xref: /titanic_44/usr/src/uts/i86pc/os/trap.c (revision 09f67678c27dda8a89f87f1f408a87dd49ceb0e1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
28 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
29 /*		All Rights Reserved   				*/
30 /*								*/
31 /*	Copyright (c) 1987, 1988 Microsoft Corporation  	*/
32 /*		All Rights Reserved   				*/
33 /*								*/
34 
35 #pragma ident	"%Z%%M%	%I%	%E% SMI"
36 
37 #include <sys/types.h>
38 #include <sys/sysmacros.h>
39 #include <sys/param.h>
40 #include <sys/signal.h>
41 #include <sys/systm.h>
42 #include <sys/user.h>
43 #include <sys/proc.h>
44 #include <sys/disp.h>
45 #include <sys/class.h>
46 #include <sys/core.h>
47 #include <sys/syscall.h>
48 #include <sys/cpuvar.h>
49 #include <sys/vm.h>
50 #include <sys/sysinfo.h>
51 #include <sys/fault.h>
52 #include <sys/stack.h>
53 #include <sys/mmu.h>
54 #include <sys/psw.h>
55 #include <sys/regset.h>
56 #include <sys/fp.h>
57 #include <sys/trap.h>
58 #include <sys/kmem.h>
59 #include <sys/vtrace.h>
60 #include <sys/cmn_err.h>
61 #include <sys/prsystm.h>
62 #include <sys/mutex_impl.h>
63 #include <sys/machsystm.h>
64 #include <sys/archsystm.h>
65 #include <sys/sdt.h>
66 #include <sys/avintr.h>
67 #include <sys/kobj.h>
68 
69 #include <vm/hat.h>
70 
71 #include <vm/seg_kmem.h>
72 #include <vm/as.h>
73 #include <vm/seg.h>
74 #include <vm/hat_pte.h>
75 
76 #include <sys/procfs.h>
77 
78 #include <sys/reboot.h>
79 #include <sys/debug.h>
80 #include <sys/debugreg.h>
81 #include <sys/modctl.h>
82 #include <sys/aio_impl.h>
83 #include <sys/tnf.h>
84 #include <sys/tnf_probe.h>
85 #include <sys/cred.h>
86 #include <sys/mman.h>
87 #include <sys/x86_archext.h>
88 #include <sys/copyops.h>
89 #include <c2/audit.h>
90 #include <sys/ftrace.h>
91 #include <sys/panic.h>
92 #include <sys/traptrace.h>
93 #include <sys/ontrap.h>
94 #include <sys/cpc_impl.h>
95 
96 #define	USER	0x10000		/* user-mode flag added to trap type */
97 
98 static const char *trap_type_mnemonic[] = {
99 	"de",	"db",	"2",	"bp",
100 	"of",	"br",	"ud",	"nm",
101 	"df",	"9",	"ts",	"np",
102 	"ss",	"gp",	"pf",	"15",
103 	"mf",	"ac",	"mc",	"xf"
104 };
105 
106 static const char *trap_type[] = {
107 	"Divide error",				/* trap id 0 	*/
108 	"Debug",				/* trap id 1	*/
109 	"NMI interrupt",			/* trap id 2	*/
110 	"Breakpoint",				/* trap id 3 	*/
111 	"Overflow",				/* trap id 4 	*/
112 	"BOUND range exceeded",			/* trap id 5 	*/
113 	"Invalid opcode",			/* trap id 6 	*/
114 	"Device not available",			/* trap id 7 	*/
115 	"Double fault",				/* trap id 8 	*/
116 	"Coprocessor segment overrun",		/* trap id 9 	*/
117 	"Invalid TSS",				/* trap id 10 	*/
118 	"Segment not present",			/* trap id 11 	*/
119 	"Stack segment fault",			/* trap id 12 	*/
120 	"General protection",			/* trap id 13 	*/
121 	"Page fault",				/* trap id 14 	*/
122 	"Reserved",				/* trap id 15 	*/
123 	"x87 floating point error",		/* trap id 16 	*/
124 	"Alignment check",			/* trap id 17 	*/
125 	"Machine check",			/* trap id 18	*/
126 	"SIMD floating point exception",	/* trap id 19	*/
127 };
128 
129 #define	TRAP_TYPES	(sizeof (trap_type) / sizeof (trap_type[0]))
130 
131 int tudebug = 0;
132 int tudebugbpt = 0;
133 int tudebugfpe = 0;
134 int tudebugsse = 0;
135 
136 #if defined(TRAPDEBUG) || defined(lint)
137 int tdebug = 0;
138 int lodebug = 0;
139 int faultdebug = 0;
140 #else
141 #define	tdebug	0
142 #define	lodebug	0
143 #define	faultdebug	0
144 #endif /* defined(TRAPDEBUG) || defined(lint) */
145 
146 #if defined(TRAPTRACE)
147 static void dump_ttrace(void);
148 #endif	/* TRAPTRACE */
149 static void dumpregs(struct regs *);
150 static void showregs(uint_t, struct regs *, caddr_t);
151 static void dump_tss(void);
152 static int kern_gpfault(struct regs *);
153 
154 struct trap_info {
155 	struct regs *trap_regs;
156 	uint_t trap_type;
157 	caddr_t trap_addr;
158 };
159 
160 /*ARGSUSED*/
161 static int
162 die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
163 {
164 	struct trap_info ti;
165 	const char *trap_name, *trap_mnemonic;
166 
167 	if (type < TRAP_TYPES) {
168 		trap_name = trap_type[type];
169 		trap_mnemonic = trap_type_mnemonic[type];
170 	} else {
171 		trap_name = "trap";
172 		trap_mnemonic = "-";
173 	}
174 
175 #ifdef TRAPTRACE
176 	TRAPTRACE_FREEZE;
177 #endif
178 
179 	ti.trap_regs = rp;
180 	ti.trap_type = type & ~USER;
181 	ti.trap_addr = addr;
182 
183 	curthread->t_panic_trap = &ti;
184 
185 	if (type == T_PGFLT && addr < (caddr_t)KERNELBASE) {
186 		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
187 		    "occurred in module \"%s\" due to %s",
188 		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
189 		    mod_containing_pc((caddr_t)rp->r_pc),
190 		    addr < (caddr_t)PAGESIZE ?
191 		    "a NULL pointer dereference" :
192 		    "an illegal access to a user address");
193 	} else
194 		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
195 		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
196 	return (0);
197 }
198 
199 /*
200  * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
201  *
202  * int <vector> is two bytes: 0xCD <vector>
203  */
204 
205 #define	SLOW_SCALL_SIZE	2
206 
207 static int
208 rewrite_syscall(caddr_t pc)
209 {
210 	uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
211 
212 	if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
213 	    (uintptr_t)pc) != 0)
214 		return (1);
215 
216 	return (0);
217 }
218 
219 /*
220  * Test to see if the instruction at pc is sysenter or syscall. The second
221  * argument should be the x86 feature flag corresponding to the expected
222  * instruction.
223  *
224  * sysenter is two bytes: 0x0F 0x34
225  * syscall is two bytes:  0x0F 0x05
226  */
227 
228 #define	FAST_SCALL_SIZE	2
229 
230 static int
231 instr_is_fast_syscall(caddr_t pc, int which)
232 {
233 	uchar_t instr[FAST_SCALL_SIZE];
234 
235 	ASSERT(which == X86_SEP || which == X86_ASYSC);
236 
237 	if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0 ||
238 	    instr[0] != 0x0F)
239 		return (0);
240 
241 	if ((which == X86_SEP && instr[1] == 0x34) ||
242 	    (which == X86_ASYSC && instr[1] == 0x05))
243 		return (1);
244 
245 	return (0);
246 }
247 
248 /*
249  * Test to see if the instruction at pc is a system call instruction.
250  *
251  * The bytes of an lcall instruction used for the syscall trap.
252  * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
253  * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
254  */
255 
256 #define	LCALLSIZE	7
257 
258 static int
259 instr_is_syscall(caddr_t pc)
260 {
261 	uchar_t instr[LCALLSIZE];
262 
263 	if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
264 	    instr[0] == 0x9a &&
265 	    instr[1] == 0 &&
266 	    instr[2] == 0 &&
267 	    instr[3] == 0 &&
268 	    instr[4] == 0 &&
269 	    (instr[5] == 0x7 || instr[5] == 0x27) &&
270 	    instr[6] == 0)
271 		return (1);
272 
273 	return (0);
274 }
275 
276 #ifdef OPTERON_ERRATUM_91
277 
278 /*
279  * Test to see if the instruction at pc is a prefetch instruction.
280  *
281  * The first byte of prefetch instructions is always 0x0F.
282  * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
283  * The third byte is between 0 and 3 inclusive.
