1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 #include <sys/debug_info.h> 115 #include <sys/bootinfo.h> 116 #include <sys/ddi_timer.h> 117 #include <sys/systeminfo.h> 118 #include <sys/multiboot.h> 119 120 #ifdef __xpv 121 122 #include <sys/hypervisor.h> 123 #include <sys/xen_mmu.h> 124 #include <sys/evtchn_impl.h> 125 #include <sys/gnttab.h> 126 #include <sys/xpv_panic.h> 127 #include <xen/sys/xenbus_comms.h> 128 #include <xen/public/physdev.h> 129 130 extern void xen_late_startup(void); 131 132 struct xen_evt_data cpu0_evt_data; 133 134 #endif /* __xpv */ 135 136 extern void progressbar_init(void); 137 extern void progressbar_start(void); 138 extern void brand_init(void); 139 extern void pcf_init(void); 140 extern void pg_init(void); 141 142 extern int size_pse_array(pgcnt_t, int); 143 144 #if defined(_SOFT_HOSTID) 145 146 #include <sys/rtc.h> 147 148 static int32_t set_soft_hostid(void); 149 static char hostid_file[] = "/etc/hostid"; 150 151 #endif 152 153 void *gfx_devinfo_list; 154 155 /* 156 * XXX make declaration below "static" when drivers no longer use this 157 * interface. 158 */ 159 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 160 161 /* 162 * segkp 163 */ 164 extern int segkp_fromheap; 165 166 static void kvm_init(void); 167 static void startup_init(void); 168 static void startup_memlist(void); 169 static void startup_kmem(void); 170 static void startup_modules(void); 171 static void startup_vm(void); 172 static void startup_end(void); 173 static void layout_kernel_va(void); 174 175 /* 176 * Declare these as initialized data so we can patch them. 177 */ 178 #ifdef __i386 179 180 /* 181 * Due to virtual address space limitations running in 32 bit mode, restrict 182 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 183 * 184 * If the physical max memory size of 64g were allowed to be configured, the 185 * size of user virtual address space will be less than 1g. A limited user 186 * address space greatly reduces the range of applications that can run. 187 * 188 * If more physical memory than PHYSMEM is required, users should preferably 189 * run in 64 bit mode which has far looser virtual address space limitations. 190 * 191 * If 64 bit mode is not available (as in IA32) and/or more physical memory 192 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 193 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 194 * should also be carefully tuned to balance out the need of the user 195 * application while minimizing the risk of kernel heap exhaustion due to 196 * kernelbase being set too high. 197 */ 198 #define PHYSMEM 0x400000 199 200 #else /* __amd64 */ 201 202 /* 203 * For now we can handle memory with physical addresses up to about 204 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 205 * half the VA space for seg_kpm. When systems get bigger than 64TB this 206 * code will need revisiting. There is an implicit assumption that there 207 * are no *huge* holes in the physical address space too. 208 */ 209 #define TERABYTE (1ul << 40) 210 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 211 #define PHYSMEM PHYSMEM_MAX64 212 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 213 214 #endif /* __amd64 */ 215 216 pgcnt_t physmem = PHYSMEM; 217 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 218 219 char *kobj_file_buf; 220 int kobj_file_bufsize; /* set in /etc/system */ 221 222 /* Global variables for MP support. Used in mp_startup */ 223 caddr_t rm_platter_va = 0; 224 uint32_t rm_platter_pa; 225 226 int auto_lpg_disable = 1; 227 228 /* 229 * Some CPUs have holes in the middle of the 64-bit virtual address range. 230 */ 231 uintptr_t hole_start, hole_end; 232 233 /* 234 * kpm mapping window 235 */ 236 caddr_t kpm_vbase; 237 size_t kpm_size; 238 static int kpm_desired; 239 #ifdef __amd64 240 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 241 #endif 242 243 /* 244 * Configuration parameters set at boot time. 245 */ 246 247 caddr_t econtig; /* end of first block of contiguous kernel */ 248 249 struct bootops *bootops = 0; /* passed in from boot */ 250 struct bootops **bootopsp; 251 struct boot_syscalls *sysp; /* passed in from boot */ 252 253 char bootblock_fstype[16]; 254 255 char kern_bootargs[OBP_MAXPATHLEN]; 256 char kern_bootfile[OBP_MAXPATHLEN]; 257 258 /* 259 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 260 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 261 * zio buffers from their own segment, otherwise they are allocated from the 262 * heap. The optimization of allocating zio buffers from their own segment is 263 * only valid on 64-bit kernels. 264 */ 265 #if defined(__amd64) 266 int segzio_fromheap = 0; 267 #else 268 int segzio_fromheap = 1; 269 #endif 270 271 /* 272 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 273 * depends on number of BOP_ALLOC calls made and requested size, memory size 274 * combination and whether boot.bin memory needs to be freed. 275 */ 276 #define POSS_NEW_FRAGMENTS 12 277 278 /* 279 * VM data structures 280 */ 281 long page_hashsz; /* Size of page hash table (power of two) */ 282 struct page *pp_base; /* Base of initial system page struct array */ 283 struct page **page_hash; /* Page hash table */ 284 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 285 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 286 int pse_shift; /* log2(pse_table_size) */ 287 struct seg ktextseg; /* Segment used for kernel executable image */ 288 struct seg kvalloc; /* Segment used for "valloc" mapping */ 289 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 290 struct seg kmapseg; /* Segment used for generic kernel mappings */ 291 struct seg kdebugseg; /* Segment used for the kernel debugger */ 292 293 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 294 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 295 296 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 297 298 #if defined(__amd64) 299 struct seg kvseg_core; /* Segment used for the core heap */ 300 struct seg kpmseg; /* Segment used for physical mapping */ 301 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 302 #else 303 struct seg *segkpm = NULL; /* Unused on IA32 */ 304 #endif 305 306 caddr_t segkp_base; /* Base address of segkp */ 307 caddr_t segzio_base; /* Base address of segzio */ 308 #if defined(__amd64) 309 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 310 #else 311 pgcnt_t segkpsize = 0; 312 #endif 313 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 314 315 /* 316 * VA range available to the debugger 317 */ 318 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 319 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 320 321 struct memseg *memseg_base; 322 struct vnode unused_pages_vp; 323 324 #define FOURGB 0x100000000LL 325 326 struct memlist *memlist; 327 328 caddr_t s_text; /* start of kernel text segment */ 329 caddr_t e_text; /* end of kernel text segment */ 330 caddr_t s_data; /* start of kernel data segment */ 331 caddr_t e_data; /* end of kernel data segment */ 332 caddr_t modtext; /* start of loadable module text reserved */ 333 caddr_t e_modtext; /* end of loadable module text reserved */ 334 caddr_t moddata; /* start of loadable module data reserved */ 335 caddr_t e_moddata; /* end of loadable module data reserved */ 336 337 struct memlist *phys_install; /* Total installed physical memory */ 338 struct memlist *phys_avail; /* Total available physical memory */ 339 340 /* 341 * kphysm_init returns the number of pages that were processed 342 */ 343 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 344 345 #define IO_PROP_SIZE 64 /* device property size */ 346 347 /* 348 * a couple useful roundup macros 349 */ 350 #define ROUND_UP_PAGE(x) \ 351 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 352 #define ROUND_UP_LPAGE(x) \ 353 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 354 #define ROUND_UP_4MEG(x) \ 355 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 356 #define ROUND_UP_TOPLEVEL(x) \ 357 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 358 359 /* 360 * 32-bit Kernel's Virtual memory layout. 361 * +-----------------------+ 362 * | | 363 * 0xFFC00000 -|-----------------------|- ARGSBASE 364 * | debugger | 365 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 366 * | Kernel Data | 367 * 0xFEC00000 -|-----------------------| 368 * | Kernel Text | 369 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 370 * |--- GDT ---|- GDT page (GDT_VA) 371 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 372 * | | 373 * | page_t structures | 374 * | memsegs, memlists, | 375 * | page hash, etc. | 376 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 377 * | | (segkp is just an arena in the heap) 378 * | | 379 * | kvseg | 380 * | | 381 * | | 382 * --- -|-----------------------|- kernelheap (floating) 383 * | Segkmap | 384 * 0xC3002000 -|-----------------------|- segmap_start (floating) 385 * | Red Zone | 386 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 387 * | | || 388 * | Shared objects | \/ 389 * | | 390 * : : 391 * | user data | 392 * |-----------------------| 393 * | user text | 394 * 0x08048000 -|-----------------------| 395 * | user stack | 396 * : : 397 * | invalid | 398 * 0x00000000 +-----------------------+ 399 * 400 * 401 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 402 * +-----------------------+ 403 * | | 404 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 405 * | debugger (?) | 406 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 407 * | unused | 408 * +-----------------------+ 409 * | Kernel Data | 410 * 0xFFFFFFFF.FBC00000 |-----------------------| 411 * | Kernel Text | 412 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 413 * |--- GDT ---|- GDT page (GDT_VA) 414 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 415 * | | 416 * | Core heap | (used for loadable modules) 417 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 418 * | Kernel | 419 * | heap | 420 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 421 * | segmap | 422 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 423 * | device mappings | 424 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 425 * | segzio | 426 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 427 * | segkp | 428 * --- |-----------------------|- segkp_base (floating) 429 * | page_t structures | valloc_base + valloc_sz 430 * | memsegs, memlists, | 431 * | page hash, etc. | 432 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 433 * | segkpm | 434 * 0xFFFFFE00.00000000 |-----------------------| 435 * | Red Zone | 436 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 437 * | User stack |- User space memory 438 * | | 439 * | shared objects, etc | (grows downwards) 440 * : : 441 * | | 442 * 0xFFFF8000.00000000 |-----------------------| 443 * | | 444 * | VA Hole / unused | 445 * | | 446 * 0x00008000.00000000 |-----------------------| 447 * | | 448 * | | 449 * : : 450 * | user heap | (grows upwards) 451 * | | 452 * | user data | 453 * |-----------------------| 454 * | user text | 455 * 0x00000000.04000000 |-----------------------| 456 * | invalid | 457 * 0x00000000.00000000 +-----------------------+ 458 * 459 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 460 * kernel, except that userlimit is raised to 0xfe000000 461 * 462 * Floating values: 463 * 464 * valloc_base: start of the kernel's memory management/tracking data 465 * structures. This region contains page_t structures for 466 * physical memory, memsegs, memlists, and the page hash. 467 * 468 * core_base: start of the kernel's "core" heap area on 64-bit systems. 