xref: /titanic_44/usr/src/uts/i86pc/os/mp_startup.c (revision 03fc868668dd42b1b163d1fb8af3968f7283a7eb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 /*
30  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
31  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
32  */
33 
34 #include <sys/types.h>
35 #include <sys/thread.h>
36 #include <sys/cpuvar.h>
37 #include <sys/cpu.h>
38 #include <sys/t_lock.h>
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/disp.h>
42 #include <sys/class.h>
43 #include <sys/cmn_err.h>
44 #include <sys/debug.h>
45 #include <sys/note.h>
46 #include <sys/asm_linkage.h>
47 #include <sys/x_call.h>
48 #include <sys/systm.h>
49 #include <sys/var.h>
50 #include <sys/vtrace.h>
51 #include <vm/hat.h>
52 #include <vm/as.h>
53 #include <vm/seg_kmem.h>
54 #include <vm/seg_kp.h>
55 #include <sys/segments.h>
56 #include <sys/kmem.h>
57 #include <sys/stack.h>
58 #include <sys/smp_impldefs.h>
59 #include <sys/x86_archext.h>
60 #include <sys/machsystm.h>
61 #include <sys/traptrace.h>
62 #include <sys/clock.h>
63 #include <sys/cpc_impl.h>
64 #include <sys/pg.h>
65 #include <sys/cmt.h>
66 #include <sys/dtrace.h>
67 #include <sys/archsystm.h>
68 #include <sys/fp.h>
69 #include <sys/reboot.h>
70 #include <sys/kdi_machimpl.h>
71 #include <vm/hat_i86.h>
72 #include <vm/vm_dep.h>
73 #include <sys/memnode.h>
74 #include <sys/pci_cfgspace.h>
75 #include <sys/mach_mmu.h>
76 #include <sys/sysmacros.h>
77 #if defined(__xpv)
78 #include <sys/hypervisor.h>
79 #endif
80 #include <sys/cpu_module.h>
81 #include <sys/ontrap.h>
82 
83 struct cpu	cpus[1];			/* CPU data */
84 struct cpu	*cpu[NCPU] = {&cpus[0]};	/* pointers to all CPUs */
85 struct cpu	*cpu_free_list;			/* list for released CPUs */
86 cpu_core_t	cpu_core[NCPU];			/* cpu_core structures */
87 
88 #define	cpu_next_free	cpu_prev
89 
90 /*
91  * Useful for disabling MP bring-up on a MP capable system.
92  */
93 int use_mp = 1;
94 
95 /*
96  * to be set by a PSM to indicate what cpus
97  * are sitting around on the system.
98  */
99 cpuset_t mp_cpus;
100 
101 /*
102  * This variable is used by the hat layer to decide whether or not
103  * critical sections are needed to prevent race conditions.  For sun4m,
104  * this variable is set once enough MP initialization has been done in
105  * order to allow cross calls.
106  */
107 int flushes_require_xcalls;
108 
109 cpuset_t cpu_ready_set;		/* initialized in startup() */
110 
111 static void mp_startup_boot(void);
112 static void mp_startup_hotplug(void);
113 
114 static void cpu_sep_enable(void);
115 static void cpu_sep_disable(void);
116 static void cpu_asysc_enable(void);
117 static void cpu_asysc_disable(void);
118 
119 /*
120  * Init CPU info - get CPU type info for processor_info system call.
121  */
122 void
123 init_cpu_info(struct cpu *cp)
124 {
125 	processor_info_t *pi = &cp->cpu_type_info;
126 
127 	/*
128 	 * Get clock-frequency property for the CPU.
129 	 */
130 	pi->pi_clock = cpu_freq;
131 
132 	/*
133 	 * Current frequency in Hz.
134 	 */
135 	cp->cpu_curr_clock = cpu_freq_hz;
136 
137 	/*
138 	 * Supported frequencies.
139 	 */
140 	if (cp->cpu_supp_freqs == NULL) {
141 		cpu_set_supp_freqs(cp, NULL);
142 	}
143 
144 	(void) strcpy(pi->pi_processor_type, "i386");
145 	if (fpu_exists)
146 		(void) strcpy(pi->pi_fputypes, "i387 compatible");
147 
148 	cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
149 	cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
150 
151 	/*
152 	 * If called for the BSP, cp is equal to current CPU.
153 	 * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info
154 	 * of current CPU as default values for cpu_idstr and cpu_brandstr.
155 	 * They will be corrected in mp_startup_common() after cpuid_pass1()
156 	 * has been invoked on target CPU.
157 	 */
158 	(void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN);
159 	(void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN);
160 }
161 
162 /*
163  * Configure syscall support on this CPU.
164  */
165 /*ARGSUSED*/
166 void
167 init_cpu_syscall(struct cpu *cp)
168 {
169 	kpreempt_disable();
170 
171 #if defined(__amd64)
172 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
173 	    is_x86_feature(x86_featureset, X86FSET_ASYSC)) {
174 
175 #if !defined(__lint)
176 		/*
177 		 * The syscall instruction imposes a certain ordering on
178 		 * segment selectors, so we double-check that ordering
179 		 * here.
180 		 */
181 		ASSERT(KDS_SEL == KCS_SEL + 8);
182 		ASSERT(UDS_SEL == U32CS_SEL + 8);
183 		ASSERT(UCS_SEL == U32CS_SEL + 16);
184 #endif
185 		/*
186 		 * Turn syscall/sysret extensions on.
187 		 */
188 		cpu_asysc_enable();
189 
190 		/*
191 		 * Program the magic registers ..
192 		 */
193 		wrmsr(MSR_AMD_STAR,
194 		    ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32);
195 		wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
196 		wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
197 
198 		/*
199 		 * This list of flags is masked off the incoming
200 		 * %rfl when we enter the kernel.
201 		 */
202 		wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T));
203 	}
204 #endif
205 
206 	/*
207 	 * On 32-bit kernels, we use sysenter/sysexit because it's too
208 	 * hard to use syscall/sysret, and it is more portable anyway.
209 	 *
210 	 * On 64-bit kernels on Nocona machines, the 32-bit syscall
211 	 * variant isn't available to 32-bit applications, but sysenter is.
212 	 */
213 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
214 	    is_x86_feature(x86_featureset, X86FSET_SEP)) {
215 
216 #if !defined(__lint)
217 		/*
218 		 * The sysenter instruction imposes a certain ordering on
219 		 * segment selectors, so we double-check that ordering
220 		 * here. See "sysenter" in Intel document 245471-012, "IA-32
221 		 * Intel Architecture Software Developer's Manual Volume 2:
222 		 * Instruction Set Reference"
223 		 */
224 		ASSERT(KDS_SEL == KCS_SEL + 8);
225 
226 		ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
227 		ASSERT32(UDS_SEL == UCS_SEL + 8);
228 
229 		ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
230 		ASSERT64(UDS_SEL == U32CS_SEL + 8);
231 #endif
232 
233 		cpu_sep_enable();
234 
235 		/*
236 		 * resume() sets this value to the base of the threads stack
237 		 * via a context handler.
238 		 */
239 		wrmsr(MSR_INTC_SEP_ESP, 0);
240 		wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
241 	}
242 
243 	kpreempt_enable();
244 }
245 
246 /*
247  * Multiprocessor initialization.
248  *
249  * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
250  * startup and idle threads for the specified CPU.
251  * Parameter boot is true for boot time operations and is false for CPU
252  * DR operations.
253  */
254 static struct cpu *
255 mp_cpu_configure_common(int cpun, boolean_t boot)
256 {
257 	struct cpu *cp;
258 	kthread_id_t tp;
259 	caddr_t	sp;
260 	proc_t *procp;
261 #if !defined(__xpv)
262 	extern int idle_cpu_prefer_mwait;
263 	extern void cpu_idle_mwait();
264 #endif
265 	extern void idle();
266 	extern void cpu_idle();
267 
268 #ifdef TRAPTRACE
269 	trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
270 #endif
271 
272 	ASSERT(MUTEX_HELD(&cpu_lock));
273 	ASSERT(cpun < NCPU && cpu[cpun] == NULL);
274 
275 	if (cpu_free_list == NULL) {
276 		cp = kmem_zalloc(sizeof (*cp), KM_SLEEP);
277 	} else {
278 		cp = cpu_free_list;
279 		cpu_free_list = cp->cpu_next_free;
280 	}
281 
282 	cp->cpu_m.mcpu_istamp = cpun << 16;
283 
284 	/* Create per CPU specific threads in the process p0. */
285 	procp = &p0;
286 
287 	/*
288 	 * Initialize the dispatcher first.
