += MMU_PAGESIZE;
12503 			bitvec >>= 1;
12504 		}
12505 		while (bitvec & 1) {
12506 			dirtypg++;
12507 			bitvec >>= 1;
12508 		}
12509 		eaddr = addr + ptob(dirtypg);
12510 		hatlockp = sfmmu_hat_enter(sfmmup);
12511 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12512 		sfmmu_hat_exit(hatlockp);
12513 		pgunload += dirtypg;
12514 		addr = eaddr;
12515 		pgcnt += dirtypg;
12516 	}
12517 
12518 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12519 	if (sfmmup->sfmmu_free == 0) {
12520 		addr = dmrp->dmr_addr;
12521 		bitvec = dmrp->dmr_bitvec;
12522 
12523 		/*
12524 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
12525 		 * as it will be used to pack argument for xt_some
12526 		 */
12527 		ASSERT((pgcnt > 0) &&
12528 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12529 
12530 		/*
12531 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12532 		 * the low 6 bits of sfmmup. This is doable since pgcnt
12533 		 * always >= 1.
12534 		 */
12535 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12536 		sfmmu_pgcnt = (uint64_t)sfmmup |
12537 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12538 
12539 		/*
12540 		 * We must hold the hat lock during the flush of TLB,
12541 		 * to avoid a race with sfmmu_invalidate_ctx(), where
12542 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12543 		 * causing TLB demap routine to skip flush on that MMU.
12544 		 * If the context on a MMU has already been set to
12545 		 * INVALID_CONTEXT, we just get an extra flush on
12546 		 * that MMU.
12547 		 */
12548 		hatlockp = sfmmu_hat_enter(sfmmup);
12549 		kpreempt_disable();
12550 
12551 		cpuset = sfmmup->sfmmu_cpusran;
12552 		CPUSET_AND(cpuset, cpu_ready_set);
12553 		CPUSET_DEL(cpuset, CPU->cpu_id);
12554 
12555 		SFMMU_XCALL_STATS(sfmmup);
12556 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12557 		    sfmmu_pgcnt);
12558 
12559 		for (; bitvec != 0; bitvec >>= 1) {
12560 			if (bitvec & 1)
12561 				vtag_flushpage(addr, (uint64_t)sfmmup);
12562 			addr += MMU_PAGESIZE;
12563 		}
12564 		kpreempt_enable();
12565 		sfmmu_hat_exit(hatlockp);
12566 
12567 		sfmmu_xcall_save += (pgunload-1);
12568 	}
12569 	dmrp->dmr_bitvec = 0;
12570 }
12571 
12572 /*
12573  * In cases where we need to synchronize with TLB/TSB miss trap
12574  * handlers, _and_ need to flush the TLB, it's a lot easier to
12575  * throw away the context from the process than to do a
12576  * special song and dance to keep things consistent for the
12577  * handlers.
12578  *
12579  * Since the process suddenly ends up without a context and our caller
12580  * holds the hat lock, threads that fault after this function is called
12581  * will pile up on the lock.  We can then do whatever we need to
12582  * atomically from the context of the caller.  The first blocked thread
12583  * to resume executing will get the process a new context, and the
12584  * process will resume executing.
12585  *
12586  * One added advantage of this approach is that on MMUs that
12587  * support a "flush all" operation, we will delay the flush until
12588  * cnum wrap-around, and then flush the TLB one time.  This
12589  * is rather rare, so it's a lot less expensive than making 8000
12590  * x-calls to flush the TLB 8000 times.
12591  *
12592  * A per-process (PP) lock is used to synchronize ctx allocations in
12593  * resume() and ctx invalidations here.
12594  */
12595 static void
12596 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12597 {
12598 	cpuset_t cpuset;
12599 	int cnum, currcnum;
12600 	mmu_ctx_t *mmu_ctxp;
12601 	int i;
12602 	uint_t pstate_save;
12603 
12604 	SFMMU_STAT(sf_ctx_inv);
12605 
12606 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12607 	ASSERT(sfmmup != ksfmmup);
12608 
12609 	kpreempt_disable();
12610 
12611 	mmu_ctxp = CPU_MMU_CTXP(CPU);
12612 	ASSERT(mmu_ctxp);
12613 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12614 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12615 
12616 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12617 
12618 	pstate_save = sfmmu_disable_intrs();
12619 
12620 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
12621 	/* set HAT cnum invalid across all context domains. */
12622 	for (i = 0; i < max_mmu_ctxdoms; i++) {
12623 
12624 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
12625 		if (cnum == INVALID_CONTEXT) {
12626 			continue;
12627 		}
12628 
12629 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12630 	}
12631 	membar_enter();	/* make sure globally visible to all CPUs */
12632 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
12633 
12634 	sfmmu_enable_intrs(pstate_save);
12635 
12636 	cpuset = sfmmup->sfmmu_cpusran;
12637 	CPUSET_DEL(cpuset, CPU->cpu_id);
12638 	CPUSET_AND(cpuset, cpu_ready_set);
12639 	if (!CPUSET_ISNULL(cpuset)) {
12640 		SFMMU_XCALL_STATS(sfmmup);
12641 		xt_some(cpuset, sfmmu_raise_tsb_exception,
12642 		    (uint64_t)sfmmup, INVALID_CONTEXT);
12643 		xt_sync(cpuset);
12644 		SFMMU_STAT(sf_tsb_raise_exception);
12645 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12646 	}
12647 
12648 	/*
12649 	 * If the hat to-be-invalidated is the same as the current
12650 	 * process on local CPU we need to invalidate
12651 	 * this CPU context as well.
12652 	 */
12653 	if ((sfmmu_getctx_sec() == currcnum) &&
12654 	    (currcnum != INVALID_CONTEXT)) {
12655 		/* sets shared context to INVALID too */
12656 		sfmmu_setctx_sec(INVALID_CONTEXT);
12657 		sfmmu_clear_utsbinfo();
12658 	}
12659 
12660 	SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12661 
12662 	kpreempt_enable();
12663 
12664 	/*
12665 	 * we hold the hat lock, so nobody should allocate a context
12666 	 * for us yet
12667 	 */
12668 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12669 }
12670 
12671 #ifdef VAC
12672 /*
12673  * We need to flush the cache in all cpus.  It is possible that
12674  * a process referenced a page as cacheable but has sinced exited
12675  * and cleared the mapping list.  We still to flush it but have no
12676  * state so all cpus is the only alternative.
12677  */
12678 void
12679 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12680 {
12681 	cpuset_t cpuset;
12682 
12683 	kpreempt_disable();
12684 	cpuset = cpu_ready_set;
12685 	CPUSET_DEL(cpuset, CPU->cpu_id);
12686 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12687 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12688 	xt_sync(cpuset);
12689 	vac_flushpage(pfnum, vcolor);
12690 	kpreempt_enable();
12691 }
12692 
12693 void
12694 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12695 {
12696 	cpuset_t cpuset;
12697 
12698 	ASSERT(vcolor >= 0);
12699 
12700 	kpreempt_disable();
12701 	cpuset = cpu_ready_set;
12702 	CPUSET_DEL(cpuset, CPU->cpu_id);
12703 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12704 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12705 	xt_sync(cpuset);
12706 	vac_flushcolor(vcolor, pfnum);
12707 	kpreempt_enable();
12708 }
12709 #endif	/* VAC */
12710 
12711 /*
12712  * We need to prevent processes from accessing the TSB using a cached physical
12713  * address.  It's alright if they try to access the TSB via virtual address
12714  * since they will just fault on that virtual address once the mapping has
12715  * been suspended.
12716  */
12717 #pragma weak sendmondo_in_recover
12718 
12719 /* ARGSUSED */
12720 static int
12721 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12722 {
12723 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12724 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12725 	hatlock_t *hatlockp;
12726 	sf_scd_t *scdp;
12727 
12728 	if (flags != HAT_PRESUSPEND)
12729 		return (0);
12730 
12731 	/*
12732 	 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12733 	 * be a shared hat, then set SCD's tsbinfo's flag.
12734 	 * If tsb is not shared, sfmmup is a private hat, then set
12735 	 * its private tsbinfo's flag.
12736 	 */
12737 	hatlockp = sfmmu_hat_enter(sfmmup);
12738 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12739 
12740 	if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12741 		sfmmu_tsb_inv_ctx(sfmmup);
12742 		sfmmu_hat_exit(hatlockp);
12743 	} else {
12744 		/* release lock on the shared hat */
12745 		sfmmu_hat_exit(hatlockp);
12746 		/* sfmmup is a shared hat */
12747 		ASSERT(sfmmup->sfmmu_scdhat);
12748 		scdp = sfmmup->sfmmu_scdp;
12749 		ASSERT(scdp != NULL);
12750 		/* get private hat from the scd list */
12751 		mutex_enter(&scdp->scd_mutex);
12752 		sfmmup = scdp->scd_sf_list;
12753 		while (sfmmup != NULL) {
12754 			hatlockp = sfmmu_hat_enter(sfmmup);
12755 			/*
12756 			 * We do not call sfmmu_tsb_inv_ctx here because
12757 			 * sendmondo_in_recover check is only needed for
12758 			 * sun4u.
12759 			 */
12760 			sfmmu_invalidate_ctx(sfmmup);
12761 			sfmmu_hat_exit(hatlockp);
12762 			sfmmup = sfmmup->sfmmu_scd_link.next;
12763 
12764 		}
12765 		mutex_exit(&scdp->scd_mutex);
12766 	}
12767 	return (0);
12768 }
12769 
12770 static void
12771 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12772 {
12773 	extern uint32_t sendmondo_in_recover;
12774 
12775 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12776 
12777 	/*
12778 	 * For Cheetah+ Erratum 25:
12779 	 * Wait for any active recovery to finish.  We can't risk
12780 	 * relocating the TSB of the thread running mondo_recover_proc()
12781 	 * since, if we did that, we would deadlock.  The scenario we are
12782 	 * trying to avoid is as follows:
12783 	 *
12784 	 * THIS CPU			RECOVER CPU
12785 	 * --------			-----------
12786 	 *				Begins recovery, walking through TSB
12787 	 * hat_pagesuspend() TSB TTE
12788 	 *				TLB miss on TSB TTE, spins at TL1
12789 	 * xt_sync()
12790 	 *	send_mondo_timeout()
12791 	 *	mondo_recover_proc()
12792 	 *	((deadlocked))
12793 	 *
12794 	 * The second half of the workaround is that mondo_recover_proc()
12795 	 * checks to see if the tsb_info has the RELOC flag set, and if it
12796 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12797 	 * and hence avoiding the TLB miss that could result in a deadlock.
12798 	 */
12799 	if (&sendmondo_in_recover) {
12800 		membar_enter();	/* make sure RELOC flag visible */
12801 		while (sendmondo_in_recover) {
12802 			drv_usecwait(1);
12803 			membar_consumer();
12804 		}
12805 	}
12806 
12807 	sfmmu_invalidate_ctx(sfmmup);
12808 }
12809 
12810 /* ARGSUSED */
12811 static int
12812 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12813 	void *tsbinfo, pfn_t newpfn)
12814 {
12815 	hatlock_t *hatlockp;
12816 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12817 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
12818 
12819 	if (flags != HAT_POSTUNSUSPEND)
12820 		return (0);
12821 
12822 	hatlockp = sfmmu_hat_enter(sfmmup);
12823 
12824 	SFMMU_STAT(sf_tsb_reloc);
12825 
12826 	/*
12827 	 * The process may have swapped out while we were relocating one
12828 	 * of its TSBs.  If so, don't bother doing the setup since the
12829 	 * process can't be using the memory anymore.
12830 	 */
12831 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12832 		ASSERT(va == tsbinfop->tsb_va);
12833 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12834 
12835 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12836 			sfmmu_inv_tsb(tsbinfop->tsb_va,
12837 			    TSB_BYTES(tsbinfop->tsb_szc));
12838 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12839 		}
12840 	}
12841 
12842 	membar_exit();
12843 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12844 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12845 
12846 	sfmmu_hat_exit(hatlockp);
12847 
12848 	return (0);
12849 }
12850 
12851 /*
12852  * Allocate and initialize a tsb_info structure.  Note that we may or may not
12853  * allocate a TSB here, depending on the flags passed in.
12854  */
12855 static int
12856 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12857 	uint_t flags, sfmmu_t *sfmmup)
12858 {
12859 	int err;
12860 
12861 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12862 	    sfmmu_tsbinfo_cache, KM_SLEEP);
12863 
12864 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12865 	    tsb_szc, flags, sfmmup)) != 0) {
12866 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12867 		SFMMU_STAT(sf_tsb_allocfail);
12868 		*tsbinfopp = NULL;
12869 		return (err);
12870 	}
12871 	SFMMU_STAT(sf_tsb_alloc);
12872 
12873 	/*
12874 	 * Bump the TSB size counters for this TSB size.
