1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/vmparam.h> 36 #include <sys/systm.h> 37 #include <sys/signal.h> 38 #include <sys/stack.h> 39 #include <sys/regset.h> 40 #include <sys/privregs.h> 41 #include <sys/frame.h> 42 #include <sys/proc.h> 43 #include <sys/psw.h> 44 #include <sys/siginfo.h> 45 #include <sys/cpuvar.h> 46 #include <sys/asm_linkage.h> 47 #include <sys/kmem.h> 48 #include <sys/errno.h> 49 #include <sys/bootconf.h> 50 #include <sys/archsystm.h> 51 #include <sys/debug.h> 52 #include <sys/elf.h> 53 #include <sys/spl.h> 54 #include <sys/time.h> 55 #include <sys/atomic.h> 56 #include <sys/sysmacros.h> 57 #include <sys/cmn_err.h> 58 #include <sys/modctl.h> 59 #include <sys/kobj.h> 60 #include <sys/panic.h> 61 #include <sys/reboot.h> 62 #include <sys/time.h> 63 #include <sys/fp.h> 64 #include <sys/x86_archext.h> 65 #include <sys/auxv.h> 66 #include <sys/auxv_386.h> 67 #include <sys/dtrace.h> 68 69 extern const struct fnsave_state x87_initial; 70 extern const struct fxsave_state sse_initial; 71 72 /* 73 * Map an fnsave-formatted save area into an fxsave-formatted save area. 74 * 75 * Most fields are the same width, content and semantics. However 76 * the tag word is compressed. 77 */ 78 static void 79 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx) 80 { 81 uint_t i, tagbits; 82 83 fx->fx_fcw = fn->f_fcw; 84 fx->fx_fsw = fn->f_fsw; 85 86 /* 87 * copy element by element (because of holes) 88 */ 89 for (i = 0; i < 8; i++) 90 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0], 91 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 92 93 /* 94 * synthesize compressed tag bits 95 */ 96 fx->fx_fctw = 0; 97 for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2) 98 if ((tagbits & 3) != 3) 99 fx->fx_fctw |= (1 << i); 100 101 fx->fx_fop = fn->f_fop; 102 103 #if defined(__amd64) 104 fx->fx_rip = (uint64_t)fn->f_eip; 105 fx->fx_rdp = (uint64_t)fn->f_dp; 106 #else 107 fx->fx_eip = fn->f_eip; 108 fx->fx_cs = fn->f_cs; 109 fx->__fx_ign0 = 0; 110 fx->fx_dp = fn->f_dp; 111 fx->fx_ds = fn->f_ds; 112 fx->__fx_ign1 = 0; 113 #endif 114 } 115 116 /* 117 * Map from an fxsave-format save area to an fnsave-format save area. 118 */ 119 static void 120 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn) 121 { 122 uint_t i, top, tagbits; 123 124 fn->f_fcw = fx->fx_fcw; 125 fn->__f_ign0 = 0; 126 fn->f_fsw = fx->fx_fsw; 127 fn->__f_ign1 = 0; 128 129 top = (fx->fx_fsw & FPS_TOP) >> 11; 130 131 /* 132 * copy element by element (because of holes) 133 */ 134 for (i = 0; i < 8; i++) 135 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0], 136 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 137 138 /* 139 * synthesize uncompressed tag bits 140 */ 141 fn->f_ftw = 0; 142 for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) { 143 uint_t ibit, expo; 144 const uint16_t *fpp; 145 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 }; 146 147 if ((tagbits & 1) == 0) { 148 fn->f_ftw |= 3 << (i << 1); /* empty */ 149 continue; 150 } 151 152 /* 153 * (tags refer to *physical* registers) 154 */ 155 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0]; 156 ibit = fpp[3] >> 15; 157 expo = fpp[4] & 0x7fff; 158 159 if (ibit && expo != 0 && expo != 0x7fff) 160 continue; /* valid fp number */ 161 162 if (bcmp(fpp, &zero, sizeof (zero))) 163 fn->f_ftw |= 2 << (i << 1); /* NaN */ 164 else 165 fn->f_ftw |= 1 << (i << 1); /* fp zero */ 166 } 167 168 fn->f_fop = fx->fx_fop; 169 170 fn->__f_ign2 = 0; 171 #if defined(__amd64) 172 fn->f_eip = (uint32_t)fx->fx_rip; 173 fn->f_cs = U32CS_SEL; 174 fn->f_dp = (uint32_t)fx->fx_rdp; 175 fn->f_ds = UDS_SEL; 176 #else 177 fn->f_eip = fx->fx_eip; 178 fn->f_cs = fx->fx_cs; 179 fn->f_dp = fx->fx_dp; 180 fn->f_ds = fx->fx_ds; 181 #endif 182 fn->__f_ign3 = 0; 183 } 184 185 /* 186 * Map from an fpregset_t into an fxsave-format save area 187 */ 188 static void 189 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx) 190 { 191 #if defined(__amd64) 192 bcopy(fp, fx, sizeof (*fx)); 193 #else 194 const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; 195 196 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 197 fx->fx_mxcsr = fc->mxcsr; 198 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 199 #endif 200 /* 201 * avoid useless #gp exceptions - mask reserved bits 202 */ 203 fx->fx_mxcsr &= sse_mxcsr_mask; 204 } 205 206 /* 207 * Map from an fxsave-format save area into a fpregset_t 208 */ 209 static void 210 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp) 211 { 212 #if defined(__amd64) 213 bcopy(fx, fp, sizeof (*fx)); 214 #else 215 struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; 216 217 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 218 fc->mxcsr = fx->fx_mxcsr; 219 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 