xref: /titanic_44/usr/src/uts/i86pc/vm/vm_machdep.c (revision 767b0abf70408797bf5ca4a8dac501bb1a90003d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /*	All Rights Reserved   */
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 #pragma ident	"%Z%%M%	%I%	%E% SMI"
35 
36 /*
37  * UNIX machine dependent virtual memory support.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/user.h>
44 #include <sys/proc.h>
45 #include <sys/kmem.h>
46 #include <sys/vmem.h>
47 #include <sys/buf.h>
48 #include <sys/cpuvar.h>
49 #include <sys/lgrp.h>
50 #include <sys/disp.h>
51 #include <sys/vm.h>
52 #include <sys/mman.h>
53 #include <sys/vnode.h>
54 #include <sys/cred.h>
55 #include <sys/exec.h>
56 #include <sys/exechdr.h>
57 #include <sys/debug.h>
58 #include <sys/vmsystm.h>
59 
60 #include <vm/hat.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_vn.h>
65 #include <vm/page.h>
66 #include <vm/seg_kmem.h>
67 #include <vm/seg_kpm.h>
68 #include <vm/vm_dep.h>
69 
70 #include <sys/cpu.h>
71 #include <sys/vm_machparam.h>
72 #include <sys/memlist.h>
73 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */
74 #include <vm/hat_i86.h>
75 #include <sys/x86_archext.h>
76 #include <sys/elf_386.h>
77 #include <sys/cmn_err.h>
78 #include <sys/archsystm.h>
79 #include <sys/machsystm.h>
80 
81 #include <sys/vtrace.h>
82 #include <sys/ddidmareq.h>
83 #include <sys/promif.h>
84 #include <sys/memnode.h>
85 #include <sys/stack.h>
86 
87 uint_t vac_colors = 1;
88 
89 int largepagesupport = 0;
90 extern uint_t page_create_new;
91 extern uint_t page_create_exists;
92 extern uint_t page_create_putbacks;
93 extern uint_t page_create_putbacks;
94 extern uintptr_t eprom_kernelbase;
95 extern int use_sse_pagecopy, use_sse_pagezero;	/* in ml/float.s */
96 
97 /* 4g memory management */
98 pgcnt_t		maxmem4g;
99 pgcnt_t		freemem4g;
100 int		physmax4g;
101 int		desfree4gshift = 4;	/* maxmem4g shift to derive DESFREE4G */
102 int		lotsfree4gshift = 3;
103 
104 /* 16m memory management: desired number of free pages below 16m. */
105 pgcnt_t		desfree16m = 0x380;
106 
107 #ifdef VM_STATS
108 struct {
109 	ulong_t	pga_alloc;
110 	ulong_t	pga_notfullrange;
111 	ulong_t	pga_nulldmaattr;
112 	ulong_t	pga_allocok;
113 	ulong_t	pga_allocfailed;
114 	ulong_t	pgma_alloc;
115 	ulong_t	pgma_allocok;
116 	ulong_t	pgma_allocfailed;
117 	ulong_t	pgma_allocempty;
118 } pga_vmstats;
119 #endif
120 
121 uint_t mmu_page_sizes;
122 
123 /* How many page sizes the users can see */
124 uint_t mmu_exported_page_sizes;
125 
126 /*
127  * Number of pages in 1 GB.  Don't enable automatic large pages if we have
128  * fewer than this many pages.
129  */
130 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
131 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
132 
133 /*
134  * Maximum and default segment size tunables for user private
135  * and shared anon memory, and user text and initialized data.
136  * These can be patched via /etc/system to allow large pages
137  * to be used for mapping application private and shared anon memory.
138  */
139 size_t mcntl0_lpsize = MMU_PAGESIZE;
140 size_t max_uheap_lpsize = MMU_PAGESIZE;
141 size_t default_uheap_lpsize = MMU_PAGESIZE;
142 size_t max_ustack_lpsize = MMU_PAGESIZE;
143 size_t default_ustack_lpsize = MMU_PAGESIZE;
144 size_t max_privmap_lpsize = MMU_PAGESIZE;
145 size_t max_uidata_lpsize = MMU_PAGESIZE;
146 size_t max_utext_lpsize = MMU_PAGESIZE;
147 size_t max_shm_lpsize = MMU_PAGESIZE;
148 
149 /*
150  * Return the optimum page size for a given mapping
151  */
152 /*ARGSUSED*/
153 size_t
154 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl)
155 {
156 	level_t l = 0;
157 	size_t pgsz = MMU_PAGESIZE;
158 	size_t max_lpsize;
159 	uint_t mszc;
160 
161 	ASSERT(maptype != MAPPGSZ_VA);
162 
163 	if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) {
164 		return (MMU_PAGESIZE);
165 	}
166 
167 	switch (maptype) {
168 	case MAPPGSZ_HEAP:
169 	case MAPPGSZ_STK:
170 		max_lpsize = memcntl ? mcntl0_lpsize : (maptype ==
171 		    MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize);
172 		if (max_lpsize == MMU_PAGESIZE) {
173 			return (MMU_PAGESIZE);
174 		}
175 		if (len == 0) {
176 			len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase +
177 			    p->p_brksize - p->p_bssbase : p->p_stksize;
178 		}
179 		len = (maptype == MAPPGSZ_HEAP) ? MAX(len,
180 		    default_uheap_lpsize) : MAX(len, default_ustack_lpsize);
181 
182 		/*
183 		 * use the pages size that best fits len
184 		 */
185 		for (l = mmu.max_page_level; l > 0; --l) {
186 			if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) {
187 				continue;
188 			} else {
189 				pgsz = LEVEL_SIZE(l);
190 			}
191 			break;
192 		}
193 
194 		mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc :
195 		    p->p_stkpageszc);
196 		if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) {
197 			pgsz = hw_page_array[mszc].hp_size;
198 		}
199 		return (pgsz);
200 
201 	/*
202 	 * for ISM use the 1st large page size.
203 	 */
204 	case MAPPGSZ_ISM:
205 		if (mmu.max_page_level == 0)
206 			return (MMU_PAGESIZE);
207 		return (LEVEL_SIZE(1));
208 	}
209 	return (pgsz);
210 }
211 
212 static uint_t
213 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize,
214     size_t min_physmem)
215 {
216 	caddr_t eaddr = addr + size;
217 	uint_t szcvec = 0;
218 	caddr_t raddr;
219 	caddr_t readdr;
220 	size_t	pgsz;
221 	int i;
222 
223 	if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) {
224 		return (0);
225 	}
226 
227 	for (i = mmu_page_sizes - 1; i > 0; i--) {
228 		pgsz = page_get_pagesize(i);
229 		if (pgsz > max_lpsize) {
230 			continue;
231 		}
232 		raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
233 		readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
234 		if (raddr < addr || raddr >= readdr) {
235 			continue;
236 		}
237 		if (P2PHASE((uintptr_t)addr ^ off, pgsz)) {
238 			continue;
239 		}
240 		/*
241 		 * Set szcvec to the remaining page sizes.
242 		 */
243 		szcvec = ((1 << (i + 1)) - 1) & ~1;
244 		break;
245 	}
246 	return (szcvec);
247 }
248 
249 /*
250  * Return a bit vector of large page size codes that
251  * can be used to map [addr, addr + len) region.
252  */
253 /*ARGSUSED*/
254 uint_t
255 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type,
256     int memcntl)
257 {
258 	size_t max_lpsize = mcntl0_lpsize;
259 
260 	if (mmu.max_page_level == 0)
261 		return (0);
262 
263 	if (flags & MAP_TEXT) {
264 	    if (!memcntl)
265 		max_lpsize = max_utext_lpsize;
266 	    return (map_szcvec(addr, size, off, max_lpsize,
267 		    shm_lpg_min_physmem));
268 
269 	} else if (flags & MAP_INITDATA) {
270 	    if (!memcntl)
271 		max_lpsize = max_uidata_lpsize;
272 	    return (map_szcvec(addr, size, off, max_lpsize,
273 		    privm_lpg_min_physmem));
274 
275 	} else if (type == MAPPGSZC_SHM) {
276 	    if (!memcntl)
277 		max_lpsize = max_shm_lpsize;
278 	    return (map_szcvec(addr, size, off, max_lpsize,
279 		    shm_lpg_min_physmem));
280 
281 	} else if (type == MAPPGSZC_HEAP) {
282 	    if (!memcntl)
283 		max_lpsize = max_uheap_lpsize;
284 	    return (map_szcvec(addr, size, off, max_lpsize,
285 		    privm_lpg_min_physmem));
286 
287 	} else if (type == MAPPGSZC_STACK) {
288 	    if (!memcntl)
289 		max_lpsize = max_ustack_lpsize;
290 	    return (map_szcvec(addr, size, off, max_lpsize,
291 		    privm_lpg_min_physmem));
292 
293 	} else {
294 	    if (!memcntl)
295 		max_lpsize = max_privmap_lpsize;
296 	    return (map_szcvec(addr, size, off, max_lpsize,
297 		    privm_lpg_min_physmem));
298 	}
299 }
300 
301 /*
302  * Handle a pagefault.
