1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/dtrace_impl.h> 30 #include <sys/stack.h> 31 #include <sys/frame.h> 32 #include <sys/cmn_err.h> 33 #include <sys/privregs.h> 34 #include <sys/sysmacros.h> 35 36 /* 37 * This is gross knowledge to have to encode here... 38 */ 39 extern void _interrupt(); 40 extern void _cmntrap(); 41 extern void _allsyscalls(); 42 43 extern size_t _interrupt_size; 44 extern size_t _cmntrap_size; 45 extern size_t _allsyscalls_size; 46 47 extern uintptr_t kernelbase; 48 49 void 50 dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, 51 uint32_t *intrpc) 52 { 53 struct frame *fp = (struct frame *)dtrace_getfp(); 54 struct frame *nextfp, *minfp, *stacktop; 55 int depth = 0; 56 int on_intr, last = 0; 57 uintptr_t pc; 58 uintptr_t caller = CPU->cpu_dtrace_caller; 59 60 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 61 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 62 else 63 stacktop = (struct frame *)curthread->t_stk; 64 minfp = fp; 65 66 aframes++; 67 68 if (intrpc != NULL && depth < pcstack_limit) 69 pcstack[depth++] = (pc_t)intrpc; 70 71 while (depth < pcstack_limit) { 72 nextfp = (struct frame *)fp->fr_savfp; 73 pc = fp->fr_savpc; 74 75 if (nextfp <= minfp || nextfp >= stacktop) { 76 if (on_intr) { 77 /* 78 * Hop from interrupt stack to thread stack. 79 */ 80 stacktop = (struct frame *)curthread->t_stk; 81 minfp = (struct frame *)curthread->t_stkbase; 82 on_intr = 0; 83 continue; 84 } 85 86 /* 87 * This is the last frame we can process; indicate 88 * that we should return after processing this frame. 89 */ 90 last = 1; 91 } 92 93 if (aframes > 0) { 94 if (--aframes == 0 && caller != NULL) { 95 /* 96 * We've just run out of artificial frames, 97 * and we have a valid caller -- fill it in 98 * now. 99 */ 100 ASSERT(depth < pcstack_limit); 101 pcstack[depth++] = (pc_t)caller; 102 caller = NULL; 103 } 104 } else { 105 if (depth < pcstack_limit) 106 pcstack[depth++] = (pc_t)pc; 107 } 108 109 if (last) { 110 while (depth < pcstack_limit) 111 pcstack[depth++] = NULL; 112 return; 113 } 114 115 fp = nextfp; 116 minfp = fp; 117 } 118 } 119 120 void 121 dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) 122 { 123 klwp_t *lwp = ttolwp(curthread); 124 proc_t *p = ttoproc(curthread); 125 struct regs *rp; 126 uintptr_t pc, sp, oldcontext; 127 volatile uint8_t *flags = 128 (volatile uint8_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 129 size_t s1, s2; 130 131 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 132 return; 133 134 if (*flags & CPU_DTRACE_FAULT) 135 return; 136 137 if (pcstack_limit <= 0) 138 return; 139 140 *pcstack++ = (uint64_t)p->p_pid; 141 pcstack_limit--; 142 143 if (pcstack_limit <= 0) 144 return; 145 146 pc = rp->r_pc; 147 sp = rp->r_fp; 148 oldcontext = lwp->lwp_oldcontext; 149 150 if (p->p_model == DATAMODEL_NATIVE) { 151 s1 = sizeof (struct frame) + 2 * sizeof (long); 152 s2 = s1 + sizeof (siginfo_t); 153 } else { 154 s1 = sizeof (struct frame32) + 3 * sizeof (int); 155 s2 = s1 + sizeof (siginfo32_t); 156 } 157 158 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { 159 *pcstack++ = (uint64_t)pc; 