12875 	 */
12876 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12877 	return (0);
12878 }
12879 
12880 static void
12881 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12882 {
12883 	caddr_t tsbva = tsbinfo->tsb_va;
12884 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12885 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12886 	vmem_t	*vmp = tsbinfo->tsb_vmp;
12887 
12888 	/*
12889 	 * If we allocated this TSB from relocatable kernel memory, then we
12890 	 * need to uninstall the callback handler.
12891 	 */
12892 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12893 		uintptr_t slab_mask;
12894 		caddr_t slab_vaddr;
12895 		page_t **ppl;
12896 		int ret;
12897 
12898 		ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12899 		if (tsb_size > MMU_PAGESIZE4M)
12900 			slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12901 		else
12902 			slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12903 		slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12904 
12905 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12906 		ASSERT(ret == 0);
12907 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12908 		    0, NULL);
12909 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12910 	}
12911 
12912 	if (kmem_cachep != NULL) {
12913 		kmem_cache_free(kmem_cachep, tsbva);
12914 	} else {
12915 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
12916 	}
12917 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12918 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12919 }
12920 
12921 static void
12922 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12923 {
12924 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12925 		sfmmu_tsb_free(tsbinfo);
12926 	}
12927 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12928 
12929 }
12930 
12931 /*
12932  * Setup all the references to physical memory for this tsbinfo.
12933  * The underlying page(s) must be locked.
12934  */
12935 static void
12936 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12937 {
12938 	ASSERT(pfn != PFN_INVALID);
12939 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12940 
12941 #ifndef sun4v
12942 	if (tsbinfo->tsb_szc == 0) {
12943 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
12944 		    PROT_WRITE|PROT_READ, TTE8K);
12945 	} else {
12946 		/*
12947 		 * Round down PA and use a large mapping; the handlers will
12948 		 * compute the TSB pointer at the correct offset into the
12949 		 * big virtual page.  NOTE: this assumes all TSBs larger
12950 		 * than 8K must come from physically contiguous slabs of
12951 		 * size tsb_slab_size.
12952 		 */
12953 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
12954 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
12955 	}
12956 	tsbinfo->tsb_pa = ptob(pfn);
12957 
12958 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
12959 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
12960 
12961 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
12962 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
12963 #else /* sun4v */
12964 	tsbinfo->tsb_pa = ptob(pfn);
12965 #endif /* sun4v */
12966 }
12967 
12968 
12969 /*
12970  * Returns zero on success, ENOMEM if over the high water mark,
12971  * or EAGAIN if the caller needs to retry with a smaller TSB
12972  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
12973  *
12974  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
12975  * is specified and the TSB requested is PAGESIZE, though it
12976  * may sleep waiting for memory if sufficient memory is not
12977  * available.
12978  */
12979 static int
12980 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
12981     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
12982 {
12983 	caddr_t vaddr = NULL;
12984 	caddr_t slab_vaddr;
12985 	uintptr_t slab_mask;
12986 	int tsbbytes = TSB_BYTES(tsbcode);
12987 	int lowmem = 0;
12988 	struct kmem_cache *kmem_cachep = NULL;
12989 	vmem_t *vmp = NULL;
12990 	lgrp_id_t lgrpid = LGRP_NONE;
12991 	pfn_t pfn;
12992 	uint_t cbflags = HAC_SLEEP;
12993 	page_t **pplist;
12994 	int ret;
12995 
12996 	ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
12997 	if (tsbbytes > MMU_PAGESIZE4M)
12998 		slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12999 	else
13000 		slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
13001 
13002 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
13003 		flags |= TSB_ALLOC;
13004 
13005 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
13006 
13007 	tsbinfo->tsb_sfmmu = sfmmup;
13008 
13009 	/*
13010 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
13011 	 * return.
13012 	 */
13013 	if ((flags & TSB_ALLOC) == 0) {
13014 		tsbinfo->tsb_szc = tsbcode;
13015 		tsbinfo->tsb_ttesz_mask = tteszmask;
13016 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
13017 		tsbinfo->tsb_pa = -1;
13018 		tsbinfo->tsb_tte.ll = 0;
13019 		tsbinfo->tsb_next = NULL;
13020 		tsbinfo->tsb_flags = TSB_SWAPPED;
13021 		tsbinfo->tsb_cache = NULL;
13022 		tsbinfo->tsb_vmp = NULL;
13023 		return (0);
13024 	}
13025 
13026 #ifdef DEBUG
13027 	/*
13028 	 * For debugging:
13029 	 * Randomly force allocation failures every tsb_alloc_mtbf
13030 	 * tries if TSB_FORCEALLOC is not specified.  This will
13031 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
13032 	 * it is even, to allow testing of both failure paths...
13033 	 */
13034 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
13035 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
13036 		tsb_alloc_count = 0;
13037 		tsb_alloc_fail_mtbf++;
13038 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
13039 	}
13040 #endif	/* DEBUG */
13041 
13042 	/*
13043 	 * Enforce high water mark if we are not doing a forced allocation
13044 	 * and are not shrinking a process' TSB.
13045 	 */
13046 	if ((flags & TSB_SHRINK) == 0 &&
13047 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
13048 		if ((flags & TSB_FORCEALLOC) == 0)
13049 			return (ENOMEM);
13050 		lowmem = 1;
13051 	}
13052 
13053 	/*
13054 	 * Allocate from the correct location based upon the size of the TSB
13055 	 * compared to the base page size, and what memory conditions dictate.
13056 	 * Note we always do nonblocking allocations from the TSB arena since
13057 	 * we don't want memory fragmentation to cause processes to block
13058 	 * indefinitely waiting for memory; until the kernel algorithms that
13059 	 * coalesce large pages are improved this is our best option.
13060 	 *
13061 	 * Algorithm:
13062 	 *	If allocating a "large" TSB (>8K), allocate from the
13063 	 *		appropriate kmem_tsb_default_arena vmem arena
13064 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
13065 	 *	tsb_forceheap is set
13066 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
13067 	 *		KM_SLEEP (never fails)
13068 	 *	else
13069 	 *		Allocate from appropriate sfmmu_tsb_cache with
13070 	 *		KM_NOSLEEP
13071 	 *	endif
13072 	 */
13073 	if (tsb_lgrp_affinity)
13074 		lgrpid = lgrp_home_id(curthread);
13075 	if (lgrpid == LGRP_NONE)
13076 		lgrpid = 0;	/* use lgrp of boot CPU */
13077 
13078 	if (tsbbytes > MMU_PAGESIZE) {
13079 		if (tsbbytes > MMU_PAGESIZE4M) {
13080 			vmp = kmem_bigtsb_default_arena[lgrpid];
13081 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
13082 			    0, 0, NULL, NULL, VM_NOSLEEP);
13083 		} else {
13084 			vmp = kmem_tsb_default_arena[lgrpid];
13085 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
13086 			    0, 0, NULL, NULL, VM_NOSLEEP);
13087 		}
13088 #ifdef	DEBUG
13089 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
13090 #else	/* !DEBUG */
13091 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
13092 #endif	/* DEBUG */
13093 		kmem_cachep = sfmmu_tsb8k_cache;
13094 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
13095 		ASSERT(vaddr != NULL);
13096 	} else {
13097 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
13098 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
13099 	}
13100 
13101 	tsbinfo->tsb_cache = kmem_cachep;
13102 	tsbinfo->tsb_vmp = vmp;
13103 
13104 	if (vaddr == NULL) {
13105 		return (EAGAIN);
13106 	}
13107 
13108 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
13109 	kmem_cachep = tsbinfo->tsb_cache;
13110 
13111 	/*
13112 	 * If we are allocating from outside the cage, then we need to
13113 	 * register a relocation callback handler.  Note that for now
13114 	 * since pseudo mappings always hang off of the slab's root page,
13115 	 * we need only lock the first 8K of the TSB slab.  This is a bit
13116 	 * hacky but it is good for performance.
13117 	 */
13118 	if (kmem_cachep != sfmmu_tsb8k_cache) {
13119 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
13120 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
13121 		ASSERT(ret == 0);
13122 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
13123 		    cbflags, (void *)tsbinfo, &pfn, NULL);
13124 
13125 		/*
13126 		 * Need to free up resources if we could not successfully
13127 		 * add the callback function and return an error condition.
13128 		 */
13129 		if (ret != 0) {
13130 			if (kmem_cachep) {
13131 				kmem_cache_free(kmem_cachep, vaddr);
13132 			} else {
13133 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
13134 			}
13135 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
13136 			    S_WRITE);
13137 			return (EAGAIN);
13138 		}
13139 	} else {
13140 		/*
13141 		 * Since allocation of 8K TSBs from heap is rare and occurs
13142 		 * during memory pressure we allocate them from permanent
13143 		 * memory rather than using callbacks to get the PFN.
13144 		 */
13145 		pfn = hat_getpfnum(kas.a_hat, vaddr);
13146 	}
13147 
13148 	tsbinfo->tsb_va = vaddr;
13149 	tsbinfo->tsb_szc = tsbcode;
13150 	tsbinfo->tsb_ttesz_mask = tteszmask;
13151 	tsbinfo->tsb_next = NULL;
13152 	tsbinfo->tsb_flags = 0;
13153 
13154 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
13155 
13156 	sfmmu_inv_tsb(vaddr, tsbbytes);
13157 
13158 	if (kmem_cachep != sfmmu_tsb8k_cache) {
13159 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
13160 	}
13161 
13162 	return (0);
13163 }
13164 
13165 /*
13166  * Initialize per cpu tsb and per cpu tsbmiss_area
13167  */
13168 void
13169 sfmmu_init_tsbs(void)
13170 {
13171 	int i;
13172 	struct tsbmiss	*tsbmissp;
13173 	struct kpmtsbm	*kpmtsbmp;
13174 #ifndef sun4v
13175 	extern int	dcache_line_mask;
13176 #endif /* sun4v */
13177 	extern uint_t	vac_colors;
13178 
13179 	/*
13180 	 * Init. tsb miss area.
13181 	 */
13182 	tsbmissp = tsbmiss_area;
13183 
13184 	for (i = 0; i < NCPU; tsbmissp++, i++) {
13185 		/*
13186 		 * initialize the tsbmiss area.
13187 		 * Do this for all possible CPUs as some may be added
13188 		 * while the system is running. There is no cost to this.
13189 		 */
13190 		tsbmissp->ksfmmup = ksfmmup;
13191 #ifndef sun4v
13192 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13193 #endif /* sun4v */
13194 		tsbmissp->khashstart =
13195 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13196 		tsbmissp->uhashstart =
13197 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13198 		tsbmissp->khashsz = khmehash_num;
13199 		tsbmissp->uhashsz = uhmehash_num;
13200 	}
13201 
13202 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13203 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13204 
13205 	if (kpm_enable == 0)
13206 		return;
13207 
13208 	/* -- Begin KPM specific init -- */
13209 
13210 	if (kpm_smallpages) {
13211 		/*
13212 		 * If we're using base pagesize pages for seg_kpm
13213 		 * mappings, we use the kernel TSB since we can't afford
13214 		 * to allocate a second huge TSB for these mappings.
13215 		 */
13216 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13217 		kpm_tsbsz = ktsb_szcode;
13218 		kpmsm_tsbbase = kpm_tsbbase;
13219 		kpmsm_tsbsz = kpm_tsbsz;
13220 	} else {
13221 		/*
13222 		 * In VAC conflict case, just put the entries in the
13223 		 * kernel 8K indexed TSB for now so we can find them.
13224 		 * This could really be changed in the future if we feel
13225 		 * the need...
13226 		 */
13227 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13228 		kpmsm_tsbsz = ktsb_szcode;
13229 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13230 		kpm_tsbsz = ktsb4m_szcode;
13231 	}
13232 
13233 	kpmtsbmp = kpmtsbm_area;
13234 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13235 		/*
13236 		 * Initialize the kpmtsbm area.
13237 		 * Do this for all possible CPUs as some may be added
13238 		 * while the system is running. There is no cost to this.
13239 		 */
13240 		kpmtsbmp->vbase = kpm_vbase;
13241 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13242 		kpmtsbmp->sz_shift = kpm_size_shift;
13243 		kpmtsbmp->kpmp_shift = kpmp_shift;
13244 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13245 		if (kpm_smallpages == 0) {
13246 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13247 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13248 		} else {
13249 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13250 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13251 		}
13252 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13253 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13254 #ifdef	DEBUG
13255 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
13256 #endif	/* DEBUG */
13257 		if (ktsb_phys)
13258 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13259 	}
13260 
13261 	/* -- End KPM specific init -- */
13262 }
13263 
13264 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13265 struct tsb_info ktsb_info[2];
13266 
13267 /*
13268  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13269  */
13270 void
13271 sfmmu_init_ktsbinfo()
13272 {
13273 	ASSERT(ksfmmup != NULL);
13274 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
13275 	/*
13276 	 * Allocate tsbinfos for kernel and copy in data
13277 	 * to make debug easier and sun4v setup easier.