284  */
285 
286 #define	PREFETCHSIZE 3
287 
288 static int
289 cmp_to_prefetch(uchar_t *p)
290 {
291 	if (*p == 0x0F && (*(p+1) == 0x18 || *(p+1) == 0x0D) && *(p+2) <= 3)
292 		return (1);
293 	return (0);
294 }
295 
296 static int
297 instr_is_prefetch(caddr_t pc)
298 {
299 	uchar_t instr[PREFETCHSIZE];
300 	int	error;
301 
302 	error = copyin_nowatch(pc, (caddr_t)instr, PREFETCHSIZE);
303 
304 	if (error == 0 && cmp_to_prefetch(instr))
305 		return (1);
306 	return (0);
307 }
308 
309 #endif /* OPTERON_ERRATUM_91 */
310 
311 /*
312  * Called from the trap handler when a processor trap occurs.
313  *
314  * Note: All user-level traps that might call stop() must exit
315  * trap() by 'goto out' or by falling through.
316  */
317 void
318 trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
319 {
320 	kthread_t *cur_thread = curthread;
321 	enum seg_rw rw;
322 	unsigned type;
323 	extern int stop_on_fault(uint_t, k_siginfo_t *);
324 	proc_t *p = ttoproc(cur_thread);
325 	klwp_t *lwp = ttolwp(cur_thread);
326 	uintptr_t lofault;
327 	faultcode_t pagefault(), res, errcode;
328 	enum fault_type fault_type;
329 	k_siginfo_t siginfo;
330 	uint_t fault = 0;
331 	int mstate;
332 	int sicode = 0;
333 	int watchcode;
334 	int watchpage;
335 	caddr_t vaddr;
336 	size_t sz;
337 	int ta;
338 
339 	ASSERT_STACK_ALIGNED();
340 
341 	type = rp->r_trapno;
342 	CPU_STATS_ADDQ(CPU, sys, trap, 1);
343 
344 	ASSERT(cur_thread->t_schedflag & TS_DONT_SWAP);
345 
346 	if (type == T_PGFLT) {
347 
348 		errcode = rp->r_err;
349 		if (errcode & PF_ERR_WRITE)
350 			rw = S_WRITE;
351 		else if ((caddr_t)rp->r_pc == addr ||
352 		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
353 			rw = S_EXEC;
354 		else
355 			rw = S_READ;
356 
357 #if defined(__i386)
358 		/*
359 		 * Pentium Pro work-around
360 		 */
361 		if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
362 			uint_t	attr;
363 			uint_t	priv_violation;
364 			uint_t	access_violation;
365 
366 			if (hat_getattr(addr < (caddr_t)kernelbase ?
367 			    curproc->p_as->a_hat : kas.a_hat, addr, &attr)
368 			    == -1) {
369 				errcode &= ~PF_ERR_PROT;
370 			} else {
371 				priv_violation = (errcode & PF_ERR_USER) &&
372 					!(attr & PROT_USER);
373 				access_violation = (errcode & PF_ERR_WRITE) &&
374 					!(attr & PROT_WRITE);
375 				if (!priv_violation && !access_violation)
376 					goto cleanup;
377 			}
378 		}
379 #endif /* __i386 */
380 
381 	}
382 
383 	if (tdebug)
384 		showregs(type, rp, addr);
385 
386 	if (USERMODE(rp->r_cs)) {
387 		/*
388 		 * Set up the current cred to use during this trap. u_cred
389 		 * no longer exists.  t_cred is used instead.
390 		 * The current process credential applies to the thread for
391 		 * the entire trap.  If trapping from the kernel, this
392 		 * should already be set up.
393 		 */
394 		if (cur_thread->t_cred != p->p_cred) {
395 			cred_t *oldcred = cur_thread->t_cred;
396 			/*
397 			 * DTrace accesses t_cred in probe context.  t_cred
398 			 * must always be either NULL, or point to a valid,
399 			 * allocated cred structure.
400 			 */
401 			cur_thread->t_cred = crgetcred();
402 			crfree(oldcred);
403 		}
404 		ASSERT(lwp != NULL);
405 		type |= USER;
406 		ASSERT(lwptoregs(lwp) == rp);
407 		lwp->lwp_state = LWP_SYS;
408 
409 		switch (type) {
410 		case T_PGFLT + USER:
411 			if ((caddr_t)rp->r_pc == addr)
412 				mstate = LMS_TFAULT;
413 			else
414 				mstate = LMS_DFAULT;
415 			break;
416 		default:
417 			mstate = LMS_TRAP;
418 			break;
419 		}
420 		/* Kernel probe */
421 		TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
422 		    tnf_microstate, state, mstate);
423 		mstate = new_mstate(cur_thread, mstate);
424 
425 		bzero(&siginfo, sizeof (siginfo));
426 	}
427 
428 	switch (type) {
429 	case T_PGFLT + USER:
430 	case T_SGLSTP:
431 	case T_SGLSTP + USER:
432 	case T_BPTFLT + USER:
433 		break;
434 
435 	default:
436 		FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
437 		    (ulong_t)type, (ulong_t)rp);
438 		break;
439 	}
440 
441 	switch (type) {
442 
443 	case T_MCE:	/* Machine check exception */
444 	case T_MCE + USER:
445 		if (x86_feature & X86_MCA) {
446 			if (mca_exception(rp))
447 				(void) die(type, rp, addr, cpuid);
448 			type &= ~USER;
449 			goto cleanup;
450 		}
451 	default:
452 		if (type & USER) {
453 			if (tudebug)
454 				showregs(type, rp, (caddr_t)0);
455 			printf("trap: Unknown trap type %d in user mode\n",
456 			    type & ~USER);
457 			siginfo.si_signo = SIGILL;
458 			siginfo.si_code  = ILL_ILLTRP;
459 			siginfo.si_addr  = (caddr_t)rp->r_pc;
460 			siginfo.si_trapno = type & ~USER;
461 			fault = FLTILL;
462 			break;
463 		} else {
464 			(void) die(type, rp, addr, cpuid);
465 			/*NOTREACHED*/
466 		}
467 
468 	case T_PGFLT:		/* system page fault */
469 		/*
470 		 * If we're under on_trap() protection (see <sys/ontrap.h>),
471 		 * set ot_trap and longjmp back to the on_trap() call site.
472 		 */
473 		if ((cur_thread->t_ontrap != NULL) &&
474 		    (cur_thread->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
475 			curthread->t_ontrap->ot_trap |= OT_DATA_ACCESS;
476 			longjmp(&curthread->t_ontrap->ot_jmpbuf);
477 		}
478 
479 		/*
480 		 * See if we can handle as pagefault. Save lofault
481 		 * across this. Here we assume that an address
482 		 * less than KERNELBASE is a user fault.
483 		 * We can do this as copy.s routines verify that the
484 		 * starting address is less than KERNELBASE before
485 		 * starting and because we know that we always have
486 		 * KERNELBASE mapped as invalid to serve as a "barrier".
487 		 */
488 		lofault = cur_thread->t_lofault;
489 		cur_thread->t_lofault = 0;
490 
491 		mstate = new_mstate(cur_thread, LMS_KFAULT);
492 
493 		if (addr < (caddr_t)kernelbase) {
494 			res = pagefault(addr,
495 			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
496 			if (res == FC_NOMAP &&
497 			    addr < p->p_usrstack &&
498 			    grow(addr))
499 				res = 0;
500 		} else {
501 			res = pagefault(addr,
502 			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
503 		}
504 		(void) new_mstate(cur_thread, mstate);
505 
506 		/*
507 		 * Restore lofault. If we resolved the fault, exit.
508 		 * If we didn't and lofault wasn't set, die.
509 		 */
510 		cur_thread->t_lofault = lofault;
511 		if (res == 0)
512 			goto cleanup;
513 
514 #if defined(OPTERON_ERRATUM_93) && defined(_LP64)
515 		if (lofault == 0 && opteron_erratum_93) {
516 			/*
517 			 * Workaround for Opteron Erratum 93. On return from
518 			 * a System Managment Interrupt at a HLT instruction
519 			 * the %rip might be truncated to a 32 bit value.
520 			 * BIOS is supposed to fix this, but some don't.
521 			 * If this occurs we simply restore the high order bits.
522 			 * The HLT instruction is 1 byte of 0xf4.
523 			 */
524 			uintptr_t	rip = rp->r_pc;
525 
526 			if ((rip & 0xfffffffful) == rip) {
527 				rip |= 0xfffffffful << 32;
528 				if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
529 				    PFN_INVALID &&
530 				    (*(uchar_t *)rip == 0xf4 ||
531 				    *(uchar_t *)(rip - 1) == 0xf4)) {
532 					rp->r_pc = rip;
533 					goto cleanup;
534 				}
535 			}
536 		}
537 #endif /* OPTERON_ERRATUM_93 && _LP64 */
538 
539 #ifdef OPTERON_ERRATUM_91
540 		if (lofault == 0 && opteron_erratum_91) {
541 			/*
542 			 * Workaround for Opteron Erratum 91. Prefetches may
543 			 * generate a page fault (they're not supposed to do
544 			 * that!). If this occurs we simply return back to the
545 			 * instruction.
