xref: /titanic_44/usr/src/uts/i86pc/os/mp_startup.c (revision bbc88f3a6c6d8e21cb05884590e32f7fb7b52e05)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/thread.h>
31 #include <sys/cpuvar.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/proc.h>
35 #include <sys/disp.h>
36 #include <sys/mmu.h>
37 #include <sys/class.h>
38 #include <sys/cmn_err.h>
39 #include <sys/debug.h>
40 #include <sys/asm_linkage.h>
41 #include <sys/x_call.h>
42 #include <sys/systm.h>
43 #include <sys/var.h>
44 #include <sys/vtrace.h>
45 #include <vm/hat.h>
46 #include <sys/mmu.h>
47 #include <vm/as.h>
48 #include <vm/seg_kmem.h>
49 #include <sys/segments.h>
50 #include <sys/kmem.h>
51 #include <sys/stack.h>
52 #include <sys/smp_impldefs.h>
53 #include <sys/x86_archext.h>
54 #include <sys/machsystm.h>
55 #include <sys/traptrace.h>
56 #include <sys/clock.h>
57 #include <sys/cpc_impl.h>
58 #include <sys/chip.h>
59 #include <sys/dtrace.h>
60 #include <sys/archsystm.h>
61 #include <sys/fp.h>
62 #include <sys/reboot.h>
63 #include <sys/kdi.h>
64 #include <vm/hat_i86.h>
65 #include <sys/memnode.h>
66 
67 struct cpu	cpus[1];			/* CPU data */
68 struct cpu	*cpu[NCPU] = {&cpus[0]};	/* pointers to all CPUs */
69 cpu_core_t	cpu_core[NCPU];			/* cpu_core structures */
70 
71 /*
72  * Useful for disabling MP bring-up for an MP capable kernel
73  * (a kernel that was built with MP defined)
74  */
75 int use_mp = 1;
76 
77 int mp_cpus = 0x1;	/* to be set by platform specific module	*/
78 
79 /*
80  * This variable is used by the hat layer to decide whether or not
81  * critical sections are needed to prevent race conditions.  For sun4m,
82  * this variable is set once enough MP initialization has been done in
83  * order to allow cross calls.
84  */
85 int flushes_require_xcalls = 0;
86 ulong_t	cpu_ready_set = 1;
87 
88 extern	void	real_mode_start(void);
89 extern	void	real_mode_end(void);
90 static 	void	mp_startup(void);
91 
92 static void cpu_sep_enable(void);
93 static void cpu_sep_disable(void);
94 static void cpu_asysc_enable(void);
95 static void cpu_asysc_disable(void);
96 
97 extern int tsc_gethrtime_enable;
98 
99 /*
100  * Init CPU info - get CPU type info for processor_info system call.
101  */
102 void
103 init_cpu_info(struct cpu *cp)
104 {
105 	processor_info_t *pi = &cp->cpu_type_info;
106 	char buf[CPU_IDSTRLEN];
107 
108 	/*
109 	 * Get clock-frequency property for the CPU.
110 	 */
111 	pi->pi_clock = cpu_freq;
112 
113 	(void) strcpy(pi->pi_processor_type, "i386");
114 	if (fpu_exists)
115 		(void) strcpy(pi->pi_fputypes, "i387 compatible");
116 
117 	(void) cpuid_getidstr(cp, buf, sizeof (buf));
118 
119 	cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
120 	(void) strcpy(cp->cpu_idstr, buf);
121 
122 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
123 
124 	(void) cpuid_getbrandstr(cp, buf, sizeof (buf));
125 	cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
126 	(void) strcpy(cp->cpu_brandstr, buf);
127 
128 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
129 }
130 
131 /*
132  * Configure syscall support on this CPU.
133  */
134 /*ARGSUSED*/
135 static void
136 init_cpu_syscall(struct cpu *cp)
137 {
138 	uint64_t value;
139 
140 	kpreempt_disable();
141 
142 #if defined(__amd64)
143 	if (x86_feature & X86_ASYSC) {
144 
145 #if !defined(__lint)
146 		/*
147 		 * The syscall instruction imposes a certain ordering on
148 		 * segment selectors, so we double-check that ordering
149 		 * here.
150 		 */
151 		ASSERT(KDS_SEL == KCS_SEL + 8);
152 		ASSERT(UDS_SEL == U32CS_SEL + 8);
153 		ASSERT(UCS_SEL == U32CS_SEL + 16);
154 #endif
155 		/*
156 		 * Turn syscall/sysret extensions on.
157 		 */
158 		cpu_asysc_enable();
159 
160 		/*
161 		 * Program the magic registers ..
162 		 */
163 		value = ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32;
164 		wrmsr(MSR_AMD_STAR, &value);
165 		value = (uintptr_t)sys_syscall;
166 		wrmsr(MSR_AMD_LSTAR, &value);
167 		value = (uintptr_t)sys_syscall32;
168 		wrmsr(MSR_AMD_CSTAR, &value);
169 
170 		/*
171 		 * This list of flags is masked off the incoming
172 		 * %rfl when we enter the kernel.
173 		 */
174 		value = PS_IE | PS_T;
175 		wrmsr(MSR_AMD_SFMASK, &value);
176 	}
177 #endif
178 
179 	/*
180 	 * On 32-bit kernels, we use sysenter/sysexit because it's too
181 	 * hard to use syscall/sysret, and it is more portable anyway.