289 	 */
290 	disp_cpu_init(cp);
291 
292 	cpu_vm_data_init(cp);
293 
294 	/*
295 	 * Allocate and initialize the startup thread for this CPU.
296 	 * Interrupt and process switch stacks get allocated later
297 	 * when the CPU starts running.
298 	 */
299 	tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
300 	    TS_STOPPED, maxclsyspri);
301 
302 	/*
303 	 * Set state to TS_ONPROC since this thread will start running
304 	 * as soon as the CPU comes online.
305 	 *
306 	 * All the other fields of the thread structure are setup by
307 	 * thread_create().
308 	 */
309 	THREAD_ONPROC(tp, cp);
310 	tp->t_preempt = 1;
311 	tp->t_bound_cpu = cp;
312 	tp->t_affinitycnt = 1;
313 	tp->t_cpu = cp;
314 	tp->t_disp_queue = cp->cpu_disp;
315 
316 	/*
317 	 * Setup thread to start in mp_startup_common.
318 	 */
319 	sp = tp->t_stk;
320 	tp->t_sp = (uintptr_t)(sp - MINFRAME);
321 #if defined(__amd64)
322 	tp->t_sp -= STACK_ENTRY_ALIGN;		/* fake a call */
323 #endif
324 	/*
325 	 * Setup thread start entry point for boot or hotplug.
326 	 */
327 	if (boot) {
328 		tp->t_pc = (uintptr_t)mp_startup_boot;
329 	} else {
330 		tp->t_pc = (uintptr_t)mp_startup_hotplug;
331 	}
332 
333 	cp->cpu_id = cpun;
334 	cp->cpu_self = cp;
335 	cp->cpu_thread = tp;
336 	cp->cpu_lwp = NULL;
337 	cp->cpu_dispthread = tp;
338 	cp->cpu_dispatch_pri = DISP_PRIO(tp);
339 
340 	/*
341 	 * cpu_base_spl must be set explicitly here to prevent any blocking
342 	 * operations in mp_startup_common from causing the spl of the cpu
343 	 * to drop to 0 (allowing device interrupts before we're ready) in
344 	 * resume().
345 	 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
346 	 * As an extra bit of security on DEBUG kernels, this is enforced with
347 	 * an assertion in mp_startup_common() -- before cpu_base_spl is set
348 	 * to its proper value.
349 	 */
350 	cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
351 
352 	/*
353 	 * Now, initialize per-CPU idle thread for this CPU.
354 	 */
355 	tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
356 
357 	cp->cpu_idle_thread = tp;
358 
359 	tp->t_preempt = 1;
360 	tp->t_bound_cpu = cp;
361 	tp->t_affinitycnt = 1;
362 	tp->t_cpu = cp;
363 	tp->t_disp_queue = cp->cpu_disp;
364 
365 	/*
366 	 * Bootstrap the CPU's PG data
367 	 */
368 	pg_cpu_bootstrap(cp);
369 
370 	/*
371 	 * Perform CPC initialization on the new CPU.
372 	 */
373 	kcpc_hw_init(cp);
374 
375 	/*
376 	 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
377 	 * for each CPU.
378 	 */
379 	setup_vaddr_for_ppcopy(cp);
380 
381 	/*
382 	 * Allocate page for new GDT and initialize from current GDT.
383 	 */
384 #if !defined(__lint)
385 	ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE);
386 #endif
387 	cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP);
388 	bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT));
389 
390 #if defined(__i386)
391 	/*
392 	 * setup kernel %gs.
393 	 */
394 	set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
395 	    SEL_KPL, 0, 1);
396 #endif
397 
398 	/*
399 	 * If we have more than one node, each cpu gets a copy of IDT
400 	 * local to its node. If this is a Pentium box, we use cpu 0's
401 	 * IDT. cpu 0's IDT has been made read-only to workaround the
402 	 * cmpxchgl register bug
403 	 */
404 	if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
405 #if !defined(__lint)
406 		ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE);
407 #endif
408 		cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP);
409 		bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE);
410 	} else {
411 		cp->cpu_idt = CPU->cpu_idt;
412 	}
413 
414 	/*
415 	 * Get interrupt priority data from cpu 0.
416 	 */
417 	cp->cpu_pri_data = CPU->cpu_pri_data;
418 
419 	/*
420 	 * alloc space for cpuid info
421 	 */
422 	cpuid_alloc_space(cp);
423 #if !defined(__xpv)
424 	if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
425 	    idle_cpu_prefer_mwait) {
426 		cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp);
427 		cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
428 	} else
429 #endif
430 		cp->cpu_m.mcpu_idle_cpu = cpu_idle;
431 
432 	init_cpu_info(cp);
433 
434 	/*
435 	 * alloc space for ucode_info
436 	 */
437 	ucode_alloc_space(cp);
438 	xc_init_cpu(cp);
439 	hat_cpu_online(cp);
440 
441 #ifdef TRAPTRACE
442 	/*
443 	 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers
444 	 */
445 	ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
446 	ttc->ttc_next = ttc->ttc_first;
447 	ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
448 #endif
449 
450 	/*
451 	 * Record that we have another CPU.
452 	 */
453 	/*
454 	 * Initialize the interrupt threads for this CPU
455 	 */
456 	cpu_intr_alloc(cp, NINTR_THREADS);
457 
458 	cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
459 	cpu_set_state(cp);
460 
461 	/*
462 	 * Add CPU to list of available CPUs.  It'll be on the active list
463 	 * after mp_startup_common().
464 	 */
465 	cpu_add_unit(cp);
466 
467 	return (cp);
468 }
469 
470 /*
471  * Undo what was done in mp_cpu_configure_common
472  */
473 static void
474 mp_cpu_unconfigure_common(struct cpu *cp, int error)
475 {
476 	ASSERT(MUTEX_HELD(&cpu_lock));
477 
478 	/*
479 	 * Remove the CPU from the list of available CPUs.
480 	 */
481 	cpu_del_unit(cp->cpu_id);
482 
483 	if (error == ETIMEDOUT) {
484 		/*
485 		 * The cpu was started, but never *seemed* to run any
486 		 * code in the kernel; it's probably off spinning in its
487 		 * own private world, though with potential references to
488 		 * our kmem-allocated IDTs and GDTs (for example).
489 		 *
490 		 * Worse still, it may actually wake up some time later,
491 		 * so rather than guess what it might or might not do, we
492 		 * leave the fundamental data structures intact.
493 		 */
494 		cp->cpu_flags = 0;
495 		return;
496 	}
497 
498 	/*
499 	 * At this point, the only threads bound to this CPU should
500 	 * special per-cpu threads: it's idle thread, it's pause threads,
501 	 * and it's interrupt threads.  Clean these up.
502 	 */
503 	cpu_destroy_bound_threads(cp);
504 	cp->cpu_idle_thread = NULL;
505 
506 	/*
507 	 * Free the interrupt stack.
508 	 */
509 	segkp_release(segkp,
510 	    cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME)));
511 	cp->cpu_intr_stack = NULL;
512 
513 #ifdef TRAPTRACE
514 	/*
515 	 * Discard the trap trace buffer
516 	 */
517 	{
518 		trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id];
519 
520 		kmem_free((void *)ttc->ttc_first, trap_trace_bufsize);
521 		ttc->ttc_first = NULL;
522 	}
523 #endif
524 
525 	hat_cpu_offline(cp);
526 
527 	ucode_free_space(cp);
528 
529 	/* Free CPU ID string and brand string. */
530 	if (cp->cpu_idstr) {
531 		kmem_free(cp->cpu_idstr, CPU_IDSTRLEN);
532 		cp->cpu_idstr = NULL;
533 	}
534 	if (cp->cpu_brandstr) {
535 		kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN);
536 		cp->cpu_brandstr = NULL;
537 	}
538 
539 #if !defined(__xpv)
540 	if (cp->cpu_m.mcpu_mwait != NULL) {
541 		cpuid_mwait_free(cp);
542 		cp->cpu_m.mcpu_mwait = NULL;
543 	}
544 #endif
545 	cpuid_free_space(cp);
546 
547 	if (cp->cpu_idt != CPU->cpu_idt)
548 		kmem_free(cp->cpu_idt, PAGESIZE);
549 	cp->cpu_idt = NULL;
550 
551 	kmem_free(cp->cpu_gdt, PAGESIZE);
552 	cp->cpu_gdt = NULL;
553 
554 	if (cp->cpu_supp_freqs != NULL) {
555 		size_t len = strlen(cp->cpu_supp_freqs) + 1;
556 		kmem_free(cp->cpu_supp_freqs, len);
557 		cp->cpu_supp_freqs = NULL;
558 	}
559 
560 	teardown_vaddr_for_ppcopy(cp);
561 
562 	kcpc_hw_fini(cp);
563 
564 	cp->cpu_dispthread = NULL;
565 	cp->cpu_thread = NULL;	/* discarded by cpu_destroy_bound_threads() */
566 
567 	cpu_vm_data_destroy(cp);
568 
569 	xc_fini_cpu(cp);
570 	disp_cpu_fini(cp);
571 
572 	ASSERT(cp != CPU0);
573 	bzero(cp, sizeof (*cp));
574 	cp->cpu_next_free = cpu_free_list;
575 	cpu_free_list = cp;
576 }
577 
578 /*
579  * Apply workarounds for known errata, and warn about those that are absent.