546 			 */
547 			caddr_t		pc = (caddr_t)rp->r_pc;
548 
549 			/*
550 			 * If the faulting PC is not mapped, this is a
551 			 * legitimate kernel page fault that must result in a
552 			 * panic. If the faulting PC is mapped, it could contain
553 			 * a prefetch instruction. Check for that here.
554 			 */
555 			if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
556 				if (cmp_to_prefetch((uchar_t *)pc)) {
557 #ifdef DEBUG
558 					cmn_err(CE_WARN, "Opteron erratum 91 "
559 					    "occurred: kernel prefetch"
560 					    " at %p generated a page fault!",
561 					    (void *)rp->r_pc);
562 #endif /* DEBUG */
563 					goto cleanup;
564 				}
565 			}
566 			(void) die(type, rp, addr, cpuid);
567 		}
568 #endif /* OPTERON_ERRATUM_91 */
569 
570 		if (lofault == 0)
571 			(void) die(type, rp, addr, cpuid);
572 
573 		/*
574 		 * Cannot resolve fault.  Return to lofault.
575 		 */
576 		if (lodebug) {
577 			showregs(type, rp, addr);
578 			traceregs(rp);
579 		}
580 		if (FC_CODE(res) == FC_OBJERR)
581 			res = FC_ERRNO(res);
582 		else
583 			res = EFAULT;
584 		rp->r_r0 = res;
585 		rp->r_pc = cur_thread->t_lofault;
586 		goto cleanup;
587 
588 	case T_PGFLT + USER:	/* user page fault */
589 		if (faultdebug) {
590 			char *fault_str;
591 
592 			switch (rw) {
593 			case S_READ:
594 				fault_str = "read";
595 				break;
596 			case S_WRITE:
597 				fault_str = "write";
598 				break;
599 			case S_EXEC:
600 				fault_str = "exec";
601 				break;
602 			default:
603 				fault_str = "";
604 				break;
605 			}
606 			printf("user %s fault:  addr=0x%lx errcode=0x%x\n",
607 			    fault_str, (uintptr_t)addr, errcode);
608 		}
609 
610 #if defined(OPTERON_ERRATUM_100) && defined(_LP64)
611 		/*
612 		 * Workaround for AMD erratum 100
613 		 *
614 		 * A 32-bit process may receive a page fault on a non
615 		 * 32-bit address by mistake. The range of the faulting
616 		 * address will be
617 		 *
618 		 *	0xffffffff80000000 .. 0xffffffffffffffff or
619 		 *	0x0000000100000000 .. 0x000000017fffffff
620 		 *
621 		 * The fault is always due to an instruction fetch, however
622 		 * the value of r_pc should be correct (in 32 bit range),
623 		 * so we ignore the page fault on the bogus address.
624 		 */
625 		if (p->p_model == DATAMODEL_ILP32 &&
626 		    (0xffffffff80000000 <= (uintptr_t)addr ||
627 		    (0x100000000 <= (uintptr_t)addr &&
628 		    (uintptr_t)addr <= 0x17fffffff))) {
629 			if (!opteron_erratum_100)
630 				panic("unexpected erratum #100");
631 			if (rp->r_pc <= 0xffffffff)
632 				goto out;
633 		}
634 #endif /* OPTERON_ERRATUM_100 && _LP64 */
635 
636 		ASSERT(!(curthread->t_flag & T_WATCHPT));
637 		watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
638 #ifdef __i386
639 		/*
640 		 * In 32-bit mode, the lcall (system call) instruction fetches
641 		 * one word from the stack, at the stack pointer, because of the
642 		 * way the call gate is constructed.  This is a bogus
643 		 * read and should not be counted as a read watchpoint.
644 		 * We work around the problem here by testing to see if
645 		 * this situation applies and, if so, simply jumping to
646 		 * the code in locore.s that fields the system call trap.
647 		 * The registers on the stack are already set up properly
648 		 * due to the match between the call gate sequence and the
649 		 * trap gate sequence.  We just have to adjust the pc.
650 		 */
651 		if (watchpage && addr == (caddr_t)rp->r_sp &&
652 		    rw == S_READ && instr_is_syscall((caddr_t)rp->r_pc)) {
653 			extern void watch_syscall(void);
654 
655 			rp->r_pc += LCALLSIZE;
656 			watch_syscall();	/* never returns */
657 			/* NOTREACHED */
658 		}
659 #endif /* __i386 */
660 		vaddr = addr;
661 		if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
662 			fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
663 		else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
664 		    sz, NULL, rw)) != 0) {
665 			if (ta) {
666 				do_watch_step(vaddr, sz, rw,
667 					watchcode, rp->r_pc);
668 				fault_type = F_INVAL;
669 			} else {
670 				bzero(&siginfo, sizeof (siginfo));
671 				siginfo.si_signo = SIGTRAP;
672 				siginfo.si_code = watchcode;
673 				siginfo.si_addr = vaddr;
674 				siginfo.si_trapafter = 0;
675 				siginfo.si_pc = (caddr_t)rp->r_pc;
676 				fault = FLTWATCH;
677 				break;
678 			}
679 		} else {
680 			/* XXX pr_watch_emul() never succeeds (for now) */
681 			if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
682 				goto out;
683 			do_watch_step(vaddr, sz, rw, 0, 0);
684 			fault_type = F_INVAL;
685 		}
686 
687 		res = pagefault(addr, fault_type, rw, 0);
688 
689 		/*
690 		 * If pagefault() succeeded, ok.
691 		 * Otherwise attempt to grow the stack.
692 		 */
693 		if (res == 0 ||
694 		    (res == FC_NOMAP &&
695 		    addr < p->p_usrstack &&
696 		    grow(addr))) {
697 			lwp->lwp_lastfault = FLTPAGE;
698 			lwp->lwp_lastfaddr = addr;
699 			if (prismember(&p->p_fltmask, FLTPAGE)) {
700 				bzero(&siginfo, sizeof (siginfo));
701 				siginfo.si_addr = addr;
702 				(void) stop_on_fault(FLTPAGE, &siginfo);
703 			}
704 			goto out;
705 		} else if (res == FC_PROT && addr < p->p_usrstack &&
706 		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
707 			report_stack_exec(p, addr);
708 		}
709 
710 #ifdef OPTERON_ERRATUM_91
711 		/*
712 		 * Workaround for Opteron Erratum 91. Prefetches may generate a
713 		 * page fault (they're not supposed to do that!). If this
714 		 * occurs we simply return back to the instruction.
715 		 *
716 		 * We rely on copyin to properly fault in the page with r_pc.
717 		 */
718 		if (opteron_erratum_91 &&
719 		    addr != (caddr_t)rp->r_pc &&
720 		    instr_is_prefetch((caddr_t)rp->r_pc)) {
721 #ifdef DEBUG
722 			cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
723 			    "prefetch at %p in pid %d generated a trap!",
724 			    (void *)rp->r_pc, p->p_pid);
725 #endif /* DEBUG */
726 			goto out;
727 		}
728 #endif /* OPTERON_ERRATUM_91 */
729 
730 		if (tudebug)
731 			showregs(type, rp, addr);
732 		/*
733 		 * In the case where both pagefault and grow fail,
734 		 * set the code to the value provided by pagefault.
735 		 * We map all errors returned from pagefault() to SIGSEGV.
736 		 */
737 		bzero(&siginfo, sizeof (siginfo));
738 		siginfo.si_addr = addr;
739 		switch (FC_CODE(res)) {
740 		case FC_HWERR:
741 		case FC_NOSUPPORT:
742 			siginfo.si_signo = SIGBUS;
743 			siginfo.si_code = BUS_ADRERR;
744 			fault = FLTACCESS;
745 			break;
746 		case FC_ALIGN:
747 			siginfo.si_signo = SIGBUS;
748 			siginfo.si_code = BUS_ADRALN;
749 			fault = FLTACCESS;
750 			break;
751 		case FC_OBJERR:
752 			if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
753 				siginfo.si_signo = SIGBUS;
754 				siginfo.si_code = BUS_OBJERR;
755 				fault = FLTACCESS;
756 			}
757 			break;
758 		default:	/* FC_NOMAP or FC_PROT */
759 			siginfo.si_signo = SIGSEGV;
760 			siginfo.si_code =
761 			    (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
762 			fault = FLTBOUNDS;
763 			break;
764 		}
765 		break;
766 
767 	case T_ILLINST + USER:	/* invalid opcode fault */
768 		/*
769 		 * If the syscall instruction is disabled due to LDT usage, a
770 		 * user program that attempts to execute it will trigger a #ud
771 		 * trap. Check for that case here. If this occurs on a CPU which
772 		 * doesn't even support syscall, the result of all of this will
773 		 * be to emulate that particular instruction.