220 #endif 221 } 222 223 #if defined(_SYSCALL32_IMPL) 224 static void 225 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx) 226 { 227 const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 228 229 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 230 /* 231 * avoid useless #gp exceptions - mask reserved bits 232 */ 233 fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr; 234 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 235 } 236 237 static void 238 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp) 239 { 240 struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 241 242 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 243 fc->mxcsr = fx->fx_mxcsr; 244 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 245 } 246 247 static void 248 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst) 249 { 250 fxsave_to_fpregset32((struct fxsave_state *)src, dst); 251 dst->fp_reg_set.fpchip_state.status = 252 src->fp_reg_set.fpchip_state.status; 253 dst->fp_reg_set.fpchip_state.xstatus = 254 src->fp_reg_set.fpchip_state.xstatus; 255 } 256 257 static void 258 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst) 259 { 260 fpregset32_to_fxsave(src, (struct fxsave_state *)dst); 261 dst->fp_reg_set.fpchip_state.status = 262 src->fp_reg_set.fpchip_state.status; 263 dst->fp_reg_set.fpchip_state.xstatus = 264 src->fp_reg_set.fpchip_state.xstatus; 265 } 266 #endif 267 268 /* 269 * Set floating-point registers from a native fpregset_t. 270 */ 271 void 272 setfpregs(klwp_t *lwp, fpregset_t *fp) 273 { 274 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 275 276 if (fpu->fpu_flags & FPU_EN) { 277 if (!(fpu->fpu_flags & FPU_VALID)) { 278 /* 279 * FPU context is still active, release the 280 * ownership. 281 */ 282 fp_free(fpu, 0); 283 } 284 #if !defined(__amd64) 285 if (fp_kind == __FP_SSE) { 286 #endif 287 fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx); 288 fpu->fpu_regs.kfpu_xstatus = 289 fp->fp_reg_set.fpchip_state.xstatus; 290 #if !defined(__amd64) 291 } else 292 bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn, 293 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 294 #endif 295 fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; 296 fpu->fpu_flags |= FPU_VALID; 297 298 /* 299 * If we are changing the fpu_flags in the current context, 300 * disable floating point (turn on CR0_TS bit) to track 301 * FPU_VALID after clearing any errors (frstor chokes 302 * otherwise) 303 */ 304 if (lwp == ttolwp(curthread)) { 305 (void) fperr_reset(); 306 fpdisable(); 307 } 308 } else { 309 /* 310 * If we are trying to change the FPU state of a thread which 311 * hasn't yet initialized floating point, store the state in 312 * the pcb and indicate that the state is valid. When the 313 * thread enables floating point, it will use this state instead 314 * of the default state. 315 */ 316 #if !defined(__amd64) 317 if (fp_kind == __FP_SSE) { 318 #endif 319 fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx); 320 fpu->fpu_regs.kfpu_xstatus = 321 fp->fp_reg_set.fpchip_state.xstatus; 322 #if !defined(__amd64) 323 } else 324 bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn, 325 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 326 #endif 327 fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; 328 fpu->fpu_flags |= FPU_VALID; 329 } 330 } 331 332 /* 333 * Get floating-point registers into a native fpregset_t. 334 */ 335 void 336 getfpregs(klwp_t *lwp, fpregset_t *fp) 337 { 338 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 339 340 kpreempt_disable(); 341 if (fpu->fpu_flags & FPU_EN) { 342 /* 343 * If we have FPU hw and the thread's pcb doesn't have 344 * a valid FPU state then get the state from the hw. 345 */ 346 if (fpu_exists && ttolwp(curthread) == lwp && 347 !(fpu->fpu_flags & FPU_VALID)) 348 fp_save(fpu); /* get the current FPU state */ 349 } 350 351 /* 352 * There are 3 possible cases we have to be aware of here: 353 * 354 * 1. FPU is enabled. FPU state is stored in the current LWP. 355 * 356 * 2. FPU is not enabled, and there have been no intervening /proc 357 * modifications. Return initial FPU state. 358 * 359 * 3. FPU is not enabled, but a /proc consumer has modified FPU state. 360 * FPU state is stored in the current LWP. 361 */ 362 if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) { 363 /* 364 * Cases 1 and 3. 365 */ 366 #if !defined(__amd64) 367 if (fp_kind == __FP_SSE) { 368 #endif 369 fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp); 370 fp->fp_reg_set.fpchip_state.xstatus = 371 fpu->fpu_regs.kfpu_xstatus; 372 #if !defined(__amd64) 373 } else 374 bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp, 375 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 376 #endif 377 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 378 } else { 379 /* 380 * Case 2. 