580  *
581  * System vendors occasionally create configurations which contain different
582  * revisions of the CPUs that are almost but not exactly the same.  At the
583  * time of writing, this meant that their clock rates were the same, their
584  * feature sets were the same, but the required workaround were -not-
585  * necessarily the same.  So, this routine is invoked on -every- CPU soon
586  * after starting to make sure that the resulting system contains the most
587  * pessimal set of workarounds needed to cope with *any* of the CPUs in the
588  * system.
589  *
590  * workaround_errata is invoked early in mlsetup() for CPU 0, and in
591  * mp_startup_common() for all slave CPUs. Slaves process workaround_errata
592  * prior to acknowledging their readiness to the master, so this routine will
593  * never be executed by multiple CPUs in parallel, thus making updates to
594  * global data safe.
595  *
596  * These workarounds are based on Rev 3.57 of the Revision Guide for
597  * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
598  */
599 
600 #if defined(OPTERON_ERRATUM_88)
601 int opteron_erratum_88;		/* if non-zero -> at least one cpu has it */
602 #endif
603 
604 #if defined(OPTERON_ERRATUM_91)
605 int opteron_erratum_91;		/* if non-zero -> at least one cpu has it */
606 #endif
607 
608 #if defined(OPTERON_ERRATUM_93)
609 int opteron_erratum_93;		/* if non-zero -> at least one cpu has it */
610 #endif
611 
612 #if defined(OPTERON_ERRATUM_95)
613 int opteron_erratum_95;		/* if non-zero -> at least one cpu has it */
614 #endif
615 
616 #if defined(OPTERON_ERRATUM_100)
617 int opteron_erratum_100;	/* if non-zero -> at least one cpu has it */
618 #endif
619 
620 #if defined(OPTERON_ERRATUM_108)
621 int opteron_erratum_108;	/* if non-zero -> at least one cpu has it */
622 #endif
623 
624 #if defined(OPTERON_ERRATUM_109)
625 int opteron_erratum_109;	/* if non-zero -> at least one cpu has it */
626 #endif
627 
628 #if defined(OPTERON_ERRATUM_121)
629 int opteron_erratum_121;	/* if non-zero -> at least one cpu has it */
630 #endif
631 
632 #if defined(OPTERON_ERRATUM_122)
633 int opteron_erratum_122;	/* if non-zero -> at least one cpu has it */
634 #endif
635 
636 #if defined(OPTERON_ERRATUM_123)
637 int opteron_erratum_123;	/* if non-zero -> at least one cpu has it */
638 #endif
639 
640 #if defined(OPTERON_ERRATUM_131)
641 int opteron_erratum_131;	/* if non-zero -> at least one cpu has it */
642 #endif
643 
644 #if defined(OPTERON_WORKAROUND_6336786)
645 int opteron_workaround_6336786;	/* non-zero -> WA relevant and applied */
646 int opteron_workaround_6336786_UP = 0;	/* Not needed for UP */
647 #endif
648 
649 #if defined(OPTERON_WORKAROUND_6323525)
650 int opteron_workaround_6323525;	/* if non-zero -> at least one cpu has it */
651 #endif
652 
653 #if defined(OPTERON_ERRATUM_298)
654 int opteron_erratum_298;
655 #endif
656 
657 #if defined(OPTERON_ERRATUM_721)
658 int opteron_erratum_721;
659 #endif
660 
661 static void
662 workaround_warning(cpu_t *cp, uint_t erratum)
663 {
664 	cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u",
665 	    cp->cpu_id, erratum);
666 }
667 
668 static void
669 workaround_applied(uint_t erratum)
670 {
671 	if (erratum > 1000000)
672 		cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n",
673 		    erratum);
674 	else
675 		cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n",
676 		    erratum);
677 }
678 
679 static void
680 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error)
681 {
682 	cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d",
683 	    cp->cpu_id, rw, msr, error);
684 }
685 
686 /*
687  * Determine the number of nodes in a Hammer / Greyhound / Griffin family
688  * system.
689  */
690 static uint_t
691 opteron_get_nnodes(void)
692 {
693 	static uint_t nnodes = 0;
694 
695 	if (nnodes == 0) {
696 #ifdef	DEBUG
697 		uint_t family;
698 
699 		/*
700 		 * This routine uses a PCI config space based mechanism
701 		 * for retrieving the number of nodes in the system.
702 		 * Device 24, function 0, offset 0x60 as used here is not
703 		 * AMD processor architectural, and may not work on processor
704 		 * families other than those listed below.
705 		 *
706 		 * Callers of this routine must ensure that we're running on
707 		 * a processor which supports this mechanism.
708 		 * The assertion below is meant to catch calls on unsupported
709 		 * processors.
710 		 */
711 		family = cpuid_getfamily(CPU);
712 		ASSERT(family == 0xf || family == 0x10 || family == 0x11);
713 #endif	/* DEBUG */
714 
715 		/*
716 		 * Obtain the number of nodes in the system from
717 		 * bits [6:4] of the Node ID register on node 0.
718 		 *
719 		 * The actual node count is NodeID[6:4] + 1
720 		 *
721 		 * The Node ID register is accessed via function 0,
722 		 * offset 0x60. Node 0 is device 24.
723 		 */
724 		nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1;
725 	}
726 	return (nnodes);
727 }
728 
729 uint_t
730 do_erratum_298(struct cpu *cpu)
731 {
732 	static int	osvwrc = -3;
733 	extern int	osvw_opteron_erratum(cpu_t *, uint_t);
734 
735 	/*
736 	 * L2 Eviction May Occur During Processor Operation To Set
737 	 * Accessed or Dirty Bit.
738 	 */
739 	if (osvwrc == -3) {
740 		osvwrc = osvw_opteron_erratum(cpu, 298);
741 	} else {
742 		/* osvw return codes should be consistent for all cpus */
743 		ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298));
744 	}
745 
746 	switch (osvwrc) {
747 	case 0:		/* erratum is not present: do nothing */
748 		break;
749 	case 1:		/* erratum is present: BIOS workaround applied */
750 		/*
751 		 * check if workaround is actually in place and issue warning
752 		 * if not.
753 		 */
754 		if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
755 		    ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) {
756 #if defined(OPTERON_ERRATUM_298)
757 			opteron_erratum_298++;
758 #else
759 			workaround_warning(cpu, 298);
760 			return (1);
761 #endif
762 		}
763 		break;
764 	case -1:	/* cannot determine via osvw: check cpuid */
765 		if ((cpuid_opteron_erratum(cpu, 298) > 0) &&
766 		    (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
767 		    ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) {
768 #if defined(OPTERON_ERRATUM_298)
769 			opteron_erratum_298++;
770 #else
771 			workaround_warning(cpu, 298);
772 			return (1);
773 #endif
774 		}
775 		break;
776 	}
777 	return (0);
778 }
779 
780 uint_t
781 workaround_errata(struct cpu *cpu)
782 {
783 	uint_t missing = 0;
784 
785 	ASSERT(cpu == CPU);
786 
787 	/*LINTED*/
788 	if (cpuid_opteron_erratum(cpu, 88) > 0) {
789 		/*
790 		 * SWAPGS May Fail To Read Correct GS Base
791 		 */
792 #if defined(OPTERON_ERRATUM_88)
793 		/*
794 		 * The workaround is an mfence in the relevant assembler code
795 		 */
796 		opteron_erratum_88++;
797 #else
798 		workaround_warning(cpu, 88);
799 		missing++;
800 #endif
801 	}
802 
803 	if (cpuid_opteron_erratum(cpu, 91) > 0) {
804 		/*
805 		 * Software Prefetches May Report A Page Fault
806 		 */
807 #if defined(OPTERON_ERRATUM_91)
808 		/*
809 		 * fix is in trap.c
810 		 */
811 		opteron_erratum_91++;
812 #else
813 		workaround_warning(cpu, 91);
814 		missing++;
815 #endif
816 	}
817 
818 	if (cpuid_opteron_erratum(cpu, 93) > 0) {
819 		/*
820 		 * RSM Auto-Halt Restart Returns to Incorrect RIP
821 		 */
822 #if defined(OPTERON_ERRATUM_93)
823 		/*
824 		 * fix is in trap.c
825 		 */
826 		opteron_erratum_93++;
827 #else
828 		workaround_warning(cpu, 93);
829 		missing++;
830 #endif
831 	}
832 
833 	/*LINTED*/
834 	if (cpuid_opteron_erratum(cpu, 95) > 0) {
835 		/*
836 		 * RET Instruction May Return to Incorrect EIP
837 		 */
838 #if defined(OPTERON_ERRATUM_95)
839 #if defined(_LP64)
840 		/*
841 		 * Workaround this by ensuring that 32-bit user code and
842 		 * 64-bit kernel code never occupy the same address
843 		 * range mod 4G.
