xref: /titanic_44/usr/src/uts/i86pc/vm/htable.c (revision 287247a826fa2ab8d01f6c8f276d405eb08420f8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/sysmacros.h>
28 #include <sys/kmem.h>
29 #include <sys/atomic.h>
30 #include <sys/bitmap.h>
31 #include <sys/machparam.h>
32 #include <sys/machsystm.h>
33 #include <sys/mman.h>
34 #include <sys/systm.h>
35 #include <sys/cpuvar.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/cpu.h>
39 #include <sys/kmem.h>
40 #include <sys/disp.h>
41 #include <sys/vmem.h>
42 #include <sys/vmsystm.h>
43 #include <sys/promif.h>
44 #include <sys/var.h>
45 #include <sys/x86_archext.h>
46 #include <sys/archsystm.h>
47 #include <sys/bootconf.h>
48 #include <sys/dumphdr.h>
49 #include <vm/seg_kmem.h>
50 #include <vm/seg_kpm.h>
51 #include <vm/hat.h>
52 #include <vm/hat_i86.h>
53 #include <sys/cmn_err.h>
54 #include <sys/panic.h>
55 
56 #ifdef __xpv
57 #include <sys/hypervisor.h>
58 #include <sys/xpv_panic.h>
59 #endif
60 
61 #include <sys/bootinfo.h>
62 #include <vm/kboot_mmu.h>
63 
64 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count);
65 
66 kmem_cache_t *htable_cache;
67 
68 /*
69  * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
70  * is used in order to facilitate testing of the htable_steal() code.
71  * By resetting htable_reserve_amount to a lower value, we can force
72  * stealing to occur.  The reserve amount is a guess to get us through boot.
73  */
74 #define	HTABLE_RESERVE_AMOUNT	(200)
75 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
76 kmutex_t htable_reserve_mutex;
77 uint_t htable_reserve_cnt;
78 htable_t *htable_reserve_pool;
79 
80 /*
81  * Used to hand test htable_steal().
82  */
83 #ifdef DEBUG
84 ulong_t force_steal = 0;
85 ulong_t ptable_cnt = 0;
86 #endif
87 
88 /*
89  * This variable is so that we can tune this via /etc/system
90  * Any value works, but a power of two <= mmu.ptes_per_table is best.
91  */
92 uint_t htable_steal_passes = 8;
93 
94 /*
95  * mutex stuff for access to htable hash
96  */
97 #define	NUM_HTABLE_MUTEX 128
98 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
99 #define	HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
100 
101 #define	HTABLE_ENTER(h)	mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
102 #define	HTABLE_EXIT(h)	mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
103 
104 /*
105  * forward declarations
106  */
107 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
108 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
109 static void htable_free(htable_t *ht);
110 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index);
111 static void x86pte_release_pagetable(htable_t *ht);
112 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
113 	x86pte_t new);
114 
115 /*
116  * A counter to track if we are stealing or reaping htables. When non-zero
117  * htable_free() will directly free htables (either to the reserve or kmem)
118  * instead of putting them in a hat's htable cache.
119  */
120 uint32_t htable_dont_cache = 0;
121 
122 /*
123  * Track the number of active pagetables, so we can know how many to reap
124  */
125 static uint32_t active_ptables = 0;
126 
127 #ifdef __xpv
128 /*
129  * Deal with hypervisor complications.
130  */
131 void
132 xen_flush_va(caddr_t va)
133 {
134 	struct mmuext_op t;
135 	uint_t count;
136 
137 	if (IN_XPV_PANIC()) {
138 		mmu_tlbflush_entry((caddr_t)va);
139 	} else {
140 		t.cmd = MMUEXT_INVLPG_LOCAL;
141 		t.arg1.linear_addr = (uintptr_t)va;
142 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
143 			panic("HYPERVISOR_mmuext_op() failed");
144 		ASSERT(count == 1);
145 	}
146 }
147 
148 void
149 xen_gflush_va(caddr_t va, cpuset_t cpus)
150 {
151 	struct mmuext_op t;
152 	uint_t count;
153 
154 	if (IN_XPV_PANIC()) {
155 		mmu_tlbflush_entry((caddr_t)va);
156 		return;
157 	}
158 
159 	t.cmd = MMUEXT_INVLPG_MULTI;
160 	t.arg1.linear_addr = (uintptr_t)va;
161 	/*LINTED: constant in conditional context*/
162 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
163 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
164 		panic("HYPERVISOR_mmuext_op() failed");
165 	ASSERT(count == 1);
166 }
167 
168 void
169 xen_flush_tlb()
170 {
171 	struct mmuext_op t;
172 	uint_t count;
173 
174 	if (IN_XPV_PANIC()) {
175 		xpv_panic_reload_cr3();
176 	} else {
177 		t.cmd = MMUEXT_TLB_FLUSH_LOCAL;
178 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
179 			panic("HYPERVISOR_mmuext_op() failed");
180 		ASSERT(count == 1);
181 	}
182 }
183 
184 void
185 xen_gflush_tlb(cpuset_t cpus)
186 {
187 	struct mmuext_op t;
188 	uint_t count;
189 
190 	ASSERT(!IN_XPV_PANIC());
191 	t.cmd = MMUEXT_TLB_FLUSH_MULTI;
192 	/*LINTED: constant in conditional context*/
193 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
194 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
195 		panic("HYPERVISOR_mmuext_op() failed");
196 	ASSERT(count == 1);
197 }
198 
199 /*
200  * Install/Adjust a kpm mapping under the hypervisor.
201  * Value of "how" should be:
202  *	PT_WRITABLE | PT_VALID - regular kpm mapping
203  *	PT_VALID - make mapping read-only
204  *	0	- remove mapping
205  *
206  * returns 0 on success. non-zero for failure.
207  */
208 int
209 xen_kpm_page(pfn_t pfn, uint_t how)
210 {
211 	paddr_t pa = mmu_ptob((paddr_t)pfn);
212 	x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD;
213 
214 	if (kpm_vbase == NULL)
215 		return (0);
216 
217 	if (how)
218 		pte |= pa_to_ma(pa) | how;
219 	else
220 		pte = 0;
221 	return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa,
222 	    pte, UVMF_INVLPG | UVMF_ALL));
223 }
224 
225 void
226 xen_pin(pfn_t pfn, level_t lvl)
227 {
228 	struct mmuext_op t;
229 	uint_t count;
230 
231 	t.cmd = MMUEXT_PIN_L1_TABLE + lvl;
232 	t.arg1.mfn = pfn_to_mfn(pfn);
233 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
234 		panic("HYPERVISOR_mmuext_op() failed");
235 	ASSERT(count == 1);
236 }
237 
238 void
239 xen_unpin(pfn_t pfn)
240 {
241 	struct mmuext_op t;
242 	uint_t count;
243 
244 	t.cmd = MMUEXT_UNPIN_TABLE;
245 	t.arg1.mfn = pfn_to_mfn(pfn);
246 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
247 		panic("HYPERVISOR_mmuext_op() failed");
248 	ASSERT(count == 1);
249 }
250 
251 static void
252 xen_map(uint64_t pte, caddr_t va)
253 {
254 	if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte,
255 	    UVMF_INVLPG | UVMF_LOCAL))
256 		panic("HYPERVISOR_update_va_mapping() failed");
257 }
258 #endif /* __xpv */
259 
260 /*
261  * Allocate a memory page for a hardware page table.
262  *
263  * A wrapper around page_get_physical(), with some extra checks.
264  */
265 static pfn_t
266 ptable_alloc(uintptr_t seed)
267 {
268 	pfn_t pfn;
269 	page_t *pp;
270 
271 	pfn = PFN_INVALID;
272 
273 	/*
274 	 * The first check is to see if there is memory in the system. If we
275 	 * drop to throttlefree, then fail the ptable_alloc() and let the
276 	 * stealing code kick in. Note that we have to do this test here,
277 	 * since the test in page_create_throttle() would let the NOSLEEP
278 	 * allocation go through and deplete the page reserves.
279 	 *
280 	 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
281 	 */
282 	if (!NOMEMWAIT() && freemem <= throttlefree + 1)
283 		return (PFN_INVALID);
284 
285 #ifdef DEBUG
286 	/*
287 	 * This code makes htable_steal() easier to test. By setting
288 	 * force_steal we force pagetable allocations to fall
289 	 * into the stealing code. Roughly 1 in ever "force_steal"
290 	 * page table allocations will fail.
291 	 */
292 	if (proc_pageout != NULL && force_steal > 1 &&
293 	    ++ptable_cnt > force_steal) {
294 		ptable_cnt = 0;
295 		return (PFN_INVALID);
296 	}
297 #endif /* DEBUG */
298 
299 	pp = page_get_physical(seed);
300 	if (pp == NULL)
301 		return (PFN_INVALID);
302 	ASSERT(PAGE_SHARED(pp));
303 	pfn = pp->p_pagenum;
304 	if (pfn == PFN_INVALID)
305 		panic("ptable_alloc(): Invalid PFN!!");
306 	atomic_inc_32(&active_ptables);
307 	HATSTAT_INC(hs_ptable_allocs);
308 	return (pfn);
309 }
310 
311 /*
312  * Free an htable's associated page table page.  See the comments
313  * for ptable_alloc().
314  */
315 static void
316 ptable_free(pfn_t pfn)
317 {
318 	page_t *pp = page_numtopp_nolock(pfn);
319 
320 	/*
321 	 * need to destroy the page used for the pagetable
322 	 */
323 	ASSERT(pfn != PFN_INVALID);
324 	HATSTAT_INC(hs_ptable_frees);
325 	atomic_dec_32(&active_ptables);
326 	if (pp == NULL)
327 		panic("ptable_free(): no page for pfn!");
328 	ASSERT(PAGE_SHARED(pp));
329 	ASSERT(pfn == pp->p_pagenum);
330 	ASSERT(!IN_XPV_PANIC());
331 
332 	/*
333 	 * Get an exclusive lock, might have to wait for a kmem reader.