303  */
304 faultcode_t
305 pagefault(
306 	caddr_t addr,
307 	enum fault_type type,
308 	enum seg_rw rw,
309 	int iskernel)
310 {
311 	struct as *as;
312 	struct hat *hat;
313 	struct proc *p;
314 	kthread_t *t;
315 	faultcode_t res;
316 	caddr_t base;
317 	size_t len;
318 	int err;
319 	int mapped_red;
320 	uintptr_t ea;
321 
322 	ASSERT_STACK_ALIGNED();
323 
324 	if (INVALID_VADDR(addr))
325 		return (FC_NOMAP);
326 
327 	mapped_red = segkp_map_red();
328 
329 	if (iskernel) {
330 		as = &kas;
331 		hat = as->a_hat;
332 	} else {
333 		t = curthread;
334 		p = ttoproc(t);
335 		as = p->p_as;
336 		hat = as->a_hat;
337 	}
338 
339 	/*
340 	 * Dispatch pagefault.
341 	 */
342 	res = as_fault(hat, as, addr, 1, type, rw);
343 
344 	/*
345 	 * If this isn't a potential unmapped hole in the user's
346 	 * UNIX data or stack segments, just return status info.
347 	 */
348 	if (res != FC_NOMAP || iskernel)
349 		goto out;
350 
351 	/*
352 	 * Check to see if we happened to faulted on a currently unmapped
353 	 * part of the UNIX data or stack segments.  If so, create a zfod
354 	 * mapping there and then try calling the fault routine again.
355 	 */
356 	base = p->p_brkbase;
357 	len = p->p_brksize;
358 
359 	if (addr < base || addr >= base + len) {		/* data seg? */
360 		base = (caddr_t)p->p_usrstack - p->p_stksize;
361 		len = p->p_stksize;
362 		if (addr < base || addr >= p->p_usrstack) {	/* stack seg? */
363 			/* not in either UNIX data or stack segments */
364 			res = FC_NOMAP;
365 			goto out;
366 		}
367 	}
368 
369 	/*
370 	 * the rest of this function implements a 3.X 4.X 5.X compatibility
371 	 * This code is probably not needed anymore
372 	 */
373 	if (p->p_model == DATAMODEL_ILP32) {
374 
375 		/* expand the gap to the page boundaries on each side */
376 		ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE);
377 		base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE);
378 		len = ea - (uintptr_t)base;
379 
380 		as_rangelock(as);
381 		if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) ==
382 		    0) {
383 			err = as_map(as, base, len, segvn_create, zfod_argsp);
384 			as_rangeunlock(as);
385 			if (err) {
386 				res = FC_MAKE_ERR(err);
387 				goto out;
388 			}
389 		} else {
390 			/*
391 			 * This page is already mapped by another thread after
392 			 * we returned from as_fault() above.  We just fall
393 			 * through as_fault() below.
394 			 */
395 			as_rangeunlock(as);
396 		}
397 
398 		res = as_fault(hat, as, addr, 1, F_INVAL, rw);
399 	}
400 
401 out:
402 	if (mapped_red)
403 		segkp_unmap_red();
404 
405 	return (res);
406 }
407 
408 void
409 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags)
410 {
411 	struct proc *p = curproc;
412 	caddr_t userlimit = (flags & _MAP_LOW32) ?
413 	    (caddr_t)_userlimit32 : p->p_as->a_userlimit;
414 
415 	map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags);
416 }
417 
418 /*ARGSUSED*/
419 int
420 map_addr_vacalign_check(caddr_t addr, u_offset_t off)
421 {
422 	return (0);
423 }
424 
425 /*
426  * map_addr_proc() is the routine called when the system is to
427  * choose an address for the user.  We will pick an address
428  * range which is the highest available below kernelbase.
429  *
430  * addrp is a value/result parameter.
431  *	On input it is a hint from the user to be used in a completely
432  *	machine dependent fashion.  We decide to completely ignore this hint.
433  *
434  *	On output it is NULL if no address can be found in the current
435  *	processes address space or else an address that is currently
436  *	not mapped for len bytes with a page of red zone on either side.
437  *
438  *	align is not needed on x86 (it's for viturally addressed caches)
439  */
440 /*ARGSUSED*/
441 void
442 map_addr_proc(
443 	caddr_t *addrp,
444 	size_t len,
445 	offset_t off,
446 	int vacalign,
447 	caddr_t userlimit,
448 	struct proc *p,
449 	uint_t flags)
450 {
451 	struct as *as = p->p_as;
452 	caddr_t addr;
453 	caddr_t base;
454 	size_t slen;
455 	size_t align_amount;
456 
457 	ASSERT32(userlimit == as->a_userlimit);
458 
459 	base = p->p_brkbase;
460 #if defined(__amd64)
461 	/*
462 	 * XX64 Yes, this needs more work.
463 	 */
464 	if (p->p_model == DATAMODEL_NATIVE) {
465 		if (userlimit < as->a_userlimit) {
466 			/*
467 			 * This happens when a program wants to map
468 			 * something in a range that's accessible to a
469 			 * program in a smaller address space.  For example,
470 			 * a 64-bit program calling mmap32(2) to guarantee
471 			 * that the returned address is below 4Gbytes.
472 			 */
473 			ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff));
474 
475 			if (userlimit > base)
476 				slen = userlimit - base;
477 			else {
478 				*addrp = NULL;
479 				return;
480 			}
481 		} else {
482 			/*
483 			 * XX64 This layout is probably wrong .. but in
484 			 * the event we make the amd64 address space look
485 			 * like sparcv9 i.e. with the stack -above- the
486 			 * heap, this bit of code might even be correct.
487 			 */
488 			slen = p->p_usrstack - base -
489 			    (((size_t)rctl_enforced_value(
490 			    rctlproc_legacy[RLIMIT_STACK],
491 			    p->p_rctls, p) + PAGEOFFSET) & PAGEMASK);
492 		}
493 	} else
494 #endif
495 		slen = userlimit - base;
496 
497 	len = (len + PAGEOFFSET) & PAGEMASK;
498 
499 	/*
500 	 * Redzone for each side of the request. This is done to leave
501 	 * one page unmapped between segments. This is not required, but
502 	 * it's useful for the user because if their program strays across
503 	 * a segment boundary, it will catch a fault immediately making
504 	 * debugging a little easier.
505 	 */
506 	len += 2 * MMU_PAGESIZE;
507 
508 	/*
509 	 * figure out what the alignment should be
510 	 *
511 	 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same????
512 	 */
513 	if (len <= ELF_386_MAXPGSZ) {
514 		/*
515 		 * Align virtual addresses to ensure that ELF shared libraries
516 		 * are mapped with the appropriate alignment constraints by
517 		 * the run-time linker.
518 		 */
519 		align_amount = ELF_386_MAXPGSZ;
520 	} else {
521 		int l = mmu.max_page_level;
522 
523 		while (l && len < LEVEL_SIZE(l))
524 			--l;
525 
526 		align_amount = LEVEL_SIZE(l);
527 	}
528 
529 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount))
530 		align_amount = (uintptr_t)*addrp;
531 
532 	len += align_amount;
533 
534 	/*
535 	 * Look for a large enough hole starting below userlimit.
536 	 * After finding it, use the upper part.  Addition of PAGESIZE
537 	 * is for the redzone as described above.
538 	 */
539 	if (as_gap(as, len, &base, &slen, AH_HI, NULL) == 0) {
540 		caddr_t as_addr;
541 
542 		addr = base + slen - len + MMU_PAGESIZE;
543 		as_addr = addr;
544 		/*
545 		 * Round address DOWN to the alignment amount,
546 		 * add the offset, and if this address is less
547 		 * than the original address, add alignment amount.
548 		 */
549 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1)));
550 		addr += (uintptr_t)(off & (align_amount - 1));
551 		if (addr < as_addr)
552 			addr += align_amount;
553 
554 		ASSERT(addr <= (as_addr + align_amount));
555 		ASSERT(((uintptr_t)addr & (align_amount - 1)) ==
556 		    ((uintptr_t)(off & (align_amount - 1))));
557 		*addrp = addr;
558 	} else {
559 		*addrp = NULL;	/* no more virtual space */
560 	}
561 }
562 
563 /*
564  * Determine whether [base, base+len] contains a valid range of
565  * addresses at least minlen long. base and len are adjusted if
566  * required to provide a valid range.
567  */
568 /*ARGSUSED3*/
569 int
570 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir)
571 {
572 	uintptr_t hi, lo;
573 
574 	lo = (uintptr_t)*basep;
575 	hi = lo + *lenp;
576 
577 	/*
578 	 * If hi rolled over the top, try cutting back.
