xref: /titanic_44/usr/src/uts/i86pc/os/mp_machdep.c (revision 34f94fbc7a730740933e4776ade5f74009afe4ce)
1 
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2009-2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 #define	PSMI_1_7
31 #include <sys/smp_impldefs.h>
32 #include <sys/psm.h>
33 #include <sys/psm_modctl.h>
34 #include <sys/pit.h>
35 #include <sys/cmn_err.h>
36 #include <sys/strlog.h>
37 #include <sys/clock.h>
38 #include <sys/debug.h>
39 #include <sys/rtc.h>
40 #include <sys/x86_archext.h>
41 #include <sys/cpupart.h>
42 #include <sys/cpuvar.h>
43 #include <sys/cpu_event.h>
44 #include <sys/cmt.h>
45 #include <sys/cpu.h>
46 #include <sys/disp.h>
47 #include <sys/archsystm.h>
48 #include <sys/machsystm.h>
49 #include <sys/sysmacros.h>
50 #include <sys/memlist.h>
51 #include <sys/param.h>
52 #include <sys/promif.h>
53 #include <sys/cpu_pm.h>
54 #if defined(__xpv)
55 #include <sys/hypervisor.h>
56 #endif
57 #include <sys/mach_intr.h>
58 #include <vm/hat_i86.h>
59 #include <sys/kdi_machimpl.h>
60 #include <sys/sdt.h>
61 #include <sys/hpet.h>
62 #include <sys/sunddi.h>
63 #include <sys/sunndi.h>
64 #include <sys/cpc_pcbe.h>
65 
66 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
67 
68 /*
69  *	Local function prototypes
70  */
71 static int mp_disable_intr(processorid_t cpun);
72 static void mp_enable_intr(processorid_t cpun);
73 static void mach_init();
74 static void mach_picinit();
75 static int machhztomhz(uint64_t cpu_freq_hz);
76 static uint64_t mach_getcpufreq(void);
77 static void mach_fixcpufreq(void);
78 static int mach_clkinit(int, int *);
79 static void mach_smpinit(void);
80 static int mach_softlvl_to_vect(int ipl);
81 static void mach_get_platform(int owner);
82 static void mach_construct_info();
83 static int mach_translate_irq(dev_info_t *dip, int irqno);
84 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
85     psm_intr_op_t, int *);
86 static void mach_notify_error(int level, char *errmsg);
87 static hrtime_t dummy_hrtime(void);
88 static void dummy_scalehrtime(hrtime_t *);
89 static uint64_t dummy_unscalehrtime(hrtime_t);
90 void cpu_idle(void);
91 static void cpu_wakeup(cpu_t *, int);
92 #ifndef __xpv
93 void cpu_idle_mwait(void);
94 static void cpu_wakeup_mwait(cpu_t *, int);
95 #endif
96 static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp);
97 
98 /*
99  *	External reference functions
100  */
101 extern void return_instr();
102 extern uint64_t freq_tsc(uint32_t *);
103 #if defined(__i386)
104 extern uint64_t freq_notsc(uint32_t *);
105 #endif
106 extern void pc_gethrestime(timestruc_t *);
107 extern int cpuid_get_coreid(cpu_t *);
108 extern int cpuid_get_chipid(cpu_t *);
109 
110 /*
111  *	PSM functions initialization
112  */
113 void (*psm_shutdownf)(int, int)	= (void (*)(int, int))return_instr;
114 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
115 void (*psm_notifyf)(int)	= (void (*)(int))return_instr;
116 void (*psm_set_idle_cpuf)(int)	= (void (*)(int))return_instr;
117 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
118 void (*psminitf)()		= mach_init;
119 void (*picinitf)() 		= return_instr;
120 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
121 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
122 void (*send_dirintf)() 		= return_instr;
123 void (*setspl)(int)		= (void (*)(int))return_instr;
124 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
125 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
126 int (*get_pending_spl)(void)	= (int (*)(void))return_instr;
127 int (*addintr)(void *, int, avfunc, char *, int, caddr_t, caddr_t,
128     uint64_t *, dev_info_t *) = NULL;
129 void (*remintr)(void *, int, avfunc, int) = NULL;
130 void (*kdisetsoftint)(int, struct av_softinfo *)=
131 	(void (*)(int, struct av_softinfo *))return_instr;
132 void (*setsoftint)(int, struct av_softinfo *)=
133 	(void (*)(int, struct av_softinfo *))return_instr;
134 int (*slvltovect)(int)		= (int (*)(int))return_instr;
135 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
136 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
137 int (*psm_disable_intr)(int)	= mp_disable_intr;
138 void (*psm_enable_intr)(int)	= mp_enable_intr;
139 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
140 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
141 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
142 uint64_t (*unscalehrtimef)(hrtime_t)	= dummy_unscalehrtime;
143 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
144 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
145 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
146 int (*psm_get_clockirq)(int) = NULL;
147 int (*psm_get_ipivect)(int, int) = NULL;
148 uchar_t (*psm_get_ioapicid)(uchar_t) = NULL;
149 uint32_t (*psm_get_localapicid)(uint32_t) = NULL;
150 uchar_t (*psm_xlate_vector_by_irq)(uchar_t) = NULL;
151 
152 int (*psm_clkinit)(int) = NULL;
153 void (*psm_timer_reprogram)(hrtime_t) = NULL;
154 void (*psm_timer_enable)(void) = NULL;
155 void (*psm_timer_disable)(void) = NULL;
156 void (*psm_post_cyclic_setup)(void *arg) = NULL;
157 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
158     int *) = mach_intr_ops;
159 int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *))
160     return_instr;
161 
162 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
163 void (*hrtime_tick)(void)	= return_instr;
164 
165 int (*psm_cpu_create_devinfo)(cpu_t *, dev_info_t **) = mach_cpu_create_devinfo;
166 int (*psm_cpu_get_devinfo)(cpu_t *, dev_info_t **) = NULL;
167 
168 /* global IRM pool for APIX (PSM) module */
169 ddi_irm_pool_t *apix_irm_pool_p = NULL;
170 
171 /*
172  * True if the generic TSC code is our source of hrtime, rather than whatever
173  * the PSM can provide.
174  */
175 #ifdef __xpv
176 int tsc_gethrtime_enable = 0;
177 #else
178 int tsc_gethrtime_enable = 1;
179 #endif
180 int tsc_gethrtime_initted = 0;
181 
182 /*
183  * True if the hrtime implementation is "hires"; namely, better than microdata.
184  */
185 int gethrtime_hires = 0;
186 
187 /*
188  * Local Static Data
189  */
190 static struct psm_ops mach_ops;
191 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
192 static ushort_t mach_ver[4] = {0, 0, 0, 0};
193 
194 /*
195  * virtualization support for psm
196  */
197 void *psm_vt_ops = NULL;
198 /*
199  * If non-zero, idle cpus will become "halted" when there's
200  * no work to do.
201  */
202 int	idle_cpu_use_hlt = 1;
203 
204 #ifndef __xpv
205 /*
206  * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
207  */
208 int	idle_cpu_prefer_mwait = 1;
209 /*
210  * Set to 0 to avoid MONITOR+CLFLUSH assertion.
