xref: /titanic_44/usr/src/uts/i86pc/os/mp_startup.c (revision 77b65ce69d04f1ba0eceb747081964672b718796)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 /*
30  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
31  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
32  */
33 
34 #include <sys/types.h>
35 #include <sys/thread.h>
36 #include <sys/cpuvar.h>
37 #include <sys/cpu.h>
38 #include <sys/t_lock.h>
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/disp.h>
42 #include <sys/class.h>
43 #include <sys/cmn_err.h>
44 #include <sys/debug.h>
45 #include <sys/note.h>
46 #include <sys/asm_linkage.h>
47 #include <sys/x_call.h>
48 #include <sys/systm.h>
49 #include <sys/var.h>
50 #include <sys/vtrace.h>
51 #include <vm/hat.h>
52 #include <vm/as.h>
53 #include <vm/seg_kmem.h>
54 #include <vm/seg_kp.h>
55 #include <sys/segments.h>
56 #include <sys/kmem.h>
57 #include <sys/stack.h>
58 #include <sys/smp_impldefs.h>
59 #include <sys/x86_archext.h>
60 #include <sys/machsystm.h>
61 #include <sys/traptrace.h>
62 #include <sys/clock.h>
63 #include <sys/cpc_impl.h>
64 #include <sys/pg.h>
65 #include <sys/cmt.h>
66 #include <sys/dtrace.h>
67 #include <sys/archsystm.h>
68 #include <sys/fp.h>
69 #include <sys/reboot.h>
70 #include <sys/kdi_machimpl.h>
71 #include <vm/hat_i86.h>
72 #include <vm/vm_dep.h>
73 #include <sys/memnode.h>
74 #include <sys/pci_cfgspace.h>
75 #include <sys/mach_mmu.h>
76 #include <sys/sysmacros.h>
77 #if defined(__xpv)
78 #include <sys/hypervisor.h>
79 #endif
80 #include <sys/cpu_module.h>
81 #include <sys/ontrap.h>
82 
83 struct cpu	cpus[1];			/* CPU data */
84 struct cpu	*cpu[NCPU] = {&cpus[0]};	/* pointers to all CPUs */
85 struct cpu	*cpu_free_list;			/* list for released CPUs */
86 cpu_core_t	cpu_core[NCPU];			/* cpu_core structures */
87 
88 #define	cpu_next_free	cpu_prev
89 
90 /*
91  * Useful for disabling MP bring-up on a MP capable system.
92  */
93 int use_mp = 1;
94 
95 /*
96  * to be set by a PSM to indicate what cpus
97  * are sitting around on the system.
98  */
99 cpuset_t mp_cpus;
100 
101 /*
102  * This variable is used by the hat layer to decide whether or not
103  * critical sections are needed to prevent race conditions.  For sun4m,
104  * this variable is set once enough MP initialization has been done in
105  * order to allow cross calls.
106  */
107 int flushes_require_xcalls;
108 
109 cpuset_t cpu_ready_set;		/* initialized in startup() */
110 
111 static void mp_startup_boot(void);
112 static void mp_startup_hotplug(void);
113 
114 static void cpu_sep_enable(void);
115 static void cpu_sep_disable(void);
116 static void cpu_asysc_enable(void);
117 static void cpu_asysc_disable(void);
118 
119 /*
120  * Init CPU info - get CPU type info for processor_info system call.
121  */
122 void
123 init_cpu_info(struct cpu *cp)
124 {
125 	processor_info_t *pi = &cp->cpu_type_info;
126 
127 	/*
128 	 * Get clock-frequency property for the CPU.
129 	 */
130 	pi->pi_clock = cpu_freq;
131 
132 	/*
133 	 * Current frequency in Hz.
134 	 */
135 	cp->cpu_curr_clock = cpu_freq_hz;
136 
137 	/*
138 	 * Supported frequencies.
139 	 */
140 	if (cp->cpu_supp_freqs == NULL) {
141 		cpu_set_supp_freqs(cp, NULL);
142 	}
143 
144 	(void) strcpy(pi->pi_processor_type, "i386");
145 	if (fpu_exists)
146 		(void) strcpy(pi->pi_fputypes, "i387 compatible");
147 
148 	cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
149 	cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
150 
151 	/*
152 	 * If called for the BSP, cp is equal to current CPU.
153 	 * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info
154 	 * of current CPU as default values for cpu_idstr and cpu_brandstr.
155 	 * They will be corrected in mp_startup_common() after cpuid_pass1()
156 	 * has been invoked on target CPU.
157 	 */
158 	(void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN);
159 	(void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN);
160 }
161 
162 /*
163  * Configure syscall support on this CPU.
164  */
165 /*ARGSUSED*/
166 void
167 init_cpu_syscall(struct cpu *cp)
168 {
169 	kpreempt_disable();
170 
171 #if defined(__amd64)
172 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
173 	    is_x86_feature(x86_featureset, X86FSET_ASYSC)) {
174 
175 #if !defined(__lint)
176 		/*
177 		 * The syscall instruction imposes a certain ordering on
178 		 * segment selectors, so we double-check that ordering
179 		 * here.
180 		 */
181 		ASSERT(KDS_SEL == KCS_SEL + 8);
182 		ASSERT(UDS_SEL == U32CS_SEL + 8);
183 		ASSERT(UCS_SEL == U32CS_SEL + 16);
184 #endif
185 		/*
186 		 * Turn syscall/sysret extensions on.
187 		 */
188 		cpu_asysc_enable();
189 
190 		/*
191 		 * Program the magic registers ..
192 		 */
193 		wrmsr(MSR_AMD_STAR,
194 		    ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32);
195 		wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
196 		wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
197 
198 		/*
199 		 * This list of flags is masked off the incoming
200 		 * %rfl when we enter the kernel.
201 		 */
202 		wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T));
203 	}
204 #endif
205 
206 	/*
207 	 * On 32-bit kernels, we use sysenter/sysexit because it's too
208 	 * hard to use syscall/sysret, and it is more portable anyway.
209 	 *
210 	 * On 64-bit kernels on Nocona machines, the 32-bit syscall
211 	 * variant isn't available to 32-bit applications, but sysenter is.
212 	 */
213 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
214 	    is_x86_feature(x86_featureset, X86FSET_SEP)) {
215 
216 #if !defined(__lint)
217 		/*
218 		 * The sysenter instruction imposes a certain ordering on
219 		 * segment selectors, so we double-check that ordering
220 		 * here. See "sysenter" in Intel document 245471-012, "IA-32
221 		 * Intel Architecture Software Developer's Manual Volume 2:
222 		 * Instruction Set Reference"
223 		 */
224 		ASSERT(KDS_SEL == KCS_SEL + 8);
225 
226 		ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
227 		ASSERT32(UDS_SEL == UCS_SEL + 8);
228 
229 		ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
230 		ASSERT64(UDS_SEL == U32CS_SEL + 8);
231 #endif
232 
233 		cpu_sep_enable();
234 
235 		/*
236 		 * resume() sets this value to the base of the threads stack
237 		 * via a context handler.
238 		 */
239 		wrmsr(MSR_INTC_SEP_ESP, 0);
240 		wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
241 	}
242 
243 	kpreempt_enable();
244 }
245 
246 /*
247  * Multiprocessor initialization.
248  *
249  * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
250  * startup and idle threads for the specified CPU.
251  * Parameter boot is true for boot time operations and is false for CPU
252  * DR operations.
253  */
254 static struct cpu *
255 mp_cpu_configure_common(int cpun, boolean_t boot)
256 {
257 	struct cpu *cp;
258 	kthread_id_t tp;
259 	caddr_t	sp;
260 	proc_t *procp;
261 #if !defined(__xpv)
262 	extern int idle_cpu_prefer_mwait;
263 	extern void cpu_idle_mwait();
264 #endif
265 	extern void idle();
266 	extern void cpu_idle();
267 
268 #ifdef TRAPTRACE
269 	trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
270 #endif
271 
272 	ASSERT(MUTEX_HELD(&cpu_lock));
273 	ASSERT(cpun < NCPU && cpu[cpun] == NULL);
274 
275 	if (cpu_free_list == NULL) {
276 		cp = kmem_zalloc(sizeof (*cp), KM_SLEEP);
277 	} else {
278 		cp = cpu_free_list;
279 		cpu_free_list = cp->cpu_next_free;
280 	}
281 
282 	cp->cpu_m.mcpu_istamp = cpun << 16;
283 
284 	/* Create per CPU specific threads in the process p0. */
285 	procp = &p0;
286 
287 	/*
288 	 * Initialize the dispatcher first.