160 pcstack_limit--; 161 if (pcstack_limit <= 0) 162 return; 163 164 if (p->p_model == DATAMODEL_NATIVE) 165 pc = dtrace_fulword((void *)rp->r_sp); 166 else 167 pc = dtrace_fuword32((void *)rp->r_sp); 168 } 169 170 while (pc != 0 && sp != 0) { 171 *pcstack++ = (uint64_t)pc; 172 pcstack_limit--; 173 if (pcstack_limit <= 0) 174 break; 175 176 if (oldcontext == sp + s1 || oldcontext == sp + s2) { 177 if (p->p_model == DATAMODEL_NATIVE) { 178 ucontext_t *ucp = (ucontext_t *)oldcontext; 179 greg_t *gregs = ucp->uc_mcontext.gregs; 180 181 sp = dtrace_fulword(&gregs[REG_FP]); 182 pc = dtrace_fulword(&gregs[REG_PC]); 183 184 oldcontext = dtrace_fulword(&ucp->uc_link); 185 } else { 186 ucontext32_t *ucp = (ucontext32_t *)oldcontext; 187 greg32_t *gregs = ucp->uc_mcontext.gregs; 188 189 sp = dtrace_fuword32(&gregs[EBP]); 190 pc = dtrace_fuword32(&gregs[EIP]); 191 192 oldcontext = dtrace_fuword32(&ucp->uc_link); 193 } 194 } else { 195 if (p->p_model == DATAMODEL_NATIVE) { 196 struct frame *fr = (struct frame *)sp; 197 198 pc = dtrace_fulword(&fr->fr_savpc); 199 sp = dtrace_fulword(&fr->fr_savfp); 200 } else { 201 struct frame32 *fr = (struct frame32 *)sp; 202 203 pc = dtrace_fuword32(&fr->fr_savpc); 204 sp = dtrace_fuword32(&fr->fr_savfp); 205 } 206 } 207 208 /* 209 * This is totally bogus: if we faulted, we're going to clear 210 * the fault and break. This is to deal with the apparently 211 * broken Java stacks on x86. 212 */ 213 if (*flags & CPU_DTRACE_FAULT) { 214 *flags &= ~CPU_DTRACE_FAULT; 215 break; 216 } 217 } 218 219 while (pcstack_limit-- > 0) 220 *pcstack++ = NULL; 221 } 222 223 /*ARGSUSED*/ 224 void 225 dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) 226 { 227 klwp_t *lwp = ttolwp(curthread); 228 proc_t *p = ttoproc(curthread); 229 struct regs *rp; 230 uintptr_t pc, sp, oldcontext; 231 volatile uint8_t *flags = 232 (volatile uint8_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 233 size_t s1, s2; 234 235 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 236 return; 237 238 if (*flags & CPU_DTRACE_FAULT) 239 return; 240 241 if (pcstack_limit <= 0) 242 return; 243 244 *pcstack++ = (uint64_t)p->p_pid; 245 pcstack_limit--; 246 247 if (pcstack_limit <= 0) 248 return; 249 250 pc = rp->r_pc; 251 sp = rp->r_fp; 252 oldcontext = lwp->lwp_oldcontext; 253 254 if (p->p_model == DATAMODEL_NATIVE) { 255 s1 = sizeof (struct frame) + 2 * sizeof (long); 256 s2 = s1 + sizeof (siginfo_t); 257 } else { 258 s1 = sizeof (struct frame32) + 3 * sizeof (int); 259 s2 = s1 + sizeof (siginfo32_t); 260 } 261 262 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { 263 *pcstack++ = (uint64_t)pc; 264 *fpstack++ = 0; 265 pcstack_limit--; 266 if (pcstack_limit <= 0) 267 return; 268 269 if (p->p_model == DATAMODEL_NATIVE) 270 pc = dtrace_fulword((void *)rp->r_sp); 271 else 272 pc = dtrace_fuword32((void *)rp->r_sp); 273 } 274 275 while (pc != 0 && sp != 0) { 276 *pcstack++ = (uint64_t)pc; 277 *fpstack++ = sp; 278 pcstack_limit--; 279 if (pcstack_limit <= 0) 280 break; 281 282 if (oldcontext == sp + s1 || oldcontext == sp + s2) { 283 if (p->p_model == DATAMODEL_NATIVE) { 284 ucontext_t *ucp = (ucontext_t *)oldcontext; 285 greg_t *gregs = ucp->uc_mcontext.gregs; 286 287 sp = dtrace_fulword(&gregs[REG_FP]); 288 pc = dtrace_fulword(&gregs[REG_PC]); 289 290 oldcontext = dtrace_fulword(&ucp->uc_link); 291 } else { 292 ucontext_t *ucp = (ucontext_t *)oldcontext; 293 greg_t *gregs = ucp->uc_mcontext.gregs; 294 295 sp = dtrace_fuword32(&gregs[EBP]); 296 pc = dtrace_fuword32(&gregs[EIP]); 297 298 oldcontext = dtrace_fuword32(&ucp->uc_link); 299 } 300 } else { 301 if (p->p_model == DATAMODEL_NATIVE) { 302 struct frame *fr = (struct frame *)sp; 303 304 pc = dtrace_fulword(&fr->fr_savpc); 305 sp = dtrace_fulword(&fr->fr_savfp); 306 } else { 307 struct frame32 *fr = (struct frame32 *)sp; 308 309 pc = dtrace_fuword32(&fr->fr_savpc); 310 sp = dtrace_fuword32(&fr->fr_savfp); 311 } 312 } 313 314 /* 315 * This is totally bogus: if we faulted, we're going to clear 316 * the fault and break. This is to deal with the apparently 317 * broken Java stacks on x86. 318 */ 319 if (*flags & CPU_DTRACE_FAULT) { 320 *flags &= ~CPU_DTRACE_FAULT; 321 break; 322 } 323 } 324 325 while (pcstack_limit-- > 0) 326 *pcstack++ = NULL; 327 } 328 329 /*ARGSUSED*/ 330 uint64_t 331 dtrace_getarg(int arg, int aframes) 332 { 333 uintptr_t val; 334 struct frame *fp = (struct frame *)dtrace_getfp(); 335 uintptr_t *stack; 336 int i; 337 #if defined(__amd64) 338 /* 339 * A total of 6 arguments are passed via registers; any argument with 340 * index of 5 or lower is therefore in a register. 341 */ 342 int inreg = 5; 343 #endif 344 345 for (i = 1; i <= aframes; i++) { 346 fp = (struct frame *)(fp->fr_savfp); 347 348 if (fp->fr_savpc == (pc_t)dtrace_invop_callsite) { 349 #if !defined(__amd64) 350 /* 351 * If we pass through the invalid op handler, we will 352 * use the pointer that it passed to the stack as the 353 * second argument to dtrace_invop() as the pointer to 354 * the stack. When using this stack, we must step 355 * beyond the EIP/RIP that was pushed when the trap was 356 * taken -- hence the "+ 1" below. 357 */ 358 stack = ((uintptr_t **)&fp[1])[1] + 1; 359 #else 360 /* 361 * In the case of amd64, we will use the pointer to the 362 * regs structure that was pushed when we took the 363 * trap. To get this structure, we must increment 364 * beyond the frame structure, and then again beyond 365 * the calling RIP stored in dtrace_invop(). If the 366 * argument that we're seeking is passed on the stack, 367 * we'll pull the true stack pointer out of the saved 368 * registers and decrement our argument by the number 369 * of arguments passed in registers; if the argument 370 * we're seeking is passed in regsiters, we can just 371 * load it directly. 372 */ 373 struct regs *rp = (struct regs *)((uintptr_t)&fp[1] + 374 sizeof (uintptr_t)); 375 376 if (arg <= inreg) { 377 stack = (uintptr_t *)&rp->r_rdi; 378 } else { 379 stack = (uintptr_t *)(rp->r_rsp); 380 arg -= inreg; 381 } 382 #endif 383 goto load; 384 } 385 386 } 387 388 /* 389 * We know that we did not come through a trap to get into 390 * dtrace_probe() -- the provider simply called dtrace_probe() 391 * directly. As this is the case, we need to shift the argument 392 * that we're looking for: the probe ID is the first argument to 393 * dtrace_probe(), so the argument n will actually be found where 394 * one would expect to find argument (n + 1). 