xref: /titanic_44/usr/src/uts/i86pc/os/startup.c (revision 491f61a1e1c1fc54a47bbcf53dbbbe1293b93b27)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/t_lock.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/systm.h>
32 #include <sys/user.h>
33 #include <sys/mman.h>
34 #include <sys/vm.h>
35 #include <sys/conf.h>
36 #include <sys/avintr.h>
37 #include <sys/autoconf.h>
38 #include <sys/disp.h>
39 #include <sys/class.h>
40 #include <sys/bitmap.h>
41 
42 #include <sys/privregs.h>
43 
44 #include <sys/proc.h>
45 #include <sys/buf.h>
46 #include <sys/kmem.h>
47 #include <sys/mem.h>
48 #include <sys/kstat.h>
49 
50 #include <sys/reboot.h>
51 
52 #include <sys/cred.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 
56 #include <sys/procfs.h>
57 
58 #include <sys/vfs.h>
59 #include <sys/cmn_err.h>
60 #include <sys/utsname.h>
61 #include <sys/debug.h>
62 #include <sys/kdi.h>
63 
64 #include <sys/dumphdr.h>
65 #include <sys/bootconf.h>
66 #include <sys/varargs.h>
67 #include <sys/promif.h>
68 #include <sys/modctl.h>
69 
70 #include <sys/sunddi.h>
71 #include <sys/sunndi.h>
72 #include <sys/ndi_impldefs.h>
73 #include <sys/ddidmareq.h>
74 #include <sys/psw.h>
75 #include <sys/regset.h>
76 #include <sys/clock.h>
77 #include <sys/pte.h>
78 #include <sys/tss.h>
79 #include <sys/stack.h>
80 #include <sys/trap.h>
81 #include <sys/fp.h>
82 #include <vm/kboot_mmu.h>
83 #include <vm/anon.h>
84 #include <vm/as.h>
85 #include <vm/page.h>
86 #include <vm/seg.h>
87 #include <vm/seg_dev.h>
88 #include <vm/seg_kmem.h>
89 #include <vm/seg_kpm.h>
90 #include <vm/seg_map.h>
91 #include <vm/seg_vn.h>
92 #include <vm/seg_kp.h>
93 #include <sys/memnode.h>
94 #include <vm/vm_dep.h>
95 #include <sys/thread.h>
96 #include <sys/sysconf.h>
97 #include <sys/vm_machparam.h>
98 #include <sys/archsystm.h>
99 #include <sys/machsystm.h>
100 #include <vm/hat.h>
101 #include <vm/hat_i86.h>
102 #include <sys/pmem.h>
103 #include <sys/smp_impldefs.h>
104 #include <sys/x86_archext.h>
105 #include <sys/cpuvar.h>
106 #include <sys/segments.h>
107 #include <sys/clconf.h>
108 #include <sys/kobj.h>
109 #include <sys/kobj_lex.h>
110 #include <sys/cpc_impl.h>
111 #include <sys/cpu_module.h>
112 #include <sys/smbios.h>
113 #include <sys/debug_info.h>
114 #include <sys/bootinfo.h>
115 #include <sys/ddi_timer.h>
116 #include <sys/systeminfo.h>
117 #include <sys/multiboot.h>
118 
119 #ifdef __xpv
120 
121 #include <sys/hypervisor.h>
122 #include <sys/xen_mmu.h>
123 #include <sys/evtchn_impl.h>
124 #include <sys/gnttab.h>
125 #include <sys/xpv_panic.h>
126 #include <xen/sys/xenbus_comms.h>
127 #include <xen/public/physdev.h>
128 
129 extern void xen_late_startup(void);
130 
131 struct xen_evt_data cpu0_evt_data;
132 
133 #endif /* __xpv */
134 
135 extern void progressbar_init(void);
136 extern void progressbar_start(void);
137 extern void brand_init(void);
138 extern void pcf_init(void);
139 extern void pg_init(void);
140 
141 extern int size_pse_array(pgcnt_t, int);
142 
143 #if defined(_SOFT_HOSTID)
144 
145 #include <sys/rtc.h>
146 
147 static int32_t set_soft_hostid(void);
148 static char hostid_file[] = "/etc/hostid";
149 
150 #endif
151 
152 void *gfx_devinfo_list;
153 
154 /*
155  * XXX make declaration below "static" when drivers no longer use this
156  * interface.
157  */
158 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
159 
160 /*
161  * segkp
162  */
163 extern int segkp_fromheap;
164 
165 static void kvm_init(void);
166 static void startup_init(void);
167 static void startup_memlist(void);
168 static void startup_kmem(void);
169 static void startup_modules(void);
170 static void startup_vm(void);
171 static void startup_end(void);
172 static void layout_kernel_va(void);
173 
174 #if !defined(__xpv)
175 void (*rootnex_iommu_init)(void) = NULL;
176 #endif
177 
178 /*
179  * Declare these as initialized data so we can patch them.
180  */
181 #ifdef __i386
182 
183 /*
184  * Due to virtual address space limitations running in 32 bit mode, restrict
185  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
186  *
187  * If the physical max memory size of 64g were allowed to be configured, the
188  * size of user virtual address space will be less than 1g. A limited user
189  * address space greatly reduces the range of applications that can run.
190  *
191  * If more physical memory than PHYSMEM is required, users should preferably
192  * run in 64 bit mode which has far looser virtual address space limitations.
193  *
194  * If 64 bit mode is not available (as in IA32) and/or more physical memory
195  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
196  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
197  * should also be carefully tuned to balance out the need of the user
198  * application while minimizing the risk of kernel heap exhaustion due to
199  * kernelbase being set too high.
200  */
201 #define	PHYSMEM	0x400000
202 
203 #else /* __amd64 */
204 
205 /*
206  * For now we can handle memory with physical addresses up to about
207  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
208  * half the VA space for seg_kpm. When systems get bigger than 64TB this
209  * code will need revisiting. There is an implicit assumption that there
210  * are no *huge* holes in the physical address space too.
211  */
212 #define	TERABYTE		(1ul << 40)
213 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
214 #define	PHYSMEM			PHYSMEM_MAX64
215 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
216 
217 #endif /* __amd64 */
218 
219 pgcnt_t physmem = PHYSMEM;
220 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
221 
222 char *kobj_file_buf;
223 int kobj_file_bufsize;	/* set in /etc/system */
224 
225 /* Global variables for MP support. Used in mp_startup */
226 caddr_t	rm_platter_va = 0;
227 uint32_t rm_platter_pa;
228 
229 int	auto_lpg_disable = 1;
230 
231 /*
232  * Some CPUs have holes in the middle of the 64-bit virtual address range.
233  */
234 uintptr_t hole_start, hole_end;
235 
236 /*
237  * kpm mapping window
238  */
239 caddr_t kpm_vbase;
240 size_t  kpm_size;
241 static int kpm_desired;
242 #ifdef __amd64
243 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
244 #endif
245 
246 /*
247  * Configuration parameters set at boot time.
248  */
249 
250 caddr_t econtig;		/* end of first block of contiguous kernel */
251 
252 struct bootops		*bootops = 0;	/* passed in from boot */
253 struct bootops		**bootopsp;
254 struct boot_syscalls	*sysp;		/* passed in from boot */
255 
256 char bootblock_fstype[16];
257 
258 char kern_bootargs[OBP_MAXPATHLEN];
259 char kern_bootfile[OBP_MAXPATHLEN];
260 
261 /*
262  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
263  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
264  * zio buffers from their own segment, otherwise they are allocated from the
265  * heap.  The optimization of allocating zio buffers from their own segment is
266  * only valid on 64-bit kernels.
267  */
268 #if defined(__amd64)
269 int segzio_fromheap = 0;
270 #else
271 int segzio_fromheap = 1;
272 #endif
273 
274 /*
275  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
276  * depends on number of BOP_ALLOC calls made and requested size, memory size
277  * combination and whether boot.bin memory needs to be freed.
278  */
279 #define	POSS_NEW_FRAGMENTS	12
280 
281 /*
282  * VM data structures
283  */
284 long page_hashsz;		/* Size of page hash table (power of two) */
285 struct page *pp_base;		/* Base of initial system page struct array */
286 struct page **page_hash;	/* Page hash table */
287 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
288 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
289 int pse_shift;			/* log2(pse_table_size) */
290 struct seg ktextseg;		/* Segment used for kernel executable image */
291 struct seg kvalloc;		/* Segment used for "valloc" mapping */
292 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
293 struct seg kmapseg;		/* Segment used for generic kernel mappings */
294 struct seg kdebugseg;		/* Segment used for the kernel debugger */
295 
296 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
297 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
298 
299 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
300 
301 #if defined(__amd64)
302 struct seg kvseg_core;		/* Segment used for the core heap */
303 struct seg kpmseg;		/* Segment used for physical mapping */
304 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
305 #else
306 struct seg *segkpm = NULL;	/* Unused on IA32 */
307 #endif
308 
309 caddr_t segkp_base;		/* Base address of segkp */
310 caddr_t segzio_base;		/* Base address of segzio */
311 #if defined(__amd64)
312 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
313 #else
314 pgcnt_t segkpsize = 0;
315 #endif
316 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
317 
318 /*
319  * VA range available to the debugger
320  */
321 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
322 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
323 
324 struct memseg *memseg_base;
325 struct vnode unused_pages_vp;
326 
327 #define	FOURGB	0x100000000LL
328 
329 struct memlist *memlist;
330 
331 caddr_t s_text;		/* start of kernel text segment */
332 caddr_t e_text;		/* end of kernel text segment */
333 caddr_t s_data;		/* start of kernel data segment */
334 caddr_t e_data;		/* end of kernel data segment */
335 caddr_t modtext;	/* start of loadable module text reserved */
336 caddr_t e_modtext;	/* end of loadable module text reserved */
337 caddr_t moddata;	/* start of loadable module data reserved */
338 caddr_t e_moddata;	/* end of loadable module data reserved */
339 
340 struct memlist *phys_install;	/* Total installed physical memory */
341 struct memlist *phys_avail;	/* Total available physical memory */
342 struct memlist *bios_rsvd;	/* Bios reserved memory */
343 
344 /*
345  * kphysm_init returns the number of pages that were processed
346  */
347 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
348 
349 #define	IO_PROP_SIZE	64	/* device property size */
350 
351 /*
352  * a couple useful roundup macros
353  */
354 #define	ROUND_UP_PAGE(x)	\
355 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
356 #define	ROUND_UP_LPAGE(x)	\
357 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
358 #define	ROUND_UP_4MEG(x)	\
359 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
360 #define	ROUND_UP_TOPLEVEL(x)	\
361 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
362 
363 /*
364  *	32-bit Kernel's Virtual memory layout.