182 	 *
183 	 * On 64-bit kernels on Nocona machines, the 32-bit syscall
184 	 * variant isn't available to 32-bit applications, but sysenter is.
185 	 */
186 	if (x86_feature & X86_SEP) {
187 
188 #if !defined(__lint)
189 		/*
190 		 * The sysenter instruction imposes a certain ordering on
191 		 * segment selectors, so we double-check that ordering
192 		 * here. See "sysenter" in Intel document 245471-012, "IA-32
193 		 * Intel Architecture Software Developer's Manual Volume 2:
194 		 * Instruction Set Reference"
195 		 */
196 		ASSERT(KDS_SEL == KCS_SEL + 8);
197 
198 		ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
199 		ASSERT32(UDS_SEL == UCS_SEL + 8);
200 
201 		ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
202 		ASSERT64(UDS_SEL == U32CS_SEL + 8);
203 #endif
204 
205 		cpu_sep_enable();
206 
207 		/*
208 		 * resume() sets this value to the base of the threads stack
209 		 * via a context handler.
210 		 */
211 		value = 0;
212 		wrmsr(MSR_INTC_SEP_ESP, &value);
213 
214 		value = (uintptr_t)sys_sysenter;
215 		wrmsr(MSR_INTC_SEP_EIP, &value);
216 	}
217 
218 	kpreempt_enable();
219 }
220 
221 /*
222  * Multiprocessor initialization.
223  *
224  * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
225  * startup and idle threads for the specified CPU.
226  */
227 static void
228 mp_startup_init(int cpun)
229 {
230 #if defined(__amd64)
231 extern void *long_mode_64(void);
232 #endif	/* __amd64 */
233 
234 	struct cpu *cp;
235 	struct tss *ntss;
236 	kthread_id_t tp;
237 	caddr_t	sp;
238 	int size;
239 	proc_t *procp;
240 	extern void idle();
241 	extern void init_intr_threads(struct cpu *);
242 
243 	struct cpu_tables *tablesp;
244 	rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
245 
246 #ifdef TRAPTRACE
247 	trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
248 #endif
249 
250 	ASSERT(cpun < NCPU && cpu[cpun] == NULL);
251 
252 	if ((cp = kmem_zalloc(sizeof (*cp), KM_NOSLEEP)) == NULL) {
253 		panic("mp_startup_init: cpu%d: "
254 		    "no memory for cpu structure", cpun);
255 		/*NOTREACHED*/
256 	}
257 	procp = curthread->t_procp;
258 
259 	mutex_enter(&cpu_lock);
260 	/*
261 	 * Initialize the dispatcher first.
262 	 */
263 	disp_cpu_init(cp);
264 	mutex_exit(&cpu_lock);
265 
266 	/*
267 	 * Allocate and initialize the startup thread for this CPU.
268 	 * Interrupt and process switch stacks get allocated later
269 	 * when the CPU starts running.
270 	 */
271 	tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
272 	    TS_STOPPED, maxclsyspri);
273 
274 	/*
275 	 * Set state to TS_ONPROC since this thread will start running
276 	 * as soon as the CPU comes online.
277 	 *
278 	 * All the other fields of the thread structure are setup by
279 	 * thread_create().
280 	 */
281 	THREAD_ONPROC(tp, cp);
282 	tp->t_preempt = 1;
283 	tp->t_bound_cpu = cp;
284 	tp->t_affinitycnt = 1;
285 	tp->t_cpu = cp;
286 	tp->t_disp_queue = cp->cpu_disp;
287 
288 	/*
289 	 * Setup thread to start in mp_startup.
290 	 */
291 	sp = tp->t_stk;
292 	tp->t_pc = (uintptr_t)mp_startup;
293 	tp->t_sp = (uintptr_t)(sp - MINFRAME);
294 
295 	cp->cpu_id = cpun;
296 	cp->cpu_self = cp;
297 	cp->cpu_mask = 1 << cpun;
298 	cp->cpu_thread = tp;
299 	cp->cpu_lwp = NULL;
300 	cp->cpu_dispthread = tp;
301 	cp->cpu_dispatch_pri = DISP_PRIO(tp);
302 
303 	/*
304 	 * Now, initialize per-CPU idle thread for this CPU.
305 	 */
306 	tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
307 
308 	cp->cpu_idle_thread = tp;
309 
310 	tp->t_preempt = 1;
311 	tp->t_bound_cpu = cp;
312 	tp->t_affinitycnt = 1;
313 	tp->t_cpu = cp;
314 	tp->t_disp_queue = cp->cpu_disp;
315 
316 	/*
317 	 * Bootstrap the CPU for CMT aware scheduling
318 	 * The rest of the initialization will happen from
319 	 * mp_startup()
320 	 */
321 	chip_bootstrap_cpu(cp);
322 
323 	/*
324 	 * Perform CPC intialization on the new CPU.
325 	 */
326 	kcpc_hw_init(cp);
327 
328 	/*
329 	 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
330 	 * for each CPU.
331 	 */
332 
333 	setup_vaddr_for_ppcopy(cp);
334 
335 	/*
336 	 * Allocate space for page directory, stack, tss, gdt and idt.