381 */ 382 #if !defined(__amd64) 383 if (fp_kind == __FP_SSE) { 384 #endif 385 fxsave_to_fpregset(&sse_initial, fp); 386 fp->fp_reg_set.fpchip_state.xstatus = 387 fpu->fpu_regs.kfpu_xstatus; 388 #if !defined(__amd64) 389 } else 390 bcopy(&x87_initial, fp, sizeof (x87_initial)); 391 #endif 392 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 393 } 394 kpreempt_enable(); 395 } 396 397 #if defined(_SYSCALL32_IMPL) 398 399 /* 400 * Set floating-point registers from an fpregset32_t. 401 */ 402 void 403 setfpregs32(klwp_t *lwp, fpregset32_t *fp) 404 { 405 fpregset_t fpregs; 406 407 fpregset_32ton(fp, &fpregs); 408 setfpregs(lwp, &fpregs); 409 } 410 411 /* 412 * Get floating-point registers into an fpregset32_t. 413 */ 414 void 415 getfpregs32(klwp_t *lwp, fpregset32_t *fp) 416 { 417 fpregset_t fpregs; 418 419 getfpregs(lwp, &fpregs); 420 fpregset_nto32(&fpregs, fp); 421 } 422 423 #endif /* _SYSCALL32_IMPL */ 424 425 /* 426 * Return the general registers 427 */ 428 void 429 getgregs(klwp_t *lwp, gregset_t grp) 430 { 431 struct regs *rp = lwptoregs(lwp); 432 #if defined(__amd64) 433 struct pcb *pcb = &lwp->lwp_pcb; 434 int thisthread = lwptot(lwp) == curthread; 435 436 grp[REG_RDI] = rp->r_rdi; 437 grp[REG_RSI] = rp->r_rsi; 438 grp[REG_RDX] = rp->r_rdx; 439 grp[REG_RCX] = rp->r_rcx; 440 grp[REG_R8] = rp->r_r8; 441 grp[REG_R9] = rp->r_r9; 442 grp[REG_RAX] = rp->r_rax; 443 grp[REG_RBX] = rp->r_rbx; 444 grp[REG_RBP] = rp->r_rbp; 445 grp[REG_R10] = rp->r_r10; 446 grp[REG_R11] = rp->r_r11; 447 grp[REG_R12] = rp->r_r12; 448 grp[REG_R13] = rp->r_r13; 449 grp[REG_R14] = rp->r_r14; 450 grp[REG_R15] = rp->r_r15; 451 grp[REG_FSBASE] = pcb->pcb_fsbase; 452 grp[REG_GSBASE] = pcb->pcb_gsbase; 453 if (thisthread) 454 kpreempt_disable(); 455 if (pcb->pcb_flags & RUPDATE_PENDING) { 456 grp[REG_DS] = pcb->pcb_ds; 457 grp[REG_ES] = pcb->pcb_es; 458 grp[REG_FS] = pcb->pcb_fs; 459 grp[REG_GS] = pcb->pcb_gs; 460 } else { 461 grp[REG_DS] = rp->r_ds; 462 grp[REG_ES] = rp->r_es; 463 grp[REG_FS] = rp->r_fs; 464 grp[REG_GS] = rp->r_gs; 465 } 466 if (thisthread) 467 kpreempt_enable(); 468 grp[REG_TRAPNO] = rp->r_trapno; 469 grp[REG_ERR] = rp->r_err; 470 grp[REG_RIP] = rp->r_rip; 471 grp[REG_CS] = rp->r_cs; 472 grp[REG_SS] = rp->r_ss; 473 grp[REG_RFL] = rp->r_rfl; 474 grp[REG_RSP] = rp->r_rsp; 475 #else 476 bcopy(&rp->r_gs, grp, sizeof (gregset_t)); 477 #endif 478 } 479 480 #if defined(_SYSCALL32_IMPL) 481 482 void 483 getgregs32(klwp_t *lwp, gregset32_t grp) 484 { 485 struct regs *rp = lwptoregs(lwp); 486 struct pcb *pcb = &lwp->lwp_pcb; 487 int thisthread = lwptot(lwp) == curthread; 488 489 if (thisthread) 490 kpreempt_disable(); 491 if (pcb->pcb_flags & RUPDATE_PENDING) { 492 grp[GS] = (uint16_t)pcb->pcb_gs; 493 grp[FS] = (uint16_t)pcb->pcb_fs; 494 grp[DS] = (uint16_t)pcb->pcb_ds; 495 grp[ES] = (uint16_t)pcb->pcb_es; 496 } else { 497 grp[GS] = (uint16_t)rp->r_gs; 498 grp[FS] = (uint16_t)rp->r_fs; 499 grp[DS] = (uint16_t)rp->r_ds; 500 grp[ES] = (uint16_t)rp->r_es; 501 } 502 if (thisthread) 503 kpreempt_enable(); 504 grp[EDI] = (greg32_t)rp->r_rdi; 505 grp[ESI] = (greg32_t)rp->r_rsi; 506 grp[EBP] = (greg32_t)rp->r_rbp; 507 grp[ESP] = 0; 508 grp[EBX] = (greg32_t)rp->r_rbx; 509 grp[EDX] = (greg32_t)rp->r_rdx; 510 grp[ECX] = (greg32_t)rp->r_rcx; 511 grp[EAX] = (greg32_t)rp->r_rax; 512 grp[TRAPNO] = (greg32_t)rp->r_trapno; 513 grp[ERR] = (greg32_t)rp->r_err; 514 grp[EIP] = (greg32_t)rp->r_rip; 515 grp[CS] = (uint16_t)rp->r_cs; 516 grp[EFL] = (greg32_t)rp->r_rfl; 517 grp[UESP] = (greg32_t)rp->r_rsp; 518 grp[SS] = (uint16_t)rp->r_ss; 519 } 520 521 void 522 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst) 523 { 524 mcontext_t *dmc = &dst->uc_mcontext; 525 const mcontext32_t *smc = &src->uc_mcontext; 526 527 bzero(dst, sizeof (*dst)); 528 dst->uc_flags = src->uc_flags; 529 dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link; 530 531 bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask)); 532 533 dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp; 534 dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size; 535 dst->uc_stack.ss_flags = src->uc_stack.ss_flags; 536 537 dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS]; 538 dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS]; 539 dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES]; 540 dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS]; 541 dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI]; 542 dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI]; 543 dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP]; 544 dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX]; 545 dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX]; 546 dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX]; 547 dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX]; 548 dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO]; 549 dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR]; 550 dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP]; 551 dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS]; 552 dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL]; 553 dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP]; 554 dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS]; 555 556 /* 557 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set 558 * otherwise there is no guarantee that anything in fpregs is valid. 559 */ 560 if (src->uc_flags & UC_FPU) 561 fpregset_32ton(&src->uc_mcontext.fpregs, 562 &dst->uc_mcontext.fpregs); 563 } 564 565 #endif /* _SYSCALL32_IMPL */ 566 567 /* 568 * Return the user-level PC. 569 * If in a system call, return the address of the syscall trap. 570 */ 571 greg_t 572 getuserpc() 573 { 574 greg_t upc = lwptoregs(ttolwp(curthread))->r_pc; 575 uint32_t insn; 576 577 if (curthread->t_sysnum == 0) 578 return (upc); 579 580 /* 581 * We might've gotten here from sysenter (0xf 0x34), 582 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0). 583 * 584 * Go peek at the binary to figure it out.. 585 */ 586 if (fuword32((void *)(upc - 2), &insn) != -1 && 587 (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f) 588 return (upc - 2); 589 return (upc - 7); 590 } 591 592 /* 593 * Protect segment registers from non-user privilege levels and GDT selectors 594 * other than USER_CS, USER_DS and lwp FS and GS values. If the segment 595 * selector is non-null and not USER_CS/USER_DS, we make sure that the 596 * TI bit is set to point into the LDT and that the RPL is set to 3. 597 * 598 * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we 599 * also explicitly zero the top 16 bits since they may be coming from the 600 * user's address space via setcontext(2) or /proc. 601 */ 602 603 /*ARGSUSED*/ 604 static greg_t 605 fix_segreg(greg_t sr, model_t datamodel) 606 { 607 switch (sr &= 0xffff) { 608 #if defined(__amd64) 609 /* 610 * If lwp attempts to switch data model then force their 611 * code selector to be null selector. 612 */ 613 case U32CS_SEL: 614 if (datamodel == DATAMODEL_NATIVE) 615 return (0); 616 else 617 return (sr); 618 619 case UCS_SEL: 620 if (datamodel == DATAMODEL_ILP32) 621 return (0); 622 #elif defined(__i386) 623 case UCS_SEL: 624 #endif 625 /*FALLTHROUGH*/ 626 case UDS_SEL: 627 case LWPFS_SEL: 628 case LWPGS_SEL: 629 case 0: 630 return (sr); 631 default: 632 break; 633 } 634 635 /* 636 * Force it into the LDT in ring 3 for 32-bit processes. 637 * 64-bit processes get the null gdt selector since they 638 * are not allowed to have a private LDT. 639 */ 640 #if defined(__amd64) 641 return (datamodel == DATAMODEL_ILP32 ? (sr | SEL_TI_LDT | SEL_UPL) : 0); 642 #elif defined(__i386) 643 return (sr | SEL_TI_LDT | SEL_UPL); 644 #endif 645 } 646 647 /* 648 * Set general registers. 649 */ 650 void 651 setgregs(klwp_t *lwp, gregset_t grp) 652 { 653 struct regs *rp = lwptoregs(lwp); 654 model_t datamodel = lwp_getdatamodel(lwp); 655 656 #if defined(__amd64) 657 struct pcb *pcb = &lwp->lwp_pcb; 658 int thisthread = lwptot(lwp) == curthread; 659 660 if (datamodel == DATAMODEL_NATIVE) { 661 662 if (thisthread) 663 (void) save_syscall_args(); /* copy the args */ 664 665 rp->r_rdi = grp[REG_RDI]; 666 rp->r_rsi = grp[REG_RSI]; 667 rp->r_rdx = grp[REG_RDX]; 668 rp->r_rcx = grp[REG_RCX]; 669 rp->r_r8 = grp[REG_R8]; 670 rp->r_r9 = grp[REG_R9]; 671 rp->r_rax = grp[REG_RAX]; 672 rp->r_rbx = grp[REG_RBX]; 673 rp->r_rbp = grp[REG_RBP]; 674 rp->r_r10 = grp[REG_R10]; 675 rp->r_r11 = grp[REG_R11]; 676 rp->r_r12 = grp[REG_R12]; 677 rp->r_r13 = grp[REG_R13]; 678 rp->r_r14 = grp[REG_R14]; 679 rp->r_r15 = grp[REG_R15]; 680 rp->r_trapno = grp[REG_TRAPNO]; 681 rp->r_err = grp[REG_ERR]; 682 rp->r_rip = grp[REG_RIP]; 683 /* 684 * Setting %cs or %ss to anything else is quietly but 685 * quite definitely forbidden! 686 */ 687 rp->r_cs = UCS_SEL; 688 rp->r_ss = UDS_SEL; 689 rp->r_rsp = grp[REG_RSP]; 690 691 if (thisthread) 692 kpreempt_disable(); 693 694 pcb->pcb_ds = UDS_SEL; 695 pcb->pcb_es = UDS_SEL; 696 697 /* 698 * 64-bit processes -are- allowed to set their fsbase/gsbase 699 * values directly, but only if they're using the segment 700 * selectors that allow that semantic. 701 * 702 * (32-bit processes must use lwp_set_private().) 