579 	 */
580 	if (hi < lo) {
581 		if (0 - lo + hi < minlen)
582 			return (0);
583 		if (0 - lo < minlen)
584 			return (0);
585 		*lenp = 0 - lo;
586 	} else if (hi - lo < minlen) {
587 		return (0);
588 	}
589 #if defined(__amd64)
590 	/*
591 	 * Deal with a possible hole in the address range between
592 	 * hole_start and hole_end that should never be mapped.
593 	 */
594 	if (lo < hole_start) {
595 		if (hi > hole_start) {
596 			if (hi < hole_end) {
597 				hi = hole_start;
598 			} else {
599 				/* lo < hole_start && hi >= hole_end */
600 				if (dir == AH_LO) {
601 					/*
602 					 * prefer lowest range
603 					 */
604 					if (hole_start - lo >= minlen)
605 						hi = hole_start;
606 					else if (hi - hole_end >= minlen)
607 						lo = hole_end;
608 					else
609 						return (0);
610 				} else {
611 					/*
612 					 * prefer highest range
613 					 */
614 					if (hi - hole_end >= minlen)
615 						lo = hole_end;
616 					else if (hole_start - lo >= minlen)
617 						hi = hole_start;
618 					else
619 						return (0);
620 				}
621 			}
622 		}
623 	} else {
624 		/* lo >= hole_start */
625 		if (hi < hole_end)
626 			return (0);
627 		if (lo < hole_end)
628 			lo = hole_end;
629 	}
630 
631 	if (hi - lo < minlen)
632 		return (0);
633 
634 	*basep = (caddr_t)lo;
635 	*lenp = hi - lo;
636 #endif
637 	return (1);
638 }
639 
640 /*
641  * Determine whether [addr, addr+len] are valid user addresses.
642  */
643 /*ARGSUSED*/
644 int
645 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as,
646     caddr_t userlimit)
647 {
648 	caddr_t eaddr = addr + len;
649 
650 	if (eaddr <= addr || addr >= userlimit || eaddr > userlimit)
651 		return (RANGE_BADADDR);
652 
653 #if defined(__amd64)
654 	/*
655 	 * Check for the VA hole
656 	 */
657 	if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end)
658 		return (RANGE_BADADDR);
659 #endif
660 
661 	return (RANGE_OKAY);
662 }
663 
664 /*
665  * Return 1 if the page frame is onboard memory, else 0.
666  */
667 int
668 pf_is_memory(pfn_t pf)
669 {
670 	return (address_in_memlist(phys_install, mmu_ptob((uint64_t)pf), 1));
671 }
672 
673 
674 /*
675  * initialized by page_coloring_init().
676  */
677 uint_t	page_colors;
678 uint_t	page_colors_mask;
679 uint_t	page_coloring_shift;
680 int	cpu_page_colors;
681 static uint_t	l2_colors;
682 
683 /*
684  * Page freelists and cachelists are dynamically allocated once mnoderangecnt
685  * and page_colors are calculated from the l2 cache n-way set size.  Within a
686  * mnode range, the page freelist and cachelist are hashed into bins based on
687  * color. This makes it easier to search for a page within a specific memory
688  * range.
689  */
690 #define	PAGE_COLORS_MIN	16
691 
692 page_t ****page_freelists;
693 page_t ***page_cachelists;
694 
695 /*
696  * As the PC architecture evolved memory up was clumped into several
697  * ranges for various historical I/O devices to do DMA.
698  * < 16Meg - ISA bus
699  * < 2Gig - ???
700  * < 4Gig - PCI bus or drivers that don't understand PAE mode
701  */
702 static pfn_t arch_memranges[NUM_MEM_RANGES] = {
703     0x100000,	/* pfn range for 4G and above */
704     0x80000,	/* pfn range for 2G-4G */
705     0x01000,	/* pfn range for 16M-2G */
706     0x00000,	/* pfn range for 0-16M */
707 };
708 
709 /*
710  * These are changed during startup if the machine has limited memory.
711  */
712 pfn_t *memranges = &arch_memranges[0];
713 int nranges = NUM_MEM_RANGES;
714 
715 /*
716  * Used by page layer to know about page sizes
717  */
718 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1];
719 
720 /*
721  * This can be patched via /etc/system to allow old non-PAE aware device
722  * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM.
723  */
724 #if defined(__i386)
725 int restricted_kmemalloc = 0;
726 #elif defined(__amd64)
727 int restricted_kmemalloc = 0;
728 #endif
729 
730 kmutex_t	*fpc_mutex[NPC_MUTEX];
731 kmutex_t	*cpc_mutex[NPC_MUTEX];
732 
733 
734 /*
735  * return the memrange containing pfn
736  */
737 int
738 memrange_num(pfn_t pfn)
739 {
740 	int n;
741 
742 	for (n = 0; n < nranges - 1; ++n) {
743 		if (pfn >= memranges[n])
744 			break;
745 	}
746 	return (n);
747 }
748 
749 /*
750  * return the mnoderange containing pfn
751  */
752 int
753 pfn_2_mtype(pfn_t pfn)
754 {
755 	int	n;
756 
757 	for (n = mnoderangecnt - 1; n >= 0; n--) {
758 		if (pfn >= mnoderanges[n].mnr_pfnlo) {
759 			break;
760 		}
761 	}
762 	return (n);
763 }
764 
765 /*
766  * is_contigpage_free:
767  *	returns a page list of contiguous pages. It minimally has to return
768  *	minctg pages. Caller determines minctg based on the scatter-gather
769  *	list length.
770  *
771  *	pfnp is set to the next page frame to search on return.
772  */
773 static page_t *
774 is_contigpage_free(
775 	pfn_t *pfnp,
776 	pgcnt_t *pgcnt,
777 	pgcnt_t minctg,
778 	uint64_t pfnseg,
779 	int iolock)
780 {
781 	int	i = 0;
782 	pfn_t	pfn = *pfnp;
783 	page_t	*pp;
784 	page_t	*plist = NULL;
785 
786 	/*
787 	 * fail if pfn + minctg crosses a segment boundary.
788 	 * Adjust for next starting pfn to begin at segment boundary.
789 	 */
790 
791 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) {
792 		*pfnp = roundup(*pfnp, pfnseg + 1);
793 		return (NULL);
794 	}
795 
796 	do {
797 retry:
798 		pp = page_numtopp_nolock(pfn + i);
799 		if ((pp == NULL) ||
800 		    (page_trylock(pp, SE_EXCL) == 0)) {
801 			(*pfnp)++;
802 			break;
803 		}
804 		if (page_pptonum(pp) != pfn + i) {
805 			page_unlock(pp);
806 			goto retry;
807 		}
808 
809 		if (!(PP_ISFREE(pp))) {
810 			page_unlock(pp);
811 			(*pfnp)++;
812 			break;
813 		}
814 
815 		if (!PP_ISAGED(pp)) {
816 			page_list_sub(pp, PG_CACHE_LIST);
817 			page_hashout(pp, (kmutex_t *)NULL);
818 		} else {
819 			page_list_sub(pp, PG_FREE_LIST);
820 		}
821 
822 		if (iolock)
823 			page_io_lock(pp);
824 		page_list_concat(&plist, &pp);
825 
826 		/*
827 		 * exit loop when pgcnt satisfied or segment boundary reached.
828 		 */
829 
830 	} while ((++i < *pgcnt) && ((pfn + i) & pfnseg));
831 
832 	*pfnp += i;		/* set to next pfn to search */
833 
834 	if (i >= minctg) {
835 		*pgcnt -= i;
836 		return (plist);
837 	}
838 
839 	/*
840 	 * failure: minctg not satisfied.
841 	 *
842 	 * if next request crosses segment boundary, set next pfn
843 	 * to search from the segment boundary.