337 	 * This assumes that kmem_alloc will return memory which is aligned
338 	 * to the next higher power of 2 or a page(if size > MAXABIG)
339 	 * If this assumption goes wrong at any time due to change in
340 	 * kmem alloc, things may not work as the page directory has to be
341 	 * page aligned
342 	 */
343 	if ((tablesp = kmem_zalloc(sizeof (*tablesp), KM_NOSLEEP)) == NULL)
344 		panic("mp_startup_init: cpu%d cannot allocate tables", cpun);
345 
346 	if ((uintptr_t)tablesp & ~MMU_STD_PAGEMASK) {
347 		kmem_free(tablesp, sizeof (struct cpu_tables));
348 		size = sizeof (struct cpu_tables) + MMU_STD_PAGESIZE;
349 		tablesp = kmem_zalloc(size, KM_NOSLEEP);
350 		tablesp = (struct cpu_tables *)
351 		    (((uintptr_t)tablesp + MMU_STD_PAGESIZE) &
352 		    MMU_STD_PAGEMASK);
353 	}
354 
355 	ntss = cp->cpu_tss = &tablesp->ct_tss;
356 	cp->cpu_gdt = tablesp->ct_gdt;
357 	bcopy(CPU->cpu_gdt, cp->cpu_gdt, NGDT * (sizeof (user_desc_t)));
358 
359 #if defined(__amd64)
360 
361 	/*
362 	 * #DF (double fault).
363 	 */
364 	ntss->tss_ist1 =
365 	    (uint64_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)];
366 
367 #elif defined(__i386)
368 
369 	ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp =
370 	    (uint32_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)];
371 
372 	ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL;
373 
374 	ntss->tss_eip = (uint32_t)mp_startup;
375 
376 	ntss->tss_cs = KCS_SEL;
377 	ntss->tss_fs = KFS_SEL;
378 	ntss->tss_gs = KGS_SEL;
379 
380 	/*
381 	 * setup kernel %gs.
382 	 */
383 	set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
384 	    SEL_KPL, 0, 1);
385 
386 #endif	/* __i386 */
387 
388 	/*
389 	 * Set I/O bit map offset equal to size of TSS segment limit
390 	 * for no I/O permission map. This will cause all user I/O
391 	 * instructions to generate #gp fault.
392 	 */
393 	ntss->tss_bitmapbase = sizeof (*ntss);
394 
395 	/*
396 	 * setup kernel tss.
397 	 */
398 	set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss,
399 	    sizeof (*cp->cpu_tss) -1, SDT_SYSTSS, SEL_KPL);
400 
401 	/*
402 	 * If we have more than one node, each cpu gets a copy of IDT
403 	 * local to its node. If this is a Pentium box, we use cpu 0's
404 	 * IDT. cpu 0's IDT has been made read-only to workaround the
405 	 * cmpxchgl register bug
406 	 */
407 	cp->cpu_idt = CPU->cpu_idt;
408 	if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
409 		cp->cpu_idt = kmem_alloc(sizeof (idt0), KM_SLEEP);
410 		bcopy(idt0, cp->cpu_idt, sizeof (idt0));
411 	}
412 
413 	/*
414 	 * Get interrupt priority data from cpu 0
415 	 */
416 	cp->cpu_pri_data = CPU->cpu_pri_data;
417 
418 	hat_cpu_online(cp);
419 
420 	/* Should remove all entries for the current process/thread here */
421 
422 	/*
423 	 * Fill up the real mode platter to make it easy for real mode code to
424 	 * kick it off. This area should really be one passed by boot to kernel
425 	 * and guaranteed to be below 1MB and aligned to 16 bytes. Should also
426 	 * have identical physical and virtual address in paged mode.
427 	 */
428 	real_mode_platter->rm_idt_base = cp->cpu_idt;
429 	real_mode_platter->rm_idt_lim = sizeof (idt0) - 1;
430 	real_mode_platter->rm_gdt_base = cp->cpu_gdt;
431 	real_mode_platter->rm_gdt_lim = sizeof (gdt0) -1;
432 	real_mode_platter->rm_pdbr = getcr3();
433 	real_mode_platter->rm_cpu = cpun;
434 	real_mode_platter->rm_x86feature = x86_feature;
435 	real_mode_platter->rm_cr4 = cr4_value;
436 
437 #if defined(__amd64)
438 	if (getcr3() > 0xffffffffUL)
439 		panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
440 			"located above 4G in physical memory (@ 0x%llx).",
441 			(unsigned long long)getcr3());
442 
443 	/*
444 	 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
445 	 * by code in real_mode_start():
446 	 *
447 	 * GDT[0]:  NULL selector
448 	 * GDT[1]:  64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
449 	 *
450 	 * Clear the IDT as interrupts will be off and a limit of 0 will cause
451 	 * the CPU to triple fault and reset on an NMI, seemingly as reasonable
452 	 * a course of action as any other, though it may cause the entire
453 	 * platform to reset in some cases...
454 	 */
455 	real_mode_platter->rm_temp_gdt[0] = 0ULL;
456 	real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
457 
458 	real_mode_platter->rm_temp_gdt_lim = (ushort_t)
459 	    (sizeof (real_mode_platter->rm_temp_gdt) - 1);
460 	real_mode_platter->rm_temp_gdt_base = rm_platter_pa +
461 	    (uint32_t)(&((rm_platter_t *)0)->rm_temp_gdt);
462 
463 	real_mode_platter->rm_temp_idt_lim = 0;
464 	real_mode_platter->rm_temp_idt_base = 0;
465 
466 	/*
467 	 * Since the CPU needs to jump to protected mode using an identity
468 	 * mapped address, we need to calculate it here.