703 */ 704 pcb->pcb_fsbase = grp[REG_FSBASE]; 705 pcb->pcb_gsbase = grp[REG_GSBASE]; 706 pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel); 707 pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel); 708 709 /* 710 * Ensure that we go out via update_sregs 711 */ 712 pcb->pcb_flags |= RUPDATE_PENDING; 713 lwptot(lwp)->t_post_sys = 1; 714 if (thisthread) 715 kpreempt_enable(); 716 #if defined(_SYSCALL32_IMPL) 717 } else { 718 rp->r_rdi = (uint32_t)grp[REG_RDI]; 719 rp->r_rsi = (uint32_t)grp[REG_RSI]; 720 rp->r_rdx = (uint32_t)grp[REG_RDX]; 721 rp->r_rcx = (uint32_t)grp[REG_RCX]; 722 rp->r_rax = (uint32_t)grp[REG_RAX]; 723 rp->r_rbx = (uint32_t)grp[REG_RBX]; 724 rp->r_rbp = (uint32_t)grp[REG_RBP]; 725 rp->r_trapno = (uint32_t)grp[REG_TRAPNO]; 726 rp->r_err = (uint32_t)grp[REG_ERR]; 727 rp->r_rip = (uint32_t)grp[REG_RIP]; 728 729 /* 730 * The kernel uses %cs to determine if it is dealing with 731 * another part of the kernel or with a userland application. 732 * Specifically, it tests the privilege bits. For this reason, 733 * we must prevent user apps from ending up with a NULL selector 734 * in %cs. Instead, we'll use index 0 into the GDT but with the 735 * privilege bits set to usermode. 736 */ 737 rp->r_cs = fix_segreg(grp[REG_CS], datamodel) | SEL_UPL; 738 rp->r_ss = fix_segreg(grp[REG_DS], datamodel); 739 740 rp->r_rsp = (uint32_t)grp[REG_RSP]; 741 742 if (thisthread) 743 kpreempt_disable(); 744 745 pcb->pcb_ds = fix_segreg(grp[REG_DS], datamodel); 746 pcb->pcb_es = fix_segreg(grp[REG_ES], datamodel); 747 748 /* 749 * (See fsbase/gsbase commentary above) 750 */ 751 pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel); 752 pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel); 753 754 /* 755 * Ensure that we go out via update_sregs 756 */ 757 pcb->pcb_flags |= RUPDATE_PENDING; 758 lwptot(lwp)->t_post_sys = 1; 759 if (thisthread) 760 kpreempt_enable(); 761 #endif 762 } 763 764 /* 765 * Only certain bits of the flags register can be modified. 766 */ 767 rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) | 768 (grp[REG_RFL] & PSL_USERMASK); 769 770 #elif defined(__i386) 771 772 /* 773 * Only certain bits of the flags register can be modified. 774 */ 775 grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK); 776 777 /* 778 * Copy saved registers from user stack. 779 */ 780 bcopy(grp, &rp->r_gs, sizeof (gregset_t)); 781 782 rp->r_cs = fix_segreg(rp->r_cs, datamodel); 783 rp->r_ss = fix_segreg(rp->r_ss, datamodel); 784 rp->r_ds = fix_segreg(rp->r_ds, datamodel); 785 rp->r_es = fix_segreg(rp->r_es, datamodel); 786 rp->r_fs = fix_segreg(rp->r_fs, datamodel); 787 rp->r_gs = fix_segreg(rp->r_gs, datamodel); 788 789 #endif /* __i386 */ 790 } 791 792 /* 793 * Determine whether eip is likely to have an interrupt frame 794 * on the stack. We do this by comparing the address to the 795 * range of addresses spanned by several well-known routines. 796 */ 797 extern void _interrupt(); 798 extern void _allsyscalls(); 799 extern void _cmntrap(); 800 extern void fakesoftint(); 801 802 extern size_t _interrupt_size; 803 extern size_t _allsyscalls_size; 804 extern size_t _cmntrap_size; 805 extern size_t _fakesoftint_size; 806 807 /* 808 * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking. 809 * Returns MIN(current stack depth, pcstack_limit). 810 */ 811 int 812 getpcstack(pc_t *pcstack, int pcstack_limit) 813 { 814 struct frame *fp = (struct frame *)getfp(); 815 struct frame *nextfp, *minfp, *stacktop; 816 int depth = 0; 817 int on_intr; 818 uintptr_t pc; 819 820 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 821 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 822 else 823 stacktop = (struct frame *)curthread->t_stk; 824 minfp = fp; 825 826 pc = ((struct regs *)fp)->r_pc; 827 828 while (depth < pcstack_limit) { 829 nextfp = (struct frame *)fp->fr_savfp; 830 pc = fp->fr_savpc; 831 if (nextfp <= minfp || nextfp >= stacktop) { 832 if (on_intr) { 833 /* 834 * Hop from interrupt stack to thread stack. 835 */ 836 stacktop = (struct frame *)curthread->t_stk; 837 minfp = (struct frame *)curthread->t_stkbase; 838 on_intr = 0; 839 continue; 840 } 841 break; 842 } 843 pcstack[depth++] = (pc_t)pc; 844 fp = nextfp; 845 minfp = fp; 846 } 847 return (depth); 848 } 849 850 /* 851 * The following ELF header fields are defined as processor-specific 852 * in the V8 ABI: 853 * 854 * e_ident[EI_DATA] encoding of the processor-specific 855 * data in the object file 856 * e_machine processor identification 857 * e_flags processor-specific flags associated 858 * with the file 859 */ 860 861 /* 862 * The value of at_flags reflects a platform's cpu module support. 863 * at_flags is used to check for allowing a binary to execute and 864 * is passed as the value of the AT_FLAGS auxiliary vector. 865 */ 866 int at_flags = 0; 867 868 /* 869 * Check the processor-specific fields of an ELF header. 