211  */
212 int	idle_cpu_assert_cflush_monitor = 1;
213 
214 /*
215  * If non-zero, idle cpus will not use power saving Deep C-States idle loop.
216  */
217 int	idle_cpu_no_deep_c = 0;
218 /*
219  * Non-power saving idle loop and wakeup pointers.
220  * Allows user to toggle Deep Idle power saving feature on/off.
221  */
222 void	(*non_deep_idle_cpu)() = cpu_idle;
223 void	(*non_deep_idle_disp_enq_thread)(cpu_t *, int);
224 
225 /*
226  * Object for the kernel to access the HPET.
227  */
228 hpet_t hpet;
229 
230 #endif	/* ifndef __xpv */
231 
232 uint_t cp_haltset_fanout = 0;
233 
234 /*ARGSUSED*/
235 int
236 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
237 {
238 	switch (hw) {
239 	case PGHW_IPIPE:
240 		if (is_x86_feature(x86_featureset, X86FSET_HTT)) {
241 			/*
242 			 * Hyper-threading is SMT
243 			 */
244 			return (1);
245 		} else {
246 			return (0);
247 		}
248 	case PGHW_PROCNODE:
249 		if (cpuid_get_procnodes_per_pkg(cp) > 1)
250 			return (1);
251 		else
252 			return (0);
253 	case PGHW_CHIP:
254 		if (is_x86_feature(x86_featureset, X86FSET_CMP) ||
255 		    is_x86_feature(x86_featureset, X86FSET_HTT))
256 			return (1);
257 		else
258 			return (0);
259 	case PGHW_CACHE:
260 		if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
261 			return (1);
262 		else
263 			return (0);
264 	case PGHW_POW_ACTIVE:
265 		if (cpupm_domain_id(cp, CPUPM_DTYPE_ACTIVE) != (id_t)-1)
266 			return (1);
267 		else
268 			return (0);
269 	case PGHW_POW_IDLE:
270 		if (cpupm_domain_id(cp, CPUPM_DTYPE_IDLE) != (id_t)-1)
271 			return (1);
272 		else
273 			return (0);
274 	default:
275 		return (0);
276 	}
277 }
278 
279 /*
280  * Compare two CPUs and see if they have a pghw_type_t sharing relationship
281  * If pghw_type_t is an unsupported hardware type, then return -1
282  */
283 int
284 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
285 {
286 	id_t pgp_a, pgp_b;
287 
288 	pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
289 	pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
290 
291 	if (pgp_a == -1 || pgp_b == -1)
292 		return (-1);
293 
294 	return (pgp_a == pgp_b);
295 }
296 
297 /*
298  * Return a physical instance identifier for known hardware sharing
299  * relationships
300  */
301 id_t
302 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
303 {
304 	switch (hw) {
305 	case PGHW_IPIPE:
306 		return (cpuid_get_coreid(cpu));
307 	case PGHW_CACHE:
308 		return (cpuid_get_last_lvl_cacheid(cpu));
309 	case PGHW_PROCNODE:
310 		return (cpuid_get_procnodeid(cpu));
311 	case PGHW_CHIP:
312 		return (cpuid_get_chipid(cpu));
313 	case PGHW_POW_ACTIVE:
314 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_ACTIVE));
315 	case PGHW_POW_IDLE:
316 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_IDLE));
317 	default:
318 		return (-1);
319 	}
320 }
321 
322 /*
323  * Express preference for optimizing for sharing relationship
324  * hw1 vs hw2
325  */
326 pghw_type_t
327 pg_plat_hw_rank(pghw_type_t hw1, pghw_type_t hw2)
328 {
329 	int i, rank1, rank2;
330 
331 	static pghw_type_t hw_hier[] = {
332 		PGHW_IPIPE,
333 		PGHW_CACHE,
334 		PGHW_PROCNODE,
335 		PGHW_CHIP,
336 		PGHW_POW_IDLE,
337 		PGHW_POW_ACTIVE,
338 		PGHW_NUM_COMPONENTS
339 	};
340 
341 	for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
342 		if (hw_hier[i] == hw1)
343 			rank1 = i;
344 		if (hw_hier[i] == hw2)
345 			rank2 = i;
346 	}
347 
348 	if (rank1 > rank2)
349 		return (hw1);
350 	else
351 		return (hw2);
352 }
353 
354 /*
355  * Override the default CMT dispatcher policy for the specified
356  * hardware sharing relationship
357  */
358 pg_cmt_policy_t
359 pg_plat_cmt_policy(pghw_type_t hw)
360 {
361 	/*
362 	 * For shared caches, also load balance across them to
363 	 * maximize aggregate cache capacity
364 	 */
365 	switch (hw) {
366 	case PGHW_CACHE:
367 		return (CMT_BALANCE|CMT_AFFINITY);
368 	default:
369 		return (CMT_NO_POLICY);
370 	}
371 }
372 
373 id_t
374 pg_plat_get_core_id(cpu_t *cpu)
375 {
376 	return ((id_t)cpuid_get_coreid(cpu));
377 }
378 
379 void
380 cmp_set_nosteal_interval(void)
381 {
382 	/* Set the nosteal interval (used by disp_getbest()) to 100us */
383 	nosteal_nsec = 100000UL;
384 }
385 
386 /*
387  * Routine to ensure initial callers to hrtime gets 0 as return
388  */
389 static hrtime_t
390 dummy_hrtime(void)
391 {
392 	return (0);
393 }
394 
395 /* ARGSUSED */
396 static void
397 dummy_scalehrtime(hrtime_t *ticks)
398 {}
399 
400 static uint64_t
401 dummy_unscalehrtime(hrtime_t nsecs)
402 {
403 	return ((uint64_t)nsecs);
404 }
405 
406 /*
407  * Supports Deep C-State power saving idle loop.
408  */
409 void
410 cpu_idle_adaptive(void)
411 {
412 	(*CPU->cpu_m.mcpu_idle_cpu)();
413 }
414 
415 /*
416  * Function called by CPU idle notification framework to check whether CPU
417  * has been awakened. It will be called with interrupt disabled.
418  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
419  * notification framework.
420  */
421 /*ARGSUSED*/
422 static void
423 cpu_idle_check_wakeup(void *arg)
424 {
425 	/*
426 	 * Toggle interrupt flag to detect pending interrupts.
427 	 * If interrupt happened, do_interrupt() will notify CPU idle
428 	 * notification framework so no need to call cpu_idle_exit() here.
429 	 */
430 	sti();
431 	SMT_PAUSE();
432 	cli();
433 }
434 
435 /*
436  * Idle the present CPU until wakened via an interrupt
437  */
438 void
439 cpu_idle(void)
440 {
441 	cpu_t		*cpup = CPU;
442 	processorid_t	cpu_sid = cpup->cpu_seqid;
443 	cpupart_t	*cp = cpup->cpu_part;
444 	int		hset_update = 1;
445 
446 	/*
447 	 * If this CPU is online, and there's multiple CPUs
448 	 * in the system, then we should notate our halting
449 	 * by adding ourselves to the partition's halted CPU
450 	 * bitmap. This allows other CPUs to find/awaken us when
451 	 * work becomes available.