844 		 */
845 		if (_userlimit32 > 0xc0000000ul)
846 			*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
847 
848 		/*LINTED*/
849 		ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
850 		opteron_erratum_95++;
851 #endif	/* _LP64 */
852 #else
853 		workaround_warning(cpu, 95);
854 		missing++;
855 #endif
856 	}
857 
858 	if (cpuid_opteron_erratum(cpu, 100) > 0) {
859 		/*
860 		 * Compatibility Mode Branches Transfer to Illegal Address
861 		 */
862 #if defined(OPTERON_ERRATUM_100)
863 		/*
864 		 * fix is in trap.c
865 		 */
866 		opteron_erratum_100++;
867 #else
868 		workaround_warning(cpu, 100);
869 		missing++;
870 #endif
871 	}
872 
873 	/*LINTED*/
874 	if (cpuid_opteron_erratum(cpu, 108) > 0) {
875 		/*
876 		 * CPUID Instruction May Return Incorrect Model Number In
877 		 * Some Processors
878 		 */
879 #if defined(OPTERON_ERRATUM_108)
880 		/*
881 		 * (Our cpuid-handling code corrects the model number on
882 		 * those processors)
883 		 */
884 #else
885 		workaround_warning(cpu, 108);
886 		missing++;
887 #endif
888 	}
889 
890 	/*LINTED*/
891 	if (cpuid_opteron_erratum(cpu, 109) > 0) do {
892 		/*
893 		 * Certain Reverse REP MOVS May Produce Unpredictable Behavior
894 		 */
895 #if defined(OPTERON_ERRATUM_109)
896 		/*
897 		 * The "workaround" is to print a warning to upgrade the BIOS
898 		 */
899 		uint64_t value;
900 		const uint_t msr = MSR_AMD_PATCHLEVEL;
901 		int err;
902 
903 		if ((err = checked_rdmsr(msr, &value)) != 0) {
904 			msr_warning(cpu, "rd", msr, err);
905 			workaround_warning(cpu, 109);
906 			missing++;
907 		}
908 		if (value == 0)
909 			opteron_erratum_109++;
910 #else
911 		workaround_warning(cpu, 109);
912 		missing++;
913 #endif
914 	/*CONSTANTCONDITION*/
915 	} while (0);
916 
917 	/*LINTED*/
918 	if (cpuid_opteron_erratum(cpu, 121) > 0) {
919 		/*
920 		 * Sequential Execution Across Non_Canonical Boundary Caused
921 		 * Processor Hang
922 		 */
923 #if defined(OPTERON_ERRATUM_121)
924 #if defined(_LP64)
925 		/*
926 		 * Erratum 121 is only present in long (64 bit) mode.
927 		 * Workaround is to include the page immediately before the
928 		 * va hole to eliminate the possibility of system hangs due to
929 		 * sequential execution across the va hole boundary.
930 		 */
931 		if (opteron_erratum_121)
932 			opteron_erratum_121++;
933 		else {
934 			if (hole_start) {
935 				hole_start -= PAGESIZE;
936 			} else {
937 				/*
938 				 * hole_start not yet initialized by
939 				 * mmu_init. Initialize hole_start
940 				 * with value to be subtracted.
941 				 */
942 				hole_start = PAGESIZE;
943 			}
944 			opteron_erratum_121++;
945 		}
946 #endif	/* _LP64 */
947 #else
948 		workaround_warning(cpu, 121);
949 		missing++;
950 #endif
951 	}
952 
953 	/*LINTED*/
954 	if (cpuid_opteron_erratum(cpu, 122) > 0) do {
955 		/*
956 		 * TLB Flush Filter May Cause Coherency Problem in
957 		 * Multiprocessor Systems
958 		 */
959 #if defined(OPTERON_ERRATUM_122)
960 		uint64_t value;
961 		const uint_t msr = MSR_AMD_HWCR;
962 		int error;
963 
964 		/*
965 		 * Erratum 122 is only present in MP configurations (multi-core
966 		 * or multi-processor).
967 		 */
968 #if defined(__xpv)
969 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
970 			break;
971 		if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1)
972 			break;
973 #else
974 		if (!opteron_erratum_122 && opteron_get_nnodes() == 1 &&
975 		    cpuid_get_ncpu_per_chip(cpu) == 1)
976 			break;
977 #endif
978 		/* disable TLB Flush Filter */
979 
980 		if ((error = checked_rdmsr(msr, &value)) != 0) {
981 			msr_warning(cpu, "rd", msr, error);
982 			workaround_warning(cpu, 122);
983 			missing++;
984 		} else {
985 			value |= (uint64_t)AMD_HWCR_FFDIS;
986 			if ((error = checked_wrmsr(msr, value)) != 0) {
987 				msr_warning(cpu, "wr", msr, error);
988 				workaround_warning(cpu, 122);
989 				missing++;
990 			}
991 		}
992 		opteron_erratum_122++;
993 #else
994 		workaround_warning(cpu, 122);
995 		missing++;
996 #endif
997 	/*CONSTANTCONDITION*/
998 	} while (0);
999 
1000 	/*LINTED*/
1001 	if (cpuid_opteron_erratum(cpu, 123) > 0) do {
1002 		/*
1003 		 * Bypassed Reads May Cause Data Corruption of System Hang in
1004 		 * Dual Core Processors
1005 		 */
1006 #if defined(OPTERON_ERRATUM_123)
1007 		uint64_t value;
1008 		const uint_t msr = MSR_AMD_PATCHLEVEL;
1009 		int err;
1010 
1011 		/*
1012 		 * Erratum 123 applies only to multi-core cpus.
1013 		 */
1014 		if (cpuid_get_ncpu_per_chip(cpu) < 2)
1015 			break;
1016 #if defined(__xpv)
1017 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
1018 			break;
1019 #endif
1020 		/*
1021 		 * The "workaround" is to print a warning to upgrade the BIOS
1022 		 */
1023 		if ((err = checked_rdmsr(msr, &value)) != 0) {
1024 			msr_warning(cpu, "rd", msr, err);
1025 			workaround_warning(cpu, 123);
1026 			missing++;
1027 		}
1028 		if (value == 0)
1029 			opteron_erratum_123++;
1030 #else
1031 		workaround_warning(cpu, 123);
1032 		missing++;
1033 
1034 #endif
1035 	/*CONSTANTCONDITION*/
1036 	} while (0);
1037 
1038 	/*LINTED*/
1039 	if (cpuid_opteron_erratum(cpu, 131) > 0) do {
1040 		/*
1041 		 * Multiprocessor Systems with Four or More Cores May Deadlock
1042 		 * Waiting for a Probe Response
1043 		 */
1044 #if defined(OPTERON_ERRATUM_131)
1045 		uint64_t nbcfg;
1046 		const uint_t msr = MSR_AMD_NB_CFG;
1047 		const uint64_t wabits =
1048 		    AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR;
1049 		int error;
1050 
1051 		/*
1052 		 * Erratum 131 applies to any system with four or more cores.
1053 		 */
1054 		if (opteron_erratum_131)
1055 			break;
1056 #if defined(__xpv)
1057 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
1058 			break;
1059 		if (xpv_nr_phys_cpus() < 4)
1060 			break;
1061 #else
1062 		if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4)
1063 			break;
1064 #endif
1065 		/*
1066 		 * Print a warning if neither of the workarounds for
1067 		 * erratum 131 is present.