844 	 */
845 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg))
846 		*pfnp = roundup(*pfnp, pfnseg + 1);
847 
848 	/* clean up any pages already allocated */
849 
850 	while (plist) {
851 		pp = plist;
852 		page_sub(&plist, pp);
853 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
854 		if (iolock)
855 			page_io_unlock(pp);
856 		page_unlock(pp);
857 	}
858 
859 	return (NULL);
860 }
861 
862 /*
863  * verify that pages being returned from allocator have correct DMA attribute
864  */
865 #ifndef DEBUG
866 #define	check_dma(a, b, c) (0)
867 #else
868 static void
869 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt)
870 {
871 	if (dma_attr == NULL)
872 		return;
873 
874 	while (cnt-- > 0) {
875 		if (mmu_ptob((uint64_t)pp->p_pagenum) <
876 		    dma_attr->dma_attr_addr_lo)
877 			panic("PFN (pp=%p) below dma_attr_addr_lo", pp);
878 		if (mmu_ptob((uint64_t)pp->p_pagenum) >=
879 		    dma_attr->dma_attr_addr_hi)
880 			panic("PFN (pp=%p) above dma_attr_addr_hi", pp);
881 		pp = pp->p_next;
882 	}
883 }
884 #endif
885 
886 static kmutex_t	contig_lock;
887 
888 #define	CONTIG_LOCK()	mutex_enter(&contig_lock);
889 #define	CONTIG_UNLOCK()	mutex_exit(&contig_lock);
890 
891 #define	PFN_16M		(mmu_btop((uint64_t)0x1000000))
892 
893 static page_t *
894 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock)
895 {
896 	pfn_t		pfn;
897 	int		sgllen;
898 	uint64_t	pfnseg;
899 	pgcnt_t		minctg;
900 	page_t		*pplist = NULL, *plist;
901 	uint64_t	lo, hi;
902 	pgcnt_t		pfnalign = 0;
903 	static pfn_t	startpfn;
904 	static pgcnt_t	lastctgcnt;
905 	uintptr_t	align;
906 
907 	CONTIG_LOCK();
908 
909 	if (mattr) {
910 		lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET));
911 		hi = mmu_btop(mattr->dma_attr_addr_hi);
912 		if (hi >= physmax)
913 			hi = physmax - 1;
914 		sgllen = mattr->dma_attr_sgllen;
915 		pfnseg = mmu_btop(mattr->dma_attr_seg);
916 
917 		align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
918 		if (align > MMU_PAGESIZE)
919 			pfnalign = mmu_btop(align);
920 
921 		/*
922 		 * in order to satisfy the request, must minimally
923 		 * acquire minctg contiguous pages
924 		 */
925 		minctg = howmany(*pgcnt, sgllen);
926 
927 		ASSERT(hi >= lo);
928 
929 		/*
930 		 * start from where last searched if the minctg >= lastctgcnt
931 		 */
932 		if (minctg < lastctgcnt || startpfn < lo || startpfn > hi)
933 			startpfn = lo;
934 	} else {
935 		hi = physmax - 1;
936 		lo = 0;
937 		sgllen = 1;
938 		pfnseg = mmu.highest_pfn;
939 		minctg = *pgcnt;
940 
941 		if (minctg < lastctgcnt)
942 			startpfn = lo;
943 	}
944 	lastctgcnt = minctg;
945 
946 	ASSERT(pfnseg + 1 >= (uint64_t)minctg);
947 
948 	/* conserve 16m memory - start search above 16m when possible */
949 	if (hi > PFN_16M && startpfn < PFN_16M)
950 		startpfn = PFN_16M;
951 
952 	pfn = startpfn;
953 	if (pfnalign)
954 		pfn = P2ROUNDUP(pfn, pfnalign);
955 
956 	while (pfn + minctg - 1 <= hi) {
957 
958 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
959 		if (plist) {
960 			page_list_concat(&pplist, &plist);
961 			sgllen--;
962 			/*
963 			 * return when contig pages no longer needed
964 			 */
965 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
966 				startpfn = pfn;
967 				CONTIG_UNLOCK();
968 				check_dma(mattr, pplist, *pgcnt);
969 				return (pplist);
970 			}
971 			minctg = howmany(*pgcnt, sgllen);
972 		}
973 		if (pfnalign)
974 			pfn = P2ROUNDUP(pfn, pfnalign);
975 	}
976 
977 	/* cannot find contig pages in specified range */
978 	if (startpfn == lo) {
979 		CONTIG_UNLOCK();
980 		return (NULL);
981 	}
982 
983 	/* did not start with lo previously */
984 	pfn = lo;
985 	if (pfnalign)
986 		pfn = P2ROUNDUP(pfn, pfnalign);
987 
988 	/* allow search to go above startpfn */
989 	while (pfn < startpfn) {
990 
991 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
992 		if (plist != NULL) {
993 
994 			page_list_concat(&pplist, &plist);
995 			sgllen--;
996 
997 			/*
998 			 * return when contig pages no longer needed
999 			 */
1000 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1001 				startpfn = pfn;
1002 				CONTIG_UNLOCK();
1003 				check_dma(mattr, pplist, *pgcnt);
1004 				return (pplist);
1005 			}
1006 			minctg = howmany(*pgcnt, sgllen);
1007 		}
1008 		if (pfnalign)
1009 			pfn = P2ROUNDUP(pfn, pfnalign);
1010 	}
1011 	CONTIG_UNLOCK();
1012 	return (NULL);
1013 }
1014 
1015 /*
1016  * combine mem_node_config and memrange memory ranges into one data
1017  * structure to be used for page list management.
1018  *
1019  * mnode_range_cnt() calculates the number of memory ranges for mnode and
1020  * memranges[]. Used to determine the size of page lists and mnoderanges.
1021  *
1022  * mnode_range_setup() initializes mnoderanges.
1023  */
1024 mnoderange_t	*mnoderanges;
1025 int		mnoderangecnt;
1026 int		mtype4g;
1027 
1028 int
1029 mnode_range_cnt(int mnode)
1030 {
1031 	int	mri;
1032 	int	mnrcnt = 0;
1033 
1034 	if (mem_node_config[mnode].exists != 0) {
1035 		mri = nranges - 1;
1036 
1037 		/* find the memranges index below contained in mnode range */
1038 
1039 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1040 			mri--;
1041 
1042 		/*
1043 		 * increment mnode range counter when memranges or mnode
1044 		 * boundary is reached.
1045 		 */
1046 		while (mri >= 0 &&
1047 		    mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1048 			mnrcnt++;
1049 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1050 				mri--;
1051 			else
1052 				break;
1053 		}
1054 	}
1055 	ASSERT(mnrcnt <= MAX_MNODE_MRANGES);
1056 	return (mnrcnt);
1057 }
1058 
1059 void
1060 mnode_range_setup(mnoderange_t *mnoderanges)
1061 {
1062 	int	mnode, mri;
1063 
1064 	for (mnode = 0; mnode < max_mem_nodes; mnode++) {
1065 		if (mem_node_config[mnode].exists == 0)
1066 			continue;
1067 
1068 		mri = nranges - 1;
1069 
1070 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1071 			mri--;
1072 
1073 		while (mri >= 0 && mem_node_config[mnode].physmax >=
1074 		    MEMRANGELO(mri)) {
1075 			mnoderanges->mnr_pfnlo =
1076 			    MAX(MEMRANGELO(mri),
1077 				mem_node_config[mnode].physbase);
1078 			mnoderanges->mnr_pfnhi =
1079 			    MIN(MEMRANGEHI(mri),
1080 				mem_node_config[mnode].physmax);
1081 			mnoderanges->mnr_mnode = mnode;
1082 			mnoderanges->mnr_memrange = mri;
1083 			mnoderanges++;
1084 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1085 				mri--;
1086 			else
1087 				break;
1088 		}
1089 	}
1090 }
1091 
1092 /*
1093  * Determine if the mnode range specified in mtype contains memory belonging
1094  * to memory node mnode.  If flags & PGI_MT_RANGE is set then mtype contains
1095  * the range of indices from high pfn to 0, 16m or 4g.
1096  *
1097  * Return first mnode range type index found otherwise return -1 if none found.
1098  */
1099 int
1100 mtype_func(int mnode, int mtype, uint_t flags)
1101 {
1102 	if (flags & PGI_MT_RANGE) {
1103 		int	mtlim;
1104 
1105 		if (flags & PGI_MT_NEXT)
1106 			mtype--;
1107 		if (flags & PGI_MT_RANGE0)
1108 			mtlim = 0;
1109 		else if (flags & PGI_MT_RANGE4G)
1110 			mtlim = mtype4g + 1;	/* exclude 0-4g range */
1111 		else if (flags & PGI_MT_RANGE16M)
1112 			mtlim = 1;		/* exclude 0-16m range */
1113 		while (mtype >= mtlim) {
1114 			if (mnoderanges[mtype].mnr_mnode == mnode)
1115 				return (mtype);
1116 			mtype--;
1117 		}
1118 	} else {
1119 		if (mnoderanges[mtype].mnr_mnode == mnode)
1120 			return (mtype);
1121 	}
1122 	return (-1);
1123 }
1124 
1125 /*
1126  * Update the page list max counts with the pfn range specified by the
1127  * input parameters.  Called from add_physmem() when physical memory with
1128  * page_t's are initially added to the page lists.