452 	 */
453 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
454 		hset_update = 0;
455 
456 	/*
457 	 * Add ourselves to the partition's halted CPUs bitmap
458 	 * and set our HALTED flag, if necessary.
459 	 *
460 	 * When a thread becomes runnable, it is placed on the queue
461 	 * and then the halted CPU bitmap is checked to determine who
462 	 * (if anyone) should be awakened. We therefore need to first
463 	 * add ourselves to the bitmap, and and then check if there
464 	 * is any work available. The order is important to prevent a race
465 	 * that can lead to work languishing on a run queue somewhere while
466 	 * this CPU remains halted.
467 	 *
468 	 * Either the producing CPU will see we're halted and will awaken us,
469 	 * or this CPU will see the work available in disp_anywork().
470 	 *
471 	 * Note that memory barriers after updating the HALTED flag
472 	 * are not necessary since an atomic operation (updating the bitset)
473 	 * immediately follows. On x86 the atomic operation acts as a
474 	 * memory barrier for the update of cpu_disp_flags.
475 	 */
476 	if (hset_update) {
477 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
478 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
479 	}
480 
481 	/*
482 	 * Check to make sure there's really nothing to do.
483 	 * Work destined for this CPU may become available after
484 	 * this check. We'll be notified through the clearing of our
485 	 * bit in the halted CPU bitmap, and a poke.
486 	 */
487 	if (disp_anywork()) {
488 		if (hset_update) {
489 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
490 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
491 		}
492 		return;
493 	}
494 
495 	/*
496 	 * We're on our way to being halted.
497 	 *
498 	 * Disable interrupts now, so that we'll awaken immediately
499 	 * after halting if someone tries to poke us between now and
500 	 * the time we actually halt.
501 	 *
502 	 * We check for the presence of our bit after disabling interrupts.
503 	 * If it's cleared, we'll return. If the bit is cleared after
504 	 * we check then the poke will pop us out of the halted state.
505 	 *
506 	 * This means that the ordering of the poke and the clearing
507 	 * of the bit by cpu_wakeup is important.
508 	 * cpu_wakeup() must clear, then poke.
509 	 * cpu_idle() must disable interrupts, then check for the bit.
510 	 */
511 	cli();
512 
513 	if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
514 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
515 		sti();
516 		return;
517 	}
518 
519 	/*
520 	 * The check for anything locally runnable is here for performance
521 	 * and isn't needed for correctness. disp_nrunnable ought to be
522 	 * in our cache still, so it's inexpensive to check, and if there
523 	 * is anything runnable we won't have to wait for the poke.
524 	 */
525 	if (cpup->cpu_disp->disp_nrunnable != 0) {
526 		if (hset_update) {
527 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
528 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
529 		}
530 		sti();
531 		return;
532 	}
533 
534 	if (cpu_idle_enter(IDLE_STATE_C1, 0,
535 	    cpu_idle_check_wakeup, NULL) == 0) {
536 		mach_cpu_idle();
537 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
538 	}
539 
540 	/*
541 	 * We're no longer halted
542 	 */
543 	if (hset_update) {
544 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
545 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
546 	}
547 }
548 
549 
550 /*
551  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
552  * Otherwise, see if other CPUs in the cpu partition are halted and need to
553  * be woken up so that they can steal the thread we placed on this CPU.
554  * This function is only used on MP systems.
555  */
556 static void
557 cpu_wakeup(cpu_t *cpu, int bound)
558 {
559 	uint_t		cpu_found;
560 	processorid_t	cpu_sid;
561 	cpupart_t	*cp;
562 
563 	cp = cpu->cpu_part;
564 	cpu_sid = cpu->cpu_seqid;
565 	if (bitset_in_set(&cp->cp_haltset, cpu_sid)) {
566 		/*
567 		 * Clear the halted bit for that CPU since it will be
568 		 * poked in a moment.
569 		 */
570 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
571 		/*
572 		 * We may find the current CPU present in the halted cpuset
573 		 * if we're in the context of an interrupt that occurred
574 		 * before we had a chance to clear our bit in cpu_idle().
575 		 * Poking ourself is obviously unnecessary, since if
576 		 * we're here, we're not halted.
577 		 */
578 		if (cpu != CPU)
579 			poke_cpu(cpu->cpu_id);
580 		return;
581 	} else {
582 		/*
583 		 * This cpu isn't halted, but it's idle or undergoing a
584 		 * context switch. No need to awaken anyone else.
585 		 */
586 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
587 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
588 			return;
589 	}
590 
591 	/*
592 	 * No need to wake up other CPUs if this is for a bound thread.
593 	 */
594 	if (bound)
595 		return;
596 
597 	/*
598 	 * The CPU specified for wakeup isn't currently halted, so check
599 	 * to see if there are any other halted CPUs in the partition,
600 	 * and if there are then awaken one.
601 	 */
602 	do {
603 		cpu_found = bitset_find(&cp->cp_haltset);
604 		if (cpu_found == (uint_t)-1)
605 			return;
606 	} while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0);
607 
608 	if (cpu_found != CPU->cpu_seqid) {
609 		poke_cpu(cpu_seq[cpu_found]->cpu_id);
610 	}
611 }
612 
613 #ifndef __xpv
614 /*
615  * Function called by CPU idle notification framework to check whether CPU
616  * has been awakened. It will be called with interrupt disabled.
617  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
618  * notification framework.
619  */
620 static void
621 cpu_idle_mwait_check_wakeup(void *arg)
622 {
623 	volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
624 
625 	ASSERT(arg != NULL);
626 	if (*mcpu_mwait != MWAIT_HALTED) {
627 		/*
628 		 * CPU has been awakened, notify CPU idle notification system.
629 		 */
630 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
631 	} else {
632 		/*
633 		 * Toggle interrupt flag to detect pending interrupts.
634 		 * If interrupt happened, do_interrupt() will notify CPU idle
635 		 * notification framework so no need to call cpu_idle_exit()
636 		 * here.
637 		 */
638 		sti();
639 		SMT_PAUSE();
640 		cli();
641 	}
642 }
643 
644 /*
645  * Idle the present CPU until awakened via touching its monitored line
646  */
647 void
648 cpu_idle_mwait(void)
649 {
650 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
651 	cpu_t			*cpup = CPU;
652 	processorid_t		cpu_sid = cpup->cpu_seqid;
653 	cpupart_t		*cp = cpup->cpu_part;
654 	int			hset_update = 1;
655 
656 	/*
657 	 * Set our mcpu_mwait here, so we can tell if anyone tries to
658 	 * wake us between now and when we call mwait.  No other cpu will
659 	 * attempt to set our mcpu_mwait until we add ourself to the halted
660 	 * CPU bitmap.