469 	 */
470 	real_mode_platter->rm_longmode64_addr = rm_platter_pa +
471 	    ((uint32_t)long_mode_64 - (uint32_t)real_mode_start);
472 #endif	/* __amd64 */
473 
474 #ifdef TRAPTRACE
475 	/*
476 	 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers for this
477 	 * CPU.
478 	 */
479 	ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
480 	ttc->ttc_next = ttc->ttc_first;
481 	ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
482 #endif
483 
484 	/*
485 	 * Record that we have another CPU.
486 	 */
487 	mutex_enter(&cpu_lock);
488 	/*
489 	 * Initialize the interrupt threads for this CPU
490 	 */
491 	init_intr_threads(cp);
492 	/*
493 	 * Add CPU to list of available CPUs.  It'll be on the active list
494 	 * after mp_startup().
495 	 */
496 	cpu_add_unit(cp);
497 	mutex_exit(&cpu_lock);
498 }
499 
500 /*
501  * Apply workarounds for known errata, and warn about those that are absent.
502  *
503  * System vendors occasionally create configurations which contain different
504  * revisions of the CPUs that are almost but not exactly the same.  At the
505  * time of writing, this meant that their clock rates were the same, their
506  * feature sets were the same, but the required workaround were -not-
507  * necessarily the same.  So, this routine is invoked on -every- CPU soon
508  * after starting to make sure that the resulting system contains the most
509  * pessimal set of workarounds needed to cope with *any* of the CPUs in the
510  * system.
511  *
512  * These workarounds are based on Rev 3.50 of the Revision Guide for
513  * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, May 2005.
514  */
515 
516 #if defined(OPTERON_ERRATUM_91)
517 int opteron_erratum_91;		/* if non-zero -> at least one cpu has it */
518 #endif
519 
520 #if defined(OPTERON_ERRATUM_93)
521 int opteron_erratum_93;		/* if non-zero -> at least one cpu has it */
522 #endif
523 
524 #if defined(OPTERON_ERRATUM_100)
525 int opteron_erratum_100;	/* if non-zero -> at least one cpu has it */
526 #endif
527 
528 #if defined(OPTERON_ERRATUM_109)
529 int opteron_erratum_109;	/* if non-zero -> at least one cpu has it */
530 #endif
531 
532 #if defined(OPTERON_ERRATUM_121)
533 int opteron_erratum_121;	/* if non-zero -> at least one cpu has it */
534 #endif
535 
536 #if defined(OPTERON_ERRATUM_122)
537 int opteron_erratum_122;	/* if non-zero -> at least one cpu has it */
538 #endif
539 
540 #if defined(OPTERON_ERRATUM_123)
541 int opteron_erratum_123;	/* if non-zero -> at least one cpu has it */
542 #endif
543 
544 
545 #define	WARNING(cpu, n)						\
546 	cmn_err(CE_WARN, "cpu%d: no workaround for erratum %d",	\
547 	    (cpu)->cpu_id, (n))
548 
549 uint_t
550 workaround_errata(struct cpu *cpu)
551 {
552 	uint_t missing = 0;
553 
554 	ASSERT(cpu == CPU);
555 
556 	/*LINTED*/
557 	if (cpuid_opteron_erratum(cpu, 88) > 0) {
558 		/*
559 		 * SWAPGS May Fail To Read Correct GS Base
560 		 */
561 #if defined(OPTERON_ERRATUM_88)
562 		/*
563 		 * The workaround is an mfence in the relevant assembler code
564 		 */
565 #else
566 		WARNING(cpu, 88);
567 		missing++;
568 #endif
569 	}
570 
571 	if (cpuid_opteron_erratum(cpu, 91) > 0) {
572 		/*
573 		 * Software Prefetches May Report A Page Fault
574 		 */
575 #if defined(OPTERON_ERRATUM_91)
576 		/*
577 		 * fix is in trap.c
578 		 */
579 		opteron_erratum_91++;
580 #else
581 		WARNING(cpu, 91);
582 		missing++;
583 #endif
584 	}
585 
586 	if (cpuid_opteron_erratum(cpu, 93) > 0) {
587 		/*
588 		 * RSM Auto-Halt Restart Returns to Incorrect RIP
589 		 */
590 #if defined(OPTERON_ERRATUM_93)
591 		/*
592 		 * fix is in trap.c
593 		 */
594 		opteron_erratum_93++;
595 #else
596 		WARNING(cpu, 93);
597 		missing++;
598 #endif
599 	}
600 
601 	/*LINTED*/
602 	if (cpuid_opteron_erratum(cpu, 95) > 0) {
603 		/*
604 		 * RET Instruction May Return to Incorrect EIP
605 		 */
606 #if defined(OPTERON_ERRATUM_95)
607 #if defined(_LP64)
608 		/*
609 		 * Workaround this by ensuring that 32-bit user code and
610 		 * 64-bit kernel code never occupy the same address
611 		 * range mod 4G.
