xref: /titanic_44/usr/src/uts/i86pc/os/mp_machdep.c (revision 4a6b6ac40d4a465eac9d0db6decbd3cf7fdf9349)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #define	PSMI_1_5
29 #include <sys/smp_impldefs.h>
30 #include <sys/psm.h>
31 #include <sys/psm_modctl.h>
32 #include <sys/pit.h>
33 #include <sys/cmn_err.h>
34 #include <sys/strlog.h>
35 #include <sys/clock.h>
36 #include <sys/debug.h>
37 #include <sys/rtc.h>
38 #include <sys/x86_archext.h>
39 #include <sys/cpupart.h>
40 #include <sys/cpuvar.h>
41 #include <sys/cpu.h>
42 #include <sys/pghw.h>
43 #include <sys/disp.h>
44 #include <sys/archsystm.h>
45 #include <sys/machsystm.h>
46 #include <sys/sysmacros.h>
47 #include <sys/param.h>
48 #include <sys/promif.h>
49 #include <sys/mach_intr.h>
50 #include <vm/hat_i86.h>
51 
52 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
53 
54 /*
55  *	Local function prototypes
56  */
57 static int mp_disable_intr(processorid_t cpun);
58 static void mp_enable_intr(processorid_t cpun);
59 static void mach_init();
60 static void mach_picinit();
61 static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks);
62 static int machhztomhz(uint64_t cpu_freq_hz);
63 static uint64_t mach_getcpufreq(void);
64 static void mach_fixcpufreq(void);
65 static int mach_clkinit(int, int *);
66 static void mach_smpinit(void);
67 static void mach_set_softintr(int ipl, struct av_softinfo *);
68 static int mach_softlvl_to_vect(int ipl);
69 static void mach_get_platform(int owner);
70 static void mach_construct_info();
71 static int mach_translate_irq(dev_info_t *dip, int irqno);
72 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
73     psm_intr_op_t, int *);
74 static void mach_notify_error(int level, char *errmsg);
75 static hrtime_t dummy_hrtime(void);
76 static void dummy_scalehrtime(hrtime_t *);
77 static void cpu_idle(void);
78 static void cpu_wakeup(cpu_t *, int);
79 static void cpu_idle_mwait(void);
80 static void cpu_wakeup_mwait(cpu_t *, int);
81 /*
82  *	External reference functions
83  */
84 extern void return_instr();
85 extern uint64_t freq_tsc(uint32_t *);
86 #if defined(__i386)
87 extern uint64_t freq_notsc(uint32_t *);
88 #endif
89 extern void pc_gethrestime(timestruc_t *);
90 extern int cpuid_get_coreid(cpu_t *);
91 extern int cpuid_get_chipid(cpu_t *);
92 
93 /*
94  *	PSM functions initialization
95  */
96 void (*psm_shutdownf)(int, int)	= (void (*)(int, int))return_instr;
97 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
98 void (*psm_notifyf)(int)	= (void (*)(int))return_instr;
99 void (*psm_set_idle_cpuf)(int)	= (void (*)(int))return_instr;
100 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
101 void (*psminitf)()		= mach_init;
102 void (*picinitf)() 		= return_instr;
103 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
104 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
105 void (*send_dirintf)() 		= return_instr;
106 void (*setspl)(int)		= (void (*)(int))return_instr;
107 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
108 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
109 void (*setsoftint)(int, struct av_softinfo *)=
110 	(void (*)(int, struct av_softinfo *))return_instr;
111 int (*slvltovect)(int)		= (int (*)(int))return_instr;
112 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
113 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
114 int (*psm_disable_intr)(int)	= mp_disable_intr;
115 void (*psm_enable_intr)(int)	= mp_enable_intr;
116 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
117 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
118 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
119 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
120 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
121 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
122 int (*psm_get_clockirq)(int) = NULL;
123 int (*psm_get_ipivect)(int, int) = NULL;
124 
125 int (*psm_clkinit)(int) = NULL;
126 void (*psm_timer_reprogram)(hrtime_t) = NULL;
127 void (*psm_timer_enable)(void) = NULL;
128 void (*psm_timer_disable)(void) = NULL;
129 void (*psm_post_cyclic_setup)(void *arg) = NULL;
130 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
131     int *) = mach_intr_ops;
132 
133 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
134 void (*hrtime_tick)(void)	= return_instr;
135 
136 int tsc_gethrtime_enable = 1;
137 int tsc_gethrtime_initted = 0;
138 
139 /*
140  * Local Static Data
141  */
142 static struct psm_ops mach_ops;
143 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
144 static ushort_t mach_ver[4] = {0, 0, 0, 0};
145 
146 /*
147  * If non-zero, idle cpus will become "halted" when there's
148  * no work to do.