469 * This area is intended to be used for global data as well as for module 470 * text/data that does not fit into the nucleus pages. The core heap is 471 * restricted to a 2GB range, allowing every address within it to be 472 * accessed using rip-relative addressing 473 * 474 * ekernelheap: end of kernelheap and start of segmap. 475 * 476 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 477 * above a red zone that separates the user's address space from the 478 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 479 * 480 * segmap_start: start of segmap. The length of segmap can be modified 481 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 482 * on 64-bit systems. 483 * 484 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 485 * decreased by 2X the size required for page_t. This allows the kernel 486 * heap to grow in size with physical memory. With sizeof(page_t) == 80 487 * bytes, the following shows the values of kernelbase and kernel heap 488 * sizes for different memory configurations (assuming default segmap and 489 * segkp sizes). 490 * 491 * mem size for kernelbase kernel heap 492 * size page_t's size 493 * ---- --------- ---------- ----------- 494 * 1gb 0x01400000 0xd1800000 684MB 495 * 2gb 0x02800000 0xcf000000 704MB 496 * 4gb 0x05000000 0xca000000 744MB 497 * 6gb 0x07800000 0xc5000000 784MB 498 * 8gb 0x0a000000 0xc0000000 824MB 499 * 16gb 0x14000000 0xac000000 984MB 500 * 32gb 0x28000000 0x84000000 1304MB 501 * 64gb 0x50000000 0x34000000 1944MB (*) 502 * 503 * kernelbase is less than the abi minimum of 0xc0000000 for memory 504 * configurations above 8gb. 505 * 506 * (*) support for memory configurations above 32gb will require manual tuning 507 * of kernelbase to balance out the need of user applications. 508 */ 509 510 /* real-time-clock initialization parameters */ 511 extern time_t process_rtc_config_file(void); 512 513 uintptr_t kernelbase; 514 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 515 uintptr_t eprom_kernelbase; 516 size_t segmapsize; 517 uintptr_t segmap_start; 518 int segmapfreelists; 519 pgcnt_t npages; 520 pgcnt_t orig_npages; 521 size_t core_size; /* size of "core" heap */ 522 uintptr_t core_base; /* base address of "core" heap */ 523 524 /* 525 * List of bootstrap pages. We mark these as allocated in startup. 526 * release_bootstrap() will free them when we're completely done with 527 * the bootstrap. 528 */ 529 static page_t *bootpages; 530 531 /* 532 * boot time pages that have a vnode from the ramdisk will keep that forever. 533 */ 534 static page_t *rd_pages; 535 536 /* 537 * Lower 64K 538 */ 539 static page_t *lower_pages = NULL; 540 static int lower_pages_count = 0; 541 542 struct system_hardware system_hardware; 543 544 /* 545 * Is this Solaris instance running in a fully virtualized xVM domain? 546 */ 547 int xpv_is_hvm = 0; 548 549 /* 550 * Enable some debugging messages concerning memory usage... 551 */ 552 static void 553 print_memlist(char *title, struct memlist *mp) 554 { 555 prom_printf("MEMLIST: %s:\n", title); 556 while (mp != NULL) { 557 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 558 mp->address, mp->size); 559 mp = mp->next; 560 } 561 } 562 563 /* 564 * XX64 need a comment here.. are these just default values, surely 565 * we read the "cpuid" type information to figure this out. 566 */ 567 int l2cache_sz = 0x80000; 568 int l2cache_linesz = 0x40; 569 int l2cache_assoc = 1; 570 571 static size_t textrepl_min_gb = 10; 572 573 /* 574 * on 64 bit we use a predifined VA range for mapping devices in the kernel 575 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 576 */ 577 #ifdef __amd64 578 579 vmem_t *device_arena; 580 uintptr_t toxic_addr = (uintptr_t)NULL; 581 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 582 583 #else /* __i386 */ 584 585 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 586 size_t toxic_bit_map_len = 0; /* in bits */ 587 588 #endif /* __i386 */ 589 590 /* 591 * Simple boot time debug facilities 592 */ 593 static char *prm_dbg_str[] = { 594 "%s:%d: '%s' is 0x%x\n", 595 "%s:%d: '%s' is 0x%llx\n" 596 }; 597 598 int prom_debug; 599 600 #define PRM_DEBUG(q) if (prom_debug) \ 601 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 602 #define PRM_POINT(q) if (prom_debug) \ 603 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 604 605 /* 606 * This structure is used to keep track of the intial allocations 607 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 608 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 609 */ 610 #define NUM_ALLOCATIONS 7 611 int num_allocations = 0; 612 struct { 613 void **al_ptr; 614 size_t al_size; 615 } allocations[NUM_ALLOCATIONS]; 616 size_t valloc_sz = 0; 617 uintptr_t valloc_base; 618 619 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 620 size = ROUND_UP_PAGE(size); \ 621 if (num_allocations == NUM_ALLOCATIONS) \ 622 panic("too many ADD_TO_ALLOCATIONS()"); \ 623 allocations[num_allocations].al_ptr = (void**)&ptr; \ 624 allocations[num_allocations].al_size = size; \ 625 valloc_sz += size; \ 626 ++num_allocations; \ 627 } 628 629 /* 630 * Allocate all the initial memory needed by the page allocator. 631 */ 632 static void 633 perform_allocations(void) 634 { 635 caddr_t mem; 636 int i; 637 int valloc_align; 638 639 PRM_DEBUG(valloc_base); 640 PRM_DEBUG(valloc_sz); 641 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 642 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 643 if (mem != (caddr_t)valloc_base) 644 panic("BOP_ALLOC() failed"); 645 bzero(mem, valloc_sz); 646 for (i = 0; i < num_allocations; ++i) { 647 *allocations[i].al_ptr = (void *)mem; 648 mem += allocations[i].al_size; 649 } 650 } 651 652 /* 653 * Our world looks like this at startup time. 654 * 655 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 656 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 657 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 658 * addresses are fixed in the binary at link time. 659 * 660 * On the text page: 661 * unix/genunix/krtld/module text loads. 662 * 663 * On the data page: 664 * unix/genunix/krtld/module data loads. 665 * 666 * Machine-dependent startup code 667 */ 668 void 669 startup(void) 670 { 671 #if !defined(__xpv) 672 extern void startup_bios_disk(void); 673 extern void startup_pci_bios(void); 674 extern int post_fastreboot; 675 #endif 676 extern cpuset_t cpu_ready_set; 677 678 /* 679 * Make sure that nobody tries to use sekpm until we have 680 * initialized it properly. 681 */ 682 #if defined(__amd64) 683 kpm_desired = 1; 684 #endif 685 kpm_enable = 0; 686 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 687 688 #if defined(__xpv) /* XXPV fix me! */ 689 { 690 extern int segvn_use_regions; 691 segvn_use_regions = 0; 692 } 693 #endif 694 progressbar_init(); 695 startup_init(); 696 #if defined(__xpv) 697 startup_xen_version(); 698 #endif 699 startup_memlist(); 700 startup_kmem(); 701 startup_vm(); 702 #if !defined(__xpv) 703 if (!post_fastreboot) 704 startup_pci_bios(); 705 #endif 706 #if defined(__xpv) 707 startup_xen_mca(); 708 #endif 709 startup_modules(); 710 #if !defined(__xpv) 711 if (!post_fastreboot) 712 startup_bios_disk(); 713 #endif 714 startup_end(); 715 progressbar_start(); 716 } 717 718 static void 719 startup_init() 720 { 721 PRM_POINT("startup_init() starting..."); 722 723 /* 724 * Complete the extraction of cpuid data 725 */ 726 cpuid_pass2(CPU); 727 728 (void) check_boot_version(BOP_GETVERSION(bootops)); 729 730 /* 731 * Check for prom_debug in boot environment 732 */ 733 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 734 ++prom_debug; 735 PRM_POINT("prom_debug found in boot enviroment"); 736 } 737 738 /* 739 * Collect node, cpu and memory configuration information. 740 */ 741 get_system_configuration(); 742 743 /* 744 * Halt if this is an unsupported processor. 745 */ 746 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 747 printf("\n486 processor (\"%s\") detected.\n", 748 CPU->cpu_brandstr); 749 halt("This processor is not supported by this release " 750 "of Solaris."); 751 } 752 753 PRM_POINT("startup_init() done"); 754 } 755 756 /* 757 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 758 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 759 * also filters out physical page zero. There is some reliance on the 760 * boot loader allocating only a few contiguous physical memory chunks. 