1068 		 */
1069 		if ((error = checked_rdmsr(msr, &nbcfg)) != 0) {
1070 			msr_warning(cpu, "rd", msr, error);
1071 			workaround_warning(cpu, 131);
1072 			missing++;
1073 		} else if ((nbcfg & wabits) == 0) {
1074 			opteron_erratum_131++;
1075 		} else {
1076 			/* cannot have both workarounds set */
1077 			ASSERT((nbcfg & wabits) != wabits);
1078 		}
1079 #else
1080 		workaround_warning(cpu, 131);
1081 		missing++;
1082 #endif
1083 	/*CONSTANTCONDITION*/
1084 	} while (0);
1085 
1086 	/*
1087 	 * This isn't really an erratum, but for convenience the
1088 	 * detection/workaround code lives here and in cpuid_opteron_erratum.
1089 	 */
1090 	if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
1091 #if defined(OPTERON_WORKAROUND_6336786)
1092 		/*
1093 		 * Disable C1-Clock ramping on multi-core/multi-processor
1094 		 * K8 platforms to guard against TSC drift.
1095 		 */
1096 		if (opteron_workaround_6336786) {
1097 			opteron_workaround_6336786++;
1098 #if defined(__xpv)
1099 		} else if ((DOMAIN_IS_INITDOMAIN(xen_info) &&
1100 		    xpv_nr_phys_cpus() > 1) ||
1101 		    opteron_workaround_6336786_UP) {
1102 			/*
1103 			 * XXPV	Hmm.  We can't walk the Northbridges on
1104 			 *	the hypervisor; so just complain and drive
1105 			 *	on.  This probably needs to be fixed in
1106 			 *	the hypervisor itself.
1107 			 */
1108 			opteron_workaround_6336786++;
1109 			workaround_warning(cpu, 6336786);
1110 #else	/* __xpv */
1111 		} else if ((opteron_get_nnodes() *
1112 		    cpuid_get_ncpu_per_chip(cpu) > 1) ||
1113 		    opteron_workaround_6336786_UP) {
1114 
1115 			uint_t	node, nnodes;
1116 			uint8_t data;
1117 
1118 			nnodes = opteron_get_nnodes();
1119 			for (node = 0; node < nnodes; node++) {
1120 				/*
1121 				 * Clear PMM7[1:0] (function 3, offset 0x87)
1122 				 * Northbridge device is the node id + 24.
1123 				 */
1124 				data = pci_getb_func(0, node + 24, 3, 0x87);
1125 				data &= 0xFC;
1126 				pci_putb_func(0, node + 24, 3, 0x87, data);
1127 			}
1128 			opteron_workaround_6336786++;
1129 #endif	/* __xpv */
1130 		}
1131 #else
1132 		workaround_warning(cpu, 6336786);
1133 		missing++;
1134 #endif
1135 	}
1136 
1137 	/*LINTED*/
1138 	/*
1139 	 * Mutex primitives don't work as expected.
1140 	 */
1141 	if (cpuid_opteron_erratum(cpu, 6323525) > 0) {
1142 #if defined(OPTERON_WORKAROUND_6323525)
1143 		/*
1144 		 * This problem only occurs with 2 or more cores. If bit in
1145 		 * MSR_AMD_BU_CFG set, then not applicable. The workaround
1146 		 * is to patch the semaphone routines with the lfence
1147 		 * instruction to provide necessary load memory barrier with
1148 		 * possible subsequent read-modify-write ops.
1149 		 *
1150 		 * It is too early in boot to call the patch routine so
1151 		 * set erratum variable to be done in startup_end().
1152 		 */
1153 		if (opteron_workaround_6323525) {
1154 			opteron_workaround_6323525++;
1155 #if defined(__xpv)
1156 		} else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1157 			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1158 				/*
1159 				 * XXPV	Use dom0_msr here when extended
1160 				 *	operations are supported?
1161 				 */
1162 				if (xpv_nr_phys_cpus() > 1)
1163 					opteron_workaround_6323525++;
1164 			} else {
1165 				/*
1166 				 * We have no way to tell how many physical
1167 				 * cpus there are, or even if this processor
1168 				 * has the problem, so enable the workaround
1169 				 * unconditionally (at some performance cost).
1170 				 */
1171 				opteron_workaround_6323525++;
1172 			}
1173 #else	/* __xpv */
1174 		} else if (is_x86_feature(x86_featureset, X86FSET_SSE2) &&
1175 		    ((opteron_get_nnodes() *
1176 		    cpuid_get_ncpu_per_chip(cpu)) > 1)) {
1177 			if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0)
1178 				opteron_workaround_6323525++;
1179 #endif	/* __xpv */
1180 		}
1181 #else
1182 		workaround_warning(cpu, 6323525);
1183 		missing++;
1184 #endif
1185 	}
1186 
1187 	missing += do_erratum_298(cpu);
1188 
1189 	if (cpuid_opteron_erratum(cpu, 721) > 0) {
1190 #if defined(OPTERON_ERRATUM_721)
1191 		on_trap_data_t otd;
1192 
1193 		if (!on_trap(&otd, OT_DATA_ACCESS))
1194 			wrmsr(MSR_AMD_DE_CFG,
1195 			    rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721);
1196 		no_trap();
1197 
1198 		opteron_erratum_721++;
1199 #else
1200 		workaround_warning(cpu, 721);
1201 		missing++;
1202 #endif
1203 	}
1204 
1205 #ifdef __xpv
1206 	return (0);
1207 #else
1208 	return (missing);
1209 #endif
1210 }
1211 
1212 void
1213 workaround_errata_end()
1214 {
1215 #if defined(OPTERON_ERRATUM_88)
1216 	if (opteron_erratum_88)
1217 		workaround_applied(88);
1218 #endif
1219 #if defined(OPTERON_ERRATUM_91)
1220 	if (opteron_erratum_91)
1221 		workaround_applied(91);
1222 #endif
1223 #if defined(OPTERON_ERRATUM_93)
1224 	if (opteron_erratum_93)
1225 		workaround_applied(93);
1226 #endif
1227 #if defined(OPTERON_ERRATUM_95)
1228 	if (opteron_erratum_95)
1229 		workaround_applied(95);
1230 #endif
1231 #if defined(OPTERON_ERRATUM_100)
1232 	if (opteron_erratum_100)
1233 		workaround_applied(100);
1234 #endif
1235 #if defined(OPTERON_ERRATUM_108)
1236 	if (opteron_erratum_108)
1237 		workaround_applied(108);
1238 #endif
1239 #if defined(OPTERON_ERRATUM_109)
1240 	if (opteron_erratum_109) {
1241 		cmn_err(CE_WARN,
1242 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1243 		    " processor\nerratum 109 was not detected; updating your"
1244 		    " system's BIOS to a version\ncontaining this"
1245 		    " microcode patch is HIGHLY recommended or erroneous"
1246 		    " system\noperation may occur.\n");
1247 	}
1248 #endif
1249 #if defined(OPTERON_ERRATUM_121)
1250 	if (opteron_erratum_121)
1251 		workaround_applied(121);
1252 #endif
1253 #if defined(OPTERON_ERRATUM_122)
1254 	if (opteron_erratum_122)
1255 		workaround_applied(122);
1256 #endif
1257 #if defined(OPTERON_ERRATUM_123)
1258 	if (opteron_erratum_123) {
1259 		cmn_err(CE_WARN,
1260 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1261 		    " processor\nerratum 123 was not detected; updating your"
1262 		    " system's BIOS to a version\ncontaining this"
1263 		    " microcode patch is HIGHLY recommended or erroneous"
1264 		    " system\noperation may occur.\n");
1265 	}
1266 #endif
1267 #if defined(OPTERON_ERRATUM_131)
1268 	if (opteron_erratum_131) {
1269 		cmn_err(CE_WARN,
1270 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1271 		    " processor\nerratum 131 was not detected; updating your"
1272 		    " system's BIOS to a version\ncontaining this"
1273 		    " microcode patch is HIGHLY recommended or erroneous"
1274 		    " system\noperation may occur.\n");
1275 	}
1276 #endif
1277 #if defined(OPTERON_WORKAROUND_6336786)
1278 	if (opteron_workaround_6336786)
1279 		workaround_applied(6336786);
1280 #endif
1281 #if defined(OPTERON_WORKAROUND_6323525)
1282 	if (opteron_workaround_6323525)
1283 		workaround_applied(6323525);
1284 #endif
1285 #if defined(OPTERON_ERRATUM_298)
1286 	if (opteron_erratum_298) {
1287 		cmn_err(CE_WARN,
1288 		    "BIOS microcode patch for AMD 64/Opteron(tm)"
1289 		    " processor\nerratum 298 was not detected; updating your"
1290 		    " system's BIOS to a version\ncontaining this"
1291 		    " microcode patch is HIGHLY recommended or erroneous"
1292 		    " system\noperation may occur.\n");
1293 	}
1294 #endif
1295 #if defined(OPTERON_ERRATUM_721)
1296 	if (opteron_erratum_721)
1297 		workaround_applied(721);
1298 #endif
1299 }
1300 
1301 /*
1302  * The procset_slave and procset_master are used to synchronize
1303  * between the control CPU and the target CPU when starting CPUs.