365  *		+-----------------------+
366  *		|			|
367  * 0xFFC00000  -|-----------------------|- ARGSBASE
368  *		|	debugger	|
369  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
370  *		|      Kernel Data	|
371  * 0xFEC00000  -|-----------------------|
372  *              |      Kernel Text	|
373  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
374  *		|---       GDT       ---|- GDT page (GDT_VA)
375  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
376  *		|			|
377  * 		|   page_t structures	|
378  * 		|   memsegs, memlists, 	|
379  * 		|   page hash, etc.	|
380  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
381  *		|			|  (segkp is just an arena in the heap)
382  *		|			|
383  *		|	kvseg		|
384  *		|			|
385  *		|			|
386  * ---         -|-----------------------|- kernelheap (floating)
387  * 		|        Segkmap	|
388  * 0xC3002000  -|-----------------------|- segmap_start (floating)
389  *		|	Red Zone	|
390  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
391  *		|			|			||
392  *		|     Shared objects	|			\/
393  *		|			|
394  *		:			:
395  *		|	user data	|
396  *		|-----------------------|
397  *		|	user text	|
398  * 0x08048000  -|-----------------------|
399  *		|	user stack	|
400  *		:			:
401  *		|	invalid		|
402  * 0x00000000	+-----------------------+
403  *
404  *
405  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
406  *			+-----------------------+
407  *			|			|
408  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
409  *			|	debugger (?)	|
410  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
411  *			|      unused    	|
412  *			+-----------------------+
413  *			|      Kernel Data	|
414  * 0xFFFFFFFF.FBC00000  |-----------------------|
415  *			|      Kernel Text	|
416  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
417  *			|---       GDT       ---|- GDT page (GDT_VA)
418  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
419  *			|			|
420  * 			|      Core heap	| (used for loadable modules)
421  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
422  *			|	 Kernel		|
423  *			|	  heap		|
424  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
425  *			|	 segmap		|
426  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
427  *			|    device mappings	|
428  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
429  *			|	  segzio	|
430  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
431  *			|	  segkp		|
432  * ---                  |-----------------------|- segkp_base (floating)
433  * 			|   page_t structures	|  valloc_base + valloc_sz
434  * 			|   memsegs, memlists, 	|
435  * 			|   page hash, etc.	|
436  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
437  *			|	 segkpm		|
438  * 0xFFFFFE00.00000000  |-----------------------|
439  *			|	Red Zone	|
440  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
441  *			|     User stack	|- User space memory
442  * 			|			|
443  * 			| shared objects, etc	|	(grows downwards)
444  *			:			:
445  * 			|			|
446  * 0xFFFF8000.00000000  |-----------------------|
447  * 			|			|
448  * 			| VA Hole / unused	|
449  * 			|			|
450  * 0x00008000.00000000  |-----------------------|
451  *			|			|
452  *			|			|
453  *			:			:
454  *			|	user heap	|	(grows upwards)
455  *			|			|
456  *			|	user data	|
457  *			|-----------------------|
458  *			|	user text	|
459  * 0x00000000.04000000  |-----------------------|
460  *			|	invalid		|
461  * 0x00000000.00000000	+-----------------------+
462  *
463  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
464  * kernel, except that userlimit is raised to 0xfe000000
465  *
466  * Floating values:
467  *
468  * valloc_base: start of the kernel's memory management/tracking data
469  * structures.  This region contains page_t structures for
470  * physical memory, memsegs, memlists, and the page hash.
471  *
472  * core_base: start of the kernel's "core" heap area on 64-bit systems.
473  * This area is intended to be used for global data as well as for module
474  * text/data that does not fit into the nucleus pages.  The core heap is
475  * restricted to a 2GB range, allowing every address within it to be
476  * accessed using rip-relative addressing
477  *
478  * ekernelheap: end of kernelheap and start of segmap.
479  *
480  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
481  * above a red zone that separates the user's address space from the
482  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
483  *
484  * segmap_start: start of segmap. The length of segmap can be modified
485  * through eeprom. The default length is 16MB on 32-bit systems and 64MB
486  * on 64-bit systems.
487  *
488  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
489  * decreased by 2X the size required for page_t.  This allows the kernel
490  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
491  * bytes, the following shows the values of kernelbase and kernel heap
492  * sizes for different memory configurations (assuming default segmap and
493  * segkp sizes).
494  *
495  *	mem	size for	kernelbase	kernel heap
496  *	size	page_t's			size
497  *	----	---------	----------	-----------
498  *	1gb	0x01400000	0xd1800000	684MB
499  *	2gb	0x02800000	0xcf000000	704MB
500  *	4gb	0x05000000	0xca000000	744MB
501  *	6gb	0x07800000	0xc5000000	784MB
502  *	8gb	0x0a000000	0xc0000000	824MB
503  *	16gb	0x14000000	0xac000000	984MB
504  *	32gb	0x28000000	0x84000000	1304MB
505  *	64gb	0x50000000	0x34000000	1944MB (*)
506  *
507  * kernelbase is less than the abi minimum of 0xc0000000 for memory
508  * configurations above 8gb.
509  *
510  * (*) support for memory configurations above 32gb will require manual tuning
511  * of kernelbase to balance out the need of user applications.
512  */
513 
514 /* real-time-clock initialization parameters */
515 extern time_t process_rtc_config_file(void);
516 
517 uintptr_t	kernelbase;
518 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
519 uintptr_t	eprom_kernelbase;
520 size_t		segmapsize;
521 uintptr_t	segmap_start;
522 int		segmapfreelists;
523 pgcnt_t		npages;
524 pgcnt_t		orig_npages;
525 size_t		core_size;		/* size of "core" heap */
526 uintptr_t	core_base;		/* base address of "core" heap */
527 
528 /*
529  * List of bootstrap pages. We mark these as allocated in startup.
530  * release_bootstrap() will free them when we're completely done with
531  * the bootstrap.
532  */
533 static page_t *bootpages;
534 
535 /*
536  * boot time pages that have a vnode from the ramdisk will keep that forever.
537  */
538 static page_t *rd_pages;
539 
540 /*
541  * Lower 64K
542  */
543 static page_t *lower_pages = NULL;
544 static int lower_pages_count = 0;
545 
546 struct system_hardware system_hardware;
547 
548 /*
549  * Enable some debugging messages concerning memory usage...
550  */
551 static void
552 print_memlist(char *title, struct memlist *mp)
553 {
554 	prom_printf("MEMLIST: %s:\n", title);
555 	while (mp != NULL)  {
556 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
557 		    mp->address, mp->size);
558 		mp = mp->next;
559 	}
560 }
561 
562 /*
563  * XX64 need a comment here.. are these just default values, surely
564  * we read the "cpuid" type information to figure this out.
565  */
566 int	l2cache_sz = 0x80000;
567 int	l2cache_linesz = 0x40;
568 int	l2cache_assoc = 1;
569 
570 static size_t	textrepl_min_gb = 10;
571 
572 /*
573  * on 64 bit we use a predifined VA range for mapping devices in the kernel
574  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
575  */
576 #ifdef __amd64
577 
578 vmem_t		*device_arena;
579 uintptr_t	toxic_addr = (uintptr_t)NULL;
580 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
581 
582 #else	/* __i386 */
583 
584 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
585 size_t		toxic_bit_map_len = 0;	/* in bits */
586 
587 #endif	/* __i386 */
588 
589 /*
590  * Simple boot time debug facilities
591  */
592 static char *prm_dbg_str[] = {
593 	"%s:%d: '%s' is 0x%x\n",
594 	"%s:%d: '%s' is 0x%llx\n"
595 };
596 
597 int prom_debug;
598 
599 #define	PRM_DEBUG(q)	if (prom_debug) 	\
600 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
601 #define	PRM_POINT(q)	if (prom_debug) 	\
602 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
603 
604 /*
605  * This structure is used to keep track of the intial allocations
606  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
607  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
608  */
609 #define	NUM_ALLOCATIONS 8
610 int num_allocations = 0;
611 struct {
612 	void **al_ptr;
613 	size_t al_size;
614 } allocations[NUM_ALLOCATIONS];
615 size_t valloc_sz = 0;
616 uintptr_t valloc_base;
617 
618 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
619 		size = ROUND_UP_PAGE(size);		 		\
620 		if (num_allocations == NUM_ALLOCATIONS)			\
621 			panic("too many ADD_TO_ALLOCATIONS()");		\
622 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
623 		allocations[num_allocations].al_size = size;		\
624 		valloc_sz += size;					\
625 		++num_allocations;				 	\
626 	}
627 
628 /*
629  * Allocate all the initial memory needed by the page allocator.
630  */
631 static void
632 perform_allocations(void)
633 {
634 	caddr_t mem;
635 	int i;
636 	int valloc_align;
637 
638 	PRM_DEBUG(valloc_base);
639 	PRM_DEBUG(valloc_sz);
640 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
641 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
642 	if (mem != (caddr_t)valloc_base)
643 		panic("BOP_ALLOC() failed");
644 	bzero(mem, valloc_sz);
645 	for (i = 0; i < num_allocations; ++i) {
646 		*allocations[i].al_ptr = (void *)mem;
647 		mem += allocations[i].al_size;
648 	}
649 }
650 
651 /*
652  * Our world looks like this at startup time.
653  *
654  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
655  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
656  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
657  * addresses are fixed in the binary at link time.
658  *
659  * On the text page:
660  * unix/genunix/krtld/module text loads.
661  *
662  * On the data page:
663  * unix/genunix/krtld/module data loads.
664  *
665  * Machine-dependent startup code
666  */
667 void
668 startup(void)
669 {
670 #if !defined(__xpv)
671 	extern void startup_pci_bios(void);
672 	extern int post_fastreboot;
673 #endif
674 	extern cpuset_t cpu_ready_set;
675 
676 	/*
677 	 * Make sure that nobody tries to use sekpm until we have
678 	 * initialized it properly.
679 	 */
680 #if defined(__amd64)
681 	kpm_desired = 1;
682 #endif
683 	kpm_enable = 0;
684 	CPUSET_ONLY(cpu_ready_set, 0);	/* cpu 0 is boot cpu */
685 
686 #if defined(__xpv)	/* XXPV fix me! */
687 	{
688 		extern int segvn_use_regions;
689 		segvn_use_regions = 0;
690 	}
691 #endif
692 	progressbar_init();
693 	startup_init();
694 #if defined(__xpv)
695 	startup_xen_version();
696 #endif
697 	startup_memlist();
698 	startup_kmem();
699 	startup_vm();
700 #if !defined(__xpv)
701 	if (!post_fastreboot)
702 		startup_pci_bios();
703 #endif
704 #if defined(__xpv)
705 	startup_xen_mca();
706 #endif
707 	startup_modules();
708 
709 	startup_end();
710 	progressbar_start();
711 }
712 
713 static void
714 startup_init()
715 {
716 	PRM_POINT("startup_init() starting...");
717 
718 	/*
719 	 * Complete the extraction of cpuid data
720 	 */
721 	cpuid_pass2(CPU);
722 
723 	(void) check_boot_version(BOP_GETVERSION(bootops));
724 
725 	/*
726 	 * Check for prom_debug in boot environment
727 	 */
728 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
729 		++prom_debug;
730 		PRM_POINT("prom_debug found in boot enviroment");
731 	}
732 
733 	/*
734 	 * Collect node, cpu and memory configuration information.
735 	 */
736 	get_system_configuration();
737 
738 	/*
739 	 * Halt if this is an unsupported processor.
740 	 */
741 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
742 		printf("\n486 processor (\"%s\") detected.\n",
743 		    CPU->cpu_brandstr);
744 		halt("This processor is not supported by this release "
745 		    "of Solaris.");
746 	}
747 
748 	PRM_POINT("startup_init() done");
749 }
750 
751 /*
752  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
753  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
754  * also filters out physical page zero.  There is some reliance on the
755  * boot loader allocating only a few contiguous physical memory chunks.
756  */
757 static void
758 avail_filter(uint64_t *addr, uint64_t *size)
759 {
760 	uintptr_t va;
761 	uintptr_t next_va;
762 	pfn_t pfn;
763 	uint64_t pfn_addr;
764 	uint64_t pfn_eaddr;
765 	uint_t prot;
766 	size_t len;
767 	uint_t change;
768 
769 	if (prom_debug)
770 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
771 		    *addr, *size);
772 
773 	/*
774 	 * page zero is required for BIOS.. never make it available
775 	 */
776 	if (*addr == 0) {
777 		*addr += MMU_PAGESIZE;
778 		*size -= MMU_PAGESIZE;
779 	}
780 
781 	/*
782 	 * First we trim from the front of the range. Since kbm_probe()
783 	 * walks ranges in virtual order, but addr/size are physical, we need
784 	 * to the list until no changes are seen.  This deals with the case
785 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
786 	 * but w < v.