13278 	 */
13279 	ktsb_info[0].tsb_sfmmu = ksfmmup;
13280 	ktsb_info[0].tsb_szc = ktsb_szcode;
13281 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13282 	ktsb_info[0].tsb_va = ktsb_base;
13283 	ktsb_info[0].tsb_pa = ktsb_pbase;
13284 	ktsb_info[0].tsb_flags = 0;
13285 	ktsb_info[0].tsb_tte.ll = 0;
13286 	ktsb_info[0].tsb_cache = NULL;
13287 
13288 	ktsb_info[1].tsb_sfmmu = ksfmmup;
13289 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
13290 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
13291 	ktsb_info[1].tsb_va = ktsb4m_base;
13292 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
13293 	ktsb_info[1].tsb_flags = 0;
13294 	ktsb_info[1].tsb_tte.ll = 0;
13295 	ktsb_info[1].tsb_cache = NULL;
13296 
13297 	/* Link them into ksfmmup. */
13298 	ktsb_info[0].tsb_next = &ktsb_info[1];
13299 	ktsb_info[1].tsb_next = NULL;
13300 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
13301 
13302 	sfmmu_setup_tsbinfo(ksfmmup);
13303 }
13304 
13305 /*
13306  * Cache the last value returned from va_to_pa().  If the VA specified
13307  * in the current call to cached_va_to_pa() maps to the same Page (as the
13308  * previous call to cached_va_to_pa()), then compute the PA using
13309  * cached info, else call va_to_pa().
13310  *
13311  * Note: this function is neither MT-safe nor consistent in the presence
13312  * of multiple, interleaved threads.  This function was created to enable
13313  * an optimization used during boot (at a point when there's only one thread
13314  * executing on the "boot CPU", and before startup_vm() has been called).
13315  */
13316 static uint64_t
13317 cached_va_to_pa(void *vaddr)
13318 {
13319 	static uint64_t prev_vaddr_base = 0;
13320 	static uint64_t prev_pfn = 0;
13321 
13322 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13323 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13324 	} else {
13325 		uint64_t pa = va_to_pa(vaddr);
13326 
13327 		if (pa != ((uint64_t)-1)) {
13328 			/*
13329 			 * Computed physical address is valid.  Cache its
13330 			 * related info for the next cached_va_to_pa() call.
13331 			 */
13332 			prev_pfn = pa & MMU_PAGEMASK;
13333 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13334 		}
13335 
13336 		return (pa);
13337 	}
13338 }
13339 
13340 /*
13341  * Carve up our nucleus hblk region.  We may allocate more hblks than
13342  * asked due to rounding errors but we are guaranteed to have at least
13343  * enough space to allocate the requested number of hblk8's and hblk1's.
13344  */
13345 void
13346 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13347 {
13348 	struct hme_blk *hmeblkp;
13349 	size_t hme8blk_sz, hme1blk_sz;
13350 	size_t i;
13351 	size_t hblk8_bound;
13352 	ulong_t j = 0, k = 0;
13353 
13354 	ASSERT(addr != NULL && size != 0);
13355 
13356 	/* Need to use proper structure alignment */
13357 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13358 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13359 
13360 	nucleus_hblk8.list = (void *)addr;
13361 	nucleus_hblk8.index = 0;
13362 
13363 	/*
13364 	 * Use as much memory as possible for hblk8's since we
13365 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13366 	 * We need to hold back enough space for the hblk1's which
13367 	 * we'll allocate next.
13368 	 */
13369 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13370 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13371 		hmeblkp = (struct hme_blk *)addr;
13372 		addr += hme8blk_sz;
13373 		hmeblkp->hblk_nuc_bit = 1;
13374 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13375 	}
13376 	nucleus_hblk8.len = j;
13377 	ASSERT(j >= nhblk8);
13378 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13379 
13380 	nucleus_hblk1.list = (void *)addr;
13381 	nucleus_hblk1.index = 0;
13382 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13383 		hmeblkp = (struct hme_blk *)addr;
13384 		addr += hme1blk_sz;
13385 		hmeblkp->hblk_nuc_bit = 1;
13386 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13387 	}
13388 	ASSERT(k >= nhblk1);
13389 	nucleus_hblk1.len = k;
13390 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13391 }
13392 
13393 /*
13394  * This function is currently not supported on this platform. For what
13395  * it's supposed to do, see hat.c and hat_srmmu.c
13396  */
13397 /* ARGSUSED */
13398 faultcode_t
13399 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13400     uint_t flags)
13401 {
13402 	ASSERT(hat->sfmmu_xhat_provider == NULL);
13403 	return (FC_NOSUPPORT);
13404 }
13405 
13406 /*
13407  * Searchs the mapping list of the page for a mapping of the same size. If not
13408  * found the corresponding bit is cleared in the p_index field. When large
13409  * pages are more prevalent in the system, we can maintain the mapping list
13410  * in order and we don't have to traverse the list each time. Just check the
13411  * next and prev entries, and if both are of different size, we clear the bit.
13412  */
13413 static void
13414 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13415 {
13416 	struct sf_hment *sfhmep;
13417 	struct hme_blk *hmeblkp;
13418 	int	index;
13419 	pgcnt_t	npgs;
13420 
13421 	ASSERT(ttesz > TTE8K);
13422 
13423 	ASSERT(sfmmu_mlist_held(pp));
13424 
13425 	ASSERT(PP_ISMAPPED_LARGE(pp));
13426 
13427 	/*
13428 	 * Traverse mapping list looking for another mapping of same size.
13429 	 * since we only want to clear index field if all mappings of
13430 	 * that size are gone.
13431 	 */
13432 
13433 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13434 		if (IS_PAHME(sfhmep))
13435 			continue;
13436 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13437 		if (hmeblkp->hblk_xhat_bit)
13438 			continue;
13439 		if (hme_size(sfhmep) == ttesz) {
13440 			/*
13441 			 * another mapping of the same size. don't clear index.
13442 			 */
13443 			return;
13444 		}
13445 	}
13446 
13447 	/*
13448 	 * Clear the p_index bit for large page.
13449 	 */
13450 	index = PAGESZ_TO_INDEX(ttesz);
13451 	npgs = TTEPAGES(ttesz);
13452 	while (npgs-- > 0) {
13453 		ASSERT(pp->p_index & index);
13454 		pp->p_index &= ~index;
13455 		pp = PP_PAGENEXT(pp);
13456 	}
13457 }
13458 
13459 /*
13460  * return supported features
13461  */
13462 /* ARGSUSED */
13463 int
13464 hat_supported(enum hat_features feature, void *arg)
13465 {
13466 	switch (feature) {
13467 	case    HAT_SHARED_PT:
13468 	case	HAT_DYNAMIC_ISM_UNMAP:
13469 	case	HAT_VMODSORT:
13470 		return (1);
13471 	case	HAT_SHARED_REGIONS:
13472 		if (shctx_on)
13473 			return (1);
13474 		else
13475 			return (0);
13476 	default:
13477 		return (0);
13478 	}
13479 }
13480 
13481 void
13482 hat_enter(struct hat *hat)
13483 {
13484 	hatlock_t	*hatlockp;
13485 
13486 	if (hat != ksfmmup) {
13487 		hatlockp = TSB_HASH(hat);
13488 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
13489 	}
13490 }
13491 
13492 void
13493 hat_exit(struct hat *hat)
13494 {
13495 	hatlock_t	*hatlockp;
13496 
13497 	if (hat != ksfmmup) {
13498 		hatlockp = TSB_HASH(hat);
13499 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
13500 	}
13501 }
13502 
13503 /*ARGSUSED*/
13504 void
13505 hat_reserve(struct as *as, caddr_t addr, size_t len)
13506 {
13507 }
13508 
13509 static void
13510 hat_kstat_init(void)
13511 {
13512 	kstat_t *ksp;
13513 
13514 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13515 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13516 	    KSTAT_FLAG_VIRTUAL);
13517 	if (ksp) {
13518 		ksp->ks_data = (void *) &sfmmu_global_stat;
13519 		kstat_install(ksp);
13520 	}
13521 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13522 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13523 	    KSTAT_FLAG_VIRTUAL);
13524 	if (ksp) {
13525 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13526 		kstat_install(ksp);
13527 	}
13528 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13529 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13530 	    KSTAT_FLAG_WRITABLE);
13531 	if (ksp) {
13532 		ksp->ks_update = sfmmu_kstat_percpu_update;
13533 		kstat_install(ksp);
13534 	}
13535 }
13536 
13537 /* ARGSUSED */
13538 static int
13539 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13540 {
13541 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13542 	struct tsbmiss *tsbm = tsbmiss_area;
13543 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13544 	int i;
13545 
13546 	ASSERT(cpu_kstat);
13547 	if (rw == KSTAT_READ) {
13548 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13549 			cpu_kstat->sf_itlb_misses = 0;
13550 			cpu_kstat->sf_dtlb_misses = 0;
13551 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13552 			    tsbm->uprot_traps;
13553 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13554 			    kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13555 			cpu_kstat->sf_tsb_hits = 0;
13556 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13557 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13558 		}
13559 	} else {
13560 		/* KSTAT_WRITE is used to clear stats */
13561 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13562 			tsbm->utsb_misses = 0;
13563 			tsbm->ktsb_misses = 0;
13564 			tsbm->uprot_traps = 0;
13565 			tsbm->kprot_traps = 0;
13566 			kpmtsbm->kpm_dtlb_misses = 0;
13567 			kpmtsbm->kpm_tsb_misses = 0;
13568 		}
13569 	}
13570 	return (0);
13571 }
13572 
13573 #ifdef	DEBUG
13574 
13575 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13576 
13577 /*
13578  * A tte checker. *orig_old is the value we read before cas.
13579  *	*cur is the value returned by cas.
13580  *	*new is the desired value when we do the cas.
13581  *
13582  *	*hmeblkp is currently unused.
13583  */
13584 
13585 /* ARGSUSED */
13586 void
13587 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13588 {
13589 	pfn_t i, j, k;
13590 	int cpuid = CPU->cpu_id;
13591 
13592 	gorig[cpuid] = orig_old;
13593 	gcur[cpuid] = cur;
13594 	gnew[cpuid] = new;
13595 
13596 #ifdef lint
13597 	hmeblkp = hmeblkp;
13598 #endif
13599 
13600 	if (TTE_IS_VALID(orig_old)) {
13601 		if (TTE_IS_VALID(cur)) {
13602 			i = TTE_TO_TTEPFN(orig_old);
13603 			j = TTE_TO_TTEPFN(cur);
13604 			k = TTE_TO_TTEPFN(new);
13605 			if (i != j) {
13606 				/* remap error? */
13607 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13608 			}
13609 
13610 			if (i != k) {
13611 				/* remap error? */
13612 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13613 			}
13614 		} else {
13615 			if (TTE_IS_VALID(new)) {
13616 				panic("chk_tte: invalid cur? ");
13617 			}
13618 
13619 			i = TTE_TO_TTEPFN(orig_old);
13620 			k = TTE_TO_TTEPFN(new);
13621 			if (i != k) {
13622 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13623 			}
13624 		}
13625 	} else {
13626 		if (TTE_IS_VALID(cur)) {
13627 			j = TTE_TO_TTEPFN(cur);
13628 			if (TTE_IS_VALID(new)) {
13629 				k = TTE_TO_TTEPFN(new);
13630 				if (j != k) {
13631 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13632 					    j, k);
13633 				}
13634 			} else {
13635 				panic("chk_tte: why here?");
13636 			}
13637 		} else {
13638 			if (!TTE_IS_VALID(new)) {
13639 				panic("chk_tte: why here2 ?");
13640 			}
13641 		}
13642 	}
13643 }
13644 
13645 #endif /* DEBUG */
13646 
13647 extern void prefetch_tsbe_read(struct tsbe *);
13648 extern void prefetch_tsbe_write(struct tsbe *);
13649 
13650 
13651 /*
13652  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
13653  * us optimal performance on Cheetah+.  You can only have 8 outstanding
13654  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13655  * prefetch to make the most utilization of the prefetch capability.
13656  */
13657 #define	TSBE_PREFETCH_STRIDE (7)
13658 
13659 void
13660 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13661 {
13662 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13663 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13664 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13665 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13666 	struct tsbe *old;
13667 	struct tsbe *new;
13668 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13669 	uint64_t va;
13670 	int new_offset;
13671 	int i;
13672 	int vpshift;
13673 	int last_prefetch;
13674 
13675 	if (old_bytes == new_bytes) {
13676 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13677 	} else {
13678 
13679 		/*
13680 		 * A TSBE is 16 bytes which means there are four TSBE's per
13681 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13682 		 */
13683 		old = (struct tsbe *)old_tsbinfo->tsb_va;
13684 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13685 		for (i = 0; i < old_entries; i++, old++) {
13686 			if (((i & (4-1)) == 0) && (i < last_prefetch))
13687 				prefetch_tsbe_read(old);
13688 			if (!old->tte_tag.tag_invalid) {
13689 				/*
13690 				 * We have a valid TTE to remap.  Check the
13691 				 * size.  We won't remap 64K or 512K TTEs
13692 				 * because they span more than one TSB entry
13693 				 * and are indexed using an 8K virt. page.
13694 				 * Ditto for 32M and 256M TTEs.