612 		 */
613 		if (_userlimit32 > 0xc0000000ul)
614 			*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
615 
616 		/*LINTED*/
617 		ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
618 #endif	/* _LP64 */
619 #else
620 		WARNING(cpu, 95);
621 		missing++;
622 #endif	/* OPTERON_ERRATUM_95 */
623 	}
624 
625 	if (cpuid_opteron_erratum(cpu, 100) > 0) {
626 		/*
627 		 * Compatibility Mode Branches Transfer to Illegal Address
628 		 */
629 #if defined(OPTERON_ERRATUM_100)
630 		/*
631 		 * fix is in trap.c
632 		 */
633 		opteron_erratum_100++;
634 #else
635 		WARNING(cpu, 100);
636 		missing++;
637 #endif
638 	}
639 
640 	/*LINTED*/
641 	if (cpuid_opteron_erratum(cpu, 108) > 0) {
642 		/*
643 		 * CPUID Instruction May Return Incorrect Model Number In
644 		 * Some Processors
645 		 */
646 #if defined(OPTERON_ERRATUM_108)
647 		/*
648 		 * (Our cpuid-handling code corrects the model number on
649 		 * those processors)
650 		 */
651 #else
652 		WARNING(cpu, 108);
653 		missing++;
654 #endif
655 	}
656 
657 	/*LINTED*/
658 	if (cpuid_opteron_erratum(cpu, 109) > 0) {
659 		/*
660 		 * Certain Reverse REP MOVS May Produce Unpredictable Behaviour
661 		 */
662 #if defined(OPTERON_ERRATUM_109)
663 		uint64_t	patchlevel;
664 
665 		(void) rdmsr(MSR_AMD_PATCHLEVEL, &patchlevel);
666 		/* workaround is to print a warning to upgrade BIOS */
667 		if (patchlevel == 0)
668 			opteron_erratum_109++;
669 #else
670 		WARNING(cpu, 109);
671 		missing++;
672 #endif
673 	}
674 	/*LINTED*/
675 	if (cpuid_opteron_erratum(cpu, 121) > 0) {
676 		/*
677 		 * Sequential Execution Across Non_Canonical Boundary Caused
678 		 * Processor Hang
679 		 */
680 #if defined(OPTERON_ERRATUM_121)
681 		static int	lma;
682 
683 		if (opteron_erratum_121)
684 			opteron_erratum_121++;
685 
686 		/*
687 		 * Erratum 121 is only present in long (64 bit) mode.
688 		 * Workaround is to include the page immediately before the
689 		 * va hole to eliminate the possibility of system hangs due to
690 		 * sequential execution across the va hole boundary.
691 		 */
692 		if (lma == 0) {
693 			uint64_t	efer;
694 
695 			/*
696 			 * check LMA once: assume all cpus are in long mode
697 			 * or not.
698 			 */
699 			lma = 1;
700 
701 			(void) rdmsr(MSR_AMD_EFER, &efer);
702 			if (efer & AMD_EFER_LMA) {
703 				if (hole_start) {
704 					hole_start -= PAGESIZE;
705 				} else {
706 					/*
707 					 * hole_start not yet initialized by
708 					 * mmu_init. Initialize hole_start
709 					 * with value to be subtracted.
710 					 */
711 					hole_start = PAGESIZE;
712 				}
713 				opteron_erratum_121++;
714 			}
715 		}
716 #else
717 		WARNING(cpu, 121);
718 		missing++;
719 #endif
720 	}
721 
722 	/*LINTED*/
723 	if (cpuid_opteron_erratum(cpu, 122) > 0) {
724 		/*
725 		 * TLB Flush Filter May Cause Cohenrency Problem in
726 		 * Multiprocessor Systems
727 		 */
728 #if defined(OPTERON_ERRATUM_122)
729 		/*
730 		 * Erratum 122 is only present in MP configurations (multi-core
731 		 * or multi-processor).
732 		 */
733 
734 		if (opteron_erratum_122 || lgrp_plat_node_cnt > 1 ||
735 		    cpuid_get_ncpu_per_chip(cpu) > 1) {
736 			uint64_t	hwcrval;
737 
738 			/* disable TLB Flush Filter */
739 			(void) rdmsr(MSR_AMD_HWCR, &hwcrval);
740 			hwcrval |= AMD_HWCR_FFDIS;
741 			wrmsr(MSR_AMD_HWCR, &hwcrval);
742 			opteron_erratum_122++;
743 		}
744 
745 #else
746 		WARNING(cpu, 122);
747 		missing++;
748 #endif
749 	}
750 
751 #if defined(OPTERON_ERRATUM_123)
752 	/*LINTED*/
753 	if (cpuid_opteron_erratum(cpu, 123) > 0) {
754 		/*
755 		 * Bypassed Reads May Cause Data Corruption of System Hang in
756 		 * Dual Core Processors
757 		 */
758 		/*
759 		 * Erratum 123 applies only to multi-core cpus.