787 	 */
788 	do {
789 		change = 0;
790 		for (va = KERNEL_TEXT;
791 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
792 		    va = next_va) {
793 
794 			next_va = va + len;
795 			pfn_addr = pfn_to_pa(pfn);
796 			pfn_eaddr = pfn_addr + len;
797 
798 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
799 				change = 1;
800 				while (*size > 0 && len > 0) {
801 					*addr += MMU_PAGESIZE;
802 					*size -= MMU_PAGESIZE;
803 					len -= MMU_PAGESIZE;
804 				}
805 			}
806 		}
807 		if (change && prom_debug)
808 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
809 			    *addr, *size);
810 	} while (change);
811 
812 	/*
813 	 * Trim pages from the end of the range.
814 	 */
815 	for (va = KERNEL_TEXT;
816 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
817 	    va = next_va) {
818 
819 		next_va = va + len;
820 		pfn_addr = pfn_to_pa(pfn);
821 
822 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
823 			*size = pfn_addr - *addr;
824 	}
825 
826 	if (prom_debug)
827 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
828 		    *addr, *size);
829 }
830 
831 static void
832 kpm_init()
833 {
834 	struct segkpm_crargs b;
835 
836 	/*
837 	 * These variables were all designed for sfmmu in which segkpm is
838 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
839 	 * might use 2+ page sizes on a single machine, so none of these
840 	 * variables have a single correct value.  They are set up as if we
841 	 * always use a 4KB pagesize, which should do no harm.  In the long
842 	 * run, we should get rid of KPM's assumption that only a single
843 	 * pagesize is used.
844 	 */
845 	kpm_pgshft = MMU_PAGESHIFT;
846 	kpm_pgsz =  MMU_PAGESIZE;
847 	kpm_pgoff = MMU_PAGEOFFSET;
848 	kpmp2pshft = 0;
849 	kpmpnpgs = 1;
850 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
851 
852 	PRM_POINT("about to create segkpm");
853 	rw_enter(&kas.a_lock, RW_WRITER);
854 
855 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
856 		panic("cannot attach segkpm");
857 
858 	b.prot = PROT_READ | PROT_WRITE;
859 	b.nvcolors = 1;
860 
861 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
862 		panic("segkpm_create segkpm");
863 
864 	rw_exit(&kas.a_lock);
865 }
866 
867 /*
868  * The debug info page provides enough information to allow external
869  * inspectors (e.g. when running under a hypervisor) to bootstrap
870  * themselves into allowing full-blown kernel debugging.
871  */
872 static void
873 init_debug_info(void)
874 {
875 	caddr_t mem;
876 	debug_info_t *di;
877 
878 #ifndef __lint
879 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
880 #endif
881 
882 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
883 	    MMU_PAGESIZE);
884 
885 	if (mem != (caddr_t)DEBUG_INFO_VA)
886 		panic("BOP_ALLOC() failed");
887 	bzero(mem, MMU_PAGESIZE);
888 
889 	di = (debug_info_t *)mem;
890 
891 	di->di_magic = DEBUG_INFO_MAGIC;
892 	di->di_version = DEBUG_INFO_VERSION;
893 	di->di_modules = (uintptr_t)&modules;
894 	di->di_s_text = (uintptr_t)s_text;
895 	di->di_e_text = (uintptr_t)e_text;
896 	di->di_s_data = (uintptr_t)s_data;
897 	di->di_e_data = (uintptr_t)e_data;
898 	di->di_hat_htable_off = offsetof(hat_t, hat_htable);
899 	di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
900 }
901 
902 /*
903  * Build the memlists and other kernel essential memory system data structures.
904  * This is everything at valloc_base.
905  */
906 static void
907 startup_memlist(void)
908 {
909 	size_t memlist_sz;
910 	size_t memseg_sz;
911 	size_t pagehash_sz;
912 	size_t pp_sz;
913 	uintptr_t va;
914 	size_t len;
915 	uint_t prot;
916 	pfn_t pfn;
917 	int memblocks;
918 	pfn_t rsvd_high_pfn;
919 	pgcnt_t rsvd_pgcnt;
920 	size_t rsvdmemlist_sz;
921 	int rsvdmemblocks;
922 	caddr_t pagecolor_mem;
923 	size_t pagecolor_memsz;
924 	caddr_t page_ctrs_mem;
925 	size_t page_ctrs_size;
926 	size_t pse_table_alloc_size;
927 	struct memlist *current;
928 	extern void startup_build_mem_nodes(struct memlist *);
929 
930 	/* XX64 fix these - they should be in include files */
931 	extern size_t page_coloring_init(uint_t, int, int);
932 	extern void page_coloring_setup(caddr_t);
933 
934 	PRM_POINT("startup_memlist() starting...");
935 
936 	/*
937 	 * Use leftover large page nucleus text/data space for loadable modules.
938 	 * Use at most MODTEXT/MODDATA.
939 	 */
940 	len = kbm_nucleus_size;
941 	ASSERT(len > MMU_PAGESIZE);
942 
943 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
944 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
945 	if (e_moddata - moddata > MODDATA)
946 		e_moddata = moddata + MODDATA;
947 
948 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
949 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
950 	if (e_modtext - modtext > MODTEXT)
951 		e_modtext = modtext + MODTEXT;
952 
953 	econtig = e_moddata;
954 
955 	PRM_DEBUG(modtext);
956 	PRM_DEBUG(e_modtext);
957 	PRM_DEBUG(moddata);
958 	PRM_DEBUG(e_moddata);
959 	PRM_DEBUG(econtig);
960 
961 	/*
962 	 * Examine the boot loader physical memory map to find out:
963 	 * - total memory in system - physinstalled
964 	 * - the max physical address - physmax
965 	 * - the number of discontiguous segments of memory.
966 	 */
967 	if (prom_debug)
968 		print_memlist("boot physinstalled",
969 		    bootops->boot_mem->physinstalled);
970 	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
971 	    &physinstalled, &memblocks);
972 	PRM_DEBUG(physmax);
973 	PRM_DEBUG(physinstalled);
974 	PRM_DEBUG(memblocks);
975 
976 	/*
977 	 * Examine the bios reserved memory to find out:
978 	 * - the number of discontiguous segments of memory.
979 	 */
980 	if (prom_debug)
981 		print_memlist("boot reserved mem",
982 		    bootops->boot_mem->rsvdmem);
983 	installed_top_size(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
984 	    &rsvd_pgcnt, &rsvdmemblocks);
985 	PRM_DEBUG(rsvd_high_pfn);
986 	PRM_DEBUG(rsvd_pgcnt);
987 	PRM_DEBUG(rsvdmemblocks);
988 
989 	/*
990 	 * Initialize hat's mmu parameters.
991 	 * Check for enforce-prot-exec in boot environment. It's used to
992 	 * enable/disable support for the page table entry NX bit.
993 	 * The default is to enforce PROT_EXEC on processors that support NX.
994 	 * Boot seems to round up the "len", but 8 seems to be big enough.
995 	 */
996 	mmu_init();
997 
998 #ifdef	__i386
999 	/*
1000 	 * physmax is lowered if there is more memory than can be
1001 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
1002 	 */
1003 	if (mmu.pae_hat) {
1004 		if (PFN_ABOVE64G(physmax)) {
1005 			physinstalled -= (physmax - (PFN_64G - 1));
1006 			physmax = PFN_64G - 1;
1007 		}
1008 	} else {
1009 		if (PFN_ABOVE4G(physmax)) {
1010 			physinstalled -= (physmax - (PFN_4G - 1));
1011 			physmax = PFN_4G - 1;
1012 		}
1013 	}
1014 #endif
1015 
1016 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1017 
1018 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1019 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1020 		char value[8];
1021 
1022 		if (len < 8)
1023 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1024 		else
1025 			(void) strcpy(value, "");
1026 		if (strcmp(value, "off") == 0)
1027 			mmu.pt_nx = 0;
1028 	}
1029 	PRM_DEBUG(mmu.pt_nx);
1030 
1031 	/*
1032 	 * We will need page_t's for every page in the system, except for
1033 	 * memory mapped at or above above the start of the kernel text segment.
1034 	 *
1035 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1036 	 */
1037 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1038 	obp_pages = 0;
1039 	va = KERNEL_TEXT;
1040 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1041 		npages -= len >> MMU_PAGESHIFT;
1042 		if (va >= (uintptr_t)e_moddata)
1043 			obp_pages += len >> MMU_PAGESHIFT;
1044 		va += len;
1045 	}
1046 	PRM_DEBUG(npages);
1047 	PRM_DEBUG(obp_pages);
1048 
1049 	/*
1050 	 * If physmem is patched to be non-zero, use it instead of the computed
1051 	 * value unless it is larger than the actual amount of memory on hand.
1052 	 */
1053 	if (physmem == 0 || physmem > npages) {
1054 		physmem = npages;
1055 	} else if (physmem < npages) {
1056 		orig_npages = npages;
1057 		npages = physmem;
1058 	}
1059 	PRM_DEBUG(physmem);
1060 
1061 	/*
1062 	 * We now compute the sizes of all the  initial allocations for
1063 	 * structures the kernel needs in order do kmem_alloc(). These
1064 	 * include:
1065 	 *	memsegs
1066 	 *	memlists
1067 	 *	page hash table
1068 	 *	page_t's
1069 	 *	page coloring data structs
1070 	 */
1071 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1072 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1073 	PRM_DEBUG(memseg_sz);
1074 
1075 	/*
1076 	 * Reserve space for memlists. There's no real good way to know exactly
1077 	 * how much room we'll need, but this should be a good upper bound.
1078 	 */
1079 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1080 	    (memblocks + POSS_NEW_FRAGMENTS));
1081 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1082 	PRM_DEBUG(memlist_sz);
1083 
1084 	/*
1085 	 * Reserve space for bios reserved memlists.
1086 	 */
1087 	rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1088 	    (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1089 	ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1090 	PRM_DEBUG(rsvdmemlist_sz);
1091 
1092 	/*
1093 	 * The page structure hash table size is a power of 2
1094 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1095 	 */
1096 	page_hashsz = npages / PAGE_HASHAVELEN;
1097 	page_hashsz = 1 << highbit(page_hashsz);
1098 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1099 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1100 	PRM_DEBUG(pagehash_sz);
1101 
1102 	/*
1103 	 * Set aside room for the page structures themselves.
1104 	 */
1105 	PRM_DEBUG(npages);
1106 	pp_sz = sizeof (struct page) * npages;
1107 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1108 	PRM_DEBUG(pp_sz);
1109 
1110 	/*
1111 	 * determine l2 cache info and memory size for page coloring
1112 	 */
1113 	(void) getl2cacheinfo(CPU,
1114 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1115 	pagecolor_memsz =
1116 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1117 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1118 	PRM_DEBUG(pagecolor_memsz);
1119 
1120 	page_ctrs_size = page_ctrs_sz();
1121 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1122 	PRM_DEBUG(page_ctrs_size);
1123 
1124 	/*
1125 	 * Allocate the array that protects pp->p_selock.
1126 	 */
1127 	pse_shift = size_pse_array(physmem, max_ncpus);
1128 	pse_table_size = 1 << pse_shift;
1129 	pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1130 	ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1131 
1132 #if defined(__amd64)
1133 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1134 	valloc_base = VALLOC_BASE;
1135 
1136 	/*
1137 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1138 	 * for values of physmax up to 1 Terabyte. They need adjusting when
1139 	 * memory is at addresses above 1 TB.
1140 	 */
1141 	if (physmax + 1 > mmu_btop(TERABYTE)) {
1142 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1143 
1144 		/* Round to largest possible pagesize for now */
1145 		kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1146 
1147 		segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */
1148 
1149 		/* make sure we leave some space for user apps above hole */
1150 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1151 		if (segkpm_base > SEGKPM_BASE)
1152 			segkpm_base = SEGKPM_BASE;
1153 		PRM_DEBUG(segkpm_base);
1154 
1155 		valloc_base = segkpm_base + kpm_resv_amount;
1156 		PRM_DEBUG(valloc_base);
1157 	}
1158 #else	/* __i386 */
1159 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1160 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1161 	PRM_DEBUG(valloc_base);
1162 #endif	/* __i386 */
1163 
1164 	/*
1165 	 * do all the initial allocations
1166 	 */
1167 	perform_allocations();
1168 
1169 	/*
1170 	 * Build phys_install and phys_avail in kernel memspace.