1129  */
1130 void
1131 mtype_modify_max(pfn_t startpfn, long cnt)
1132 {
1133 	int	mtype = 0;
1134 	pfn_t	endpfn = startpfn + cnt, pfn;
1135 	pgcnt_t	inc;
1136 
1137 	ASSERT(cnt > 0);
1138 
1139 	for (pfn = startpfn; pfn < endpfn; ) {
1140 		if (pfn <= mnoderanges[mtype].mnr_pfnhi) {
1141 			if (endpfn < mnoderanges[mtype].mnr_pfnhi) {
1142 				inc = endpfn - pfn;
1143 			} else {
1144 				inc = mnoderanges[mtype].mnr_pfnhi - pfn + 1;
1145 			}
1146 			mnoderanges[mtype].mnr_mt_pgmax += inc;
1147 			if (physmax4g && mtype <= mtype4g)
1148 				maxmem4g += inc;
1149 			pfn += inc;
1150 		}
1151 		mtype++;
1152 		ASSERT(mtype < mnoderangecnt || pfn >= endpfn);
1153 	}
1154 }
1155 
1156 /*
1157  * Returns the free page count for mnode
1158  */
1159 int
1160 mnode_pgcnt(int mnode)
1161 {
1162 	int	mtype = mnoderangecnt - 1;
1163 	int	flags = PGI_MT_RANGE0;
1164 	pgcnt_t	pgcnt = 0;
1165 
1166 	mtype = mtype_func(mnode, mtype, flags);
1167 
1168 	while (mtype != -1) {
1169 		pgcnt += MTYPE_FREEMEM(mtype);
1170 		mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT);
1171 	}
1172 	return (pgcnt);
1173 }
1174 
1175 /*
1176  * Initialize page coloring variables based on the l2 cache parameters.
1177  * Calculate and return memory needed for page coloring data structures.
1178  */
1179 size_t
1180 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc)
1181 {
1182 	size_t	colorsz = 0;
1183 	int	i;
1184 	int	colors;
1185 
1186 	/*
1187 	 * Reduce the memory ranges lists if we don't have large amounts
1188 	 * of memory. This avoids searching known empty free lists.
1189 	 */
1190 	i = memrange_num(physmax);
1191 	memranges += i;
1192 	nranges -= i;
1193 #if defined(__i386)
1194 	if (i > 0)
1195 		restricted_kmemalloc = 0;
1196 #endif
1197 	/* physmax greater than 4g */
1198 	if (i == 0)
1199 		physmax4g = 1;
1200 
1201 	ASSERT(ISP2(l2_sz));
1202 	ASSERT(ISP2(l2_linesz));
1203 	ASSERT(l2_sz > MMU_PAGESIZE);
1204 
1205 	/* l2_assoc is 0 for fully associative l2 cache */
1206 	if (l2_assoc)
1207 		l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE));
1208 	else
1209 		l2_colors = 1;
1210 
1211 	/* for scalability, configure at least PAGE_COLORS_MIN color bins */
1212 	page_colors = MAX(l2_colors, PAGE_COLORS_MIN);
1213 
1214 	/*
1215 	 * cpu_page_colors is non-zero when a page color may be spread across
1216 	 * multiple bins.
1217 	 */
1218 	if (l2_colors < page_colors)
1219 		cpu_page_colors = l2_colors;
1220 
1221 	ASSERT(ISP2(page_colors));
1222 
1223 	page_colors_mask = page_colors - 1;
1224 
1225 	ASSERT(ISP2(CPUSETSIZE()));
1226 	page_coloring_shift = lowbit(CPUSETSIZE());
1227 
1228 	/* initialize number of colors per page size */
1229 	for (i = 0; i <= mmu.max_page_level; i++) {
1230 		hw_page_array[i].hp_size = LEVEL_SIZE(i);
1231 		hw_page_array[i].hp_shift = LEVEL_SHIFT(i);
1232 		hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0);
1233 		hw_page_array[i].hp_colors = (page_colors_mask >>
1234 		    (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift))
1235 		    + 1;
1236 	}
1237 
1238 	/*
1239 	 * The value of cpu_page_colors determines if additional color bins
1240 	 * need to be checked for a particular color in the page_get routines.
1241 	 */
1242 	if (cpu_page_colors != 0) {
1243 
1244 		int a = lowbit(page_colors) - lowbit(cpu_page_colors);
1245 		ASSERT(a > 0);
1246 		ASSERT(a < 16);
1247 
1248 		for (i = 0; i <= mmu.max_page_level; i++) {
1249 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1250 				colorequivszc[i] = 0;
1251 				continue;
1252 			}
1253 			while ((colors >> a) == 0)
1254 				a--;
1255 			ASSERT(a >= 0);
1256 
1257 			/* higher 4 bits encodes color equiv mask */
1258 			colorequivszc[i] = (a << 4);
1259 		}
1260 	}
1261 
1262 	/* factor in colorequiv to check additional 'equivalent' bins. */
1263 	if (colorequiv > 1) {
1264 
1265 		int a = lowbit(colorequiv) - 1;
1266 		if (a > 15)
1267 			a = 15;
1268 
1269 		for (i = 0; i <= mmu.max_page_level; i++) {
1270 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1271 				continue;
1272 			}
1273 			while ((colors >> a) == 0)
1274 				a--;
1275 			if ((a << 4) > colorequivszc[i]) {
1276 				colorequivszc[i] = (a << 4);
1277 			}
1278 		}
1279 	}
1280 
1281 	/* size for mnoderanges */
1282 	for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++)
1283 		mnoderangecnt += mnode_range_cnt(i);
1284 	colorsz = mnoderangecnt * sizeof (mnoderange_t);
1285 
1286 	/* size for fpc_mutex and cpc_mutex */
1287 	colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX);
1288 
1289 	/* size of page_freelists */
1290 	colorsz += mnoderangecnt * sizeof (page_t ***);
1291 	colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **);
1292 
1293 	for (i = 0; i < mmu_page_sizes; i++) {
1294 		colors = page_get_pagecolors(i);
1295 		colorsz += mnoderangecnt * colors * sizeof (page_t *);
1296 	}
1297 
1298 	/* size of page_cachelists */
1299 	colorsz += mnoderangecnt * sizeof (page_t **);
1300 	colorsz += mnoderangecnt * page_colors * sizeof (page_t *);
1301 
1302 	return (colorsz);
1303 }
1304 
1305 /*
1306  * Called once at startup to configure page_coloring data structures and
1307  * does the 1st page_free()/page_freelist_add().
1308  */
1309 void
1310 page_coloring_setup(caddr_t pcmemaddr)
1311 {
1312 	int	i;
1313 	int	j;
1314 	int	k;
1315 	caddr_t	addr;
1316 	int	colors;
1317 
1318 	/*
1319 	 * do page coloring setup
1320 	 */
1321 	addr = pcmemaddr;
1322 
1323 	mnoderanges = (mnoderange_t *)addr;
1324 	addr += (mnoderangecnt * sizeof (mnoderange_t));
1325 
1326 	mnode_range_setup(mnoderanges);
1327 
1328 	if (physmax4g)
1329 		mtype4g = pfn_2_mtype(0xfffff);
1330 
1331 	for (k = 0; k < NPC_MUTEX; k++) {
1332 		fpc_mutex[k] = (kmutex_t *)addr;
1333 		addr += (max_mem_nodes * sizeof (kmutex_t));
1334 	}
1335 	for (k = 0; k < NPC_MUTEX; k++) {
1336 		cpc_mutex[k] = (kmutex_t *)addr;
1337 		addr += (max_mem_nodes * sizeof (kmutex_t));
1338 	}
1339 	page_freelists = (page_t ****)addr;
1340 	addr += (mnoderangecnt * sizeof (page_t ***));
1341 
1342 	page_cachelists = (page_t ***)addr;
1343 	addr += (mnoderangecnt * sizeof (page_t **));
1344 
1345 	for (i = 0; i < mnoderangecnt; i++) {
1346 		page_freelists[i] = (page_t ***)addr;
1347 		addr += (mmu_page_sizes * sizeof (page_t **));
1348 
1349 		for (j = 0; j < mmu_page_sizes; j++) {
1350 			colors = page_get_pagecolors(j);
1351 			page_freelists[i][j] = (page_t **)addr;
1352 			addr += (colors * sizeof (page_t *));
1353 		}
1354 		page_cachelists[i] = (page_t **)addr;
1355 		addr += (page_colors * sizeof (page_t *));
1356 	}
1357 }
1358 
1359 /*ARGSUSED*/
1360 int
1361 bp_color(struct buf *bp)
1362 {
1363 	return (0);
1364 }
1365 
1366 /*
1367  * get a page from any list with the given mnode
1368  */
1369 page_t *
1370 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags,
1371     int mnode, int mtype, ddi_dma_attr_t *dma_attr)
1372 {
1373 	kmutex_t		*pcm;
1374 	int			i;
1375 	page_t			*pp;
1376 	page_t			*first_pp;
1377 	uint64_t		pgaddr;
1378 	ulong_t			bin;
1379 	int			mtypestart;
1380 	int			plw_initialized;
1381 	page_list_walker_t	plw;
1382 
1383 	VM_STAT_ADD(pga_vmstats.pgma_alloc);
1384 
1385 	ASSERT((flags & PG_MATCH_COLOR) == 0);
1386 	ASSERT(szc == 0);
1387 	ASSERT(dma_attr != NULL);
1388 
1389 	MTYPE_START(mnode, mtype, flags);
1390 	if (mtype < 0) {
1391 		VM_STAT_ADD(pga_vmstats.pgma_allocempty);
1392 		return (NULL);
1393 	}
1394 
1395 	mtypestart = mtype;
1396 