149  */
150 int	idle_cpu_use_hlt = 1;
151 
152 /*
153  * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
154  */
155 int	idle_cpu_prefer_mwait = 1;
156 
157 
158 /*ARGSUSED*/
159 int
160 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
161 {
162 	switch (hw) {
163 	case PGHW_IPIPE:
164 		if (x86_feature & (X86_HTT)) {
165 			/*
166 			 * Hyper-threading is SMT
167 			 */
168 			return (1);
169 		} else {
170 			return (0);
171 		}
172 	case PGHW_CHIP:
173 		if (x86_feature & (X86_CMP|X86_HTT))
174 			return (1);
175 		else
176 			return (0);
177 	default:
178 		return (0);
179 	}
180 }
181 
182 /*
183  * Compare two CPUs and see if they have a pghw_type_t sharing relationship
184  * If pghw_type_t is an unsupported hardware type, then return -1
185  */
186 int
187 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
188 {
189 	id_t pgp_a, pgp_b;
190 
191 	pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
192 	pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
193 
194 	if (pgp_a == -1 || pgp_b == -1)
195 		return (-1);
196 
197 	return (pgp_a == pgp_b);
198 }
199 
200 /*
201  * Return a physical instance identifier for known hardware sharing
202  * relationships
203  */
204 id_t
205 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
206 {
207 	switch (hw) {
208 	case PGHW_IPIPE:
209 		return (cpuid_get_coreid(cpu));
210 	case PGHW_CHIP:
211 		return (cpuid_get_chipid(cpu));
212 	default:
213 		return (-1);
214 	}
215 }
216 
217 int
218 pg_plat_hw_level(pghw_type_t hw)
219 {
220 	int i;
221 	static pghw_type_t hw_hier[] = {
222 		PGHW_IPIPE,
223 		PGHW_CHIP,
224 		PGHW_NUM_COMPONENTS
225 	};
226 
227 	for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
228 		if (hw_hier[i] == hw)
229 			return (i);
230 	}
231 	return (-1);
232 }
233 
234 id_t
235 pg_plat_get_core_id(cpu_t *cpu)
236 {
237 	return ((id_t)cpuid_get_coreid(cpu));
238 }
239 
240 void
241 cmp_set_nosteal_interval(void)
242 {
243 	/* Set the nosteal interval (used by disp_getbest()) to 100us */
244 	nosteal_nsec = 100000UL;
245 }
246 
247 /*
248  * Routine to ensure initial callers to hrtime gets 0 as return
249  */
250 static hrtime_t
251 dummy_hrtime(void)
252 {
253 	return (0);
254 }
255 
256 /* ARGSUSED */
257 static void
258 dummy_scalehrtime(hrtime_t *ticks)
259 {}
260 
261 /*
262  * Idle the present CPU until awoken via an interrupt
263  */
264 static void
265 cpu_idle(void)
266 {
267 	cpu_t		*cpup = CPU;
268 	processorid_t	cpun = cpup->cpu_id;
269 	cpupart_t	*cp = cpup->cpu_part;
270 	int		hset_update = 1;
271 
272 	/*
273 	 * If this CPU is online, and there's multiple CPUs
274 	 * in the system, then we should notate our halting
275 	 * by adding ourselves to the partition's halted CPU
276 	 * bitmap. This allows other CPUs to find/awaken us when
277 	 * work becomes available.
278 	 */
279 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
280 		hset_update = 0;
281 
282 	/*
283 	 * Add ourselves to the partition's halted CPUs bitmask
284 	 * and set our HALTED flag, if necessary.
285 	 *
286 	 * When a thread becomes runnable, it is placed on the queue
287 	 * and then the halted cpuset is checked to determine who
288 	 * (if anyone) should be awoken. We therefore need to first
289 	 * add ourselves to the halted cpuset, and and then check if there
290 	 * is any work available.
291 	 *
292 	 * Note that memory barriers after updating the HALTED flag
293 	 * are not necessary since an atomic operation (updating the bitmap)
294 	 * immediately follows. On x86 the atomic operation acts as a
295 	 * memory barrier for the update of cpu_disp_flags.
296 	 */
297 	if (hset_update) {
298 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
299 		CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun);
300 	}
301 
302 	/*
303 	 * Check to make sure there's really nothing to do.
304 	 * Work destined for this CPU may become available after
305 	 * this check. We'll be notified through the clearing of our
306 	 * bit in the halted CPU bitmask, and a poke.
307 	 */
308 	if (disp_anywork()) {
309 		if (hset_update) {
310 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
311 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
312 		}
313 		return;
314 	}
315 
316 	/*
317 	 * We're on our way to being halted.
318 	 *
319 	 * Disable interrupts now, so that we'll awaken immediately
320 	 * after halting if someone tries to poke us between now and
321 	 * the time we actually halt.
322 	 *
323 	 * We check for the presence of our bit after disabling interrupts.
324 	 * If it's cleared, we'll return. If the bit is cleared after
325 	 * we check then the poke will pop us out of the halted state.
326 	 *
327 	 * This means that the ordering of the poke and the clearing
328 	 * of the bit by cpu_wakeup is important.
329 	 * cpu_wakeup() must clear, then poke.
330 	 * cpu_idle() must disable interrupts, then check for the bit.
331 	 */
332 	cli();
333 
334 	if (hset_update && !CPU_IN_SET(cp->cp_mach->mc_haltset, cpun)) {
335 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
336 		sti();
337 		return;
338 	}
339 
340 	/*
341 	 * The check for anything locally runnable is here for performance
342 	 * and isn't needed for correctness. disp_nrunnable ought to be
343 	 * in our cache still, so it's inexpensive to check, and if there
344 	 * is anything runnable we won't have to wait for the poke.
345 	 */
346 	if (cpup->cpu_disp->disp_nrunnable != 0) {
347 		if (hset_update) {
348 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
349 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
350 		}
351 		sti();
352 		return;
353 	}
354 
355 	mach_cpu_idle();
356 
357 	/*
358 	 * We're no longer halted
359 	 */
360 	if (hset_update) {
361 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
362 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
363 	}
364 }
365 
366 
367 /*
368  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
369  * Otherwise, see if other CPUs in the cpu partition are halted and need to
370  * be woken up so that they can steal the thread we placed on this CPU.