870 * 871 * returns 1 if the fields are valid, 0 otherwise 872 */ 873 /*ARGSUSED2*/ 874 int 875 elfheadcheck( 876 unsigned char e_data, 877 Elf32_Half e_machine, 878 Elf32_Word e_flags) 879 { 880 if (e_data != ELFDATA2LSB) 881 return (0); 882 #if defined(__amd64) 883 if (e_machine == EM_AMD64) 884 return (1); 885 #endif 886 return (e_machine == EM_386); 887 } 888 889 uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */ 890 uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */ 891 #if defined(_SYSCALL32_IMPL) 892 uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */ 893 uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */ 894 #endif 895 896 /* 897 * Gather information about the processor and place it into auxv_hwcap 898 * so that it can be exported to the linker via the aux vector. 899 * 900 * We use this seemingly complicated mechanism so that we can ensure 901 * that /etc/system can be used to override what the system can or 902 * cannot discover for itself. 903 */ 904 void 905 bind_hwcap(void) 906 { 907 uint_t cpu_hwcap_flags = cpuid_pass4(NULL); 908 909 auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) & 910 ~auxv_hwcap_exclude; 911 912 #if defined(__amd64) 913 /* 914 * On AMD processors, sysenter just doesn't work at all 915 * when the kernel is in long mode. On IA-32e processors 916 * it does, but there's no real point in all the alternate 917 * mechanism when syscall works on both. 918 * 919 * Besides, the kernel's sysenter handler is expecting a 920 * 32-bit lwp ... 921 */ 922 auxv_hwcap &= ~AV_386_SEP; 923 #endif 924 925 if (auxv_hwcap_include || auxv_hwcap_exclude) 926 cmn_err(CE_CONT, "?user ABI extensions: %b\n", 927 auxv_hwcap, FMT_AV_386); 928 929 #if defined(_SYSCALL32_IMPL) 930 auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) & 931 ~auxv_hwcap32_exclude; 932 933 #if defined(__amd64) 934 /* 935 * If this is an amd64 architecture machine from Intel, then 936 * syscall -doesn't- work in compatibility mode, only sysenter does. 937 * 938 * Sigh. 939 */ 940 if (!cpuid_syscall32_insn(NULL)) 941 auxv_hwcap32 &= ~AV_386_AMD_SYSC; 942 #endif 943 944 if (auxv_hwcap32_include || auxv_hwcap32_exclude) 945 cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n", 946 auxv_hwcap32, FMT_AV_386); 947 #endif 948 } 949 950 /* 951 * sync_icache() - this is called 952 * in proc/fs/prusrio.c. x86 has an unified cache and therefore 953 * this is a nop. 954 */ 955 /* ARGSUSED */ 956 void 957 sync_icache(caddr_t addr, uint_t len) 958 { 959 /* Do nothing for now */ 960 } 961 962 /*ARGSUSED*/ 963 void 964 sync_data_memory(caddr_t va, size_t len) 965 { 966 /* Not implemented for this platform */ 967 } 968 969 int 970 __ipltospl(int ipl) 971 { 972 return (ipltospl(ipl)); 973 } 974 975 /* 976 * The panic code invokes panic_saveregs() to record the contents of a 977 * regs structure into the specified panic_data structure for debuggers. 978 */ 979 void 980 panic_saveregs(panic_data_t *pdp, struct regs *rp) 981 { 982 panic_nv_t *pnv = PANICNVGET(pdp); 983 984 struct cregs creg; 985 986 getcregs(&creg); 987 988 #if defined(__amd64) 989 PANICNVADD(pnv, "rdi", rp->r_rdi); 990 PANICNVADD(pnv, "rsi", rp->r_rsi); 991 PANICNVADD(pnv, "rdx", rp->r_rdx); 992 PANICNVADD(pnv, "rcx", rp->r_rcx); 993 PANICNVADD(pnv, "r8", rp->r_r8); 994 PANICNVADD(pnv, "r9", rp->r_r9); 995 PANICNVADD(pnv, "rax", rp->r_rax); 996 PANICNVADD(pnv, "rbx", rp->r_rbx); 997 PANICNVADD(pnv, "rbp", rp->r_rbp); 998 PANICNVADD(pnv, "r10", rp->r_r10); 999 PANICNVADD(pnv, "r10", rp->r_r10); 1000 PANICNVADD(pnv, "r11", rp->r_r11); 1001 PANICNVADD(pnv, "r12", rp->r_r12); 1002 PANICNVADD(pnv, "r13", rp->r_r13); 1003 PANICNVADD(pnv, "r14", rp->r_r14); 1004 PANICNVADD(pnv, "r15", rp->r_r15); 1005 PANICNVADD(pnv, "fsbase", rp->r_fsbase); 1006 PANICNVADD(pnv, "gsbase", rp->r_gsbase); 1007 PANICNVADD(pnv, "ds", rp->r_ds); 1008 PANICNVADD(pnv, "es", rp->r_es); 1009 PANICNVADD(pnv, "fs", rp->r_fs); 1010 PANICNVADD(pnv, "gs", rp->r_gs); 1011 PANICNVADD(pnv, "trapno", rp->r_trapno); 1012 PANICNVADD(pnv, "err", rp->r_err); 1013 PANICNVADD(pnv, "rip", rp->r_rip); 1014 PANICNVADD(pnv, "cs", rp->r_cs); 1015 PANICNVADD(pnv, "rflags", rp->r_rfl); 1016 PANICNVADD(pnv, "rsp", rp->r_rsp); 1017 PANICNVADD(pnv, "ss", rp->r_ss); 1018 PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3])); 1019 PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0])); 1020 PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3])); 1021 PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0])); 1022 #elif defined(__i386) 1023 PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs); 1024 PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs); 1025 PANICNVADD(pnv, "es", (uint32_t)rp->r_es); 1026 PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds); 1027 PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi); 