774 		 */
775 		if (p->p_ldt != NULL &&
776 		    instr_is_fast_syscall((caddr_t)rp->r_pc, X86_ASYSC)) {
777 			if (rewrite_syscall((caddr_t)rp->r_pc) == 0)
778 				goto out;
779 #ifdef DEBUG
780 			else
781 				cmn_err(CE_WARN, "failed to rewrite syscall "
782 				    "instruction in process %d",
783 				    curthread->t_procp->p_pid);
784 #endif /* DEBUG */
785 		}
786 		/*FALLTHROUGH*/
787 
788 		if (tudebug)
789 			showregs(type, rp, (caddr_t)0);
790 		siginfo.si_signo = SIGILL;
791 		siginfo.si_code  = ILL_ILLOPC;
792 		siginfo.si_addr  = (caddr_t)rp->r_pc;
793 		fault = FLTILL;
794 		break;
795 
796 	case T_ZERODIV + USER:		/* integer divide by zero */
797 		if (tudebug && tudebugfpe)
798 			showregs(type, rp, (caddr_t)0);
799 		siginfo.si_signo = SIGFPE;
800 		siginfo.si_code  = FPE_INTDIV;
801 		siginfo.si_addr  = (caddr_t)rp->r_pc;
802 		fault = FLTIZDIV;
803 		break;
804 
805 	case T_OVFLW + USER:	/* integer overflow */
806 		if (tudebug && tudebugfpe)
807 			showregs(type, rp, (caddr_t)0);
808 		siginfo.si_signo = SIGFPE;
809 		siginfo.si_code  = FPE_INTOVF;
810 		siginfo.si_addr  = (caddr_t)rp->r_pc;
811 		fault = FLTIOVF;
812 		break;
813 
814 	case T_NOEXTFLT + USER:	/* math coprocessor not available */
815 		if (tudebug && tudebugfpe)
816 			showregs(type, rp, addr);
817 		if (fpnoextflt(rp)) {
818 			siginfo.si_signo = SIGFPE;
819 			siginfo.si_code  = ILL_ILLOPC;
820 			siginfo.si_addr  = (caddr_t)rp->r_pc;
821 			fault = FLTFPE;
822 		}
823 		break;
824 
825 	case T_EXTOVRFLT:	/* extension overrun fault */
826 		/* check if we took a kernel trap on behalf of user */
827 		{
828 			extern  void ndptrap_frstor(void);
829 			if (rp->r_pc != (uintptr_t)ndptrap_frstor)
830 				(void) die(type, rp, addr, cpuid);
831 			type |= USER;
832 		}
833 		/*FALLTHROUGH*/
834 	case T_EXTOVRFLT + USER:	/* extension overrun fault */
835 		if (tudebug && tudebugfpe)
836 			showregs(type, rp, addr);
837 		if (fpextovrflt(rp)) {
838 			siginfo.si_signo = SIGSEGV;
839 			siginfo.si_code  = SEGV_MAPERR;
840 			siginfo.si_addr  = (caddr_t)rp->r_pc;
841 			fault = FLTBOUNDS;
842 		}
843 		break;
844 
845 	case T_EXTERRFLT:	/* x87 floating point exception pending */
846 		/* check if we took a kernel trap on behalf of user */
847 		{
848 			extern  void ndptrap_frstor(void);
849 			if (rp->r_pc != (uintptr_t)ndptrap_frstor)
850 				(void) die(type, rp, addr, cpuid);
851 			type |= USER;
852 		}
853 		/*FALLTHROUGH*/
854 
855 	case T_EXTERRFLT + USER: /* x87 floating point exception pending */
856 		if (tudebug && tudebugfpe)
857 			showregs(type, rp, addr);
858 		if (sicode = fpexterrflt(rp)) {
859 			siginfo.si_signo = SIGFPE;
860 			siginfo.si_code  = sicode;
861 			siginfo.si_addr  = (caddr_t)rp->r_pc;
862 			fault = FLTFPE;
863 		}
864 		break;
865 
866 	case T_SIMDFPE + USER:		/* SSE and SSE2 exceptions */
867 		if (tudebug && tudebugsse)
868 			showregs(type, rp, addr);
869 		if ((x86_feature & (X86_SSE|X86_SSE2)) == 0) {
870 			/*
871 			 * There are rumours that some user instructions
872 			 * on older CPUs can cause this trap to occur; in
873 			 * which case send a SIGILL instead of a SIGFPE.
874 			 */
875 			siginfo.si_signo = SIGILL;
876 			siginfo.si_code  = ILL_ILLTRP;
877 			siginfo.si_addr  = (caddr_t)rp->r_pc;
878 			siginfo.si_trapno = type & ~USER;
879 			fault = FLTILL;
880 		} else if ((sicode = fpsimderrflt(rp)) != 0) {
881 			siginfo.si_signo = SIGFPE;
882 			siginfo.si_code = sicode;
883 			siginfo.si_addr = (caddr_t)rp->r_pc;
884 			fault = FLTFPE;
885 		}
886 		break;
887 
888 	case T_BPTFLT:	/* breakpoint trap */
889 		/*
890 		 * Kernel breakpoint traps should only happen when kmdb is
891 		 * active, and even then, it'll have interposed on the IDT, so
892 		 * control won't get here.  If it does, we've hit a breakpoint
893 		 * without the debugger, which is very strange, and very
894 		 * fatal.
895 		 */
896 		if (tudebug && tudebugbpt)
897 			showregs(type, rp, (caddr_t)0);
898 
899 		(void) die(type, rp, addr, cpuid);
900 		break;
901 
902 	case T_SGLSTP: /* single step/hw breakpoint exception */
903 		if (tudebug && tudebugbpt)
904 			showregs(type, rp, (caddr_t)0);
905 
906 		/* Now evaluate how we got here */
907 		if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
908 			/*
909 			 * i386 single-steps even through lcalls which
910 			 * change the privilege level. So we take a trap at
911 			 * the first instruction in privileged mode.
912 			 *
913 			 * Set a flag to indicate that upon completion of
914 			 * the system call, deal with the single-step trap.
915 			 *
916 			 * The same thing happens for sysenter, too.
917 			 */
918 #if defined(__amd64)
919 			if (rp->r_pc == (uintptr_t)sys_sysenter) {
920 				/*
921 				 * Adjust the pc so that we don't execute the
922 				 * swapgs instruction at the head of the
923 				 * handler and completely confuse things.
924 				 */
925 				rp->r_pc = (uintptr_t)
926 				    _sys_sysenter_post_swapgs;
927 #elif defined(__i386)
928 			if (rp->r_pc == (uintptr_t)sys_call ||
929 			    rp->r_pc == (uintptr_t)sys_sysenter) {
930 #endif
931 				rp->r_ps &= ~PS_T; /* turn off trace */
932 				lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
933 				cur_thread->t_post_sys = 1;
934 				goto cleanup;
935 			}
936 		}
937 		/* XXX - needs review on debugger interface? */
938 		if (boothowto & RB_DEBUG)
939 			debug_enter((char *)NULL);
940 		else
941 			(void) die(type, rp, addr, cpuid);
942 		break;
943 
944 	case T_NMIFLT:	/* NMI interrupt */
945 		printf("Unexpected NMI in system mode\n");
946 		goto cleanup;
947 
948 	case T_NMIFLT + USER:	/* NMI interrupt */
949 		printf("Unexpected NMI in user mode\n");
950 		break;
951 
952 	case T_GPFLT:	/* general protection violation */
953 #if defined(__amd64)
954 		/*
955 		 * On amd64, we can get a #gp from referencing addresses
956 		 * in the virtual address hole e.g. from a copyin.
957 		 */
958 
959 		/*
960 		 * If we're under on_trap() protection (see <sys/ontrap.h>),
961 		 * set ot_trap and longjmp back to the on_trap() call site.
962 		 */
963 		if ((cur_thread->t_ontrap != NULL) &&
964 		    (cur_thread->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
965 			curthread->t_ontrap->ot_trap |= OT_DATA_ACCESS;
966 			longjmp(&curthread->t_ontrap->ot_jmpbuf);
967 		}
968 
969 		/*
970 		 * If we're under lofault protection (copyin etc.),
971 		 * longjmp back to lofault with an EFAULT.
972 		 */
973 		if (cur_thread->t_lofault) {
974 			/*
975 			 * Fault is not resolvable, so just return to lofault
976 			 */
977 			if (lodebug) {
978 				showregs(type, rp, addr);
979 				traceregs(rp);
980 			}
981 			rp->r_r0 = EFAULT;
982 			rp->r_pc = cur_thread->t_lofault;
983 			goto cleanup;
984 		}
985 		/*FALLTHROUGH*/
986 #endif
987 	case T_STKFLT:	/* stack fault */
988 	case T_TSSFLT:	/* invalid TSS fault */
989 	case T_SEGFLT:	/* segment not present fault */
990 		if (tudebug)
991 			showregs(type, rp, (caddr_t)0);
992 		if (kern_gpfault(rp))
993 			(void) die(type, rp, addr, cpuid);
994 		goto cleanup;
995 
996 	case T_SEGFLT + USER:	/* segment not present fault */
997 #ifdef _SYSCALL32_IMPL
998 		if (instr_is_syscall((caddr_t)rp->r_pc)) {
999 			/*
1000 			 * System calls via the call gate come in through
1001 			 * not-present traps.