334 	 */
335 	if (!page_tryupgrade(pp)) {
336 		u_offset_t off = pp->p_offset;
337 		page_unlock(pp);
338 		pp = page_lookup(&kvp, off, SE_EXCL);
339 		if (pp == NULL)
340 			panic("page not found");
341 	}
342 #ifdef __xpv
343 	if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0)
344 		panic("failure making kpm r/w pfn=0x%lx", pfn);
345 #endif
346 	page_hashout(pp, NULL);
347 	page_free(pp, 1);
348 	page_unresv(1);
349 }
350 
351 /*
352  * Put one htable on the reserve list.
353  */
354 static void
355 htable_put_reserve(htable_t *ht)
356 {
357 	ht->ht_hat = NULL;		/* no longer tied to a hat */
358 	ASSERT(ht->ht_pfn == PFN_INVALID);
359 	HATSTAT_INC(hs_htable_rputs);
360 	mutex_enter(&htable_reserve_mutex);
361 	ht->ht_next = htable_reserve_pool;
362 	htable_reserve_pool = ht;
363 	++htable_reserve_cnt;
364 	mutex_exit(&htable_reserve_mutex);
365 }
366 
367 /*
368  * Take one htable from the reserve.
369  */
370 static htable_t *
371 htable_get_reserve(void)
372 {
373 	htable_t *ht = NULL;
374 
375 	mutex_enter(&htable_reserve_mutex);
376 	if (htable_reserve_cnt != 0) {
377 		ht = htable_reserve_pool;
378 		ASSERT(ht != NULL);
379 		ASSERT(ht->ht_pfn == PFN_INVALID);
380 		htable_reserve_pool = ht->ht_next;
381 		--htable_reserve_cnt;
382 		HATSTAT_INC(hs_htable_rgets);
383 	}
384 	mutex_exit(&htable_reserve_mutex);
385 	return (ht);
386 }
387 
388 /*
389  * Allocate initial htables and put them on the reserve list
390  */
391 void
392 htable_initial_reserve(uint_t count)
393 {
394 	htable_t *ht;
395 
396 	count += HTABLE_RESERVE_AMOUNT;
397 	while (count > 0) {
398 		ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
399 		ASSERT(ht != NULL);
400 
401 		ASSERT(use_boot_reserve);
402 		ht->ht_pfn = PFN_INVALID;
403 		htable_put_reserve(ht);
404 		--count;
405 	}
406 }
407 
408 /*
409  * Readjust the reserves after a thread finishes using them.
410  */
411 void
412 htable_adjust_reserve()
413 {
414 	htable_t *ht;
415 
416 	/*
417 	 * Free any excess htables in the reserve list
418 	 */
419 	while (htable_reserve_cnt > htable_reserve_amount &&
420 	    !USE_HAT_RESERVES()) {
421 		ht = htable_get_reserve();
422 		if (ht == NULL)
423 			return;
424 		ASSERT(ht->ht_pfn == PFN_INVALID);
425 		kmem_cache_free(htable_cache, ht);
426 	}
427 }
428 
429 
430 /*
431  * This routine steals htables from user processes for htable_alloc() or
432  * for htable_reap().
433  */
434 static htable_t *
435 htable_steal(uint_t cnt)
436 {
437 	hat_t		*hat = kas.a_hat;	/* list starts with khat */
438 	htable_t	*list = NULL;
439 	htable_t	*ht;
440 	htable_t	*higher;
441 	uint_t		h;
442 	uint_t		h_start;
443 	static uint_t	h_seed = 0;
444 	uint_t		e;
445 	uintptr_t	va;
446 	x86pte_t	pte;
447 	uint_t		stolen = 0;
448 	uint_t		pass;
449 	uint_t		threshold;
450 
451 	/*
452 	 * Limit htable_steal_passes to something reasonable
453 	 */
454 	if (htable_steal_passes == 0)
455 		htable_steal_passes = 1;
456 	if (htable_steal_passes > mmu.ptes_per_table)
457 		htable_steal_passes = mmu.ptes_per_table;
458 
459 	/*
460 	 * Loop through all user hats. The 1st pass takes cached htables that
461 	 * aren't in use. The later passes steal by removing mappings, too.
462 	 */
463 	atomic_inc_32(&htable_dont_cache);
464 	for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) {
465 		threshold = pass * mmu.ptes_per_table / htable_steal_passes;
466 		hat = kas.a_hat;
467 		for (;;) {
468 
469 			/*
470 			 * Clear the victim flag and move to next hat
471 			 */
472 			mutex_enter(&hat_list_lock);
473 			if (hat != kas.a_hat) {
474 				hat->hat_flags &= ~HAT_VICTIM;
475 				cv_broadcast(&hat_list_cv);
476 			}
477 			hat = hat->hat_next;
478 
479 			/*
480 			 * Skip any hat that is already being stolen from.
481 			 *
482 			 * We skip SHARED hats, as these are dummy
483 			 * hats that host ISM shared page tables.
484 			 *
485 			 * We also skip if HAT_FREEING because hat_pte_unmap()
486 			 * won't zero out the PTE's. That would lead to hitting
487 			 * stale PTEs either here or under hat_unload() when we
488 			 * steal and unload the same page table in competing
489 			 * threads.
490 			 */
491 			while (hat != NULL &&
492 			    (hat->hat_flags &
493 			    (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
494 				hat = hat->hat_next;
495 
496 			if (hat == NULL) {
497 				mutex_exit(&hat_list_lock);
498 				break;
499 			}
500 
501 			/*
502 			 * Are we finished?
503 			 */
504 			if (stolen == cnt) {
505 				/*
506 				 * Try to spread the pain of stealing,
507 				 * move victim HAT to the end of the HAT list.
508 				 */
509 				if (pass >= 1 && cnt == 1 &&
510 				    kas.a_hat->hat_prev != hat) {
511 
512 					/* unlink victim hat */
513 					if (hat->hat_prev)
514 						hat->hat_prev->hat_next =
515 						    hat->hat_next;
516 					else
517 						kas.a_hat->hat_next =
518 						    hat->hat_next;
519 					if (hat->hat_next)
520 						hat->hat_next->hat_prev =
521 						    hat->hat_prev;
522 					else
523 						kas.a_hat->hat_prev =
524 						    hat->hat_prev;
525 
526 
527 					/* relink at end of hat list */
528 					hat->hat_next = NULL;
529 					hat->hat_prev = kas.a_hat->hat_prev;
530 					if (hat->hat_prev)
531 						hat->hat_prev->hat_next = hat;
532 					else
533 						kas.a_hat->hat_next = hat;
534 					kas.a_hat->hat_prev = hat;
535 
536 				}
537 
538 				mutex_exit(&hat_list_lock);
539 				break;
540 			}
541 
542 			/*
543 			 * Mark the HAT as a stealing victim.
544 			 */
545 			hat->hat_flags |= HAT_VICTIM;
546 			mutex_exit(&hat_list_lock);
547 
548 			/*
549 			 * Take any htables from the hat's cached "free" list.
550 			 */
551 			hat_enter(hat);
552 			while ((ht = hat->hat_ht_cached) != NULL &&
553 			    stolen < cnt) {
554 				hat->hat_ht_cached = ht->ht_next;
555 				ht->ht_next = list;
556 				list = ht;
557 				++stolen;
558 			}
559 			hat_exit(hat);
560 
561 			/*
562 			 * Don't steal on first pass.
563 			 */
564 			if (pass == 0 || stolen == cnt)
565 				continue;
566 
567 			/*
568 			 * Search the active htables for one to steal.
569 			 * Start at a different hash bucket every time to
570 			 * help spread the pain of stealing.
571 			 */
572 			h = h_start = h_seed++ % hat->hat_num_hash;
573 			do {
574 				higher = NULL;
575 				HTABLE_ENTER(h);
576 				for (ht = hat->hat_ht_hash[h]; ht;
577 				    ht = ht->ht_next) {
578 
579 					/*
580 					 * Can we rule out reaping?
581 					 */
582 					if (ht->ht_busy != 0 ||
583 					    (ht->ht_flags & HTABLE_SHARED_PFN)||
584 					    ht->ht_level > 0 ||
585 					    ht->ht_valid_cnt > threshold ||
586 					    ht->ht_lock_cnt != 0)
587 						continue;
588 
589 					/*
590 					 * Increment busy so the htable can't
591 					 * disappear. We drop the htable mutex
592 					 * to avoid deadlocks with
593 					 * hat_pageunload() and the hment mutex
594 					 * while we call hat_pte_unmap()
595 					 */
596 					++ht->ht_busy;
597 					HTABLE_EXIT(h);
598 
599 					/*
600 					 * Try stealing.
601 					 * - unload and invalidate all PTEs
602 					 */
603 					for (e = 0, va = ht->ht_vaddr;
604 					    e < HTABLE_NUM_PTES(ht) &&
605 					    ht->ht_valid_cnt > 0 &&
606 					    ht->ht_busy == 1 &&
607 					    ht->ht_lock_cnt == 0;
608 					    ++e, va += MMU_PAGESIZE) {
609 						pte = x86pte_get(ht, e);
610 						if (!PTE_ISVALID(pte))
611 							continue;
612 						hat_pte_unmap(ht, e,
613 						    HAT_UNLOAD, pte, NULL);
614 					}
615 
616 					/*
617 					 * Reacquire htable lock. If we didn't
618 					 * remove all mappings in the table,
619 					 * or another thread added a new mapping
620 					 * behind us, give up on this table.
621 					 */
622 					HTABLE_ENTER(h);
623 					if (ht->ht_busy != 1 ||
624 					    ht->ht_valid_cnt != 0 ||
625 					    ht->ht_lock_cnt != 0) {
626 						--ht->ht_busy;
627 						continue;
628 					}
629 
630 					/*
631 					 * Steal it and unlink the page table.
632 					 */
633 					higher = ht->ht_parent;
634 					unlink_ptp(higher, ht, ht->ht_vaddr);
635 
636 					/*
637 					 * remove from the hash list
638 					 */
639 					if (ht->ht_next)
640 						ht->ht_next->ht_prev =
641 						    ht->ht_prev;
642 
643 					if (ht->ht_prev) {
644 						ht->ht_prev->ht_next =
645 						    ht->ht_next;
646 					} else {
647 						ASSERT(hat->hat_ht_hash[h] ==
648 						    ht);
649 						hat->hat_ht_hash[h] =
650 						    ht->ht_next;
651 					}
652 
653 					/*
654 					 * Break to outer loop to release the
655 					 * higher (ht_parent) pagetable. This
656 					 * spreads out the pain caused by
657 					 * pagefaults.