13695 				 */
13696 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
13697 				    TTE_CSZ(&old->tte_data) == TTE512K)
13698 					continue;
13699 				if (mmu_page_sizes == max_mmu_page_sizes) {
13700 					if (TTE_CSZ(&old->tte_data) == TTE32M ||
13701 					    TTE_CSZ(&old->tte_data) == TTE256M)
13702 						continue;
13703 				}
13704 
13705 				/* clear the lower 22 bits of the va */
13706 				va = *(uint64_t *)old << 22;
13707 				/* turn va into a virtual pfn */
13708 				va >>= 22 - TSB_START_SIZE;
13709 				/*
13710 				 * or in bits from the offset in the tsb
13711 				 * to get the real virtual pfn. These
13712 				 * correspond to bits [21:13] in the va
13713 				 */
13714 				vpshift =
13715 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13716 				    0x1ff;
13717 				va |= (i << vpshift);
13718 				va >>= vpshift;
13719 				new_offset = va & (new_entries - 1);
13720 				new = new_base + new_offset;
13721 				prefetch_tsbe_write(new);
13722 				*new = *old;
13723 			}
13724 		}
13725 	}
13726 }
13727 
13728 /*
13729  * unused in sfmmu
13730  */
13731 void
13732 hat_dump(void)
13733 {
13734 }
13735 
13736 /*
13737  * Called when a thread is exiting and we have switched to the kernel address
13738  * space.  Perform the same VM initialization resume() uses when switching
13739  * processes.
13740  *
13741  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13742  * we call it anyway in case the semantics change in the future.
13743  */
13744 /*ARGSUSED*/
13745 void
13746 hat_thread_exit(kthread_t *thd)
13747 {
13748 	uint_t pgsz_cnum;
13749 	uint_t pstate_save;
13750 
13751 	ASSERT(thd->t_procp->p_as == &kas);
13752 
13753 	pgsz_cnum = KCONTEXT;
13754 #ifdef sun4u
13755 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13756 #endif
13757 
13758 	/*
13759 	 * Note that sfmmu_load_mmustate() is currently a no-op for
13760 	 * kernel threads. We need to disable interrupts here,
13761 	 * simply because otherwise sfmmu_load_mmustate() would panic
13762 	 * if the caller does not disable interrupts.
13763 	 */
13764 	pstate_save = sfmmu_disable_intrs();
13765 
13766 	/* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13767 	sfmmu_setctx_sec(pgsz_cnum);
13768 	sfmmu_load_mmustate(ksfmmup);
13769 	sfmmu_enable_intrs(pstate_save);
13770 }
13771 
13772 
13773 /*
13774  * SRD support
13775  */
13776 #define	SRD_HASH_FUNCTION(vp)	(((((uintptr_t)(vp)) >> 4) ^ \
13777 				    (((uintptr_t)(vp)) >> 11)) & \
13778 				    srd_hashmask)
13779 
13780 /*
13781  * Attach the process to the srd struct associated with the exec vnode
13782  * from which the process is started.
13783  */
13784 void
13785 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13786 {
13787 	uint_t hash = SRD_HASH_FUNCTION(evp);
13788 	sf_srd_t *srdp;
13789 	sf_srd_t *newsrdp;
13790 
13791 	ASSERT(sfmmup != ksfmmup);
13792 	ASSERT(sfmmup->sfmmu_srdp == NULL);
13793 
13794 	if (!shctx_on) {
13795 		return;
13796 	}
13797 
13798 	VN_HOLD(evp);
13799 
13800 	if (srd_buckets[hash].srdb_srdp != NULL) {
13801 		mutex_enter(&srd_buckets[hash].srdb_lock);
13802 		for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13803 		    srdp = srdp->srd_hash) {
13804 			if (srdp->srd_evp == evp) {
13805 				ASSERT(srdp->srd_refcnt >= 0);
13806 				sfmmup->sfmmu_srdp = srdp;
13807 				atomic_add_32(
13808 				    (volatile uint_t *)&srdp->srd_refcnt, 1);
13809 				mutex_exit(&srd_buckets[hash].srdb_lock);
13810 				return;
13811 			}
13812 		}
13813 		mutex_exit(&srd_buckets[hash].srdb_lock);
13814 	}
13815 	newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13816 	ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13817 
13818 	newsrdp->srd_evp = evp;
13819 	newsrdp->srd_refcnt = 1;
13820 	newsrdp->srd_hmergnfree = NULL;
13821 	newsrdp->srd_ismrgnfree = NULL;
13822 
13823 	mutex_enter(&srd_buckets[hash].srdb_lock);
13824 	for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13825 	    srdp = srdp->srd_hash) {
13826 		if (srdp->srd_evp == evp) {
13827 			ASSERT(srdp->srd_refcnt >= 0);
13828 			sfmmup->sfmmu_srdp = srdp;
13829 			atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
13830 			mutex_exit(&srd_buckets[hash].srdb_lock);
13831 			kmem_cache_free(srd_cache, newsrdp);
13832 			return;
13833 		}
13834 	}
13835 	newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13836 	srd_buckets[hash].srdb_srdp = newsrdp;
13837 	sfmmup->sfmmu_srdp = newsrdp;
13838 
13839 	mutex_exit(&srd_buckets[hash].srdb_lock);
13840 
13841 }
13842 
13843 static void
13844 sfmmu_leave_srd(sfmmu_t *sfmmup)
13845 {
13846 	vnode_t *evp;
13847 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13848 	uint_t hash;
13849 	sf_srd_t **prev_srdpp;
13850 	sf_region_t *rgnp;
13851 	sf_region_t *nrgnp;
13852 #ifdef DEBUG
13853 	int rgns = 0;
13854 #endif
13855 	int i;
13856 
13857 	ASSERT(sfmmup != ksfmmup);
13858 	ASSERT(srdp != NULL);
13859 	ASSERT(srdp->srd_refcnt > 0);
13860 	ASSERT(sfmmup->sfmmu_scdp == NULL);
13861 	ASSERT(sfmmup->sfmmu_free == 1);
13862 
13863 	sfmmup->sfmmu_srdp = NULL;
13864 	evp = srdp->srd_evp;
13865 	ASSERT(evp != NULL);
13866 	if (atomic_add_32_nv(
13867 	    (volatile uint_t *)&srdp->srd_refcnt, -1)) {
13868 		VN_RELE(evp);
13869 		return;
13870 	}
13871 
13872 	hash = SRD_HASH_FUNCTION(evp);
13873 	mutex_enter(&srd_buckets[hash].srdb_lock);
13874 	for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13875 	    (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13876 		if (srdp->srd_evp == evp) {
13877 			break;
13878 		}
13879 	}
13880 	if (srdp == NULL || srdp->srd_refcnt) {
13881 		mutex_exit(&srd_buckets[hash].srdb_lock);
13882 		VN_RELE(evp);
13883 		return;
13884 	}
13885 	*prev_srdpp = srdp->srd_hash;
13886 	mutex_exit(&srd_buckets[hash].srdb_lock);
13887 
13888 	ASSERT(srdp->srd_refcnt == 0);
13889 	VN_RELE(evp);
13890 
13891 #ifdef DEBUG
13892 	for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13893 		ASSERT(srdp->srd_rgnhash[i] == NULL);
13894 	}
13895 #endif /* DEBUG */
13896 
13897 	/* free each hme regions in the srd */
13898 	for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13899 		nrgnp = rgnp->rgn_next;
13900 		ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13901 		ASSERT(rgnp->rgn_refcnt == 0);
13902 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13903 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13904 		ASSERT(rgnp->rgn_hmeflags == 0);
13905 		ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13906 #ifdef DEBUG
13907 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13908 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13909 		}
13910 		rgns++;
13911 #endif /* DEBUG */
13912 		kmem_cache_free(region_cache, rgnp);
13913 	}
13914 	ASSERT(rgns == srdp->srd_next_hmerid);
13915 
13916 #ifdef DEBUG
13917 	rgns = 0;
13918 #endif
13919 	/* free each ism rgns in the srd */
13920 	for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13921 		nrgnp = rgnp->rgn_next;
13922 		ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13923 		ASSERT(rgnp->rgn_refcnt == 0);
13924 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13925 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13926 		ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13927 #ifdef DEBUG
13928 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13929 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13930 		}
13931 		rgns++;
13932 #endif /* DEBUG */
13933 		kmem_cache_free(region_cache, rgnp);
13934 	}
13935 	ASSERT(rgns == srdp->srd_next_ismrid);
13936 	ASSERT(srdp->srd_ismbusyrgns == 0);
13937 	ASSERT(srdp->srd_hmebusyrgns == 0);
13938 
13939 	srdp->srd_next_ismrid = 0;
13940 	srdp->srd_next_hmerid = 0;
13941 
13942 	bzero((void *)srdp->srd_ismrgnp,
13943 	    sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
13944 	bzero((void *)srdp->srd_hmergnp,
13945 	    sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
13946 
13947 	ASSERT(srdp->srd_scdp == NULL);
13948 	kmem_cache_free(srd_cache, srdp);
13949 }
13950 
13951 /* ARGSUSED */
13952 static int
13953 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
13954 {
13955 	sf_srd_t *srdp = (sf_srd_t *)buf;
13956 	bzero(buf, sizeof (*srdp));
13957 
13958 	mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
13959 	mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
13960 	return (0);
13961 }
13962 
13963 /* ARGSUSED */
13964 static void
13965 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
13966 {
13967 	sf_srd_t *srdp = (sf_srd_t *)buf;
13968 
13969 	mutex_destroy(&srdp->srd_mutex);
13970 	mutex_destroy(&srdp->srd_scd_mutex);
13971 }
13972 
13973 /*
13974  * The caller makes sure hat_join_region()/hat_leave_region() can't be called
13975  * at the same time for the same process and address range. This is ensured by
13976  * the fact that address space is locked as writer when a process joins the
13977  * regions. Therefore there's no need to hold an srd lock during the entire
13978  * execution of hat_join_region()/hat_leave_region().
13979  */
13980 
13981 #define	RGN_HASH_FUNCTION(obj)	(((((uintptr_t)(obj)) >> 4) ^ \
13982 				    (((uintptr_t)(obj)) >> 11)) & \
13983 					srd_rgn_hashmask)
13984 /*
13985  * This routine implements the shared context functionality required when
13986  * attaching a segment to an address space. It must be called from
13987  * hat_share() for D(ISM) segments and from segvn_create() for segments
13988  * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
13989  * which is saved in the private segment data for hme segments and
13990  * the ism_map structure for ism segments.
13991  */
13992 hat_region_cookie_t
13993 hat_join_region(struct hat *sfmmup,
13994 	caddr_t r_saddr,
13995 	size_t r_size,
13996 	void *r_obj,
13997 	u_offset_t r_objoff,
13998 	uchar_t r_perm,
13999 	uchar_t r_pgszc,
14000 	hat_rgn_cb_func_t r_cb_function,
14001 	uint_t flags)
14002 {
14003 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14004 	uint_t rhash;
14005 	uint_t rid;
14006 	hatlock_t *hatlockp;
14007 	sf_region_t *rgnp;
14008 	sf_region_t *new_rgnp = NULL;
14009 	int i;
14010 	uint16_t *nextidp;
14011 	sf_region_t **freelistp;
14012 	int maxids;
14013 	sf_region_t **rarrp;
14014 	uint16_t *busyrgnsp;
14015 	ulong_t rttecnt;
14016 	uchar_t tteflag;
14017 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14018 	int text = (r_type == HAT_REGION_TEXT);
14019 
14020 	if (srdp == NULL || r_size == 0) {
14021 		return (HAT_INVALID_REGION_COOKIE);
14022 	}
14023 
14024 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14025 	ASSERT(sfmmup != ksfmmup);
14026 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14027 	ASSERT(srdp->srd_refcnt > 0);
14028 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14029 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14030 	ASSERT(r_pgszc < mmu_page_sizes);
14031 	if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
14032 	    !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
14033 		panic("hat_join_region: region addr or size is not aligned\n");
14034 	}
14035 
14036 
14037 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14038 	    SFMMU_REGION_HME;
14039 	/*
14040 	 * Currently only support shared hmes for the read only main text
14041 	 * region.
