1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
29 /* All Rights Reserved */
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/sysmacros.h>
34 #include <sys/signal.h>
35 #include <sys/systm.h>
36 #include <sys/user.h>
37 #include <sys/mman.h>
38 #include <sys/class.h>
39 #include <sys/proc.h>
40 #include <sys/procfs.h>
41 #include <sys/buf.h>
42 #include <sys/kmem.h>
43 #include <sys/cred.h>
44 #include <sys/archsystm.h>
45 #include <sys/vmparam.h>
46 #include <sys/prsystm.h>
47 #include <sys/reboot.h>
48 #include <sys/uadmin.h>
49 #include <sys/vfs.h>
50 #include <sys/vnode.h>
51 #include <sys/file.h>
52 #include <sys/session.h>
53 #include <sys/ucontext.h>
54 #include <sys/dnlc.h>
55 #include <sys/var.h>
56 #include <sys/cmn_err.h>
57 #include <sys/debugreg.h>
58 #include <sys/thread.h>
59 #include <sys/vtrace.h>
60 #include <sys/consdev.h>
61 #include <sys/psw.h>
62 #include <sys/regset.h>
63
64 #include <sys/privregs.h>
65
66 #include <sys/stack.h>
67 #include <sys/swap.h>
68 #include <vm/hat.h>
69 #include <vm/anon.h>
70 #include <vm/as.h>
71 #include <vm/page.h>
72 #include <vm/seg.h>
73 #include <vm/seg_kmem.h>
74 #include <vm/seg_map.h>
75 #include <vm/seg_vn.h>
76 #include <sys/exec.h>
77 #include <sys/acct.h>
78 #include <sys/core.h>
79 #include <sys/corectl.h>
80 #include <sys/modctl.h>
81 #include <sys/tuneable.h>
82 #include <c2/audit.h>
83 #include <sys/bootconf.h>
84 #include <sys/dumphdr.h>
85 #include <sys/promif.h>
86 #include <sys/systeminfo.h>
87 #include <sys/kdi.h>
88 #include <sys/contract_impl.h>
89 #include <sys/x86_archext.h>
90
91 /*
92 * Construct the execution environment for the user's signal
93 * handler and arrange for control to be given to it on return
94 * to userland. The library code now calls setcontext() to
95 * clean up after the signal handler, so sigret() is no longer
96 * needed.
97 *
98 * (The various 'volatile' declarations are need to ensure that values
99 * are correct on the error return from on_fault().)
100 */
101
102 #if defined(__amd64)
103
104 /*
105 * An amd64 signal frame looks like this on the stack:
106 *
107 * old %rsp:
108 * <128 bytes of untouched stack space>
109 * <a siginfo_t [optional]>
110 * <a ucontext_t>
111 * <siginfo_t *>
112 * <signal number>
113 * new %rsp: <return address (deliberately invalid)>
114 *
115 * The signal number and siginfo_t pointer are only pushed onto the stack in
116 * order to allow stack backtraces. The actual signal handling code expects the
117 * arguments in registers.
118 */
119
120 struct sigframe {
121 caddr_t retaddr;
122 long signo;
123 siginfo_t *sip;
124 };
125
126 int
sendsig(int sig,k_siginfo_t * sip,void (* hdlr)())127 sendsig(int sig, k_siginfo_t *sip, void (*hdlr)())
128 {
129 volatile int minstacksz;
130 int newstack;
131 label_t ljb;
132 volatile caddr_t sp;
133 caddr_t fp;
134 volatile struct regs *rp;
135 volatile greg_t upc;
136 volatile proc_t *p = ttoproc(curthread);
137 struct as *as = p->p_as;
138 klwp_t *lwp = ttolwp(curthread);
139 ucontext_t *volatile tuc = NULL;
140 ucontext_t *uc;
141 siginfo_t *sip_addr;
142 volatile int watched;
143
144 /*
145 * This routine is utterly dependent upon STACK_ALIGN being
146 * 16 and STACK_ENTRY_ALIGN being 8. Let's just acknowledge
147 * that and require it.