761 */ 762 static void 763 avail_filter(uint64_t *addr, uint64_t *size) 764 { 765 uintptr_t va; 766 uintptr_t next_va; 767 pfn_t pfn; 768 uint64_t pfn_addr; 769 uint64_t pfn_eaddr; 770 uint_t prot; 771 size_t len; 772 uint_t change; 773 774 if (prom_debug) 775 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 776 *addr, *size); 777 778 /* 779 * page zero is required for BIOS.. never make it available 780 */ 781 if (*addr == 0) { 782 *addr += MMU_PAGESIZE; 783 *size -= MMU_PAGESIZE; 784 } 785 786 /* 787 * First we trim from the front of the range. Since kbm_probe() 788 * walks ranges in virtual order, but addr/size are physical, we need 789 * to the list until no changes are seen. This deals with the case 790 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 791 * but w < v. 792 */ 793 do { 794 change = 0; 795 for (va = KERNEL_TEXT; 796 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 797 va = next_va) { 798 799 next_va = va + len; 800 pfn_addr = pfn_to_pa(pfn); 801 pfn_eaddr = pfn_addr + len; 802 803 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 804 change = 1; 805 while (*size > 0 && len > 0) { 806 *addr += MMU_PAGESIZE; 807 *size -= MMU_PAGESIZE; 808 len -= MMU_PAGESIZE; 809 } 810 } 811 } 812 if (change && prom_debug) 813 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 814 *addr, *size); 815 } while (change); 816 817 /* 818 * Trim pages from the end of the range. 819 */ 820 for (va = KERNEL_TEXT; 821 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 822 va = next_va) { 823 824 next_va = va + len; 825 pfn_addr = pfn_to_pa(pfn); 826 827 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 828 *size = pfn_addr - *addr; 829 } 830 831 if (prom_debug) 832 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 833 *addr, *size); 834 } 835 836 static void 837 kpm_init() 838 { 839 struct segkpm_crargs b; 840 841 /* 842 * These variables were all designed for sfmmu in which segkpm is 843 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 844 * might use 2+ page sizes on a single machine, so none of these 845 * variables have a single correct value. They are set up as if we 846 * always use a 4KB pagesize, which should do no harm. In the long 847 * run, we should get rid of KPM's assumption that only a single 848 * pagesize is used. 849 */ 850 kpm_pgshft = MMU_PAGESHIFT; 851 kpm_pgsz = MMU_PAGESIZE; 852 kpm_pgoff = MMU_PAGEOFFSET; 853 kpmp2pshft = 0; 854 kpmpnpgs = 1; 855 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 856 857 PRM_POINT("about to create segkpm"); 858 rw_enter(&kas.a_lock, RW_WRITER); 859 860 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 861 panic("cannot attach segkpm"); 862 863 b.prot = PROT_READ | PROT_WRITE; 864 b.nvcolors = 1; 865 866 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 867 panic("segkpm_create segkpm"); 868 869 rw_exit(&kas.a_lock); 870 } 871 872 /* 873 * The debug info page provides enough information to allow external 874 * inspectors (e.g. when running under a hypervisor) to bootstrap 875 * themselves into allowing full-blown kernel debugging. 876 */ 877 static void 878 init_debug_info(void) 879 { 880 caddr_t mem; 881 debug_info_t *di; 882 883 #ifndef __lint 884 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 885 #endif 886 887 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 888 MMU_PAGESIZE); 889 890 if (mem != (caddr_t)DEBUG_INFO_VA) 891 panic("BOP_ALLOC() failed"); 892 bzero(mem, MMU_PAGESIZE); 893 894 di = (debug_info_t *)mem; 895 896 di->di_magic = DEBUG_INFO_MAGIC; 897 di->di_version = DEBUG_INFO_VERSION; 898 di->di_modules = (uintptr_t)&modules; 899 di->di_s_text = (uintptr_t)s_text; 900 di->di_e_text = (uintptr_t)e_text; 901 di->di_s_data = (uintptr_t)s_data; 902 di->di_e_data = (uintptr_t)e_data; 903 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 904 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 905 } 906 907 /* 908 * Build the memlists and other kernel essential memory system data structures. 909 * This is everything at valloc_base. 910 */ 911 static void 912 startup_memlist(void) 913 { 914 size_t memlist_sz; 915 size_t memseg_sz; 916 size_t pagehash_sz; 917 size_t pp_sz; 918 uintptr_t va; 919 size_t len; 920 uint_t prot; 921 pfn_t pfn; 922 int memblocks; 923 caddr_t pagecolor_mem; 924 size_t pagecolor_memsz; 925 caddr_t page_ctrs_mem; 926 size_t page_ctrs_size; 927 size_t pse_table_alloc_size; 928 struct memlist *current; 929 extern void startup_build_mem_nodes(struct memlist *); 930 931 /* XX64 fix these - they should be in include files */ 932 extern size_t page_coloring_init(uint_t, int, int); 933 extern void page_coloring_setup(caddr_t); 934 935 PRM_POINT("startup_memlist() starting..."); 936 937 /* 938 * Use leftover large page nucleus text/data space for loadable modules. 939 * Use at most MODTEXT/MODDATA. 940 */ 941 len = kbm_nucleus_size; 942 ASSERT(len > MMU_PAGESIZE); 943 944 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 945 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 946 if (e_moddata - moddata > MODDATA) 947 e_moddata = moddata + MODDATA; 948 949 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 950 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 951 if (e_modtext - modtext > MODTEXT) 952 e_modtext = modtext + MODTEXT; 953 954 econtig = e_moddata; 955 956 PRM_DEBUG(modtext); 957 PRM_DEBUG(e_modtext); 958 PRM_DEBUG(moddata); 959 PRM_DEBUG(e_moddata); 960 PRM_DEBUG(econtig); 961 962 /* 963 * Examine the boot loader physical memory map to find out: 964 * - total memory in system - physinstalled 965 * - the max physical address - physmax 966 * - the number of discontiguous segments of memory. 967 */ 968 if (prom_debug) 969 print_memlist("boot physinstalled", 970 bootops->boot_mem->physinstalled); 971 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 972 &physinstalled, &memblocks); 973 PRM_DEBUG(physmax); 974 PRM_DEBUG(physinstalled); 975 PRM_DEBUG(memblocks); 976 977 /* 978 * Initialize hat's mmu parameters. 979 * Check for enforce-prot-exec in boot environment. It's used to 980 * enable/disable support for the page table entry NX bit. 981 * The default is to enforce PROT_EXEC on processors that support NX. 982 * Boot seems to round up the "len", but 8 seems to be big enough. 983 */ 984 mmu_init(); 985 986 #ifdef __i386 987 /* 988 * physmax is lowered if there is more memory than can be 989 * physically addressed in 32 bit (PAE/non-PAE) modes. 990 */ 991 if (mmu.pae_hat) { 992 if (PFN_ABOVE64G(physmax)) { 993 physinstalled -= (physmax - (PFN_64G - 1)); 994 physmax = PFN_64G - 1; 995 } 996 } else { 997 if (PFN_ABOVE4G(physmax)) { 998 physinstalled -= (physmax - (PFN_4G - 1)); 999 physmax = PFN_4G - 1; 1000 } 1001 } 1002 #endif 1003 1004 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1005 1006 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1007 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1008 char value[8]; 1009 1010 if (len < 8) 1011 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1012 else 1013 (void) strcpy(value, ""); 1014 if (strcmp(value, "off") == 0) 1015 mmu.pt_nx = 0; 1016 } 1017 PRM_DEBUG(mmu.pt_nx); 1018 1019 /* 1020 * We will need page_t's for every page in the system, except for 1021 * memory mapped at or above above the start of the kernel text segment. 1022 * 1023 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1024 */ 1025 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1026 obp_pages = 0; 1027 va = KERNEL_TEXT; 1028 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1029 npages -= len >> MMU_PAGESHIFT; 1030 if (va >= (uintptr_t)e_moddata) 1031 obp_pages += len >> MMU_PAGESHIFT; 1032 va += len; 1033 } 1034 PRM_DEBUG(npages); 1035 PRM_DEBUG(obp_pages); 1036 1037 /* 1038 * If physmem is patched to be non-zero, use it instead of the computed 1039 * value unless it is larger than the actual amount of memory on hand. 1040 */ 1041 if (physmem == 0 || physmem > npages) { 1042 physmem = npages; 1043 } else if (physmem < npages) { 1044 orig_npages = npages; 1045 npages = physmem; 1046 } 1047 PRM_DEBUG(physmem); 1048 1049 /* 1050 * We now compute the sizes of all the initial allocations for 1051 * structures the kernel needs in order do kmem_alloc(). These 1052 * include: 1053 * memsegs 1054 * memlists 1055 * page hash table 1056 * page_t's 1057 * page coloring data structs 1058 */ 1059 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1060 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1061 PRM_DEBUG(memseg_sz); 1062 1063 /* 1064 * Reserve space for memlists. There's no real good way to know exactly 1065 * how much room we'll need, but this should be a good upper bound. 1066 */ 1067 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1068 (memblocks + POSS_NEW_FRAGMENTS)); 1069 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1070 PRM_DEBUG(memlist_sz); 1071 1072 /* 1073 * The page structure hash table size is a power of 2 1074 * such that the average hash chain length is PAGE_HASHAVELEN. 1075 */ 1076 page_hashsz = npages / PAGE_HASHAVELEN; 1077 page_hashsz = 1 << highbit(page_hashsz); 1078 pagehash_sz = sizeof (struct page *) * page_hashsz; 1079 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1080 PRM_DEBUG(pagehash_sz); 1081 1082 /* 1083 * Set aside room for the page structures themselves. 1084 */ 1085 PRM_DEBUG(npages); 1086 pp_sz = sizeof (struct page) * npages; 1087 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1088 PRM_DEBUG(pp_sz); 1089 1090 /* 1091 * determine l2 cache info and memory size for page coloring 1092 */ 1093 (void) getl2cacheinfo(CPU, 1094 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1095 pagecolor_memsz = 1096 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1097 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1098 PRM_DEBUG(pagecolor_memsz); 1099 1100 page_ctrs_size = page_ctrs_sz(); 1101 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1102 PRM_DEBUG(page_ctrs_size); 1103 1104 /* 1105 * Allocate the array that protects pp->p_selock. 