371  * This function is only used on MP systems.
372  */
373 static void
374 cpu_wakeup(cpu_t *cpu, int bound)
375 {
376 	uint_t		cpu_found;
377 	int		result;
378 	cpupart_t	*cp;
379 
380 	cp = cpu->cpu_part;
381 	if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) {
382 		/*
383 		 * Clear the halted bit for that CPU since it will be
384 		 * poked in a moment.
385 		 */
386 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id);
387 		/*
388 		 * We may find the current CPU present in the halted cpuset
389 		 * if we're in the context of an interrupt that occurred
390 		 * before we had a chance to clear our bit in cpu_idle().
391 		 * Poking ourself is obviously unnecessary, since if
392 		 * we're here, we're not halted.
393 		 */
394 		if (cpu != CPU)
395 			poke_cpu(cpu->cpu_id);
396 		return;
397 	} else {
398 		/*
399 		 * This cpu isn't halted, but it's idle or undergoing a
400 		 * context switch. No need to awaken anyone else.
401 		 */
402 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
403 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
404 			return;
405 	}
406 
407 	/*
408 	 * No need to wake up other CPUs if the thread we just enqueued
409 	 * is bound.
410 	 */
411 	if (bound)
412 		return;
413 
414 
415 	/*
416 	 * See if there's any other halted CPUs. If there are, then
417 	 * select one, and awaken it.
418 	 * It's possible that after we find a CPU, somebody else
419 	 * will awaken it before we get the chance.
420 	 * In that case, look again.
421 	 */
422 	do {
423 		CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found);
424 		if (cpu_found == CPUSET_NOTINSET)
425 			return;
426 
427 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
428 		CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result);
429 	} while (result < 0);
430 
431 	if (cpu_found != CPU->cpu_id)
432 		poke_cpu(cpu_found);
433 }
434 
435 /*
436  * Idle the present CPU until awoken via touching its monitored line
437  */
438 static void
439 cpu_idle_mwait(void)
440 {
441 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
442 	cpu_t			*cpup = CPU;
443 	processorid_t		cpun = cpup->cpu_id;
444 	cpupart_t		*cp = cpup->cpu_part;
445 	int			hset_update = 1;
446 
447 	/*
448 	 * Set our mcpu_mwait here, so we can tell if anyone trys to
449 	 * wake us between now and when we call mwait.  No other cpu will
450 	 * attempt to set our mcpu_mwait until we add ourself to the haltset.
451 	 */
452 	*mcpu_mwait = MWAIT_HALTED;
453 
454 	/*
455 	 * If this CPU is online, and there's multiple CPUs
456 	 * in the system, then we should notate our halting
457 	 * by adding ourselves to the partition's halted CPU
458 	 * bitmap. This allows other CPUs to find/awaken us when
459 	 * work becomes available.
460 	 */
461 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
462 		hset_update = 0;
463 
464 	/*
465 	 * Add ourselves to the partition's halted CPUs bitmask
466 	 * and set our HALTED flag, if necessary.
467 	 *
468 	 * When a thread becomes runnable, it is placed on the queue
469 	 * and then the halted cpuset is checked to determine who
470 	 * (if anyone) should be awoken. We therefore need to first
471 	 * add ourselves to the halted cpuset, and and then check if there
472 	 * is any work available.
473 	 *
474 	 * Note that memory barriers after updating the HALTED flag
475 	 * are not necessary since an atomic operation (updating the bitmap)
476 	 * immediately follows. On x86 the atomic operation acts as a
477 	 * memory barrier for the update of cpu_disp_flags.
478 	 */
479 	if (hset_update) {
480 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
481 		CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun);
482 	}
483 
484 	/*
485 	 * Check to make sure there's really nothing to do.
486 	 * Work destined for this CPU may become available after
487 	 * this check. We'll be notified through the clearing of our
488 	 * bit in the halted CPU bitmask, and a write to our mcpu_mwait.
489 	 *
490 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
491 	 */
492 	if (disp_anywork()) {
493 		if (hset_update) {
494 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
495 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
496 		}
497 		return;
498 	}
499 
500 	/*
501 	 * We're on our way to being halted.
502 	 * To avoid a lost wakeup, arm the monitor before checking if another
503 	 * cpu wrote to mcpu_mwait to wake us up.
504 	 */
505 	i86_monitor(mcpu_mwait, 0, 0);
506 	if (*mcpu_mwait == MWAIT_HALTED) {
507 		tlb_going_idle();
508 		i86_mwait(0, 0);
509 		tlb_service();
510 	}
511 
512 	/*
513 	 * We're no longer halted
514 	 */
515 	if (hset_update) {
516 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
517 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
518 	}
519 }
520 
521 /*
522  * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
523  * advance.  Otherwise, see if other CPUs in the cpu partition are halted and
524  * need to be woken up so that they can steal the thread we placed on this CPU.
525  * This function is only used on MP systems.
526  */
527 static void
528 cpu_wakeup_mwait(cpu_t *cp, int bound)
529 {
530 	cpupart_t	*cpu_part;
531 	uint_t		cpu_found;
532 	int		result;
533 
534 	cpu_part = cp->cpu_part;
535 
536 	/*
537 	 * Clear the halted bit for that CPU since it will be woken up
538 	 * in a moment.
539 	 */
540 	if (CPU_IN_SET(cpu_part->cp_mach->mc_haltset, cp->cpu_id)) {
541 		/*
542 		 * Clear the halted bit for that CPU since it will be
543 		 * poked in a moment.