1002 			 *
1003 			 * Since this is a not-present trap, rp->r_pc points to
1004 			 * the trapping lcall instruction. We need to bump it
1005 			 * to the next insn so the app can continue on.
1006 			 */
1007 			rp->r_pc += LCALLSIZE;
1008 			lwp->lwp_regs = rp;
1009 
1010 			/*
1011 			 * Normally the microstate of the LWP is forced back to
1012 			 * LMS_USER by the syscall handlers. Emulate that
1013 			 * behavior here.
1014 			 */
1015 			mstate = LMS_USER;
1016 
1017 			dosyscall();
1018 			goto out;
1019 		}
1020 #endif /* _SYSCALL32_IMPL */
1021 		/*FALLTHROUGH*/
1022 
1023 	case T_GPFLT + USER:	/* general protection violation */
1024 		/*
1025 		 * If the current process is using a private LDT and the
1026 		 * trapping instruction is sysenter, the sysenter instruction
1027 		 * has been disabled on the CPU because it destroys segment
1028 		 * registers. If this is the case, rewrite the instruction to
1029 		 * be a safe system call and retry it. If this occurs on a CPU
1030 		 * which doesn't even support sysenter, the result of all of
1031 		 * this will be to emulate that particular instruction.
1032 		 */
1033 		if (p->p_ldt != NULL &&
1034 		    instr_is_fast_syscall((caddr_t)rp->r_pc, X86_SEP)) {
1035 			if (rewrite_syscall((caddr_t)rp->r_pc) == 0)
1036 				goto out;
1037 #ifdef DEBUG
1038 			else
1039 				cmn_err(CE_WARN, "failed to rewrite sysenter "
1040 				    "instruction in process %d",
1041 				    curthread->t_procp->p_pid);
1042 #endif /* DEBUG */
1043 		}
1044 		/*FALLTHROUGH*/
1045 
1046 	case T_BOUNDFLT + USER:	/* bound fault */
1047 	case T_STKFLT + USER:	/* stack fault */
1048 	case T_TSSFLT + USER:	/* invalid TSS fault */
1049 		if (tudebug)
1050 			showregs(type, rp, (caddr_t)0);
1051 		siginfo.si_signo = SIGSEGV;
1052 		siginfo.si_code  = SEGV_MAPERR;
1053 		siginfo.si_addr  = (caddr_t)rp->r_pc;
1054 		fault = FLTBOUNDS;
1055 		break;
1056 
1057 	case T_ALIGNMENT + USER:	/* user alignment error (486) */
1058 		if (tudebug)
1059 			showregs(type, rp, (caddr_t)0);
1060 		bzero(&siginfo, sizeof (siginfo));
1061 		siginfo.si_signo = SIGBUS;
1062 		siginfo.si_code = BUS_ADRALN;
1063 		siginfo.si_addr = (caddr_t)rp->r_pc;
1064 		fault = FLTACCESS;
1065 		break;
1066 
1067 	case T_SGLSTP + USER: /* single step/hw breakpoint exception */
1068 		if (tudebug && tudebugbpt)
1069 			showregs(type, rp, (caddr_t)0);
1070 
1071 		/* Was it single-stepping? */
1072 		if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
1073 			pcb_t *pcb = &lwp->lwp_pcb;
1074 
1075 			rp->r_ps &= ~PS_T;
1076 			/*
1077 			 * If both NORMAL_STEP and WATCH_STEP are in effect,
1078 			 * give precedence to NORMAL_STEP.  If neither is set,
1079 			 * user must have set the PS_T bit in %efl; treat this
1080 			 * as NORMAL_STEP.
1081 			 */
1082 			if ((pcb->pcb_flags & NORMAL_STEP) ||
1083 			    !(pcb->pcb_flags & WATCH_STEP)) {
1084 				siginfo.si_signo = SIGTRAP;
1085 				siginfo.si_code = TRAP_TRACE;
1086 				siginfo.si_addr = (caddr_t)rp->r_pc;
1087 				fault = FLTTRACE;
1088 				if (pcb->pcb_flags & WATCH_STEP)
1089 					(void) undo_watch_step(NULL);
1090 			} else {
1091 				fault = undo_watch_step(&siginfo);
1092 			}
1093 			pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1094 		} else {
1095 			cmn_err(CE_WARN,
1096 			    "Unexpected INT 1 in user mode, dr6=%lx",
1097 			    lwp->lwp_pcb.pcb_drstat);
1098 		}
1099 		break;
1100 
1101 	case T_BPTFLT + USER:	/* breakpoint trap */
1102 		if (tudebug && tudebugbpt)
1103 			showregs(type, rp, (caddr_t)0);
1104 		/*
1105 		 * int 3 (the breakpoint instruction) leaves the pc referring
1106 		 * to the address one byte after the breakpointed address.
1107 		 * If the P_PR_BPTADJ flag has been set via /proc, We adjust
1108 		 * it back so it refers to the breakpointed address.
1109 		 */
1110 		if (p->p_proc_flag & P_PR_BPTADJ)
1111 			rp->r_pc--;
1112 		siginfo.si_signo = SIGTRAP;
1113 		siginfo.si_code  = TRAP_BRKPT;
1114 		siginfo.si_addr  = (caddr_t)rp->r_pc;
1115 		fault = FLTBPT;
1116 		break;
1117 
1118 	case T_AST:
1119 		/*
1120 		 * This occurs only after the cs register has been made to
1121 		 * look like a kernel selector, either through debugging or
1122 		 * possibly by functions like setcontext().  The thread is
1123 		 * about to cause a general protection fault at common_iret()
1124 		 * in locore.  We let that happen immediately instead of
1125 		 * doing the T_AST processing.
1126 		 */
1127 		goto cleanup;
1128 
1129 	case T_AST + USER:		/* profiling or resched pseudo trap */
1130 		if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
1131 			lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
1132 			if (kcpc_overflow_ast()) {
1133 				/*
1134 				 * Signal performance counter overflow
1135 				 */
1136 				if (tudebug)
1137 					showregs(type, rp, (caddr_t)0);
1138 				bzero(&siginfo, sizeof (siginfo));
1139 				siginfo.si_signo = SIGEMT;
1140 				siginfo.si_code = EMT_CPCOVF;
1141 				siginfo.si_addr = (caddr_t)rp->r_pc;
1142 				fault = FLTCPCOVF;
1143 			}
1144 		}
1145 		break;
1146 	}
1147 
1148 	/*
1149 	 * We can't get here from a system trap
1150 	 */
1151 	ASSERT(type & USER);
1152 
1153 	if (fault) {
1154 		/*
1155 		 * Remember the fault and fault adddress
1156 		 * for real-time (SIGPROF) profiling.
1157 		 */
1158 		lwp->lwp_lastfault = fault;
1159 		lwp->lwp_lastfaddr = siginfo.si_addr;
1160 
1161 		DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
1162 
1163 		/*
1164 		 * If a debugger has declared this fault to be an
1165 		 * event of interest, stop the lwp.  Otherwise just
1166 		 * deliver the associated signal.
1167 		 */
1168 		if (siginfo.si_signo != SIGKILL &&
1169 		    prismember(&p->p_fltmask, fault) &&
1170 		    stop_on_fault(fault, &siginfo) == 0)
1171 			siginfo.si_signo = 0;
1172 	}
1173 
1174 	if (siginfo.si_signo)
1175 		trapsig(&siginfo, (fault == FLTCPCOVF)? 0 : 1);
1176 
1177 	if (lwp->lwp_oweupc)
1178 		profil_tick(rp->r_pc);
1179 
1180 	if (cur_thread->t_astflag | cur_thread->t_sig_check) {
1181 		/*
1182 		 * Turn off the AST flag before checking all the conditions that
1183 		 * may have caused an AST.  This flag is on whenever a signal or
1184 		 * unusual condition should be handled after the next trap or
1185 		 * syscall.
1186 		 */
1187 		astoff(cur_thread);
1188 		cur_thread->t_sig_check = 0;
1189 
1190 		mutex_enter(&p->p_lock);
1191 		if (curthread->t_proc_flag & TP_CHANGEBIND) {
1192 			timer_lwpbind();
1193 			curthread->t_proc_flag &= ~TP_CHANGEBIND;
1194 		}
1195 		mutex_exit(&p->p_lock);
1196 
1197 		/*
1198 		 * for kaio requests that are on the per-process poll queue,
1199 		 * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
1200 		 * should copyout their result_t to user memory. by copying
1201 		 * out the result_t, the user can poll on memory waiting
1202 		 * for the kaio request to complete.
1203 		 */
1204 		if (p->p_aio)
1205 			aio_cleanup(0);
1206 		/*
1207 		 * If this LWP was asked to hold, call holdlwp(), which will
1208 		 * stop.  holdlwps() sets this up and calls pokelwps() which
1209 		 * sets the AST flag.