14042 	 */
14043 	if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
14044 	    (r_perm & PROT_WRITE))) {
14045 		return (HAT_INVALID_REGION_COOKIE);
14046 	}
14047 
14048 	rhash = RGN_HASH_FUNCTION(r_obj);
14049 
14050 	if (r_type == SFMMU_REGION_ISM) {
14051 		nextidp = &srdp->srd_next_ismrid;
14052 		freelistp = &srdp->srd_ismrgnfree;
14053 		maxids = SFMMU_MAX_ISM_REGIONS;
14054 		rarrp = srdp->srd_ismrgnp;
14055 		busyrgnsp = &srdp->srd_ismbusyrgns;
14056 	} else {
14057 		nextidp = &srdp->srd_next_hmerid;
14058 		freelistp = &srdp->srd_hmergnfree;
14059 		maxids = SFMMU_MAX_HME_REGIONS;
14060 		rarrp = srdp->srd_hmergnp;
14061 		busyrgnsp = &srdp->srd_hmebusyrgns;
14062 	}
14063 
14064 	mutex_enter(&srdp->srd_mutex);
14065 
14066 	for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14067 	    rgnp = rgnp->rgn_hash) {
14068 		if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
14069 		    rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
14070 		    rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
14071 			break;
14072 		}
14073 	}
14074 
14075 rfound:
14076 	if (rgnp != NULL) {
14077 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14078 		ASSERT(rgnp->rgn_cb_function == r_cb_function);
14079 		ASSERT(rgnp->rgn_refcnt >= 0);
14080 		rid = rgnp->rgn_id;
14081 		ASSERT(rid < maxids);
14082 		ASSERT(rarrp[rid] == rgnp);
14083 		ASSERT(rid < *nextidp);
14084 		atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14085 		mutex_exit(&srdp->srd_mutex);
14086 		if (new_rgnp != NULL) {
14087 			kmem_cache_free(region_cache, new_rgnp);
14088 		}
14089 		if (r_type == SFMMU_REGION_HME) {
14090 			int myjoin =
14091 			    (sfmmup == astosfmmu(curthread->t_procp->p_as));
14092 
14093 			sfmmu_link_to_hmeregion(sfmmup, rgnp);
14094 			/*
14095 			 * bitmap should be updated after linking sfmmu on
14096 			 * region list so that pageunload() doesn't skip
14097 			 * TSB/TLB flush. As soon as bitmap is updated another
14098 			 * thread in this process can already start accessing
14099 			 * this region.
14100 			 */
14101 			/*
14102 			 * Normally ttecnt accounting is done as part of
14103 			 * pagefault handling. But a process may not take any
14104 			 * pagefaults on shared hmeblks created by some other
14105 			 * process. To compensate for this assume that the
14106 			 * entire region will end up faulted in using
14107 			 * the region's pagesize.
14108 			 *
14109 			 */
14110 			if (r_pgszc > TTE8K) {
14111 				tteflag = 1 << r_pgszc;
14112 				if (disable_large_pages & tteflag) {
14113 					tteflag = 0;
14114 				}
14115 			} else {
14116 				tteflag = 0;
14117 			}
14118 			if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
14119 				hatlockp = sfmmu_hat_enter(sfmmup);
14120 				sfmmup->sfmmu_rtteflags |= tteflag;
14121 				sfmmu_hat_exit(hatlockp);
14122 			}
14123 			hatlockp = sfmmu_hat_enter(sfmmup);
14124 
14125 			/*
14126 			 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
14127 			 * region to allow for large page allocation failure.
14128 			 */
14129 			if (r_pgszc >= TTE4M) {
14130 				sfmmup->sfmmu_tsb0_4minflcnt +=
14131 				    r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14132 			}
14133 
14134 			/* update sfmmu_ttecnt with the shme rgn ttecnt */
14135 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14136 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14137 			    rttecnt);
14138 
14139 			if (text && r_pgszc >= TTE4M &&
14140 			    (tteflag || ((disable_large_pages >> TTE4M) &
14141 			    ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
14142 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
14143 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
14144 			}
14145 
14146 			sfmmu_hat_exit(hatlockp);
14147 			/*
14148 			 * On Panther we need to make sure TLB is programmed
14149 			 * to accept 32M/256M pages.  Call
14150 			 * sfmmu_check_page_sizes() now to make sure TLB is
14151 			 * setup before making hmeregions visible to other
14152 			 * threads.
14153 			 */
14154 			sfmmu_check_page_sizes(sfmmup, 1);
14155 			hatlockp = sfmmu_hat_enter(sfmmup);
14156 			SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14157 
14158 			/*
14159 			 * if context is invalid tsb miss exception code will
14160 			 * call sfmmu_check_page_sizes() and update tsbmiss
14161 			 * area later.
14162 			 */
14163 			kpreempt_disable();
14164 			if (myjoin &&
14165 			    (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
14166 			    != INVALID_CONTEXT)) {
14167 				struct tsbmiss *tsbmp;
14168 
14169 				tsbmp = &tsbmiss_area[CPU->cpu_id];
14170 				ASSERT(sfmmup == tsbmp->usfmmup);
14171 				BT_SET(tsbmp->shmermap, rid);
14172 				if (r_pgszc > TTE64K) {
14173 					tsbmp->uhat_rtteflags |= tteflag;
14174 				}
14175 
14176 			}
14177 			kpreempt_enable();
14178 
14179 			sfmmu_hat_exit(hatlockp);
14180 			ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
14181 			    HAT_INVALID_REGION_COOKIE);
14182 		} else {
14183 			hatlockp = sfmmu_hat_enter(sfmmup);
14184 			SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
14185 			sfmmu_hat_exit(hatlockp);
14186 		}
14187 		ASSERT(rid < maxids);
14188 
14189 		if (r_type == SFMMU_REGION_ISM) {
14190 			sfmmu_find_scd(sfmmup);
14191 		}
14192 		return ((hat_region_cookie_t)((uint64_t)rid));
14193 	}
14194 
14195 	ASSERT(new_rgnp == NULL);
14196 
14197 	if (*busyrgnsp >= maxids) {
14198 		mutex_exit(&srdp->srd_mutex);
14199 		return (HAT_INVALID_REGION_COOKIE);
14200 	}
14201 
14202 	ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14203 	if (*freelistp != NULL) {
14204 		rgnp = *freelistp;
14205 		*freelistp = rgnp->rgn_next;
14206 		ASSERT(rgnp->rgn_id < *nextidp);
14207 		ASSERT(rgnp->rgn_id < maxids);
14208 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14209 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14210 		    == r_type);
14211 		ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14212 		ASSERT(rgnp->rgn_hmeflags == 0);
14213 	} else {
14214 		/*
14215 		 * release local locks before memory allocation.
14216 		 */
14217 		mutex_exit(&srdp->srd_mutex);
14218 
14219 		new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14220 
14221 		mutex_enter(&srdp->srd_mutex);
14222 		for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14223 		    rgnp = rgnp->rgn_hash) {
14224 			if (rgnp->rgn_saddr == r_saddr &&
14225 			    rgnp->rgn_size == r_size &&
14226 			    rgnp->rgn_obj == r_obj &&
14227 			    rgnp->rgn_objoff == r_objoff &&
14228 			    rgnp->rgn_perm == r_perm &&
14229 			    rgnp->rgn_pgszc == r_pgszc) {
14230 				break;
14231 			}
14232 		}
14233 		if (rgnp != NULL) {
14234 			goto rfound;
14235 		}
14236 
14237 		if (*nextidp >= maxids) {
14238 			mutex_exit(&srdp->srd_mutex);
14239 			goto fail;
14240 		}
14241 		rgnp = new_rgnp;
14242 		new_rgnp = NULL;
14243 		rgnp->rgn_id = (*nextidp)++;
14244 		ASSERT(rgnp->rgn_id < maxids);
14245 		ASSERT(rarrp[rgnp->rgn_id] == NULL);
14246 		rarrp[rgnp->rgn_id] = rgnp;
14247 	}
14248 
14249 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14250 	ASSERT(rgnp->rgn_hmeflags == 0);
14251 #ifdef DEBUG
14252 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14253 		ASSERT(rgnp->rgn_ttecnt[i] == 0);
14254 	}
14255 #endif
14256 	rgnp->rgn_saddr = r_saddr;
14257 	rgnp->rgn_size = r_size;
14258 	rgnp->rgn_obj = r_obj;
14259 	rgnp->rgn_objoff = r_objoff;
14260 	rgnp->rgn_perm = r_perm;
14261 	rgnp->rgn_pgszc = r_pgszc;
14262 	rgnp->rgn_flags = r_type;
14263 	rgnp->rgn_refcnt = 0;
14264 	rgnp->rgn_cb_function = r_cb_function;
14265 	rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14266 	srdp->srd_rgnhash[rhash] = rgnp;
14267 	(*busyrgnsp)++;
14268 	ASSERT(*busyrgnsp <= maxids);
14269 	goto rfound;
14270 
14271 fail:
14272 	ASSERT(new_rgnp != NULL);
14273 	kmem_cache_free(region_cache, new_rgnp);
14274 	return (HAT_INVALID_REGION_COOKIE);
14275 }
14276 
14277 /*
14278  * This function implements the shared context functionality required
14279  * when detaching a segment from an address space. It must be called
14280  * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14281  * for segments with a valid region_cookie.
14282  * It will also be called from all seg_vn routines which change a
14283  * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14284  * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14285  * from segvn_fault().
14286  */
14287 void
14288 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14289 {
14290 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14291 	sf_scd_t *scdp;
14292 	uint_t rhash;
14293 	uint_t rid = (uint_t)((uint64_t)rcookie);
14294 	hatlock_t *hatlockp = NULL;
14295 	sf_region_t *rgnp;
14296 	sf_region_t **prev_rgnpp;
14297 	sf_region_t *cur_rgnp;
14298 	void *r_obj;
14299 	int i;
14300 	caddr_t	r_saddr;
14301 	caddr_t r_eaddr;
14302 	size_t	r_size;
14303 	uchar_t	r_pgszc;
14304 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14305 
14306 	ASSERT(sfmmup != ksfmmup);
14307 	ASSERT(srdp != NULL);
14308 	ASSERT(srdp->srd_refcnt > 0);
14309 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14310 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14311 	ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14312 
14313 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14314 	    SFMMU_REGION_HME;
14315 
14316 	if (r_type == SFMMU_REGION_ISM) {
14317 		ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14318 		ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14319 		rgnp = srdp->srd_ismrgnp[rid];
14320 	} else {
14321 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14322 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14323 		rgnp = srdp->srd_hmergnp[rid];
14324 	}
14325 	ASSERT(rgnp != NULL);
14326 	ASSERT(rgnp->rgn_id == rid);
14327 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14328 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14329 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14330 
14331 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14332 	if (r_type == SFMMU_REGION_HME && sfmmup->sfmmu_as->a_xhat != NULL) {
14333 		xhat_unload_callback_all(sfmmup->sfmmu_as, rgnp->rgn_saddr,
14334 		    rgnp->rgn_size, 0, NULL);
14335 	}
14336 
14337 	if (sfmmup->sfmmu_free) {
14338 		ulong_t rttecnt;
14339 		r_pgszc = rgnp->rgn_pgszc;
14340 		r_size = rgnp->rgn_size;
14341 
14342 		ASSERT(sfmmup->sfmmu_scdp == NULL);
14343 		if (r_type == SFMMU_REGION_ISM) {
14344 			SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14345 		} else {
14346 			/* update shme rgns ttecnt in sfmmu_ttecnt */
14347 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14348 			ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14349 
14350 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14351 			    -rttecnt);
14352 
14353 			SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14354 		}
14355 	} else if (r_type == SFMMU_REGION_ISM) {
14356 		hatlockp = sfmmu_hat_enter(sfmmup);
14357 		ASSERT(rid < srdp->srd_next_ismrid);
14358 		SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14359 		scdp = sfmmup->sfmmu_scdp;
14360 		if (scdp != NULL &&
14361 		    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14362 			sfmmu_leave_scd(sfmmup, r_type);
14363 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14364 		}
14365 		sfmmu_hat_exit(hatlockp);
14366 	} else {
14367 		ulong_t rttecnt;
14368 		r_pgszc = rgnp->rgn_pgszc;
14369 		r_saddr = rgnp->rgn_saddr;
14370 		r_size = rgnp->rgn_size;
14371 		r_eaddr = r_saddr + r_size;
14372 
14373 		ASSERT(r_type == SFMMU_REGION_HME);
14374 		hatlockp = sfmmu_hat_enter(sfmmup);
14375 		ASSERT(rid < srdp->srd_next_hmerid);
14376 		SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14377 
14378 		/*
14379 		 * If region is part of an SCD call sfmmu_leave_scd().
14380 		 * Otherwise if process is not exiting and has valid context
14381 		 * just drop the context on the floor to lose stale TLB
14382 		 * entries and force the update of tsb miss area to reflect
14383 		 * the new region map. After that clean our TSB entries.
14384 		 */
14385 		scdp = sfmmup->sfmmu_scdp;
14386 		if (scdp != NULL &&
14387 		    SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14388 			sfmmu_leave_scd(sfmmup, r_type);
14389 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14390 		}
14391 		sfmmu_invalidate_ctx(sfmmup);
14392 
14393 		i = TTE8K;
14394 		while (i < mmu_page_sizes) {
14395 			if (rgnp->rgn_ttecnt[i] != 0) {
14396 				sfmmu_unload_tsb_range(sfmmup, r_saddr,
14397 				    r_eaddr, i);
14398 				if (i < TTE4M) {
14399 					i = TTE4M;
14400 					continue;
14401 				} else {
14402 					break;
14403 				}
14404 			}
14405 			i++;
14406 		}
14407 		/* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14408 		if (r_pgszc >= TTE4M) {
14409 			rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14410 			ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14411 			    rttecnt);
14412 			sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14413 		}
14414 
14415 		/* update shme rgns ttecnt in sfmmu_ttecnt */
14416 		rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14417 		ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14418 		atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14419 
14420 		sfmmu_hat_exit(hatlockp);
14421 		if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14422 			/* sfmmup left the scd, grow private tsb */
14423 			sfmmu_check_page_sizes(sfmmup, 1);
14424 		} else {
14425 			sfmmu_check_page_sizes(sfmmup, 0);
14426 		}
14427 	}
14428 
14429 	if (r_type == SFMMU_REGION_HME) {
14430 		sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14431 	}
14432 
14433 	r_obj = rgnp->rgn_obj;
14434 	if (atomic_add_32_nv((volatile uint_t *)&rgnp->rgn_refcnt, -1)) {
14435 		return;
14436 	}
14437 
14438 	/*
14439 	 * looks like nobody uses this region anymore. Free it.