544 		 */
545 		CPUSET_ATOMIC_DEL(cpu_part->cp_mach->mc_haltset, cp->cpu_id);
546 		/*
547 		 * We may find the current CPU present in the halted cpuset
548 		 * if we're in the context of an interrupt that occurred
549 		 * before we had a chance to clear our bit in cpu_idle().
550 		 * Waking ourself is obviously unnecessary, since if
551 		 * we're here, we're not halted.
552 		 *
553 		 * monitor/mwait wakeup via writing to our cache line is
554 		 * harmless and less expensive than always checking if we
555 		 * are waking ourself which is an uncommon case.
556 		 */
557 		MWAIT_WAKEUP(cp);	/* write to monitored line */
558 		return;
559 	} else {
560 		/*
561 		 * This cpu isn't halted, but it's idle or undergoing a
562 		 * context switch. No need to awaken anyone else.
563 		 */
564 		if (cp->cpu_thread == cp->cpu_idle_thread ||
565 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
566 			return;
567 	}
568 
569 	/*
570 	 * No need to wake up other CPUs if the thread we just enqueued
571 	 * is bound.
572 	 */
573 	if (bound)
574 		return;
575 
576 
577 	/*
578 	 * See if there's any other halted CPUs. If there are, then
579 	 * select one, and awaken it.
580 	 * It's possible that after we find a CPU, somebody else
581 	 * will awaken it before we get the chance.
582 	 * In that case, look again.
583 	 */
584 	do {
585 		CPUSET_FIND(cpu_part->cp_mach->mc_haltset, cpu_found);
586 		if (cpu_found == CPUSET_NOTINSET)
587 			return;
588 
589 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
590 		CPUSET_ATOMIC_XDEL(cpu_part->cp_mach->mc_haltset, cpu_found,
591 		    result);
592 	} while (result < 0);
593 
594 	/*
595 	 * Do not check if cpu_found is ourself as monitor/mwait wakeup is
596 	 * cheap.
597 	 */
598 	MWAIT_WAKEUP(cpu[cpu_found]);	/* write to monitored line */
599 }
600 
601 void (*cpu_pause_handler)(volatile char *) = NULL;
602 
603 static int
604 mp_disable_intr(int cpun)
605 {
606 	/*
607 	 * switch to the offline cpu
608 	 */
609 	affinity_set(cpun);
610 	/*
611 	 * raise ipl to just below cross call
612 	 */
613 	splx(XC_MED_PIL-1);
614 	/*
615 	 *	set base spl to prevent the next swtch to idle from
616 	 *	lowering back to ipl 0
617 	 */
618 	CPU->cpu_intr_actv |= (1 << (XC_MED_PIL-1));
619 	set_base_spl();
620 	affinity_clear();
621 	return (DDI_SUCCESS);
622 }
623 
624 static void
625 mp_enable_intr(int cpun)
626 {
627 	/*
628 	 * switch to the online cpu
629 	 */
630 	affinity_set(cpun);
631 	/*
632 	 * clear the interrupt active mask
633 	 */
634 	CPU->cpu_intr_actv &= ~(1 << (XC_MED_PIL-1));
635 	set_base_spl();
636 	(void) spl0();
637 	affinity_clear();
638 }
639 
640 static void
641 mach_get_platform(int owner)
642 {
643 	void		**srv_opsp;
644 	void		**clt_opsp;
645 	int		i;
646 	int		total_ops;
647 
648 	/* fix up psm ops */
649 	srv_opsp = (void **)mach_set[0];
650 	clt_opsp = (void **)mach_set[owner];
651 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
652 		total_ops = sizeof (struct psm_ops_ver01) /
653 		    sizeof (void (*)(void));
654 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
655 		/* no psm_notify_func */
656 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
657 		    sizeof (void (*)(void));
658 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
659 		/* no psm_timer funcs */
660 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
661 		    sizeof (void (*)(void));
662 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
663 		/* no psm_preshutdown function */
664 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
665 		    sizeof (void (*)(void));
666 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
667 		/* no psm_preshutdown function */
668 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
669 		    sizeof (void (*)(void));
670 	else
671 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
672 
673 	/*
674 	 * Save the version of the PSM module, in case we need to
675 	 * bahave differently based on version.