1171 	 * - phys_install should be all memory in the system.
1172 	 * - phys_avail is phys_install minus any memory mapped before this
1173 	 *    point above KERNEL_TEXT.
1174 	 */
1175 	current = phys_install = memlist;
1176 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1177 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1178 		panic("physinstalled was too big!");
1179 	if (prom_debug)
1180 		print_memlist("phys_install", phys_install);
1181 
1182 	phys_avail = current;
1183 	PRM_POINT("Building phys_avail:\n");
1184 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1185 	    avail_filter);
1186 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1187 		panic("physavail was too big!");
1188 	if (prom_debug)
1189 		print_memlist("phys_avail", phys_avail);
1190 
1191 	/*
1192 	 * Build bios reserved memspace
1193 	 */
1194 	current = bios_rsvd;
1195 	copy_memlist_filter(bootops->boot_mem->rsvdmem, &current, NULL);
1196 	if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1197 		panic("bios_rsvd was too big!");
1198 	if (prom_debug)
1199 		print_memlist("bios_rsvd", bios_rsvd);
1200 
1201 	/*
1202 	 * setup page coloring
1203 	 */
1204 	page_coloring_setup(pagecolor_mem);
1205 	page_lock_init();	/* currently a no-op */
1206 
1207 	/*
1208 	 * free page list counters
1209 	 */
1210 	(void) page_ctrs_alloc(page_ctrs_mem);
1211 
1212 	/*
1213 	 * Size the pcf array based on the number of cpus in the box at
1214 	 * boot time.
1215 	 */
1216 
1217 	pcf_init();
1218 
1219 	/*
1220 	 * Initialize the page structures from the memory lists.
1221 	 */
1222 	availrmem_initial = availrmem = freemem = 0;
1223 	PRM_POINT("Calling kphysm_init()...");
1224 	npages = kphysm_init(pp_base, npages);
1225 	PRM_POINT("kphysm_init() done");
1226 	PRM_DEBUG(npages);
1227 
1228 	init_debug_info();
1229 
1230 	/*
1231 	 * Now that page_t's have been initialized, remove all the
1232 	 * initial allocation pages from the kernel free page lists.
1233 	 */
1234 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1235 	boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1236 	PRM_POINT("startup_memlist() done");
1237 
1238 	PRM_DEBUG(valloc_sz);
1239 
1240 #if defined(__amd64)
1241 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1242 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1243 		extern size_t textrepl_size_thresh;
1244 		textrepl_size_thresh = (16 << 20) - 1;
1245 	}
1246 #endif
1247 }
1248 
1249 /*
1250  * Layout the kernel's part of address space and initialize kmem allocator.
1251  */
1252 static void
1253 startup_kmem(void)
1254 {
1255 	extern void page_set_colorequiv_arr(void);
1256 	const char *fmt = "?features: %b\n";
1257 
1258 	PRM_POINT("startup_kmem() starting...");
1259 
1260 #if defined(__amd64)
1261 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1262 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1263 		    "systems.");
1264 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1265 	core_base = (uintptr_t)COREHEAP_BASE;
1266 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1267 #else	/* __i386 */
1268 	/*
1269 	 * We configure kernelbase based on:
1270 	 *
1271 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1272 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1273 	 *
1274 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1275 	 *    On large memory systems we must lower kernelbase to allow
1276 	 *    enough room for page_t's for all of memory.
1277 	 *
1278 	 * The value set here, might be changed a little later.
1279 	 */
1280 	if (eprom_kernelbase) {
1281 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1282 		if (kernelbase > KERNELBASE_MAX)
1283 			kernelbase = KERNELBASE_MAX;
1284 	} else {
1285 		kernelbase = (uintptr_t)KERNELBASE;
1286 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1287 	}
1288 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1289 	core_base = valloc_base;
1290 	core_size = 0;
1291 #endif	/* __i386 */
1292 
1293 	PRM_DEBUG(core_base);
1294 	PRM_DEBUG(core_size);
1295 	PRM_DEBUG(kernelbase);
1296 
1297 #if defined(__i386)
1298 	segkp_fromheap = 1;
1299 #endif	/* __i386 */
1300 
1301 	ekernelheap = (char *)core_base;
1302 	PRM_DEBUG(ekernelheap);
1303 
1304 	/*
1305 	 * Now that we know the real value of kernelbase,
1306 	 * update variables that were initialized with a value of
1307 	 * KERNELBASE (in common/conf/param.c).
1308 	 *
1309 	 * XXX	The problem with this sort of hackery is that the
1310 	 *	compiler just may feel like putting the const declarations
1311 	 *	(in param.c) into the .text section.  Perhaps they should
1312 	 *	just be declared as variables there?
1313 	 */
1314 
1315 	*(uintptr_t *)&_kernelbase = kernelbase;
1316 	*(uintptr_t *)&_userlimit = kernelbase;
1317 #if defined(__amd64)
1318 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1319 #else
1320 	*(uintptr_t *)&_userlimit32 = _userlimit;
1321 #endif
1322 	PRM_DEBUG(_kernelbase);
1323 	PRM_DEBUG(_userlimit);
1324 	PRM_DEBUG(_userlimit32);
1325 
1326 	layout_kernel_va();
1327 
1328 #if defined(__i386)
1329 	/*
1330 	 * If segmap is too large we can push the bottom of the kernel heap
1331 	 * higher than the base.  Or worse, it could exceed the top of the
1332 	 * VA space entirely, causing it to wrap around.
1333 	 */
1334 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1335 		panic("too little address space available for kernelheap,"
1336 		    " use eeprom for lower kernelbase or smaller segmapsize");
1337 #endif	/* __i386 */
1338 
1339 	/*
1340 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1341 	 */
1342 	kernelheap_init(kernelheap, ekernelheap,
1343 	    kernelheap + MMU_PAGESIZE,
1344 	    (void *)core_base, (void *)(core_base + core_size));
1345 
1346 #if defined(__xpv)
1347 	/*
1348 	 * Link pending events struct into cpu struct
1349 	 */
1350 	CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1351 #endif
1352 	/*
1353 	 * Initialize kernel memory allocator.
1354 	 */
1355 	kmem_init();
1356 
1357 	/*
1358 	 * Factor in colorequiv to check additional 'equivalent' bins
1359 	 */
1360 	page_set_colorequiv_arr();
1361 
1362 	/*
1363 	 * print this out early so that we know what's going on
1364 	 */
1365 	cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE);
1366 
1367 	/*
1368 	 * Initialize bp_mapin().
1369 	 */
1370 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1371 
1372 	/*
1373 	 * orig_npages is non-zero if physmem has been configured for less
1374 	 * than the available memory.
1375 	 */
1376 	if (orig_npages) {
1377 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1378 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1379 		    npages, orig_npages);
1380 	}
1381 #if defined(__i386)
1382 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1383 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1384 		    "System using 0x%lx",
1385 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1386 #endif
1387 
1388 #ifdef	KERNELBASE_ABI_MIN
1389 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1390 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1391 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1392 	}
1393 #endif
1394 
1395 #ifdef __xpv
1396 	/*
1397 	 * Some of the xen start information has to be relocated up
1398 	 * into the kernel's permanent address space.
1399 	 */
1400 	PRM_POINT("calling xen_relocate_start_info()");
1401 	xen_relocate_start_info();
1402 	PRM_POINT("xen_relocate_start_info() done");
1403 
1404 	/*
1405 	 * (Update the vcpu pointer in our cpu structure to point into
1406 	 * the relocated shared info.)
1407 	 */
1408 	CPU->cpu_m.mcpu_vcpu_info =
1409 	    &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1410 #endif
1411 
1412 	PRM_POINT("startup_kmem() done");
1413 }
1414 
1415 #ifndef __xpv
1416 /*
1417  * If we have detected that we are running in an HVM environment, we need
1418  * to prepend the PV driver directory to the module search path.
1419  */
1420 #define	HVM_MOD_DIR "/platform/i86hvm/kernel"
1421 static void
1422 update_default_path()
1423 {
1424 	char *current, *newpath;
1425 	int newlen;
1426 
1427 	/*
1428 	 * We are about to resync with krtld.  krtld will reset its
1429 	 * internal module search path iff Solaris has set default_path.
1430 	 * We want to be sure we're prepending this new directory to the
1431 	 * right search path.
1432 	 */
1433 	current = (default_path == NULL) ? kobj_module_path : default_path;
1434 
1435 	newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1;
1436 	newpath = kmem_alloc(newlen, KM_SLEEP);
1437 	(void) strcpy(newpath, HVM_MOD_DIR);
1438 	(void) strcat(newpath, " ");
1439 	(void) strcat(newpath, current);
1440 
1441 	default_path = newpath;
1442 }
1443 #endif
1444 
1445 static void
1446 startup_modules(void)
1447 {
1448 	int cnt;
1449 	extern void prom_setup(void);
1450 	int32_t v, h;
1451 	char d[11];
1452 	char *cp;
1453 	cmi_hdl_t hdl;
1454 
1455 	PRM_POINT("startup_modules() starting...");
1456 
1457 #ifndef __xpv
1458 	/*
1459 	 * Initialize ten-micro second timer so that drivers will
1460 	 * not get short changed in their init phase. This was
1461 	 * not getting called until clkinit which, on fast cpu's
1462 	 * caused the drv_usecwait to be way too short.
1463 	 */
1464 	microfind();
1465 
1466 	if (get_hwenv() == HW_XEN_HVM)
1467 		update_default_path();
1468 #endif
1469 
1470 	/*
1471 	 * Read the GMT lag from /etc/rtc_config.
1472 	 */
1473 	sgmtl(process_rtc_config_file());
1474 
1475 	/*
1476 	 * Calculate default settings of system parameters based upon
1477 	 * maxusers, yet allow to be overridden via the /etc/system file.
1478 	 */
1479 	param_calc(0);
1480 
1481 	mod_setup();
1482 
1483 	/*
1484 	 * Initialize system parameters.
1485 	 */
1486 	param_init();
1487 
1488 	/*
1489 	 * Initialize the default brands
1490 	 */
1491 	brand_init();
1492 
1493 	/*
1494 	 * maxmem is the amount of physical memory we're playing with.
1495 	 */
1496 	maxmem = physmem;
1497 
1498 	/*
1499 	 * Initialize segment management stuff.
1500 	 */
1501 	seg_init();
1502 
1503 	if (modload("fs", "specfs") == -1)
1504 		halt("Can't load specfs");
1505 
1506 	if (modload("fs", "devfs") == -1)
1507 		halt("Can't load devfs");
1508 
1509 	if (modload("fs", "dev") == -1)
1510 		halt("Can't load dev");
1511 
1512 	(void) modloadonly("sys", "lbl_edition");
1513 
1514 	dispinit();
1515 
1516 	/*
1517 	 * This is needed here to initialize hw_serial[] for cluster booting.
1518 	 */
1519 	if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1520 		cmn_err(CE_WARN, "Unable to set hostid");
1521 	} else {
1522 		for (v = h, cnt = 0; cnt < 10; cnt++) {
1523 			d[cnt] = (char)(v % 10);
1524 			v /= 10;
1525 			if (v == 0)
1526 				break;
1527 		}
1528 		for (cp = hw_serial; cnt >= 0; cnt--)
1529 			*cp++ = d[cnt] + '0';
1530 		*cp = 0;
1531 	}
1532 
1533 	/* Read cluster configuration data. */
1534 	clconf_init();
1535 
1536 #if defined(__xpv)
1537 	(void) ec_init();
1538 	gnttab_init();
1539 	(void) xs_early_init();
1540 #endif /* __xpv */
1541 
1542 	/*
1543 	 * Create a kernel device tree. First, create rootnex and
1544 	 * then invoke bus specific code to probe devices.