1397 	bin = origbin;
1398 
1399 	/*
1400 	 * check up to page_colors + 1 bins - origbin may be checked twice
1401 	 * because of BIN_STEP skip
1402 	 */
1403 	do {
1404 		plw_initialized = 0;
1405 
1406 		for (plw.plw_count = 0;
1407 		    plw.plw_count < page_colors; plw.plw_count++) {
1408 
1409 			if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL)
1410 				goto nextfreebin;
1411 
1412 			pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
1413 			mutex_enter(pcm);
1414 			pp = PAGE_FREELISTS(mnode, szc, bin, mtype);
1415 			first_pp = pp;
1416 			while (pp != NULL) {
1417 				if (page_trylock(pp, SE_EXCL) == 0) {
1418 					pp = pp->p_next;
1419 					if (pp == first_pp) {
1420 						pp = NULL;
1421 					}
1422 					continue;
1423 				}
1424 
1425 				ASSERT(PP_ISFREE(pp));
1426 				ASSERT(PP_ISAGED(pp));
1427 				ASSERT(pp->p_vnode == NULL);
1428 				ASSERT(pp->p_hash == NULL);
1429 				ASSERT(pp->p_offset == (u_offset_t)-1);
1430 				ASSERT(pp->p_szc == szc);
1431 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
1432 				/* check if page within DMA attributes */
1433 				pgaddr = mmu_ptob((uint64_t)(pp->p_pagenum));
1434 
1435 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
1436 				    (pgaddr + MMU_PAGESIZE - 1 <=
1437 				    dma_attr->dma_attr_addr_hi)) {
1438 					break;
1439 				}
1440 
1441 				/* continue looking */
1442 				page_unlock(pp);
1443 				pp = pp->p_next;
1444 				if (pp == first_pp)
1445 					pp = NULL;
1446 
1447 			}
1448 			if (pp != NULL) {
1449 				ASSERT(mtype == PP_2_MTYPE(pp));
1450 				ASSERT(pp->p_szc == 0);
1451 
1452 				/* found a page with specified DMA attributes */
1453 				page_sub(&PAGE_FREELISTS(mnode, szc, bin,
1454 				    mtype), pp);
1455 				page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
1456 
1457 				if ((PP_ISFREE(pp) == 0) ||
1458 				    (PP_ISAGED(pp) == 0)) {
1459 					cmn_err(CE_PANIC, "page %p is not free",
1460 					    (void *)pp);
1461 				}
1462 
1463 				mutex_exit(pcm);
1464 				check_dma(dma_attr, pp, 1);
1465 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
1466 				return (pp);
1467 			}
1468 			mutex_exit(pcm);
1469 nextfreebin:
1470 			if (plw_initialized == 0) {
1471 				page_list_walk_init(szc, 0, bin, 1, 0, &plw);
1472 				ASSERT(plw.plw_ceq_dif == page_colors);
1473 				plw_initialized = 1;
1474 			}
1475 
1476 			if (plw.plw_do_split) {
1477 				pp = page_freelist_split(szc, bin, mnode,
1478 				    mtype,
1479 				    mmu_btop(dma_attr->dma_attr_addr_hi + 1),
1480 				    &plw);
1481 				if (pp != NULL)
1482 					return (pp);
1483 			}
1484 
1485 			bin = page_list_walk_next_bin(szc, bin, &plw);
1486 		}
1487 
1488 		MTYPE_NEXT(mnode, mtype, flags);
1489 	} while (mtype >= 0);
1490 
1491 	/* failed to find a page in the freelist; try it in the cachelist */
1492 
1493 	/* reset mtype start for cachelist search */
1494 	mtype = mtypestart;
1495 	ASSERT(mtype >= 0);
1496 
1497 	/* start with the bin of matching color */
1498 	bin = origbin;
1499 
1500 	do {
1501 		for (i = 0; i <= page_colors; i++) {
1502 			if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL)
1503 				goto nextcachebin;
1504 			pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST);
1505 			mutex_enter(pcm);
1506 			pp = PAGE_CACHELISTS(mnode, bin, mtype);
1507 			first_pp = pp;
1508 			while (pp != NULL) {
1509 				if (page_trylock(pp, SE_EXCL) == 0) {
1510 					pp = pp->p_next;
1511 					if (pp == first_pp)
1512 						break;
1513 					continue;
1514 				}
1515 				ASSERT(pp->p_vnode);
1516 				ASSERT(PP_ISAGED(pp) == 0);
1517 				ASSERT(pp->p_szc == 0);
1518 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
1519 
1520 				/* check if page within DMA attributes */
1521 
1522 				pgaddr = ptob((uint64_t)(pp->p_pagenum));
1523 
1524 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
1525 				    (pgaddr + MMU_PAGESIZE - 1 <=
1526 				    dma_attr->dma_attr_addr_hi)) {
1527 					break;
1528 				}
1529 
1530 				/* continue looking */
1531 				page_unlock(pp);
1532 				pp = pp->p_next;
1533 				if (pp == first_pp)
1534 					pp = NULL;
1535 			}
1536 
1537 			if (pp != NULL) {
1538 				ASSERT(mtype == PP_2_MTYPE(pp));
1539 				ASSERT(pp->p_szc == 0);
1540 
1541 				/* found a page with specified DMA attributes */
1542 				page_sub(&PAGE_CACHELISTS(mnode, bin,
1543 				    mtype), pp);
1544 				page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST);
1545 
1546 				mutex_exit(pcm);
1547 				ASSERT(pp->p_vnode);
1548 				ASSERT(PP_ISAGED(pp) == 0);
1549 				check_dma(dma_attr, pp, 1);
1550 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
1551 				return (pp);
1552 			}
1553 			mutex_exit(pcm);
1554 nextcachebin:
1555 			bin += (i == 0) ? BIN_STEP : 1;
1556 			bin &= page_colors_mask;
1557 		}
1558 		MTYPE_NEXT(mnode, mtype, flags);
1559 	} while (mtype >= 0);
1560 
1561 	VM_STAT_ADD(pga_vmstats.pgma_allocfailed);
1562 	return (NULL);
1563 }
1564 
1565 /*
1566  * This function is similar to page_get_freelist()/page_get_cachelist()
1567  * but it searches both the lists to find a page with the specified
1568  * color (or no color) and DMA attributes. The search is done in the
1569  * freelist first and then in the cache list within the highest memory
1570  * range (based on DMA attributes) before searching in the lower
1571  * memory ranges.
1572  *
1573  * Note: This function is called only by page_create_io().
1574  */
1575 /*ARGSUSED*/
1576 page_t *
1577 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr,
1578     size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t	*lgrp)
1579 {
1580 	uint_t		bin;
1581 	int		mtype;
1582 	page_t		*pp;
1583 	int		n;
1584 	int		m;
1585 	int		szc;
1586 	int		fullrange;
1587 	int		mnode;
1588 	int		local_failed_stat = 0;
1589 	lgrp_mnode_cookie_t	lgrp_cookie;
1590 
1591 	VM_STAT_ADD(pga_vmstats.pga_alloc);
1592 
1593 	/* only base pagesize currently supported */
1594 	if (size != MMU_PAGESIZE)
1595 		return (NULL);
1596 
1597 	/*
1598 	 * If we're passed a specific lgroup, we use it.  Otherwise,
1599 	 * assume first-touch placement is desired.
1600 	 */
1601 	if (!LGRP_EXISTS(lgrp))
1602 		lgrp = lgrp_home_lgrp();
1603 
1604 	/* LINTED */
1605 	AS_2_BIN(as, seg, vp, vaddr, bin, 0);
1606 
1607 	/*
1608 	 * Only hold one freelist or cachelist lock at a time, that way we
1609 	 * can start anywhere and not have to worry about lock
1610 	 * ordering.
1611 	 */
1612 	if (dma_attr == NULL) {
1613 		n = 0;
1614 		m = mnoderangecnt - 1;
1615 		fullrange = 1;
1616 		VM_STAT_ADD(pga_vmstats.pga_nulldmaattr);
1617 	} else {
1618 		pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo);
1619 		pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi);
1620 
1621 		/*
1622 		 * We can guarantee alignment only for page boundary.
1623 		 */
1624 		if (dma_attr->dma_attr_align > MMU_PAGESIZE)
1625 			return (NULL);
1626 
1627 		n = pfn_2_mtype(pfnlo);
1628 		m = pfn_2_mtype(pfnhi);
1629 
1630 		fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) &&
1631 		    (pfnhi >= mnoderanges[m].mnr_pfnhi));
1632 	}
1633 	VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange);
1634 
1635 	if (n > m)
1636 		return (NULL);
1637 
1638 	szc = 0;
1639 
1640 	/* cylcing thru mtype handled by RANGE0 if n == 0 */
1641 	if (n == 0) {
1642 		flags |= PGI_MT_RANGE0;
1643 		n = m;
1644 	}
1645 
1646 	/*
1647 	 * Try local memory node first, but try remote if we can't
1648 	 * get a page of the right color.