676 	 */
677 	mach_ver[0] = mach_ver[owner];
678 
679 	for (i = 0; i < total_ops; i++)
680 		if (clt_opsp[i] != NULL)
681 			srv_opsp[i] = clt_opsp[i];
682 }
683 
684 static void
685 mach_construct_info()
686 {
687 	struct psm_sw *swp;
688 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
689 	int	conflict_owner = 0;
690 
691 	if (psmsw->psw_forw == psmsw)
692 		panic("No valid PSM modules found");
693 	mutex_enter(&psmsw_lock);
694 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
695 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
696 			continue;
697 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
698 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
699 		mach_cnt[swp->psw_infop->p_owner]++;
700 	}
701 	mutex_exit(&psmsw_lock);
702 
703 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
704 
705 	/* check to see are there any conflicts */
706 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
707 		conflict_owner = PSM_OWN_EXCLUSIVE;
708 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
709 		conflict_owner = PSM_OWN_OVERRIDE;
710 	if (conflict_owner) {
711 		/* remove all psm modules except uppc */
712 		cmn_err(CE_WARN,
713 		    "Conflicts detected on the following PSM modules:");
714 		mutex_enter(&psmsw_lock);
715 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
716 			if (swp->psw_infop->p_owner == conflict_owner)
717 				cmn_err(CE_WARN, "%s ",
718 				    swp->psw_infop->p_mach_idstring);
719 		}
720 		mutex_exit(&psmsw_lock);
721 		cmn_err(CE_WARN,
722 		    "Setting the system back to SINGLE processor mode!");
723 		cmn_err(CE_WARN,
724 		    "Please edit /etc/mach to remove the invalid PSM module.");
725 		return;
726 	}
727 
728 	if (mach_set[PSM_OWN_EXCLUSIVE])
729 		mach_get_platform(PSM_OWN_EXCLUSIVE);
730 
731 	if (mach_set[PSM_OWN_OVERRIDE])
732 		mach_get_platform(PSM_OWN_OVERRIDE);
733 }
734 
735 static void
736 mach_init()
737 {
738 	struct psm_ops  *pops;
739 
740 	mach_construct_info();
741 
742 	pops = mach_set[0];
743 
744 	/* register the interrupt and clock initialization rotuines */
745 	picinitf = mach_picinit;
746 	clkinitf = mach_clkinit;
747 	psm_get_clockirq = pops->psm_get_clockirq;
748 
749 	/* register the interrupt setup code */
750 	slvltovect = mach_softlvl_to_vect;
751 	addspl	= pops->psm_addspl;
752 	delspl	= pops->psm_delspl;
753 
754 	if (pops->psm_translate_irq)
755 		psm_translate_irq = pops->psm_translate_irq;
756 	if (pops->psm_intr_ops)
757 		psm_intr_ops = pops->psm_intr_ops;
758 
759 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
760 	/*
761 	 * Time-of-day functionality now handled in TOD modules.
762 	 * (Warn about PSM modules that think that we're going to use
763 	 * their ops vectors.)
764 	 */
765 	if (pops->psm_tod_get)
766 		cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
767 		    (void *)pops->psm_tod_get);
768 
769 	if (pops->psm_tod_set)
770 		cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
771 		    (void *)pops->psm_tod_set);
772 #endif
773 
774 	if (pops->psm_notify_error) {
775 		psm_notify_error = mach_notify_error;
776 		notify_error = pops->psm_notify_error;
777 	}
778 
779 	(*pops->psm_softinit)();
780 
781 	/*
782 	 * Initialize the dispatcher's function hooks
783 	 * to enable CPU halting when idle.
784 	 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle).
785 	 * Allocate monitor/mwait buffer for cpu0.
786 	 */
787 	if (idle_cpu_use_hlt) {
788 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) {
789 			CPU->cpu_m.mcpu_mwait = mach_alloc_mwait(CPU);
790 			idle_cpu = cpu_idle_mwait;
791 		} else {
792 			idle_cpu = cpu_idle;
793 		}
794 	}
795 
796 	mach_smpinit();
797 }
798 
799 /*
800  * Return a pointer to memory suitable for monitor/mwait use.  Memory must be
801  * aligned as specified by cpuid (a cache line size).
802  */
803 uint32_t *
804 mach_alloc_mwait(cpu_t *cp)
805 {
806 	size_t		mwait_size = cpuid_get_mwait_size(cp);
807 	uint32_t	*ret;
808 
809 	if (mwait_size < sizeof (uint32_t) || !ISP2(mwait_size))
810 		panic("Can't handle mwait size %ld", (long)mwait_size);
811 
812 	/*
813 	 * kmem_alloc() returns cache line size aligned data for mwait_size
814 	 * allocations.  mwait_size is currently cache line sized.  Neither
815 	 * of these implementation details are guarantied to be true in the
816 	 * future.
817 	 *
818 	 * First try allocating mwait_size as kmem_alloc() currently returns
819 	 * correctly aligned memory.  If kmem_alloc() does not return
820 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
821 	 */
822 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
823 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
824 		*ret = MWAIT_RUNNING;
825 		return (ret);
826 	} else {
827 		kmem_free(ret, mwait_size);
828 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
829 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
830 		*ret = MWAIT_RUNNING;
831 		return (ret);
832 	}
833 }
834 
835 static void
836 mach_smpinit(void)
837 {
838 	struct psm_ops  *pops;
839 	processorid_t cpu_id;
840 	int cnt;
841 	cpuset_t cpumask;
842 
843 	pops = mach_set[0];
844 
845 	cpu_id = -1;
846 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
847 	for (cnt = 0, CPUSET_ZERO(cpumask); cpu_id != -1; cnt++) {
848 		CPUSET_ADD(cpumask, cpu_id);
849 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
850 	}
851 
852 	mp_cpus = cpumask;
853 
854 	/* MP related routines */
855 	ap_mlsetup = pops->psm_post_cpu_start;
856 	send_dirintf = pops->psm_send_ipi;
857 
858 	/* optional MP related routines */
859 	if (pops->psm_shutdown)
860 		psm_shutdownf = pops->psm_shutdown;
861 	if (pops->psm_preshutdown)
862 		psm_preshutdownf = pops->psm_preshutdown;
863 	if (pops->psm_notify_func)
864 		psm_notifyf = pops->psm_notify_func;
865 	if (pops->psm_set_idlecpu)
866 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
867 	if (pops->psm_unset_idlecpu)
868 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
869 
870 	psm_clkinit = pops->psm_clkinit;
871 
872 	if (pops->psm_timer_reprogram)
873 		psm_timer_reprogram = pops->psm_timer_reprogram;
874 
875 	if (pops->psm_timer_enable)
876 		psm_timer_enable = pops->psm_timer_enable;
877 
878 	if (pops->psm_timer_disable)
879 		psm_timer_disable = pops->psm_timer_disable;
880 
881 	if (pops->psm_post_cyclic_setup)
882 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
883 
884 	/* check for multiple cpu's */
885 	if (cnt < 2)
886 		return;
887 
888 	/* check for MP platforms */
889 	if (pops->psm_cpu_start == NULL)
890 		return;
891 
892 	/*
893 	 * Set the dispatcher hook to enable cpu "wake up"
894 	 * when a thread becomes runnable.