1545 	 */
1546 	setup_ddi();
1547 
1548 	/*
1549 	 * Set up the CPU module subsystem for the boot cpu in the native
1550 	 * case, and all physical cpu resource in the xpv dom0 case.
1551 	 * Modifies the device tree, so this must be done after
1552 	 * setup_ddi().
1553 	 */
1554 #ifdef __xpv
1555 	/*
1556 	 * If paravirtualized and on dom0 then we initialize all physical
1557 	 * cpu handles now;  if paravirtualized on a domU then do not
1558 	 * initialize.
1559 	 */
1560 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1561 		xen_mc_lcpu_cookie_t cpi;
1562 
1563 		for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1564 		    cpi = xen_physcpu_next(cpi)) {
1565 			if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1566 			    xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1567 			    xen_physcpu_strandid(cpi))) != NULL &&
1568 			    (x86_feature & X86_MCA))
1569 				cmi_mca_init(hdl);
1570 		}
1571 	}
1572 #else
1573 	/*
1574 	 * Initialize a handle for the boot cpu - others will initialize
1575 	 * as they startup.  Do not do this if we know we are in an HVM domU.
1576 	 */
1577 	if ((get_hwenv() != HW_XEN_HVM) &&
1578 	    (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1579 	    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL &&
1580 	    (x86_feature & X86_MCA))
1581 			cmi_mca_init(hdl);
1582 #endif	/* __xpv */
1583 
1584 	/*
1585 	 * Fake a prom tree such that /dev/openprom continues to work
1586 	 */
1587 	PRM_POINT("startup_modules: calling prom_setup...");
1588 	prom_setup();
1589 	PRM_POINT("startup_modules: done");
1590 
1591 	/*
1592 	 * Load all platform specific modules
1593 	 */
1594 	PRM_POINT("startup_modules: calling psm_modload...");
1595 	psm_modload();
1596 
1597 	PRM_POINT("startup_modules() done");
1598 }
1599 
1600 /*
1601  * claim a "setaside" boot page for use in the kernel
1602  */
1603 page_t *
1604 boot_claim_page(pfn_t pfn)
1605 {
1606 	page_t *pp;
1607 
1608 	pp = page_numtopp_nolock(pfn);
1609 	ASSERT(pp != NULL);
1610 
1611 	if (PP_ISBOOTPAGES(pp)) {
1612 		if (pp->p_next != NULL)
1613 			pp->p_next->p_prev = pp->p_prev;
1614 		if (pp->p_prev == NULL)
1615 			bootpages = pp->p_next;
1616 		else
1617 			pp->p_prev->p_next = pp->p_next;
1618 	} else {
1619 		/*
1620 		 * htable_attach() expects a base pagesize page
1621 		 */
1622 		if (pp->p_szc != 0)
1623 			page_boot_demote(pp);
1624 		pp = page_numtopp(pfn, SE_EXCL);
1625 	}
1626 	return (pp);
1627 }
1628 
1629 /*
1630  * Walk through the pagetables looking for pages mapped in by boot.  If the
1631  * setaside flag is set the pages are expected to be returned to the
1632  * kernel later in boot, so we add them to the bootpages list.
1633  */
1634 static void
1635 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1636 {
1637 	uintptr_t va = low;
1638 	size_t len;
1639 	uint_t prot;
1640 	pfn_t pfn;
1641 	page_t *pp;
1642 	pgcnt_t boot_protect_cnt = 0;
1643 
1644 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1645 		if (va + len >= high)
1646 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1647 			    "legal range.", len, (void *)va);
1648 
1649 		while (len > 0) {
1650 			pp = page_numtopp_alloc(pfn);
1651 			if (pp != NULL) {
1652 				if (setaside == 0)
1653 					panic("Unexpected mapping by boot.  "
1654 					    "addr=%p pfn=%lx\n",
1655 					    (void *)va, pfn);
1656 
1657 				pp->p_next = bootpages;
1658 				pp->p_prev = NULL;
1659 				PP_SETBOOTPAGES(pp);
1660 				if (bootpages != NULL) {
1661 					bootpages->p_prev = pp;
1662 				}
1663 				bootpages = pp;
1664 				++boot_protect_cnt;
1665 			}
1666 
1667 			++pfn;
1668 			len -= MMU_PAGESIZE;
1669 			va += MMU_PAGESIZE;
1670 		}
1671 	}
1672 	PRM_DEBUG(boot_protect_cnt);
1673 }
1674 
1675 /*
1676  *
1677  */
1678 static void
1679 layout_kernel_va(void)
1680 {
1681 	PRM_POINT("layout_kernel_va() starting...");
1682 	/*
1683 	 * Establish the final size of the kernel's heap, size of segmap,
1684 	 * segkp, etc.
1685 	 */
1686 
1687 #if defined(__amd64)
1688 
1689 	kpm_vbase = (caddr_t)segkpm_base;
1690 	kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1691 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1692 		panic("not enough room for kpm!");
1693 	PRM_DEBUG(kpm_size);
1694 	PRM_DEBUG(kpm_vbase);
1695 
1696 	/*
1697 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1698 	 * faster to access than embedding it in the heap.
1699 	 */
1700 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1701 	if (!segkp_fromheap) {
1702 		size_t sz = mmu_ptob(segkpsize);
1703 
1704 		/*
1705 		 * determine size of segkp
1706 		 */
1707 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1708 			sz = SEGKPDEFSIZE;
1709 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1710 			    "segkpsize has been reset to %ld pages",
1711 			    mmu_btop(sz));
1712 		}
1713 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1714 
1715 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1716 	}
1717 	PRM_DEBUG(segkp_base);
1718 	PRM_DEBUG(segkpsize);
1719 
1720 	/*
1721 	 * segzio is used for ZFS cached data. It uses a distinct VA
1722 	 * segment (from kernel heap) so that we can easily tell not to
1723 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1724 	 * to give it lots of VA, but not constrain the kernel heap.
1725 	 * We scale the size of segzio linearly with physmem up to
1726 	 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1727 	 */
1728 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1729 	if (segzio_fromheap) {
1730 		segziosize = 0;
1731 	} else {
1732 		size_t physmem_size = mmu_ptob(physmem);
1733 		size_t size = (segziosize == 0) ?
1734 		    physmem_size : mmu_ptob(segziosize);
1735 
1736 		if (size < SEGZIOMINSIZE)
1737 			size = SEGZIOMINSIZE;
1738 		if (size > SEGZIOMAXSIZE) {
1739 			size = SEGZIOMAXSIZE;
1740 			if (physmem_size > size)
1741 				size += (physmem_size - size) / 2;
1742 		}
1743 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1744 	}
1745 	PRM_DEBUG(segziosize);
1746 	PRM_DEBUG(segzio_base);
1747 
1748 	/*
1749 	 * Put the range of VA for device mappings next, kmdb knows to not
1750 	 * grep in this range of addresses.
1751 	 */
1752 	toxic_addr =
1753 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1754 	PRM_DEBUG(toxic_addr);
1755 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1756 #else /* __i386 */
1757 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1758 #endif /* __i386 */
1759 	PRM_DEBUG(segmap_start);
1760 
1761 	/*
1762 	 * Users can change segmapsize through eeprom. If the variable
1763 	 * is tuned through eeprom, there is no upper bound on the
1764 	 * size of segmap.
1765 	 */
1766 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1767 
1768 #if defined(__i386)
1769 	/*
1770 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1771 	 * the bottom of the kernel's address range.  Set aside space for a
1772 	 * small red zone just below the start of segmap.
1773 	 */
1774 	segmap_start += KERNEL_REDZONE_SIZE;
1775 	segmapsize -= KERNEL_REDZONE_SIZE;
1776 #endif
1777 
1778 	PRM_DEBUG(segmap_start);
1779 	PRM_DEBUG(segmapsize);
1780 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1781 	PRM_DEBUG(kernelheap);
1782 	PRM_POINT("layout_kernel_va() done...");
1783 }
1784 
1785 /*
1786  * Finish initializing the VM system, now that we are no longer
1787  * relying on the boot time memory allocators.
1788  */
1789 static void
1790 startup_vm(void)
1791 {
1792 	struct segmap_crargs a;
1793 
1794 	extern int use_brk_lpg, use_stk_lpg;
1795 
1796 	PRM_POINT("startup_vm() starting...");
1797 
1798 	/*
1799 	 * Initialize the hat layer.
1800 	 */
1801 	hat_init();
1802 
1803 	/*
1804 	 * Do final allocations of HAT data structures that need to
1805 	 * be allocated before quiescing the boot loader.
1806 	 */
1807 	PRM_POINT("Calling hat_kern_alloc()...");
1808 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1809 	PRM_POINT("hat_kern_alloc() done");
1810 
1811 #ifndef __xpv
1812 	/*
1813 	 * Setup Page Attribute Table
1814 	 */
1815 	pat_sync();
1816 #endif
1817 
1818 	/*
1819 	 * The next two loops are done in distinct steps in order
1820 	 * to be sure that any page that is doubly mapped (both above
1821 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1822 	 * Note this may never happen, but it might someday.
1823 	 */
1824 	bootpages = NULL;
1825 	PRM_POINT("Protecting boot pages");
1826 
1827 	/*
1828 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1829 	 * page_t's. This can only happen if something weird allocated
1830 	 * in this range (like kadb/kmdb).
1831 	 */
1832 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1833 
1834 	/*
1835 	 * Before we can take over memory allocation/mapping from the boot
1836 	 * loader we must remove from our free page lists any boot allocated
1837 	 * pages that stay mapped until release_bootstrap().
1838 	 */
1839 	protect_boot_range(0, kernelbase, 1);
1840 
1841 
1842 	/*
1843 	 * Switch to running on regular HAT (not boot_mmu)
1844 	 */
1845 	PRM_POINT("Calling hat_kern_setup()...");
1846 	hat_kern_setup();
1847 
1848 	/*
1849 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1850 	 */
1851 	bop_no_more_mem();
1852 
1853 	PRM_POINT("hat_kern_setup() done");
1854 
1855 	hat_cpu_online(CPU);
1856 
1857 	/*
1858 	 * Initialize VM system
1859 	 */
1860 	PRM_POINT("Calling kvm_init()...");
1861 	kvm_init();
1862 	PRM_POINT("kvm_init() done");
1863 
1864 	/*
1865 	 * Tell kmdb that the VM system is now working
1866 	 */
1867 	if (boothowto & RB_DEBUG)
1868 		kdi_dvec_vmready();
1869 
1870 #if defined(__xpv)
1871 	/*
1872 	 * Populate the I/O pool on domain 0
1873 	 */
1874 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1875 		extern long populate_io_pool(void);
1876 		long init_io_pool_cnt;
1877 
1878 		PRM_POINT("Populating reserve I/O page pool");
1879 		init_io_pool_cnt = populate_io_pool();
1880 		PRM_DEBUG(init_io_pool_cnt);
1881 	}
1882 #endif
1883 	/*
1884 	 * Mangle the brand string etc.
1885 	 */
1886 	cpuid_pass3(CPU);
1887 
1888 #if defined(__amd64)
1889 
1890 	/*
1891 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1892 	 */
1893 	device_arena = vmem_create("device", (void *)toxic_addr,
1894 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1895 
1896 #else	/* __i386 */
1897 
1898 	/*
1899 	 * allocate the bit map that tracks toxic pages
1900 	 */
1901 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1902 	PRM_DEBUG(toxic_bit_map_len);
1903 	toxic_bit_map =
1904 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1905 	ASSERT(toxic_bit_map != NULL);
1906 	PRM_DEBUG(toxic_bit_map);
1907 
1908 #endif	/* __i386 */
1909 
1910 
1911 	/*
1912 	 * Now that we've got more VA, as well as the ability to allocate from
1913 	 * it, tell the debugger.
1914 	 */
1915 	if (boothowto & RB_DEBUG)
1916 		kdi_dvec_memavail();
1917 
1918 	/*
1919 	 * The following code installs a special page fault handler (#pf)
1920 	 * to work around a pentium bug.