658 					 */
659 					ht->ht_next = list;
660 					list = ht;
661 					++stolen;
662 					break;
663 				}
664 				HTABLE_EXIT(h);
665 				if (higher != NULL)
666 					htable_release(higher);
667 				if (++h == hat->hat_num_hash)
668 					h = 0;
669 			} while (stolen < cnt && h != h_start);
670 		}
671 	}
672 	atomic_dec_32(&htable_dont_cache);
673 	return (list);
674 }
675 
676 /*
677  * This is invoked from kmem when the system is low on memory.  We try
678  * to free hments, htables, and ptables to improve the memory situation.
679  */
680 /*ARGSUSED*/
681 static void
682 htable_reap(void *handle)
683 {
684 	uint_t		reap_cnt;
685 	htable_t	*list;
686 	htable_t	*ht;
687 
688 	HATSTAT_INC(hs_reap_attempts);
689 	if (!can_steal_post_boot)
690 		return;
691 
692 	/*
693 	 * Try to reap 5% of the page tables bounded by a maximum of
694 	 * 5% of physmem and a minimum of 10.
695 	 */
696 	reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10);
697 
698 	/*
699 	 * Let htable_steal() do the work, we just call htable_free()
700 	 */
701 	XPV_DISALLOW_MIGRATE();
702 	list = htable_steal(reap_cnt);
703 	XPV_ALLOW_MIGRATE();
704 	while ((ht = list) != NULL) {
705 		list = ht->ht_next;
706 		HATSTAT_INC(hs_reaped);
707 		htable_free(ht);
708 	}
709 
710 	/*
711 	 * Free up excess reserves
712 	 */
713 	htable_adjust_reserve();
714 	hment_adjust_reserve();
715 }
716 
717 /*
718  * Allocate an htable, stealing one or using the reserve if necessary
719  */
720 static htable_t *
721 htable_alloc(
722 	hat_t		*hat,
723 	uintptr_t	vaddr,
724 	level_t		level,
725 	htable_t	*shared)
726 {
727 	htable_t	*ht = NULL;
728 	uint_t		is_vlp;
729 	uint_t		is_bare = 0;
730 	uint_t		need_to_zero = 1;
731 	int		kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
732 
733 	if (level < 0 || level > TOP_LEVEL(hat))
734 		panic("htable_alloc(): level %d out of range\n", level);
735 
736 	is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
737 	if (is_vlp || shared != NULL)
738 		is_bare = 1;
739 
740 	/*
741 	 * First reuse a cached htable from the hat_ht_cached field, this
742 	 * avoids unnecessary trips through kmem/page allocators.
743 	 */
744 	if (hat->hat_ht_cached != NULL && !is_bare) {
745 		hat_enter(hat);
746 		ht = hat->hat_ht_cached;
747 		if (ht != NULL) {
748 			hat->hat_ht_cached = ht->ht_next;
749 			need_to_zero = 0;
750 			/* XX64 ASSERT() they're all zero somehow */
751 			ASSERT(ht->ht_pfn != PFN_INVALID);
752 		}
753 		hat_exit(hat);
754 	}
755 
756 	if (ht == NULL) {
757 		/*
758 		 * Allocate an htable, possibly refilling the reserves.
759 		 */
760 		if (USE_HAT_RESERVES()) {
761 			ht = htable_get_reserve();
762 		} else {
763 			/*
764 			 * Donate successful htable allocations to the reserve.
765 			 */
766 			for (;;) {
767 				ht = kmem_cache_alloc(htable_cache, kmflags);
768 				if (ht == NULL)
769 					break;
770 				ht->ht_pfn = PFN_INVALID;
771 				if (USE_HAT_RESERVES() ||
772 				    htable_reserve_cnt >= htable_reserve_amount)
773 					break;
774 				htable_put_reserve(ht);
775 			}
776 		}
777 
778 		/*
779 		 * allocate a page for the hardware page table if needed
780 		 */
781 		if (ht != NULL && !is_bare) {
782 			ht->ht_hat = hat;
783 			ht->ht_pfn = ptable_alloc((uintptr_t)ht);
784 			if (ht->ht_pfn == PFN_INVALID) {
785 				if (USE_HAT_RESERVES())
786 					htable_put_reserve(ht);
787 				else
788 					kmem_cache_free(htable_cache, ht);
789 				ht = NULL;
790 			}
791 		}
792 	}
793 
794 	/*
795 	 * If allocations failed, kick off a kmem_reap() and resort to
796 	 * htable steal(). We may spin here if the system is very low on
797 	 * memory. If the kernel itself has consumed all memory and kmem_reap()
798 	 * can't free up anything, then we'll really get stuck here.
799 	 * That should only happen in a system where the administrator has
800 	 * misconfigured VM parameters via /etc/system.
801 	 */
802 	while (ht == NULL && can_steal_post_boot) {
803 		kmem_reap();
804 		ht = htable_steal(1);
805 		HATSTAT_INC(hs_steals);
806 
807 		/*
808 		 * If we stole for a bare htable, release the pagetable page.
809 		 */
810 		if (ht != NULL) {
811 			if (is_bare) {
812 				ptable_free(ht->ht_pfn);
813 				ht->ht_pfn = PFN_INVALID;
814 #if defined(__xpv) && defined(__amd64)
815 			/*
816 			 * make stolen page table writable again in kpm
817 			 */
818 			} else if (kpm_vbase && xen_kpm_page(ht->ht_pfn,
819 			    PT_VALID | PT_WRITABLE) < 0) {
820 				panic("failure making kpm r/w pfn=0x%lx",
821 				    ht->ht_pfn);
822 #endif
823 			}
824 		}
825 	}
826 
827 	/*
828 	 * All attempts to allocate or steal failed. This should only happen
829 	 * if we run out of memory during boot, due perhaps to a huge
830 	 * boot_archive. At this point there's no way to continue.
831 	 */
832 	if (ht == NULL)
833 		panic("htable_alloc(): couldn't steal\n");
834 
835 #if defined(__amd64) && defined(__xpv)
836 	/*
837 	 * Under the 64-bit hypervisor, we have 2 top level page tables.
838 	 * If this allocation fails, we'll resort to stealing.
839 	 * We use the stolen page indirectly, by freeing the
840 	 * stolen htable first.
841 	 */
842 	if (level == mmu.max_level) {
843 		for (;;) {
844 			htable_t *stolen;
845 
846 			hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1);
847 			if (hat->hat_user_ptable != PFN_INVALID)
848 				break;
849 			stolen = htable_steal(1);
850 			if (stolen == NULL)
851 				panic("2nd steal ptable failed\n");
852 			htable_free(stolen);
853 		}
854 		block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable),
855 		    MMU_PAGESIZE);
856 	}
857 #endif
858 
859 	/*
860 	 * Shared page tables have all entries locked and entries may not
861 	 * be added or deleted.
862 	 */
863 	ht->ht_flags = 0;
864 	if (shared != NULL) {
865 		ASSERT(shared->ht_valid_cnt > 0);
866 		ht->ht_flags |= HTABLE_SHARED_PFN;
867 		ht->ht_pfn = shared->ht_pfn;
868 		ht->ht_lock_cnt = 0;
869 		ht->ht_valid_cnt = 0;		/* updated in hat_share() */
870 		ht->ht_shares = shared;
871 		need_to_zero = 0;
872 	} else {
873 		ht->ht_shares = NULL;
874 		ht->ht_lock_cnt = 0;
875 		ht->ht_valid_cnt = 0;
876 	}
877 
878 	/*
879 	 * setup flags, etc. for VLP htables
880 	 */
881 	if (is_vlp) {
882 		ht->ht_flags |= HTABLE_VLP;
883 		ASSERT(ht->ht_pfn == PFN_INVALID);
884 		need_to_zero = 0;
885 	}
886 
887 	/*
888 	 * fill in the htable
889 	 */
890 	ht->ht_hat = hat;
891 	ht->ht_parent = NULL;
892 	ht->ht_vaddr = vaddr;
893 	ht->ht_level = level;
894 	ht->ht_busy = 1;
895 	ht->ht_next = NULL;
896 	ht->ht_prev = NULL;
897 
898 	/*
899 	 * Zero out any freshly allocated page table
900 	 */
901 	if (need_to_zero)
902 		x86pte_zero(ht, 0, mmu.ptes_per_table);
903 
904 #if defined(__amd64) && defined(__xpv)
905 	if (!is_bare && kpm_vbase) {
906 		(void) xen_kpm_page(ht->ht_pfn, PT_VALID);
907 		if (level == mmu.max_level)
908 			(void) xen_kpm_page(hat->hat_user_ptable, PT_VALID);
909 	}
910 #endif
911 
912 	return (ht);
913 }
914 
915 /*
916  * Free up an htable, either to a hat's cached list, the reserves or
917  * back to kmem.
918  */
919 static void
920 htable_free(htable_t *ht)
921 {
922 	hat_t *hat = ht->ht_hat;
923 
924 	/*
925 	 * If the process isn't exiting, cache the free htable in the hat
926 	 * structure. We always do this for the boot time reserve. We don't
927 	 * do this if the hat is exiting or we are stealing/reaping htables.
928 	 */
929 	if (hat != NULL &&
930 	    !(ht->ht_flags & HTABLE_SHARED_PFN) &&
931 	    (use_boot_reserve ||
932 	    (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
933 		ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
934 		ASSERT(ht->ht_pfn != PFN_INVALID);
935 		hat_enter(hat);
936 		ht->ht_next = hat->hat_ht_cached;
937 		hat->hat_ht_cached = ht;
938 		hat_exit(hat);
939 		return;
940 	}
941 
942 	/*
943 	 * If we have a hardware page table, free it.
944 	 * We don't free page tables that are accessed by sharing.