14440 	 */
14441 	rhash = RGN_HASH_FUNCTION(r_obj);
14442 	mutex_enter(&srdp->srd_mutex);
14443 	for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14444 	    (cur_rgnp = *prev_rgnpp) != NULL;
14445 	    prev_rgnpp = &cur_rgnp->rgn_hash) {
14446 		if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14447 			break;
14448 		}
14449 	}
14450 
14451 	if (cur_rgnp == NULL) {
14452 		mutex_exit(&srdp->srd_mutex);
14453 		return;
14454 	}
14455 
14456 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14457 	*prev_rgnpp = rgnp->rgn_hash;
14458 	if (r_type == SFMMU_REGION_ISM) {
14459 		rgnp->rgn_flags |= SFMMU_REGION_FREE;
14460 		ASSERT(rid < srdp->srd_next_ismrid);
14461 		rgnp->rgn_next = srdp->srd_ismrgnfree;
14462 		srdp->srd_ismrgnfree = rgnp;
14463 		ASSERT(srdp->srd_ismbusyrgns > 0);
14464 		srdp->srd_ismbusyrgns--;
14465 		mutex_exit(&srdp->srd_mutex);
14466 		return;
14467 	}
14468 	mutex_exit(&srdp->srd_mutex);
14469 
14470 	/*
14471 	 * Destroy region's hmeblks.
14472 	 */
14473 	sfmmu_unload_hmeregion(srdp, rgnp);
14474 
14475 	rgnp->rgn_hmeflags = 0;
14476 
14477 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14478 	ASSERT(rgnp->rgn_id == rid);
14479 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14480 		rgnp->rgn_ttecnt[i] = 0;
14481 	}
14482 	rgnp->rgn_flags |= SFMMU_REGION_FREE;
14483 	mutex_enter(&srdp->srd_mutex);
14484 	ASSERT(rid < srdp->srd_next_hmerid);
14485 	rgnp->rgn_next = srdp->srd_hmergnfree;
14486 	srdp->srd_hmergnfree = rgnp;
14487 	ASSERT(srdp->srd_hmebusyrgns > 0);
14488 	srdp->srd_hmebusyrgns--;
14489 	mutex_exit(&srdp->srd_mutex);
14490 }
14491 
14492 /*
14493  * For now only called for hmeblk regions and not for ISM regions.
14494  */
14495 void
14496 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14497 {
14498 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14499 	uint_t rid = (uint_t)((uint64_t)rcookie);
14500 	sf_region_t *rgnp;
14501 	sf_rgn_link_t *rlink;
14502 	sf_rgn_link_t *hrlink;
14503 	ulong_t	rttecnt;
14504 
14505 	ASSERT(sfmmup != ksfmmup);
14506 	ASSERT(srdp != NULL);
14507 	ASSERT(srdp->srd_refcnt > 0);
14508 
14509 	ASSERT(rid < srdp->srd_next_hmerid);
14510 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14511 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14512 
14513 	rgnp = srdp->srd_hmergnp[rid];
14514 	ASSERT(rgnp->rgn_refcnt > 0);
14515 	ASSERT(rgnp->rgn_id == rid);
14516 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14517 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14518 
14519 	atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14520 
14521 	/* LINTED: constant in conditional context */
14522 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14523 	ASSERT(rlink != NULL);
14524 	mutex_enter(&rgnp->rgn_mutex);
14525 	ASSERT(rgnp->rgn_sfmmu_head != NULL);
14526 	/* LINTED: constant in conditional context */
14527 	SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14528 	ASSERT(hrlink != NULL);
14529 	ASSERT(hrlink->prev == NULL);
14530 	rlink->next = rgnp->rgn_sfmmu_head;
14531 	rlink->prev = NULL;
14532 	hrlink->prev = sfmmup;
14533 	/*
14534 	 * make sure rlink's next field is correct
14535 	 * before making this link visible.
14536 	 */
14537 	membar_stst();
14538 	rgnp->rgn_sfmmu_head = sfmmup;
14539 	mutex_exit(&rgnp->rgn_mutex);
14540 
14541 	/* update sfmmu_ttecnt with the shme rgn ttecnt */
14542 	rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14543 	atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14544 	/* update tsb0 inflation count */
14545 	if (rgnp->rgn_pgszc >= TTE4M) {
14546 		sfmmup->sfmmu_tsb0_4minflcnt +=
14547 		    rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14548 	}
14549 	/*
14550 	 * Update regionid bitmask without hat lock since no other thread
14551 	 * can update this region bitmask right now.
14552 	 */
14553 	SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14554 }
14555 
14556 /* ARGSUSED */
14557 static int
14558 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14559 {
14560 	sf_region_t *rgnp = (sf_region_t *)buf;
14561 	bzero(buf, sizeof (*rgnp));
14562 
14563 	mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14564 
14565 	return (0);
14566 }
14567 
14568 /* ARGSUSED */
14569 static void
14570 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14571 {
14572 	sf_region_t *rgnp = (sf_region_t *)buf;
14573 	mutex_destroy(&rgnp->rgn_mutex);
14574 }
14575 
14576 static int
14577 sfrgnmap_isnull(sf_region_map_t *map)
14578 {
14579 	int i;
14580 
14581 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14582 		if (map->bitmap[i] != 0) {
14583 			return (0);
14584 		}
14585 	}
14586 	return (1);
14587 }
14588 
14589 static int
14590 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14591 {
14592 	int i;
14593 
14594 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14595 		if (map->bitmap[i] != 0) {
14596 			return (0);
14597 		}
14598 	}
14599 	return (1);
14600 }
14601 
14602 #ifdef DEBUG
14603 static void
14604 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14605 {
14606 	sfmmu_t *sp;
14607 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14608 
14609 	for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14610 		ASSERT(srdp == sp->sfmmu_srdp);
14611 		if (sp == sfmmup) {
14612 			if (onlist) {
14613 				return;
14614 			} else {
14615 				panic("shctx: sfmmu 0x%p found on scd"
14616 				    "list 0x%p", (void *)sfmmup,
14617 				    (void *)*headp);
14618 			}
14619 		}
14620 	}
14621 	if (onlist) {
14622 		panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14623 		    (void *)sfmmup, (void *)*headp);
14624 	} else {
14625 		return;
14626 	}
14627 }
14628 #else /* DEBUG */
14629 #define	check_scd_sfmmu_list(headp, sfmmup, onlist)
14630 #endif /* DEBUG */
14631 
14632 /*
14633  * Removes an sfmmu from the SCD sfmmu list.
14634  */
14635 static void
14636 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14637 {
14638 	ASSERT(sfmmup->sfmmu_srdp != NULL);
14639 	check_scd_sfmmu_list(headp, sfmmup, 1);
14640 	if (sfmmup->sfmmu_scd_link.prev != NULL) {
14641 		ASSERT(*headp != sfmmup);
14642 		sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14643 		    sfmmup->sfmmu_scd_link.next;
14644 	} else {
14645 		ASSERT(*headp == sfmmup);
14646 		*headp = sfmmup->sfmmu_scd_link.next;
14647 	}
14648 	if (sfmmup->sfmmu_scd_link.next != NULL) {
14649 		sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14650 		    sfmmup->sfmmu_scd_link.prev;
14651 	}
14652 }
14653 
14654 
14655 /*
14656  * Adds an sfmmu to the start of the queue.
14657  */
14658 static void
14659 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14660 {
14661 	check_scd_sfmmu_list(headp, sfmmup, 0);
14662 	sfmmup->sfmmu_scd_link.prev = NULL;
14663 	sfmmup->sfmmu_scd_link.next = *headp;
14664 	if (*headp != NULL)
14665 		(*headp)->sfmmu_scd_link.prev = sfmmup;
14666 	*headp = sfmmup;
14667 }
14668 
14669 /*
14670  * Remove an scd from the start of the queue.
14671  */
14672 static void
14673 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14674 {
14675 	if (scdp->scd_prev != NULL) {
14676 		ASSERT(*headp != scdp);
14677 		scdp->scd_prev->scd_next = scdp->scd_next;
14678 	} else {
14679 		ASSERT(*headp == scdp);
14680 		*headp = scdp->scd_next;
14681 	}
14682 
14683 	if (scdp->scd_next != NULL) {
14684 		scdp->scd_next->scd_prev = scdp->scd_prev;
14685 	}
14686 }
14687 
14688 /*
14689  * Add an scd to the start of the queue.
14690  */
14691 static void
14692 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14693 {
14694 	scdp->scd_prev = NULL;
14695 	scdp->scd_next = *headp;
14696 	if (*headp != NULL) {
14697 		(*headp)->scd_prev = scdp;
14698 	}
14699 	*headp = scdp;
14700 }
14701 
14702 static int
14703 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14704 {
14705 	uint_t rid;
14706 	uint_t i;
14707 	uint_t j;
14708 	ulong_t w;
14709 	sf_region_t *rgnp;
14710 	ulong_t tte8k_cnt = 0;
14711 	ulong_t tte4m_cnt = 0;
14712 	uint_t tsb_szc;
14713 	sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14714 	sfmmu_t	*ism_hatid;
14715 	struct tsb_info *newtsb;
14716 	int szc;
14717 
14718 	ASSERT(srdp != NULL);
14719 
14720 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14721 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14722 			continue;
14723 		}
14724 		j = 0;
14725 		while (w) {
14726 			if (!(w & 0x1)) {
14727 				j++;
14728 				w >>= 1;
14729 				continue;
14730 			}
14731 			rid = (i << BT_ULSHIFT) | j;
14732 			j++;
14733 			w >>= 1;
14734 
14735 			if (rid < SFMMU_MAX_HME_REGIONS) {
14736 				rgnp = srdp->srd_hmergnp[rid];
14737 				ASSERT(rgnp->rgn_id == rid);
14738 				ASSERT(rgnp->rgn_refcnt > 0);
14739 
14740 				if (rgnp->rgn_pgszc < TTE4M) {
14741 					tte8k_cnt += rgnp->rgn_size >>
14742 					    TTE_PAGE_SHIFT(TTE8K);
14743 				} else {
14744 					ASSERT(rgnp->rgn_pgszc >= TTE4M);
14745 					tte4m_cnt += rgnp->rgn_size >>
14746 					    TTE_PAGE_SHIFT(TTE4M);
14747 					/*
14748 					 * Inflate SCD tsb0 by preallocating
14749 					 * 1/4 8k ttecnt for 4M regions to
14750 					 * allow for lgpg alloc failure.
14751 					 */
14752 					tte8k_cnt += rgnp->rgn_size >>
14753 					    (TTE_PAGE_SHIFT(TTE8K) + 2);
14754 				}
14755 			} else {
14756 				rid -= SFMMU_MAX_HME_REGIONS;
14757 				rgnp = srdp->srd_ismrgnp[rid];
14758 				ASSERT(rgnp->rgn_id == rid);
14759 				ASSERT(rgnp->rgn_refcnt > 0);
14760 
14761 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14762 				ASSERT(ism_hatid->sfmmu_ismhat);
14763 
14764 				for (szc = 0; szc < TTE4M; szc++) {
14765 					tte8k_cnt +=
14766 					    ism_hatid->sfmmu_ttecnt[szc] <<
14767 					    TTE_BSZS_SHIFT(szc);
14768 				}
14769 
14770 				ASSERT(rgnp->rgn_pgszc >= TTE4M);
14771 				if (rgnp->rgn_pgszc >= TTE4M) {
14772 					tte4m_cnt += rgnp->rgn_size >>
14773 					    TTE_PAGE_SHIFT(TTE4M);
14774 				}
14775 			}
14776 		}
14777 	}
14778 
14779 	tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14780 
14781 	/* Allocate both the SCD TSBs here. */
14782 	if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14783 	    tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14784 	    (tsb_szc <= TSB_4M_SZCODE ||
14785 	    sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14786 	    TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14787 	    TSB_ALLOC, scsfmmup))) {
14788 
14789 		SFMMU_STAT(sf_scd_1sttsb_allocfail);
14790 		return (TSB_ALLOCFAIL);
14791 	} else {
14792 		scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14793 
14794 		if (tte4m_cnt) {
14795 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14796 			if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14797 			    TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14798 			    (tsb_szc <= TSB_4M_SZCODE ||
14799 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14800 			    TSB4M|TSB32M|TSB256M,
14801 			    TSB_ALLOC, scsfmmup))) {
14802 				/*
14803 				 * If we fail to allocate the 2nd shared tsb,
14804 				 * just free the 1st tsb, return failure.