148 */
149
150 #if STACK_ALIGN != 16 || STACK_ENTRY_ALIGN != 8
151 #error "sendsig() amd64 did not find the expected stack alignments"
152 #endif
153
154 rp = lwptoregs(lwp);
155 upc = rp->r_pc;
156
157 /*
158 * Since we're setting up to run the signal handler we have to
159 * arrange that the stack at entry to the handler is (only)
160 * STACK_ENTRY_ALIGN (i.e. 8) byte aligned so that when the handler
161 * executes its push of %rbp, the stack realigns to STACK_ALIGN
162 * (i.e. 16) correctly.
163 *
164 * The new sp will point to the sigframe and the ucontext_t. The
165 * above means that sp (and thus sigframe) will be 8-byte aligned,
166 * but not 16-byte aligned. ucontext_t, however, contains %xmm regs
167 * which must be 16-byte aligned. Because of this, for correct
168 * alignment, sigframe must be a multiple of 8-bytes in length, but
169 * not 16-bytes. This will place ucontext_t at a nice 16-byte boundary.
170 */
171
172 /* LINTED: logical expression always true: op "||" */
173 ASSERT((sizeof (struct sigframe) % 16) == 8);
174
175 minstacksz = sizeof (struct sigframe) + SA(sizeof (*uc));
176 if (sip != NULL)
177 minstacksz += SA(sizeof (siginfo_t));
178 ASSERT((minstacksz & (STACK_ENTRY_ALIGN - 1ul)) == 0);
179
180 /*
181 * Figure out whether we will be handling this signal on
182 * an alternate stack specified by the user. Then allocate
183 * and validate the stack requirements for the signal handler
184 * context. on_fault will catch any faults.
185 */
186 newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
187 !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));
188
189 if (newstack) {
190 fp = (caddr_t)(SA((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
191 SA(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN);
192 } else {
193 /*
194 * Drop below the 128-byte reserved region of the stack frame
195 * we're interrupting.
196 */
197 fp = (caddr_t)rp->r_sp - STACK_RESERVE;
198 }
199
200 /*
201 * Force proper stack pointer alignment, even in the face of a
202 * misaligned stack pointer from user-level before the signal.
203 */
204 fp = (caddr_t)((uintptr_t)fp & ~(STACK_ENTRY_ALIGN - 1ul));
205
206 /*
207 * Most of the time during normal execution, the stack pointer
208 * is aligned on a STACK_ALIGN (i.e. 16 byte) boundary. However,
209 * (for example) just after a call instruction (which pushes
210 * the return address), the callers stack misaligns until the
211 * 'push %rbp' happens in the callee prolog. So while we should
212 * expect the stack pointer to be always at least STACK_ENTRY_ALIGN
213 * aligned, we should -not- expect it to always be STACK_ALIGN aligned.
214 * We now adjust to ensure that the new sp is aligned to
215 * STACK_ENTRY_ALIGN but not to STACK_ALIGN.