945 	 */
946 	if (ht->ht_flags & HTABLE_SHARED_PFN) {
947 		ASSERT(ht->ht_pfn != PFN_INVALID);
948 	} else if (!(ht->ht_flags & HTABLE_VLP)) {
949 		ptable_free(ht->ht_pfn);
950 #if defined(__amd64) && defined(__xpv)
951 		if (ht->ht_level == mmu.max_level) {
952 			ptable_free(hat->hat_user_ptable);
953 			hat->hat_user_ptable = PFN_INVALID;
954 		}
955 #endif
956 	}
957 	ht->ht_pfn = PFN_INVALID;
958 
959 	/*
960 	 * Free it or put into reserves.
961 	 */
962 	if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) {
963 		htable_put_reserve(ht);
964 	} else {
965 		kmem_cache_free(htable_cache, ht);
966 		htable_adjust_reserve();
967 	}
968 }
969 
970 
971 /*
972  * This is called when a hat is being destroyed or swapped out. We reap all
973  * the remaining htables in the hat cache. If destroying all left over
974  * htables are also destroyed.
975  *
976  * We also don't need to invalidate any of the PTPs nor do any demapping.
977  */
978 void
979 htable_purge_hat(hat_t *hat)
980 {
981 	htable_t *ht;
982 	int h;
983 
984 	/*
985 	 * Purge the htable cache if just reaping.
986 	 */
987 	if (!(hat->hat_flags & HAT_FREEING)) {
988 		atomic_inc_32(&htable_dont_cache);
989 		for (;;) {
990 			hat_enter(hat);
991 			ht = hat->hat_ht_cached;
992 			if (ht == NULL) {
993 				hat_exit(hat);
994 				break;
995 			}
996 			hat->hat_ht_cached = ht->ht_next;
997 			hat_exit(hat);
998 			htable_free(ht);
999 		}
1000 		atomic_dec_32(&htable_dont_cache);
1001 		return;
1002 	}
1003 
1004 	/*
1005 	 * if freeing, no locking is needed
1006 	 */
1007 	while ((ht = hat->hat_ht_cached) != NULL) {
1008 		hat->hat_ht_cached = ht->ht_next;
1009 		htable_free(ht);
1010 	}
1011 
1012 	/*
1013 	 * walk thru the htable hash table and free all the htables in it.
1014 	 */
1015 	for (h = 0; h < hat->hat_num_hash; ++h) {
1016 		while ((ht = hat->hat_ht_hash[h]) != NULL) {
1017 			if (ht->ht_next)
1018 				ht->ht_next->ht_prev = ht->ht_prev;
1019 
1020 			if (ht->ht_prev) {
1021 				ht->ht_prev->ht_next = ht->ht_next;
1022 			} else {
1023 				ASSERT(hat->hat_ht_hash[h] == ht);
1024 				hat->hat_ht_hash[h] = ht->ht_next;
1025 			}
1026 			htable_free(ht);
1027 		}
1028 	}
1029 }
1030 
1031 /*
1032  * Unlink an entry for a table at vaddr and level out of the existing table
1033  * one level higher. We are always holding the HASH_ENTER() when doing this.
1034  */
1035 static void
1036 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
1037 {
1038 	uint_t		entry = htable_va2entry(vaddr, higher);
1039 	x86pte_t	expect = MAKEPTP(old->ht_pfn, old->ht_level);
1040 	x86pte_t	found;
1041 	hat_t		*hat = old->ht_hat;
1042 
1043 	ASSERT(higher->ht_busy > 0);
1044 	ASSERT(higher->ht_valid_cnt > 0);
1045 	ASSERT(old->ht_valid_cnt == 0);
1046 	found = x86pte_cas(higher, entry, expect, 0);
1047 #ifdef __xpv
1048 	/*
1049 	 * This is weird, but Xen apparently automatically unlinks empty
1050 	 * pagetables from the upper page table. So allow PTP to be 0 already.
1051 	 */
1052 	if (found != expect && found != 0)
1053 #else
1054 	if (found != expect)
1055 #endif
1056 		panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
1057 		    found, expect);
1058 
1059 	/*
1060 	 * When a top level VLP page table entry changes, we must issue
1061 	 * a reload of cr3 on all processors.
1062 	 *
1063 	 * If we don't need do do that, then we still have to INVLPG against
1064 	 * an address covered by the inner page table, as the latest processors
1065 	 * have TLB-like caches for non-leaf page table entries.
1066 	 */
1067 	if (!(hat->hat_flags & HAT_FREEING)) {
1068 		hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ?
1069 		    DEMAP_ALL_ADDR : old->ht_vaddr);
1070 	}
1071 
1072 	HTABLE_DEC(higher->ht_valid_cnt);
1073 }
1074 
1075 /*
1076  * Link an entry for a new table at vaddr and level into the existing table
1077  * one level higher. We are always holding the HASH_ENTER() when doing this.
1078  */
1079 static void
1080 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
1081 {
1082 	uint_t		entry = htable_va2entry(vaddr, higher);
1083 	x86pte_t	newptp = MAKEPTP(new->ht_pfn, new->ht_level);
1084 	x86pte_t	found;
1085 
1086 	ASSERT(higher->ht_busy > 0);
1087 
1088 	ASSERT(new->ht_level != mmu.max_level);
1089 
1090 	HTABLE_INC(higher->ht_valid_cnt);
1091 
1092 	found = x86pte_cas(higher, entry, 0, newptp);
1093 	if ((found & ~PT_REF) != 0)
1094 		panic("HAT: ptp not 0, found=" FMT_PTE, found);
1095 
1096 	/*
1097 	 * When any top level VLP page table entry changes, we must issue
1098 	 * a reload of cr3 on all processors using it.
1099 	 * We also need to do this for the kernel hat on PAE 32 bit kernel.
1100 	 */
1101 	if (
1102 #ifdef __i386
1103 	    (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) ||
1104 #endif
1105 	    (higher->ht_flags & HTABLE_VLP))
1106 		hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR);
1107 }
1108 
1109 /*
1110  * Release of hold on an htable. If this is the last use and the pagetable
1111  * is empty we may want to free it, then recursively look at the pagetable
1112  * above it. The recursion is handled by the outer while() loop.
1113  *
1114  * On the metal, during process exit, we don't bother unlinking the tables from
1115  * upper level pagetables. They are instead handled in bulk by hat_free_end().
1116  * We can't do this on the hypervisor as we need the page table to be
1117  * implicitly unpinnned before it goes to the free page lists. This can't
1118  * happen unless we fully unlink it from the page table hierarchy.
1119  */
1120 void
1121 htable_release(htable_t *ht)
1122 {
1123 	uint_t		hashval;
1124 	htable_t	*shared;
1125 	htable_t	*higher;
1126 	hat_t		*hat;
1127 	uintptr_t	va;
1128 	level_t		level;
1129 
1130 	while (ht != NULL) {
1131 		shared = NULL;
1132 		for (;;) {
1133 			hat = ht->ht_hat;
1134 			va = ht->ht_vaddr;
1135 			level = ht->ht_level;
1136 			hashval = HTABLE_HASH(hat, va, level);
1137 
1138 			/*
1139 			 * The common case is that this isn't the last use of
1140 			 * an htable so we don't want to free the htable.
1141 			 */
1142 			HTABLE_ENTER(hashval);
1143 			ASSERT(ht->ht_valid_cnt >= 0);
1144 			ASSERT(ht->ht_busy > 0);
1145 			if (ht->ht_valid_cnt > 0)
1146 				break;
1147 			if (ht->ht_busy > 1)
1148 				break;
1149 			ASSERT(ht->ht_lock_cnt == 0);
1150 
1151 #if !defined(__xpv)
1152 			/*
1153 			 * we always release empty shared htables
1154 			 */
1155 			if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
1156 
1157 				/*
1158 				 * don't release if in address space tear down
1159 				 */
1160 				if (hat->hat_flags & HAT_FREEING)
1161 					break;
1162 
1163 				/*
1164 				 * At and above max_page_level, free if it's for
1165 				 * a boot-time kernel mapping below kernelbase.
1166 				 */
1167 				if (level >= mmu.max_page_level &&
1168 				    (hat != kas.a_hat || va >= kernelbase))
1169 					break;
1170 			}
1171 #endif /* __xpv */
1172 
1173 			/*
1174 			 * Remember if we destroy an htable that shares its PFN
1175 			 * from elsewhere.
1176 			 */
1177 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
1178 				ASSERT(shared == NULL);
1179 				shared = ht->ht_shares;
1180 				HATSTAT_INC(hs_htable_unshared);
1181 			}
1182 
1183 			/*
1184 			 * Handle release of a table and freeing the htable_t.
1185 			 * Unlink it from the table higher (ie. ht_parent).
1186 			 */
1187 			higher = ht->ht_parent;
1188 			ASSERT(higher != NULL);
1189 
1190 			/*
1191 			 * Unlink the pagetable.
1192 			 */
1193 			unlink_ptp(higher, ht, va);
1194 
1195 			/*
1196 			 * remove this htable from its hash list
1197 			 */
1198 			if (ht->ht_next)
1199 				ht->ht_next->ht_prev = ht->ht_prev;
1200 
1201 			if (ht->ht_prev) {
1202 				ht->ht_prev->ht_next = ht->ht_next;
1203 			} else {
1204 				ASSERT(hat->hat_ht_hash[hashval] == ht);
1205 				hat->hat_ht_hash[hashval] = ht->ht_next;
1206 			}
1207 			HTABLE_EXIT(hashval);
1208 			htable_free(ht);
1209 			ht = higher;
1210 		}
1211 
1212 		ASSERT(ht->ht_busy >= 1);
1213 		--ht->ht_busy;
1214 		HTABLE_EXIT(hashval);
1215 
1216 		/*
1217 		 * If we released a shared htable, do a release on the htable
1218 		 * from which it shared
1219 		 */
1220 		ht = shared;
1221 	}
1222 }
1223 
1224 /*
1225  * Find the htable for the pagetable at the given level for the given address.