289 	 */
290 	disp_cpu_init(cp);
291 
292 	cpu_vm_data_init(cp);
293 
294 	/*
295 	 * Allocate and initialize the startup thread for this CPU.
296 	 * Interrupt and process switch stacks get allocated later
297 	 * when the CPU starts running.
298 	 */
299 	tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
300 	    TS_STOPPED, maxclsyspri);
301 
302 	/*
303 	 * Set state to TS_ONPROC since this thread will start running
304 	 * as soon as the CPU comes online.
305 	 *
306 	 * All the other fields of the thread structure are setup by
307 	 * thread_create().
308 	 */
309 	THREAD_ONPROC(tp, cp);
310 	tp->t_preempt = 1;
311 	tp->t_bound_cpu = cp;
312 	tp->t_affinitycnt = 1;
313 	tp->t_cpu = cp;
314 	tp->t_disp_queue = cp->cpu_disp;
315 
316 	/*
317 	 * Setup thread to start in mp_startup_common.
318 	 */
319 	sp = tp->t_stk;
320 	tp->t_sp = (uintptr_t)(sp - MINFRAME);
321 #if defined(__amd64)
322 	tp->t_sp -= STACK_ENTRY_ALIGN;		/* fake a call */
323 #endif
324 	/*
325 	 * Setup thread start entry point for boot or hotplug.
326 	 */
327 	if (boot) {
328 		tp->t_pc = (uintptr_t)mp_startup_boot;
329 	} else {
330 		tp->t_pc = (uintptr_t)mp_startup_hotplug;
331 	}
332 
333 	cp->cpu_id = cpun;
334 	cp->cpu_self = cp;
335 	cp->cpu_thread = tp;
336 	cp->cpu_lwp = NULL;
337 	cp->cpu_dispthread = tp;
338 	cp->cpu_dispatch_pri = DISP_PRIO(tp);
339 
340 	/*
341 	 * cpu_base_spl must be set explicitly here to prevent any blocking
342 	 * operations in mp_startup_common from causing the spl of the cpu
343 	 * to drop to 0 (allowing device interrupts before we're ready) in
344 	 * resume().
345 	 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
346 	 * As an extra bit of security on DEBUG kernels, this is enforced with
347 	 * an assertion in mp_startup_common() -- before cpu_base_spl is set
348 	 * to its proper value.
349 	 */
350 	cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
351 
352 	/*
353 	 * Now, initialize per-CPU idle thread for this CPU.
354 	 */
355 	tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
356 
357 	cp->cpu_idle_thread = tp;
358 
359 	tp->t_preempt = 1;
360 	tp->t_bound_cpu = cp;
361 	tp->t_affinitycnt = 1;
362 	tp->t_cpu = cp;
363 	tp->t_disp_queue = cp->cpu_disp;
364 
365 	/*
366 	 * Bootstrap the CPU's PG data
367 	 */
368 	pg_cpu_bootstrap(cp);
369 
370 	/*
371 	 * Perform CPC initialization on the new CPU.
372 	 */
373 	kcpc_hw_init(cp);
374 
375 	/*
376 	 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
377 	 * for each CPU.
378 	 */
379 	setup_vaddr_for_ppcopy(cp);
380 
381 	/*
382 	 * Allocate page for new GDT and initialize from current GDT.
383 	 */
384 #if !defined(__lint)
385 	ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE);
386 #endif
387 	cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP);
388 	bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT));
389 
390 #if defined(__i386)
391 	/*
392 	 * setup kernel %gs.
393 	 */
394 	set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
395 	    SEL_KPL, 0, 1);
396 #endif
397 
398 	/*
399 	 * If we have more than one node, each cpu gets a copy of IDT
400 	 * local to its node. If this is a Pentium box, we use cpu 0's
401 	 * IDT. cpu 0's IDT has been made read-only to workaround the
402 	 * cmpxchgl register bug
403 	 */
404 	if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
405 #if !defined(__lint)
406 		ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE);
407 #endif
408 		cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP);
409 		bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE);
410 	} else {
411 		cp->cpu_idt = CPU->cpu_idt;
412 	}
413 
414 	/*
415 	 * alloc space for cpuid info
416 	 */
417 	cpuid_alloc_space(cp);
418 #if !defined(__xpv)
419 	if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
420 	    idle_cpu_prefer_mwait) {
421 		cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp);
422 		cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
423 	} else
424 #endif
425 		cp->cpu_m.mcpu_idle_cpu = cpu_idle;
426 
427 	init_cpu_info(cp);
428 
429 	/*
430 	 * alloc space for ucode_info
431 	 */
432 	ucode_alloc_space(cp);
433 	xc_init_cpu(cp);
434 	hat_cpu_online(cp);
435 
436 #ifdef TRAPTRACE
437 	/*
438 	 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers
439 	 */
440 	ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
441 	ttc->ttc_next = ttc->ttc_first;
442 	ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
443 #endif
444 
445 	/*
446 	 * Record that we have another CPU.
447 	 */
448 	/*
449 	 * Initialize the interrupt threads for this CPU
450 	 */
451 	cpu_intr_alloc(cp, NINTR_THREADS);
452 
453 	cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
454 	cpu_set_state(cp);
455 
456 	/*
457 	 * Add CPU to list of available CPUs.  It'll be on the active list
458 	 * after mp_startup_common().
459 	 */
460 	cpu_add_unit(cp);
461 
462 	return (cp);
463 }
464 
465 /*
466  * Undo what was done in mp_cpu_configure_common
467  */
468 static void
469 mp_cpu_unconfigure_common(struct cpu *cp, int error)
470 {
471 	ASSERT(MUTEX_HELD(&cpu_lock));
472 
473 	/*
474 	 * Remove the CPU from the list of available CPUs.
475 	 */
476 	cpu_del_unit(cp->cpu_id);
477 
478 	if (error == ETIMEDOUT) {
479 		/*
480 		 * The cpu was started, but never *seemed* to run any
481 		 * code in the kernel; it's probably off spinning in its
482 		 * own private world, though with potential references to
483 		 * our kmem-allocated IDTs and GDTs (for example).
484 		 *
485 		 * Worse still, it may actually wake up some time later,
486 		 * so rather than guess what it might or might not do, we
487 		 * leave the fundamental data structures intact.
488 		 */
489 		cp->cpu_flags = 0;
490 		return;
491 	}
492 
493 	/*
494 	 * At this point, the only threads bound to this CPU should
495 	 * special per-cpu threads: it's idle thread, it's pause threads,
496 	 * and it's interrupt threads.  Clean these up.
497 	 */
498 	cpu_destroy_bound_threads(cp);
499 	cp->cpu_idle_thread = NULL;
500 
501 	/*
502 	 * Free the interrupt stack.
503 	 */
504 	segkp_release(segkp,
505 	    cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME)));
506 	cp->cpu_intr_stack = NULL;
507 
508 #ifdef TRAPTRACE
509 	/*
510 	 * Discard the trap trace buffer
511 	 */
512 	{
513 		trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id];
514 
515 		kmem_free((void *)ttc->ttc_first, trap_trace_bufsize);
516 		ttc->ttc_first = NULL;
517 	}
518 #endif
519 
520 	hat_cpu_offline(cp);
521 
522 	ucode_free_space(cp);
523 
524 	/* Free CPU ID string and brand string. */
525 	if (cp->cpu_idstr) {
526 		kmem_free(cp->cpu_idstr, CPU_IDSTRLEN);
527 		cp->cpu_idstr = NULL;
528 	}
529 	if (cp->cpu_brandstr) {
530 		kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN);
531 		cp->cpu_brandstr = NULL;
532 	}
533 
534 #if !defined(__xpv)
535 	if (cp->cpu_m.mcpu_mwait != NULL) {
536 		cpuid_mwait_free(cp);
537 		cp->cpu_m.mcpu_mwait = NULL;
538 	}
539 #endif
540 	cpuid_free_space(cp);
541 
542 	if (cp->cpu_idt != CPU->cpu_idt)
543 		kmem_free(cp->cpu_idt, PAGESIZE);
544 	cp->cpu_idt = NULL;
545 
546 	kmem_free(cp->cpu_gdt, PAGESIZE);
547 	cp->cpu_gdt = NULL;
548 
549 	if (cp->cpu_supp_freqs != NULL) {
550 		size_t len = strlen(cp->cpu_supp_freqs) + 1;
551 		kmem_free(cp->cpu_supp_freqs, len);
552 		cp->cpu_supp_freqs = NULL;
553 	}
554 
555 	teardown_vaddr_for_ppcopy(cp);
556 
557 	kcpc_hw_fini(cp);
558 
559 	cp->cpu_dispthread = NULL;
560 	cp->cpu_thread = NULL;	/* discarded by cpu_destroy_bound_threads() */
561 
562 	cpu_vm_data_destroy(cp);
563 
564 	xc_fini_cpu(cp);
565 	disp_cpu_fini(cp);
566 
567 	ASSERT(cp != CPU0);
568 	bzero(cp, sizeof (*cp));
569 	cp->cpu_next_free = cpu_free_list;
570 	cpu_free_list = cp;
571 }
572 
573 /*
574  * Apply workarounds for known errata, and warn about those that are absent.