1028 PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi); 1029 PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp); 1030 PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp); 1031 PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx); 1032 PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx); 1033 PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx); 1034 PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax); 1035 PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno); 1036 PANICNVADD(pnv, "err", (uint32_t)rp->r_err); 1037 PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip); 1038 PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs); 1039 PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl); 1040 PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp); 1041 PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss); 1042 PANICNVADD(pnv, "gdt", creg.cr_gdt); 1043 PANICNVADD(pnv, "idt", creg.cr_idt); 1044 #endif /* __i386 */ 1045 1046 PANICNVADD(pnv, "ldt", creg.cr_ldt); 1047 PANICNVADD(pnv, "task", creg.cr_task); 1048 PANICNVADD(pnv, "cr0", creg.cr_cr0); 1049 PANICNVADD(pnv, "cr2", creg.cr_cr2); 1050 PANICNVADD(pnv, "cr3", creg.cr_cr3); 1051 if (creg.cr_cr4) 1052 PANICNVADD(pnv, "cr4", creg.cr_cr4); 1053 1054 PANICNVSET(pdp, pnv); 1055 } 1056 1057 #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */ 1058 1059 #if !defined(__amd64) 1060 1061 /* 1062 * Given a return address (%eip), determine the likely number of arguments 1063 * that were pushed on the stack prior to its execution. We do this by 1064 * expecting that a typical call sequence consists of pushing arguments on 1065 * the stack, executing a call instruction, and then performing an add 1066 * on %esp to restore it to the value prior to pushing the arguments for 1067 * the call. We attempt to detect such an add, and divide the addend 1068 * by the size of a word to determine the number of pushed arguments. 1069 * 1070 * If we do not find such an add, we punt and return TR_ARG_MAX. It is not 1071 * possible to reliably determine if a function took no arguments (i.e. was 1072 * void) because assembler routines do not reliably perform an add on %esp 1073 * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is 1074 * safer than returning 0. 1075 */ 1076 static ulong_t 1077 argcount(uintptr_t eip) 1078 { 1079 const uint8_t *ins = (const uint8_t *)eip; 1080 ulong_t n; 1081 1082 enum { 1083 M_MODRM_ESP = 0xc4, /* Mod/RM byte indicates %esp */ 1084 M_ADD_IMM32 = 0x81, /* ADD imm32 to r/m32 */ 1085 M_ADD_IMM8 = 0x83 /* ADD imm8 to r/m32 */ 1086 }; 1087 1088 if (eip < KERNELBASE || ins[1] != M_MODRM_ESP) 1089 return (TR_ARG_MAX); 1090 1091 switch (ins[0]) { 1092 case M_ADD_IMM32: 1093 n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24); 1094 break; 1095 1096 case M_ADD_IMM8: 1097 n = ins[2]; 1098 break; 1099 1100 default: 1101 return (TR_ARG_MAX); 1102 } 1103 1104 n /= sizeof (long); 1105 return (MIN(n, TR_ARG_MAX)); 1106 } 1107 1108 #endif /* !__amd64 */ 1109 1110 /* 1111 * Print a stack backtrace using the specified frame pointer. We delay two 1112 * seconds before continuing, unless this is the panic traceback. Note 1113 * that the frame for the starting stack pointer value is omitted because 1114 * the corresponding %eip is not known. 1115 */ 1116 #if defined(__amd64) 1117 1118 void 1119 traceback(caddr_t fpreg) 1120 { 1121 struct frame *fp = (struct frame *)fpreg; 1122 struct frame *nextfp; 1123 uintptr_t pc, nextpc; 1124 ulong_t off; 1125 char args[TR_ARG_MAX * 2 + 16], *sym; 1126 1127 if (!panicstr) 1128 printf("traceback: %%fp = %p\n", (void *)fp); 1129 1130 if ((uintptr_t)fp < KERNELBASE) 1131 goto out; 1132 1133 pc = fp->fr_savpc; 1134 fp = (struct frame *)fp->fr_savfp; 1135 1136 while ((uintptr_t)fp >= KERNELBASE) { 1137 /* 1138 * XX64 Until port is complete tolerate 8-byte aligned 1139 * frame pointers but flag with a warning so they can 1140 * be fixed. 1141 */ 1142 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) { 1143 if (((uintptr_t)fp & (8 - 1)) == 0) { 1144 printf(" >> warning! 8-byte" 1145 " aligned %%fp = %p\n", (void *)fp); 1146 } else { 1147 printf( 1148 " >> mis-aligned %%fp = %p\n", (void *)fp); 1149 break; 1150 } 1151 } 1152 1153 args[0] = '\0'; 1154 nextpc = (uintptr_t)fp->fr_savpc; 1155 nextfp = (struct frame *)fp->fr_savfp; 1156 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1157 printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1158 mod_containing_pc((caddr_t)pc), sym, off, args); 1159 } else { 1160 printf("%016lx %lx (%s)\n", 1161 (uintptr_t)fp, pc, args); 1162 } 1163 1164 pc = nextpc; 1165 fp = nextfp; 1166 } 1167 out: 1168 if (!panicstr) { 1169 printf("end of traceback\n"); 1170 DELAY(2 * MICROSEC); 1171 } 1172 } 1173 1174 #elif defined(__i386) 1175 1176 void 1177 traceback(caddr_t fpreg) 1178 { 1179 struct frame *fp = (struct frame *)fpreg; 1180 struct frame *nextfp, *minfp, *stacktop; 1181 uintptr_t pc, nextpc; 1182 1183 cpu_t *cpu; 1184 1185 /* 1186 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'. 