216 */
217 sp = fp - minstacksz;
218 if (((uintptr_t)sp & (STACK_ALIGN - 1ul)) == 0) {
219 sp -= STACK_ENTRY_ALIGN;
220 minstacksz = fp - sp;
221 }
222
223 /*
224 * Now, make sure the resulting signal frame address is sane
225 */
226 if (sp >= as->a_userlimit || fp >= as->a_userlimit) {
227 #ifdef DEBUG
228 printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
229 PTOU(p)->u_comm, p->p_pid, sig);
230 printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
231 (void *)sp, (void *)hdlr, (uintptr_t)upc);
232 printf("sp above USERLIMIT\n");
233 #endif
234 return (0);
235 }
236
237 watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);
238
239 if (on_fault(&ljb))
240 goto badstack;
241
242 if (sip != NULL) {
243 zoneid_t zoneid;
244
245 fp -= SA(sizeof (siginfo_t));
246 uzero(fp, sizeof (siginfo_t));
247 if (SI_FROMUSER(sip) &&
248 (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
249 zoneid != sip->si_zoneid) {
250 k_siginfo_t sani_sip = *sip;
251
252 sani_sip.si_pid = p->p_zone->zone_zsched->p_pid;
253 sani_sip.si_uid = 0;
254 sani_sip.si_ctid = -1;
255 sani_sip.si_zoneid = zoneid;
256 copyout_noerr(&sani_sip, fp, sizeof (sani_sip));
257 } else
258 copyout_noerr(sip, fp, sizeof (*sip));
259 sip_addr = (siginfo_t *)fp;
260
261 if (sig == SIGPROF &&
262 curthread->t_rprof != NULL &&
263 curthread->t_rprof->rp_anystate) {
264 /*
265 * We stand on our head to deal with
266 * the real time profiling signal.
267 * Fill in the stuff that doesn't fit
268 * in a normal k_siginfo structure.
269 */
270 int i = sip->si_nsysarg;
271
272 while (--i >= 0)
273 sulword_noerr(
274 (ulong_t *)&(sip_addr->si_sysarg[i]),
275 (ulong_t)lwp->lwp_arg[i]);
276 copyout_noerr(curthread->t_rprof->rp_state,
277 sip_addr->si_mstate,
278 sizeof (curthread->t_rprof->rp_state));
279 }
280 } else
281 sip_addr = NULL;
282
283 /*
284 * save the current context on the user stack directly after the
285 * sigframe. Since sigframe is 8-byte-but-not-16-byte aligned,
286 * and since sizeof (struct sigframe) is 24, this guarantees
287 * 16-byte alignment for ucontext_t and its %xmm registers.
288 */
289 uc = (ucontext_t *)(sp + sizeof (struct sigframe));
290 tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
291 savecontext(tuc, &lwp->lwp_sigoldmask);
292 copyout_noerr(tuc, uc, sizeof (*tuc));
293 kmem_free(tuc, sizeof (*tuc));
294 tuc = NULL;
295
296 lwp->lwp_oldcontext = (uintptr_t)uc;
297
298 if (newstack) {
299 lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
300 if (lwp->lwp_ustack)
301 copyout_noerr(&lwp->lwp_sigaltstack,
302 (stack_t *)lwp->lwp_ustack, sizeof (stack_t));
303 }
304
305 /*
306 * Set up signal handler return and stack linkage
307 */
308 {
309 struct sigframe frame;
310
311 /*
312 * ensure we never return "normally"
313 */
314 frame.retaddr = (caddr_t)(uintptr_t)-1L;
315 frame.signo = sig;
316 frame.sip = sip_addr;
317 copyout_noerr(&frame, sp, sizeof (frame));
318 }
319
320 no_fault();
321 if (watched)
322 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
323
324 /*
325 * Set up user registers for execution of signal handler.
326 */
327 rp->r_sp = (greg_t)sp;
328 rp->r_pc = (greg_t)hdlr;
329 rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);
330
331 rp->r_rdi = sig;
332 rp->r_rsi = (uintptr_t)sip_addr;
333 rp->r_rdx = (uintptr_t)uc;
334
335 if ((rp->r_cs & 0xffff) != UCS_SEL ||
336 (rp->r_ss & 0xffff) != UDS_SEL) {
337 /*
338 * Try our best to deliver the signal.
339 */
340 rp->r_cs = UCS_SEL;
341 rp->r_ss = UDS_SEL;
342 }
343
344 /*
345 * Don't set lwp_eosys here. sendsig() is called via psig() after
346 * lwp_eosys is handled, so setting it here would affect the next
347 * system call.