575  *
576  * System vendors occasionally create configurations which contain different
577  * revisions of the CPUs that are almost but not exactly the same.  At the
578  * time of writing, this meant that their clock rates were the same, their
579  * feature sets were the same, but the required workaround were -not-
580  * necessarily the same.  So, this routine is invoked on -every- CPU soon
581  * after starting to make sure that the resulting system contains the most
582  * pessimal set of workarounds needed to cope with *any* of the CPUs in the
583  * system.
584  *
585  * workaround_errata is invoked early in mlsetup() for CPU 0, and in
586  * mp_startup_common() for all slave CPUs. Slaves process workaround_errata
587  * prior to acknowledging their readiness to the master, so this routine will
588  * never be executed by multiple CPUs in parallel, thus making updates to
589  * global data safe.
590  *
591  * These workarounds are based on Rev 3.57 of the Revision Guide for
592  * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
593  */
594 
595 #if defined(OPTERON_ERRATUM_88)
596 int opteron_erratum_88;		/* if non-zero -> at least one cpu has it */
597 #endif
598 
599 #if defined(OPTERON_ERRATUM_91)
600 int opteron_erratum_91;		/* if non-zero -> at least one cpu has it */
601 #endif
602 
603 #if defined(OPTERON_ERRATUM_93)
604 int opteron_erratum_93;		/* if non-zero -> at least one cpu has it */
605 #endif
606 
607 #if defined(OPTERON_ERRATUM_95)
608 int opteron_erratum_95;		/* if non-zero -> at least one cpu has it */
609 #endif
610 
611 #if defined(OPTERON_ERRATUM_100)
612 int opteron_erratum_100;	/* if non-zero -> at least one cpu has it */
613 #endif
614 
615 #if defined(OPTERON_ERRATUM_108)
616 int opteron_erratum_108;	/* if non-zero -> at least one cpu has it */
617 #endif
618 
619 #if defined(OPTERON_ERRATUM_109)
620 int opteron_erratum_109;	/* if non-zero -> at least one cpu has it */
621 #endif
622 
623 #if defined(OPTERON_ERRATUM_121)
624 int opteron_erratum_121;	/* if non-zero -> at least one cpu has it */
625 #endif
626 
627 #if defined(OPTERON_ERRATUM_122)
628 int opteron_erratum_122;	/* if non-zero -> at least one cpu has it */
629 #endif
630 
631 #if defined(OPTERON_ERRATUM_123)
632 int opteron_erratum_123;	/* if non-zero -> at least one cpu has it */
633 #endif
634 
635 #if defined(OPTERON_ERRATUM_131)
636 int opteron_erratum_131;	/* if non-zero -> at least one cpu has it */
637 #endif
638 
639 #if defined(OPTERON_WORKAROUND_6336786)
640 int opteron_workaround_6336786;	/* non-zero -> WA relevant and applied */
641 int opteron_workaround_6336786_UP = 0;	/* Not needed for UP */
642 #endif
643 
644 #if defined(OPTERON_WORKAROUND_6323525)
645 int opteron_workaround_6323525;	/* if non-zero -> at least one cpu has it */
646 #endif
647 
648 #if defined(OPTERON_ERRATUM_298)
649 int opteron_erratum_298;
650 #endif
651 
652 #if defined(OPTERON_ERRATUM_721)
653 int opteron_erratum_721;
654 #endif
655 
656 static void
657 workaround_warning(cpu_t *cp, uint_t erratum)
658 {
659 	cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u",
660 	    cp->cpu_id, erratum);
661 }
662 
663 static void
664 workaround_applied(uint_t erratum)
665 {
666 	if (erratum > 1000000)
667 		cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n",
668 		    erratum);
669 	else
670 		cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n",
671 		    erratum);
672 }
673 
674 static void
675 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error)
676 {
677 	cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d",
678 	    cp->cpu_id, rw, msr, error);
679 }
680 
681 /*
682  * Determine the number of nodes in a Hammer / Greyhound / Griffin family
683  * system.
684  */
685 static uint_t
686 opteron_get_nnodes(void)
687 {
688 	static uint_t nnodes = 0;
689 
690 	if (nnodes == 0) {
691 #ifdef	DEBUG
692 		uint_t family;
693 
694 		/*
695 		 * This routine uses a PCI config space based mechanism
696 		 * for retrieving the number of nodes in the system.
697 		 * Device 24, function 0, offset 0x60 as used here is not
698 		 * AMD processor architectural, and may not work on processor
699 		 * families other than those listed below.
700 		 *
701 		 * Callers of this routine must ensure that we're running on
702 		 * a processor which supports this mechanism.
703 		 * The assertion below is meant to catch calls on unsupported
704 		 * processors.
705 		 */
706 		family = cpuid_getfamily(CPU);
707 		ASSERT(family == 0xf || family == 0x10 || family == 0x11);
708 #endif	/* DEBUG */
709 
710 		/*
711 		 * Obtain the number of nodes in the system from
712 		 * bits [6:4] of the Node ID register on node 0.
713 		 *
714 		 * The actual node count is NodeID[6:4] + 1
715 		 *
716 		 * The Node ID register is accessed via function 0,
717 		 * offset 0x60. Node 0 is device 24.
718 		 */
719 		nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1;
720 	}
721 	return (nnodes);
722 }
723 
724 uint_t
725 do_erratum_298(struct cpu *cpu)
726 {
727 	static int	osvwrc = -3;
728 	extern int	osvw_opteron_erratum(cpu_t *, uint_t);
729 
730 	/*
731 	 * L2 Eviction May Occur During Processor Operation To Set
732 	 * Accessed or Dirty Bit.
733 	 */
734 	if (osvwrc == -3) {
735 		osvwrc = osvw_opteron_erratum(cpu, 298);
736 	} else {
737 		/* osvw return codes should be consistent for all cpus */
738 		ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298));
739 	}
740 
741 	switch (osvwrc) {
742 	case 0:		/* erratum is not present: do nothing */
743 		break;
744 	case 1:		/* erratum is present: BIOS workaround applied */
745 		/*
746 		 * check if workaround is actually in place and issue warning
747 		 * if not.
748 		 */
749 		if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
750 		    ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) {
751 #if defined(OPTERON_ERRATUM_298)
752 			opteron_erratum_298++;
753 #else
754 			workaround_warning(cpu, 298);
755 			return (1);
756 #endif
757 		}
758 		break;
759 	case -1:	/* cannot determine via osvw: check cpuid */
760 		if ((cpuid_opteron_erratum(cpu, 298) > 0) &&
761 		    (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
762 		    ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) {
763 #if defined(OPTERON_ERRATUM_298)
764 			opteron_erratum_298++;
765 #else
766 			workaround_warning(cpu, 298);
767 			return (1);
768 #endif
769 		}
770 		break;
771 	}
772 	return (0);
773 }
774 
775 uint_t
776 workaround_errata(struct cpu *cpu)
777 {
778 	uint_t missing = 0;
779 
780 	ASSERT(cpu == CPU);
781 
782 	/*LINTED*/
783 	if (cpuid_opteron_erratum(cpu, 88) > 0) {
784 		/*
785 		 * SWAPGS May Fail To Read Correct GS Base
786 		 */
787 #if defined(OPTERON_ERRATUM_88)
788 		/*
789 		 * The workaround is an mfence in the relevant assembler code
790 		 */
791 		opteron_erratum_88++;
792 #else
793 		workaround_warning(cpu, 88);
794 		missing++;
795 #endif
796 	}
797 
798 	if (cpuid_opteron_erratum(cpu, 91) > 0) {
799 		/*
800 		 * Software Prefetches May Report A Page Fault
801 		 */
802 #if defined(OPTERON_ERRATUM_91)
803 		/*
804 		 * fix is in trap.c
805 		 */
806 		opteron_erratum_91++;
807 #else
808 		workaround_warning(cpu, 91);
809 		missing++;
810 #endif
811 	}
812 
813 	if (cpuid_opteron_erratum(cpu, 93) > 0) {
814 		/*
815 		 * RSM Auto-Halt Restart Returns to Incorrect RIP
816 		 */
817 #if defined(OPTERON_ERRATUM_93)
818 		/*
819 		 * fix is in trap.c
820 		 */
821 		opteron_erratum_93++;
822 #else
823 		workaround_warning(cpu, 93);
824 		missing++;
825 #endif
826 	}
827 
828 	/*LINTED*/
829 	if (cpuid_opteron_erratum(cpu, 95) > 0) {
830 		/*
831 		 * RET Instruction May Return to Incorrect EIP
832 		 */
833 #if defined(OPTERON_ERRATUM_95)
834 #if defined(_LP64)
835 		/*
836 		 * Workaround this by ensuring that 32-bit user code and
837 		 * 64-bit kernel code never occupy the same address
838 		 * range mod 4G.