1226  * If found acquires a hold that eventually needs to be htable_release()d
1227  */
1228 htable_t *
1229 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1230 {
1231 	uintptr_t	base;
1232 	uint_t		hashval;
1233 	htable_t	*ht = NULL;
1234 
1235 	ASSERT(level >= 0);
1236 	ASSERT(level <= TOP_LEVEL(hat));
1237 
1238 	if (level == TOP_LEVEL(hat)) {
1239 #if defined(__amd64)
1240 		/*
1241 		 * 32 bit address spaces on 64 bit kernels need to check
1242 		 * for overflow of the 32 bit address space
1243 		 */
1244 		if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32))
1245 			return (NULL);
1246 #endif
1247 		base = 0;
1248 	} else {
1249 		base = vaddr & LEVEL_MASK(level + 1);
1250 	}
1251 
1252 	hashval = HTABLE_HASH(hat, base, level);
1253 	HTABLE_ENTER(hashval);
1254 	for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1255 		if (ht->ht_hat == hat &&
1256 		    ht->ht_vaddr == base &&
1257 		    ht->ht_level == level)
1258 			break;
1259 	}
1260 	if (ht)
1261 		++ht->ht_busy;
1262 
1263 	HTABLE_EXIT(hashval);
1264 	return (ht);
1265 }
1266 
1267 /*
1268  * Acquires a hold on a known htable (from a locked hment entry).
1269  */
1270 void
1271 htable_acquire(htable_t *ht)
1272 {
1273 	hat_t		*hat = ht->ht_hat;
1274 	level_t		level = ht->ht_level;
1275 	uintptr_t	base = ht->ht_vaddr;
1276 	uint_t		hashval = HTABLE_HASH(hat, base, level);
1277 
1278 	HTABLE_ENTER(hashval);
1279 #ifdef DEBUG
1280 	/*
1281 	 * make sure the htable is there
1282 	 */
1283 	{
1284 		htable_t	*h;
1285 
1286 		for (h = hat->hat_ht_hash[hashval];
1287 		    h && h != ht;
1288 		    h = h->ht_next)
1289 			;
1290 		ASSERT(h == ht);
1291 	}
1292 #endif /* DEBUG */
1293 	++ht->ht_busy;
1294 	HTABLE_EXIT(hashval);
1295 }
1296 
1297 /*
1298  * Find the htable for the pagetable at the given level for the given address.
1299  * If found acquires a hold that eventually needs to be htable_release()d
1300  * If not found the table is created.
1301  *
1302  * Since we can't hold a hash table mutex during allocation, we have to
1303  * drop it and redo the search on a create. Then we may have to free the newly
1304  * allocated htable if another thread raced in and created it ahead of us.
1305  */
1306 htable_t *
1307 htable_create(
1308 	hat_t		*hat,
1309 	uintptr_t	vaddr,
1310 	level_t		level,
1311 	htable_t	*shared)
1312 {
1313 	uint_t		h;
1314 	level_t		l;
1315 	uintptr_t	base;
1316 	htable_t	*ht;
1317 	htable_t	*higher = NULL;
1318 	htable_t	*new = NULL;
1319 
1320 	if (level < 0 || level > TOP_LEVEL(hat))
1321 		panic("htable_create(): level %d out of range\n", level);
1322 
1323 	/*
1324 	 * Create the page tables in top down order.
1325 	 */
1326 	for (l = TOP_LEVEL(hat); l >= level; --l) {
1327 		new = NULL;
1328 		if (l == TOP_LEVEL(hat))
1329 			base = 0;
1330 		else
1331 			base = vaddr & LEVEL_MASK(l + 1);
1332 
1333 		h = HTABLE_HASH(hat, base, l);
1334 try_again:
1335 		/*
1336 		 * look up the htable at this level
1337 		 */
1338 		HTABLE_ENTER(h);
1339 		if (l == TOP_LEVEL(hat)) {
1340 			ht = hat->hat_htable;
1341 		} else {
1342 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1343 				ASSERT(ht->ht_hat == hat);
1344 				if (ht->ht_vaddr == base &&
1345 				    ht->ht_level == l)
1346 					break;
1347 			}
1348 		}
1349 
1350 		/*
1351 		 * if we found the htable, increment its busy cnt
1352 		 * and if we had allocated a new htable, free it.
1353 		 */
1354 		if (ht != NULL) {
1355 			/*
1356 			 * If we find a pre-existing shared table, it must
1357 			 * share from the same place.
1358 			 */
1359 			if (l == level && shared && ht->ht_shares &&
1360 			    ht->ht_shares != shared) {
1361 				panic("htable shared from wrong place "
1362 				    "found htable=%p shared=%p",
1363 				    (void *)ht, (void *)shared);
1364 			}
1365 			++ht->ht_busy;
1366 			HTABLE_EXIT(h);
1367 			if (new)
1368 				htable_free(new);
1369 			if (higher != NULL)
1370 				htable_release(higher);
1371 			higher = ht;
1372 
1373 		/*
1374 		 * if we didn't find it on the first search
1375 		 * allocate a new one and search again
1376 		 */
1377 		} else if (new == NULL) {
1378 			HTABLE_EXIT(h);
1379 			new = htable_alloc(hat, base, l,
1380 			    l == level ? shared : NULL);
1381 			goto try_again;
1382 
1383 		/*
1384 		 * 2nd search and still not there, use "new" table
1385 		 * Link new table into higher, when not at top level.
1386 		 */
1387 		} else {
1388 			ht = new;
1389 			if (higher != NULL) {
1390 				link_ptp(higher, ht, base);
1391 				ht->ht_parent = higher;
1392 			}
1393 			ht->ht_next = hat->hat_ht_hash[h];
1394 			ASSERT(ht->ht_prev == NULL);
1395 			if (hat->hat_ht_hash[h])
1396 				hat->hat_ht_hash[h]->ht_prev = ht;
1397 			hat->hat_ht_hash[h] = ht;
1398 			HTABLE_EXIT(h);
1399 
1400 			/*
1401 			 * Note we don't do htable_release(higher).
1402 			 * That happens recursively when "new" is removed by
1403 			 * htable_release() or htable_steal().
1404 			 */
1405 			higher = ht;
1406 
1407 			/*
1408 			 * If we just created a new shared page table we
1409 			 * increment the shared htable's busy count, so that
1410 			 * it can't be the victim of a steal even if it's empty.
1411 			 */
1412 			if (l == level && shared) {
1413 				(void) htable_lookup(shared->ht_hat,
1414 				    shared->ht_vaddr, shared->ht_level);
1415 				HATSTAT_INC(hs_htable_shared);
1416 			}
1417 		}
1418 	}
1419 
1420 	return (ht);
1421 }
1422 
1423 /*
1424  * Inherit initial pagetables from the boot program. On the 64-bit
1425  * hypervisor we also temporarily mark the p_index field of page table
1426  * pages, so we know not to try making them writable in seg_kpm.
1427  */
1428 void
1429 htable_attach(
1430 	hat_t *hat,
1431 	uintptr_t base,
1432 	level_t level,
1433 	htable_t *parent,
1434 	pfn_t pfn)
1435 {
1436 	htable_t	*ht;
1437 	uint_t		h;
1438 	uint_t		i;
1439 	x86pte_t	pte;
1440 	x86pte_t	*ptep;
1441 	page_t		*pp;
1442 	extern page_t	*boot_claim_page(pfn_t);
1443 
1444 	ht = htable_get_reserve();
1445 	if (level == mmu.max_level)
1446 		kas.a_hat->hat_htable = ht;
1447 	ht->ht_hat = hat;
1448 	ht->ht_parent = parent;
1449 	ht->ht_vaddr = base;
1450 	ht->ht_level = level;
1451 	ht->ht_busy = 1;
1452 	ht->ht_next = NULL;
1453 	ht->ht_prev = NULL;
1454 	ht->ht_flags = 0;
1455 	ht->ht_pfn = pfn;
1456 	ht->ht_lock_cnt = 0;
1457 	ht->ht_valid_cnt = 0;
1458 	if (parent != NULL)
1459 		++parent->ht_busy;
1460 
1461 	h = HTABLE_HASH(hat, base, level);
1462 	HTABLE_ENTER(h);
1463 	ht->ht_next = hat->hat_ht_hash[h];
1464 	ASSERT(ht->ht_prev == NULL);
1465 	if (hat->hat_ht_hash[h])
1466 		hat->hat_ht_hash[h]->ht_prev = ht;
1467 	hat->hat_ht_hash[h] = ht;
1468 	HTABLE_EXIT(h);
1469 
1470 	/*
1471 	 * make sure the page table physical page is not FREE
1472 	 */
1473 	if (page_resv(1, KM_NOSLEEP) == 0)
1474 		panic("page_resv() failed in ptable alloc");
1475 
1476 	pp = boot_claim_page(pfn);
1477 	ASSERT(pp != NULL);
1478 
1479 	/*
1480 	 * Page table pages that were allocated by dboot or
1481 	 * in very early startup didn't go through boot_mapin()
1482 	 * and so won't have vnode/offsets. Fix that here.
1483 	 */
1484 	if (pp->p_vnode == NULL) {
1485 		/* match offset calculation in page_get_physical() */
1486 		u_offset_t offset = (uintptr_t)ht;
1487 		if (offset > kernelbase)
1488 			offset -= kernelbase;
1489 		offset <<= MMU_PAGESHIFT;
1490 #if defined(__amd64)
1491 		offset += mmu.hole_start;	/* something in VA hole */
1492 #else
1493 		offset += 1ULL << 40;		/* something > 4 Gig */
1494 #endif
1495 		ASSERT(page_exists(&kvp, offset) == NULL);
1496 		(void) page_hashin(pp, &kvp, offset, NULL);
1497 	}
1498 	page_downgrade(pp);
1499 #if defined(__xpv) && defined(__amd64)
1500 	/*
1501 	 * Record in the page_t that is a pagetable for segkpm setup.
1502 	 */
1503 	if (kpm_vbase)
1504 		pp->p_index = 1;
1505 #endif
1506 
1507 	/*
1508 	 * Count valid mappings and recursively attach lower level pagetables.
1509 	 */
1510 	ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1511 	for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) {
1512 		if (mmu.pae_hat)
1513 			pte = ptep[i];
1514 		else
1515 			pte = ((x86pte32_t *)ptep)[i];
1516 		if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) {
1517 			++ht->ht_valid_cnt;
1518 			if (!PTE_ISPAGE(pte, level)) {
1519 				htable_attach(hat, base, level - 1,
1520 				    ht, PTE2PFN(pte, level));
1521 				ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1522 			}
1523 		}
1524 		base += LEVEL_SIZE(level);
1525 		if (base == mmu.hole_start)
1526 			base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1527 	}
1528 
1529 	/*
1530 	 * As long as all the mappings we had were below kernel base
1531 	 * we can release the htable.