348 */
349 return (1);
350
351 badstack:
352 no_fault();
353 if (watched)
354 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
355 if (tuc)
356 kmem_free(tuc, sizeof (*tuc));
357 #ifdef DEBUG
358 printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
359 PTOU(p)->u_comm, p->p_pid, sig);
360 printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
361 (void *)sp, (void *)hdlr, (uintptr_t)upc);
362 #endif
363 return (0);
364 }
365
366 #ifdef _SYSCALL32_IMPL
367
368 /*
369 * An i386 SVR4/ABI signal frame looks like this on the stack:
370 *
371 * old %esp:
372 * <a siginfo32_t [optional]>
373 * <a ucontext32_t>
374 * <pointer to that ucontext32_t>
375 * <pointer to that siginfo32_t>
376 * <signo>
377 * new %esp: <return address (deliberately invalid)>
378 */
379 struct sigframe32 {
380 caddr32_t retaddr;
381 uint32_t signo;
382 caddr32_t sip;
383 caddr32_t ucp;
384 };
385
386 int
sendsig32(int sig,k_siginfo_t * sip,void (* hdlr)())387 sendsig32(int sig, k_siginfo_t *sip, void (*hdlr)())
388 {
389 volatile int minstacksz;
390 int newstack;
391 label_t ljb;
392 volatile caddr_t sp;
393 caddr_t fp;
394 volatile struct regs *rp;
395 volatile greg_t upc;
396 volatile proc_t *p = ttoproc(curthread);
397 klwp_t *lwp = ttolwp(curthread);
398 ucontext32_t *volatile tuc = NULL;
399 ucontext32_t *uc;
400 siginfo32_t *sip_addr;
401 volatile int watched;
402
403 rp = lwptoregs(lwp);
404 upc = rp->r_pc;
405
406 minstacksz = SA32(sizeof (struct sigframe32)) + SA32(sizeof (*uc));
407 if (sip != NULL)
408 minstacksz += SA32(sizeof (siginfo32_t));
409 ASSERT((minstacksz & (STACK_ALIGN32 - 1)) == 0);
410
411 /*
412 * Figure out whether we will be handling this signal on
413 * an alternate stack specified by the user. Then allocate
414 * and validate the stack requirements for the signal handler
415 * context. on_fault will catch any faults.
416 */
417 newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
418 !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));
419
420 if (newstack) {
421 fp = (caddr_t)(SA32((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
422 SA32(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN32);
423 } else if ((rp->r_ss & 0xffff) != UDS_SEL) {
424 user_desc_t *ldt;
425 /*
426 * If the stack segment selector is -not- pointing at
427 * the UDS_SEL descriptor and we have an LDT entry for
428 * it instead, add the base address to find the effective va.
429 */
430 if ((ldt = p->p_ldt) != NULL)
431 fp = (caddr_t)rp->r_sp +
432 USEGD_GETBASE(&ldt[SELTOIDX(rp->r_ss)]);
433 else
434 fp = (caddr_t)rp->r_sp;
435 } else
436 fp = (caddr_t)rp->r_sp;
437
438 /*
439 * Force proper stack pointer alignment, even in the face of a
440 * misaligned stack pointer from user-level before the signal.
441 * Don't use the SA32() macro because that rounds up, not down.