839 		 */
840 		if (_userlimit32 > 0xc0000000ul)
841 			*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
842 
843 		/*LINTED*/
844 		ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
845 		opteron_erratum_95++;
846 #endif	/* _LP64 */
847 #else
848 		workaround_warning(cpu, 95);
849 		missing++;
850 #endif
851 	}
852 
853 	if (cpuid_opteron_erratum(cpu, 100) > 0) {
854 		/*
855 		 * Compatibility Mode Branches Transfer to Illegal Address
856 		 */
857 #if defined(OPTERON_ERRATUM_100)
858 		/*
859 		 * fix is in trap.c
860 		 */
861 		opteron_erratum_100++;
862 #else
863 		workaround_warning(cpu, 100);
864 		missing++;
865 #endif
866 	}
867 
868 	/*LINTED*/
869 	if (cpuid_opteron_erratum(cpu, 108) > 0) {
870 		/*
871 		 * CPUID Instruction May Return Incorrect Model Number In
872 		 * Some Processors
873 		 */
874 #if defined(OPTERON_ERRATUM_108)
875 		/*
876 		 * (Our cpuid-handling code corrects the model number on
877 		 * those processors)
878 		 */
879 #else
880 		workaround_warning(cpu, 108);
881 		missing++;
882 #endif
883 	}
884 
885 	/*LINTED*/
886 	if (cpuid_opteron_erratum(cpu, 109) > 0) do {
887 		/*
888 		 * Certain Reverse REP MOVS May Produce Unpredictable Behavior
889 		 */
890 #if defined(OPTERON_ERRATUM_109)
891 		/*
892 		 * The "workaround" is to print a warning to upgrade the BIOS
893 		 */
894 		uint64_t value;
895 		const uint_t msr = MSR_AMD_PATCHLEVEL;
896 		int err;
897 
898 		if ((err = checked_rdmsr(msr, &value)) != 0) {
899 			msr_warning(cpu, "rd", msr, err);
900 			workaround_warning(cpu, 109);
901 			missing++;
902 		}
903 		if (value == 0)
904 			opteron_erratum_109++;
905 #else
906 		workaround_warning(cpu, 109);
907 		missing++;
908 #endif
909 	/*CONSTANTCONDITION*/
910 	} while (0);
911 
912 	/*LINTED*/
913 	if (cpuid_opteron_erratum(cpu, 121) > 0) {
914 		/*
915 		 * Sequential Execution Across Non_Canonical Boundary Caused
916 		 * Processor Hang
917 		 */
918 #if defined(OPTERON_ERRATUM_121)
919 #if defined(_LP64)
920 		/*
921 		 * Erratum 121 is only present in long (64 bit) mode.
922 		 * Workaround is to include the page immediately before the
923 		 * va hole to eliminate the possibility of system hangs due to
924 		 * sequential execution across the va hole boundary.
925 		 */
926 		if (opteron_erratum_121)
927 			opteron_erratum_121++;
928 		else {
929 			if (hole_start) {
930 				hole_start -= PAGESIZE;
931 			} else {
932 				/*
933 				 * hole_start not yet initialized by
934 				 * mmu_init. Initialize hole_start
935 				 * with value to be subtracted.
936 				 */
937 				hole_start = PAGESIZE;
938 			}
939 			opteron_erratum_121++;
940 		}
941 #endif	/* _LP64 */
942 #else
943 		workaround_warning(cpu, 121);
944 		missing++;
945 #endif
946 	}
947 
948 	/*LINTED*/
949 	if (cpuid_opteron_erratum(cpu, 122) > 0) do {
950 		/*
951 		 * TLB Flush Filter May Cause Coherency Problem in
952 		 * Multiprocessor Systems
953 		 */
954 #if defined(OPTERON_ERRATUM_122)
955 		uint64_t value;
956 		const uint_t msr = MSR_AMD_HWCR;
957 		int error;
958 
959 		/*
960 		 * Erratum 122 is only present in MP configurations (multi-core
961 		 * or multi-processor).
962 		 */
963 #if defined(__xpv)
964 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
965 			break;
966 		if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1)
967 			break;
968 #else
969 		if (!opteron_erratum_122 && opteron_get_nnodes() == 1 &&
970 		    cpuid_get_ncpu_per_chip(cpu) == 1)
971 			break;
972 #endif
973 		/* disable TLB Flush Filter */
974 
975 		if ((error = checked_rdmsr(msr, &value)) != 0) {
976 			msr_warning(cpu, "rd", msr, error);
977 			workaround_warning(cpu, 122);
978 			missing++;
979 		} else {
980 			value |= (uint64_t)AMD_HWCR_FFDIS;
981 			if ((error = checked_wrmsr(msr, value)) != 0) {
982 				msr_warning(cpu, "wr", msr, error);
983 				workaround_warning(cpu, 122);
984 				missing++;
985 			}
986 		}
987 		opteron_erratum_122++;
988 #else
989 		workaround_warning(cpu, 122);
990 		missing++;
991 #endif
992 	/*CONSTANTCONDITION*/
993 	} while (0);
994 
995 	/*LINTED*/
996 	if (cpuid_opteron_erratum(cpu, 123) > 0) do {
997 		/*
998 		 * Bypassed Reads May Cause Data Corruption of System Hang in
999 		 * Dual Core Processors
1000 		 */
1001 #if defined(OPTERON_ERRATUM_123)
1002 		uint64_t value;
1003 		const uint_t msr = MSR_AMD_PATCHLEVEL;
1004 		int err;
1005 
1006 		/*
1007 		 * Erratum 123 applies only to multi-core cpus.
1008 		 */
1009 		if (cpuid_get_ncpu_per_chip(cpu) < 2)
1010 			break;
1011 #if defined(__xpv)
1012 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
1013 			break;
1014 #endif
1015 		/*
1016 		 * The "workaround" is to print a warning to upgrade the BIOS
1017 		 */
1018 		if ((err = checked_rdmsr(msr, &value)) != 0) {
1019 			msr_warning(cpu, "rd", msr, err);
1020 			workaround_warning(cpu, 123);
1021 			missing++;
1022 		}
1023 		if (value == 0)
1024 			opteron_erratum_123++;
1025 #else
1026 		workaround_warning(cpu, 123);
1027 		missing++;
1028 
1029 #endif
1030 	/*CONSTANTCONDITION*/
1031 	} while (0);
1032 
1033 	/*LINTED*/
1034 	if (cpuid_opteron_erratum(cpu, 131) > 0) do {
1035 		/*
1036 		 * Multiprocessor Systems with Four or More Cores May Deadlock
1037 		 * Waiting for a Probe Response
1038 		 */
1039 #if defined(OPTERON_ERRATUM_131)
1040 		uint64_t nbcfg;
1041 		const uint_t msr = MSR_AMD_NB_CFG;
1042 		const uint64_t wabits =
1043 		    AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR;
1044 		int error;
1045 
1046 		/*
1047 		 * Erratum 131 applies to any system with four or more cores.
1048 		 */
1049 		if (opteron_erratum_131)
1050 			break;
1051 #if defined(__xpv)
1052 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
1053 			break;
1054 		if (xpv_nr_phys_cpus() < 4)
1055 			break;
1056 #else
1057 		if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4)
1058 			break;
1059 #endif
1060 		/*
1061 		 * Print a warning if neither of the workarounds for
1062 		 * erratum 131 is present.
1063 		 */
1064 		if ((error = checked_rdmsr(msr, &nbcfg)) != 0) {
1065 			msr_warning(cpu, "rd", msr, error);
1066 			workaround_warning(cpu, 131);
1067 			missing++;
1068 		} else if ((nbcfg & wabits) == 0) {
1069 			opteron_erratum_131++;
1070 		} else {
1071 			/* cannot have both workarounds set */
1072 			ASSERT((nbcfg & wabits) != wabits);
1073 		}
1074 #else
1075 		workaround_warning(cpu, 131);
1076 		missing++;
1077 #endif
1078 	/*CONSTANTCONDITION*/
1079 	} while (0);
1080 
1081 	/*
1082 	 * This isn't really an erratum, but for convenience the
1083 	 * detection/workaround code lives here and in cpuid_opteron_erratum.