1532 	 */
1533 	if (base < kernelbase)
1534 		htable_release(ht);
1535 }
1536 
1537 /*
1538  * Walk through a given htable looking for the first valid entry.  This
1539  * routine takes both a starting and ending address.  The starting address
1540  * is required to be within the htable provided by the caller, but there is
1541  * no such restriction on the ending address.
1542  *
1543  * If the routine finds a valid entry in the htable (at or beyond the
1544  * starting address), the PTE (and its address) will be returned.
1545  * This PTE may correspond to either a page or a pagetable - it is the
1546  * caller's responsibility to determine which.  If no valid entry is
1547  * found, 0 (and invalid PTE) and the next unexamined address will be
1548  * returned.
1549  *
1550  * The loop has been carefully coded for optimization.
1551  */
1552 static x86pte_t
1553 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1554 {
1555 	uint_t e;
1556 	x86pte_t found_pte = (x86pte_t)0;
1557 	caddr_t pte_ptr;
1558 	caddr_t end_pte_ptr;
1559 	int l = ht->ht_level;
1560 	uintptr_t va = *vap & LEVEL_MASK(l);
1561 	size_t pgsize = LEVEL_SIZE(l);
1562 
1563 	ASSERT(va >= ht->ht_vaddr);
1564 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1565 
1566 	/*
1567 	 * Compute the starting index and ending virtual address
1568 	 */
1569 	e = htable_va2entry(va, ht);
1570 
1571 	/*
1572 	 * The following page table scan code knows that the valid
1573 	 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1574 	 */
1575 	pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0);
1576 	end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht));
1577 	pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e);
1578 	while (!PTE_ISVALID(*pte_ptr)) {
1579 		va += pgsize;
1580 		if (va >= eaddr)
1581 			break;
1582 		pte_ptr += mmu.pte_size;
1583 		ASSERT(pte_ptr <= end_pte_ptr);
1584 		if (pte_ptr == end_pte_ptr)
1585 			break;
1586 	}
1587 
1588 	/*
1589 	 * if we found a valid PTE, load the entire PTE
1590 	 */
1591 	if (va < eaddr && pte_ptr != end_pte_ptr)
1592 		found_pte = GET_PTE((x86pte_t *)pte_ptr);
1593 	x86pte_release_pagetable(ht);
1594 
1595 #if defined(__amd64)
1596 	/*
1597 	 * deal with VA hole on amd64
1598 	 */
1599 	if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1600 		va = mmu.hole_end + va - mmu.hole_start;
1601 #endif /* __amd64 */
1602 
1603 	*vap = va;
1604 	return (found_pte);
1605 }
1606 
1607 /*
1608  * Find the address and htable for the first populated translation at or
1609  * above the given virtual address.  The caller may also specify an upper
1610  * limit to the address range to search.  Uses level information to quickly
1611  * skip unpopulated sections of virtual address spaces.
1612  *
1613  * If not found returns NULL. When found, returns the htable and virt addr
1614  * and has a hold on the htable.
1615  */
1616 x86pte_t
1617 htable_walk(
1618 	struct hat *hat,
1619 	htable_t **htp,
1620 	uintptr_t *vaddr,
1621 	uintptr_t eaddr)
1622 {
1623 	uintptr_t va = *vaddr;
1624 	htable_t *ht;
1625 	htable_t *prev = *htp;
1626 	level_t l;
1627 	level_t max_mapped_level;
1628 	x86pte_t pte;
1629 
1630 	ASSERT(eaddr > va);
1631 
1632 	/*
1633 	 * If this is a user address, then we know we need not look beyond
1634 	 * kernelbase.
1635 	 */
1636 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1637 	    eaddr == HTABLE_WALK_TO_END);
1638 	if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1639 		eaddr = kernelbase;
1640 
1641 	/*
1642 	 * If we're coming in with a previous page table, search it first
1643 	 * without doing an htable_lookup(), this should be frequent.
1644 	 */
1645 	if (prev) {
1646 		ASSERT(prev->ht_busy > 0);
1647 		ASSERT(prev->ht_vaddr <= va);
1648 		l = prev->ht_level;
1649 		if (va <= HTABLE_LAST_PAGE(prev)) {
1650 			pte = htable_scan(prev, &va, eaddr);
1651 
1652 			if (PTE_ISPAGE(pte, l)) {
1653 				*vaddr = va;
1654 				*htp = prev;
1655 				return (pte);
1656 			}
1657 		}
1658 
1659 		/*
1660 		 * We found nothing in the htable provided by the caller,
1661 		 * so fall through and do the full search
1662 		 */
1663 		htable_release(prev);
1664 	}
1665 
1666 	/*
1667 	 * Find the level of the largest pagesize used by this HAT.
1668 	 */
1669 	if (hat->hat_ism_pgcnt > 0) {
1670 		max_mapped_level = mmu.umax_page_level;
1671 	} else {
1672 		max_mapped_level = 0;
1673 		for (l = 1; l <= mmu.max_page_level; ++l)
1674 			if (hat->hat_pages_mapped[l] != 0)
1675 				max_mapped_level = l;
1676 	}
1677 
1678 	while (va < eaddr && va >= *vaddr) {
1679 		ASSERT(!IN_VA_HOLE(va));
1680 
1681 		/*
1682 		 *  Find lowest table with any entry for given address.
1683 		 */
1684 		for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1685 			ht = htable_lookup(hat, va, l);
1686 			if (ht != NULL) {
1687 				pte = htable_scan(ht, &va, eaddr);
1688 				if (PTE_ISPAGE(pte, l)) {
1689 					*vaddr = va;
1690 					*htp = ht;
1691 					return (pte);
1692 				}
1693 				htable_release(ht);
1694 				break;
1695 			}
1696 
1697 			/*
1698 			 * No htable at this level for the address. If there
1699 			 * is no larger page size that could cover it, we can
1700 			 * skip right to the start of the next page table.
1701 			 */
1702 			ASSERT(l < TOP_LEVEL(hat));
1703 			if (l >= max_mapped_level) {
1704 				va = NEXT_ENTRY_VA(va, l + 1);
1705 				if (va >= eaddr)
1706 					break;
1707 			}
1708 		}
1709 	}
1710 
1711 	*vaddr = 0;
1712 	*htp = NULL;
1713 	return (0);
1714 }
1715 
1716 /*
1717  * Find the htable and page table entry index of the given virtual address
1718  * with pagesize at or below given level.
1719  * If not found returns NULL. When found, returns the htable, sets
1720  * entry, and has a hold on the htable.
1721  */
1722 htable_t *
1723 htable_getpte(
1724 	struct hat *hat,
1725 	uintptr_t vaddr,
1726 	uint_t *entry,
1727 	x86pte_t *pte,
1728 	level_t level)
1729 {
1730 	htable_t	*ht;
1731 	level_t		l;
1732 	uint_t		e;
1733 
1734 	ASSERT(level <= mmu.max_page_level);
1735 
1736 	for (l = 0; l <= level; ++l) {
1737 		ht = htable_lookup(hat, vaddr, l);
1738 		if (ht == NULL)
1739 			continue;
1740 		e = htable_va2entry(vaddr, ht);
1741 		if (entry != NULL)
1742 			*entry = e;
1743 		if (pte != NULL)
1744 			*pte = x86pte_get(ht, e);
1745 		return (ht);
1746 	}
1747 	return (NULL);
1748 }
1749 
1750 /*
1751  * Find the htable and page table entry index of the given virtual address.
1752  * There must be a valid page mapped at the given address.
1753  * If not found returns NULL. When found, returns the htable, sets
1754  * entry, and has a hold on the htable.
1755  */
1756 htable_t *
1757 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1758 {
1759 	htable_t	*ht;
1760 	uint_t		e;
1761 	x86pte_t	pte;
1762 
1763 	ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1764 	if (ht == NULL)
1765 		return (NULL);
1766 
1767 	if (entry)
1768 		*entry = e;
1769 
1770 	if (PTE_ISPAGE(pte, ht->ht_level))
1771 		return (ht);
1772 	htable_release(ht);
1773 	return (NULL);
1774 }
1775 
1776 
1777 void
1778 htable_init()
1779 {
1780 	/*
1781 	 * To save on kernel VA usage, we avoid debug information in 32 bit
1782 	 * kernels.
1783 	 */
1784 #if defined(__amd64)
1785 	int	kmem_flags = KMC_NOHASH;
1786 #elif defined(__i386)
1787 	int	kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1788 #endif
1789 
1790 	/*
1791 	 * initialize kmem caches
1792 	 */
1793 	htable_cache = kmem_cache_create("htable_t",
1794 	    sizeof (htable_t), 0, NULL, NULL,
1795 	    htable_reap, NULL, hat_memload_arena, kmem_flags);
1796 }
1797 
1798 /*
1799  * get the pte index for the virtual address in the given htable's pagetable
1800  */
1801 uint_t
1802 htable_va2entry(uintptr_t va, htable_t *ht)
1803 {
1804 	level_t	l = ht->ht_level;
1805 
1806 	ASSERT(va >= ht->ht_vaddr);
1807 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1808 	return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1));
1809 }
1810 
1811 /*
1812  * Given an htable and the index of a pte in it, return the virtual address
1813  * of the page.
1814  */
1815 uintptr_t
1816 htable_e2va(htable_t *ht, uint_t entry)
1817 {
1818 	level_t	l = ht->ht_level;
1819 	uintptr_t va;
1820 
1821 	ASSERT(entry < HTABLE_NUM_PTES(ht));
1822 	va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1823 
1824 	/*
1825 	 * Need to skip over any VA hole in top level table
1826 	 */
1827 #if defined(__amd64)
1828 	if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1829 		va += ((mmu.hole_end - mmu.hole_start) + 1);
1830 #endif
1831 
1832 	return (va);
1833 }
1834 
1835 /*
1836  * The code uses compare and swap instructions to read/write PTE's to
1837  * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1838  * will naturally be atomic.