1649 	 */
1650 	LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER);
1651 	while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
1652 		/*
1653 		 * allocate pages from high pfn to low.
1654 		 */
1655 		for (mtype = m; mtype >= n; mtype--) {
1656 			if (fullrange != 0) {
1657 				pp = page_get_mnode_freelist(mnode,
1658 				    bin, mtype, szc, flags);
1659 				if (pp == NULL) {
1660 					pp = page_get_mnode_cachelist(
1661 						bin, flags, mnode, mtype);
1662 				}
1663 			} else {
1664 				pp = page_get_mnode_anylist(bin, szc,
1665 				    flags, mnode, mtype, dma_attr);
1666 			}
1667 			if (pp != NULL) {
1668 				VM_STAT_ADD(pga_vmstats.pga_allocok);
1669 				check_dma(dma_attr, pp, 1);
1670 				return (pp);
1671 			}
1672 		}
1673 		if (!local_failed_stat) {
1674 			lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
1675 			local_failed_stat = 1;
1676 		}
1677 	}
1678 	VM_STAT_ADD(pga_vmstats.pga_allocfailed);
1679 
1680 	return (NULL);
1681 }
1682 
1683 /*
1684  * page_create_io()
1685  *
1686  * This function is a copy of page_create_va() with an additional
1687  * argument 'mattr' that specifies DMA memory requirements to
1688  * the page list functions. This function is used by the segkmem
1689  * allocator so it is only to create new pages (i.e PG_EXCL is
1690  * set).
1691  *
1692  * Note: This interface is currently used by x86 PSM only and is
1693  *	 not fully specified so the commitment level is only for
1694  *	 private interface specific to x86. This interface uses PSM
1695  *	 specific page_get_anylist() interface.
1696  */
1697 
1698 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
1699 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
1700 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
1701 			break; \
1702 	} \
1703 }
1704 
1705 
1706 page_t *
1707 page_create_io(
1708 	struct vnode	*vp,
1709 	u_offset_t	off,
1710 	uint_t		bytes,
1711 	uint_t		flags,
1712 	struct as	*as,
1713 	caddr_t		vaddr,
1714 	ddi_dma_attr_t	*mattr)	/* DMA memory attributes if any */
1715 {
1716 	page_t		*plist = NULL;
1717 	uint_t		plist_len = 0;
1718 	pgcnt_t		npages;
1719 	page_t		*npp = NULL;
1720 	uint_t		pages_req;
1721 	page_t		*pp;
1722 	kmutex_t	*phm = NULL;
1723 	uint_t		index;
1724 
1725 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
1726 		"page_create_start:vp %p off %llx bytes %u flags %x",
1727 		vp, off, bytes, flags);
1728 
1729 	ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0);
1730 
1731 	pages_req = npages = mmu_btopr(bytes);
1732 
1733 	/*
1734 	 * Do the freemem and pcf accounting.
1735 	 */
1736 	if (!page_create_wait(npages, flags)) {
1737 		return (NULL);
1738 	}
1739 
1740 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
1741 		"page_create_success:vp %p off %llx",
1742 		vp, off);
1743 
1744 	/*
1745 	 * If satisfying this request has left us with too little
1746 	 * memory, start the wheels turning to get some back.  The
1747 	 * first clause of the test prevents waking up the pageout
1748 	 * daemon in situations where it would decide that there's
1749 	 * nothing to do.
1750 	 */
1751 	if (nscan < desscan && freemem < minfree) {
1752 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
1753 			"pageout_cv_signal:freemem %ld", freemem);
1754 		cv_signal(&proc_pageout->p_cv);
1755 	}
1756 
1757 	if (flags & PG_PHYSCONTIG) {
1758 
1759 		plist = page_get_contigpage(&npages, mattr, 1);
1760 		if (plist == NULL) {
1761 			page_create_putback(npages);
1762 			return (NULL);
1763 		}
1764 
1765 		pp = plist;
1766 
1767 		do {
1768 			if (!page_hashin(pp, vp, off, NULL)) {
1769 				panic("pg_creat_io: hashin failed %p %p %llx",
1770 				    (void *)pp, (void *)vp, off);
1771 			}
1772 			VM_STAT_ADD(page_create_new);
1773 			off += MMU_PAGESIZE;
1774 			PP_CLRFREE(pp);
1775 			PP_CLRAGED(pp);
1776 			page_set_props(pp, P_REF);
1777 			pp = pp->p_next;
1778 		} while (pp != plist);
1779 
1780 		if (!npages) {
1781 			check_dma(mattr, plist, pages_req);
1782 			return (plist);
1783 		} else {
1784 			vaddr += (pages_req - npages) << MMU_PAGESHIFT;
1785 		}
1786 
1787 		/*
1788 		 * fall-thru:
1789 		 *
1790 		 * page_get_contigpage returns when npages <= sgllen.
1791 		 * Grab the rest of the non-contig pages below from anylist.
1792 		 */
1793 	}
1794 
1795 	/*
1796 	 * Loop around collecting the requested number of pages.
1797 	 * Most of the time, we have to `create' a new page. With
1798 	 * this in mind, pull the page off the free list before
1799 	 * getting the hash lock.  This will minimize the hash
1800 	 * lock hold time, nesting, and the like.  If it turns
1801 	 * out we don't need the page, we put it back at the end.
1802 	 */
1803 	while (npages--) {
1804 		phm = NULL;
1805 
1806 		index = PAGE_HASH_FUNC(vp, off);
1807 top:
1808 		ASSERT(phm == NULL);
1809 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
1810 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1811 
1812 		if (npp == NULL) {
1813 			/*
1814 			 * Try to get the page of any color either from
1815 			 * the freelist or from the cache list.
1816 			 */
1817 			npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE,
1818 			    flags & ~PG_MATCH_COLOR, mattr, NULL);
1819 			if (npp == NULL) {
1820 				if (mattr == NULL) {
1821 					/*
1822 					 * Not looking for a special page;
1823 					 * panic!
1824 					 */
1825 					panic("no page found %d", (int)npages);
1826 				}
1827 				/*
1828 				 * No page found! This can happen
1829 				 * if we are looking for a page
1830 				 * within a specific memory range
1831 				 * for DMA purposes. If PG_WAIT is
1832 				 * specified then we wait for a
1833 				 * while and then try again. The
1834 				 * wait could be forever if we
1835 				 * don't get the page(s) we need.
1836 				 *
1837 				 * Note: XXX We really need a mechanism
1838 				 * to wait for pages in the desired
1839 				 * range. For now, we wait for any
1840 				 * pages and see if we can use it.
1841 				 */
1842 
1843 				if ((mattr != NULL) && (flags & PG_WAIT)) {
1844 					delay(10);
1845 					goto top;
1846 				}
1847 
1848 				goto fail; /* undo accounting stuff */
1849 			}
1850 
1851 			if (PP_ISAGED(npp) == 0) {
1852 				/*
1853 				 * Since this page came from the
1854 				 * cachelist, we must destroy the
1855 				 * old vnode association.
1856 				 */
1857 				page_hashout(npp, (kmutex_t *)NULL);
1858 			}
1859 		}
1860 
1861 		/*
1862 		 * We own this page!
1863 		 */
1864 		ASSERT(PAGE_EXCL(npp));
1865 		ASSERT(npp->p_vnode == NULL);
1866 		ASSERT(!hat_page_is_mapped(npp));
1867 		PP_CLRFREE(npp);
1868 		PP_CLRAGED(npp);
1869 
1870 		/*
1871 		 * Here we have a page in our hot little mits and are
1872 		 * just waiting to stuff it on the appropriate lists.
1873 		 * Get the mutex and check to see if it really does
1874 		 * not exist.
1875 		 */
1876 		phm = PAGE_HASH_MUTEX(index);
1877 		mutex_enter(phm);
1878 		PAGE_HASH_SEARCH(index, pp, vp, off);
1879 		if (pp == NULL) {
1880 			VM_STAT_ADD(page_create_new);
1881 			pp = npp;
1882 			npp = NULL;
1883 			if (!page_hashin(pp, vp, off, phm)) {
1884 				/*
1885 				 * Since we hold the page hash mutex and
1886 				 * just searched for this page, page_hashin
1887 				 * had better not fail.  If it does, that
1888 				 * means somethread did not follow the
1889 				 * page hash mutex rules.  Panic now and
1890 				 * get it over with.  As usual, go down
1891 				 * holding all the locks.
1892 				 */
1893 				ASSERT(MUTEX_HELD(phm));
1894 				panic("page_create: hashin fail %p %p %llx %p",
1895 				    (void *)pp, (void *)vp, off, (void *)phm);
1896 
1897 			}
1898 			ASSERT(MUTEX_HELD(phm));
1899 			mutex_exit(phm);
1900 			phm = NULL;
1901 
1902 			/*
1903 			 * Hat layer locking need not be done to set
1904 			 * the following bits since the page is not hashed
1905 			 * and was on the free list (i.e., had no mappings).