1921 	 */
1922 #if !defined(__amd64) && !defined(__xpv)
1923 	if (x86_type == X86_TYPE_P5) {
1924 		desctbr_t idtr;
1925 		gate_desc_t *newidt;
1926 
1927 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
1928 			panic("failed to install pentium_pftrap");
1929 
1930 		bcopy(idt0, newidt, NIDT * sizeof (*idt0));
1931 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
1932 		    KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
1933 
1934 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
1935 		    PROT_READ | PROT_EXEC);
1936 
1937 		CPU->cpu_idt = newidt;
1938 		idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
1939 		idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
1940 		wr_idtr(&idtr);
1941 	}
1942 #endif	/* !__amd64 */
1943 
1944 #if !defined(__xpv)
1945 	/*
1946 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
1947 	 * parameters left there by controllers/BIOS.
1948 	 */
1949 	PRM_POINT("setup up p0_va");
1950 	p0_va = i86devmap(0, 1, PROT_READ);
1951 	PRM_DEBUG(p0_va);
1952 #endif
1953 
1954 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1955 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1956 
1957 	/*
1958 	 * disable automatic large pages for small memory systems or
1959 	 * when the disable flag is set.
1960 	 *
1961 	 * Do not yet consider page sizes larger than 2m/4m.
1962 	 */
1963 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
1964 		max_uheap_lpsize = LEVEL_SIZE(1);
1965 		max_ustack_lpsize = LEVEL_SIZE(1);
1966 		max_privmap_lpsize = LEVEL_SIZE(1);
1967 		max_uidata_lpsize = LEVEL_SIZE(1);
1968 		max_utext_lpsize = LEVEL_SIZE(1);
1969 		max_shm_lpsize = LEVEL_SIZE(1);
1970 	}
1971 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
1972 	    auto_lpg_disable) {
1973 		use_brk_lpg = 0;
1974 		use_stk_lpg = 0;
1975 	}
1976 	mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
1977 
1978 	PRM_POINT("Calling hat_init_finish()...");
1979 	hat_init_finish();
1980 	PRM_POINT("hat_init_finish() done");
1981 
1982 	/*
1983 	 * Initialize the segkp segment type.
1984 	 */
1985 	rw_enter(&kas.a_lock, RW_WRITER);
1986 	PRM_POINT("Attaching segkp");
1987 	if (segkp_fromheap) {
1988 		segkp->s_as = &kas;
1989 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
1990 	    segkp) < 0) {
1991 		panic("startup: cannot attach segkp");
1992 		/*NOTREACHED*/
1993 	}
1994 	PRM_POINT("Doing segkp_create()");
1995 	if (segkp_create(segkp) != 0) {
1996 		panic("startup: segkp_create failed");
1997 		/*NOTREACHED*/
1998 	}
1999 	PRM_DEBUG(segkp);
2000 	rw_exit(&kas.a_lock);
2001 
2002 	/*
2003 	 * kpm segment
2004 	 */
2005 	segmap_kpm = 0;
2006 	if (kpm_desired) {
2007 		kpm_init();
2008 		kpm_enable = 1;
2009 	}
2010 
2011 	/*
2012 	 * Now create segmap segment.
2013 	 */
2014 	rw_enter(&kas.a_lock, RW_WRITER);
2015 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2016 		panic("cannot attach segmap");
2017 		/*NOTREACHED*/
2018 	}
2019 	PRM_DEBUG(segmap);
2020 
2021 	a.prot = PROT_READ | PROT_WRITE;
2022 	a.shmsize = 0;
2023 	a.nfreelist = segmapfreelists;
2024 
2025 	if (segmap_create(segmap, (caddr_t)&a) != 0)
2026 		panic("segmap_create segmap");
2027 	rw_exit(&kas.a_lock);
2028 
2029 	setup_vaddr_for_ppcopy(CPU);
2030 
2031 	segdev_init();
2032 #if defined(__xpv)
2033 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2034 #endif
2035 		pmem_init();
2036 
2037 	PRM_POINT("startup_vm() done");
2038 }
2039 
2040 /*
2041  * Load a tod module for the non-standard tod part found on this system.
2042  */
2043 static void
2044 load_tod_module(char *todmod)
2045 {
2046 	if (modload("tod", todmod) == -1)
2047 		halt("Can't load TOD module");
2048 }
2049 
2050 static void
2051 startup_end(void)
2052 {
2053 	int i;
2054 	extern void setx86isalist(void);
2055 	extern void cpu_event_init(void);
2056 
2057 	PRM_POINT("startup_end() starting...");
2058 
2059 	/*
2060 	 * Perform tasks that get done after most of the VM
2061 	 * initialization has been done but before the clock
2062 	 * and other devices get started.
2063 	 */
2064 	kern_setup1();
2065 
2066 	/*
2067 	 * Perform CPC initialization for this CPU.
2068 	 */
2069 	kcpc_hw_init(CPU);
2070 
2071 	/*
2072 	 * Initialize cpu event framework.
2073 	 */
2074 	cpu_event_init();
2075 
2076 #if defined(OPTERON_WORKAROUND_6323525)
2077 	if (opteron_workaround_6323525)
2078 		patch_workaround_6323525();
2079 #endif
2080 	/*
2081 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2082 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2083 	 */
2084 	if (tod_module_name != NULL) {
2085 		PRM_POINT("load_tod_module()");
2086 		load_tod_module(tod_module_name);
2087 	}
2088 
2089 #if defined(__xpv)
2090 	/*
2091 	 * Forceload interposing TOD module for the hypervisor.
2092 	 */
2093 	PRM_POINT("load_tod_module()");
2094 	load_tod_module("xpvtod");
2095 #endif
2096 
2097 	/*
2098 	 * Configure the system.
2099 	 */
2100 	PRM_POINT("Calling configure()...");
2101 	configure();		/* set up devices */
2102 	PRM_POINT("configure() done");
2103 
2104 	/*
2105 	 * Set the isa_list string to the defined instruction sets we
2106 	 * support.
2107 	 */
2108 	setx86isalist();
2109 	cpu_intr_alloc(CPU, NINTR_THREADS);
2110 	psm_install();
2111 
2112 	/*
2113 	 * We're done with bootops.  We don't unmap the bootstrap yet because
2114 	 * we're still using bootsvcs.
2115 	 */
2116 	PRM_POINT("NULLing out bootops");
2117 	*bootopsp = (struct bootops *)NULL;
2118 	bootops = (struct bootops *)NULL;
2119 
2120 #if defined(__xpv)
2121 	ec_init_debug_irq();
2122 	xs_domu_init();
2123 #endif
2124 
2125 #if !defined(__xpv)
2126 	if (rootnex_iommu_init != NULL) {
2127 		rootnex_iommu_init();
2128 	}
2129 #endif
2130 	PRM_POINT("Enabling interrupts");
2131 	(*picinitf)();
2132 	sti();
2133 #if defined(__xpv)
2134 	ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2135 	xen_late_startup();
2136 #endif
2137 
2138 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2139 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
2140 
2141 	/*
2142 	 * Register these software interrupts for ddi timer.
2143 	 * Software interrupts up to the level 10 are supported.
2144 	 */
2145 	for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2146 		char name[sizeof ("timer_softintr") + 2];
2147 		(void) sprintf(name, "timer_softintr%02d", i);
2148 		(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2149 		    (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
2150 	}
2151 
2152 #if !defined(__xpv)
2153 	if (modload("drv", "amd_iommu") < 0) {
2154 		PRM_POINT("No AMD IOMMU present\n");
2155 	} else if (ddi_hold_installed_driver(ddi_name_to_major(
2156 	    "amd_iommu")) == NULL) {
2157 		prom_printf("ERROR: failed to attach AMD IOMMU\n");
2158 	}
2159 #endif
2160 	post_startup_cpu_fixups();
2161 
2162 	PRM_POINT("startup_end() done");
2163 }
2164 
2165 /*
2166  * Don't remove the following 2 variables.  They are necessary
2167  * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2168  */
2169 char *_hs1107 = hw_serial;
2170 ulong_t  _bdhs34;
2171 
2172 void
2173 post_startup(void)
2174 {
2175 	extern void cpupm_init(cpu_t *);
2176 	extern void cpu_event_init_cpu(cpu_t *);
2177 
2178 	/*
2179 	 * Set the system wide, processor-specific flags to be passed
2180 	 * to userland via the aux vector for performance hints and
2181 	 * instruction set extensions.
2182 	 */
2183 	bind_hwcap();
2184 
2185 #ifdef __xpv
2186 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2187 #endif
2188 	{
2189 		/*
2190 		 * Load the System Management BIOS into the global ksmbios
2191 		 * handle, if an SMBIOS is present on this system.
2192 		 */
2193 		ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
2194 
2195 #if defined(__xpv)
2196 		xpv_panic_init();
2197 #else
2198 		/*
2199 		 * Startup the memory scrubber.
2200 		 * XXPV	This should be running somewhere ..
2201 		 */
2202 		if (get_hwenv() != HW_XEN_HVM)
2203 			memscrub_init();
2204 #endif
2205 	}
2206 
2207 	/*
2208 	 * Complete CPU module initialization
2209 	 */
2210 	cmi_post_startup();
2211 
2212 	/*
2213 	 * Perform forceloading tasks for /etc/system.
2214 	 */
2215 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2216 
2217 	/*
2218 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2219 	 * ON4.0: This must be fixed or restated in /etc/systems.
2220 	 */
2221 	(void) modload("fs", "procfs");
2222 
2223 	(void) i_ddi_attach_hw_nodes("pit_beep");
2224 
2225 #if defined(__i386)
2226 	/*
2227 	 * Check for required functional Floating Point hardware,
2228 	 * unless FP hardware explicitly disabled.
2229 	 */
2230 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2231 		halt("No working FP hardware found");
2232 #endif
2233 
2234 	maxmem = freemem;
2235 
2236 	cpu_event_init_cpu(CPU);
2237 	cpupm_init(CPU);
2238 	(void) mach_cpu_create_device_node(CPU, NULL);
2239 
2240 	pg_init();
2241 }
2242 
2243 static int
2244 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2245 {
2246 	return ((pp->p_pagenum >= btop(low_addr)) &&
2247 	    (pp->p_pagenum < btopr(high_addr)));
2248 }
2249 
2250 void
2251 release_bootstrap(void)
2252 {
2253 	int root_is_ramdisk;
2254 	page_t *pp;
2255 	extern void kobj_boot_unmountroot(void);
2256 	extern dev_t rootdev;
2257 #if !defined(__xpv)
2258 	pfn_t	pfn;
2259 #endif
2260 
2261 	/* unmount boot ramdisk and release kmem usage */
2262 	kobj_boot_unmountroot();
2263 
2264 	/*
2265 	 * We're finished using the boot loader so free its pages.
2266 	 */
2267 	PRM_POINT("Unmapping lower boot pages");
2268 
2269 	clear_boot_mappings(0, _userlimit);
2270 
2271 	postbootkernelbase = kernelbase;
2272 
2273 	/*
2274 	 * If root isn't on ramdisk, destroy the hardcoded
2275 	 * ramdisk node now and release the memory. Else,
2276 	 * ramdisk memory is kept in rd_pages.
2277 	 */
2278 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2279 	if (!root_is_ramdisk) {
2280 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2281 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2282 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
2283 		(void) ddi_remove_child(dip, 0);
2284 	}
2285 
2286 	PRM_POINT("Releasing boot pages");
2287 	while (bootpages) {
2288 		extern uint64_t ramdisk_start, ramdisk_end;
2289 		pp = bootpages;
2290 		bootpages = pp->p_next;
2291 
2292 
2293 		/* Keep pages for the lower 64K */
2294 		if (pp_in_range(pp, 0, 0x40000)) {
2295 			pp->p_next = lower_pages;
2296 			lower_pages = pp;
2297 			lower_pages_count++;
2298 			continue;
2299 		}
2300 
2301 
2302 		if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2303 		    ramdisk_end)) {
2304 			pp->p_next = rd_pages;
2305 			rd_pages = pp;
2306 			continue;
2307 		}
2308 		pp->p_next = (struct page *)0;
2309 		pp->p_prev = (struct page *)0;
2310 		PP_CLRBOOTPAGES(pp);
2311 		page_free(pp, 1);
2312 	}
2313 	PRM_POINT("Boot pages released");
2314 
2315 #if !defined(__xpv)
2316 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2317 	/*
2318 	 * Find 1 page below 1 MB so that other processors can boot up or
2319 	 * so that any processor can resume.