661 	 */
662 	*mcpu_mwait = MWAIT_HALTED;
663 
664 	/*
665 	 * If this CPU is online, and there's multiple CPUs
666 	 * in the system, then we should note our halting
667 	 * by adding ourselves to the partition's halted CPU
668 	 * bitmap. This allows other CPUs to find/awaken us when
669 	 * work becomes available.
670 	 */
671 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
672 		hset_update = 0;
673 
674 	/*
675 	 * Add ourselves to the partition's halted CPUs bitmap
676 	 * and set our HALTED flag, if necessary.
677 	 *
678 	 * When a thread becomes runnable, it is placed on the queue
679 	 * and then the halted CPU bitmap is checked to determine who
680 	 * (if anyone) should be awakened. We therefore need to first
681 	 * add ourselves to the bitmap, and and then check if there
682 	 * is any work available.
683 	 *
684 	 * Note that memory barriers after updating the HALTED flag
685 	 * are not necessary since an atomic operation (updating the bitmap)
686 	 * immediately follows. On x86 the atomic operation acts as a
687 	 * memory barrier for the update of cpu_disp_flags.
688 	 */
689 	if (hset_update) {
690 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
691 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
692 	}
693 
694 	/*
695 	 * Check to make sure there's really nothing to do.
696 	 * Work destined for this CPU may become available after
697 	 * this check. We'll be notified through the clearing of our
698 	 * bit in the halted CPU bitmap, and a write to our mcpu_mwait.
699 	 *
700 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
701 	 */
702 	if (disp_anywork()) {
703 		if (hset_update) {
704 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
705 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
706 		}
707 		return;
708 	}
709 
710 	/*
711 	 * We're on our way to being halted.
712 	 * To avoid a lost wakeup, arm the monitor before checking if another
713 	 * cpu wrote to mcpu_mwait to wake us up.
714 	 */
715 	i86_monitor(mcpu_mwait, 0, 0);
716 	if (*mcpu_mwait == MWAIT_HALTED) {
717 		if (cpu_idle_enter(IDLE_STATE_C1, 0,
718 		    cpu_idle_mwait_check_wakeup, (void *)mcpu_mwait) == 0) {
719 			if (*mcpu_mwait == MWAIT_HALTED) {
720 				i86_mwait(0, 0);
721 			}
722 			cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
723 		}
724 	}
725 
726 	/*
727 	 * We're no longer halted
728 	 */
729 	if (hset_update) {
730 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
731 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
732 	}
733 }
734 
735 /*
736  * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
737  * advance.  Otherwise, see if other CPUs in the cpu partition are halted and
738  * need to be woken up so that they can steal the thread we placed on this CPU.
739  * This function is only used on MP systems.
740  */
741 static void
742 cpu_wakeup_mwait(cpu_t *cp, int bound)
743 {
744 	cpupart_t	*cpu_part;
745 	uint_t		cpu_found;
746 	processorid_t	cpu_sid;
747 
748 	cpu_part = cp->cpu_part;
749 	cpu_sid = cp->cpu_seqid;
750 
751 	/*
752 	 * Clear the halted bit for that CPU since it will be woken up
753 	 * in a moment.
754 	 */
755 	if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
756 		/*
757 		 * Clear the halted bit for that CPU since it will be
758 		 * poked in a moment.
759 		 */
760 		bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
761 		/*
762 		 * We may find the current CPU present in the halted cpuset
763 		 * if we're in the context of an interrupt that occurred
764 		 * before we had a chance to clear our bit in cpu_idle().
765 		 * Waking ourself is obviously unnecessary, since if
766 		 * we're here, we're not halted.
767 		 *
768 		 * monitor/mwait wakeup via writing to our cache line is
769 		 * harmless and less expensive than always checking if we
770 		 * are waking ourself which is an uncommon case.
771 		 */
772 		MWAIT_WAKEUP(cp);	/* write to monitored line */
773 		return;
774 	} else {
775 		/*
776 		 * This cpu isn't halted, but it's idle or undergoing a
777 		 * context switch. No need to awaken anyone else.
778 		 */
779 		if (cp->cpu_thread == cp->cpu_idle_thread ||
780 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
781 			return;
782 	}
783 
784 	/*
785 	 * No need to wake up other CPUs if the thread we just enqueued
786 	 * is bound.
787 	 */
788 	if (bound || ncpus == 1)
789 		return;
790 
791 	/*
792 	 * See if there's any other halted CPUs. If there are, then
793 	 * select one, and awaken it.
794 	 * It's possible that after we find a CPU, somebody else
795 	 * will awaken it before we get the chance.
796 	 * In that case, look again.
797 	 */
798 	do {
799 		cpu_found = bitset_find(&cpu_part->cp_haltset);
800 		if (cpu_found == (uint_t)-1)
801 			return;
802 	} while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
803 	    cpu_found) < 0);
804 
805 	/*
806 	 * Do not check if cpu_found is ourself as monitor/mwait
807 	 * wakeup is cheap.
808 	 */
809 	MWAIT_WAKEUP(cpu_seq[cpu_found]); /* write to monitored line */
810 }
811 
812 #endif
813 
814 void (*cpu_pause_handler)(volatile char *) = NULL;
815 
816 static int
817 mp_disable_intr(int cpun)
818 {
819 	/*
820 	 * switch to the offline cpu
821 	 */
822 	affinity_set(cpun);
823 	/*
824 	 * raise ipl to just below cross call
825 	 */
826 	splx(XC_SYS_PIL - 1);
827 	/*
828 	 *	set base spl to prevent the next swtch to idle from
829 	 *	lowering back to ipl 0
830 	 */
831 	CPU->cpu_intr_actv |= (1 << (XC_SYS_PIL - 1));
832 	set_base_spl();
833 	affinity_clear();
834 	return (DDI_SUCCESS);
835 }
836 
837 static void
838 mp_enable_intr(int cpun)
839 {
840 	/*
841 	 * switch to the online cpu
842 	 */
843 	affinity_set(cpun);
844 	/*
845 	 * clear the interrupt active mask
846 	 */
847 	CPU->cpu_intr_actv &= ~(1 << (XC_SYS_PIL - 1));
848 	set_base_spl();
849 	(void) spl0();
850 	affinity_clear();
851 }
852 
853 static void
854 mach_get_platform(int owner)
855 {
856 	void		**srv_opsp;
857 	void		**clt_opsp;
858 	int		i;
859 	int		total_ops;
860 
861 	/* fix up psm ops */
862 	srv_opsp = (void **)mach_set[0];
863 	clt_opsp = (void **)mach_set[owner];
864 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
865 		total_ops = sizeof (struct psm_ops_ver01) /
866 		    sizeof (void (*)(void));
867 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
868 		/* no psm_notify_func */
869 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
870 		    sizeof (void (*)(void));
871 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
872 		/* no psm_timer funcs */
873 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
874 		    sizeof (void (*)(void));
875 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
876 		/* no psm_preshutdown function */
877 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
878 		    sizeof (void (*)(void));
879 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
880 		/* no psm_intr_ops function */
881 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
882 		    sizeof (void (*)(void));
883 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_5)
884 		/* no psm_state function */
885 		total_ops = OFFSETOF(struct psm_ops, psm_state) /
886 		    sizeof (void (*)(void));
887 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_6)
888 		/* no psm_cpu_ops function */
889 		total_ops = OFFSETOF(struct psm_ops, psm_cpu_ops) /
890 		    sizeof (void (*)(void));
891 	else
892 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
893 
894 	/*
895 	 * Save the version of the PSM module, in case we need to
896 	 * behave differently based on version.