1084 	 */
1085 	if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
1086 #if defined(OPTERON_WORKAROUND_6336786)
1087 		/*
1088 		 * Disable C1-Clock ramping on multi-core/multi-processor
1089 		 * K8 platforms to guard against TSC drift.
1090 		 */
1091 		if (opteron_workaround_6336786) {
1092 			opteron_workaround_6336786++;
1093 #if defined(__xpv)
1094 		} else if ((DOMAIN_IS_INITDOMAIN(xen_info) &&
1095 		    xpv_nr_phys_cpus() > 1) ||
1096 		    opteron_workaround_6336786_UP) {
1097 			/*
1098 			 * XXPV	Hmm.  We can't walk the Northbridges on
1099 			 *	the hypervisor; so just complain and drive
1100 			 *	on.  This probably needs to be fixed in
1101 			 *	the hypervisor itself.
1102 			 */
1103 			opteron_workaround_6336786++;
1104 			workaround_warning(cpu, 6336786);
1105 #else	/* __xpv */
1106 		} else if ((opteron_get_nnodes() *
1107 		    cpuid_get_ncpu_per_chip(cpu) > 1) ||
1108 		    opteron_workaround_6336786_UP) {
1109 
1110 			uint_t	node, nnodes;
1111 			uint8_t data;
1112 
1113 			nnodes = opteron_get_nnodes();
1114 			for (node = 0; node < nnodes; node++) {
1115 				/*
1116 				 * Clear PMM7[1:0] (function 3, offset 0x87)
1117 				 * Northbridge device is the node id + 24.
1118 				 */
1119 				data = pci_getb_func(0, node + 24, 3, 0x87);
1120 				data &= 0xFC;
1121 				pci_putb_func(0, node + 24, 3, 0x87, data);
1122 			}
1123 			opteron_workaround_6336786++;
1124 #endif	/* __xpv */
1125 		}
1126 #else
1127 		workaround_warning(cpu, 6336786);
1128 		missing++;
1129 #endif
1130 	}
1131 
1132 	/*LINTED*/
1133 	/*
1134 	 * Mutex primitives don't work as expected.
1135 	 */
1136 	if (cpuid_opteron_erratum(cpu, 6323525) > 0) {
1137 #if defined(OPTERON_WORKAROUND_6323525)
1138 		/*
1139 		 * This problem only occurs with 2 or more cores. If bit in
1140 		 * MSR_AMD_BU_CFG set, then not applicable. The workaround
1141 		 * is to patch the semaphone routines with the lfence
1142 		 * instruction to provide necessary load memory barrier with
1143 		 * possible subsequent read-modify-write ops.
1144 		 *
1145 		 * It is too early in boot to call the patch routine so
1146 		 * set erratum variable to be done in startup_end().
1147 		 */
1148 		if (opteron_workaround_6323525) {
1149 			opteron_workaround_6323525++;
1150 #if defined(__xpv)
1151 		} else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1152 			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1153 				/*
1154 				 * XXPV	Use dom0_msr here when extended
1155 				 *	operations are supported?
1156 				 */
1157 				if (xpv_nr_phys_cpus() > 1)
1158 					opteron_workaround_6323525++;
1159 			} else {
1160 				/*
1161 				 * We have no way to tell how many physical
1162 				 * cpus there are, or even if this processor
1163 				 * has the problem, so enable the workaround
1164 				 * unconditionally (at some performance cost).
1165 				 */
1166 				opteron_workaround_6323525++;
1167 			}
1168 #else	/* __xpv */
1169 		} else if (is_x86_feature(x86_featureset, X86FSET_SSE2) &&
1170 		    ((opteron_get_nnodes() *
1171 		    cpuid_get_ncpu_per_chip(cpu)) > 1)) {
1172 			if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0)
1173 				opteron_workaround_6323525++;
1174 #endif	/* __xpv */
1175 		}
1176 #else
1177 		workaround_warning(cpu, 6323525);
1178 		missing++;
1179 #endif
1180 	}
1181 
1182 	missing += do_erratum_298(cpu);
1183 
1184 	if (cpuid_opteron_erratum(cpu, 721) > 0) {
1185 #if defined(OPTERON_ERRATUM_721)
1186 		on_trap_data_t otd;
1187 
1188 		if (!on_trap(&otd, OT_DATA_ACCESS))
1189 			wrmsr(MSR_AMD_DE_CFG,
1190 			    rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721);
1191 		no_trap();
1192 
1193 		opteron_erratum_721++;
1194 #else
1195 		workaround_warning(cpu, 721);
1196 		missing++;
1197 #endif
1198 	}
1199 
1200 #ifdef __xpv
1201 	return (0);
1202 #else
1203 	return (missing);
1204 #endif
1205 }
1206 
1207 void
1208 workaround_errata_end()
1209 {
1210 #if defined(OPTERON_ERRATUM_88)
1211 	if (opteron_erratum_88)
1212 		workaround_applied(88);
1213 #endif
1214 #if defined(OPTERON_ERRATUM_91)
1215 	if (opteron_erratum_91)
1216 		workaround_applied(91);
1217 #endif
1218 #if defined(OPTERON_ERRATUM_93)
1219 	if (opteron_erratum_93)
1220 		workaround_applied(93);
1221 #endif
1222 #if defined(OPTERON_ERRATUM_95)
1223 	if (opteron_erratum_95)
1224 		workaround_applied(95);
1225 #endif
1226 #if defined(OPTERON_ERRATUM_100)
1227 	if (opteron_erratum_100)
1228 		workaround_applied(100);
1229 #endif
1230 #if defined(OPTERON_ERRATUM_108)
1231 	if (opteron_erratum_108)
1232 		workaround_applied(108);
1233 #endif
1234 #if defined(OPTERON_ERRATUM_109)
1235 	if (opteron_erratum_109) {
1236 		cmn_err(CE_WARN,
1237 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1238 		    " processor\nerratum 109 was not detected; updating your"
1239 		    " system's BIOS to a version\ncontaining this"
1240 		    " microcode patch is HIGHLY recommended or erroneous"
1241 		    " system\noperation may occur.\n");
1242 	}
1243 #endif
1244 #if defined(OPTERON_ERRATUM_121)
1245 	if (opteron_erratum_121)
1246 		workaround_applied(121);
1247 #endif
1248 #if defined(OPTERON_ERRATUM_122)
1249 	if (opteron_erratum_122)
1250 		workaround_applied(122);
1251 #endif
1252 #if defined(OPTERON_ERRATUM_123)
1253 	if (opteron_erratum_123) {
1254 		cmn_err(CE_WARN,
1255 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1256 		    " processor\nerratum 123 was not detected; updating your"
1257 		    " system's BIOS to a version\ncontaining this"
1258 		    " microcode patch is HIGHLY recommended or erroneous"
1259 		    " system\noperation may occur.\n");
1260 	}
1261 #endif
1262 #if defined(OPTERON_ERRATUM_131)
1263 	if (opteron_erratum_131) {
1264 		cmn_err(CE_WARN,
1265 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1266 		    " processor\nerratum 131 was not detected; updating your"
1267 		    " system's BIOS to a version\ncontaining this"
1268 		    " microcode patch is HIGHLY recommended or erroneous"
1269 		    " system\noperation may occur.\n");
1270 	}
1271 #endif
1272 #if defined(OPTERON_WORKAROUND_6336786)
1273 	if (opteron_workaround_6336786)
1274 		workaround_applied(6336786);
1275 #endif
1276 #if defined(OPTERON_WORKAROUND_6323525)
1277 	if (opteron_workaround_6323525)
1278 		workaround_applied(6323525);
1279 #endif
1280 #if defined(OPTERON_ERRATUM_298)
1281 	if (opteron_erratum_298) {
1282 		cmn_err(CE_WARN,
1283 		    "BIOS microcode patch for AMD 64/Opteron(tm)"
1284 		    " processor\nerratum 298 was not detected; updating your"
1285 		    " system's BIOS to a version\ncontaining this"
1286 		    " microcode patch is HIGHLY recommended or erroneous"
1287 		    " system\noperation may occur.\n");
1288 	}
1289 #endif
1290 #if defined(OPTERON_ERRATUM_721)
1291 	if (opteron_erratum_721)
1292 		workaround_applied(721);
1293 #endif
1294 }
1295 
1296 /*
1297  * The procset_slave and procset_master are used to synchronize
1298  * between the control CPU and the target CPU when starting CPUs.