1106 */ 1107 pse_shift = size_pse_array(physmem, max_ncpus); 1108 pse_table_size = 1 << pse_shift; 1109 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1110 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1111 1112 #if defined(__amd64) 1113 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1114 valloc_base = VALLOC_BASE; 1115 1116 /* 1117 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1118 * for values of physmax up to 1 Terabyte. They need adjusting when 1119 * memory is at addresses above 1 TB. 1120 */ 1121 if (physmax + 1 > mmu_btop(TERABYTE)) { 1122 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1123 1124 /* Round to largest possible pagesize for now */ 1125 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1126 1127 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1128 1129 /* make sure we leave some space for user apps above hole */ 1130 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1131 if (segkpm_base > SEGKPM_BASE) 1132 segkpm_base = SEGKPM_BASE; 1133 PRM_DEBUG(segkpm_base); 1134 1135 valloc_base = segkpm_base + kpm_resv_amount; 1136 PRM_DEBUG(valloc_base); 1137 } 1138 #else /* __i386 */ 1139 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1140 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1141 PRM_DEBUG(valloc_base); 1142 #endif /* __i386 */ 1143 1144 /* 1145 * do all the initial allocations 1146 */ 1147 perform_allocations(); 1148 1149 /* 1150 * Build phys_install and phys_avail in kernel memspace. 1151 * - phys_install should be all memory in the system. 1152 * - phys_avail is phys_install minus any memory mapped before this 1153 * point above KERNEL_TEXT. 1154 */ 1155 current = phys_install = memlist; 1156 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1157 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1158 panic("physinstalled was too big!"); 1159 if (prom_debug) 1160 print_memlist("phys_install", phys_install); 1161 1162 phys_avail = current; 1163 PRM_POINT("Building phys_avail:\n"); 1164 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1165 avail_filter); 1166 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1167 panic("physavail was too big!"); 1168 if (prom_debug) 1169 print_memlist("phys_avail", phys_avail); 1170 1171 /* 1172 * setup page coloring 1173 */ 1174 page_coloring_setup(pagecolor_mem); 1175 page_lock_init(); /* currently a no-op */ 1176 1177 /* 1178 * free page list counters 1179 */ 1180 (void) page_ctrs_alloc(page_ctrs_mem); 1181 1182 /* 1183 * Size the pcf array based on the number of cpus in the box at 1184 * boot time. 1185 */ 1186 1187 pcf_init(); 1188 1189 /* 1190 * Initialize the page structures from the memory lists. 1191 */ 1192 availrmem_initial = availrmem = freemem = 0; 1193 PRM_POINT("Calling kphysm_init()..."); 1194 npages = kphysm_init(pp_base, npages); 1195 PRM_POINT("kphysm_init() done"); 1196 PRM_DEBUG(npages); 1197 1198 init_debug_info(); 1199 1200 /* 1201 * Now that page_t's have been initialized, remove all the 1202 * initial allocation pages from the kernel free page lists. 1203 */ 1204 boot_mapin((caddr_t)valloc_base, valloc_sz); 1205 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1206 PRM_POINT("startup_memlist() done"); 1207 1208 PRM_DEBUG(valloc_sz); 1209 1210 #if defined(__amd64) 1211 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1212 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1213 extern size_t textrepl_size_thresh; 1214 textrepl_size_thresh = (16 << 20) - 1; 1215 } 1216 #endif 1217 } 1218 1219 /* 1220 * Layout the kernel's part of address space and initialize kmem allocator. 1221 */ 1222 static void 1223 startup_kmem(void) 1224 { 1225 extern void page_set_colorequiv_arr(void); 1226 1227 PRM_POINT("startup_kmem() starting..."); 1228 1229 #if defined(__amd64) 1230 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1231 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1232 "systems."); 1233 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1234 core_base = (uintptr_t)COREHEAP_BASE; 1235 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1236 #else /* __i386 */ 1237 /* 1238 * We configure kernelbase based on: 1239 * 1240 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1241 * KERNELBASE_MAX. we large page align eprom_kernelbase 1242 * 1243 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1244 * On large memory systems we must lower kernelbase to allow 1245 * enough room for page_t's for all of memory. 1246 * 1247 * The value set here, might be changed a little later. 1248 */ 1249 if (eprom_kernelbase) { 1250 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1251 if (kernelbase > KERNELBASE_MAX) 1252 kernelbase = KERNELBASE_MAX; 1253 } else { 1254 kernelbase = (uintptr_t)KERNELBASE; 1255 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1256 } 1257 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1258 core_base = valloc_base; 1259 core_size = 0; 1260 #endif /* __i386 */ 1261 1262 PRM_DEBUG(core_base); 1263 PRM_DEBUG(core_size); 1264 PRM_DEBUG(kernelbase); 1265 1266 #if defined(__i386) 1267 segkp_fromheap = 1; 1268 #endif /* __i386 */ 1269 1270 ekernelheap = (char *)core_base; 1271 PRM_DEBUG(ekernelheap); 1272 1273 /* 1274 * Now that we know the real value of kernelbase, 1275 * update variables that were initialized with a value of 1276 * KERNELBASE (in common/conf/param.c). 1277 * 1278 * XXX The problem with this sort of hackery is that the 1279 * compiler just may feel like putting the const declarations 1280 * (in param.c) into the .text section. Perhaps they should 1281 * just be declared as variables there? 1282 */ 1283 1284 *(uintptr_t *)&_kernelbase = kernelbase; 1285 *(uintptr_t *)&_userlimit = kernelbase; 1286 #if defined(__amd64) 1287 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1288 #else 1289 *(uintptr_t *)&_userlimit32 = _userlimit; 1290 #endif 1291 PRM_DEBUG(_kernelbase); 1292 PRM_DEBUG(_userlimit); 1293 PRM_DEBUG(_userlimit32); 1294 1295 layout_kernel_va(); 1296 1297 #if defined(__i386) 1298 /* 1299 * If segmap is too large we can push the bottom of the kernel heap 1300 * higher than the base. Or worse, it could exceed the top of the 1301 * VA space entirely, causing it to wrap around. 1302 */ 1303 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1304 panic("too little address space available for kernelheap," 1305 " use eeprom for lower kernelbase or smaller segmapsize"); 1306 #endif /* __i386 */ 1307 1308 /* 1309 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1310 */ 1311 kernelheap_init(kernelheap, ekernelheap, 1312 kernelheap + MMU_PAGESIZE, 1313 (void *)core_base, (void *)(core_base + core_size)); 1314 1315 #if defined(__xpv) 1316 /* 1317 * Link pending events struct into cpu struct 1318 */ 1319 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1320 #endif 1321 /* 1322 * Initialize kernel memory allocator. 1323 */ 1324 kmem_init(); 1325 1326 /* 1327 * Factor in colorequiv to check additional 'equivalent' bins 1328 */ 1329 page_set_colorequiv_arr(); 1330 1331 /* 1332 * print this out early so that we know what's going on 1333 */ 1334 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1335 1336 /* 1337 * Initialize bp_mapin(). 1338 */ 1339 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1340 1341 /* 1342 * orig_npages is non-zero if physmem has been configured for less 1343 * than the available memory. 1344 */ 1345 if (orig_npages) { 1346 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1347 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1348 npages, orig_npages); 1349 } 1350 #if defined(__i386) 1351 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1352 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1353 "System using 0x%lx", 1354 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1355 #endif 1356 1357 #ifdef KERNELBASE_ABI_MIN 1358 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1359 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1360 "i386 ABI compliant.", (uintptr_t)kernelbase); 1361 } 1362 #endif 1363 1364 #ifdef __xpv 1365 /* 1366 * Some of the xen start information has to be relocated up 1367 * into the kernel's permanent address space. 1368 */ 1369 PRM_POINT("calling xen_relocate_start_info()"); 1370 xen_relocate_start_info(); 1371 PRM_POINT("xen_relocate_start_info() done"); 1372 1373 /* 1374 * (Update the vcpu pointer in our cpu structure to point into 1375 * the relocated shared info.) 1376 */ 1377 CPU->cpu_m.mcpu_vcpu_info = 1378 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1379 #endif 1380 1381 PRM_POINT("startup_kmem() done"); 1382 } 1383 1384 #ifndef __xpv 1385 /* 1386 * If we have detected that we are running in an HVM environment, we need 1387 * to prepend the PV driver directory to the module search path. 1388 */ 1389 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1390 static void 1391 update_default_path() 1392 { 1393 char *current, *newpath; 1394 int newlen; 1395 1396 /* 1397 * We are about to resync with krtld. krtld will reset its 1398 * internal module search path iff Solaris has set default_path. 1399 * We want to be sure we're prepending this new directory to the 1400 * right search path. 1401 */ 1402 current = (default_path == NULL) ? kobj_module_path : default_path; 1403 1404 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1405 newpath = kmem_alloc(newlen, KM_SLEEP); 1406 (void) strcpy(newpath, HVM_MOD_DIR); 1407 (void) strcat(newpath, " "); 1408 (void) strcat(newpath, current); 1409 1410 default_path = newpath; 1411 } 1412 #endif 1413 1414 static void 1415 startup_modules(void) 1416 { 1417 int cnt; 1418 extern void prom_setup(void); 1419 int32_t v, h; 1420 char d[11]; 1421 char *cp; 1422 cmi_hdl_t hdl; 1423 1424 PRM_POINT("startup_modules() starting..."); 1425 1426 #ifndef __xpv 1427 /* 1428 * Initialize ten-micro second timer so that drivers will 1429 * not get short changed in their init phase. This was 1430 * not getting called until clkinit which, on fast cpu's 1431 * caused the drv_usecwait to be way too short. 1432 */ 1433 microfind(); 1434 1435 if (xpv_is_hvm) 1436 update_default_path(); 1437 #endif 1438 1439 /* 1440 * Read the GMT lag from /etc/rtc_config. 1441 */ 1442 sgmtl(process_rtc_config_file()); 1443 1444 /* 1445 * Calculate default settings of system parameters based upon 1446 * maxusers, yet allow to be overridden via the /etc/system file. 1447 */ 1448 param_calc(0); 1449 1450 mod_setup(); 1451 1452 /* 1453 * Initialize system parameters. 