895 	 */
896 	if (idle_cpu_use_hlt)
897 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait)
898 			disp_enq_thread = cpu_wakeup_mwait;
899 		else
900 			disp_enq_thread = cpu_wakeup;
901 
902 	if (pops->psm_disable_intr)
903 		psm_disable_intr = pops->psm_disable_intr;
904 	if (pops->psm_enable_intr)
905 		psm_enable_intr  = pops->psm_enable_intr;
906 
907 	psm_get_ipivect = pops->psm_get_ipivect;
908 
909 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_hi_intr",
910 	    (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
911 	    (caddr_t)X_CALL_HIPRI, NULL, NULL, NULL);
912 	(void) add_avintr((void *)NULL, XC_MED_PIL, xc_serv, "xc_med_intr",
913 	    (*pops->psm_get_ipivect)(XC_MED_PIL, PSM_INTR_IPI_LO),
914 	    (caddr_t)X_CALL_MEDPRI, NULL, NULL, NULL);
915 
916 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
917 }
918 
919 static void
920 mach_picinit()
921 {
922 	struct psm_ops  *pops;
923 
924 	pops = mach_set[0];
925 
926 	/* register the interrupt handlers */
927 	setlvl = pops->psm_intr_enter;
928 	setlvlx = pops->psm_intr_exit;
929 
930 	/* initialize the interrupt hardware */
931 	(*pops->psm_picinit)();
932 
933 	/* set interrupt mask for current ipl */
934 	setspl = pops->psm_setspl;
935 	cli();
936 	setspl(CPU->cpu_pri);
937 }
938 
939 uint_t	cpu_freq;	/* MHz */
940 uint64_t cpu_freq_hz;	/* measured (in hertz) */
941 
942 #define	MEGA_HZ		1000000
943 
944 static uint64_t
945 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
946 {
947 	uint64_t cpu_hz;
948 
949 	if ((pit_counter == 0) || (*processor_clks == 0) ||
950 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
951 		return (0);
952 
953 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
954 
955 	return (cpu_hz);
956 }
957 
958 static uint64_t
959 mach_getcpufreq(void)
960 {
961 	uint32_t pit_counter;
962 	uint64_t processor_clks;
963 
964 	if (x86_feature & X86_TSC) {
965 		/*
966 		 * We have a TSC. freq_tsc() knows how to measure the number
967 		 * of clock cycles sampled against the PIT.
968 		 */
969 		ulong_t flags = clear_int_flag();
970 		processor_clks = freq_tsc(&pit_counter);
971 		restore_int_flag(flags);
972 		return (mach_calchz(pit_counter, &processor_clks));
973 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
974 #if defined(__amd64)
975 		panic("mach_getcpufreq: no TSC!");
976 #elif defined(__i386)
977 		/*
978 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
979 		 * for which freq_notsc() knows how to measure the number of
980 		 * elapsed clock cycles sampled against the PIT
981 		 */
982 		ulong_t flags = clear_int_flag();
983 		processor_clks = freq_notsc(&pit_counter);
984 		restore_int_flag(flags);
985 		return (mach_calchz(pit_counter, &processor_clks));
986 #endif	/* __i386 */
987 	}
988 
989 	/* We do not know how to calculate cpu frequency for this cpu. */
990 	return (0);
991 }
992 
993 /*
994  * If the clock speed of a cpu is found to be reported incorrectly, do not add
995  * to this array, instead improve the accuracy of the algorithm that determines
996  * the clock speed of the processor or extend the implementation to support the
997  * vendor as appropriate. This is here only to support adjusting the speed on
998  * older slower processors that mach_fixcpufreq() would not be able to account
999  * for otherwise.
1000  */
1001 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1002 
1003 /*
1004  * On fast processors the clock frequency that is measured may be off by
1005  * a few MHz from the value printed on the part. This is a combination of
1006  * the factors that for such fast parts being off by this much is within
1007  * the tolerances for manufacture and because of the difficulties in the
1008  * measurement that can lead to small error. This function uses some
1009  * heuristics in order to tweak the value that was measured to match what
1010  * is most likely printed on the part.
1011  *
1012  * Some examples:
1013  * 	AMD Athlon 1000 mhz measured as 998 mhz
1014  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
1015  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
1016  *
1017  * If in the future this function is no longer sufficient to correct
1018  * for the error in the measurement, then the algorithm used to perform
1019  * the measurement will have to be improved in order to increase accuracy
1020  * rather than adding horrible and questionable kludges here.
1021  *
1022  * This is called after the cyclics subsystem because of the potential
1023  * that the heuristics within may give a worse estimate of the clock
1024  * frequency than the value that was measured.
1025  */
1026 static void
1027 mach_fixcpufreq(void)
1028 {
1029 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1030 
1031 	freq = (uint32_t)cpu_freq;
1032 
1033 	/*
1034 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1035 	 * measured speed taking into account that the 667 MHz parts were
1036 	 * the first to round-up.