760 		 */
761 
762 		if (cpuid_get_ncpu_per_chip(cpu) > 1) {
763 			uint64_t	patchlevel;
764 
765 			(void) rdmsr(MSR_AMD_PATCHLEVEL, &patchlevel);
766 			/* workaround is to print a warning to upgrade BIOS */
767 			if (patchlevel == 0)
768 				opteron_erratum_123++;
769 		}
770 	}
771 #endif
772 	return (missing);
773 }
774 
775 void
776 workaround_errata_end()
777 {
778 #if defined(OPTERON_ERRATUM_109)
779 	if (opteron_erratum_109) {
780 		cmn_err(CE_WARN, "!BIOS microcode patch for AMD Processor"
781 		    " Erratum 109 was not detected. Updating BIOS with the"
782 		    " microcode patch is highly recommended.");
783 	}
784 #endif
785 #if defined(OPTERON_ERRATUM_123)
786 	if (opteron_erratum_123) {
787 		cmn_err(CE_WARN, "!BIOS microcode patch for AMD Processor"
788 		    " Erratum 123 was not detected. Updating BIOS with the"
789 		    " microcode patch is highly recommended.");
790 	}
791 #endif
792 }
793 
794 static ushort_t *mp_map_warm_reset_vector();
795 static void mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector);
796 
797 /*ARGSUSED*/
798 void
799 start_other_cpus(int cprboot)
800 {
801 	unsigned who;
802 	int cpuid = getbootcpuid();
803 	int delays = 0;
804 	int started_cpu;
805 	ushort_t *warm_reset_vector = NULL;
806 	extern int procset;
807 
808 	/*
809 	 * Initialize our own cpu_info.
810 	 */
811 	init_cpu_info(CPU);
812 
813 	/*
814 	 * Initialize our syscall handlers
815 	 */
816 	init_cpu_syscall(CPU);
817 
818 	/*
819 	 * if only 1 cpu or not using MP, skip the rest of this
820 	 */
821 	if (!(mp_cpus & ~(1 << cpuid)) || use_mp == 0) {
822 		if (use_mp == 0)
823 			cmn_err(CE_CONT, "?***** Not in MP mode\n");
824 		goto done;
825 	}
826 
827 	/*
828 	 * perform such initialization as is needed
829 	 * to be able to take CPUs on- and off-line.
830 	 */
831 	cpu_pause_init();
832 
833 	xc_init();		/* initialize processor crosscalls */
834 
835 	/*
836 	 * Copy the real mode code at "real_mode_start" to the
837 	 * page at rm_platter_va.
838 	 */
839 	warm_reset_vector = mp_map_warm_reset_vector();
840 	if (warm_reset_vector == NULL)
841 		goto done;
842 
843 	bcopy((caddr_t)real_mode_start,
844 	    (caddr_t)((rm_platter_t *)rm_platter_va)->rm_code,
845 	    (size_t)real_mode_end - (size_t)real_mode_start);
846 
847 	flushes_require_xcalls = 1;
848 
849 	affinity_set(CPU_CURRENT);
850 
851 	for (who = 0; who < NCPU; who++) {
852 		if (who == cpuid)
853 			continue;
854 
855 		if ((mp_cpus & (1 << who)) == 0)
856 			continue;
857 
858 		mp_startup_init(who);
859 		started_cpu = 1;
860 		(*cpu_startf)(who, rm_platter_pa);
861 
862 		while ((procset & (1 << who)) == 0) {
863 
864 			delay(1);
865 			if (++delays > (20 * hz)) {
866 
867 				cmn_err(CE_WARN,
868 				    "cpu%d failed to start", who);
869 
870 				mutex_enter(&cpu_lock);
871 				cpu[who]->cpu_flags = 0;
872 				cpu_del_unit(who);
873 				mutex_exit(&cpu_lock);
874 
875 				started_cpu = 0;
876 				break;
877 			}
878 		}
879 		if (!started_cpu)
880 			continue;
881 		if (tsc_gethrtime_enable)
882 			tsc_sync_master(who);
883 
884 
885 		if (dtrace_cpu_init != NULL) {
886 			/*
887 			 * DTrace CPU initialization expects cpu_lock
888 			 * to be held.
889 			 */
890 			mutex_enter(&cpu_lock);
891 			(*dtrace_cpu_init)(who);
892 			mutex_exit(&cpu_lock);
893 		}
894 	}
895 
896 	affinity_clear();
897 
898 	for (who = 0; who < NCPU; who++) {
899 		if (who == cpuid)
900 			continue;
901 
902 		if (!(procset & (1 << who)))
903 			continue;
904 
905 		while (!(cpu_ready_set & (1 << who)))
906 			delay(1);
907 	}
908 
909 done:
910 	workaround_errata_end();
911 
912 	if (warm_reset_vector != NULL)
913 		mp_unmap_warm_reset_vector(warm_reset_vector);
914 	hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
915 	    HAT_UNLOAD);
916 }
917 
918 /*
919  * Dummy functions - no i86pc platforms support dynamic cpu allocation.
920  */
921 /*ARGSUSED*/
922 int
923 mp_cpu_configure(int cpuid)
924 {
925 	return (ENOTSUP);		/* not supported */
926 }
927 
928 /*ARGSUSED*/
929 int
930 mp_cpu_unconfigure(int cpuid)
931 {
932 	return (ENOTSUP);		/* not supported */
933 }
934 
935 /*
936  * Startup function for 'other' CPUs (besides boot cpu).
937  * Resumed from cpu_startup.
938  */
939 void
940 mp_startup(void)
941 {
942 	struct cpu *cp = CPU;
943 	extern int procset;
944 	uint_t new_x86_feature;
945 
946 	new_x86_feature = cpuid_pass1(cp);
947 
948 	/*
949 	 * We need to Sync MTRR with cpu0's MTRR. We have to do
950 	 * this with interrupts disabled.