1839  *
1840  * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1841  * are used to ensure that an interrupt won't overwrite a temporary mapping
1842  * while it's in use. If an interrupt thread tries to access a PTE, it will
1843  * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1844  */
1845 void
1846 x86pte_cpu_init(cpu_t *cpu)
1847 {
1848 	struct hat_cpu_info *hci;
1849 
1850 	hci = kmem_zalloc(sizeof (*hci), KM_SLEEP);
1851 	mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1852 	cpu->cpu_hat_info = hci;
1853 }
1854 
1855 void
1856 x86pte_cpu_fini(cpu_t *cpu)
1857 {
1858 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
1859 
1860 	kmem_free(hci, sizeof (*hci));
1861 	cpu->cpu_hat_info = NULL;
1862 }
1863 
1864 #ifdef __i386
1865 /*
1866  * On 32 bit kernels, loading a 64 bit PTE is a little tricky
1867  */
1868 x86pte_t
1869 get_pte64(x86pte_t *ptr)
1870 {
1871 	volatile uint32_t *p = (uint32_t *)ptr;
1872 	x86pte_t t;
1873 
1874 	ASSERT(mmu.pae_hat != 0);
1875 	for (;;) {
1876 		t = p[0];
1877 		t |= (uint64_t)p[1] << 32;
1878 		if ((t & 0xffffffff) == p[0])
1879 			return (t);
1880 	}
1881 }
1882 #endif /* __i386 */
1883 
1884 /*
1885  * Disable preemption and establish a mapping to the pagetable with the
1886  * given pfn. This is optimized for there case where it's the same
1887  * pfn as we last used referenced from this CPU.
1888  */
1889 static x86pte_t *
1890 x86pte_access_pagetable(htable_t *ht, uint_t index)
1891 {
1892 	/*
1893 	 * VLP pagetables are contained in the hat_t
1894 	 */
1895 	if (ht->ht_flags & HTABLE_VLP)
1896 		return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index));
1897 	return (x86pte_mapin(ht->ht_pfn, index, ht));
1898 }
1899 
1900 /*
1901  * map the given pfn into the page table window.
1902  */
1903 /*ARGSUSED*/
1904 x86pte_t *
1905 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht)
1906 {
1907 	x86pte_t *pteptr;
1908 	x86pte_t pte = 0;
1909 	x86pte_t newpte;
1910 	int x;
1911 
1912 	ASSERT(pfn != PFN_INVALID);
1913 
1914 	if (!khat_running) {
1915 		caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1);
1916 		return (PT_INDEX_PTR(va, index));
1917 	}
1918 
1919 	/*
1920 	 * If kpm is available, use it.
1921 	 */
1922 	if (kpm_vbase)
1923 		return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index));
1924 
1925 	/*
1926 	 * Disable preemption and grab the CPU's hci_mutex
1927 	 */
1928 	kpreempt_disable();
1929 	ASSERT(CPU->cpu_hat_info != NULL);
1930 	mutex_enter(&CPU->cpu_hat_info->hci_mutex);
1931 	x = PWIN_TABLE(CPU->cpu_id);
1932 	pteptr = (x86pte_t *)PWIN_PTE_VA(x);
1933 #ifndef __xpv
1934 	if (mmu.pae_hat)
1935 		pte = *pteptr;
1936 	else
1937 		pte = *(x86pte32_t *)pteptr;
1938 #endif
1939 
1940 	newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx;
1941 
1942 	/*
1943 	 * For hardware we can use a writable mapping.
1944 	 */
1945 #ifdef __xpv
1946 	if (IN_XPV_PANIC())
1947 #endif
1948 		newpte |= PT_WRITABLE;
1949 
1950 	if (!PTE_EQUIV(newpte, pte)) {
1951 
1952 #ifdef __xpv
1953 		if (!IN_XPV_PANIC()) {
1954 			xen_map(newpte, PWIN_VA(x));
1955 		} else
1956 #endif
1957 		{
1958 			XPV_ALLOW_PAGETABLE_UPDATES();
1959 			if (mmu.pae_hat)
1960 				*pteptr = newpte;
1961 			else
1962 				*(x86pte32_t *)pteptr = newpte;
1963 			XPV_DISALLOW_PAGETABLE_UPDATES();
1964 			mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
1965 		}
1966 	}
1967 	return (PT_INDEX_PTR(PWIN_VA(x), index));
1968 }
1969 
1970 /*
1971  * Release access to a page table.
1972  */
1973 static void
1974 x86pte_release_pagetable(htable_t *ht)
1975 {
1976 	/*
1977 	 * nothing to do for VLP htables
1978 	 */
1979 	if (ht->ht_flags & HTABLE_VLP)
1980 		return;
1981 
1982 	x86pte_mapout();
1983 }
1984 
1985 void
1986 x86pte_mapout(void)
1987 {
1988 	if (kpm_vbase != NULL || !khat_running)
1989 		return;
1990 
1991 	/*
1992 	 * Drop the CPU's hci_mutex and restore preemption.
1993 	 */
1994 #ifdef __xpv
1995 	if (!IN_XPV_PANIC()) {
1996 		uintptr_t va;
1997 
1998 		/*
1999 		 * We need to always clear the mapping in case a page
2000 		 * that was once a page table page is ballooned out.
2001 		 */
2002 		va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id));
2003 		(void) HYPERVISOR_update_va_mapping(va, 0,
2004 		    UVMF_INVLPG | UVMF_LOCAL);
2005 	}
2006 #endif
2007 	mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2008 	kpreempt_enable();
2009 }
2010 
2011 /*
2012  * Atomic retrieval of a pagetable entry
2013  */
2014 x86pte_t
2015 x86pte_get(htable_t *ht, uint_t entry)
2016 {
2017 	x86pte_t	pte;
2018 	x86pte_t	*ptep;
2019 
2020 	/*
2021 	 * Be careful that loading PAE entries in 32 bit kernel is atomic.
2022 	 */
2023 	ASSERT(entry < mmu.ptes_per_table);
2024 	ptep = x86pte_access_pagetable(ht, entry);
2025 	pte = GET_PTE(ptep);
2026 	x86pte_release_pagetable(ht);
2027 	return (pte);
2028 }
2029 
2030 /*
2031  * Atomic unconditional set of a page table entry, it returns the previous
2032  * value. For pre-existing mappings if the PFN changes, then we don't care
2033  * about the old pte's REF / MOD bits. If the PFN remains the same, we leave
2034  * the MOD/REF bits unchanged.
2035  *
2036  * If asked to overwrite a link to a lower page table with a large page
2037  * mapping, this routine returns the special value of LPAGE_ERROR. This
2038  * allows the upper HAT layers to retry with a smaller mapping size.
2039  */
2040 x86pte_t
2041 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
2042 {
2043 	x86pte_t	old;
2044 	x86pte_t	prev;
2045 	x86pte_t	*ptep;
2046 	level_t		l = ht->ht_level;
2047 	x86pte_t	pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR;
2048 	x86pte_t	n;
2049 	uintptr_t	addr = htable_e2va(ht, entry);
2050 	hat_t		*hat = ht->ht_hat;
2051 
2052 	ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */
2053 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2054 	if (ptr == NULL)
2055 		ptep = x86pte_access_pagetable(ht, entry);
2056 	else
2057 		ptep = ptr;
2058 
2059 	/*
2060 	 * Install the new PTE. If remapping the same PFN, then
2061 	 * copy existing REF/MOD bits to new mapping.
2062 	 */
2063 	do {
2064 		prev = GET_PTE(ptep);
2065 		n = new;
2066 		if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask))
2067 			n |= prev & (PT_REF | PT_MOD);
2068 
2069 		/*
2070 		 * Another thread may have installed this mapping already,
2071 		 * flush the local TLB and be done.
2072 		 */
2073 		if (prev == n) {
2074 			old = new;
2075 #ifdef __xpv
2076 			if (!IN_XPV_PANIC())
2077 				xen_flush_va((caddr_t)addr);
2078 			else
2079 #endif
2080 				mmu_tlbflush_entry((caddr_t)addr);
2081 			goto done;
2082 		}
2083 
2084 		/*
2085 		 * Detect if we have a collision of installing a large
2086 		 * page mapping where there already is a lower page table.
2087 		 */
2088 		if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) {
2089 			old = LPAGE_ERROR;
2090 			goto done;
2091 		}
2092 
2093 		XPV_ALLOW_PAGETABLE_UPDATES();
2094 		old = CAS_PTE(ptep, prev, n);
2095 		XPV_DISALLOW_PAGETABLE_UPDATES();
2096 	} while (old != prev);
2097 
2098 	/*
2099 	 * Do a TLB demap if needed, ie. the old pte was valid.
2100 	 *
2101 	 * Note that a stale TLB writeback to the PTE here either can't happen
2102 	 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST
2103 	 * mappings, but they were created with REF and MOD already set, so
2104 	 * no stale writeback will happen.
2105 	 *
2106 	 * Segmap is the only place where remaps happen on the same pfn and for
2107 	 * that we want to preserve the stale REF/MOD bits.
2108 	 */
2109 	if (old & PT_REF)
2110 		hat_tlb_inval(hat, addr);
2111 
2112 done:
2113 	if (ptr == NULL)
2114 		x86pte_release_pagetable(ht);
2115 	return (old);
2116 }
2117 
2118 /*
2119  * Atomic compare and swap of a page table entry. No TLB invalidates are done.
2120  * This is used for links between pagetables of different levels.
2121  * Note we always create these links with dirty/access set, so they should
2122  * never change.
2123  */
2124 x86pte_t
2125 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
2126 {
2127 	x86pte_t	pte;
2128 	x86pte_t	*ptep;
2129 #ifdef __xpv
2130 	/*
2131 	 * We can't use writable pagetables for upper level tables, so fake it.
2132 	 */
2133 	mmu_update_t t[2];
2134 	int cnt = 1;
2135 	int count;
2136 	maddr_t ma;
2137 
2138 	if (!IN_XPV_PANIC()) {
2139 		ASSERT(!(ht->ht_flags & HTABLE_VLP));	/* no VLP yet */
2140 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2141 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2142 		t[0].val = new;
2143 
2144 #if defined(__amd64)
2145 		/*
2146 		 * On the 64-bit hypervisor we need to maintain the user mode
2147 		 * top page table too.