442 */
443 fp = (caddr_t)((uintptr_t)fp & ~(STACK_ALIGN32 - 1));
444 sp = fp - minstacksz;
445
446 /*
447 * Make sure lwp hasn't trashed its stack
448 */
449 if (sp >= (caddr_t)(uintptr_t)USERLIMIT32 ||
450 fp >= (caddr_t)(uintptr_t)USERLIMIT32) {
451 #ifdef DEBUG
452 printf("sendsig32: bad signal stack cmd=%s, pid=%d, sig=%d\n",
453 PTOU(p)->u_comm, p->p_pid, sig);
454 printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
455 (void *)sp, (void *)hdlr, (uintptr_t)upc);
456 printf("sp above USERLIMIT\n");
457 #endif
458 return (0);
459 }
460
461 watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);
462
463 if (on_fault(&ljb))
464 goto badstack;
465
466 if (sip != NULL) {
467 siginfo32_t si32;
468 zoneid_t zoneid;
469
470 siginfo_kto32(sip, &si32);
471 if (SI_FROMUSER(sip) &&
472 (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
473 zoneid != sip->si_zoneid) {
474 si32.si_pid = p->p_zone->zone_zsched->p_pid;
475 si32.si_uid = 0;
476 si32.si_ctid = -1;
477 si32.si_zoneid = zoneid;
478 }
479 fp -= SA32(sizeof (si32));
480 uzero(fp, sizeof (si32));
481 copyout_noerr(&si32, fp, sizeof (si32));
482 sip_addr = (siginfo32_t *)fp;
483
484 if (sig == SIGPROF &&
485 curthread->t_rprof != NULL &&
486 curthread->t_rprof->rp_anystate) {
487 /*
488 * We stand on our head to deal with
489 * the real-time profiling signal.
490 * Fill in the stuff that doesn't fit
491 * in a normal k_siginfo structure.
492 */
493 int i = sip->si_nsysarg;
494
495 while (--i >= 0)
496 suword32_noerr(&(sip_addr->si_sysarg[i]),
497 (uint32_t)lwp->lwp_arg[i]);
498 copyout_noerr(curthread->t_rprof->rp_state,
499 sip_addr->si_mstate,
500 sizeof (curthread->t_rprof->rp_state));
501 }
502 } else
503 sip_addr = NULL;
504
505 /* save the current context on the user stack */
506 fp -= SA32(sizeof (*tuc));
507 uc = (ucontext32_t *)fp;
508 tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
509 savecontext32(tuc, &lwp->lwp_sigoldmask);
510 copyout_noerr(tuc, uc, sizeof (*tuc));
511 kmem_free(tuc, sizeof (*tuc));
512 tuc = NULL;
513
514 lwp->lwp_oldcontext = (uintptr_t)uc;
515
516 if (newstack) {
517 lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
518 if (lwp->lwp_ustack) {
519 stack32_t stk32;
520
521 stk32.ss_sp = (caddr32_t)(uintptr_t)
522 lwp->lwp_sigaltstack.ss_sp;
523 stk32.ss_size = (size32_t)
524 lwp->lwp_sigaltstack.ss_size;
525 stk32.ss_flags = (int32_t)
526 lwp->lwp_sigaltstack.ss_flags;
527 copyout_noerr(&stk32,
528 (stack32_t *)lwp->lwp_ustack, sizeof (stk32));
529 }
530 }
531
532 /*
533 * Set up signal handler arguments
534 */
535 {
536 struct sigframe32 frame32;
537
538 frame32.sip = (caddr32_t)(uintptr_t)sip_addr;
539 frame32.ucp = (caddr32_t)(uintptr_t)uc;
540 frame32.signo = sig;
541 frame32.retaddr = 0xffffffff; /* never return! */
542 copyout_noerr(&frame32, sp, sizeof (frame32));
543 }
544
545 no_fault();
546 if (watched)
547 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
548
549 rp->r_sp = (greg_t)(uintptr_t)sp;
550 rp->r_pc = (greg_t)(uintptr_t)hdlr;
551 rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);
552
553 if ((rp->r_cs & 0xffff) != U32CS_SEL ||
554 (rp->r_ss & 0xffff) != UDS_SEL) {
555 /*
556 * Try our best to deliver the signal.
557 */
558 rp->r_cs = U32CS_SEL;
559 rp->r_ss = UDS_SEL;
560 }
561
562 /*
563 * Don't set lwp_eosys here. sendsig() is called via psig() after
564 * lwp_eosys is handled, so setting it here would affect the next
565 * system call.