14805 				 */
14806 				sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14807 				SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14808 				return (TSB_ALLOCFAIL);
14809 			} else {
14810 				ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14811 				newtsb->tsb_flags |= TSB_SHAREDCTX;
14812 				scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14813 				SFMMU_STAT(sf_scd_2ndtsb_alloc);
14814 			}
14815 		}
14816 		SFMMU_STAT(sf_scd_1sttsb_alloc);
14817 	}
14818 	return (TSB_SUCCESS);
14819 }
14820 
14821 static void
14822 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14823 {
14824 	while (scd_sfmmu->sfmmu_tsb != NULL) {
14825 		struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14826 		sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14827 		scd_sfmmu->sfmmu_tsb = next;
14828 	}
14829 }
14830 
14831 /*
14832  * Link the sfmmu onto the hme region list.
14833  */
14834 void
14835 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14836 {
14837 	uint_t rid;
14838 	sf_rgn_link_t *rlink;
14839 	sfmmu_t *head;
14840 	sf_rgn_link_t *hrlink;
14841 
14842 	rid = rgnp->rgn_id;
14843 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14844 
14845 	/* LINTED: constant in conditional context */
14846 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14847 	ASSERT(rlink != NULL);
14848 	mutex_enter(&rgnp->rgn_mutex);
14849 	if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14850 		rlink->next = NULL;
14851 		rlink->prev = NULL;
14852 		/*
14853 		 * make sure rlink's next field is NULL
14854 		 * before making this link visible.
14855 		 */
14856 		membar_stst();
14857 		rgnp->rgn_sfmmu_head = sfmmup;
14858 	} else {
14859 		/* LINTED: constant in conditional context */
14860 		SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14861 		ASSERT(hrlink != NULL);
14862 		ASSERT(hrlink->prev == NULL);
14863 		rlink->next = head;
14864 		rlink->prev = NULL;
14865 		hrlink->prev = sfmmup;
14866 		/*
14867 		 * make sure rlink's next field is correct
14868 		 * before making this link visible.
14869 		 */
14870 		membar_stst();
14871 		rgnp->rgn_sfmmu_head = sfmmup;
14872 	}
14873 	mutex_exit(&rgnp->rgn_mutex);
14874 }
14875 
14876 /*
14877  * Unlink the sfmmu from the hme region list.
14878  */
14879 void
14880 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14881 {
14882 	uint_t rid;
14883 	sf_rgn_link_t *rlink;
14884 
14885 	rid = rgnp->rgn_id;
14886 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14887 
14888 	/* LINTED: constant in conditional context */
14889 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14890 	ASSERT(rlink != NULL);
14891 	mutex_enter(&rgnp->rgn_mutex);
14892 	if (rgnp->rgn_sfmmu_head == sfmmup) {
14893 		sfmmu_t *next = rlink->next;
14894 		rgnp->rgn_sfmmu_head = next;
14895 		/*
14896 		 * if we are stopped by xc_attention() after this
14897 		 * point the forward link walking in
14898 		 * sfmmu_rgntlb_demap() will work correctly since the
14899 		 * head correctly points to the next element.
14900 		 */
14901 		membar_stst();
14902 		rlink->next = NULL;
14903 		ASSERT(rlink->prev == NULL);
14904 		if (next != NULL) {
14905 			sf_rgn_link_t *nrlink;
14906 			/* LINTED: constant in conditional context */
14907 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14908 			ASSERT(nrlink != NULL);
14909 			ASSERT(nrlink->prev == sfmmup);
14910 			nrlink->prev = NULL;
14911 		}
14912 	} else {
14913 		sfmmu_t *next = rlink->next;
14914 		sfmmu_t *prev = rlink->prev;
14915 		sf_rgn_link_t *prlink;
14916 
14917 		ASSERT(prev != NULL);
14918 		/* LINTED: constant in conditional context */
14919 		SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14920 		ASSERT(prlink != NULL);
14921 		ASSERT(prlink->next == sfmmup);
14922 		prlink->next = next;
14923 		/*
14924 		 * if we are stopped by xc_attention()
14925 		 * after this point the forward link walking
14926 		 * will work correctly since the prev element
14927 		 * correctly points to the next element.
14928 		 */
14929 		membar_stst();
14930 		rlink->next = NULL;
14931 		rlink->prev = NULL;
14932 		if (next != NULL) {
14933 			sf_rgn_link_t *nrlink;
14934 			/* LINTED: constant in conditional context */
14935 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14936 			ASSERT(nrlink != NULL);
14937 			ASSERT(nrlink->prev == sfmmup);
14938 			nrlink->prev = prev;
14939 		}
14940 	}
14941 	mutex_exit(&rgnp->rgn_mutex);
14942 }
14943 
14944 /*
14945  * Link scd sfmmu onto ism or hme region list for each region in the
14946  * scd region map.
14947  */
14948 void
14949 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14950 {
14951 	uint_t rid;
14952 	uint_t i;
14953 	uint_t j;
14954 	ulong_t w;
14955 	sf_region_t *rgnp;
14956 	sfmmu_t *scsfmmup;
14957 
14958 	scsfmmup = scdp->scd_sfmmup;
14959 	ASSERT(scsfmmup->sfmmu_scdhat);
14960 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14961 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14962 			continue;
14963 		}
14964 		j = 0;
14965 		while (w) {
14966 			if (!(w & 0x1)) {
14967 				j++;
14968 				w >>= 1;
14969 				continue;
14970 			}
14971 			rid = (i << BT_ULSHIFT) | j;
14972 			j++;
14973 			w >>= 1;
14974 
14975 			if (rid < SFMMU_MAX_HME_REGIONS) {
14976 				rgnp = srdp->srd_hmergnp[rid];
14977 				ASSERT(rgnp->rgn_id == rid);
14978 				ASSERT(rgnp->rgn_refcnt > 0);
14979 				sfmmu_link_to_hmeregion(scsfmmup, rgnp);
14980 			} else {
14981 				sfmmu_t *ism_hatid = NULL;
14982 				ism_ment_t *ism_ment;
14983 				rid -= SFMMU_MAX_HME_REGIONS;
14984 				rgnp = srdp->srd_ismrgnp[rid];
14985 				ASSERT(rgnp->rgn_id == rid);
14986 				ASSERT(rgnp->rgn_refcnt > 0);
14987 
14988 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14989 				ASSERT(ism_hatid->sfmmu_ismhat);
14990 				ism_ment = &scdp->scd_ism_links[rid];
14991 				ism_ment->iment_hat = scsfmmup;
14992 				ism_ment->iment_base_va = rgnp->rgn_saddr;
14993 				mutex_enter(&ism_mlist_lock);
14994 				iment_add(ism_ment, ism_hatid);
14995 				mutex_exit(&ism_mlist_lock);
14996 
14997 			}
14998 		}
14999 	}
15000 }
15001 /*
15002  * Unlink scd sfmmu from ism or hme region list for each region in the
15003  * scd region map.
15004  */
15005 void
15006 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
15007 {
15008 	uint_t rid;
15009 	uint_t i;
15010 	uint_t j;
15011 	ulong_t w;
15012 	sf_region_t *rgnp;
15013 	sfmmu_t *scsfmmup;
15014 
15015 	scsfmmup = scdp->scd_sfmmup;
15016 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
15017 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
15018 			continue;
15019 		}
15020 		j = 0;
15021 		while (w) {
15022 			if (!(w & 0x1)) {
15023 				j++;
15024 				w >>= 1;
15025 				continue;
15026 			}
15027 			rid = (i << BT_ULSHIFT) | j;
15028 			j++;
15029 			w >>= 1;
15030 
15031 			if (rid < SFMMU_MAX_HME_REGIONS) {
15032 				rgnp = srdp->srd_hmergnp[rid];
15033 				ASSERT(rgnp->rgn_id == rid);
15034 				ASSERT(rgnp->rgn_refcnt > 0);
15035 				sfmmu_unlink_from_hmeregion(scsfmmup,
15036 				    rgnp);
15037 
15038 			} else {
15039 				sfmmu_t *ism_hatid = NULL;
15040 				ism_ment_t *ism_ment;
15041 				rid -= SFMMU_MAX_HME_REGIONS;
15042 				rgnp = srdp->srd_ismrgnp[rid];
15043 				ASSERT(rgnp->rgn_id == rid);
15044 				ASSERT(rgnp->rgn_refcnt > 0);
15045 
15046 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
15047 				ASSERT(ism_hatid->sfmmu_ismhat);
15048 				ism_ment = &scdp->scd_ism_links[rid];
15049 				ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
15050 				ASSERT(ism_ment->iment_base_va ==
15051 				    rgnp->rgn_saddr);
15052 				ism_ment->iment_hat = NULL;
15053 				ism_ment->iment_base_va = 0;
15054 				mutex_enter(&ism_mlist_lock);
15055 				iment_sub(ism_ment, ism_hatid);
15056 				mutex_exit(&ism_mlist_lock);
15057 
15058 			}
15059 		}
15060 	}
15061 }
15062 /*
15063  * Allocates and initialises a new SCD structure, this is called with
15064  * the srd_scd_mutex held and returns with the reference count
15065  * initialised to 1.
15066  */
15067 static sf_scd_t *
15068 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
15069 {
15070 	sf_scd_t *new_scdp;
15071 	sfmmu_t *scsfmmup;
15072 	int i;
15073 
15074 	ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
15075 	new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
15076 
15077 	scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
15078 	new_scdp->scd_sfmmup = scsfmmup;
15079 	scsfmmup->sfmmu_srdp = srdp;
15080 	scsfmmup->sfmmu_scdp = new_scdp;
15081 	scsfmmup->sfmmu_tsb0_4minflcnt = 0;
15082 	scsfmmup->sfmmu_scdhat = 1;
15083 	CPUSET_ALL(scsfmmup->sfmmu_cpusran);
15084 	bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
15085 
15086 	ASSERT(max_mmu_ctxdoms > 0);
15087 	for (i = 0; i < max_mmu_ctxdoms; i++) {
15088 		scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
15089 		scsfmmup->sfmmu_ctxs[i].gnum = 0;
15090 	}
15091 
15092 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
15093 		new_scdp->scd_rttecnt[i] = 0;
15094 	}
15095 
15096 	new_scdp->scd_region_map = *new_map;
15097 	new_scdp->scd_refcnt = 1;
15098 	if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
15099 		kmem_cache_free(scd_cache, new_scdp);
15100 		kmem_cache_free(sfmmuid_cache, scsfmmup);
15101 		return (NULL);
15102 	}
15103 	return (new_scdp);
15104 }
15105 
15106 /*
15107  * The first phase of a process joining an SCD. The hat structure is
15108  * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
15109  * and a cross-call with context invalidation is used to cause the
15110  * remaining work to be carried out in the sfmmu_tsbmiss_exception()
15111  * routine.
15112  */
15113 static void
15114 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
15115 {
15116 	hatlock_t *hatlockp;
15117 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15118 	int i;
15119 	sf_scd_t *old_scdp;
15120 
15121 	ASSERT(srdp != NULL);
15122 	ASSERT(scdp != NULL);
15123 	ASSERT(scdp->scd_refcnt > 0);
15124 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15125 
15126 	if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
15127 		ASSERT(old_scdp != scdp);
15128 
15129 		mutex_enter(&old_scdp->scd_mutex);
15130 		sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
15131 		mutex_exit(&old_scdp->scd_mutex);
15132 		/*
15133 		 * sfmmup leaves the old scd. Update sfmmu_ttecnt to
15134 		 * include the shme rgn ttecnt for rgns that
15135 		 * were in the old SCD
15136 		 */
15137 		for (i = 0; i < mmu_page_sizes; i++) {
15138 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15139 			    old_scdp->scd_rttecnt[i]);
15140 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15141 			    sfmmup->sfmmu_scdrttecnt[i]);
15142 		}
15143 	}
15144 
15145 	/*
15146 	 * Move sfmmu to the scd lists.
15147 	 */
15148 	mutex_enter(&scdp->scd_mutex);
15149 	sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
15150 	mutex_exit(&scdp->scd_mutex);
15151 	SF_SCD_INCR_REF(scdp);
15152 
15153 	hatlockp = sfmmu_hat_enter(sfmmup);
15154 	/*
15155 	 * For a multi-thread process, we must stop
15156 	 * all the other threads before joining the scd.