897 	 */
898 	mach_ver[0] = mach_ver[owner];
899 
900 	for (i = 0; i < total_ops; i++)
901 		if (clt_opsp[i] != NULL)
902 			srv_opsp[i] = clt_opsp[i];
903 }
904 
905 static void
906 mach_construct_info()
907 {
908 	struct psm_sw *swp;
909 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
910 	int	conflict_owner = 0;
911 
912 	if (psmsw->psw_forw == psmsw)
913 		panic("No valid PSM modules found");
914 	mutex_enter(&psmsw_lock);
915 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
916 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
917 			continue;
918 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
919 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
920 		mach_cnt[swp->psw_infop->p_owner]++;
921 	}
922 	mutex_exit(&psmsw_lock);
923 
924 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
925 
926 	/* check to see are there any conflicts */
927 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
928 		conflict_owner = PSM_OWN_EXCLUSIVE;
929 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
930 		conflict_owner = PSM_OWN_OVERRIDE;
931 	if (conflict_owner) {
932 		/* remove all psm modules except uppc */
933 		cmn_err(CE_WARN,
934 		    "Conflicts detected on the following PSM modules:");
935 		mutex_enter(&psmsw_lock);
936 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
937 			if (swp->psw_infop->p_owner == conflict_owner)
938 				cmn_err(CE_WARN, "%s ",
939 				    swp->psw_infop->p_mach_idstring);
940 		}
941 		mutex_exit(&psmsw_lock);
942 		cmn_err(CE_WARN,
943 		    "Setting the system back to SINGLE processor mode!");
944 		cmn_err(CE_WARN,
945 		    "Please edit /etc/mach to remove the invalid PSM module.");
946 		return;
947 	}
948 
949 	if (mach_set[PSM_OWN_EXCLUSIVE])
950 		mach_get_platform(PSM_OWN_EXCLUSIVE);
951 
952 	if (mach_set[PSM_OWN_OVERRIDE])
953 		mach_get_platform(PSM_OWN_OVERRIDE);
954 }
955 
956 static void
957 mach_init()
958 {
959 	struct psm_ops  *pops;
960 
961 	mach_construct_info();
962 
963 	pops = mach_set[0];
964 
965 	/* register the interrupt and clock initialization rotuines */
966 	picinitf = mach_picinit;
967 	clkinitf = mach_clkinit;
968 	psm_get_clockirq = pops->psm_get_clockirq;
969 
970 	/* register the interrupt setup code */
971 	slvltovect = mach_softlvl_to_vect;
972 	addspl	= pops->psm_addspl;
973 	delspl	= pops->psm_delspl;
974 
975 	if (pops->psm_translate_irq)
976 		psm_translate_irq = pops->psm_translate_irq;
977 	if (pops->psm_intr_ops)
978 		psm_intr_ops = pops->psm_intr_ops;
979 
980 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
981 	/*
982 	 * Time-of-day functionality now handled in TOD modules.
983 	 * (Warn about PSM modules that think that we're going to use
984 	 * their ops vectors.)
985 	 */
986 	if (pops->psm_tod_get)
987 		cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
988 		    (void *)pops->psm_tod_get);
989 
990 	if (pops->psm_tod_set)
991 		cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
992 		    (void *)pops->psm_tod_set);
993 #endif
994 
995 	if (pops->psm_notify_error) {
996 		psm_notify_error = mach_notify_error;
997 		notify_error = pops->psm_notify_error;
998 	}
999 
1000 	(*pops->psm_softinit)();
1001 
1002 	/*
1003 	 * Initialize the dispatcher's function hooks to enable CPU halting
1004 	 * when idle.  Set both the deep-idle and non-deep-idle hooks.
1005 	 *
1006 	 * Assume we can use power saving deep-idle loop cpu_idle_adaptive.
1007 	 * Platform deep-idle driver will reset our idle loop to
1008 	 * non_deep_idle_cpu if power saving deep-idle feature is not available.
1009 	 *
1010 	 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle)
1011 	 * or idle_cpu_prefer_mwait is not set.
1012 	 * Allocate monitor/mwait buffer for cpu0.
1013 	 */
1014 #ifndef __xpv
1015 	non_deep_idle_disp_enq_thread = disp_enq_thread;
1016 #endif
1017 	if (idle_cpu_use_hlt) {
1018 		idle_cpu = cpu_idle_adaptive;
1019 		CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1020 #ifndef __xpv
1021 		if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
1022 		    idle_cpu_prefer_mwait) {
1023 			CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
1024 			/*
1025 			 * Protect ourself from insane mwait size.
1026 			 */
1027 			if (CPU->cpu_m.mcpu_mwait == NULL) {
1028 #ifdef DEBUG
1029 				cmn_err(CE_NOTE, "Using hlt idle.  Cannot "
1030 				    "handle cpu 0 mwait size.");
1031 #endif
1032 				idle_cpu_prefer_mwait = 0;
1033 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1034 			} else {
1035 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
1036 			}
1037 		} else {
1038 			CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1039 		}
1040 		non_deep_idle_cpu = CPU->cpu_m.mcpu_idle_cpu;
1041 
1042 		/*
1043 		 * Disable power saving deep idle loop?
1044 		 */
1045 		if (idle_cpu_no_deep_c) {
1046 			idle_cpu = non_deep_idle_cpu;
1047 		}
1048 #endif
1049 	}
1050 
1051 	mach_smpinit();
1052 }
1053 
1054 static void
1055 mach_smpinit(void)
1056 {
1057 	struct psm_ops  *pops;
1058 	processorid_t cpu_id;
1059 	int cnt;
1060 	cpuset_t cpumask;
1061 
1062 	pops = mach_set[0];
1063 	CPUSET_ZERO(cpumask);
1064 
1065 	cpu_id = -1;
1066 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1067 	/*
1068 	 * Only add boot_ncpus CPUs to mp_cpus. Other CPUs will be handled
1069 	 * by CPU DR driver at runtime.