566 */
567 return (1);
568
569 badstack:
570 no_fault();
571 if (watched)
572 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
573 if (tuc)
574 kmem_free(tuc, sizeof (*tuc));
575 #ifdef DEBUG
576 printf("sendsig32: bad signal stack cmd=%s pid=%d, sig=%d\n",
577 PTOU(p)->u_comm, p->p_pid, sig);
578 printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
579 (void *)sp, (void *)hdlr, (uintptr_t)upc);
580 #endif
581 return (0);
582 }
583
584 #endif /* _SYSCALL32_IMPL */
585
586 #elif defined(__i386)
587
588 /*
589 * An i386 SVR4/ABI signal frame looks like this on the stack:
590 *
591 * old %esp:
592 * <a siginfo32_t [optional]>
593 * <a ucontext32_t>
594 * <pointer to that ucontext32_t>
595 * <pointer to that siginfo32_t>
596 * <signo>
597 * new %esp: <return address (deliberately invalid)>
598 */
599 struct sigframe {
600 void (*retaddr)();
601 uint_t signo;
602 siginfo_t *sip;
603 ucontext_t *ucp;
604 };
605
606 int
sendsig(int sig,k_siginfo_t * sip,void (* hdlr)())607 sendsig(int sig, k_siginfo_t *sip, void (*hdlr)())
608 {
609 volatile int minstacksz;
610 int newstack;
611 label_t ljb;
612 volatile caddr_t sp;
613 caddr_t fp;
614 struct regs *rp;
615 volatile greg_t upc;
616 volatile proc_t *p = ttoproc(curthread);
617 klwp_t *lwp = ttolwp(curthread);
618 ucontext_t *volatile tuc = NULL;
619 ucontext_t *uc;
620 siginfo_t *sip_addr;
621 volatile int watched;
622
623 rp = lwptoregs(lwp);
624 upc = rp->r_pc;
625
626 minstacksz = SA(sizeof (struct sigframe)) + SA(sizeof (*uc));
627 if (sip != NULL)
628 minstacksz += SA(sizeof (siginfo_t));
629 ASSERT((minstacksz & (STACK_ALIGN - 1ul)) == 0);
630
631 /*
632 * Figure out whether we will be handling this signal on
633 * an alternate stack specified by the user. Then allocate
634 * and validate the stack requirements for the signal handler
635 * context. on_fault will catch any faults.
636 */
637 newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
638 !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));
639
640 if (newstack) {
641 fp = (caddr_t)(SA((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
642 SA(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN);
643 } else if ((rp->r_ss & 0xffff) != UDS_SEL) {
644 user_desc_t *ldt;
645 /*
646 * If the stack segment selector is -not- pointing at
647 * the UDS_SEL descriptor and we have an LDT entry for
648 * it instead, add the base address to find the effective va.
649 */
650 if ((ldt = p->p_ldt) != NULL)
651 fp = (caddr_t)rp->r_sp +
652 USEGD_GETBASE(&ldt[SELTOIDX(rp->r_ss)]);
653 else
654 fp = (caddr_t)rp->r_sp;
655 } else
656 fp = (caddr_t)rp->r_sp;
657
658 /*
659 * Force proper stack pointer alignment, even in the face of a
660 * misaligned stack pointer from user-level before the signal.
661 * Don't use the SA() macro because that rounds up, not down.
662 */
663 fp = (caddr_t)((uintptr_t)fp & ~(STACK_ALIGN - 1ul));
664 sp = fp - minstacksz;
665
666 /*
667 * Make sure lwp hasn't trashed its stack.