1454 */ 1455 param_init(); 1456 1457 /* 1458 * Initialize the default brands 1459 */ 1460 brand_init(); 1461 1462 /* 1463 * maxmem is the amount of physical memory we're playing with. 1464 */ 1465 maxmem = physmem; 1466 1467 /* 1468 * Initialize segment management stuff. 1469 */ 1470 seg_init(); 1471 1472 if (modload("fs", "specfs") == -1) 1473 halt("Can't load specfs"); 1474 1475 if (modload("fs", "devfs") == -1) 1476 halt("Can't load devfs"); 1477 1478 if (modload("fs", "dev") == -1) 1479 halt("Can't load dev"); 1480 1481 (void) modloadonly("sys", "lbl_edition"); 1482 1483 dispinit(); 1484 1485 /* 1486 * This is needed here to initialize hw_serial[] for cluster booting. 1487 */ 1488 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1489 cmn_err(CE_WARN, "Unable to set hostid"); 1490 } else { 1491 for (v = h, cnt = 0; cnt < 10; cnt++) { 1492 d[cnt] = (char)(v % 10); 1493 v /= 10; 1494 if (v == 0) 1495 break; 1496 } 1497 for (cp = hw_serial; cnt >= 0; cnt--) 1498 *cp++ = d[cnt] + '0'; 1499 *cp = 0; 1500 } 1501 1502 /* Read cluster configuration data. */ 1503 clconf_init(); 1504 1505 #if defined(__xpv) 1506 ec_init(); 1507 gnttab_init(); 1508 (void) xs_early_init(); 1509 #endif /* __xpv */ 1510 1511 /* 1512 * Create a kernel device tree. First, create rootnex and 1513 * then invoke bus specific code to probe devices. 1514 */ 1515 setup_ddi(); 1516 1517 /* 1518 * Set up the CPU module subsystem for the boot cpu in the native 1519 * case, and all physical cpu resource in the xpv dom0 case. 1520 * Modifies the device tree, so this must be done after 1521 * setup_ddi(). 1522 */ 1523 #ifdef __xpv 1524 /* 1525 * If paravirtualized and on dom0 then we initialize all physical 1526 * cpu handles now; if paravirtualized on a domU then do not 1527 * initialize. 1528 */ 1529 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1530 xen_mc_lcpu_cookie_t cpi; 1531 1532 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1533 cpi = xen_physcpu_next(cpi)) { 1534 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1535 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1536 xen_physcpu_strandid(cpi))) != NULL && 1537 (x86_feature & X86_MCA)) 1538 cmi_mca_init(hdl); 1539 } 1540 } 1541 #else 1542 /* 1543 * Initialize a handle for the boot cpu - others will initialize 1544 * as they startup. Do not do this if we know we are in an HVM domU. 1545 */ 1546 if (!xpv_is_hvm && 1547 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1548 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1549 (x86_feature & X86_MCA)) 1550 cmi_mca_init(hdl); 1551 #endif /* __xpv */ 1552 1553 /* 1554 * Fake a prom tree such that /dev/openprom continues to work 1555 */ 1556 PRM_POINT("startup_modules: calling prom_setup..."); 1557 prom_setup(); 1558 PRM_POINT("startup_modules: done"); 1559 1560 /* 1561 * Load all platform specific modules 1562 */ 1563 PRM_POINT("startup_modules: calling psm_modload..."); 1564 psm_modload(); 1565 1566 PRM_POINT("startup_modules() done"); 1567 } 1568 1569 /* 1570 * claim a "setaside" boot page for use in the kernel 1571 */ 1572 page_t * 1573 boot_claim_page(pfn_t pfn) 1574 { 1575 page_t *pp; 1576 1577 pp = page_numtopp_nolock(pfn); 1578 ASSERT(pp != NULL); 1579 1580 if (PP_ISBOOTPAGES(pp)) { 1581 if (pp->p_next != NULL) 1582 pp->p_next->p_prev = pp->p_prev; 1583 if (pp->p_prev == NULL) 1584 bootpages = pp->p_next; 1585 else 1586 pp->p_prev->p_next = pp->p_next; 1587 } else { 1588 /* 1589 * htable_attach() expects a base pagesize page 1590 */ 1591 if (pp->p_szc != 0) 1592 page_boot_demote(pp); 1593 pp = page_numtopp(pfn, SE_EXCL); 1594 } 1595 return (pp); 1596 } 1597 1598 /* 1599 * Walk through the pagetables looking for pages mapped in by boot. If the 1600 * setaside flag is set the pages are expected to be returned to the 1601 * kernel later in boot, so we add them to the bootpages list. 1602 */ 1603 static void 1604 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1605 { 1606 uintptr_t va = low; 1607 size_t len; 1608 uint_t prot; 1609 pfn_t pfn; 1610 page_t *pp; 1611 pgcnt_t boot_protect_cnt = 0; 1612 1613 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1614 if (va + len >= high) 1615 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1616 "legal range.", len, (void *)va); 1617 1618 while (len > 0) { 1619 pp = page_numtopp_alloc(pfn); 1620 if (pp != NULL) { 1621 if (setaside == 0) 1622 panic("Unexpected mapping by boot. " 1623 "addr=%p pfn=%lx\n", 1624 (void *)va, pfn); 1625 1626 pp->p_next = bootpages; 1627 pp->p_prev = NULL; 1628 PP_SETBOOTPAGES(pp); 1629 if (bootpages != NULL) { 1630 bootpages->p_prev = pp; 1631 } 1632 bootpages = pp; 1633 ++boot_protect_cnt; 1634 } 1635 1636 ++pfn; 1637 len -= MMU_PAGESIZE; 1638 va += MMU_PAGESIZE; 1639 } 1640 } 1641 PRM_DEBUG(boot_protect_cnt); 1642 } 1643 1644 /* 1645 * 1646 */ 1647 static void 1648 layout_kernel_va(void) 1649 { 1650 PRM_POINT("layout_kernel_va() starting..."); 1651 /* 1652 * Establish the final size of the kernel's heap, size of segmap, 1653 * segkp, etc. 1654 */ 1655 1656 #if defined(__amd64) 1657 1658 kpm_vbase = (caddr_t)segkpm_base; 1659 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1660 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1661 panic("not enough room for kpm!"); 1662 PRM_DEBUG(kpm_size); 1663 PRM_DEBUG(kpm_vbase); 1664 1665 /* 1666 * By default we create a seg_kp in 64 bit kernels, it's a little 1667 * faster to access than embedding it in the heap. 1668 */ 1669 segkp_base = (caddr_t)valloc_base + valloc_sz; 1670 if (!segkp_fromheap) { 1671 size_t sz = mmu_ptob(segkpsize); 1672 1673 /* 1674 * determine size of segkp 1675 */ 1676 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1677 sz = SEGKPDEFSIZE; 1678 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1679 "segkpsize has been reset to %ld pages", 1680 mmu_btop(sz)); 1681 } 1682 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1683 1684 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1685 } 1686 PRM_DEBUG(segkp_base); 1687 PRM_DEBUG(segkpsize); 1688 1689 /* 1690 * segzio is used for ZFS cached data. It uses a distinct VA 1691 * segment (from kernel heap) so that we can easily tell not to 1692 * include it in kernel crash dumps on 64 bit kernels. The trick is 1693 * to give it lots of VA, but not constrain the kernel heap. 1694 * We scale the size of segzio linearly with physmem up to 1695 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1696 */ 1697 segzio_base = segkp_base + mmu_ptob(segkpsize); 1698 if (segzio_fromheap) { 1699 segziosize = 0; 1700 } else { 1701 size_t physmem_size = mmu_ptob(physmem); 1702 size_t size = (segziosize == 0) ? 1703 physmem_size : mmu_ptob(segziosize); 1704 1705 if (size < SEGZIOMINSIZE) 1706 size = SEGZIOMINSIZE; 1707 if (size > SEGZIOMAXSIZE) { 1708 size = SEGZIOMAXSIZE; 1709 if (physmem_size > size) 1710 size += (physmem_size - size) / 2; 1711 } 1712 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1713 } 1714 PRM_DEBUG(segziosize); 1715 PRM_DEBUG(segzio_base); 1716 1717 /* 1718 * Put the range of VA for device mappings next, kmdb knows to not 1719 * grep in this range of addresses. 1720 */ 1721 toxic_addr = 1722 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1723 PRM_DEBUG(toxic_addr); 1724 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1725 #else /* __i386 */ 1726 segmap_start = ROUND_UP_LPAGE(kernelbase); 1727 #endif /* __i386 */ 1728 PRM_DEBUG(segmap_start); 1729 1730 /* 1731 * Users can change segmapsize through eeprom. If the variable 1732 * is tuned through eeprom, there is no upper bound on the 1733 * size of segmap. 1734 */ 1735 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1736 1737 #if defined(__i386) 1738 /* 1739 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1740 * the bottom of the kernel's address range. Set aside space for a 1741 * small red zone just below the start of segmap. 1742 */ 1743 segmap_start += KERNEL_REDZONE_SIZE; 1744 segmapsize -= KERNEL_REDZONE_SIZE; 1745 #endif 1746 1747 PRM_DEBUG(segmap_start); 1748 PRM_DEBUG(segmapsize); 1749 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1750 PRM_DEBUG(kernelheap); 1751 PRM_POINT("layout_kernel_va() done..."); 1752 } 1753 1754 /* 1755 * Finish initializing the VM system, now that we are no longer 1756 * relying on the boot time memory allocators. 1757 */ 1758 static void 1759 startup_vm(void) 1760 { 1761 struct segmap_crargs a; 1762 1763 extern int use_brk_lpg, use_stk_lpg; 1764 1765 PRM_POINT("startup_vm() starting..."); 1766 1767 /* 1768 * Initialize the hat layer. 1769 */ 1770 hat_init(); 1771 1772 /* 1773 * Do final allocations of HAT data structures that need to 1774 * be allocated before quiescing the boot loader. 1775 */ 1776 PRM_POINT("Calling hat_kern_alloc()..."); 1777 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1778 PRM_POINT("hat_kern_alloc() done"); 1779 1780 #ifndef __xpv 1781 /* 1782 * Setup Page Attribute Table 1783 */ 1784 pat_sync(); 1785 #endif 1786 1787 /* 1788 * The next two loops are done in distinct steps in order 1789 * to be sure that any page that is doubly mapped (both above 1790 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1791 * Note this may never happen, but it might someday. 1792 */ 1793 bootpages = NULL; 1794 PRM_POINT("Protecting boot pages"); 1795 1796 /* 1797 * Protect any pages mapped above KERNEL_TEXT that somehow have 1798 * page_t's. This can only happen if something weird allocated 1799 * in this range (like kadb/kmdb). 1800 */ 1801 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1802 1803 /* 1804 * Before we can take over memory allocation/mapping from the boot 1805 * loader we must remove from our free page lists any boot allocated 1806 * pages that stay mapped until release_bootstrap(). 