1210 		 *
1211 		 * Also check TP_EXITLWP, since this is used by fresh new LWPs
1212 		 * through lwp_rtt().  That flag is set if the lwp_create(2)
1213 		 * syscall failed after creating the LWP.
1214 		 */
1215 		if (ISHOLD(p))
1216 			holdlwp();
1217 
1218 		/*
1219 		 * All code that sets signals and makes ISSIG evaluate true must
1220 		 * set t_astflag afterwards.
1221 		 */
1222 		if (ISSIG_PENDING(cur_thread, lwp, p)) {
1223 			if (issig(FORREAL))
1224 				psig();
1225 			cur_thread->t_sig_check = 1;
1226 		}
1227 
1228 		if (cur_thread->t_rprof != NULL) {
1229 			realsigprof(0, 0);
1230 			cur_thread->t_sig_check = 1;
1231 		}
1232 	}
1233 
1234 out:	/* We can't get here from a system trap */
1235 	ASSERT(type & USER);
1236 
1237 	if (ISHOLD(p))
1238 		holdlwp();
1239 
1240 	/*
1241 	 * Set state to LWP_USER here so preempt won't give us a kernel
1242 	 * priority if it occurs after this point.  Call CL_TRAPRET() to
1243 	 * restore the user-level priority.
1244 	 *
1245 	 * It is important that no locks (other than spinlocks) be entered
1246 	 * after this point before returning to user mode (unless lwp_state
1247 	 * is set back to LWP_SYS).
1248 	 */
1249 	lwp->lwp_state = LWP_USER;
1250 
1251 	if (cur_thread->t_trapret) {
1252 		cur_thread->t_trapret = 0;
1253 		thread_lock(cur_thread);
1254 		CL_TRAPRET(cur_thread);
1255 		thread_unlock(cur_thread);
1256 	}
1257 	if (CPU->cpu_runrun)
1258 		preempt();
1259 	(void) new_mstate(cur_thread, mstate);
1260 
1261 	/* Kernel probe */
1262 	TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
1263 	    tnf_microstate, state, LMS_USER);
1264 
1265 	return;
1266 
1267 cleanup:	/* system traps end up here */
1268 	ASSERT(!(type & USER));
1269 }
1270 
1271 /*
1272  * Patch non-zero to disable preemption of threads in the kernel.
1273  */
1274 int IGNORE_KERNEL_PREEMPTION = 0;	/* XXX - delete this someday */
1275 
1276 struct kpreempt_cnts {		/* kernel preemption statistics */
1277 	int	kpc_idle;	/* executing idle thread */
1278 	int	kpc_intr;	/* executing interrupt thread */
1279 	int	kpc_clock;	/* executing clock thread */
1280 	int	kpc_blocked;	/* thread has blocked preemption (t_preempt) */
1281 	int	kpc_notonproc;	/* thread is surrendering processor */
1282 	int	kpc_inswtch;	/* thread has ratified scheduling decision */
1283 	int	kpc_prilevel;	/* processor interrupt level is too high */
1284 	int	kpc_apreempt;	/* asynchronous preemption */
1285 	int	kpc_spreempt;	/* synchronous preemption */
1286 } kpreempt_cnts;
1287 
1288 /*
1289  * kernel preemption: forced rescheduling, preempt the running kernel thread.
1290  *	the argument is old PIL for an interrupt,
1291  *	or the distingished value KPREEMPT_SYNC.
1292  */
1293 void
1294 kpreempt(int asyncspl)
1295 {
1296 	kthread_t *cur_thread = curthread;
1297 
1298 	if (IGNORE_KERNEL_PREEMPTION) {
1299 		aston(CPU->cpu_dispthread);
1300 		return;
1301 	}
1302 
1303 	/*
1304 	 * Check that conditions are right for kernel preemption
1305 	 */
1306 	do {
1307 		if (cur_thread->t_preempt) {
1308 			/*
1309 			 * either a privileged thread (idle, panic, interrupt)
1310 			 *	or will check when t_preempt is lowered
1311 			 */
1312 			if (cur_thread->t_pri < 0)
1313 				kpreempt_cnts.kpc_idle++;
1314 			else if (cur_thread->t_flag & T_INTR_THREAD) {
1315 				kpreempt_cnts.kpc_intr++;
1316 				if (cur_thread->t_pil == CLOCK_LEVEL)
1317 					kpreempt_cnts.kpc_clock++;
1318 			} else
1319 				kpreempt_cnts.kpc_blocked++;
1320 			aston(CPU->cpu_dispthread);
1321 			return;
1322 		}
1323 		if (cur_thread->t_state != TS_ONPROC ||
1324 		    cur_thread->t_disp_queue != CPU->cpu_disp) {
1325 			/* this thread will be calling swtch() shortly */
1326 			kpreempt_cnts.kpc_notonproc++;
1327 			if (CPU->cpu_thread != CPU->cpu_dispthread) {
1328 				/* already in swtch(), force another */
1329 				kpreempt_cnts.kpc_inswtch++;
1330 				siron();
1331 			}
1332 			return;
1333 		}
1334 		if (getpil() >= DISP_LEVEL) {
1335 			/*
1336 			 * We can't preempt this thread if it is at
1337 			 * a PIL >= DISP_LEVEL since it may be holding
1338 			 * a spin lock (like sched_lock).
1339 			 */
1340 			siron();	/* check back later */
1341 			kpreempt_cnts.kpc_prilevel++;
1342 			return;
1343 		}
1344 
1345 		if (asyncspl != KPREEMPT_SYNC)
1346 			kpreempt_cnts.kpc_apreempt++;
1347 		else
1348 			kpreempt_cnts.kpc_spreempt++;
1349 
1350 		cur_thread->t_preempt++;
1351 		preempt();
1352 		cur_thread->t_preempt--;
1353 	} while (CPU->cpu_kprunrun);
1354 }
1355 
1356 /*
1357  * Print out debugging info.
1358  */
1359 static void
1360 showregs(uint_t type, struct regs *rp, caddr_t addr)
1361 {
1362 	int s;
1363 
1364 	s = spl7();
1365 	type &= ~USER;
1366 	if (u.u_comm[0])
1367 		printf("%s: ", u.u_comm);
1368 	if (type < TRAP_TYPES)
1369 		printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
1370 	else
1371 		switch (type) {
1372 		case T_SYSCALL:
1373 			printf("Syscall Trap:\n");
1374 			break;
1375 		case T_AST:
1376 			printf("AST\n");
1377 			break;
1378 		default:
1379 			printf("Bad Trap = %d\n", type);
1380 			break;
1381 		}
1382 	if (type == T_PGFLT) {
1383 		printf("Bad %s fault at addr=0x%lx\n",
1384 		    USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
1385 	} else if (addr) {
1386 		printf("addr=0x%lx\n", (uintptr_t)addr);
1387 	}
1388 
1389 	printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
1390 	    (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
1391 	    ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
1392 
1393 #if defined(__lint)
1394 	/*
1395 	 * this clause can be deleted when lint bug 4870403 is fixed
1396 	 * (lint thinks that bit 32 is illegal in a %b format string)
1397 	 */
1398 	printf("cr0: %x cr4: %b\n",
1399 	    (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
1400 #else
1401 	printf("cr0: %b cr4: %b\n",
1402 	    (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
1403 #endif
1404 
1405 #if defined(__amd64)
1406 	printf("cr2: %lx cr3: %lx cr8: %lx\n", getcr2(), getcr3(), getcr8());
1407 #elif defined(__i386)
1408 	printf("cr2: %lx cr3: %lx\n", getcr2(), getcr3());
1409 #endif
1410 
1411 	dumpregs(rp);
1412 	splx(s);
1413 }
1414 
1415 static void
1416 dumpregs(struct regs *rp)
1417 {
1418 #if defined(__amd64)
1419 	const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
1420 
1421 	printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
1422 	printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
1423 	printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
1424 	printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
1425 	printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
1426 
1427 	printf(fmt, "fsb", rp->r_fsbase, "gsb", rp->r_gsbase, " ds", rp->r_ds);
1428 	printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
1429 
1430 	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
1431 	printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
1432 
1433 	printf("\t%3s: %16lx\n", " ss", rp->r_ss);
1434 
1435 #elif defined(__i386)
1436 	const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
1437 
1438 	printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
1439 	    " es", rp->r_es, " ds", rp->r_ds);
1440 	printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
1441 	    "ebp", rp->r_ebp, "esp", rp->r_esp);
1442 	printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
1443 	    "ecx", rp->r_ecx, "eax", rp->r_eax);
1444 	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
1445 	    "eip", rp->r_eip, " cs", rp->r_cs);
1446 	printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
1447 	    "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
1448 
1449 #endif	/* __i386 */
1450 }
1451 
1452 /*
1453  * Handle #gp faults in kernel mode.
1454  *
1455  * One legitimate way this can happen is if we attempt to update segment
1456  * registers to naughty values on the way out of the kernel.