2320 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2321 	 * We should have just free'd one up.
2322 	 */
2323 
2324 	/*
2325 	 * 0x10 pages is 64K.  Leave the bottom 64K alone
2326 	 * for BIOS.
2327 	 */
2328 	for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2329 		if (page_numtopp_alloc(pfn) == NULL)
2330 			continue;
2331 		rm_platter_va = i86devmap(pfn, 1,
2332 		    PROT_READ | PROT_WRITE | PROT_EXEC);
2333 		rm_platter_pa = ptob(pfn);
2334 		hat_devload(kas.a_hat,
2335 		    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
2336 		    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
2337 		    HAT_LOAD_NOCONSIST);
2338 		break;
2339 	}
2340 	if (pfn == btop(1*1024*1024) && use_mp)
2341 		panic("No page below 1M available for starting "
2342 		    "other processors or for resuming from system-suspend");
2343 #endif	/* !__xpv */
2344 }
2345 
2346 /*
2347  * Initialize the platform-specific parts of a page_t.
2348  */
2349 void
2350 add_physmem_cb(page_t *pp, pfn_t pnum)
2351 {
2352 	pp->p_pagenum = pnum;
2353 	pp->p_mapping = NULL;
2354 	pp->p_embed = 0;
2355 	pp->p_share = 0;
2356 	pp->p_mlentry = 0;
2357 }
2358 
2359 /*
2360  * kphysm_init() initializes physical memory.
2361  */
2362 static pgcnt_t
2363 kphysm_init(
2364 	page_t *pp,
2365 	pgcnt_t npages)
2366 {
2367 	struct memlist	*pmem;
2368 	struct memseg	*cur_memseg;
2369 	pfn_t		base_pfn;
2370 	pfn_t		end_pfn;
2371 	pgcnt_t		num;
2372 	pgcnt_t		pages_done = 0;
2373 	uint64_t	addr;
2374 	uint64_t	size;
2375 	extern pfn_t	ddiphysmin;
2376 	extern int	mnode_xwa;
2377 	int		ms = 0, me = 0;
2378 
2379 	ASSERT(page_hash != NULL && page_hashsz != 0);
2380 
2381 	cur_memseg = memseg_base;
2382 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2383 		/*
2384 		 * In a 32 bit kernel can't use higher memory if we're
2385 		 * not booting in PAE mode. This check takes care of that.
2386 		 */
2387 		addr = pmem->address;
2388 		size = pmem->size;
2389 		if (btop(addr) > physmax)
2390 			continue;
2391 
2392 		/*
2393 		 * align addr and size - they may not be at page boundaries
2394 		 */
2395 		if ((addr & MMU_PAGEOFFSET) != 0) {
2396 			addr += MMU_PAGEOFFSET;
2397 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2398 			size -= addr - pmem->address;
2399 		}
2400 
2401 		/* only process pages below or equal to physmax */
2402 		if ((btop(addr + size) - 1) > physmax)
2403 			size = ptob(physmax - btop(addr) + 1);
2404 
2405 		num = btop(size);
2406 		if (num == 0)
2407 			continue;
2408 
2409 		if (num > npages)
2410 			num = npages;
2411 
2412 		npages -= num;
2413 		pages_done += num;
2414 		base_pfn = btop(addr);
2415 
2416 		if (prom_debug)
2417 			prom_printf("MEMSEG addr=0x%" PRIx64
2418 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2419 			    addr, num, base_pfn, base_pfn + num);
2420 
2421 		/*
2422 		 * Ignore pages below ddiphysmin to simplify ddi memory
2423 		 * allocation with non-zero addr_lo requests.
2424 		 */
2425 		if (base_pfn < ddiphysmin) {
2426 			if (base_pfn + num <= ddiphysmin)
2427 				continue;
2428 			pp += (ddiphysmin - base_pfn);
2429 			num -= (ddiphysmin - base_pfn);
2430 			base_pfn = ddiphysmin;
2431 		}
2432 
2433 		/*
2434 		 * mnode_xwa is greater than 1 when large pages regions can
2435 		 * cross memory node boundaries. To prevent the formation
2436 		 * of these large pages, configure the memsegs based on the
2437 		 * memory node ranges which had been made non-contiguous.
2438 		 */
2439 		if (mnode_xwa > 1) {
2440 
2441 			end_pfn = base_pfn + num - 1;
2442 			ms = PFN_2_MEM_NODE(base_pfn);
2443 			me = PFN_2_MEM_NODE(end_pfn);
2444 
2445 			if (ms != me) {
2446 				/*
2447 				 * current range spans more than 1 memory node.
2448 				 * Set num to only the pfn range in the start
2449 				 * memory node.
2450 				 */
2451 				num = mem_node_config[ms].physmax - base_pfn
2452 				    + 1;
2453 				ASSERT(end_pfn > mem_node_config[ms].physmax);
2454 			}
2455 		}
2456 
2457 		for (;;) {
2458 			/*
2459 			 * Build the memsegs entry
2460 			 */
2461 			cur_memseg->pages = pp;
2462 			cur_memseg->epages = pp + num;
2463 			cur_memseg->pages_base = base_pfn;
2464 			cur_memseg->pages_end = base_pfn + num;
2465 
2466 			/*
2467 			 * Insert into memseg list in decreasing pfn range
2468 			 * order. Low memory is typically more fragmented such
2469 			 * that this ordering keeps the larger ranges at the
2470 			 * front of the list for code that searches memseg.
2471 			 * This ASSERTS that the memsegs coming in from boot
2472 			 * are in increasing physical address order and not
2473 			 * contiguous.
2474 			 */
2475 			if (memsegs != NULL) {
2476 				ASSERT(cur_memseg->pages_base >=
2477 				    memsegs->pages_end);
2478 				cur_memseg->next = memsegs;
2479 			}
2480 			memsegs = cur_memseg;
2481 
2482 			/*
2483 			 * add_physmem() initializes the PSM part of the page
2484 			 * struct by calling the PSM back with add_physmem_cb().
2485 			 * In addition it coalesces pages into larger pages as
2486 			 * it initializes them.
2487 			 */
2488 			add_physmem(pp, num, base_pfn);
2489 			cur_memseg++;
2490 			availrmem_initial += num;
2491 			availrmem += num;
2492 
2493 			pp += num;
2494 			if (ms >= me)
2495 				break;
2496 
2497 			/* process next memory node range */
2498 			ms++;
2499 			base_pfn = mem_node_config[ms].physbase;
2500 			num = MIN(mem_node_config[ms].physmax,
2501 			    end_pfn) - base_pfn + 1;
2502 		}
2503 	}
2504 
2505 	PRM_DEBUG(availrmem_initial);
2506 	PRM_DEBUG(availrmem);
2507 	PRM_DEBUG(freemem);
2508 	build_pfn_hash();
2509 	return (pages_done);
2510 }
2511 
2512 /*
2513  * Kernel VM initialization.
2514  */
2515 static void
2516 kvm_init(void)
2517 {
2518 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2519 
2520 	/*
2521 	 * Put the kernel segments in kernel address space.
2522 	 */
2523 	rw_enter(&kas.a_lock, RW_WRITER);
2524 	as_avlinit(&kas);
2525 
2526 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2527 	(void) segkmem_create(&ktextseg);
2528 
2529 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2530 	(void) segkmem_create(&kvalloc);
2531 
2532 	(void) seg_attach(&kas, kernelheap,
2533 	    ekernelheap - kernelheap, &kvseg);
2534 	(void) segkmem_create(&kvseg);
2535 
2536 	if (core_size > 0) {
2537 		PRM_POINT("attaching kvseg_core");
2538 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2539 		    &kvseg_core);
2540 		(void) segkmem_create(&kvseg_core);
2541 	}
2542 
2543 	if (segziosize > 0) {
2544 		PRM_POINT("attaching segzio");
2545 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2546 		    &kzioseg);
2547 		(void) segkmem_zio_create(&kzioseg);
2548 
2549 		/* create zio area covering new segment */
2550 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2551 	}
2552 
2553 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2554 	(void) segkmem_create(&kdebugseg);
2555 
2556 	rw_exit(&kas.a_lock);
2557 
2558 	/*
2559 	 * Ensure that the red zone at kernelbase is never accessible.
2560 	 */
2561 	PRM_POINT("protecting redzone");
2562 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2563 
2564 	/*
2565 	 * Make the text writable so that it can be hot patched by DTrace.
2566 	 */
2567 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2568 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2569 
2570 	/*
2571 	 * Make data writable until end.
2572 	 */
2573 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2574 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2575 }
2576 
2577 #ifndef __xpv
2578 /*
2579  * Solaris adds an entry for Write Combining caching to the PAT
2580  */
2581 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2582 
2583 void
2584 pat_sync(void)
2585 {
2586 	ulong_t	cr0, cr0_orig, cr4;
2587 
2588 	if (!(x86_feature & X86_PAT))
2589 		return;
2590 	cr0_orig = cr0 = getcr0();
2591 	cr4 = getcr4();
2592 
2593 	/* disable caching and flush all caches and TLBs */
2594 	cr0 |= CR0_CD;
2595 	cr0 &= ~CR0_NW;
2596 	setcr0(cr0);
2597 	invalidate_cache();
2598 	if (cr4 & CR4_PGE) {
2599 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2600 		setcr4(cr4);
2601 	} else {
2602 		reload_cr3();
2603 	}
2604 
2605 	/* add our entry to the PAT */
2606 	wrmsr(REG_PAT, pat_attr_reg);
2607 
2608 	/* flush TLBs and cache again, then reenable cr0 caching */
2609 	if (cr4 & CR4_PGE) {
2610 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2611 		setcr4(cr4);
2612 	} else {
2613 		reload_cr3();
2614 	}
2615 	invalidate_cache();
2616 	setcr0(cr0_orig);
2617 }
2618 
2619 #endif /* !__xpv */
2620 
2621 #if defined(_SOFT_HOSTID)
2622 /*
2623  * On platforms that do not have a hardware serial number, attempt
2624  * to set one based on the contents of /etc/hostid.  If this file does
2625  * not exist, assume that we are to generate a new hostid and set
2626  * it in the kernel, for subsequent saving by a userland process
2627  * once the system is up and the root filesystem is mounted r/w.
2628  *
2629  * In order to gracefully support upgrade on OpenSolaris, if
2630  * /etc/hostid does not exist, we will attempt to get a serial number
2631  * using the legacy method (/kernel/misc/sysinit).
2632  *
2633  * In an attempt to make the hostid less prone to abuse
2634  * (for license circumvention, etc), we store it in /etc/hostid
2635  * in rot47 format.
2636  */
2637 extern volatile unsigned long tenmicrodata;
2638 static int atoi(char *);
2639 
2640 static int32_t
2641 set_soft_hostid(void)
2642 {
2643 	struct _buf *file;
2644 	char tokbuf[MAXNAMELEN];
2645 	token_t token;
2646 	int done = 0;
2647 	u_longlong_t tmp;
2648 	int i;
2649 	int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2650 	unsigned char *c;
2651 	hrtime_t tsc;
2652 
2653 	/*
2654 	 * If /etc/hostid file not found, we'd like to get a pseudo
2655 	 * random number to use at the hostid.  A nice way to do this
2656 	 * is to read the real time clock.  To remain xen-compatible,
2657 	 * we can't poke the real hardware, so we use tsc_read() to
2658 	 * read the real time clock.  However, there is an ominous
2659 	 * warning in tsc_read that says it can return zero, so we
2660 	 * deal with that possibility by falling back to using the
2661 	 * (hopefully random enough) value in tenmicrodata.