1070 	 */
1071 	for (cnt = 0; cpu_id != -1 && cnt < boot_ncpus; cnt++) {
1072 		CPUSET_ADD(cpumask, cpu_id);
1073 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1074 	}
1075 
1076 	mp_cpus = cpumask;
1077 
1078 	/* MP related routines */
1079 	ap_mlsetup = pops->psm_post_cpu_start;
1080 	send_dirintf = pops->psm_send_ipi;
1081 
1082 	/* optional MP related routines */
1083 	if (pops->psm_shutdown)
1084 		psm_shutdownf = pops->psm_shutdown;
1085 	if (pops->psm_preshutdown)
1086 		psm_preshutdownf = pops->psm_preshutdown;
1087 	if (pops->psm_notify_func)
1088 		psm_notifyf = pops->psm_notify_func;
1089 	if (pops->psm_set_idlecpu)
1090 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
1091 	if (pops->psm_unset_idlecpu)
1092 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
1093 
1094 	psm_clkinit = pops->psm_clkinit;
1095 
1096 	if (pops->psm_timer_reprogram)
1097 		psm_timer_reprogram = pops->psm_timer_reprogram;
1098 
1099 	if (pops->psm_timer_enable)
1100 		psm_timer_enable = pops->psm_timer_enable;
1101 
1102 	if (pops->psm_timer_disable)
1103 		psm_timer_disable = pops->psm_timer_disable;
1104 
1105 	if (pops->psm_post_cyclic_setup)
1106 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
1107 
1108 	if (pops->psm_state)
1109 		psm_state = pops->psm_state;
1110 
1111 	/*
1112 	 * Set these vectors here so they can be used by Suspend/Resume
1113 	 * on UP machines.
1114 	 */
1115 	if (pops->psm_disable_intr)
1116 		psm_disable_intr = pops->psm_disable_intr;
1117 	if (pops->psm_enable_intr)
1118 		psm_enable_intr  = pops->psm_enable_intr;
1119 
1120 	/* check for multiple CPUs */
1121 	if (cnt < 2 && plat_dr_support_cpu() == B_FALSE)
1122 		return;
1123 
1124 	/* check for MP platforms */
1125 	if (pops->psm_cpu_start == NULL)
1126 		return;
1127 
1128 	/*
1129 	 * Set the dispatcher hook to enable cpu "wake up"
1130 	 * when a thread becomes runnable.
1131 	 */
1132 	if (idle_cpu_use_hlt) {
1133 		disp_enq_thread = cpu_wakeup;
1134 #ifndef __xpv
1135 		if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
1136 		    idle_cpu_prefer_mwait)
1137 			disp_enq_thread = cpu_wakeup_mwait;
1138 		non_deep_idle_disp_enq_thread = disp_enq_thread;
1139 #endif
1140 	}
1141 
1142 	psm_get_ipivect = pops->psm_get_ipivect;
1143 
1144 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_intr",
1145 	    (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
1146 	    NULL, NULL, NULL, NULL);
1147 
1148 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
1149 }
1150 
1151 static void
1152 mach_picinit()
1153 {
1154 	struct psm_ops  *pops;
1155 
1156 	pops = mach_set[0];
1157 
1158 	/* register the interrupt handlers */
1159 	setlvl = pops->psm_intr_enter;
1160 	setlvlx = pops->psm_intr_exit;
1161 
1162 	/* initialize the interrupt hardware */
1163 	(*pops->psm_picinit)();
1164 
1165 	/* set interrupt mask for current ipl */
1166 	setspl = pops->psm_setspl;
1167 	cli();
1168 	setspl(CPU->cpu_pri);
1169 }
1170 
1171 uint_t	cpu_freq;	/* MHz */
1172 uint64_t cpu_freq_hz;	/* measured (in hertz) */
1173 
1174 #define	MEGA_HZ		1000000
1175 
1176 #ifdef __xpv
1177 
1178 int xpv_cpufreq_workaround = 1;
1179 int xpv_cpufreq_verbose = 0;
1180 
1181 #else	/* __xpv */
1182 
1183 static uint64_t
1184 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
1185 {
1186 	uint64_t cpu_hz;
1187 
1188 	if ((pit_counter == 0) || (*processor_clks == 0) ||
1189 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
1190 		return (0);
1191 
1192 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
1193 
1194 	return (cpu_hz);
1195 }
1196 
1197 #endif	/* __xpv */
1198 
1199 static uint64_t
1200 mach_getcpufreq(void)
1201 {
1202 #if defined(__xpv)
1203 	vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time;
1204 	uint64_t cpu_hz;
1205 
1206 	/*
1207 	 * During dom0 bringup, it was noted that on at least one older
1208 	 * Intel HT machine, the hypervisor initially gives a tsc_to_system_mul
1209 	 * value that is quite wrong (the 3.06GHz clock was reported
1210 	 * as 4.77GHz)
1211 	 *
1212 	 * The curious thing is, that if you stop the kernel at entry,
1213 	 * breakpoint here and inspect the value with kmdb, the value
1214 	 * is correct - but if you don't stop and simply enable the
1215 	 * printf statement (below), you can see the bad value printed
1216 	 * here.  Almost as if something kmdb did caused the hypervisor to
1217 	 * figure it out correctly.  And, note that the hypervisor
1218 	 * eventually -does- figure it out correctly ... if you look at
1219 	 * the field later in the life of dom0, it is correct.
1220 	 *
1221 	 * For now, on dom0, we employ a slightly cheesy workaround of
1222 	 * using the DOM0_PHYSINFO hypercall.
1223 	 */
1224 	if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) {
1225 		cpu_hz = 1000 * xpv_cpu_khz();
1226 	} else {
1227 		cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul;
1228 
1229 		if (vti->tsc_shift < 0)
1230 			cpu_hz <<= -vti->tsc_shift;
1231 		else
1232 			cpu_hz >>= vti->tsc_shift;
1233 	}
1234 
1235 	if (xpv_cpufreq_verbose)
1236 		printf("mach_getcpufreq: system_mul 0x%x, shift %d, "
1237 		    "cpu_hz %" PRId64 "Hz\n",
1238 		    vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz);
1239 
1240 	return (cpu_hz);
1241 #else	/* __xpv */
1242 	uint32_t pit_counter;
1243 	uint64_t processor_clks;
1244 
1245 	if (is_x86_feature(x86_featureset, X86FSET_TSC)) {
1246 		/*
1247 		 * We have a TSC. freq_tsc() knows how to measure the number
1248 		 * of clock cycles sampled against the PIT.
1249 		 */
1250 		ulong_t flags = clear_int_flag();
1251 		processor_clks = freq_tsc(&pit_counter);
1252 		restore_int_flag(flags);
1253 		return (mach_calchz(pit_counter, &processor_clks));
1254 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
1255 #if defined(__amd64)
1256 		panic("mach_getcpufreq: no TSC!");
1257 #elif defined(__i386)
1258 		/*
1259 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
1260 		 * for which freq_notsc() knows how to measure the number of
1261 		 * elapsed clock cycles sampled against the PIT
1262 		 */
1263 		ulong_t flags = clear_int_flag();
1264 		processor_clks = freq_notsc(&pit_counter);
1265 		restore_int_flag(flags);
1266 		return (mach_calchz(pit_counter, &processor_clks));
1267 #endif	/* __i386 */
1268 	}
1269 
1270 	/* We do not know how to calculate cpu frequency for this cpu. */
1271 	return (0);
1272 #endif	/* __xpv */
1273 }
1274 
1275 /*
1276  * If the clock speed of a cpu is found to be reported incorrectly, do not add
1277  * to this array, instead improve the accuracy of the algorithm that determines
1278  * the clock speed of the processor or extend the implementation to support the
1279  * vendor as appropriate. This is here only to support adjusting the speed on
1280  * older slower processors that mach_fixcpufreq() would not be able to account
1281  * for otherwise.