15157 	 */
15158 
15159 	SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
15160 
15161 	sfmmu_invalidate_ctx(sfmmup);
15162 	sfmmup->sfmmu_scdp = scdp;
15163 
15164 	/*
15165 	 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
15166 	 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
15167 	 */
15168 	for (i = 0; i < mmu_page_sizes; i++) {
15169 		sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
15170 		ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
15171 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15172 		    -sfmmup->sfmmu_scdrttecnt[i]);
15173 	}
15174 	/* update tsb0 inflation count */
15175 	if (old_scdp != NULL) {
15176 		sfmmup->sfmmu_tsb0_4minflcnt +=
15177 		    old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15178 	}
15179 	ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
15180 	    scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
15181 	sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15182 
15183 	sfmmu_hat_exit(hatlockp);
15184 
15185 	if (old_scdp != NULL) {
15186 		SF_SCD_DECR_REF(srdp, old_scdp);
15187 	}
15188 
15189 }
15190 
15191 /*
15192  * This routine is called by a process to become part of an SCD. It is called
15193  * from sfmmu_tsbmiss_exception() once most of the initial work has been
15194  * done by sfmmu_join_scd(). This routine must not drop the hat lock.
15195  */
15196 static void
15197 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
15198 {
15199 	struct tsb_info	*tsbinfop;
15200 
15201 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15202 	ASSERT(sfmmup->sfmmu_scdp != NULL);
15203 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15204 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15205 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15206 
15207 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15208 	    tsbinfop = tsbinfop->tsb_next) {
15209 		if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15210 			continue;
15211 		}
15212 		ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15213 
15214 		sfmmu_inv_tsb(tsbinfop->tsb_va,
15215 		    TSB_BYTES(tsbinfop->tsb_szc));
15216 	}
15217 
15218 	/* Set HAT_CTX1_FLAG for all SCD ISMs */
15219 	sfmmu_ism_hatflags(sfmmup, 1);
15220 
15221 	SFMMU_STAT(sf_join_scd);
15222 }
15223 
15224 /*
15225  * This routine is called in order to check if there is an SCD which matches
15226  * the process's region map if not then a new SCD may be created.
15227  */
15228 static void
15229 sfmmu_find_scd(sfmmu_t *sfmmup)
15230 {
15231 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15232 	sf_scd_t *scdp, *new_scdp;
15233 	int ret;
15234 
15235 	ASSERT(srdp != NULL);
15236 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15237 
15238 	mutex_enter(&srdp->srd_scd_mutex);
15239 	for (scdp = srdp->srd_scdp; scdp != NULL;
15240 	    scdp = scdp->scd_next) {
15241 		SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15242 		    &sfmmup->sfmmu_region_map, ret);
15243 		if (ret == 1) {
15244 			SF_SCD_INCR_REF(scdp);
15245 			mutex_exit(&srdp->srd_scd_mutex);
15246 			sfmmu_join_scd(scdp, sfmmup);
15247 			ASSERT(scdp->scd_refcnt >= 2);
15248 			atomic_add_32((volatile uint32_t *)
15249 			    &scdp->scd_refcnt, -1);
15250 			return;
15251 		} else {
15252 			/*
15253 			 * If the sfmmu region map is a subset of the scd
15254 			 * region map, then the assumption is that this process
15255 			 * will continue attaching to ISM segments until the
15256 			 * region maps are equal.
15257 			 */
15258 			SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15259 			    &sfmmup->sfmmu_region_map, ret);
15260 			if (ret == 1) {
15261 				mutex_exit(&srdp->srd_scd_mutex);
15262 				return;
15263 			}
15264 		}
15265 	}
15266 
15267 	ASSERT(scdp == NULL);
15268 	/*
15269 	 * No matching SCD has been found, create a new one.
15270 	 */
15271 	if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15272 	    NULL) {
15273 		mutex_exit(&srdp->srd_scd_mutex);
15274 		return;
15275 	}
15276 
15277 	/*
15278 	 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15279 	 */
15280 
15281 	/* Set scd_rttecnt for shme rgns in SCD */
15282 	sfmmu_set_scd_rttecnt(srdp, new_scdp);
15283 
15284 	/*
15285 	 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15286 	 */
15287 	sfmmu_link_scd_to_regions(srdp, new_scdp);
15288 	sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15289 	SFMMU_STAT_ADD(sf_create_scd, 1);
15290 
15291 	mutex_exit(&srdp->srd_scd_mutex);
15292 	sfmmu_join_scd(new_scdp, sfmmup);
15293 	ASSERT(new_scdp->scd_refcnt >= 2);
15294 	atomic_add_32((volatile uint32_t *)&new_scdp->scd_refcnt, -1);
15295 }
15296 
15297 /*
15298  * This routine is called by a process to remove itself from an SCD. It is
15299  * either called when the processes has detached from a segment or from
15300  * hat_free_start() as a result of calling exit.
15301  */
15302 static void
15303 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15304 {
15305 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15306 	sf_srd_t *srdp =  sfmmup->sfmmu_srdp;
15307 	hatlock_t *hatlockp = TSB_HASH(sfmmup);
15308 	int i;
15309 
15310 	ASSERT(scdp != NULL);
15311 	ASSERT(srdp != NULL);
15312 
15313 	if (sfmmup->sfmmu_free) {
15314 		/*
15315 		 * If the process is part of an SCD the sfmmu is unlinked
15316 		 * from scd_sf_list.
15317 		 */
15318 		mutex_enter(&scdp->scd_mutex);
15319 		sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15320 		mutex_exit(&scdp->scd_mutex);
15321 		/*
15322 		 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15323 		 * are about to leave the SCD
15324 		 */
15325 		for (i = 0; i < mmu_page_sizes; i++) {
15326 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15327 			    scdp->scd_rttecnt[i]);
15328 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15329 			    sfmmup->sfmmu_scdrttecnt[i]);
15330 			sfmmup->sfmmu_scdrttecnt[i] = 0;
15331 		}
15332 		sfmmup->sfmmu_scdp = NULL;
15333 
15334 		SF_SCD_DECR_REF(srdp, scdp);
15335 		return;
15336 	}
15337 
15338 	ASSERT(r_type != SFMMU_REGION_ISM ||
15339 	    SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15340 	ASSERT(scdp->scd_refcnt);
15341 	ASSERT(!sfmmup->sfmmu_free);
15342 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15343 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15344 
15345 	/*
15346 	 * Wait for ISM maps to be updated.
15347 	 */
15348 	if (r_type != SFMMU_REGION_ISM) {
15349 		while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15350 		    sfmmup->sfmmu_scdp != NULL) {
15351 			cv_wait(&sfmmup->sfmmu_tsb_cv,
15352 			    HATLOCK_MUTEXP(hatlockp));
15353 		}
15354 
15355 		if (sfmmup->sfmmu_scdp == NULL) {
15356 			sfmmu_hat_exit(hatlockp);
15357 			return;
15358 		}
15359 		SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15360 	}
15361 
15362 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15363 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15364 		/*
15365 		 * Since HAT_JOIN_SCD was set our context
15366 		 * is still invalid.
15367 		 */
15368 	} else {
15369 		/*
15370 		 * For a multi-thread process, we must stop
15371 		 * all the other threads before leaving the scd.
15372 		 */
15373 
15374 		sfmmu_invalidate_ctx(sfmmup);
15375 	}
15376 
15377 	/* Clear all the rid's for ISM, delete flags, etc */
15378 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15379 	sfmmu_ism_hatflags(sfmmup, 0);
15380 
15381 	/*
15382 	 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15383 	 * are in SCD before this sfmmup leaves the SCD.
15384 	 */
15385 	for (i = 0; i < mmu_page_sizes; i++) {
15386 		ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15387 		    scdp->scd_rttecnt[i]);
15388 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15389 		    sfmmup->sfmmu_scdrttecnt[i]);
15390 		sfmmup->sfmmu_scdrttecnt[i] = 0;
15391 		/* update ismttecnt to include SCD ism before hat leaves SCD */
15392 		sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15393 		sfmmup->sfmmu_scdismttecnt[i] = 0;
15394 	}
15395 	/* update tsb0 inflation count */
15396 	sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15397 
15398 	if (r_type != SFMMU_REGION_ISM) {
15399 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15400 	}
15401 	sfmmup->sfmmu_scdp = NULL;
15402 
15403 	sfmmu_hat_exit(hatlockp);
15404 
15405 	/*
15406 	 * Unlink sfmmu from scd_sf_list this can be done without holding
15407 	 * the hat lock as we hold the sfmmu_as lock which prevents
15408 	 * hat_join_region from adding this thread to the scd again. Other
15409 	 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15410 	 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15411 	 * while holding the hat lock.
15412 	 */
15413 	mutex_enter(&scdp->scd_mutex);
15414 	sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15415 	mutex_exit(&scdp->scd_mutex);
15416 	SFMMU_STAT(sf_leave_scd);
15417 
15418 	SF_SCD_DECR_REF(srdp, scdp);
15419 	hatlockp = sfmmu_hat_enter(sfmmup);
15420 
15421 }
15422 
15423 /*
15424  * Unlink and free up an SCD structure with a reference count of 0.
15425  */
15426 static void
15427 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15428 {
15429 	sfmmu_t *scsfmmup;
15430 	sf_scd_t *sp;
15431 	hatlock_t *shatlockp;
15432 	int i, ret;
15433 
15434 	mutex_enter(&srdp->srd_scd_mutex);
15435 	for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15436 		if (sp == scdp)
15437 			break;
15438 	}
15439 	if (sp == NULL || sp->scd_refcnt) {
15440 		mutex_exit(&srdp->srd_scd_mutex);
15441 		return;
15442 	}
15443 
15444 	/*
15445 	 * It is possible that the scd has been freed and reallocated with a
15446 	 * different region map while we've been waiting for the srd_scd_mutex.
15447 	 */
15448 	SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret);
15449 	if (ret != 1) {
15450 		mutex_exit(&srdp->srd_scd_mutex);
15451 		return;
15452 	}
15453 
15454 	ASSERT(scdp->scd_sf_list == NULL);
15455 	/*
15456 	 * Unlink scd from srd_scdp list.
15457 	 */
15458 	sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15459 	mutex_exit(&srdp->srd_scd_mutex);
15460 
15461 	sfmmu_unlink_scd_from_regions(srdp, scdp);
15462 
15463 	/* Clear shared context tsb and release ctx */
15464 	scsfmmup = scdp->scd_sfmmup;
15465 
15466 	/*
15467 	 * create a barrier so that scd will not be destroyed
15468 	 * if other thread still holds the same shared hat lock.
15469 	 * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15470 	 * shared hat lock before checking the shared tsb reloc flag.
15471 	 */
15472 	shatlockp = sfmmu_hat_enter(scsfmmup);
15473 	sfmmu_hat_exit(shatlockp);
15474 
15475 	sfmmu_free_scd_tsbs(scsfmmup);
15476 
15477 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15478 		if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15479 			kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15480 			    SFMMU_L2_HMERLINKS_SIZE);
15481 			scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15482 		}
15483 	}
15484 	kmem_cache_free(sfmmuid_cache, scsfmmup);
15485 	kmem_cache_free(scd_cache, scdp);
15486 	SFMMU_STAT(sf_destroy_scd);
15487 }
15488 
15489 /*
15490  * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15491  * bits which are set in the ism_region_map parameter. This flag indicates to
15492  * the tsbmiss handler that mapping for these segments should be loaded using
15493  * the shared context.
15494  */
15495 static void
15496 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15497 {
15498 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15499 	ism_blk_t *ism_blkp;
15500 	ism_map_t *ism_map;
15501 	int i, rid;
15502 
15503 	ASSERT(sfmmup->sfmmu_iblk != NULL);
15504 	ASSERT(scdp != NULL);
15505 	/*
15506 	 * Note that the caller either set HAT_ISMBUSY flag or checked
15507 	 * under hat lock that HAT_ISMBUSY was not set by another thread.
15508 	 */
15509 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15510 
15511 	ism_blkp = sfmmup->sfmmu_iblk;
15512 	while (ism_blkp != NULL) {
15513 		ism_map = ism_blkp->iblk_maps;
15514 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15515 			rid = ism_map[i].imap_rid;
15516 			if (rid == SFMMU_INVALID_ISMRID) {
15517 				continue;
15518 			}
15519 			ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15520 			if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15521 			    addflag) {
15522 				ism_map[i].imap_hatflags |=
15523 				    HAT_CTX1_FLAG;
15524 			} else {
15525 				ism_map[i].imap_hatflags &=
15526 				    ~HAT_CTX1_FLAG;
15527 			}
15528 		}
15529 		ism_blkp = ism_blkp->iblk_next;
15530 	}
15531 }
15532 
15533 static int
15534 sfmmu_srd_lock_held(sf_srd_t *srdp)
15535 {
15536 	return (MUTEX_HELD(&srdp->srd_mutex));
15537 }
15538 
15539 /* ARGSUSED */
15540 static int
15541 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15542 {
15543 	sf_scd_t *scdp = (sf_scd_t *)buf;
15544 
15545 	bzero(buf, sizeof (sf_scd_t));
15546 	mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15547 	return (0);
15548 }
15549 
15550 /* ARGSUSED */
15551 static void
15552 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15553 {
15554 	sf_scd_t *scdp = (sf_scd_t *)buf;
15555 
15556 	mutex_destroy(&scdp->scd_mutex);
15557 }
15558