1807 */ 1808 protect_boot_range(0, kernelbase, 1); 1809 1810 1811 /* 1812 * Switch to running on regular HAT (not boot_mmu) 1813 */ 1814 PRM_POINT("Calling hat_kern_setup()..."); 1815 hat_kern_setup(); 1816 1817 /* 1818 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1819 */ 1820 bop_no_more_mem(); 1821 1822 PRM_POINT("hat_kern_setup() done"); 1823 1824 hat_cpu_online(CPU); 1825 1826 /* 1827 * Initialize VM system 1828 */ 1829 PRM_POINT("Calling kvm_init()..."); 1830 kvm_init(); 1831 PRM_POINT("kvm_init() done"); 1832 1833 /* 1834 * Tell kmdb that the VM system is now working 1835 */ 1836 if (boothowto & RB_DEBUG) 1837 kdi_dvec_vmready(); 1838 1839 #if defined(__xpv) 1840 /* 1841 * Populate the I/O pool on domain 0 1842 */ 1843 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1844 extern long populate_io_pool(void); 1845 long init_io_pool_cnt; 1846 1847 PRM_POINT("Populating reserve I/O page pool"); 1848 init_io_pool_cnt = populate_io_pool(); 1849 PRM_DEBUG(init_io_pool_cnt); 1850 } 1851 #endif 1852 /* 1853 * Mangle the brand string etc. 1854 */ 1855 cpuid_pass3(CPU); 1856 1857 #if defined(__amd64) 1858 1859 /* 1860 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1861 */ 1862 device_arena = vmem_create("device", (void *)toxic_addr, 1863 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1864 1865 #else /* __i386 */ 1866 1867 /* 1868 * allocate the bit map that tracks toxic pages 1869 */ 1870 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1871 PRM_DEBUG(toxic_bit_map_len); 1872 toxic_bit_map = 1873 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1874 ASSERT(toxic_bit_map != NULL); 1875 PRM_DEBUG(toxic_bit_map); 1876 1877 #endif /* __i386 */ 1878 1879 1880 /* 1881 * Now that we've got more VA, as well as the ability to allocate from 1882 * it, tell the debugger. 1883 */ 1884 if (boothowto & RB_DEBUG) 1885 kdi_dvec_memavail(); 1886 1887 /* 1888 * The following code installs a special page fault handler (#pf) 1889 * to work around a pentium bug. 1890 */ 1891 #if !defined(__amd64) && !defined(__xpv) 1892 if (x86_type == X86_TYPE_P5) { 1893 desctbr_t idtr; 1894 gate_desc_t *newidt; 1895 1896 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1897 panic("failed to install pentium_pftrap"); 1898 1899 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1900 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1901 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 1902 1903 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1904 PROT_READ | PROT_EXEC); 1905 1906 CPU->cpu_idt = newidt; 1907 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1908 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1909 wr_idtr(&idtr); 1910 } 1911 #endif /* !__amd64 */ 1912 1913 #if !defined(__xpv) 1914 /* 1915 * Map page pfn=0 for drivers, such as kd, that need to pick up 1916 * parameters left there by controllers/BIOS. 1917 */ 1918 PRM_POINT("setup up p0_va"); 1919 p0_va = i86devmap(0, 1, PROT_READ); 1920 PRM_DEBUG(p0_va); 1921 #endif 1922 1923 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1924 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1925 1926 /* 1927 * disable automatic large pages for small memory systems or 1928 * when the disable flag is set. 1929 * 1930 * Do not yet consider page sizes larger than 2m/4m. 1931 */ 1932 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1933 max_uheap_lpsize = LEVEL_SIZE(1); 1934 max_ustack_lpsize = LEVEL_SIZE(1); 1935 max_privmap_lpsize = LEVEL_SIZE(1); 1936 max_uidata_lpsize = LEVEL_SIZE(1); 1937 max_utext_lpsize = LEVEL_SIZE(1); 1938 max_shm_lpsize = LEVEL_SIZE(1); 1939 } 1940 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1941 auto_lpg_disable) { 1942 use_brk_lpg = 0; 1943 use_stk_lpg = 0; 1944 } 1945 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1946 1947 PRM_POINT("Calling hat_init_finish()..."); 1948 hat_init_finish(); 1949 PRM_POINT("hat_init_finish() done"); 1950 1951 /* 1952 * Initialize the segkp segment type. 1953 */ 1954 rw_enter(&kas.a_lock, RW_WRITER); 1955 PRM_POINT("Attaching segkp"); 1956 if (segkp_fromheap) { 1957 segkp->s_as = &kas; 1958 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1959 segkp) < 0) { 1960 panic("startup: cannot attach segkp"); 1961 /*NOTREACHED*/ 1962 } 1963 PRM_POINT("Doing segkp_create()"); 1964 if (segkp_create(segkp) != 0) { 1965 panic("startup: segkp_create failed"); 1966 /*NOTREACHED*/ 1967 } 1968 PRM_DEBUG(segkp); 1969 rw_exit(&kas.a_lock); 1970 1971 /* 1972 * kpm segment 1973 */ 1974 segmap_kpm = 0; 1975 if (kpm_desired) { 1976 kpm_init(); 1977 kpm_enable = 1; 1978 vpm_enable = 1; 1979 } 1980 1981 /* 1982 * Now create segmap segment. 1983 */ 1984 rw_enter(&kas.a_lock, RW_WRITER); 1985 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1986 panic("cannot attach segmap"); 1987 /*NOTREACHED*/ 1988 } 1989 PRM_DEBUG(segmap); 1990 1991 a.prot = PROT_READ | PROT_WRITE; 1992 a.shmsize = 0; 1993 a.nfreelist = segmapfreelists; 1994 1995 if (segmap_create(segmap, (caddr_t)&a) != 0) 1996 panic("segmap_create segmap"); 1997 rw_exit(&kas.a_lock); 1998 1999 setup_vaddr_for_ppcopy(CPU); 2000 2001 segdev_init(); 2002 #if defined(__xpv) 2003 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2004 #endif 2005 pmem_init(); 2006 2007 PRM_POINT("startup_vm() done"); 2008 } 2009 2010 /* 2011 * Load a tod module for the non-standard tod part found on this system. 2012 */ 2013 static void 2014 load_tod_module(char *todmod) 2015 { 2016 if (modload("tod", todmod) == -1) 2017 halt("Can't load TOD module"); 2018 } 2019 2020 static void 2021 startup_end(void) 2022 { 2023 int i; 2024 extern void setx86isalist(void); 2025 2026 PRM_POINT("startup_end() starting..."); 2027 2028 /* 2029 * Perform tasks that get done after most of the VM 2030 * initialization has been done but before the clock 2031 * and other devices get started. 2032 */ 2033 kern_setup1(); 2034 2035 /* 2036 * Perform CPC initialization for this CPU. 2037 */ 2038 kcpc_hw_init(CPU); 2039 2040 #if defined(OPTERON_WORKAROUND_6323525) 2041 if (opteron_workaround_6323525) 2042 patch_workaround_6323525(); 2043 #endif 2044 /* 2045 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2046 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2047 */ 2048 if (tod_module_name != NULL) { 2049 PRM_POINT("load_tod_module()"); 2050 load_tod_module(tod_module_name); 2051 } 2052 2053 #if defined(__xpv) 2054 /* 2055 * Forceload interposing TOD module for the hypervisor. 2056 */ 2057 PRM_POINT("load_tod_module()"); 2058 load_tod_module("xpvtod"); 2059 #endif 2060 2061 /* 2062 * Configure the system. 2063 */ 2064 PRM_POINT("Calling configure()..."); 2065 configure(); /* set up devices */ 2066 PRM_POINT("configure() done"); 2067 2068 /* 2069 * Set the isa_list string to the defined instruction sets we 2070 * support. 2071 */ 2072 setx86isalist(); 2073 cpu_intr_alloc(CPU, NINTR_THREADS); 2074 psm_install(); 2075 2076 /* 2077 * We're done with bootops. We don't unmap the bootstrap yet because 2078 * we're still using bootsvcs. 2079 */ 2080 PRM_POINT("NULLing out bootops"); 2081 *bootopsp = (struct bootops *)NULL; 2082 bootops = (struct bootops *)NULL; 2083 2084 #if defined(__xpv) 2085 ec_init_debug_irq(); 2086 xs_domu_init(); 2087 #endif 2088 PRM_POINT("Enabling interrupts"); 2089 (*picinitf)(); 2090 sti(); 2091 #if defined(__xpv) 2092 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2093 xen_late_startup(); 2094 #endif 2095 2096 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2097 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2098 2099 /* 2100 * Register these software interrupts for ddi timer. 2101 * Software interrupts up to the level 10 are supported. 2102 */ 2103 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2104 char name[sizeof ("timer_softintr") + 2]; 2105 (void) sprintf(name, "timer_softintr%02d", i); 2106 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2107 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2108 } 2109 2110 #if !defined(__xpv) 2111 if (modload("drv", "amd_iommu") < 0) { 2112 PRM_POINT("No AMD IOMMU present\n"); 2113 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2114 "amd_iommu")) == NULL) { 2115 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2116 } 2117 #endif 2118 2119 PRM_POINT("startup_end() done"); 2120 } 2121 2122 /* 2123 * Don't remove the following 2 variables. They are necessary 2124 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2125 */ 2126 char *_hs1107 = hw_serial; 2127 ulong_t _bdhs34; 2128 2129 void 2130 post_startup(void) 2131 { 2132 extern void cpupm_init(cpu_t *); 2133 2134 /* 2135 * Set the system wide, processor-specific flags to be passed 2136 * to userland via the aux vector for performance hints and 2137 * instruction set extensions. 2138 */ 2139 bind_hwcap(); 2140 2141 #ifdef __xpv 2142 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2143 #endif 2144 { 2145 /* 2146 * Load the System Management BIOS into the global ksmbios 2147 * handle, if an SMBIOS is present on this system. 2148 */ 2149 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2150 2151 #if defined(__xpv) 2152 xpv_panic_init(); 2153 #else 2154 /* 2155 * Startup the memory scrubber. 2156 * XXPV This should be running somewhere .. 2157 */ 2158 if (!xpv_is_hvm) 2159 memscrub_init(); 2160 #endif 2161 } 2162 2163 /* 2164 * Complete CPU module initialization 2165 */ 2166 cmi_post_startup(); 2167 2168 /* 2169 * Perform forceloading tasks for /etc/system. 2170 */ 2171 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2172 2173 /* 2174 * ON4.0: Force /proc module in until clock interrupt handle fixed 2175 * ON4.0: This must be fixed or restated in /etc/systems. 2176 */ 2177 (void) modload("fs", "procfs"); 2178 2179 (void) i_ddi_attach_hw_nodes("pit_beep"); 2180 2181 #if defined(__i386) 2182 /* 2183 * Check for required functional Floating Point hardware, 2184 * unless FP hardware explicitly disabled. 2185 */ 2186 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2187 halt("No working FP hardware found"); 2188 #endif 2189 2190 maxmem = freemem; 2191 2192 cpupm_init(CPU); 2193 2194 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2195 2196 pg_init(); 2197 } 2198 2199 static int 2200 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2201 { 2202 return ((pp->p_pagenum >= btop(low_addr)) && 2203 (pp->p_pagenum < btopr(high_addr))); 2204 } 2205 2206 void 2207 release_bootstrap(void) 2208 { 2209 int root_is_ramdisk; 2210 page_t *pp; 2211 extern void kobj_boot_unmountroot(void); 2212 extern dev_t rootdev; 2213 #if !defined(__xpv) 2214 pfn_t pfn; 2215 #endif 2216 2217 /* unmount boot ramdisk and release kmem usage */ 2218 kobj_boot_unmountroot(); 2219 2220 /* 2221 * We're finished using the boot loader so free its pages. 