1282  */
1283 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1284 
1285 /*
1286  * On fast processors the clock frequency that is measured may be off by
1287  * a few MHz from the value printed on the part. This is a combination of
1288  * the factors that for such fast parts being off by this much is within
1289  * the tolerances for manufacture and because of the difficulties in the
1290  * measurement that can lead to small error. This function uses some
1291  * heuristics in order to tweak the value that was measured to match what
1292  * is most likely printed on the part.
1293  *
1294  * Some examples:
1295  * 	AMD Athlon 1000 mhz measured as 998 mhz
1296  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
1297  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
1298  *
1299  * If in the future this function is no longer sufficient to correct
1300  * for the error in the measurement, then the algorithm used to perform
1301  * the measurement will have to be improved in order to increase accuracy
1302  * rather than adding horrible and questionable kludges here.
1303  *
1304  * This is called after the cyclics subsystem because of the potential
1305  * that the heuristics within may give a worse estimate of the clock
1306  * frequency than the value that was measured.
1307  */
1308 static void
1309 mach_fixcpufreq(void)
1310 {
1311 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1312 
1313 	freq = (uint32_t)cpu_freq;
1314 
1315 	/*
1316 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1317 	 * measured speed taking into account that the 667 MHz parts were
1318 	 * the first to round-up.
1319 	 */
1320 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1321 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1322 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1323 
1324 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
1325 	mul = (freq + 25) / 50;
1326 	near50 = mul * 50;
1327 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1328 
1329 	/* Find the closer of the two */
1330 	if (delta66 < delta50) {
1331 		fixed = near66;
1332 		delta = delta66;
1333 	} else {
1334 		fixed = near50;
1335 		delta = delta50;
1336 	}
1337 
1338 	if (fixed > INT_MAX)
1339 		return;
1340 
1341 	/*
1342 	 * Some older parts have a core clock frequency that is not an
1343 	 * integral multiple of 50 or 66 MHz. Check if one of the old
1344 	 * clock frequencies is closer to the measured value than any
1345 	 * of the integral multiples of 50 an 66, and if so set fixed
1346 	 * and delta appropriately to represent the closest value.
1347 	 */
1348 	i = sizeof (x86_cpu_freq) / sizeof (int);
1349 	while (i > 0) {
1350 		i--;
1351 
1352 		if (x86_cpu_freq[i] <= freq) {
1353 			mul = freq - x86_cpu_freq[i];
1354 
1355 			if (mul < delta) {
1356 				fixed = x86_cpu_freq[i];
1357 				delta = mul;
1358 			}
1359 
1360 			break;
1361 		}
1362 
1363 		mul = x86_cpu_freq[i] - freq;
1364 
1365 		if (mul < delta) {
1366 			fixed = x86_cpu_freq[i];
1367 			delta = mul;
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * Set a reasonable maximum for how much to correct the measured
1373 	 * result by. This check is here to prevent the adjustment made
1374 	 * by this function from being more harm than good. It is entirely
1375 	 * possible that in the future parts will be made that are not
1376 	 * integral multiples of 66 or 50 in clock frequency or that
1377 	 * someone may overclock a part to some odd frequency. If the
1378 	 * measured value is farther from the corrected value than
1379 	 * allowed, then assume the corrected value is in error and use
1380 	 * the measured value.
1381 	 */
1382 	if (6 < delta)
1383 		return;
1384 
1385 	cpu_freq = (int)fixed;
1386 }
1387 
1388 
1389 static int
1390 machhztomhz(uint64_t cpu_freq_hz)
1391 {
1392 	uint64_t cpu_mhz;
1393 
1394 	/* Round to nearest MHZ */
1395 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1396 
1397 	if (cpu_mhz > INT_MAX)
1398 		return (0);
1399 
1400 	return ((int)cpu_mhz);
1401 
1402 }
1403 
1404 
1405 static int
1406 mach_clkinit(int preferred_mode, int *set_mode)
1407 {
1408 	struct psm_ops  *pops;
1409 	int resolution;
1410 
1411 	pops = mach_set[0];
1412 
1413 	cpu_freq_hz = mach_getcpufreq();
1414 
1415 	cpu_freq = machhztomhz(cpu_freq_hz);
1416 
1417 	if (!is_x86_feature(x86_featureset, X86FSET_TSC) || (cpu_freq == 0))
1418 		tsc_gethrtime_enable = 0;
1419 
1420 #ifndef __xpv
1421 	if (tsc_gethrtime_enable) {
1422 		tsc_hrtimeinit(cpu_freq_hz);
1423 	} else
1424 #endif
1425 	{
1426 		if (pops->psm_hrtimeinit)
1427 			(*pops->psm_hrtimeinit)();
1428 		gethrtimef = pops->psm_gethrtime;
1429 		gethrtimeunscaledf = gethrtimef;
1430 		/* scalehrtimef will remain dummy */
1431 	}
1432 
1433 	mach_fixcpufreq();
1434 
1435 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
1436 		if (preferred_mode == TIMER_ONESHOT) {
1437 
1438 			resolution = (*pops->psm_clkinit)(0);
1439 			if (resolution != 0)  {
1440 				*set_mode = TIMER_ONESHOT;
1441 				return (resolution);
1442 			}
1443 		}
1444 
1445 		/*
1446 		 * either periodic mode was requested or could not set to
1447 		 * one-shot mode
1448 		 */
1449 		resolution = (*pops->psm_clkinit)(hz);
1450 		/*
1451 		 * psm should be able to do periodic, so we do not check
1452 		 * for return value of psm_clkinit here.
1453 		 */
1454 		*set_mode = TIMER_PERIODIC;
1455 		return (resolution);
1456 	} else {
1457 		/*
1458 		 * PSMI interface prior to PSMI_3 does not define a return
1459 		 * value for psm_clkinit, so the return value is ignored.
1460 		 */
1461 		(void) (*pops->psm_clkinit)(hz);
1462 		*set_mode = TIMER_PERIODIC;
1463 		return (nsec_per_tick);
1464 	}
1465 }
1466 
1467 
1468 /*ARGSUSED*/
1469 static int
1470 mach_softlvl_to_vect(int ipl)
1471 {
1472 	setsoftint = av_set_softint_pending;
1473 	kdisetsoftint = kdi_av_set_softint_pending;
1474 
1475 	return (PSM_SV_SOFTWARE);
1476 }
1477 
1478 #ifdef DEBUG
1479 /*
1480  * This is here to allow us to simulate cpus that refuse to start.