1299  */
1300 static cpuset_t procset_slave, procset_master;
1301 
1302 static void
1303 mp_startup_wait(cpuset_t *sp, processorid_t cpuid)
1304 {
1305 	cpuset_t tempset;
1306 
1307 	for (tempset = *sp; !CPU_IN_SET(tempset, cpuid);
1308 	    tempset = *(volatile cpuset_t *)sp) {
1309 		SMT_PAUSE();
1310 	}
1311 	CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid);
1312 }
1313 
1314 static void
1315 mp_startup_signal(cpuset_t *sp, processorid_t cpuid)
1316 {
1317 	cpuset_t tempset;
1318 
1319 	CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid);
1320 	for (tempset = *sp; CPU_IN_SET(tempset, cpuid);
1321 	    tempset = *(volatile cpuset_t *)sp) {
1322 		SMT_PAUSE();
1323 	}
1324 }
1325 
1326 int
1327 mp_start_cpu_common(cpu_t *cp, boolean_t boot)
1328 {
1329 	_NOTE(ARGUNUSED(boot));
1330 
1331 	void *ctx;
1332 	int delays;
1333 	int error = 0;
1334 	cpuset_t tempset;
1335 	processorid_t cpuid;
1336 #ifndef __xpv
1337 	extern void cpupm_init(cpu_t *);
1338 #endif
1339 
1340 	ASSERT(cp != NULL);
1341 	cpuid = cp->cpu_id;
1342 	ctx = mach_cpucontext_alloc(cp);
1343 	if (ctx == NULL) {
1344 		cmn_err(CE_WARN,
1345 		    "cpu%d: failed to allocate context", cp->cpu_id);
1346 		return (EAGAIN);
1347 	}
1348 	error = mach_cpu_start(cp, ctx);
1349 	if (error != 0) {
1350 		cmn_err(CE_WARN,
1351 		    "cpu%d: failed to start, error %d", cp->cpu_id, error);
1352 		mach_cpucontext_free(cp, ctx, error);
1353 		return (error);
1354 	}
1355 
1356 	for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid);
1357 	    delays++) {
1358 		if (delays == 500) {
1359 			/*
1360 			 * After five seconds, things are probably looking
1361 			 * a bit bleak - explain the hang.
1362 			 */
1363 			cmn_err(CE_NOTE, "cpu%d: started, "
1364 			    "but not running in the kernel yet", cpuid);
1365 		} else if (delays > 2000) {
1366 			/*
1367 			 * We waited at least 20 seconds, bail ..
1368 			 */
1369 			error = ETIMEDOUT;
1370 			cmn_err(CE_WARN, "cpu%d: timed out", cpuid);
1371 			mach_cpucontext_free(cp, ctx, error);
1372 			return (error);
1373 		}
1374 
1375 		/*
1376 		 * wait at least 10ms, then check again..
1377 		 */
1378 		delay(USEC_TO_TICK_ROUNDUP(10000));
1379 		tempset = *((volatile cpuset_t *)&procset_slave);
1380 	}
1381 	CPUSET_ATOMIC_DEL(procset_slave, cpuid);
1382 
1383 	mach_cpucontext_free(cp, ctx, 0);
1384 
1385 #ifndef __xpv
1386 	if (tsc_gethrtime_enable)
1387 		tsc_sync_master(cpuid);
1388 #endif
1389 
1390 	if (dtrace_cpu_init != NULL) {
1391 		(*dtrace_cpu_init)(cpuid);
1392 	}
1393 
1394 	/*
1395 	 * During CPU DR operations, the cpu_lock is held by current
1396 	 * (the control) thread. We can't release the cpu_lock here
1397 	 * because that will break the CPU DR logic.
1398 	 * On the other hand, CPUPM and processor group initialization
1399 	 * routines need to access the cpu_lock. So we invoke those
1400 	 * routines here on behalf of mp_startup_common().
1401 	 *
1402 	 * CPUPM and processor group initialization routines depend
1403 	 * on the cpuid probing results. Wait for mp_startup_common()
1404 	 * to signal that cpuid probing is done.
1405 	 */
1406 	mp_startup_wait(&procset_slave, cpuid);
1407 #ifndef __xpv
1408 	cpupm_init(cp);
1409 #endif
1410 	(void) pg_cpu_init(cp, B_FALSE);
1411 	cpu_set_state(cp);
1412 	mp_startup_signal(&procset_master, cpuid);
1413 
1414 	return (0);
1415 }
1416 
1417 /*
1418  * Start a single cpu, assuming that the kernel context is available
1419  * to successfully start another cpu.
1420  *
1421  * (For example, real mode code is mapped into the right place
1422  * in memory and is ready to be run.)
1423  */
1424 int
1425 start_cpu(processorid_t who)
1426 {
1427 	cpu_t *cp;
1428 	int error = 0;
1429 	cpuset_t tempset;
1430 
1431 	ASSERT(who != 0);
1432 
1433 	/*
1434 	 * Check if there's at least a Mbyte of kmem available
1435 	 * before attempting to start the cpu.
1436 	 */
1437 	if (kmem_avail() < 1024 * 1024) {
1438 		/*
1439 		 * Kick off a reap in case that helps us with
1440 		 * later attempts ..
1441 		 */
1442 		kmem_reap();
1443 		return (ENOMEM);
1444 	}
1445 
1446 	/*
1447 	 * First configure cpu.
1448 	 */
1449 	cp = mp_cpu_configure_common(who, B_TRUE);
1450 	ASSERT(cp != NULL);
1451 
1452 	/*
1453 	 * Then start cpu.
1454 	 */
1455 	error = mp_start_cpu_common(cp, B_TRUE);
1456 	if (error != 0) {
1457 		mp_cpu_unconfigure_common(cp, error);
1458 		return (error);
1459 	}
1460 
1461 	mutex_exit(&cpu_lock);
1462 	tempset = cpu_ready_set;
1463 	while (!CPU_IN_SET(tempset, who)) {
1464 		drv_usecwait(1);
1465 		tempset = *((volatile cpuset_t *)&cpu_ready_set);
1466 	}
1467 	mutex_enter(&cpu_lock);
1468 
1469 	return (0);
1470 }
1471 
1472 void
1473 start_other_cpus(int cprboot)
1474 {
1475 	_NOTE(ARGUNUSED(cprboot));
1476 
1477 	uint_t who;
1478 	uint_t bootcpuid = 0;
1479 
1480 	/*
1481 	 * Initialize our own cpu_info.
1482 	 */
1483 	init_cpu_info(CPU);
1484 
1485 	cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr);
1486 	cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr);
1487 
1488 	/*
1489 	 * Initialize our syscall handlers
1490 	 */
1491 	init_cpu_syscall(CPU);
1492 
1493 	/*
1494 	 * Take the boot cpu out of the mp_cpus set because we know
1495 	 * it's already running.  Add it to the cpu_ready_set for
1496 	 * precisely the same reason.
1497 	 */
1498 	CPUSET_DEL(mp_cpus, bootcpuid);
1499 	CPUSET_ADD(cpu_ready_set, bootcpuid);
1500 
1501 	/*
1502 	 * skip the rest of this if
1503 	 * . only 1 cpu dectected and system isn't hotplug-capable
1504 	 * . not using MP
1505 	 */
1506 	if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) ||
1507 	    use_mp == 0) {
1508 		if (use_mp == 0)
1509 			cmn_err(CE_CONT, "?***** Not in MP mode\n");
1510 		goto done;
1511 	}
1512 
1513 	/*
1514 	 * perform such initialization as is needed
1515 	 * to be able to take CPUs on- and off-line.
1516 	 */
1517 	cpu_pause_init();
1518 
1519 	xc_init_cpu(CPU);		/* initialize processor crosscalls */
1520 
1521 	if (mach_cpucontext_init() != 0)
1522 		goto done;
1523 
1524 	flushes_require_xcalls = 1;
1525 
1526 	/*
1527 	 * We lock our affinity to the master CPU to ensure that all slave CPUs
1528 	 * do their TSC syncs with the same CPU.