2222 */ 2223 PRM_POINT("Unmapping lower boot pages"); 2224 2225 clear_boot_mappings(0, _userlimit); 2226 2227 postbootkernelbase = kernelbase; 2228 2229 /* 2230 * If root isn't on ramdisk, destroy the hardcoded 2231 * ramdisk node now and release the memory. Else, 2232 * ramdisk memory is kept in rd_pages. 2233 */ 2234 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2235 if (!root_is_ramdisk) { 2236 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2237 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2238 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2239 (void) ddi_remove_child(dip, 0); 2240 } 2241 2242 PRM_POINT("Releasing boot pages"); 2243 while (bootpages) { 2244 extern uint64_t ramdisk_start, ramdisk_end; 2245 pp = bootpages; 2246 bootpages = pp->p_next; 2247 2248 2249 /* Keep pages for the lower 64K */ 2250 if (pp_in_range(pp, 0, 0x40000)) { 2251 pp->p_next = lower_pages; 2252 lower_pages = pp; 2253 lower_pages_count++; 2254 continue; 2255 } 2256 2257 2258 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2259 ramdisk_end)) { 2260 pp->p_next = rd_pages; 2261 rd_pages = pp; 2262 continue; 2263 } 2264 pp->p_next = (struct page *)0; 2265 pp->p_prev = (struct page *)0; 2266 PP_CLRBOOTPAGES(pp); 2267 page_free(pp, 1); 2268 } 2269 PRM_POINT("Boot pages released"); 2270 2271 #if !defined(__xpv) 2272 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2273 /* 2274 * Find 1 page below 1 MB so that other processors can boot up or 2275 * so that any processor can resume. 2276 * Make sure it has a kernel VA as well as a 1:1 mapping. 2277 * We should have just free'd one up. 2278 */ 2279 2280 /* 2281 * 0x10 pages is 64K. Leave the bottom 64K alone 2282 * for BIOS. 2283 */ 2284 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2285 if (page_numtopp_alloc(pfn) == NULL) 2286 continue; 2287 rm_platter_va = i86devmap(pfn, 1, 2288 PROT_READ | PROT_WRITE | PROT_EXEC); 2289 rm_platter_pa = ptob(pfn); 2290 hat_devload(kas.a_hat, 2291 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2292 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2293 HAT_LOAD_NOCONSIST); 2294 break; 2295 } 2296 if (pfn == btop(1*1024*1024) && use_mp) 2297 panic("No page below 1M available for starting " 2298 "other processors or for resuming from system-suspend"); 2299 #endif /* !__xpv */ 2300 } 2301 2302 /* 2303 * Initialize the platform-specific parts of a page_t. 2304 */ 2305 void 2306 add_physmem_cb(page_t *pp, pfn_t pnum) 2307 { 2308 pp->p_pagenum = pnum; 2309 pp->p_mapping = NULL; 2310 pp->p_embed = 0; 2311 pp->p_share = 0; 2312 pp->p_mlentry = 0; 2313 } 2314 2315 /* 2316 * kphysm_init() initializes physical memory. 2317 */ 2318 static pgcnt_t 2319 kphysm_init( 2320 page_t *pp, 2321 pgcnt_t npages) 2322 { 2323 struct memlist *pmem; 2324 struct memseg *cur_memseg; 2325 pfn_t base_pfn; 2326 pgcnt_t num; 2327 pgcnt_t pages_done = 0; 2328 uint64_t addr; 2329 uint64_t size; 2330 extern pfn_t ddiphysmin; 2331 2332 ASSERT(page_hash != NULL && page_hashsz != 0); 2333 2334 cur_memseg = memseg_base; 2335 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2336 /* 2337 * In a 32 bit kernel can't use higher memory if we're 2338 * not booting in PAE mode. This check takes care of that. 2339 */ 2340 addr = pmem->address; 2341 size = pmem->size; 2342 if (btop(addr) > physmax) 2343 continue; 2344 2345 /* 2346 * align addr and size - they may not be at page boundaries 2347 */ 2348 if ((addr & MMU_PAGEOFFSET) != 0) { 2349 addr += MMU_PAGEOFFSET; 2350 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2351 size -= addr - pmem->address; 2352 } 2353 2354 /* only process pages below or equal to physmax */ 2355 if ((btop(addr + size) - 1) > physmax) 2356 size = ptob(physmax - btop(addr) + 1); 2357 2358 num = btop(size); 2359 if (num == 0) 2360 continue; 2361 2362 if (num > npages) 2363 num = npages; 2364 2365 npages -= num; 2366 pages_done += num; 2367 base_pfn = btop(addr); 2368 2369 if (prom_debug) 2370 prom_printf("MEMSEG addr=0x%" PRIx64 2371 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2372 addr, num, base_pfn, base_pfn + num); 2373 2374 /* 2375 * Ignore pages below ddiphysmin to simplify ddi memory 2376 * allocation with non-zero addr_lo requests. 2377 */ 2378 if (base_pfn < ddiphysmin) { 2379 if (base_pfn + num <= ddiphysmin) 2380 continue; 2381 pp += (ddiphysmin - base_pfn); 2382 num -= (ddiphysmin - base_pfn); 2383 base_pfn = ddiphysmin; 2384 } 2385 2386 /* 2387 * Build the memsegs entry 2388 */ 2389 cur_memseg->pages = pp; 2390 cur_memseg->epages = pp + num; 2391 cur_memseg->pages_base = base_pfn; 2392 cur_memseg->pages_end = base_pfn + num; 2393 2394 /* 2395 * Insert into memseg list in decreasing pfn range order. 2396 * Low memory is typically more fragmented such that this 2397 * ordering keeps the larger ranges at the front of the list 2398 * for code that searches memseg. 2399 * This ASSERTS that the memsegs coming in from boot are in 2400 * increasing physical address order and not contiguous. 2401 */ 2402 if (memsegs != NULL) { 2403 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2404 cur_memseg->next = memsegs; 2405 } 2406 memsegs = cur_memseg; 2407 2408 /* 2409 * add_physmem() initializes the PSM part of the page 2410 * struct by calling the PSM back with add_physmem_cb(). 2411 * In addition it coalesces pages into larger pages as 2412 * it initializes them. 2413 */ 2414 add_physmem(pp, num, base_pfn); 2415 cur_memseg++; 2416 availrmem_initial += num; 2417 availrmem += num; 2418 2419 pp += num; 2420 } 2421 2422 PRM_DEBUG(availrmem_initial); 2423 PRM_DEBUG(availrmem); 2424 PRM_DEBUG(freemem); 2425 build_pfn_hash(); 2426 return (pages_done); 2427 } 2428 2429 /* 2430 * Kernel VM initialization. 2431 */ 2432 static void 2433 kvm_init(void) 2434 { 2435 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2436 2437 /* 2438 * Put the kernel segments in kernel address space. 2439 */ 2440 rw_enter(&kas.a_lock, RW_WRITER); 2441 as_avlinit(&kas); 2442 2443 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2444 (void) segkmem_create(&ktextseg); 2445 2446 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2447 (void) segkmem_create(&kvalloc); 2448 2449 (void) seg_attach(&kas, kernelheap, 2450 ekernelheap - kernelheap, &kvseg); 2451 (void) segkmem_create(&kvseg); 2452 2453 if (core_size > 0) { 2454 PRM_POINT("attaching kvseg_core"); 2455 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2456 &kvseg_core); 2457 (void) segkmem_create(&kvseg_core); 2458 } 2459 2460 if (segziosize > 0) { 2461 PRM_POINT("attaching segzio"); 2462 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2463 &kzioseg); 2464 (void) segkmem_zio_create(&kzioseg); 2465 2466 /* create zio area covering new segment */ 2467 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2468 } 2469 2470 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2471 (void) segkmem_create(&kdebugseg); 2472 2473 rw_exit(&kas.a_lock); 2474 2475 /* 2476 * Ensure that the red zone at kernelbase is never accessible. 2477 */ 2478 PRM_POINT("protecting redzone"); 2479 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2480 2481 /* 2482 * Make the text writable so that it can be hot patched by DTrace. 2483 */ 2484 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2485 PROT_READ | PROT_WRITE | PROT_EXEC); 2486 2487 /* 2488 * Make data writable until end. 2489 */ 2490 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2491 PROT_READ | PROT_WRITE | PROT_EXEC); 2492 } 2493 2494 #ifndef __xpv 2495 /* 2496 * Solaris adds an entry for Write Combining caching to the PAT 2497 */ 2498 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2499 2500 void 2501 pat_sync(void) 2502 { 2503 ulong_t cr0, cr0_orig, cr4; 2504 2505 if (!(x86_feature & X86_PAT)) 2506 return; 2507 cr0_orig = cr0 = getcr0(); 2508 cr4 = getcr4(); 2509 2510 /* disable caching and flush all caches and TLBs */ 2511 cr0 |= CR0_CD; 2512 cr0 &= ~CR0_NW; 2513 setcr0(cr0); 2514 invalidate_cache(); 2515 if (cr4 & CR4_PGE) { 2516 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2517 setcr4(cr4); 2518 } else { 2519 reload_cr3(); 2520 } 2521 2522 /* add our entry to the PAT */ 2523 wrmsr(REG_PAT, pat_attr_reg); 2524 2525 /* flush TLBs and cache again, then reenable cr0 caching */ 2526 if (cr4 & CR4_PGE) { 2527 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2528 setcr4(cr4); 2529 } else { 2530 reload_cr3(); 2531 } 2532 invalidate_cache(); 2533 setcr0(cr0_orig); 2534 } 2535 2536 #endif /* !__xpv */ 2537 2538 #if defined(_SOFT_HOSTID) 2539 /* 2540 * On platforms that do not have a hardware serial number, attempt 2541 * to set one based on the contents of /etc/hostid. If this file does 2542 * not exist, assume that we are to generate a new hostid and set 2543 * it in the kernel, for subsequent saving by a userland process 2544 * once the system is up and the root filesystem is mounted r/w. 2545 * 2546 * In order to gracefully support upgrade on OpenSolaris, if 2547 * /etc/hostid does not exist, we will attempt to get a serial number 2548 * using the legacy method (/kernel/misc/sysinit). 2549 * 2550 * In an attempt to make the hostid less prone to abuse 2551 * (for license circumvention, etc), we store it in /etc/hostid 2552 * in rot47 format. 2553 */ 2554 extern volatile unsigned long tenmicrodata; 2555 static int atoi(char *); 2556 2557 static int32_t 2558 set_soft_hostid(void) 2559 { 2560 struct _buf *file; 2561 char tokbuf[MAXNAMELEN]; 2562 token_t token; 2563 int done = 0; 2564 u_longlong_t tmp; 2565 int i; 2566 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2567 unsigned char *c; 2568 hrtime_t tsc; 2569 2570 /* 2571 * If /etc/hostid file not found, we'd like to get a pseudo 2572 * random number to use at the hostid. A nice way to do this 2573 * is to read the real time clock. To remain xen-compatible, 2574 * we can't poke the real hardware, so we use tsc_read() to 2575 * read the real time clock. However, there is an ominous 2576 * warning in tsc_read that says it can return zero, so we 2577 * deal with that possibility by falling back to using the 2578 * (hopefully random enough) value in tenmicrodata. 