1187 */ 1188 char args[TR_ARG_MAX * 2 + 8], *p; 1189 1190 int on_intr; 1191 ulong_t off; 1192 char *sym; 1193 1194 if (!panicstr) 1195 printf("traceback: %%fp = %p\n", (void *)fp); 1196 1197 /* 1198 * If we are panicking, all high-level interrupt information in 1199 * CPU was overwritten. panic_cpu has the correct values. 1200 */ 1201 kpreempt_disable(); /* prevent migration */ 1202 1203 cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU; 1204 1205 if ((on_intr = CPU_ON_INTR(cpu)) != 0) 1206 stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME)); 1207 else 1208 stacktop = (struct frame *)curthread->t_stk; 1209 1210 kpreempt_enable(); 1211 1212 if ((uintptr_t)fp < KERNELBASE) 1213 goto out; 1214 1215 minfp = fp; /* Baseline minimum frame pointer */ 1216 pc = fp->fr_savpc; 1217 fp = (struct frame *)fp->fr_savfp; 1218 1219 while ((uintptr_t)fp >= KERNELBASE) { 1220 ulong_t argc; 1221 long *argv; 1222 1223 if (fp <= minfp || fp >= stacktop) { 1224 if (on_intr) { 1225 /* 1226 * Hop from interrupt stack to thread stack. 1227 */ 1228 stacktop = (struct frame *)curthread->t_stk; 1229 minfp = (struct frame *)curthread->t_stkbase; 1230 on_intr = 0; 1231 continue; 1232 } 1233 break; /* we're outside of the expected range */ 1234 } 1235 1236 if ((uintptr_t)fp & (STACK_ALIGN - 1)) { 1237 printf(" >> mis-aligned %%fp = %p\n", (void *)fp); 1238 break; 1239 } 1240 1241 nextpc = fp->fr_savpc; 1242 nextfp = (struct frame *)fp->fr_savfp; 1243 argc = argcount(nextpc); 1244 argv = (long *)((char *)fp + sizeof (struct frame)); 1245 1246 args[0] = '\0'; 1247 p = args; 1248 while (argc-- > 0 && argv < (long *)stacktop) { 1249 p += snprintf(p, args + sizeof (args) - p, 1250 "%s%lx", (p == args) ? "" : ", ", *argv++); 1251 } 1252 1253 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1254 printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1255 mod_containing_pc((caddr_t)pc), sym, off, args); 1256 } else { 1257 printf("%08lx %lx (%s)\n", 1258 (uintptr_t)fp, pc, args); 1259 } 1260 1261 minfp = fp; 1262 pc = nextpc; 1263 fp = nextfp; 1264 } 1265 out: 1266 if (!panicstr) { 1267 printf("end of traceback\n"); 1268 DELAY(2 * MICROSEC); 1269 } 1270 } 1271 1272 #endif /* __i386 */ 1273 1274 /* 1275 * Generate a stack backtrace from a saved register set. 1276 */ 1277 void 1278 traceregs(struct regs *rp) 1279 { 1280 traceback((caddr_t)rp->r_fp); 1281 } 1282 1283 void 1284 exec_set_sp(size_t stksize) 1285 { 1286 klwp_t *lwp = ttolwp(curthread); 1287 1288 lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize; 1289 } 1290 1291 hrtime_t 1292 gethrtime_waitfree(void) 1293 { 1294 return (dtrace_gethrtime()); 1295 } 1296 1297 hrtime_t 1298 gethrtime(void) 1299 { 1300 return (gethrtimef()); 1301 } 1302 1303 hrtime_t 1304 gethrtime_unscaled(void) 1305 { 1306 return (gethrtimeunscaledf()); 1307 } 1308 1309 void 1310 scalehrtime(hrtime_t *hrt) 1311 { 1312 scalehrtimef(hrt); 1313 } 1314 1315 void 1316 gethrestime(timespec_t *tp) 1317 { 1318 gethrestimef(tp); 1319 } 1320 1321 #if defined(__amd64) 1322 /* 1323 * Part of the implementation of hres_tick(); this routine is 1324 * easier in C than assembler .. called with the hres_lock held. 1325 * 1326 * XX64 Many of these timekeeping variables need to be extern'ed in a header 1327 */ 1328 1329 #include <sys/time.h> 1330 #include <sys/machlock.h> 1331 1332 extern int one_sec; 1333 extern timestruc_t hrestime; 1334 extern int max_hres_adj; 1335 1336 void 1337 __adj_hrestime(void) 1338 { 1339 long long adj; 1340 1341 if (hrestime_adj == 0) 1342 adj = 0; 1343 else if (hrestime_adj > 0) { 1344 if (hrestime_adj < max_hres_adj) 1345 adj = hrestime_adj; 1346 else 1347 adj = max_hres_adj; 1348 } else { 1349 if (hrestime_adj < -max_hres_adj) 1350 adj = -max_hres_adj; 1351 else 1352 adj = hrestime_adj; 1353 } 1354 1355 timedelta -= adj; 1356 hrestime_adj = timedelta; 1357 hrestime.tv_nsec += adj; 1358 1359 while (hrestime.tv_nsec >= NANOSEC) { 1360 one_sec++; 1361 hrestime.tv_sec++; 1362 hrestime.tv_nsec -= NANOSEC; 1363 } 1364 } 1365 #endif 1366 1367 /* 1368 * Wrapper functions to maintain backwards compability 1369 */ 1370 int 1371 xcopyin(const void *uaddr, void *kaddr, size_t count) 1372 { 1373 return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED)); 1374 } 1375 1376 int 1377 xcopyout(const void *kaddr, void *uaddr, size_t count) 1378 { 1379 return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED)); 1380 } 1381