1529 	 */
1530 	affinity_set(CPU_CURRENT);
1531 
1532 	for (who = 0; who < NCPU; who++) {
1533 		if (!CPU_IN_SET(mp_cpus, who))
1534 			continue;
1535 		ASSERT(who != bootcpuid);
1536 
1537 		mutex_enter(&cpu_lock);
1538 		if (start_cpu(who) != 0)
1539 			CPUSET_DEL(mp_cpus, who);
1540 		cpu_state_change_notify(who, CPU_SETUP);
1541 		mutex_exit(&cpu_lock);
1542 	}
1543 
1544 	/* Free the space allocated to hold the microcode file */
1545 	ucode_cleanup();
1546 
1547 	affinity_clear();
1548 
1549 	mach_cpucontext_fini();
1550 
1551 done:
1552 	if (get_hwenv() == HW_NATIVE)
1553 		workaround_errata_end();
1554 	cmi_post_mpstartup();
1555 
1556 	if (use_mp && ncpus != boot_max_ncpus) {
1557 		cmn_err(CE_NOTE,
1558 		    "System detected %d cpus, but "
1559 		    "only %d cpu(s) were enabled during boot.",
1560 		    boot_max_ncpus, ncpus);
1561 		cmn_err(CE_NOTE,
1562 		    "Use \"boot-ncpus\" parameter to enable more CPU(s). "
1563 		    "See eeprom(1M).");
1564 	}
1565 }
1566 
1567 int
1568 mp_cpu_configure(int cpuid)
1569 {
1570 	cpu_t *cp;
1571 
1572 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
1573 		return (ENOTSUP);
1574 	}
1575 
1576 	cp = cpu_get(cpuid);
1577 	if (cp != NULL) {
1578 		return (EALREADY);
1579 	}
1580 
1581 	/*
1582 	 * Check if there's at least a Mbyte of kmem available
1583 	 * before attempting to start the cpu.
1584 	 */
1585 	if (kmem_avail() < 1024 * 1024) {
1586 		/*
1587 		 * Kick off a reap in case that helps us with
1588 		 * later attempts ..
1589 		 */
1590 		kmem_reap();
1591 		return (ENOMEM);
1592 	}
1593 
1594 	cp = mp_cpu_configure_common(cpuid, B_FALSE);
1595 	ASSERT(cp != NULL && cpu_get(cpuid) == cp);
1596 
1597 	return (cp != NULL ? 0 : EAGAIN);
1598 }
1599 
1600 int
1601 mp_cpu_unconfigure(int cpuid)
1602 {
1603 	cpu_t *cp;
1604 
1605 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
1606 		return (ENOTSUP);
1607 	} else if (cpuid < 0 || cpuid >= max_ncpus) {
1608 		return (EINVAL);
1609 	}
1610 
1611 	cp = cpu_get(cpuid);
1612 	if (cp == NULL) {
1613 		return (ENODEV);
1614 	}
1615 	mp_cpu_unconfigure_common(cp, 0);
1616 
1617 	return (0);
1618 }
1619 
1620 /*
1621  * Startup function for 'other' CPUs (besides boot cpu).
1622  * Called from real_mode_start.
1623  *
1624  * WARNING: until CPU_READY is set, mp_startup_common and routines called by
1625  * mp_startup_common should not call routines (e.g. kmem_free) that could call
1626  * hat_unload which requires CPU_READY to be set.
1627  */
1628 static void
1629 mp_startup_common(boolean_t boot)
1630 {
1631 	cpu_t *cp = CPU;
1632 	uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)];
1633 	extern void cpu_event_init_cpu(cpu_t *);
1634 
1635 	/*
1636 	 * We need to get TSC on this proc synced (i.e., any delta
1637 	 * from cpu0 accounted for) as soon as we can, because many
1638 	 * many things use gethrtime/pc_gethrestime, including
1639 	 * interrupts, cmn_err, etc.  Before we can do that, we want to
1640 	 * clear TSC if we're on a buggy Sandy/Ivy Bridge CPU, so do that
1641 	 * right away.
1642 	 */
1643 	bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES));
1644 	cpuid_pass1(cp, new_x86_featureset);
1645 
1646 	if (boot && get_hwenv() == HW_NATIVE &&
1647 	    cpuid_getvendor(CPU) == X86_VENDOR_Intel &&
1648 	    cpuid_getfamily(CPU) == 6 &&
1649 	    (cpuid_getmodel(CPU) == 0x2d || cpuid_getmodel(CPU) == 0x3e) &&
1650 	    is_x86_feature(new_x86_featureset, X86FSET_TSC)) {
1651 		(void) wrmsr(REG_TSC, 0UL);
1652 	}
1653 
1654 	/* Let the control CPU continue into tsc_sync_master() */
1655 	mp_startup_signal(&procset_slave, cp->cpu_id);
1656 
1657 #ifndef __xpv
1658 	if (tsc_gethrtime_enable)
1659 		tsc_sync_slave();
1660 #endif
1661 
1662 	/*
1663 	 * Once this was done from assembly, but it's safer here; if
1664 	 * it blocks, we need to be able to swtch() to and from, and
1665 	 * since we get here by calling t_pc, we need to do that call
1666 	 * before swtch() overwrites it.
1667 	 */
1668 	(void) (*ap_mlsetup)();
1669 
1670 #ifndef __xpv
1671 	/*
1672 	 * Program this cpu's PAT
1673 	 */
1674 	pat_sync();
1675 #endif
1676 
1677 	/*
1678 	 * Set up TSC_AUX to contain the cpuid for this processor
1679 	 * for the rdtscp instruction.
1680 	 */
1681 	if (is_x86_feature(x86_featureset, X86FSET_TSCP))
1682 		(void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id);
1683 
1684 	/*
1685 	 * Initialize this CPU's syscall handlers
1686 	 */
1687 	init_cpu_syscall(cp);
1688 
1689 	/*
1690 	 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
1691 	 * highest level at which a routine is permitted to block on
1692 	 * an adaptive mutex (allows for cpu poke interrupt in case
1693 	 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
1694 	 * device interrupts that may end up in the hat layer issuing cross
1695 	 * calls before CPU_READY is set.
1696 	 */
1697 	splx(ipltospl(LOCK_LEVEL));
1698 	sti();
1699 
1700 	/*
1701 	 * Do a sanity check to make sure this new CPU is a sane thing
1702 	 * to add to the collection of processors running this system.
1703 	 *
1704 	 * XXX	Clearly this needs to get more sophisticated, if x86
1705 	 * systems start to get built out of heterogenous CPUs; as is
1706 	 * likely to happen once the number of processors in a configuration
1707 	 * gets large enough.
1708 	 */
1709 	if (compare_x86_featureset(x86_featureset, new_x86_featureset) ==
1710 	    B_FALSE) {
1711 		cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id);
1712 		print_x86_featureset(new_x86_featureset);
1713 		cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
1714 	}
1715 
1716 	/*
1717 	 * We do not support cpus with mixed monitor/mwait support if the
1718 	 * boot cpu supports monitor/mwait.
1719 	 */
1720 	if (is_x86_feature(x86_featureset, X86FSET_MWAIT) !=
1721 	    is_x86_feature(new_x86_featureset, X86FSET_MWAIT))
1722 		panic("unsupported mixed cpu monitor/mwait support detected");
1723 
1724 	/*
1725 	 * We could be more sophisticated here, and just mark the CPU
1726 	 * as "faulted" but at this point we'll opt for the easier
1727 	 * answer of dying horribly.  Provided the boot cpu is ok,
1728 	 * the system can be recovered by booting with use_mp set to zero.
1729 	 */
1730 	if (workaround_errata(cp) != 0)
1731 		panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
1732 
1733 	/*
1734 	 * We can touch cpu_flags here without acquiring the cpu_lock here
1735 	 * because the cpu_lock is held by the control CPU which is running
1736 	 * mp_start_cpu_common().
1737 	 * Need to clear CPU_QUIESCED flag before calling any function which
1738 	 * may cause thread context switching, such as kmem_alloc() etc.
1739 	 * The idle thread checks for CPU_QUIESCED flag and loops for ever if
1740 	 * it's set. So the startup thread may have no chance to switch back
1741 	 * again if it's switched away with CPU_QUIESCED set.
1742 	 */
1743 	cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED);
1744 
1745 	/*
1746 	 * Setup this processor for XSAVE.
1747 	 */
1748 	if (fp_save_mech == FP_XSAVE) {
1749 		xsave_setup_msr(cp);
1750 	}
1751 
1752 	cpuid_pass2(cp);
1753 	cpuid_pass3(cp);
1754 	cpuid_pass4(cp, NULL);
1755 
1756 	/*
1757 	 * Correct cpu_idstr and cpu_brandstr on target CPU after
1758 	 * cpuid_pass1() is done.
1759 	 */
1760 	(void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN);
1761 	(void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN);
1762 
1763 	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS;
1764 
1765 	post_startup_cpu_fixups();
1766 
1767 	cpu_event_init_cpu(cp);
1768 
1769 	/*
1770 	 * Enable preemption here so that contention for any locks acquired
1771 	 * later in mp_startup_common may be preempted if the thread owning
1772 	 * those locks is continuously executing on other CPUs (for example,
1773 	 * this CPU must be preemptible to allow other CPUs to pause it during
1774 	 * their startup phases).  It's safe to enable preemption here because
1775 	 * the CPU state is pretty-much fully constructed.