1037 	 */
1038 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1039 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1040 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1041 
1042 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
1043 	mul = (freq + 25) / 50;
1044 	near50 = mul * 50;
1045 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1046 
1047 	/* Find the closer of the two */
1048 	if (delta66 < delta50) {
1049 		fixed = near66;
1050 		delta = delta66;
1051 	} else {
1052 		fixed = near50;
1053 		delta = delta50;
1054 	}
1055 
1056 	if (fixed > INT_MAX)
1057 		return;
1058 
1059 	/*
1060 	 * Some older parts have a core clock frequency that is not an
1061 	 * integral multiple of 50 or 66 MHz. Check if one of the old
1062 	 * clock frequencies is closer to the measured value than any
1063 	 * of the integral multiples of 50 an 66, and if so set fixed
1064 	 * and delta appropriately to represent the closest value.
1065 	 */
1066 	i = sizeof (x86_cpu_freq) / sizeof (int);
1067 	while (i > 0) {
1068 		i--;
1069 
1070 		if (x86_cpu_freq[i] <= freq) {
1071 			mul = freq - x86_cpu_freq[i];
1072 
1073 			if (mul < delta) {
1074 				fixed = x86_cpu_freq[i];
1075 				delta = mul;
1076 			}
1077 
1078 			break;
1079 		}
1080 
1081 		mul = x86_cpu_freq[i] - freq;
1082 
1083 		if (mul < delta) {
1084 			fixed = x86_cpu_freq[i];
1085 			delta = mul;
1086 		}
1087 	}
1088 
1089 	/*
1090 	 * Set a reasonable maximum for how much to correct the measured
1091 	 * result by. This check is here to prevent the adjustment made
1092 	 * by this function from being more harm than good. It is entirely
1093 	 * possible that in the future parts will be made that are not
1094 	 * integral multiples of 66 or 50 in clock frequency or that
1095 	 * someone may overclock a part to some odd frequency. If the
1096 	 * measured value is farther from the corrected value than
1097 	 * allowed, then assume the corrected value is in error and use
1098 	 * the measured value.
1099 	 */
1100 	if (6 < delta)
1101 		return;
1102 
1103 	cpu_freq = (int)fixed;
1104 }
1105 
1106 
1107 static int
1108 machhztomhz(uint64_t cpu_freq_hz)
1109 {
1110 	uint64_t cpu_mhz;
1111 
1112 	/* Round to nearest MHZ */
1113 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1114 
1115 	if (cpu_mhz > INT_MAX)
1116 		return (0);
1117 
1118 	return ((int)cpu_mhz);
1119 
1120 }
1121 
1122 
1123 static int
1124 mach_clkinit(int preferred_mode, int *set_mode)
1125 {
1126 	struct psm_ops  *pops;
1127 	int resolution;
1128 
1129 	pops = mach_set[0];
1130 
1131 	cpu_freq_hz = mach_getcpufreq();
1132 
1133 	cpu_freq = machhztomhz(cpu_freq_hz);
1134 
1135 	if (!(x86_feature & X86_TSC) || (cpu_freq == 0))
1136 		tsc_gethrtime_enable = 0;
1137 
1138 	if (tsc_gethrtime_enable) {
1139 		tsc_hrtimeinit(cpu_freq_hz);
1140 		gethrtimef = tsc_gethrtime;
1141 		gethrtimeunscaledf = tsc_gethrtimeunscaled;
1142 		scalehrtimef = tsc_scalehrtime;
1143 		hrtime_tick = tsc_tick;
1144 		tsc_gethrtime_initted = 1;
1145 	} else {
1146 		if (pops->psm_hrtimeinit)
1147 			(*pops->psm_hrtimeinit)();
1148 		gethrtimef = pops->psm_gethrtime;
1149 		gethrtimeunscaledf = gethrtimef;
1150 		/* scalehrtimef will remain dummy */
1151 	}
1152 
1153 	mach_fixcpufreq();
1154 
1155 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
1156 		if ((preferred_mode == TIMER_ONESHOT) &&
1157 		    (tsc_gethrtime_enable)) {
1158 
1159 			resolution = (*pops->psm_clkinit)(0);
1160 			if (resolution != 0)  {
1161 				*set_mode = TIMER_ONESHOT;
1162 				return (resolution);
1163 			}
1164 
1165 		}
1166 
1167 		/*
1168 		 * either periodic mode was requested or could not set to
1169 		 * one-shot mode
1170 		 */
1171 		resolution = (*pops->psm_clkinit)(hz);
1172 		/*
1173 		 * psm should be able to do periodic, so we do not check
1174 		 * for return value of psm_clkinit here.
1175 		 */
1176 		*set_mode = TIMER_PERIODIC;
1177 		return (resolution);
1178 	} else {
1179 		/*
1180 		 * PSMI interface prior to PSMI_3 does not define a return
1181 		 * value for psm_clkinit, so the return value is ignored.