1457  *
1458  * This can happen in a couple of ways: someone - either accidentally or
1459  * on purpose - creates (setcontext(2), lwp_create(2)) or modifies
1460  * (signal(2)) a ucontext that contains silly segment register values.
1461  * Or someone - either accidentally or on purpose - modifies the prgregset_t
1462  * of a subject process via /proc to contain silly segment register values.
1463  *
1464  * (The unfortunate part is that we can end up discovering the bad segment
1465  * register value in the middle of an 'iret' after we've popped most of the
1466  * stack.  So it becomes quite difficult to associate an accurate ucontext
1467  * with the lwp, because the act of taking the #gp trap overwrites most of
1468  * what we were going to send the lwp.)
1469  *
1470  * OTOH if it turns out that's -not- the problem, and we're -not- an lwp
1471  * trying to return to user mode and we get a #gp fault, then we need
1472  * to die() -- which will happen if we return non-zero from this routine.
1473  */
1474 static int
1475 kern_gpfault(struct regs *rp)
1476 {
1477 	kthread_t *t = curthread;
1478 	proc_t *p = ttoproc(t);
1479 	klwp_t *lwp = ttolwp(t);
1480 	struct regs tmpregs, *trp = NULL;
1481 	caddr_t pc = (caddr_t)rp->r_pc;
1482 	int v;
1483 
1484 	extern void _sys_rtt(), sr_sup();
1485 
1486 #if defined(__amd64)
1487 	extern void _update_sregs(), _update_sregs_done();
1488 	static const uint8_t iretq_insn[2] = { 0x48, 0xcf };
1489 
1490 #elif defined(__i386)
1491 	static const uint8_t iret_insn[1] = { 0xcf };
1492 
1493 	/*
1494 	 * Note carefully the appallingly awful dependency between
1495 	 * the instruction sequence used in __SEGREGS_POP and these
1496 	 * instructions encoded here.
1497 	 *
1498 	 * XX64	Add some commentary to locore.s/privregs.h to document this.
1499 	 */
1500 	static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
1501 	static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
1502 	static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
1503 	static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
1504 #endif
1505 	/*
1506 	 * if we're not an lwp, or the pc range is outside _sys_rtt, then
1507 	 * we should immediately be die()ing horribly
1508 	 */
1509 	if (lwp == NULL ||
1510 	    (uintptr_t)pc < (uintptr_t)_sys_rtt ||
1511 	    (uintptr_t)pc > (uintptr_t)sr_sup)
1512 		return (1);
1513 
1514 	/*
1515 	 * So at least we're in the right part of the kernel.
1516 	 *
1517 	 * Disassemble the instruction at the faulting pc.
1518 	 * Once we know what it is, we carefully reconstruct the stack
1519 	 * based on the order in which the stack is deconstructed in
1520 	 * _sys_rtt. Ew.
1521 	 */
1522 
1523 #if defined(__amd64)
1524 
1525 	if (bcmp(pc, iretq_insn, sizeof (iretq_insn)) == 0) {
1526 		/*
1527 		 * We took the #gp while trying to perform the iretq.
1528 		 * This means that either %cs or %ss are bad.
1529 		 * All we know for sure is that most of the general
1530 		 * registers have been restored, including the
1531 		 * segment registers, and all we have left on the
1532 		 * topmost part of the lwp's stack are the
1533 		 * registers that the iretq was unable to consume.
1534 		 *
1535 		 * All the rest of the state was crushed by the #gp
1536 		 * which pushed -its- registers atop our old save area
1537 		 * (because we had to decrement the stack pointer, sigh) so
1538 		 * all that we can try and do is to reconstruct the
1539 		 * crushed frame from the #gp trap frame itself.
1540 		 */
1541 		trp = &tmpregs;
1542 		trp->r_ss = lwptoregs(lwp)->r_ss;
1543 		trp->r_sp = lwptoregs(lwp)->r_sp;
1544 		trp->r_ps = lwptoregs(lwp)->r_ps;
1545 		trp->r_cs = lwptoregs(lwp)->r_cs;
1546 		trp->r_pc = lwptoregs(lwp)->r_pc;
1547 		bcopy(rp, trp, offsetof(struct regs, r_pc));
1548 
1549 		/*
1550 		 * Validate simple math
1551 		 */
1552 		ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1553 		ASSERT(trp->r_err == rp->r_err);
1554 
1555 	} else if ((lwp->lwp_pcb.pcb_flags & RUPDATE_PENDING) != 0 &&
1556 	    pc >= (caddr_t)_update_sregs &&
1557 	    pc < (caddr_t)_update_sregs_done) {
1558 		/*
1559 		 * This is the common case -- we're trying to load
1560 		 * a bad segment register value in the only section
1561 		 * of kernel code that ever loads segment registers.
1562 		 *
1563 		 * We don't need to do anything at this point because
1564 		 * the pcb contains all the pending segment register
1565 		 * state, and the regs are still intact because we
1566 		 * didn't adjust the stack pointer yet.  Given the fidelity
1567 		 * of all this, we could conceivably send a signal
1568 		 * to the lwp, rather than core-ing.
1569 		 */
1570 		trp = lwptoregs(lwp);
1571 		ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
1572 	}
1573 
1574 #elif defined(__i386)
1575 
1576 	if (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0) {
1577 		/*
1578 		 * We took the #gp while trying to perform the iret.
1579 		 * This means that either %cs or %ss are bad.
1580 		 * All we know for sure is that most of the general
1581 		 * registers have been restored, including the
1582 		 * segment registers, and all we have left on the
1583 		 * topmost part of the lwp's stack are the registers that
1584 		 * the iret was unable to consume.
1585 		 *
1586 		 * All the rest of the state was crushed by the #gp
1587 		 * which pushed -its- registers atop our old save area
1588 		 * (because we had to decrement the stack pointer, sigh) so
1589 		 * all that we can try and do is to reconstruct the
1590 		 * crushed frame from the #gp trap frame itself.
1591 		 */
1592 		trp = &tmpregs;
1593 		trp->r_ss = lwptoregs(lwp)->r_ss;
1594 		trp->r_sp = lwptoregs(lwp)->r_sp;
1595 		trp->r_ps = lwptoregs(lwp)->r_ps;
1596 		trp->r_cs = lwptoregs(lwp)->r_cs;
1597 		trp->r_pc = lwptoregs(lwp)->r_pc;
1598 		bcopy(rp, trp, offsetof(struct regs, r_pc));
1599 
1600 		ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1601 		ASSERT(trp->r_err == rp->r_err);
1602 
1603 	} else {
1604 		/*
1605 		 * Segment registers are reloaded in _sys_rtt
1606 		 * via the following sequence:
1607 		 *
1608 		 *	movw	0(%esp), %gs
1609 		 *	movw	4(%esp), %fs
1610 		 *	movw	8(%esp), %es
1611 		 *	movw	12(%esp), %ds
1612 		 *	addl	$16, %esp
1613 		 *
1614 		 * Thus if any of them fault, we know the user
1615 		 * registers are left unharmed on the stack.
1616 		 */
1617 		if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
1618 		    bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
1619 		    bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
1620 		    bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
1621 			trp = lwptoregs(lwp);
1622 	}
1623 #endif	/* __amd64 */
1624 
1625 	if (trp == NULL)
1626 		return (1);
1627 
1628 	/*
1629 	 * If we get to here, we're reasonably confident that we've
1630 	 * correctly decoded what happened on the way out of the kernel.
1631 	 * Rewrite the lwp's registers so that we can create a core dump
1632 	 * the (at least vaguely) represents the mcontext we were
1633 	 * being asked to restore when things went so terribly wrong.
1634 	 */
1635 
1636 	/*
1637 	 * Make sure that we have a meaningful %trapno and %err.
1638 	 */
1639 	trp->r_trapno = rp->r_trapno;
1640 	trp->r_err = rp->r_err;
1641 
1642 	if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
1643 		bcopy(trp, lwptoregs(lwp), sizeof (*trp));
1644 
1645 	mutex_enter(&p->p_lock);
1646 	lwp->lwp_cursig = SIGSEGV;
1647 	mutex_exit(&p->p_lock);
1648 
1649 	/*
1650 	 * Terminate all LWPs but don't discard them.  If another lwp beat us to
1651 	 * the punch by calling exit(), evaporate now.