1776 	 */
1777 	curthread->t_preempt = 0;
1778 
1779 	/* The base spl should still be at LOCK LEVEL here */
1780 	ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
1781 	set_base_spl();		/* Restore the spl to its proper value */
1782 
1783 	pghw_physid_create(cp);
1784 	/*
1785 	 * Delegate initialization tasks, which need to access the cpu_lock,
1786 	 * to mp_start_cpu_common() because we can't acquire the cpu_lock here
1787 	 * during CPU DR operations.
1788 	 */
1789 	mp_startup_signal(&procset_slave, cp->cpu_id);
1790 	mp_startup_wait(&procset_master, cp->cpu_id);
1791 	pg_cmt_cpu_startup(cp);
1792 
1793 	if (boot) {
1794 		mutex_enter(&cpu_lock);
1795 		cp->cpu_flags &= ~CPU_OFFLINE;
1796 		cpu_enable_intr(cp);
1797 		cpu_add_active(cp);
1798 		mutex_exit(&cpu_lock);
1799 	}
1800 
1801 	/* Enable interrupts */
1802 	(void) spl0();
1803 
1804 	/*
1805 	 * Fill out cpu_ucode_info.  Update microcode if necessary.
1806 	 */
1807 	ucode_check(cp);
1808 
1809 #ifndef __xpv
1810 	{
1811 		/*
1812 		 * Set up the CPU module for this CPU.  This can't be done
1813 		 * before this CPU is made CPU_READY, because we may (in
1814 		 * heterogeneous systems) need to go load another CPU module.
1815 		 * The act of attempting to load a module may trigger a
1816 		 * cross-call, which will ASSERT unless this cpu is CPU_READY.
1817 		 */
1818 		cmi_hdl_t hdl;
1819 
1820 		if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1821 		    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1822 			if (is_x86_feature(x86_featureset, X86FSET_MCA))
1823 				cmi_mca_init(hdl);
1824 			cp->cpu_m.mcpu_cmi_hdl = hdl;
1825 		}
1826 	}
1827 #endif /* __xpv */
1828 
1829 	if (boothowto & RB_DEBUG)
1830 		kdi_cpu_init();
1831 
1832 	/*
1833 	 * Setting the bit in cpu_ready_set must be the last operation in
1834 	 * processor initialization; the boot CPU will continue to boot once
1835 	 * it sees this bit set for all active CPUs.
1836 	 */
1837 	CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1838 
1839 	(void) mach_cpu_create_device_node(cp, NULL);
1840 
1841 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
1842 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
1843 	cmn_err(CE_CONT, "?cpu%d initialization complete - online\n",
1844 	    cp->cpu_id);
1845 
1846 	/*
1847 	 * Now we are done with the startup thread, so free it up.
1848 	 */
1849 	thread_exit();
1850 	panic("mp_startup: cannot return");
1851 	/*NOTREACHED*/
1852 }
1853 
1854 /*
1855  * Startup function for 'other' CPUs at boot time (besides boot cpu).
1856  */
1857 static void
1858 mp_startup_boot(void)
1859 {
1860 	mp_startup_common(B_TRUE);
1861 }
1862 
1863 /*
1864  * Startup function for hotplug CPUs at runtime.
1865  */
1866 void
1867 mp_startup_hotplug(void)
1868 {
1869 	mp_startup_common(B_FALSE);
1870 }
1871 
1872 /*
1873  * Start CPU on user request.
1874  */
1875 /* ARGSUSED */
1876 int
1877 mp_cpu_start(struct cpu *cp)
1878 {
1879 	ASSERT(MUTEX_HELD(&cpu_lock));
1880 	return (0);
1881 }
1882 
1883 /*
1884  * Stop CPU on user request.
1885  */
1886 int
1887 mp_cpu_stop(struct cpu *cp)
1888 {
1889 	extern int cbe_psm_timer_mode;
1890 	ASSERT(MUTEX_HELD(&cpu_lock));
1891 
1892 #ifdef __xpv
1893 	/*
1894 	 * We can't offline vcpu0.
1895 	 */
1896 	if (cp->cpu_id == 0)
1897 		return (EBUSY);
1898 #endif
1899 
1900 	/*
1901 	 * If TIMER_PERIODIC mode is used, CPU0 is the one running it;
1902 	 * can't stop it.  (This is true only for machines with no TSC.)
1903 	 */
1904 
1905 	if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
1906 		return (EBUSY);
1907 
1908 	return (0);
1909 }
1910 
1911 /*
1912  * Take the specified CPU out of participation in interrupts.
1913  */
1914 int
1915 cpu_disable_intr(struct cpu *cp)
1916 {
1917 	if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1918 		return (EBUSY);
1919 
1920 	cp->cpu_flags &= ~CPU_ENABLE;
1921 	return (0);
1922 }
1923 
1924 /*
1925  * Allow the specified CPU to participate in interrupts.
1926  */
1927 void
1928 cpu_enable_intr(struct cpu *cp)
1929 {
1930 	ASSERT(MUTEX_HELD(&cpu_lock));
1931 	cp->cpu_flags |= CPU_ENABLE;
1932 	psm_enable_intr(cp->cpu_id);
1933 }
1934 
1935 void
1936 mp_cpu_faulted_enter(struct cpu *cp)
1937 {
1938 #ifdef __xpv
1939 	_NOTE(ARGUNUSED(cp));
1940 #else
1941 	cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
1942 
1943 	if (hdl != NULL) {
1944 		cmi_hdl_hold(hdl);
1945 	} else {
1946 		hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1947 		    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1948 	}
1949 	if (hdl != NULL) {
1950 		cmi_faulted_enter(hdl);
1951 		cmi_hdl_rele(hdl);
1952 	}
1953 #endif
1954 }
1955 
1956 void
1957 mp_cpu_faulted_exit(struct cpu *cp)
1958 {
1959 #ifdef __xpv
1960 	_NOTE(ARGUNUSED(cp));
1961 #else
1962 	cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
1963 
1964 	if (hdl != NULL) {
1965 		cmi_hdl_hold(hdl);
1966 	} else {
1967 		hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1968 		    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1969 	}
1970 	if (hdl != NULL) {
1971 		cmi_faulted_exit(hdl);
1972 		cmi_hdl_rele(hdl);
1973 	}
1974 #endif
1975 }
1976 
1977 /*
1978  * The following two routines are used as context operators on threads belonging
1979  * to processes with a private LDT (see sysi86).  Due to the rarity of such
1980  * processes, these routines are currently written for best code readability and
1981  * organization rather than speed.  We could avoid checking x86_featureset at
1982  * every context switch by installing different context ops, depending on
1983  * x86_featureset, at LDT creation time -- one for each combination of fast
1984  * syscall features.
1985  */
1986 
1987 /*ARGSUSED*/
1988 void
1989 cpu_fast_syscall_disable(void *arg)
1990 {
1991 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
1992 	    is_x86_feature(x86_featureset, X86FSET_SEP))
1993 		cpu_sep_disable();
1994 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
1995 	    is_x86_feature(x86_featureset, X86FSET_ASYSC))
1996 		cpu_asysc_disable();
1997 }
1998 
1999 /*ARGSUSED*/
2000 void
2001 cpu_fast_syscall_enable(void *arg)
2002 {
2003 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2004 	    is_x86_feature(x86_featureset, X86FSET_SEP))
2005 		cpu_sep_enable();
2006 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2007 	    is_x86_feature(x86_featureset, X86FSET_ASYSC))
2008 		cpu_asysc_enable();
2009 }
2010 
2011 static void
2012 cpu_sep_enable(void)
2013 {
2014 	ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
2015 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2016 
2017 	wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
2018 }
2019 
2020 static void
2021 cpu_sep_disable(void)
2022 {
2023 	ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
2024 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2025 
2026 	/*
2027 	 * Setting the SYSENTER_CS_MSR register to 0 causes software executing
2028 	 * the sysenter or sysexit instruction to trigger a #gp fault.
2029 	 */
2030 	wrmsr(MSR_INTC_SEP_CS, 0);
2031 }
2032 
2033 static void
2034 cpu_asysc_enable(void)
2035 {
2036 	ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
2037 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2038 
2039 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
2040 	    (uint64_t)(uintptr_t)AMD_EFER_SCE);
2041 }
2042 
2043 static void
2044 cpu_asysc_disable(void)
2045 {
2046 	ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
2047 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2048 
2049 	/*
2050 	 * Turn off the SCE (syscall enable) bit in the EFER register. Software
2051 	 * executing syscall or sysret with this bit off will incur a #ud trap.
2052 	 */
2053 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
2054 	    ~((uint64_t)(uintptr_t)AMD_EFER_SCE));
2055 }
2056