2148 		 */
2149 		if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) {
2150 			ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(
2151 			    ht->ht_hat->hat_user_ptable), entry));
2152 			t[1].ptr = ma | MMU_NORMAL_PT_UPDATE;
2153 			t[1].val = new;
2154 			++cnt;
2155 		}
2156 #endif	/* __amd64 */
2157 
2158 		if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF))
2159 			panic("HYPERVISOR_mmu_update() failed");
2160 		ASSERT(count == cnt);
2161 		return (old);
2162 	}
2163 #endif
2164 	ptep = x86pte_access_pagetable(ht, entry);
2165 	XPV_ALLOW_PAGETABLE_UPDATES();
2166 	pte = CAS_PTE(ptep, old, new);
2167 	XPV_DISALLOW_PAGETABLE_UPDATES();
2168 	x86pte_release_pagetable(ht);
2169 	return (pte);
2170 }
2171 
2172 /*
2173  * Invalidate a page table entry as long as it currently maps something that
2174  * matches the value determined by expect.
2175  *
2176  * Also invalidates any TLB entries and returns the previous value of the PTE.
2177  */
2178 x86pte_t
2179 x86pte_inval(
2180 	htable_t *ht,
2181 	uint_t entry,
2182 	x86pte_t expect,
2183 	x86pte_t *pte_ptr)
2184 {
2185 	x86pte_t	*ptep;
2186 	x86pte_t	oldpte;
2187 	x86pte_t	found;
2188 
2189 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2190 	ASSERT(ht->ht_level <= mmu.max_page_level);
2191 
2192 	if (pte_ptr != NULL)
2193 		ptep = pte_ptr;
2194 	else
2195 		ptep = x86pte_access_pagetable(ht, entry);
2196 
2197 #if defined(__xpv)
2198 	/*
2199 	 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing
2200 	 * with anything else.
2201 	 */
2202 	if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) {
2203 		int count;
2204 		mmu_update_t t[1];
2205 		maddr_t ma;
2206 
2207 		oldpte = GET_PTE(ptep);
2208 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2209 			goto done;
2210 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2211 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2212 		t[0].val = 0;
2213 		if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF))
2214 			panic("HYPERVISOR_mmu_update() failed");
2215 		ASSERT(count == 1);
2216 		goto done;
2217 	}
2218 #endif /* __xpv */
2219 
2220 	/*
2221 	 * Note that the loop is needed to handle changes due to h/w updating
2222 	 * of PT_MOD/PT_REF.
2223 	 */
2224 	do {
2225 		oldpte = GET_PTE(ptep);
2226 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2227 			goto done;
2228 		XPV_ALLOW_PAGETABLE_UPDATES();
2229 		found = CAS_PTE(ptep, oldpte, 0);
2230 		XPV_DISALLOW_PAGETABLE_UPDATES();
2231 	} while (found != oldpte);
2232 	if (oldpte & (PT_REF | PT_MOD))
2233 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2234 
2235 done:
2236 	if (pte_ptr == NULL)
2237 		x86pte_release_pagetable(ht);
2238 	return (oldpte);
2239 }
2240 
2241 /*
2242  * Change a page table entry af it currently matches the value in expect.
2243  */
2244 x86pte_t
2245 x86pte_update(
2246 	htable_t *ht,
2247 	uint_t entry,
2248 	x86pte_t expect,
2249 	x86pte_t new)
2250 {
2251 	x86pte_t	*ptep;
2252 	x86pte_t	found;
2253 
2254 	ASSERT(new != 0);
2255 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2256 	ASSERT(ht->ht_level <= mmu.max_page_level);
2257 
2258 	ptep = x86pte_access_pagetable(ht, entry);
2259 	XPV_ALLOW_PAGETABLE_UPDATES();
2260 	found = CAS_PTE(ptep, expect, new);
2261 	XPV_DISALLOW_PAGETABLE_UPDATES();
2262 	if (found == expect) {
2263 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2264 
2265 		/*
2266 		 * When removing write permission *and* clearing the
2267 		 * MOD bit, check if a write happened via a stale
2268 		 * TLB entry before the TLB shootdown finished.
2269 		 *
2270 		 * If it did happen, simply re-enable write permission and
2271 		 * act like the original CAS failed.
2272 		 */
2273 		if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE &&
2274 		    (new & (PT_WRITABLE | PT_MOD)) == 0 &&
2275 		    (GET_PTE(ptep) & PT_MOD) != 0) {
2276 			do {
2277 				found = GET_PTE(ptep);
2278 				XPV_ALLOW_PAGETABLE_UPDATES();
2279 				found =
2280 				    CAS_PTE(ptep, found, found | PT_WRITABLE);
2281 				XPV_DISALLOW_PAGETABLE_UPDATES();
2282 			} while ((found & PT_WRITABLE) == 0);
2283 		}
2284 	}
2285 	x86pte_release_pagetable(ht);
2286 	return (found);
2287 }
2288 
2289 #ifndef __xpv
2290 /*
2291  * Copy page tables - this is just a little more complicated than the
2292  * previous routines. Note that it's also not atomic! It also is never
2293  * used for VLP pagetables.
2294  */
2295 void
2296 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2297 {
2298 	caddr_t	src_va;
2299 	caddr_t dst_va;
2300 	size_t size;
2301 	x86pte_t *pteptr;
2302 	x86pte_t pte;
2303 
2304 	ASSERT(khat_running);
2305 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2306 	ASSERT(!(src->ht_flags & HTABLE_VLP));
2307 	ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2308 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2309 
2310 	/*
2311 	 * Acquire access to the CPU pagetable windows for the dest and source.
2312 	 */
2313 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2314 	if (kpm_vbase) {
2315 		src_va = (caddr_t)
2316 		    PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry);
2317 	} else {
2318 		uint_t x = PWIN_SRC(CPU->cpu_id);
2319 
2320 		/*
2321 		 * Finish defining the src pagetable mapping
2322 		 */
2323 		src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2324 		pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx;
2325 		pteptr = (x86pte_t *)PWIN_PTE_VA(x);
2326 		if (mmu.pae_hat)
2327 			*pteptr = pte;
2328 		else
2329 			*(x86pte32_t *)pteptr = pte;
2330 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2331 	}
2332 
2333 	/*
2334 	 * now do the copy
2335 	 */
2336 	size = count << mmu.pte_size_shift;
2337 	bcopy(src_va, dst_va, size);
2338 
2339 	x86pte_release_pagetable(dest);
2340 }
2341 
2342 #else /* __xpv */
2343 
2344 /*
2345  * The hypervisor only supports writable pagetables at level 0, so we have
2346  * to install these 1 by 1 the slow way.
2347  */
2348 void
2349 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2350 {
2351 	caddr_t	src_va;
2352 	x86pte_t pte;
2353 
2354 	ASSERT(!IN_XPV_PANIC());
2355 	src_va = (caddr_t)x86pte_access_pagetable(src, entry);
2356 	while (count) {
2357 		if (mmu.pae_hat)
2358 			pte = *(x86pte_t *)src_va;
2359 		else
2360 			pte = *(x86pte32_t *)src_va;
2361 		if (pte != 0) {
2362 			set_pteval(pfn_to_pa(dest->ht_pfn), entry,
2363 			    dest->ht_level, pte);
2364 #ifdef __amd64
2365 			if (dest->ht_level == mmu.max_level &&
2366 			    htable_e2va(dest, entry) < HYPERVISOR_VIRT_END)
2367 				set_pteval(
2368 				    pfn_to_pa(dest->ht_hat->hat_user_ptable),
2369 				    entry, dest->ht_level, pte);
2370 #endif
2371 		}
2372 		--count;
2373 		++entry;
2374 		src_va += mmu.pte_size;
2375 	}
2376 	x86pte_release_pagetable(src);
2377 }
2378 #endif /* __xpv */
2379 
2380 /*
2381  * Zero page table entries - Note this doesn't use atomic stores!
2382  */
2383 static void
2384 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2385 {
2386 	caddr_t dst_va;
2387 	size_t size;
2388 #ifdef __xpv
2389 	int x;
2390 	x86pte_t newpte;
2391 #endif
2392 
2393 	/*
2394 	 * Map in the page table to be zeroed.
2395 	 */
2396 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2397 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2398 
2399 	/*
2400 	 * On the hypervisor we don't use x86pte_access_pagetable() since
2401 	 * in this case the page is not pinned yet.
2402 	 */
2403 #ifdef __xpv
2404 	if (kpm_vbase == NULL) {
2405 		kpreempt_disable();
2406 		ASSERT(CPU->cpu_hat_info != NULL);
2407 		mutex_enter(&CPU->cpu_hat_info->hci_mutex);
2408 		x = PWIN_TABLE(CPU->cpu_id);
2409 		newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE;
2410 		xen_map(newpte, PWIN_VA(x));
2411 		dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2412 	} else
2413 #endif
2414 		dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2415 
2416 	size = count << mmu.pte_size_shift;
2417 	ASSERT(size > BLOCKZEROALIGN);
2418 #ifdef __i386
2419 	if (!is_x86_feature(x86_featureset, X86FSET_SSE2))
2420 		bzero(dst_va, size);
2421 	else
2422 #endif
2423 		block_zero_no_xmm(dst_va, size);
2424 
2425 #ifdef __xpv
2426 	if (kpm_vbase == NULL) {
2427 		xen_map(0, PWIN_VA(x));
2428 		mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2429 		kpreempt_enable();
2430 	} else
2431 #endif
2432 		x86pte_release_pagetable(dest);
2433 }
2434 
2435 /*
2436  * Called to ensure that all pagetables are in the system dump
2437  */
2438 void
2439 hat_dump(void)
2440 {
2441 	hat_t *hat;
2442 	uint_t h;
2443 	htable_t *ht;
2444 
2445 	/*
2446 	 * Dump all page tables
2447 	 */
2448 	for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2449 		for (h = 0; h < hat->hat_num_hash; ++h) {
2450 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2451 				if ((ht->ht_flags & HTABLE_VLP) == 0)
2452 					dump_page(ht->ht_pfn);
2453 			}
2454 		}
2455 	}
2456 }
2457