2579 */ 2580 2581 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2582 /* 2583 * hostid file not found - try to load sysinit module 2584 * and see if it has a nonzero hostid value...use that 2585 * instead of generating a new hostid here if so. 2586 */ 2587 if ((i = modload("misc", "sysinit")) != -1) { 2588 if (strlen(hw_serial) > 0) 2589 hostid = (int32_t)atoi(hw_serial); 2590 (void) modunload(i); 2591 } 2592 if (hostid == HW_INVALID_HOSTID) { 2593 tsc = tsc_read(); 2594 if (tsc == 0) /* tsc_read can return zero sometimes */ 2595 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2596 else 2597 hostid = (int32_t)tsc & 0x0CFFFFF; 2598 } 2599 } else { 2600 /* hostid file found */ 2601 while (!done) { 2602 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2603 2604 switch (token) { 2605 case POUND: 2606 /* 2607 * skip comments 2608 */ 2609 kobj_find_eol(file); 2610 break; 2611 case STRING: 2612 /* 2613 * un-rot47 - obviously this 2614 * nonsense is ascii-specific 2615 */ 2616 for (c = (unsigned char *)tokbuf; 2617 *c != '\0'; c++) { 2618 *c += 47; 2619 if (*c > '~') 2620 *c -= 94; 2621 else if (*c < '!') 2622 *c += 94; 2623 } 2624 /* 2625 * now we should have a real number 2626 */ 2627 2628 if (kobj_getvalue(tokbuf, &tmp) != 0) 2629 kobj_file_err(CE_WARN, file, 2630 "Bad value %s for hostid", 2631 tokbuf); 2632 else 2633 hostid = (int32_t)tmp; 2634 2635 break; 2636 case EOF: 2637 done = 1; 2638 /* FALLTHROUGH */ 2639 case NEWLINE: 2640 kobj_newline(file); 2641 break; 2642 default: 2643 break; 2644 2645 } 2646 } 2647 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2648 kobj_file_err(CE_WARN, file, 2649 "hostid missing or corrupt"); 2650 2651 kobj_close_file(file); 2652 } 2653 /* 2654 * hostid is now the value read from /etc/hostid, or the 2655 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2656 * set. 2657 */ 2658 return (hostid); 2659 } 2660 2661 static int 2662 atoi(char *p) 2663 { 2664 int i = 0; 2665 2666 while (*p != '\0') 2667 i = 10 * i + (*p++ - '0'); 2668 2669 return (i); 2670 } 2671 2672 #endif /* _SOFT_HOSTID */ 2673 2674 void 2675 get_system_configuration(void) 2676 { 2677 char prop[32]; 2678 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2679 2680 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2681 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2682 kobj_getvalue(prop, &nodes_ll) == -1 || 2683 nodes_ll > MAXNODES || 2684 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2685 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2686 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2687 system_hardware.hd_nodes = 1; 2688 system_hardware.hd_cpus_per_node = 0; 2689 } else { 2690 system_hardware.hd_nodes = (int)nodes_ll; 2691 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2692 } 2693 2694 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2695 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2696 kobj_getvalue(prop, &lvalue) == -1) 2697 eprom_kernelbase = NULL; 2698 else 2699 eprom_kernelbase = (uintptr_t)lvalue; 2700 2701 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2702 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2703 kobj_getvalue(prop, &lvalue) == -1) 2704 segmapsize = SEGMAPDEFAULT; 2705 else 2706 segmapsize = (uintptr_t)lvalue; 2707 2708 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2709 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2710 kobj_getvalue(prop, &lvalue) == -1) 2711 segmapfreelists = 0; /* use segmap driver default */ 2712 else 2713 segmapfreelists = (int)lvalue; 2714 2715 /* physmem used to be here, but moved much earlier to fakebop.c */ 2716 } 2717 2718 /* 2719 * Add to a memory list. 2720 * start = start of new memory segment 2721 * len = length of new memory segment in bytes 2722 * new = pointer to a new struct memlist 2723 * memlistp = memory list to which to add segment. 2724 */ 2725 void 2726 memlist_add( 2727 uint64_t start, 2728 uint64_t len, 2729 struct memlist *new, 2730 struct memlist **memlistp) 2731 { 2732 struct memlist *cur; 2733 uint64_t end = start + len; 2734 2735 new->address = start; 2736 new->size = len; 2737 2738 cur = *memlistp; 2739 2740 while (cur) { 2741 if (cur->address >= end) { 2742 new->next = cur; 2743 *memlistp = new; 2744 new->prev = cur->prev; 2745 cur->prev = new; 2746 return; 2747 } 2748 ASSERT(cur->address + cur->size <= start); 2749 if (cur->next == NULL) { 2750 cur->next = new; 2751 new->prev = cur; 2752 new->next = NULL; 2753 return; 2754 } 2755 memlistp = &cur->next; 2756 cur = cur->next; 2757 } 2758 } 2759 2760 void 2761 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2762 { 2763 size_t tsize = e_modtext - modtext; 2764 size_t dsize = e_moddata - moddata; 2765 2766 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2767 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2768 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2769 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2770 } 2771 2772 caddr_t 2773 kobj_text_alloc(vmem_t *arena, size_t size) 2774 { 2775 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2776 } 2777 2778 /*ARGSUSED*/ 2779 caddr_t 2780 kobj_texthole_alloc(caddr_t addr, size_t size) 2781 { 2782 panic("unexpected call to kobj_texthole_alloc()"); 2783 /*NOTREACHED*/ 2784 return (0); 2785 } 2786 2787 /*ARGSUSED*/ 2788 void 2789 kobj_texthole_free(caddr_t addr, size_t size) 2790 { 2791 panic("unexpected call to kobj_texthole_free()"); 2792 } 2793 2794 /* 2795 * This is called just after configure() in startup(). 2796 * 2797 * The ISALIST concept is a bit hopeless on Intel, because 2798 * there's no guarantee of an ever-more-capable processor 2799 * given that various parts of the instruction set may appear 2800 * and disappear between different implementations. 2801 * 2802 * While it would be possible to correct it and even enhance 2803 * it somewhat, the explicit hardware capability bitmask allows 2804 * more flexibility. 2805 * 2806 * So, we just leave this alone. 2807 */ 2808 void 2809 setx86isalist(void) 2810 { 2811 char *tp; 2812 size_t len; 2813 extern char *isa_list; 2814 2815 #define TBUFSIZE 1024 2816 2817 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2818 *tp = '\0'; 2819 2820 #if defined(__amd64) 2821 (void) strcpy(tp, "amd64 "); 2822 #endif 2823 2824 switch (x86_vendor) { 2825 case X86_VENDOR_Intel: 2826 case X86_VENDOR_AMD: 2827 case X86_VENDOR_TM: 2828 if (x86_feature & X86_CMOV) { 2829 /* 2830 * Pentium Pro or later 2831 */ 2832 (void) strcat(tp, "pentium_pro"); 2833 (void) strcat(tp, x86_feature & X86_MMX ? 2834 "+mmx pentium_pro " : " "); 2835 } 2836 /*FALLTHROUGH*/ 2837 case X86_VENDOR_Cyrix: 2838 /* 2839 * The Cyrix 6x86 does not have any Pentium features 2840 * accessible while not at privilege level 0. 2841 */ 2842 if (x86_feature & X86_CPUID) { 2843 (void) strcat(tp, "pentium"); 2844 (void) strcat(tp, x86_feature & X86_MMX ? 2845 "+mmx pentium " : " "); 2846 } 2847 break; 2848 default: 2849 break; 2850 } 2851 (void) strcat(tp, "i486 i386 i86"); 2852 len = strlen(tp) + 1; /* account for NULL at end of string */ 2853 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2854 kmem_free(tp, TBUFSIZE); 2855 2856 #undef TBUFSIZE 2857 } 2858 2859 2860 #ifdef __amd64 2861 2862 void * 2863 device_arena_alloc(size_t size, int vm_flag) 2864 { 2865 return (vmem_alloc(device_arena, size, vm_flag)); 2866 } 2867 2868 void 2869 device_arena_free(void *vaddr, size_t size) 2870 { 2871 vmem_free(device_arena, vaddr, size); 2872 } 2873 2874 #else /* __i386 */ 2875 2876 void * 2877 device_arena_alloc(size_t size, int vm_flag) 2878 { 2879 caddr_t vaddr; 2880 uintptr_t v; 2881 size_t start; 2882 size_t end; 2883 2884 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2885 if (vaddr == NULL) 2886 return (NULL); 2887 2888 v = (uintptr_t)vaddr; 2889 ASSERT(v >= kernelbase); 2890 ASSERT(v + size <= valloc_base); 2891 2892 start = btop(v - kernelbase); 2893 end = btop(v + size - 1 - kernelbase); 2894 ASSERT(start < toxic_bit_map_len); 2895 ASSERT(end < toxic_bit_map_len); 2896 2897 while (start <= end) { 2898 BT_ATOMIC_SET(toxic_bit_map, start); 2899 ++start; 2900 } 2901 return (vaddr); 2902 } 2903 2904 void 2905 device_arena_free(void *vaddr, size_t size) 2906 { 2907 uintptr_t v = (uintptr_t)vaddr; 2908 size_t start; 2909 size_t end; 2910 2911 ASSERT(v >= kernelbase); 2912 ASSERT(v + size <= valloc_base); 2913 2914 start = btop(v - kernelbase); 2915 end = btop(v + size - 1 - kernelbase); 2916 ASSERT(start < toxic_bit_map_len); 2917 ASSERT(end < toxic_bit_map_len); 2918 2919 while (start <= end) { 2920 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2921 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2922 ++start; 2923 } 2924 vmem_free(heap_arena, vaddr, size); 2925 } 2926 2927 /* 2928 * returns 1st address in range that is in device arena, or NULL 2929 * if len is not NULL it returns the length of the toxic range 2930 */ 2931 void * 2932 device_arena_contains(void *vaddr, size_t size, size_t *len) 2933 { 2934 uintptr_t v = (uintptr_t)vaddr; 2935 uintptr_t eaddr = v + size; 2936 size_t start; 2937 size_t end; 2938 2939 /* 2940 * if called very early by kmdb, just return NULL 2941 */ 2942 if (toxic_bit_map == NULL) 2943 return (NULL); 2944 2945 /* 2946 * First check if we're completely outside the bitmap range. 2947 */ 2948 if (v >= valloc_base || eaddr < kernelbase) 2949 return (NULL); 2950 2951 /* 2952 * Trim ends of search to look at only what the bitmap covers. 2953 */ 2954 if (v < kernelbase) 2955 v = kernelbase; 2956 start = btop(v - kernelbase); 2957 end = btop(eaddr - kernelbase); 2958 if (end >= toxic_bit_map_len) 2959 end = toxic_bit_map_len; 2960 2961 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2962 return (NULL); 2963 2964 v = kernelbase + ptob(start); 2965 if (len != NULL) 2966 *len = ptob(end - start); 2967 return ((void *)v); 2968 } 2969 2970 #endif /* __i386 */ 2971