1906 			 *
1907 			 * Set the reference bit to protect
1908 			 * against immediate pageout
1909 			 *
1910 			 * XXXmh modify freelist code to set reference
1911 			 * bit so we don't have to do it here.
1912 			 */
1913 			page_set_props(pp, P_REF);
1914 		} else {
1915 			ASSERT(MUTEX_HELD(phm));
1916 			mutex_exit(phm);
1917 			phm = NULL;
1918 			/*
1919 			 * NOTE: This should not happen for pages associated
1920 			 *	 with kernel vnode 'kvp'.
1921 			 */
1922 			/* XX64 - to debug why this happens! */
1923 			ASSERT(!VN_ISKAS(vp));
1924 			if (VN_ISKAS(vp))
1925 				cmn_err(CE_NOTE,
1926 				    "page_create: page not expected "
1927 				    "in hash list for kernel vnode - pp 0x%p",
1928 				    (void *)pp);
1929 			VM_STAT_ADD(page_create_exists);
1930 			goto fail;
1931 		}
1932 
1933 		/*
1934 		 * Got a page!  It is locked.  Acquire the i/o
1935 		 * lock since we are going to use the p_next and
1936 		 * p_prev fields to link the requested pages together.
1937 		 */
1938 		page_io_lock(pp);
1939 		page_add(&plist, pp);
1940 		plist = plist->p_next;
1941 		off += MMU_PAGESIZE;
1942 		vaddr += MMU_PAGESIZE;
1943 	}
1944 
1945 	check_dma(mattr, plist, pages_req);
1946 	return (plist);
1947 
1948 fail:
1949 	if (npp != NULL) {
1950 		/*
1951 		 * Did not need this page after all.
1952 		 * Put it back on the free list.
1953 		 */
1954 		VM_STAT_ADD(page_create_putbacks);
1955 		PP_SETFREE(npp);
1956 		PP_SETAGED(npp);
1957 		npp->p_offset = (u_offset_t)-1;
1958 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
1959 		page_unlock(npp);
1960 	}
1961 
1962 	/*
1963 	 * Give up the pages we already got.
1964 	 */
1965 	while (plist != NULL) {
1966 		pp = plist;
1967 		page_sub(&plist, pp);
1968 		page_io_unlock(pp);
1969 		plist_len++;
1970 		/*LINTED: constant in conditional ctx*/
1971 		VN_DISPOSE(pp, B_INVAL, 0, kcred);
1972 	}
1973 
1974 	/*
1975 	 * VN_DISPOSE does freemem accounting for the pages in plist
1976 	 * by calling page_free. So, we need to undo the pcf accounting
1977 	 * for only the remaining pages.
1978 	 */
1979 	VM_STAT_ADD(page_create_putbacks);
1980 	page_create_putback(pages_req - plist_len);
1981 
1982 	return (NULL);
1983 }
1984 
1985 
1986 /*
1987  * Copy the data from the physical page represented by "frompp" to
1988  * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and
1989  * CPU->cpu_caddr2.  It assumes that no one uses either map at interrupt
1990  * level and no one sleeps with an active mapping there.
1991  *
1992  * Note that the ref/mod bits in the page_t's are not affected by
1993  * this operation, hence it is up to the caller to update them appropriately.
1994  */
1995 int
1996 ppcopy(page_t *frompp, page_t *topp)
1997 {
1998 	caddr_t		pp_addr1;
1999 	caddr_t		pp_addr2;
2000 	void		*pte1;
2001 	void		*pte2;
2002 	kmutex_t	*ppaddr_mutex;
2003 	label_t		ljb;
2004 	int		ret = 1;
2005 
2006 	ASSERT_STACK_ALIGNED();
2007 	ASSERT(PAGE_LOCKED(frompp));
2008 	ASSERT(PAGE_LOCKED(topp));
2009 
2010 	if (kpm_enable) {
2011 		pp_addr1 = hat_kpm_page2va(frompp, 0);
2012 		pp_addr2 = hat_kpm_page2va(topp, 0);
2013 		kpreempt_disable();
2014 	} else {
2015 		/*
2016 		 * disable pre-emption so that CPU can't change
2017 		 */
2018 		kpreempt_disable();
2019 
2020 		pp_addr1 = CPU->cpu_caddr1;
2021 		pp_addr2 = CPU->cpu_caddr2;
2022 		pte1 = (void *)CPU->cpu_caddr1pte;
2023 		pte2 = (void *)CPU->cpu_caddr2pte;
2024 
2025 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
2026 		mutex_enter(ppaddr_mutex);
2027 
2028 		hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1,
2029 		    PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST);
2030 		hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2,
2031 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
2032 		    HAT_LOAD_NOCONSIST);
2033 	}
2034 
2035 	if (on_fault(&ljb)) {
2036 		ret = 0;
2037 		goto faulted;
2038 	}
2039 	if (use_sse_pagecopy)
2040 		hwblkpagecopy(pp_addr1, pp_addr2);
2041 	else
2042 		bcopy(pp_addr1, pp_addr2, PAGESIZE);
2043 
2044 	no_fault();
2045 faulted:
2046 	if (!kpm_enable)
2047 		mutex_exit(ppaddr_mutex);
2048 	kpreempt_enable();
2049 	return (ret);
2050 }
2051 
2052 /*
2053  * Zero the physical page from off to off + len given by `pp'
2054  * without changing the reference and modified bits of page.
2055  *
2056  * We use this using CPU private page address #2, see ppcopy() for more info.
2057  * pagezero() must not be called at interrupt level.
2058  */
2059 void
2060 pagezero(page_t *pp, uint_t off, uint_t len)
2061 {
2062 	caddr_t		pp_addr2;
2063 	void		*pte2;
2064 	kmutex_t	*ppaddr_mutex;
2065 
2066 	ASSERT_STACK_ALIGNED();
2067 	ASSERT(len <= MMU_PAGESIZE);
2068 	ASSERT(off <= MMU_PAGESIZE);
2069 	ASSERT(off + len <= MMU_PAGESIZE);
2070 	ASSERT(PAGE_LOCKED(pp));
2071 
2072 	if (kpm_enable) {
2073 		pp_addr2 = hat_kpm_page2va(pp, 0);
2074 		kpreempt_disable();
2075 	} else {
2076 		kpreempt_disable();
2077 
2078 		pp_addr2 = CPU->cpu_caddr2;
2079 		pte2 = (void *)CPU->cpu_caddr2pte;
2080 
2081 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
2082 		mutex_enter(ppaddr_mutex);
2083 
2084 		hat_mempte_remap(page_pptonum(pp), pp_addr2, pte2,
2085 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
2086 		    HAT_LOAD_NOCONSIST);
2087 	}
2088 
2089 	if (use_sse_pagezero)
2090 		hwblkclr(pp_addr2 + off, len);
2091 	else
2092 		bzero(pp_addr2 + off, len);
2093 
2094 	if (!kpm_enable)
2095 		mutex_exit(ppaddr_mutex);
2096 	kpreempt_enable();
2097 }
2098 
2099 /*
2100  * Platform-dependent page scrub call.
2101  */
2102 void
2103 pagescrub(page_t *pp, uint_t off, uint_t len)
2104 {
2105 	/*
2106 	 * For now, we rely on the fact that pagezero() will
2107 	 * always clear UEs.
2108 	 */
2109 	pagezero(pp, off, len);
2110 }
2111 
2112 /*
2113  * set up two private addresses for use on a given CPU for use in ppcopy()
2114  */
2115 void
2116 setup_vaddr_for_ppcopy(struct cpu *cpup)
2117 {
2118 	void *addr;
2119 	void *pte;
2120 
2121 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
2122 	pte = hat_mempte_setup(addr);
2123 	cpup->cpu_caddr1 = addr;
2124 	cpup->cpu_caddr1pte = (pteptr_t)pte;
2125 
2126 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
2127 	pte = hat_mempte_setup(addr);
2128 	cpup->cpu_caddr2 = addr;
2129 	cpup->cpu_caddr2pte = (pteptr_t)pte;
2130 
2131 	mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL);
2132 }
2133 
2134 
2135 /*
2136  * Create the pageout scanner thread. The thread has to
2137  * start at procedure with process pp and priority pri.
2138  */
2139 void
2140 pageout_init(void (*procedure)(), proc_t *pp, pri_t pri)
2141 {
2142 	(void) thread_create(NULL, 0, procedure, NULL, 0, pp, TS_RUN, pri);
2143 }
2144 
2145 /*
2146  * Function for flushing D-cache when performing module relocations
2147  * to an alternate mapping.  Unnecessary on Intel / AMD platforms.
2148  */
2149 void
2150 dcache_flushall()
2151 {}
2152 
2153 size_t
2154 exec_get_spslew(void)
2155 {
2156 	return (0);
2157 }
2158