395 */ 396 arg++; 397 398 #if defined(__amd64) 399 if (arg <= inreg) { 400 /* 401 * This shouldn't happen. If the argument is passed in a 402 * register then it should have been, well, passed in a 403 * register... 404 */ 405 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 406 return (0); 407 } 408 409 arg -= (inreg + 1); 410 #endif 411 stack = (uintptr_t *)&fp[1]; 412 413 load: 414 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 415 val = stack[arg]; 416 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 417 418 return (val); 419 } 420 421 /*ARGSUSED*/ 422 int 423 dtrace_getstackdepth(int aframes) 424 { 425 struct frame *fp = (struct frame *)dtrace_getfp(); 426 struct frame *nextfp, *minfp, *stacktop; 427 int depth = 0; 428 int on_intr; 429 430 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 431 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 432 else 433 stacktop = (struct frame *)curthread->t_stk; 434 minfp = fp; 435 436 aframes++; 437 438 for (;;) { 439 depth++; 440 441 nextfp = (struct frame *)fp->fr_savfp; 442 443 if (nextfp <= minfp || nextfp >= stacktop) { 444 if (on_intr) { 445 /* 446 * Hop from interrupt stack to thread stack. 447 */ 448 stacktop = (struct frame *)curthread->t_stk; 449 minfp = (struct frame *)curthread->t_stkbase; 450 on_intr = 0; 451 continue; 452 } 453 break; 454 } 455 456 fp = nextfp; 457 minfp = fp; 458 } 459 460 if (depth <= aframes) 461 return (0); 462 463 return (depth - aframes); 464 } 465 466 ulong_t 467 dtrace_getreg(struct regs *rp, uint_t reg) 468 { 469 #if defined(__amd64) 470 int regmap[] = { 471 REG_GS, /* GS */ 472 REG_FS, /* FS */ 473 REG_ES, /* ES */ 474 REG_DS, /* DS */ 475 REG_RDI, /* EDI */ 476 REG_RSI, /* ESI */ 477 REG_RBP, /* EBP */ 478 REG_RSP, /* ESP */ 479 REG_RBX, /* EBX */ 480 REG_RDX, /* EDX */ 481 REG_RCX, /* ECX */ 482 REG_RAX, /* EAX */ 483 REG_TRAPNO, /* TRAPNO */ 484 REG_ERR, /* ERR */ 485 REG_RIP, /* EIP */ 486 REG_CS, /* CS */ 487 REG_RFL, /* EFL */ 488 REG_RSP, /* UESP */ 489 REG_SS /* SS */ 490 }; 491 492 if (reg <= SS) { 493 if (reg >= sizeof (regmap) / sizeof (int)) { 494 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 495 return (0); 496 } 497 498 reg = regmap[reg]; 499 } else { 500 reg -= SS + 1; 501 } 502 503 switch (reg) { 504 case REG_RDI: 505 return (rp->r_rdi); 506 case REG_RSI: 507 return (rp->r_rsi); 508 case REG_RDX: 509 return (rp->r_rdx); 510 case REG_RCX: 511 return (rp->r_rcx); 512 case REG_R8: 513 return (rp->r_r8); 514 case REG_R9: 515 return (rp->r_r9); 516 case REG_RAX: 517 return (rp->r_rax); 518 case REG_RBX: 519 return (rp->r_rbx); 520 case REG_RBP: 521 return (rp->r_rbp); 522 case REG_R10: 523 return (rp->r_r10); 524 case REG_R11: 525 return (rp->r_r11); 526 case REG_R12: 527 return (rp->r_r12); 528 case REG_R13: 529 return (rp->r_r13); 530 case REG_R14: 531 return (rp->r_r14); 532 case REG_R15: 533 return (rp->r_r15); 534 case REG_DS: 535 return (rp->r_ds); 536 case REG_ES: 537 return (rp->r_es); 538 case REG_FS: 539 return (rp->r_fs); 540 case REG_GS: 541 return (rp->r_gs); 542 case REG_TRAPNO: 543 return (rp->r_trapno); 544 case REG_ERR: 545 return (rp->r_err); 546 case REG_RIP: 547 return (rp->r_rip); 548 case REG_CS: 549 return (rp->r_cs); 550 case REG_SS: 551 return (rp->r_ss); 552 case REG_RFL: 553 return (rp->r_rfl); 554 case REG_RSP: 555 return (rp->r_rsp); 556 default: 557 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 558 return (0); 559 } 560 561 #else 562 if (reg > SS) { 563 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 564 return (0); 565 } 566 567 return ((&rp->r_gs)[reg]); 568 #endif 569 } 570 571 static int 572 dtrace_copycheck(uintptr_t uaddr, uintptr_t kaddr, size_t size) 573 { 574 ASSERT(kaddr >= kernelbase && kaddr + size >= kaddr); 575 576 if (uaddr + size >= kernelbase || uaddr + size < uaddr) { 577 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 578 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; 579 return (0); 580 } 581 582 return (1); 583 } 584 585 void 586 dtrace_copyin(uintptr_t uaddr, uintptr_t kaddr, size_t size) 587 { 588 if (dtrace_copycheck(uaddr, kaddr, size)) 589 dtrace_copy(uaddr, kaddr, size); 590 } 591 592 void 593 dtrace_copyout(uintptr_t kaddr, uintptr_t uaddr, size_t size) 594 { 595 if (dtrace_copycheck(uaddr, kaddr, size)) 596 dtrace_copy(kaddr, uaddr, size); 597 } 598 599 void 600 dtrace_copyinstr(uintptr_t uaddr, uintptr_t kaddr, size_t size) 601 { 602 if (dtrace_copycheck(uaddr, kaddr, size)) 603 dtrace_copystr(uaddr, kaddr, size); 604 } 605 606 void 607 dtrace_copyoutstr(uintptr_t kaddr, uintptr_t uaddr, size_t size) 608 { 609 if (dtrace_copycheck(uaddr, kaddr, size)) 610 dtrace_copystr(kaddr, uaddr, size); 611 } 612 613 uint8_t 614 dtrace_fuword8(void *uaddr) 615 { 616 extern uint8_t dtrace_fuword8_nocheck(void *); 617 if ((uintptr_t)uaddr >= _userlimit) { 618 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 619 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 620 return (0); 621 } 622 return (dtrace_fuword8_nocheck(uaddr)); 623 } 624 625 uint16_t 626 dtrace_fuword16(void *uaddr) 627 { 628 extern uint16_t dtrace_fuword16_nocheck(void *); 629 if ((uintptr_t)uaddr >= _userlimit) { 630 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 631 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 632 return (0); 633 } 634 return (dtrace_fuword16_nocheck(uaddr)); 635 } 636 637 uint32_t 638 dtrace_fuword32(void *uaddr) 639 { 640 extern uint32_t dtrace_fuword32_nocheck(void *); 641 if ((uintptr_t)uaddr >= _userlimit) { 642 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 643 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 644 return (0); 645 } 646 return (dtrace_fuword32_nocheck(uaddr)); 647 } 648 649 uint64_t 650 dtrace_fuword64(void *uaddr) 651 { 652 extern uint64_t dtrace_fuword64_nocheck(void *); 653 if ((uintptr_t)uaddr >= _userlimit) { 654 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 655 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 656 return (0); 657 } 658 return (dtrace_fuword64_nocheck(uaddr)); 659 } 660