668 */
669 if (sp >= (caddr_t)USERLIMIT || fp >= (caddr_t)USERLIMIT) {
670 #ifdef DEBUG
671 printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
672 PTOU(p)->u_comm, p->p_pid, sig);
673 printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
674 (void *)sp, (void *)hdlr, (uintptr_t)upc);
675 printf("sp above USERLIMIT\n");
676 #endif
677 return (0);
678 }
679
680 watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);
681
682 if (on_fault(&ljb))
683 goto badstack;
684
685 if (sip != NULL) {
686 zoneid_t zoneid;
687
688 fp -= SA(sizeof (siginfo_t));
689 uzero(fp, sizeof (siginfo_t));
690 if (SI_FROMUSER(sip) &&
691 (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
692 zoneid != sip->si_zoneid) {
693 k_siginfo_t sani_sip = *sip;
694
695 sani_sip.si_pid = p->p_zone->zone_zsched->p_pid;
696 sani_sip.si_uid = 0;
697 sani_sip.si_ctid = -1;
698 sani_sip.si_zoneid = zoneid;
699 copyout_noerr(&sani_sip, fp, sizeof (sani_sip));
700 } else
701 copyout_noerr(sip, fp, sizeof (*sip));
702 sip_addr = (siginfo_t *)fp;
703
704 if (sig == SIGPROF &&
705 curthread->t_rprof != NULL &&
706 curthread->t_rprof->rp_anystate) {
707 /*
708 * We stand on our head to deal with
709 * the real time profiling signal.
710 * Fill in the stuff that doesn't fit
711 * in a normal k_siginfo structure.
712 */
713 int i = sip->si_nsysarg;
714
715 while (--i >= 0)
716 suword32_noerr(&(sip_addr->si_sysarg[i]),
717 (uint32_t)lwp->lwp_arg[i]);
718 copyout_noerr(curthread->t_rprof->rp_state,
719 sip_addr->si_mstate,
720 sizeof (curthread->t_rprof->rp_state));
721 }
722 } else
723 sip_addr = NULL;
724
725 /* save the current context on the user stack */
726 fp -= SA(sizeof (*tuc));
727 uc = (ucontext_t *)fp;
728 tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
729 savecontext(tuc, &lwp->lwp_sigoldmask);
730 copyout_noerr(tuc, uc, sizeof (*tuc));
731 kmem_free(tuc, sizeof (*tuc));
732 tuc = NULL;
733
734 lwp->lwp_oldcontext = (uintptr_t)uc;
735
736 if (newstack) {
737 lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
738 if (lwp->lwp_ustack)
739 copyout_noerr(&lwp->lwp_sigaltstack,
740 (stack_t *)lwp->lwp_ustack, sizeof (stack_t));
741 }
742
743 /*
744 * Set up signal handler arguments
745 */
746 {
747 struct sigframe frame;
748
749 frame.sip = sip_addr;
750 frame.ucp = uc;
751 frame.signo = sig;
752 frame.retaddr = (void (*)())0xffffffff; /* never return! */
753 copyout_noerr(&frame, sp, sizeof (frame));
754 }
755
756 no_fault();
757 if (watched)
758 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
759
760 rp->r_sp = (greg_t)sp;
761 rp->r_pc = (greg_t)hdlr;
762 rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);
763
764 if ((rp->r_cs & 0xffff) != UCS_SEL ||
765 (rp->r_ss & 0xffff) != UDS_SEL) {
766 rp->r_cs = UCS_SEL;
767 rp->r_ss = UDS_SEL;
768 }
769
770 /*
771 * Don't set lwp_eosys here. sendsig() is called via psig() after
772 * lwp_eosys is handled, so setting it here would affect the next
773 * system call.
774 */
775 return (1);
776
777 badstack:
778 no_fault();
779 if (watched)
780 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
781 if (tuc)
782 kmem_free(tuc, sizeof (*tuc));
783 #ifdef DEBUG
784 printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
785 PTOU(p)->u_comm, p->p_pid, sig);
786 printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
787 (void *)sp, (void *)hdlr, (uintptr_t)upc);
788 #endif
789 return (0);
790 }
791
792 #endif /* __i386 */
793