1304  */
1305 static cpuset_t procset_slave, procset_master;
1306 
1307 static void
1308 mp_startup_wait(cpuset_t *sp, processorid_t cpuid)
1309 {
1310 	cpuset_t tempset;
1311 
1312 	for (tempset = *sp; !CPU_IN_SET(tempset, cpuid);
1313 	    tempset = *(volatile cpuset_t *)sp) {
1314 		SMT_PAUSE();
1315 	}
1316 	CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid);
1317 }
1318 
1319 static void
1320 mp_startup_signal(cpuset_t *sp, processorid_t cpuid)
1321 {
1322 	cpuset_t tempset;
1323 
1324 	CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid);
1325 	for (tempset = *sp; CPU_IN_SET(tempset, cpuid);
1326 	    tempset = *(volatile cpuset_t *)sp) {
1327 		SMT_PAUSE();
1328 	}
1329 }
1330 
1331 int
1332 mp_start_cpu_common(cpu_t *cp, boolean_t boot)
1333 {
1334 	_NOTE(ARGUNUSED(boot));
1335 
1336 	void *ctx;
1337 	int delays;
1338 	int error = 0;
1339 	cpuset_t tempset;
1340 	processorid_t cpuid;
1341 #ifndef __xpv
1342 	extern void cpupm_init(cpu_t *);
1343 #endif
1344 
1345 	ASSERT(cp != NULL);
1346 	cpuid = cp->cpu_id;
1347 	ctx = mach_cpucontext_alloc(cp);
1348 	if (ctx == NULL) {
1349 		cmn_err(CE_WARN,
1350 		    "cpu%d: failed to allocate context", cp->cpu_id);
1351 		return (EAGAIN);
1352 	}
1353 	error = mach_cpu_start(cp, ctx);
1354 	if (error != 0) {
1355 		cmn_err(CE_WARN,
1356 		    "cpu%d: failed to start, error %d", cp->cpu_id, error);
1357 		mach_cpucontext_free(cp, ctx, error);
1358 		return (error);
1359 	}
1360 
1361 	for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid);
1362 	    delays++) {
1363 		if (delays == 500) {
1364 			/*
1365 			 * After five seconds, things are probably looking
1366 			 * a bit bleak - explain the hang.
1367 			 */
1368 			cmn_err(CE_NOTE, "cpu%d: started, "
1369 			    "but not running in the kernel yet", cpuid);
1370 		} else if (delays > 2000) {
1371 			/*
1372 			 * We waited at least 20 seconds, bail ..
1373 			 */
1374 			error = ETIMEDOUT;
1375 			cmn_err(CE_WARN, "cpu%d: timed out", cpuid);
1376 			mach_cpucontext_free(cp, ctx, error);
1377 			return (error);
1378 		}
1379 
1380 		/*
1381 		 * wait at least 10ms, then check again..
1382 		 */
1383 		delay(USEC_TO_TICK_ROUNDUP(10000));
1384 		tempset = *((volatile cpuset_t *)&procset_slave);
1385 	}
1386 	CPUSET_ATOMIC_DEL(procset_slave, cpuid);
1387 
1388 	mach_cpucontext_free(cp, ctx, 0);
1389 
1390 #ifndef __xpv
1391 	if (tsc_gethrtime_enable)
1392 		tsc_sync_master(cpuid);
1393 #endif
1394 
1395 	if (dtrace_cpu_init != NULL) {
1396 		(*dtrace_cpu_init)(cpuid);
1397 	}
1398 
1399 	/*
1400 	 * During CPU DR operations, the cpu_lock is held by current
1401 	 * (the control) thread. We can't release the cpu_lock here
1402 	 * because that will break the CPU DR logic.
1403 	 * On the other hand, CPUPM and processor group initialization
1404 	 * routines need to access the cpu_lock. So we invoke those
1405 	 * routines here on behalf of mp_startup_common().
1406 	 *
1407 	 * CPUPM and processor group initialization routines depend
1408 	 * on the cpuid probing results. Wait for mp_startup_common()
1409 	 * to signal that cpuid probing is done.
1410 	 */
1411 	mp_startup_wait(&procset_slave, cpuid);
1412 #ifndef __xpv
1413 	cpupm_init(cp);
1414 #endif
1415 	(void) pg_cpu_init(cp, B_FALSE);
1416 	cpu_set_state(cp);
1417 	mp_startup_signal(&procset_master, cpuid);
1418 
1419 	return (0);
1420 }
1421 
1422 /*
1423  * Start a single cpu, assuming that the kernel context is available
1424  * to successfully start another cpu.
1425  *
1426  * (For example, real mode code is mapped into the right place
1427  * in memory and is ready to be run.)
1428  */
1429 int
1430 start_cpu(processorid_t who)
1431 {
1432 	cpu_t *cp;
1433 	int error = 0;
1434 	cpuset_t tempset;
1435 
1436 	ASSERT(who != 0);
1437 
1438 	/*
1439 	 * Check if there's at least a Mbyte of kmem available
1440 	 * before attempting to start the cpu.
1441 	 */
1442 	if (kmem_avail() < 1024 * 1024) {
1443 		/*
1444 		 * Kick off a reap in case that helps us with
1445 		 * later attempts ..
1446 		 */
1447 		kmem_reap();
1448 		return (ENOMEM);
1449 	}
1450 
1451 	/*
1452 	 * First configure cpu.
1453 	 */
1454 	cp = mp_cpu_configure_common(who, B_TRUE);
1455 	ASSERT(cp != NULL);
1456 
1457 	/*
1458 	 * Then start cpu.
1459 	 */
1460 	error = mp_start_cpu_common(cp, B_TRUE);
1461 	if (error != 0) {
1462 		mp_cpu_unconfigure_common(cp, error);
1463 		return (error);
1464 	}
1465 
1466 	mutex_exit(&cpu_lock);
1467 	tempset = cpu_ready_set;
1468 	while (!CPU_IN_SET(tempset, who)) {
1469 		drv_usecwait(1);
1470 		tempset = *((volatile cpuset_t *)&cpu_ready_set);
1471 	}
1472 	mutex_enter(&cpu_lock);
1473 
1474 	return (0);
1475 }
1476 
1477 void
1478 start_other_cpus(int cprboot)
1479 {
1480 	_NOTE(ARGUNUSED(cprboot));
1481 
1482 	uint_t who;
1483 	uint_t bootcpuid = 0;
1484 
1485 	/*
1486 	 * Initialize our own cpu_info.
1487 	 */
1488 	init_cpu_info(CPU);
1489 
1490 	cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr);
1491 	cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr);
1492 
1493 	/*
1494 	 * Initialize our syscall handlers
1495 	 */
1496 	init_cpu_syscall(CPU);
1497 
1498 	/*
1499 	 * Take the boot cpu out of the mp_cpus set because we know
1500 	 * it's already running.  Add it to the cpu_ready_set for
1501 	 * precisely the same reason.
1502 	 */
1503 	CPUSET_DEL(mp_cpus, bootcpuid);
1504 	CPUSET_ADD(cpu_ready_set, bootcpuid);
1505 
1506 	/*
1507 	 * skip the rest of this if
1508 	 * . only 1 cpu dectected and system isn't hotplug-capable
1509 	 * . not using MP
1510 	 */
1511 	if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) ||
1512 	    use_mp == 0) {
1513 		if (use_mp == 0)
1514 			cmn_err(CE_CONT, "?***** Not in MP mode\n");
1515 		goto done;
1516 	}
1517 
1518 	/*
1519 	 * perform such initialization as is needed
1520 	 * to be able to take CPUs on- and off-line.
1521 	 */
1522 	cpu_pause_init();
1523 
1524 	xc_init_cpu(CPU);		/* initialize processor crosscalls */
1525 
1526 	if (mach_cpucontext_init() != 0)
1527 		goto done;
1528 
1529 	flushes_require_xcalls = 1;
1530 
1531 	/*
1532 	 * We lock our affinity to the master CPU to ensure that all slave CPUs
1533 	 * do their TSC syncs with the same CPU.