1182 		 */
1183 		(void) (*pops->psm_clkinit)(hz);
1184 		*set_mode = TIMER_PERIODIC;
1185 		return (nsec_per_tick);
1186 	}
1187 }
1188 
1189 /*ARGSUSED*/
1190 static void
1191 mach_psm_set_softintr(int ipl, struct av_softinfo *pending)
1192 {
1193 	struct psm_ops  *pops;
1194 
1195 	/* invoke hardware interrupt					*/
1196 	pops = mach_set[0];
1197 	(*pops->psm_set_softintr)(ipl);
1198 }
1199 
1200 static int
1201 mach_softlvl_to_vect(int ipl)
1202 {
1203 	int softvect;
1204 	struct psm_ops  *pops;
1205 
1206 	pops = mach_set[0];
1207 
1208 	/* check for null handler for set soft interrupt call		*/
1209 	if (pops->psm_set_softintr == NULL) {
1210 		setsoftint = av_set_softint_pending;
1211 		return (PSM_SV_SOFTWARE);
1212 	}
1213 
1214 	softvect = (*pops->psm_softlvl_to_irq)(ipl);
1215 	/* check for hardware scheme					*/
1216 	if (softvect > PSM_SV_SOFTWARE) {
1217 		setsoftint = mach_psm_set_softintr;
1218 		return (softvect);
1219 	}
1220 
1221 	if (softvect == PSM_SV_SOFTWARE)
1222 		setsoftint = av_set_softint_pending;
1223 	else	/* hardware and software mixed scheme			*/
1224 		setsoftint = mach_set_softintr;
1225 
1226 	return (PSM_SV_SOFTWARE);
1227 }
1228 
1229 static void
1230 mach_set_softintr(int ipl, struct av_softinfo *pending)
1231 {
1232 	struct psm_ops  *pops;
1233 
1234 	/* set software pending bits					*/
1235 	av_set_softint_pending(ipl, pending);
1236 
1237 	/*	check if dosoftint will be called at the end of intr	*/
1238 	if (CPU_ON_INTR(CPU) || (curthread->t_intr))
1239 		return;
1240 
1241 	/* invoke hardware interrupt					*/
1242 	pops = mach_set[0];
1243 	(*pops->psm_set_softintr)(ipl);
1244 }
1245 
1246 #ifdef DEBUG
1247 /*
1248  * This is here to allow us to simulate cpus that refuse to start.
1249  */
1250 cpuset_t cpufailset;
1251 #endif
1252 
1253 int
1254 mach_cpu_start(struct cpu *cp, void *ctx)
1255 {
1256 	struct psm_ops *pops = mach_set[0];
1257 	processorid_t id = cp->cpu_id;
1258 
1259 #ifdef DEBUG
1260 	if (CPU_IN_SET(cpufailset, id))
1261 		return (0);
1262 #endif
1263 	return ((*pops->psm_cpu_start)(id, ctx));
1264 }
1265 
1266 /*ARGSUSED*/
1267 static int
1268 mach_translate_irq(dev_info_t *dip, int irqno)
1269 {
1270 	return (irqno);	/* default to NO translation */
1271 }
1272 
1273 static void
1274 mach_notify_error(int level, char *errmsg)
1275 {
1276 	/*
1277 	 * SL_FATAL is pass in once panicstr is set, deliver it
1278 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1279 	 * codes for the psmi handler
1280 	 */
1281 	if (level & SL_FATAL)
1282 		(*notify_error)(CE_PANIC, errmsg);
1283 	else if (level & SL_WARN)
1284 		(*notify_error)(CE_WARN, errmsg);
1285 	else if (level & SL_NOTE)
1286 		(*notify_error)(CE_NOTE, errmsg);
1287 	else if (level & SL_CONSOLE)
1288 		(*notify_error)(CE_CONT, errmsg);
1289 }
1290 
1291 /*
1292  * It provides the default basic intr_ops interface for the new DDI
1293  * interrupt framework if the PSM doesn't have one.
1294  *
1295  * Input:
1296  * dip     - pointer to the dev_info structure of the requested device
1297  * hdlp    - pointer to the internal interrupt handle structure for the
1298  *	     requested interrupt
1299  * intr_op - opcode for this call
1300  * result  - pointer to the integer that will hold the result to be
1301  *	     passed back if return value is PSM_SUCCESS
1302  *
1303  * Output:
1304  * return value is either PSM_SUCCESS or PSM_FAILURE
1305  */
1306 static int
1307 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1308     psm_intr_op_t intr_op, int *result)
1309 {
1310 	struct intrspec *ispec;
1311 
1312 	switch (intr_op) {
1313 	case PSM_INTR_OP_CHECK_MSI:
1314 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1315 		    DDI_INTR_TYPE_MSIX);
1316 		break;
1317 	case PSM_INTR_OP_ALLOC_VECTORS:
1318 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1319 			*result = 1;
1320 		else
1321 			*result = 0;
1322 		break;
1323 	case PSM_INTR_OP_FREE_VECTORS:
1324 		break;
1325 	case PSM_INTR_OP_NAVAIL_VECTORS:
1326 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1327 			*result = 1;
1328 		else
1329 			*result = 0;
1330 		break;
1331 	case PSM_INTR_OP_XLATE_VECTOR:
1332 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1333 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1334 		break;
1335 	case PSM_INTR_OP_GET_CAP:
1336 		*result = 0;
1337 		break;
1338 	case PSM_INTR_OP_GET_PENDING:
1339 	case PSM_INTR_OP_CLEAR_MASK:
1340 	case PSM_INTR_OP_SET_MASK:
1341 	case PSM_INTR_OP_GET_SHARED:
1342 	case PSM_INTR_OP_SET_PRI:
1343 	case PSM_INTR_OP_SET_CAP:
1344 	case PSM_INTR_OP_SET_CPU:
1345 	case PSM_INTR_OP_GET_INTR:
1346 	default:
1347 		return (PSM_FAILURE);
1348 	}
1349 	return (PSM_SUCCESS);
1350 }
1351