951 	 */
952 	if (x86_feature & X86_MTRR)
953 		mtrr_sync();
954 	/*
955 	 * Enable machine check architecture
956 	 */
957 	if (x86_feature & X86_MCA)
958 		setup_mca();
959 
960 	/*
961 	 * Initialize this CPU's syscall handlers
962 	 */
963 	init_cpu_syscall(cp);
964 
965 	/*
966 	 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
967 	 * highest level at which a routine is permitted to block on
968 	 * an adaptive mutex (allows for cpu poke interrupt in case
969 	 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
970 	 * device interrupts that may end up in the hat layer issuing cross
971 	 * calls before CPU_READY is set.
972 	 */
973 	(void) splx(ipltospl(LOCK_LEVEL));
974 
975 	/*
976 	 * Do a sanity check to make sure this new CPU is a sane thing
977 	 * to add to the collection of processors running this system.
978 	 *
979 	 * XXX	Clearly this needs to get more sophisticated, if x86
980 	 * systems start to get built out of heterogenous CPUs; as is
981 	 * likely to happen once the number of processors in a configuration
982 	 * gets large enough.
983 	 */
984 	if ((x86_feature & new_x86_feature) != x86_feature) {
985 		cmn_err(CE_CONT, "?cpu%d: %b\n",
986 		    cp->cpu_id, new_x86_feature, FMT_X86_FEATURE);
987 		cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
988 	}
989 
990 	/*
991 	 * We could be more sophisticated here, and just mark the CPU
992 	 * as "faulted" but at this point we'll opt for the easier
993 	 * answer of dieing horribly.  Provided the boot cpu is ok,
994 	 * the system can be recovered by booting with use_mp set to zero.
995 	 */
996 	if (workaround_errata(cp) != 0)
997 		panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
998 
999 	cpuid_pass2(cp);
1000 	cpuid_pass3(cp);
1001 	(void) cpuid_pass4(cp);
1002 
1003 	init_cpu_info(cp);
1004 
1005 	add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi);
1006 
1007 	mutex_enter(&cpu_lock);
1008 	procset |= 1 << cp->cpu_id;
1009 	mutex_exit(&cpu_lock);
1010 
1011 	if (tsc_gethrtime_enable)
1012 		tsc_sync_slave();
1013 
1014 	mutex_enter(&cpu_lock);
1015 	/*
1016 	 * It's unfortunate that chip_cpu_init() has to be called here.
1017 	 * It really belongs in cpu_add_unit(), but unfortunately it is
1018 	 * dependent on the cpuid probing, which must be done in the
1019 	 * context of the current CPU. Care must be taken on x86 to ensure
1020 	 * that mp_startup can safely block even though chip_cpu_init() and
1021 	 * cpu_add_active() have not yet been called.
1022 	 */
1023 	chip_cpu_init(cp);
1024 	chip_cpu_startup(cp);
1025 
1026 	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_ENABLE | CPU_EXISTS;
1027 	cpu_add_active(cp);
1028 	mutex_exit(&cpu_lock);
1029 
1030 	(void) spl0();				/* enable interrupts */
1031 
1032 	if (boothowto & RB_DEBUG)
1033 		kdi_dvec_cpu_init(cp);
1034 
1035 	/*
1036 	 * Setting the bit in cpu_ready_set must be the last operation in
1037 	 * processor initialization; the boot CPU will continue to boot once
1038 	 * it sees this bit set for all active CPUs.
1039 	 */
1040 	CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1041 
1042 	/*
1043 	 * Because mp_startup() gets fired off after init() starts, we
1044 	 * can't use the '?' trick to do 'boot -v' printing - so we
1045 	 * always direct the 'cpu .. online' messages to the log.
1046 	 */
1047 	cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
1048 	    cp->cpu_id);
1049 
1050 	/*
1051 	 * Now we are done with the startup thread, so free it up.
1052 	 */
1053 	thread_exit();
1054 	panic("mp_startup: cannot return");
1055 	/*NOTREACHED*/
1056 }
1057 
1058 
1059 /*
1060  * Start CPU on user request.
1061  */
1062 /* ARGSUSED */
1063 int
1064 mp_cpu_start(struct cpu *cp)
1065 {
1066 	ASSERT(MUTEX_HELD(&cpu_lock));
1067 	if (cp->cpu_id == getbootcpuid())
1068 		return (EBUSY); 	/* Cannot start boot CPU */
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Stop CPU on user request.
1074  */
1075 /* ARGSUSED */
1076 int
1077 mp_cpu_stop(struct cpu *cp)
1078 {
1079 	ASSERT(MUTEX_HELD(&cpu_lock));
1080 	if (cp->cpu_id == getbootcpuid())
1081 		return (EBUSY); 	/* Cannot stop boot CPU */
1082 
1083 	return (0);
1084 }
1085 
1086 /*
1087  * Power on CPU.
1088  */
1089 /* ARGSUSED */
1090 int
1091 mp_cpu_poweron(struct cpu *cp)
1092 {
1093 	ASSERT(MUTEX_HELD(&cpu_lock));
1094 	return (ENOTSUP);		/* not supported */
1095 }
1096 
1097 /*
1098  * Power off CPU.
1099  */
1100 /* ARGSUSED */
1101 int
1102 mp_cpu_poweroff(struct cpu *cp)
1103 {
1104 	ASSERT(MUTEX_HELD(&cpu_lock));
1105 	return (ENOTSUP);		/* not supported */
1106 }
1107 
1108 
1109 /*
1110  * Take the specified CPU out of participation in interrupts.