1652 	 */
1653 	if (exitlwps(1) != 0) {
1654 		mutex_enter(&p->p_lock);
1655 		lwp_exit();
1656 	}
1657 
1658 #ifdef C2_AUDIT
1659 	if (audit_active)		/* audit core dump */
1660 		audit_core_start(SIGSEGV);
1661 #endif
1662 	v = core(SIGSEGV, B_FALSE);
1663 #ifdef C2_AUDIT
1664 	if (audit_active)		/* audit core dump */
1665 		audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
1666 #endif
1667 	exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
1668 	return (0);
1669 }
1670 
1671 /*
1672  * dump_tss() - Display the TSS structure
1673  */
1674 
1675 #if defined(__amd64)
1676 
1677 static void
1678 dump_tss(void)
1679 {
1680 	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
1681 	struct tss *tss = CPU->cpu_tss;
1682 
1683 	printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
1684 	printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
1685 	printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
1686 
1687 	printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
1688 	printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
1689 	printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
1690 	printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
1691 	printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
1692 	printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
1693 	printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
1694 }
1695 
1696 #elif defined(__i386)
1697 
1698 static void
1699 dump_tss(void)
1700 {
1701 	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
1702 	struct tss *tss = CPU->cpu_tss;
1703 
1704 	printf(tss_fmt, "tss_link", (void *)tss->tss_link);
1705 	printf(tss_fmt, "tss_esp0", (void *)tss->tss_esp0);
1706 	printf(tss_fmt, "tss_ss0", (void *)tss->tss_ss0);
1707 	printf(tss_fmt, "tss_esp1", (void *)tss->tss_esp1);
1708 	printf(tss_fmt, "tss_ss1", (void *)tss->tss_ss1);
1709 	printf(tss_fmt, "tss_esp2", (void *)tss->tss_esp2);
1710 	printf(tss_fmt, "tss_ss2", (void *)tss->tss_ss2);
1711 	printf(tss_fmt, "tss_cr3", (void *)tss->tss_cr3);
1712 	printf(tss_fmt, "tss_eip", (void *)tss->tss_eip);
1713 	printf(tss_fmt, "tss_eflags", (void *)tss->tss_eflags);
1714 	printf(tss_fmt, "tss_eax", (void *)tss->tss_eax);
1715 	printf(tss_fmt, "tss_ebx", (void *)tss->tss_ebx);
1716 	printf(tss_fmt, "tss_ecx", (void *)tss->tss_ecx);
1717 	printf(tss_fmt, "tss_edx", (void *)tss->tss_edx);
1718 	printf(tss_fmt, "tss_esp", (void *)tss->tss_esp);
1719 }
1720 
1721 #endif	/* __amd64 */
1722 
1723 #if defined(TRAPTRACE)
1724 
1725 int ttrace_nrec = 0;		/* number of records to dump out */
1726 int ttrace_dump_nregs = 5;	/* dump out this many records with regs too */
1727 
1728 /*
1729  * Dump out the last ttrace_nrec traptrace records on each CPU
1730  */
1731 static void
1732 dump_ttrace(void)
1733 {
1734 	trap_trace_ctl_t *ttc;
1735 	trap_trace_rec_t *rec;
1736 	uintptr_t current;
1737 	int i, j, k;
1738 	int n = NCPU;
1739 #if defined(__amd64)
1740 	const char banner[] =
1741 		"\ncpu          address    timestamp "
1742 		"type  vc  handler   pc\n";
1743 	const char fmt1[] = "%3d %016lx %12llx ";
1744 #elif defined(__i386)
1745 	const char banner[] =
1746 		"\ncpu address     timestamp type  vc  handler   pc\n";
1747 	const char fmt1[] = "%3d %08lx %12llx ";
1748 #endif
1749 	const char fmt2[] = "%4s %3x ";
1750 	const char fmt3[] = "%8s ";
1751 
1752 	if (ttrace_nrec == 0)
1753 		return;
1754 
1755 	printf(banner);
1756 
1757 	for (i = 0; i < n; i++) {
1758 		ttc = &trap_trace_ctl[i];
1759 		if (ttc->ttc_first == NULL)
1760 			continue;
1761 
1762 		current = ttc->ttc_next - sizeof (trap_trace_rec_t);
1763 		for (j = 0; j < ttrace_nrec; j++) {
1764 			struct sysent	*sys;
1765 			struct autovec	*vec;
1766 			extern struct av_head autovect[];
1767 			int type;
1768 			ulong_t	off;
1769 			char *sym, *stype;
1770 
1771 			if (current < ttc->ttc_first)
1772 				current =
1773 				    ttc->ttc_limit - sizeof (trap_trace_rec_t);
1774 
1775 			if (current == NULL)
1776 				continue;
1777 
1778 			rec = (trap_trace_rec_t *)current;
1779 
1780 			if (rec->ttr_stamp == 0)
1781 				break;
1782 
1783 			printf(fmt1, i, (uintptr_t)rec, rec->ttr_stamp);
1784 
1785 			switch (rec->ttr_marker) {
1786 			case TT_SYSCALL:
1787 			case TT_SYSENTER:
1788 			case TT_SYSC:
1789 			case TT_SYSC64:
1790 #if defined(__amd64)
1791 				sys = &sysent32[rec->ttr_sysnum];
1792 				switch (rec->ttr_marker) {
1793 				case TT_SYSC64:
1794 					sys = &sysent[rec->ttr_sysnum];
1795 					/*FALLTHROUGH*/
1796 #elif defined(__i386)
1797 				sys = &sysent[rec->ttr_sysnum];
1798 				switch (rec->ttr_marker) {
1799 				case TT_SYSC64:
1800 #endif
1801 				case TT_SYSC:
1802 					stype = "sysc";	/* syscall */
1803 					break;
1804 				case TT_SYSCALL:
1805 					stype = "lcal";	/* lcall */
1806 					break;
1807 				case TT_SYSENTER:
1808 					stype = "syse";	/* sysenter */
1809 					break;
1810 				default:
1811 					break;
1812 				}
1813 				printf(fmt2, "sysc", rec->ttr_sysnum);
1814 				if (sys != NULL) {
1815 					sym = kobj_getsymname(
1816 					    (uintptr_t)sys->sy_callc,
1817 					    &off);
1818 					if (sym != NULL)
1819 						printf("%s ", sym);
1820 					else
1821 						printf("%p ", sys->sy_callc);
1822 				} else {
1823 					printf("unknown ");
1824 				}
1825 				break;
1826 
1827 			case TT_INTERRUPT:
1828 				printf(fmt2, "intr", rec->ttr_vector);
1829 				vec = (&autovect[rec->ttr_vector])->avh_link;
1830 				if (vec != NULL) {
1831 					sym = kobj_getsymname(
1832 					    (uintptr_t)vec->av_vector, &off);
1833 					if (sym != NULL)
1834 						printf("%s ", sym);
1835 					else
1836 						printf("%p ", vec->av_vector);
1837 				} else {
1838 					printf("unknown ");
1839 				}
1840 				break;
1841 
1842 			case TT_TRAP:
1843 				type = rec->ttr_regs.r_trapno;
1844 				printf(fmt2, "trap", type);
1845 				printf("#%s ", type < TRAP_TYPES ?
1846 				    trap_type_mnemonic[type] : "trap");
1847 				break;
1848 
1849 			default:
1850 				break;
1851 			}
1852 
1853 			sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
1854 			if (sym != NULL)
1855 				printf("%s+%lx\n", sym, off);
1856 			else
1857 				printf("%lx\n", rec->ttr_regs.r_pc);
1858 
1859 			if (ttrace_dump_nregs-- > 0) {
1860 				int s;
1861 
1862 				if (rec->ttr_marker == TT_INTERRUPT)
1863 					printf(
1864 					    "\t\tipl %x spl %x pri %x\n",
1865 					    rec->ttr_ipl,
1866 					    rec->ttr_spl,
1867 					    rec->ttr_pri);
1868 
1869 				dumpregs(&rec->ttr_regs);
1870 
1871 				printf("\t%3s: %p\n\n", " ct",
1872 				    (void *)rec->ttr_curthread);
1873 
1874 				/*
1875 				 * print out the pc stack that we recorded
1876 				 * at trap time (if any)
1877 				 */
1878 				for (s = 0; s < rec->ttr_sdepth; s++) {
1879 					uintptr_t fullpc;
1880 
1881 					if (s >= TTR_STACK_DEPTH) {
1882 						printf("ttr_sdepth corrupt\n");
1883 						break;
1884 					}
1885 
1886 					fullpc = (uintptr_t)rec->ttr_stack[s];
1887 
1888 					sym = kobj_getsymname(fullpc, &off);
1889 					if (sym != NULL)
1890 						printf("-> %s+0x%lx()\n",
1891 						    sym, off);
1892 					else
1893 						printf("-> 0x%lx()\n", fullpc);
1894 				}
1895 				printf("\n");
1896 			}
1897 			current -= sizeof (trap_trace_rec_t);
1898 		}
1899 	}
1900 }
1901 
1902 #endif	/* TRAPTRACE */
1903 
1904 void
1905 panic_showtrap(struct trap_info *tip)
1906 {
1907 	showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
1908 
1909 #if defined(TRAPTRACE)
1910 	dump_ttrace();
1911 #endif	/* TRAPTRACE */
1912 
1913 	if (tip->trap_type == T_DBLFLT)
1914 		dump_tss();
1915 }
1916 
1917 void
1918 panic_savetrap(panic_data_t *pdp, struct trap_info *tip)
1919 {
1920 	panic_saveregs(pdp, tip->trap_regs);
1921 }
1922