1534 	 */
1535 	affinity_set(CPU_CURRENT);
1536 
1537 	for (who = 0; who < NCPU; who++) {
1538 		if (!CPU_IN_SET(mp_cpus, who))
1539 			continue;
1540 		ASSERT(who != bootcpuid);
1541 
1542 		mutex_enter(&cpu_lock);
1543 		if (start_cpu(who) != 0)
1544 			CPUSET_DEL(mp_cpus, who);
1545 		cpu_state_change_notify(who, CPU_SETUP);
1546 		mutex_exit(&cpu_lock);
1547 	}
1548 
1549 	/* Free the space allocated to hold the microcode file */
1550 	ucode_cleanup();
1551 
1552 	affinity_clear();
1553 
1554 	mach_cpucontext_fini();
1555 
1556 done:
1557 	if (get_hwenv() == HW_NATIVE)
1558 		workaround_errata_end();
1559 	cmi_post_mpstartup();
1560 
1561 	if (use_mp && ncpus != boot_max_ncpus) {
1562 		cmn_err(CE_NOTE,
1563 		    "System detected %d cpus, but "
1564 		    "only %d cpu(s) were enabled during boot.",
1565 		    boot_max_ncpus, ncpus);
1566 		cmn_err(CE_NOTE,
1567 		    "Use \"boot-ncpus\" parameter to enable more CPU(s). "
1568 		    "See eeprom(1M).");
1569 	}
1570 }
1571 
1572 int
1573 mp_cpu_configure(int cpuid)
1574 {
1575 	cpu_t *cp;
1576 
1577 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
1578 		return (ENOTSUP);
1579 	}
1580 
1581 	cp = cpu_get(cpuid);
1582 	if (cp != NULL) {
1583 		return (EALREADY);
1584 	}
1585 
1586 	/*
1587 	 * Check if there's at least a Mbyte of kmem available
1588 	 * before attempting to start the cpu.
1589 	 */
1590 	if (kmem_avail() < 1024 * 1024) {
1591 		/*
1592 		 * Kick off a reap in case that helps us with
1593 		 * later attempts ..
1594 		 */
1595 		kmem_reap();
1596 		return (ENOMEM);
1597 	}
1598 
1599 	cp = mp_cpu_configure_common(cpuid, B_FALSE);
1600 	ASSERT(cp != NULL && cpu_get(cpuid) == cp);
1601 
1602 	return (cp != NULL ? 0 : EAGAIN);
1603 }
1604 
1605 int
1606 mp_cpu_unconfigure(int cpuid)
1607 {
1608 	cpu_t *cp;
1609 
1610 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
1611 		return (ENOTSUP);
1612 	} else if (cpuid < 0 || cpuid >= max_ncpus) {
1613 		return (EINVAL);
1614 	}
1615 
1616 	cp = cpu_get(cpuid);
1617 	if (cp == NULL) {
1618 		return (ENODEV);
1619 	}
1620 	mp_cpu_unconfigure_common(cp, 0);
1621 
1622 	return (0);
1623 }
1624 
1625 /*
1626  * Startup function for 'other' CPUs (besides boot cpu).
1627  * Called from real_mode_start.
1628  *
1629  * WARNING: until CPU_READY is set, mp_startup_common and routines called by
1630  * mp_startup_common should not call routines (e.g. kmem_free) that could call
1631  * hat_unload which requires CPU_READY to be set.
1632  */
1633 static void
1634 mp_startup_common(boolean_t boot)
1635 {
1636 	cpu_t *cp = CPU;
1637 	uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)];
1638 	extern void cpu_event_init_cpu(cpu_t *);
1639 
1640 	/*
1641 	 * We need to get TSC on this proc synced (i.e., any delta
1642 	 * from cpu0 accounted for) as soon as we can, because many
1643 	 * many things use gethrtime/pc_gethrestime, including
1644 	 * interrupts, cmn_err, etc.
1645 	 */
1646 
1647 	/* Let the control CPU continue into tsc_sync_master() */
1648 	mp_startup_signal(&procset_slave, cp->cpu_id);
1649 
1650 #ifndef __xpv
1651 	if (tsc_gethrtime_enable)
1652 		tsc_sync_slave();
1653 #endif
1654 
1655 	/*
1656 	 * Once this was done from assembly, but it's safer here; if
1657 	 * it blocks, we need to be able to swtch() to and from, and
1658 	 * since we get here by calling t_pc, we need to do that call
1659 	 * before swtch() overwrites it.
1660 	 */
1661 	(void) (*ap_mlsetup)();
1662 
1663 	bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES));
1664 	cpuid_pass1(cp, new_x86_featureset);
1665 
1666 #ifndef __xpv
1667 	/*
1668 	 * Program this cpu's PAT
1669 	 */
1670 	if (is_x86_feature(x86_featureset, X86FSET_PAT))
1671 		pat_sync();
1672 #endif
1673 
1674 	/*
1675 	 * Set up TSC_AUX to contain the cpuid for this processor
1676 	 * for the rdtscp instruction.
1677 	 */
1678 	if (is_x86_feature(x86_featureset, X86FSET_TSCP))
1679 		(void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id);
1680 
1681 	/*
1682 	 * Initialize this CPU's syscall handlers
1683 	 */
1684 	init_cpu_syscall(cp);
1685 
1686 	/*
1687 	 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
1688 	 * highest level at which a routine is permitted to block on
1689 	 * an adaptive mutex (allows for cpu poke interrupt in case
1690 	 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
1691 	 * device interrupts that may end up in the hat layer issuing cross
1692 	 * calls before CPU_READY is set.
1693 	 */
1694 	splx(ipltospl(LOCK_LEVEL));
1695 	sti();
1696 
1697 	/*
1698 	 * Do a sanity check to make sure this new CPU is a sane thing
1699 	 * to add to the collection of processors running this system.
1700 	 *
1701 	 * XXX	Clearly this needs to get more sophisticated, if x86
1702 	 * systems start to get built out of heterogenous CPUs; as is
1703 	 * likely to happen once the number of processors in a configuration
1704 	 * gets large enough.
1705 	 */
1706 	if (compare_x86_featureset(x86_featureset, new_x86_featureset) ==
1707 	    B_FALSE) {
1708 		cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id);
1709 		print_x86_featureset(new_x86_featureset);
1710 		cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
1711 	}
1712 
1713 	/*
1714 	 * We do not support cpus with mixed monitor/mwait support if the
1715 	 * boot cpu supports monitor/mwait.
1716 	 */
1717 	if (is_x86_feature(x86_featureset, X86FSET_MWAIT) !=
1718 	    is_x86_feature(new_x86_featureset, X86FSET_MWAIT))
1719 		panic("unsupported mixed cpu monitor/mwait support detected");
1720 
1721 	/*
1722 	 * We could be more sophisticated here, and just mark the CPU
1723 	 * as "faulted" but at this point we'll opt for the easier
1724 	 * answer of dying horribly.  Provided the boot cpu is ok,
1725 	 * the system can be recovered by booting with use_mp set to zero.
1726 	 */
1727 	if (workaround_errata(cp) != 0)
1728 		panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
1729 
1730 	/*
1731 	 * We can touch cpu_flags here without acquiring the cpu_lock here
1732 	 * because the cpu_lock is held by the control CPU which is running
1733 	 * mp_start_cpu_common().
1734 	 * Need to clear CPU_QUIESCED flag before calling any function which
1735 	 * may cause thread context switching, such as kmem_alloc() etc.
1736 	 * The idle thread checks for CPU_QUIESCED flag and loops for ever if
1737 	 * it's set. So the startup thread may have no chance to switch back
1738 	 * again if it's switched away with CPU_QUIESCED set.
1739 	 */
1740 	cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED);
1741 
1742 	/*
1743 	 * Setup this processor for XSAVE.
1744 	 */
1745 	if (fp_save_mech == FP_XSAVE) {
1746 		xsave_setup_msr(cp);
1747 	}
1748 
1749 	cpuid_pass2(cp);
1750 	cpuid_pass3(cp);
1751 	cpuid_pass4(cp, NULL);
1752 
1753 	/*
1754 	 * Correct cpu_idstr and cpu_brandstr on target CPU after
1755 	 * cpuid_pass1() is done.
1756 	 */
1757 	(void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN);
1758 	(void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN);
1759 
1760 	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS;
1761 
1762 	post_startup_cpu_fixups();
1763 
1764 	cpu_event_init_cpu(cp);
1765 
1766 	/*
1767 	 * Enable preemption here so that contention for any locks acquired
1768 	 * later in mp_startup_common may be preempted if the thread owning
1769 	 * those locks is continuously executing on other CPUs (for example,
1770 	 * this CPU must be preemptible to allow other CPUs to pause it during
1771 	 * their startup phases).  It's safe to enable preemption here because
1772 	 * the CPU state is pretty-much fully constructed.