1111  */
1112 int
1113 cpu_disable_intr(struct cpu *cp)
1114 {
1115 	/*
1116 	 * cannot disable interrupts on boot cpu
1117 	 */
1118 	if (cp == cpu[getbootcpuid()])
1119 		return (EBUSY);
1120 
1121 	if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1122 		return (EBUSY);
1123 
1124 	cp->cpu_flags &= ~CPU_ENABLE;
1125 	return (0);
1126 }
1127 
1128 /*
1129  * Allow the specified CPU to participate in interrupts.
1130  */
1131 void
1132 cpu_enable_intr(struct cpu *cp)
1133 {
1134 	ASSERT(MUTEX_HELD(&cpu_lock));
1135 	if (cp == cpu[getbootcpuid()])
1136 		return;
1137 
1138 	cp->cpu_flags |= CPU_ENABLE;
1139 	psm_enable_intr(cp->cpu_id);
1140 }
1141 
1142 
1143 /*
1144  * return the cpu id of the initial startup cpu
1145  */
1146 processorid_t
1147 getbootcpuid(void)
1148 {
1149 	return (0);
1150 }
1151 
1152 static ushort_t *
1153 mp_map_warm_reset_vector()
1154 {
1155 	ushort_t *warm_reset_vector;
1156 
1157 	if (!(warm_reset_vector = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
1158 	    sizeof (ushort_t *), PROT_READ|PROT_WRITE)))
1159 		return (NULL);
1160 
1161 	/*
1162 	 * setup secondary cpu bios boot up vector
1163 	 */
1164 	*warm_reset_vector = (ushort_t)((caddr_t)
1165 		((struct rm_platter *)rm_platter_va)->rm_code - rm_platter_va
1166 		+ ((ulong_t)rm_platter_va & 0xf));
1167 	warm_reset_vector++;
1168 	*warm_reset_vector = (ushort_t)(rm_platter_pa >> 4);
1169 
1170 	--warm_reset_vector;
1171 	return (warm_reset_vector);
1172 }
1173 
1174 static void
1175 mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector)
1176 {
1177 	psm_unmap_phys((caddr_t)warm_reset_vector, sizeof (ushort_t *));
1178 }
1179 
1180 /*ARGSUSED*/
1181 void
1182 mp_cpu_faulted_enter(struct cpu *cp)
1183 {}
1184 
1185 /*ARGSUSED*/
1186 void
1187 mp_cpu_faulted_exit(struct cpu *cp)
1188 {}
1189 
1190 /*
1191  * The following two routines are used as context operators on threads belonging
1192  * to processes with a private LDT (see sysi86).  Due to the rarity of such
1193  * processes, these routines are currently written for best code readability and
1194  * organization rather than speed.  We could avoid checking x86_feature at every
1195  * context switch by installing different context ops, depending on the
1196  * x86_feature flags, at LDT creation time -- one for each combination of fast
1197  * syscall feature flags.
1198  */
1199 
1200 /*ARGSUSED*/
1201 void
1202 cpu_fast_syscall_disable(void *arg)
1203 {
1204 	if (x86_feature & X86_SEP)
1205 		cpu_sep_disable();
1206 	if (x86_feature & X86_ASYSC)
1207 		cpu_asysc_disable();
1208 }
1209 
1210 /*ARGSUSED*/
1211 void
1212 cpu_fast_syscall_enable(void *arg)
1213 {
1214 	if (x86_feature & X86_SEP)
1215 		cpu_sep_enable();
1216 	if (x86_feature & X86_ASYSC)
1217 		cpu_asysc_enable();
1218 }
1219 
1220 static void
1221 cpu_sep_enable(void)
1222 {
1223 	uint64_t value;
1224 
1225 	ASSERT(x86_feature & X86_SEP);
1226 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1227 
1228 	value = KCS_SEL;
1229 	wrmsr(MSR_INTC_SEP_CS, &value);
1230 }
1231 
1232 static void
1233 cpu_sep_disable(void)
1234 {
1235 	uint64_t value;
1236 
1237 	ASSERT(x86_feature & X86_SEP);
1238 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1239 
1240 	/*
1241 	 * Setting the SYSENTER_CS_MSR register to 0 causes software executing
1242 	 * the sysenter or sysexit instruction to trigger a #gp fault.
1243 	 */
1244 	value = 0;
1245 	wrmsr(MSR_INTC_SEP_CS, &value);
1246 }
1247 
1248 static void
1249 cpu_asysc_enable(void)
1250 {
1251 	uint64_t value;
1252 
1253 	ASSERT(x86_feature & X86_ASYSC);
1254 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1255 
1256 	(void) rdmsr(MSR_AMD_EFER, &value);
1257 	value |= AMD_EFER_SCE;
1258 	wrmsr(MSR_AMD_EFER, &value);
1259 }
1260 
1261 static void
1262 cpu_asysc_disable(void)
1263 {
1264 	uint64_t value;
1265 
1266 	ASSERT(x86_feature & X86_ASYSC);
1267 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1268 
1269 	/*
1270 	 * Turn off the SCE (syscall enable) bit in the EFER register. Software
1271 	 * executing syscall or sysret with this bit off will incur a #ud trap.
1272 	 */
1273 	(void) rdmsr(MSR_AMD_EFER, &value);
1274 	value &= ~AMD_EFER_SCE;
1275 	wrmsr(MSR_AMD_EFER, &value);
1276 }
1277