2662 	 */
2663 
2664 	if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2665 		/*
2666 		 * hostid file not found - try to load sysinit module
2667 		 * and see if it has a nonzero hostid value...use that
2668 		 * instead of generating a new hostid here if so.
2669 		 */
2670 		if ((i = modload("misc", "sysinit")) != -1) {
2671 			if (strlen(hw_serial) > 0)
2672 				hostid = (int32_t)atoi(hw_serial);
2673 			(void) modunload(i);
2674 		}
2675 		if (hostid == HW_INVALID_HOSTID) {
2676 			tsc = tsc_read();
2677 			if (tsc == 0)	/* tsc_read can return zero sometimes */
2678 				hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
2679 			else
2680 				hostid = (int32_t)tsc & 0x0CFFFFF;
2681 		}
2682 	} else {
2683 		/* hostid file found */
2684 		while (!done) {
2685 			token = kobj_lex(file, tokbuf, sizeof (tokbuf));
2686 
2687 			switch (token) {
2688 			case POUND:
2689 				/*
2690 				 * skip comments
2691 				 */
2692 				kobj_find_eol(file);
2693 				break;
2694 			case STRING:
2695 				/*
2696 				 * un-rot47 - obviously this
2697 				 * nonsense is ascii-specific
2698 				 */
2699 				for (c = (unsigned char *)tokbuf;
2700 				    *c != '\0'; c++) {
2701 					*c += 47;
2702 					if (*c > '~')
2703 						*c -= 94;
2704 					else if (*c < '!')
2705 						*c += 94;
2706 				}
2707 				/*
2708 				 * now we should have a real number
2709 				 */
2710 
2711 				if (kobj_getvalue(tokbuf, &tmp) != 0)
2712 					kobj_file_err(CE_WARN, file,
2713 					    "Bad value %s for hostid",
2714 					    tokbuf);
2715 				else
2716 					hostid = (int32_t)tmp;
2717 
2718 				break;
2719 			case EOF:
2720 				done = 1;
2721 				/* FALLTHROUGH */
2722 			case NEWLINE:
2723 				kobj_newline(file);
2724 				break;
2725 			default:
2726 				break;
2727 
2728 			}
2729 		}
2730 		if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
2731 			kobj_file_err(CE_WARN, file,
2732 			    "hostid missing or corrupt");
2733 
2734 		kobj_close_file(file);
2735 	}
2736 	/*
2737 	 * hostid is now the value read from /etc/hostid, or the
2738 	 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
2739 	 * set.
2740 	 */
2741 	return (hostid);
2742 }
2743 
2744 static int
2745 atoi(char *p)
2746 {
2747 	int i = 0;
2748 
2749 	while (*p != '\0')
2750 		i = 10 * i + (*p++ - '0');
2751 
2752 	return (i);
2753 }
2754 
2755 #endif /* _SOFT_HOSTID */
2756 
2757 void
2758 get_system_configuration(void)
2759 {
2760 	char	prop[32];
2761 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2762 
2763 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2764 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2765 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
2766 	    nodes_ll > MAXNODES ||
2767 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2768 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2769 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2770 		system_hardware.hd_nodes = 1;
2771 		system_hardware.hd_cpus_per_node = 0;
2772 	} else {
2773 		system_hardware.hd_nodes = (int)nodes_ll;
2774 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2775 	}
2776 
2777 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2778 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2779 	    kobj_getvalue(prop, &lvalue) == -1)
2780 		eprom_kernelbase = NULL;
2781 	else
2782 		eprom_kernelbase = (uintptr_t)lvalue;
2783 
2784 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2785 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2786 	    kobj_getvalue(prop, &lvalue) == -1)
2787 		segmapsize = SEGMAPDEFAULT;
2788 	else
2789 		segmapsize = (uintptr_t)lvalue;
2790 
2791 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2792 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2793 	    kobj_getvalue(prop, &lvalue) == -1)
2794 		segmapfreelists = 0;	/* use segmap driver default */
2795 	else
2796 		segmapfreelists = (int)lvalue;
2797 
2798 	/* physmem used to be here, but moved much earlier to fakebop.c */
2799 }
2800 
2801 /*
2802  * Add to a memory list.
2803  * start = start of new memory segment
2804  * len = length of new memory segment in bytes
2805  * new = pointer to a new struct memlist
2806  * memlistp = memory list to which to add segment.
2807  */
2808 void
2809 memlist_add(
2810 	uint64_t start,
2811 	uint64_t len,
2812 	struct memlist *new,
2813 	struct memlist **memlistp)
2814 {
2815 	struct memlist *cur;
2816 	uint64_t end = start + len;
2817 
2818 	new->address = start;
2819 	new->size = len;
2820 
2821 	cur = *memlistp;
2822 
2823 	while (cur) {
2824 		if (cur->address >= end) {
2825 			new->next = cur;
2826 			*memlistp = new;
2827 			new->prev = cur->prev;
2828 			cur->prev = new;
2829 			return;
2830 		}
2831 		ASSERT(cur->address + cur->size <= start);
2832 		if (cur->next == NULL) {
2833 			cur->next = new;
2834 			new->prev = cur;
2835 			new->next = NULL;
2836 			return;
2837 		}
2838 		memlistp = &cur->next;
2839 		cur = cur->next;
2840 	}
2841 }
2842 
2843 void
2844 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2845 {
2846 	size_t tsize = e_modtext - modtext;
2847 	size_t dsize = e_moddata - moddata;
2848 
2849 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2850 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2851 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2852 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2853 }
2854 
2855 caddr_t
2856 kobj_text_alloc(vmem_t *arena, size_t size)
2857 {
2858 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2859 }
2860 
2861 /*ARGSUSED*/
2862 caddr_t
2863 kobj_texthole_alloc(caddr_t addr, size_t size)
2864 {
2865 	panic("unexpected call to kobj_texthole_alloc()");
2866 	/*NOTREACHED*/
2867 	return (0);
2868 }
2869 
2870 /*ARGSUSED*/
2871 void
2872 kobj_texthole_free(caddr_t addr, size_t size)
2873 {
2874 	panic("unexpected call to kobj_texthole_free()");
2875 }
2876 
2877 /*
2878  * This is called just after configure() in startup().
2879  *
2880  * The ISALIST concept is a bit hopeless on Intel, because
2881  * there's no guarantee of an ever-more-capable processor
2882  * given that various parts of the instruction set may appear
2883  * and disappear between different implementations.
2884  *
2885  * While it would be possible to correct it and even enhance
2886  * it somewhat, the explicit hardware capability bitmask allows
2887  * more flexibility.
2888  *
2889  * So, we just leave this alone.
2890  */
2891 void
2892 setx86isalist(void)
2893 {
2894 	char *tp;
2895 	size_t len;
2896 	extern char *isa_list;
2897 
2898 #define	TBUFSIZE	1024
2899 
2900 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2901 	*tp = '\0';
2902 
2903 #if defined(__amd64)
2904 	(void) strcpy(tp, "amd64 ");
2905 #endif
2906 
2907 	switch (x86_vendor) {
2908 	case X86_VENDOR_Intel:
2909 	case X86_VENDOR_AMD:
2910 	case X86_VENDOR_TM:
2911 		if (x86_feature & X86_CMOV) {
2912 			/*
2913 			 * Pentium Pro or later
2914 			 */
2915 			(void) strcat(tp, "pentium_pro");
2916 			(void) strcat(tp, x86_feature & X86_MMX ?
2917 			    "+mmx pentium_pro " : " ");
2918 		}
2919 		/*FALLTHROUGH*/
2920 	case X86_VENDOR_Cyrix:
2921 		/*
2922 		 * The Cyrix 6x86 does not have any Pentium features
2923 		 * accessible while not at privilege level 0.
2924 		 */
2925 		if (x86_feature & X86_CPUID) {
2926 			(void) strcat(tp, "pentium");
2927 			(void) strcat(tp, x86_feature & X86_MMX ?
2928 			    "+mmx pentium " : " ");
2929 		}
2930 		break;
2931 	default:
2932 		break;
2933 	}
2934 	(void) strcat(tp, "i486 i386 i86");
2935 	len = strlen(tp) + 1;   /* account for NULL at end of string */
2936 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
2937 	kmem_free(tp, TBUFSIZE);
2938 
2939 #undef TBUFSIZE
2940 }
2941 
2942 
2943 #ifdef __amd64
2944 
2945 void *
2946 device_arena_alloc(size_t size, int vm_flag)
2947 {
2948 	return (vmem_alloc(device_arena, size, vm_flag));
2949 }
2950 
2951 void
2952 device_arena_free(void *vaddr, size_t size)
2953 {
2954 	vmem_free(device_arena, vaddr, size);
2955 }
2956 
2957 #else /* __i386 */
2958 
2959 void *
2960 device_arena_alloc(size_t size, int vm_flag)
2961 {
2962 	caddr_t	vaddr;
2963 	uintptr_t v;
2964 	size_t	start;
2965 	size_t	end;
2966 
2967 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
2968 	if (vaddr == NULL)
2969 		return (NULL);
2970 
2971 	v = (uintptr_t)vaddr;
2972 	ASSERT(v >= kernelbase);
2973 	ASSERT(v + size <= valloc_base);
2974 
2975 	start = btop(v - kernelbase);
2976 	end = btop(v + size - 1 - kernelbase);
2977 	ASSERT(start < toxic_bit_map_len);
2978 	ASSERT(end < toxic_bit_map_len);
2979 
2980 	while (start <= end) {
2981 		BT_ATOMIC_SET(toxic_bit_map, start);
2982 		++start;
2983 	}
2984 	return (vaddr);
2985 }
2986 
2987 void
2988 device_arena_free(void *vaddr, size_t size)
2989 {
2990 	uintptr_t v = (uintptr_t)vaddr;
2991 	size_t	start;
2992 	size_t	end;
2993 
2994 	ASSERT(v >= kernelbase);
2995 	ASSERT(v + size <= valloc_base);
2996 
2997 	start = btop(v - kernelbase);
2998 	end = btop(v + size - 1 - kernelbase);
2999 	ASSERT(start < toxic_bit_map_len);
3000 	ASSERT(end < toxic_bit_map_len);
3001 
3002 	while (start <= end) {
3003 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3004 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
3005 		++start;
3006 	}
3007 	vmem_free(heap_arena, vaddr, size);
3008 }
3009 
3010 /*
3011  * returns 1st address in range that is in device arena, or NULL
3012  * if len is not NULL it returns the length of the toxic range
3013  */
3014 void *
3015 device_arena_contains(void *vaddr, size_t size, size_t *len)
3016 {
3017 	uintptr_t v = (uintptr_t)vaddr;
3018 	uintptr_t eaddr = v + size;
3019 	size_t start;
3020 	size_t end;
3021 
3022 	/*
3023 	 * if called very early by kmdb, just return NULL
3024 	 */
3025 	if (toxic_bit_map == NULL)
3026 		return (NULL);
3027 
3028 	/*
3029 	 * First check if we're completely outside the bitmap range.
3030 	 */
3031 	if (v >= valloc_base || eaddr < kernelbase)
3032 		return (NULL);
3033 
3034 	/*
3035 	 * Trim ends of search to look at only what the bitmap covers.
3036 	 */
3037 	if (v < kernelbase)
3038 		v = kernelbase;
3039 	start = btop(v - kernelbase);
3040 	end = btop(eaddr - kernelbase);
3041 	if (end >= toxic_bit_map_len)
3042 		end = toxic_bit_map_len;
3043 
3044 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3045 		return (NULL);
3046 
3047 	v = kernelbase + ptob(start);
3048 	if (len != NULL)
3049 		*len = ptob(end - start);
3050 	return ((void *)v);
3051 }
3052 
3053 #endif	/* __i386 */
3054