1773 	 */
1774 	curthread->t_preempt = 0;
1775 
1776 	/* The base spl should still be at LOCK LEVEL here */
1777 	ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
1778 	set_base_spl();		/* Restore the spl to its proper value */
1779 
1780 	pghw_physid_create(cp);
1781 	/*
1782 	 * Delegate initialization tasks, which need to access the cpu_lock,
1783 	 * to mp_start_cpu_common() because we can't acquire the cpu_lock here
1784 	 * during CPU DR operations.
1785 	 */
1786 	mp_startup_signal(&procset_slave, cp->cpu_id);
1787 	mp_startup_wait(&procset_master, cp->cpu_id);
1788 	pg_cmt_cpu_startup(cp);
1789 
1790 	if (boot) {
1791 		mutex_enter(&cpu_lock);
1792 		cp->cpu_flags &= ~CPU_OFFLINE;
1793 		cpu_enable_intr(cp);
1794 		cpu_add_active(cp);
1795 		mutex_exit(&cpu_lock);
1796 	}
1797 
1798 	/* Enable interrupts */
1799 	(void) spl0();
1800 
1801 	/*
1802 	 * Fill out cpu_ucode_info.  Update microcode if necessary.
1803 	 */
1804 	ucode_check(cp);
1805 
1806 #ifndef __xpv
1807 	{
1808 		/*
1809 		 * Set up the CPU module for this CPU.  This can't be done
1810 		 * before this CPU is made CPU_READY, because we may (in
1811 		 * heterogeneous systems) need to go load another CPU module.
1812 		 * The act of attempting to load a module may trigger a
1813 		 * cross-call, which will ASSERT unless this cpu is CPU_READY.
1814 		 */
1815 		cmi_hdl_t hdl;
1816 
1817 		if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1818 		    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1819 			if (is_x86_feature(x86_featureset, X86FSET_MCA))
1820 				cmi_mca_init(hdl);
1821 			cp->cpu_m.mcpu_cmi_hdl = hdl;
1822 		}
1823 	}
1824 #endif /* __xpv */
1825 
1826 	if (boothowto & RB_DEBUG)
1827 		kdi_cpu_init();
1828 
1829 	/*
1830 	 * Setting the bit in cpu_ready_set must be the last operation in
1831 	 * processor initialization; the boot CPU will continue to boot once
1832 	 * it sees this bit set for all active CPUs.
1833 	 */
1834 	CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1835 
1836 	(void) mach_cpu_create_device_node(cp, NULL);
1837 
1838 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
1839 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
1840 	cmn_err(CE_CONT, "?cpu%d initialization complete - online\n",
1841 	    cp->cpu_id);
1842 
1843 	/*
1844 	 * Now we are done with the startup thread, so free it up.
1845 	 */
1846 	thread_exit();
1847 	panic("mp_startup: cannot return");
1848 	/*NOTREACHED*/
1849 }
1850 
1851 /*
1852  * Startup function for 'other' CPUs at boot time (besides boot cpu).
1853  */
1854 static void
1855 mp_startup_boot(void)
1856 {
1857 	mp_startup_common(B_TRUE);
1858 }
1859 
1860 /*
1861  * Startup function for hotplug CPUs at runtime.
1862  */
1863 void
1864 mp_startup_hotplug(void)
1865 {
1866 	mp_startup_common(B_FALSE);
1867 }
1868 
1869 /*
1870  * Start CPU on user request.
1871  */
1872 /* ARGSUSED */
1873 int
1874 mp_cpu_start(struct cpu *cp)
1875 {
1876 	ASSERT(MUTEX_HELD(&cpu_lock));
1877 	return (0);
1878 }
1879 
1880 /*
1881  * Stop CPU on user request.
1882  */
1883 int
1884 mp_cpu_stop(struct cpu *cp)
1885 {
1886 	extern int cbe_psm_timer_mode;
1887 	ASSERT(MUTEX_HELD(&cpu_lock));
1888 
1889 #ifdef __xpv
1890 	/*
1891 	 * We can't offline vcpu0.
1892 	 */
1893 	if (cp->cpu_id == 0)
1894 		return (EBUSY);
1895 #endif
1896 
1897 	/*
1898 	 * If TIMER_PERIODIC mode is used, CPU0 is the one running it;
1899 	 * can't stop it.  (This is true only for machines with no TSC.)
1900 	 */
1901 
1902 	if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
1903 		return (EBUSY);
1904 
1905 	return (0);
1906 }
1907 
1908 /*
1909  * Take the specified CPU out of participation in interrupts.
1910  */
1911 int
1912 cpu_disable_intr(struct cpu *cp)
1913 {
1914 	if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1915 		return (EBUSY);
1916 
1917 	cp->cpu_flags &= ~CPU_ENABLE;
1918 	return (0);
1919 }
1920 
1921 /*
1922  * Allow the specified CPU to participate in interrupts.
1923  */
1924 void
1925 cpu_enable_intr(struct cpu *cp)
1926 {
1927 	ASSERT(MUTEX_HELD(&cpu_lock));
1928 	cp->cpu_flags |= CPU_ENABLE;
1929 	psm_enable_intr(cp->cpu_id);
1930 }
1931 
1932 void
1933 mp_cpu_faulted_enter(struct cpu *cp)
1934 {
1935 #ifdef __xpv
1936 	_NOTE(ARGUNUSED(cp));
1937 #else
1938 	cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
1939 
1940 	if (hdl != NULL) {
1941 		cmi_hdl_hold(hdl);
1942 	} else {
1943 		hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1944 		    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1945 	}
1946 	if (hdl != NULL) {
1947 		cmi_faulted_enter(hdl);
1948 		cmi_hdl_rele(hdl);
1949 	}
1950 #endif
1951 }
1952 
1953 void
1954 mp_cpu_faulted_exit(struct cpu *cp)
1955 {
1956 #ifdef __xpv
1957 	_NOTE(ARGUNUSED(cp));
1958 #else
1959 	cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
1960 
1961 	if (hdl != NULL) {
1962 		cmi_hdl_hold(hdl);
1963 	} else {
1964 		hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1965 		    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1966 	}
1967 	if (hdl != NULL) {
1968 		cmi_faulted_exit(hdl);
1969 		cmi_hdl_rele(hdl);
1970 	}
1971 #endif
1972 }
1973 
1974 /*
1975  * The following two routines are used as context operators on threads belonging
1976  * to processes with a private LDT (see sysi86).  Due to the rarity of such
1977  * processes, these routines are currently written for best code readability and
1978  * organization rather than speed.  We could avoid checking x86_featureset at
1979  * every context switch by installing different context ops, depending on
1980  * x86_featureset, at LDT creation time -- one for each combination of fast
1981  * syscall features.
1982  */
1983 
1984 /*ARGSUSED*/
1985 void
1986 cpu_fast_syscall_disable(void *arg)
1987 {
1988 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
1989 	    is_x86_feature(x86_featureset, X86FSET_SEP))
1990 		cpu_sep_disable();
1991 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
1992 	    is_x86_feature(x86_featureset, X86FSET_ASYSC))
1993 		cpu_asysc_disable();
1994 }
1995 
1996 /*ARGSUSED*/
1997 void
1998 cpu_fast_syscall_enable(void *arg)
1999 {
2000 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2001 	    is_x86_feature(x86_featureset, X86FSET_SEP))
2002 		cpu_sep_enable();
2003 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2004 	    is_x86_feature(x86_featureset, X86FSET_ASYSC))
2005 		cpu_asysc_enable();
2006 }
2007 
2008 static void
2009 cpu_sep_enable(void)
2010 {
2011 	ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
2012 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2013 
2014 	wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
2015 }
2016 
2017 static void
2018 cpu_sep_disable(void)
2019 {
2020 	ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
2021 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2022 
2023 	/*
2024 	 * Setting the SYSENTER_CS_MSR register to 0 causes software executing
2025 	 * the sysenter or sysexit instruction to trigger a #gp fault.
2026 	 */
2027 	wrmsr(MSR_INTC_SEP_CS, 0);
2028 }
2029 
2030 static void
2031 cpu_asysc_enable(void)
2032 {
2033 	ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
2034 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2035 
2036 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
2037 	    (uint64_t)(uintptr_t)AMD_EFER_SCE);
2038 }
2039 
2040 static void
2041 cpu_asysc_disable(void)
2042 {
2043 	ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
2044 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2045 
2046 	/*
2047 	 * Turn off the SCE (syscall enable) bit in the EFER register. Software
2048 	 * executing syscall or sysret with this bit off will incur a #ud trap.
2049 	 */
2050 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
2051 	    ~((uint64_t)(uintptr_t)AMD_EFER_SCE));
2052 }
2053