1481  */
1482 cpuset_t cpufailset;
1483 #endif
1484 
1485 int
1486 mach_cpu_start(struct cpu *cp, void *ctx)
1487 {
1488 	struct psm_ops *pops = mach_set[0];
1489 	processorid_t id = cp->cpu_id;
1490 
1491 #ifdef DEBUG
1492 	if (CPU_IN_SET(cpufailset, id))
1493 		return (0);
1494 #endif
1495 	return ((*pops->psm_cpu_start)(id, ctx));
1496 }
1497 
1498 int
1499 mach_cpuid_start(processorid_t id, void *ctx)
1500 {
1501 	struct psm_ops *pops = mach_set[0];
1502 
1503 #ifdef DEBUG
1504 	if (CPU_IN_SET(cpufailset, id))
1505 		return (0);
1506 #endif
1507 	return ((*pops->psm_cpu_start)(id, ctx));
1508 }
1509 
1510 int
1511 mach_cpu_stop(cpu_t *cp, void *ctx)
1512 {
1513 	struct psm_ops *pops = mach_set[0];
1514 	psm_cpu_request_t request;
1515 
1516 	if (pops->psm_cpu_ops == NULL) {
1517 		return (ENOTSUP);
1518 	}
1519 
1520 	ASSERT(cp->cpu_id != -1);
1521 	request.pcr_cmd = PSM_CPU_STOP;
1522 	request.req.cpu_stop.cpuid = cp->cpu_id;
1523 	request.req.cpu_stop.ctx = ctx;
1524 
1525 	return ((*pops->psm_cpu_ops)(&request));
1526 }
1527 
1528 int
1529 mach_cpu_add(mach_cpu_add_arg_t *argp, processorid_t *cpuidp)
1530 {
1531 	int rc;
1532 	struct psm_ops *pops = mach_set[0];
1533 	psm_cpu_request_t request;
1534 
1535 	if (pops->psm_cpu_ops == NULL) {
1536 		return (ENOTSUP);
1537 	}
1538 
1539 	request.pcr_cmd = PSM_CPU_ADD;
1540 	request.req.cpu_add.argp = argp;
1541 	request.req.cpu_add.cpuid = -1;
1542 	rc = (*pops->psm_cpu_ops)(&request);
1543 	if (rc == 0) {
1544 		ASSERT(request.req.cpu_add.cpuid != -1);
1545 		*cpuidp = request.req.cpu_add.cpuid;
1546 	}
1547 
1548 	return (rc);
1549 }
1550 
1551 int
1552 mach_cpu_remove(processorid_t cpuid)
1553 {
1554 	struct psm_ops *pops = mach_set[0];
1555 	psm_cpu_request_t request;
1556 
1557 	if (pops->psm_cpu_ops == NULL) {
1558 		return (ENOTSUP);
1559 	}
1560 
1561 	request.pcr_cmd = PSM_CPU_REMOVE;
1562 	request.req.cpu_remove.cpuid = cpuid;
1563 
1564 	return ((*pops->psm_cpu_ops)(&request));
1565 }
1566 
1567 /*
1568  * Default handler to create device node for CPU.
1569  * One reference count will be held on created device node.
1570  */
1571 static int
1572 mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp)
1573 {
1574 	int rv, circ;
1575 	dev_info_t *dip;
1576 	static kmutex_t cpu_node_lock;
1577 	static dev_info_t *cpu_nex_devi = NULL;
1578 
1579 	ASSERT(cp != NULL);
1580 	ASSERT(dipp != NULL);
1581 	*dipp = NULL;
1582 
1583 	if (cpu_nex_devi == NULL) {
1584 		mutex_enter(&cpu_node_lock);
1585 		/* First check whether cpus exists. */
1586 		cpu_nex_devi = ddi_find_devinfo("cpus", -1, 0);
1587 		/* Create cpus if it doesn't exist. */
1588 		if (cpu_nex_devi == NULL) {
1589 			ndi_devi_enter(ddi_root_node(), &circ);
1590 			rv = ndi_devi_alloc(ddi_root_node(), "cpus",
1591 			    (pnode_t)DEVI_SID_NODEID, &dip);
1592 			if (rv != NDI_SUCCESS) {
1593 				mutex_exit(&cpu_node_lock);
1594 				cmn_err(CE_CONT,
1595 				    "?failed to create cpu nexus device.\n");
1596 				return (PSM_FAILURE);
1597 			}
1598 			ASSERT(dip != NULL);
1599 			(void) ndi_devi_online(dip, 0);
1600 			ndi_devi_exit(ddi_root_node(), circ);
1601 			cpu_nex_devi = dip;
1602 		}
1603 		mutex_exit(&cpu_node_lock);
1604 	}
1605 
1606 	/*
1607 	 * create a child node for cpu identified as 'cpu_id'
1608 	 */
1609 	ndi_devi_enter(cpu_nex_devi, &circ);
1610 	dip = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, -1);
1611 	if (dip == NULL) {
1612 		cmn_err(CE_CONT,
1613 		    "?failed to create device node for cpu%d.\n", cp->cpu_id);
1614 		rv = PSM_FAILURE;
1615 	} else {
1616 		*dipp = dip;
1617 		(void) ndi_hold_devi(dip);
1618 		rv = PSM_SUCCESS;
1619 	}
1620 	ndi_devi_exit(cpu_nex_devi, circ);
1621 
1622 	return (rv);
1623 }
1624 
1625 /*
1626  * Create cpu device node in device tree and online it.
1627  * Return created dip with reference count held if requested.
1628  */
1629 int
1630 mach_cpu_create_device_node(struct cpu *cp, dev_info_t **dipp)
1631 {
1632 	int rv;
1633 	dev_info_t *dip = NULL;
1634 
1635 	ASSERT(psm_cpu_create_devinfo != NULL);
1636 	rv = psm_cpu_create_devinfo(cp, &dip);
1637 	if (rv == PSM_SUCCESS) {
1638 		cpuid_set_cpu_properties(dip, cp->cpu_id, cp->cpu_m.mcpu_cpi);
1639 		/* Recursively attach driver for parent nexus device. */
1640 		if (i_ddi_attach_node_hierarchy(ddi_get_parent(dip)) ==
1641 		    DDI_SUCCESS) {
1642 			/* Configure cpu itself and descendants. */
1643 			(void) ndi_devi_online(dip,
1644 			    NDI_ONLINE_ATTACH | NDI_CONFIG);
1645 		}
1646 		if (dipp != NULL) {
1647 			*dipp = dip;
1648 		} else {
1649 			(void) ndi_rele_devi(dip);
1650 		}
1651 	}
1652 
1653 	return (rv);
1654 }
1655 
1656 /*
1657  * The dipp contains one of following values on return:
1658  * - NULL if no device node found
1659  * - pointer to device node if found
1660  */
1661 int
1662 mach_cpu_get_device_node(struct cpu *cp, dev_info_t **dipp)
1663 {
1664 	*dipp = NULL;
1665 	if (psm_cpu_get_devinfo != NULL) {
1666 		if (psm_cpu_get_devinfo(cp, dipp) == PSM_SUCCESS) {
1667 			return (PSM_SUCCESS);
1668 		}
1669 	}
1670 
1671 	return (PSM_FAILURE);
1672 }
1673 
1674 /*ARGSUSED*/
1675 static int
1676 mach_translate_irq(dev_info_t *dip, int irqno)
1677 {
1678 	return (irqno);	/* default to NO translation */
1679 }
1680 
1681 static void
1682 mach_notify_error(int level, char *errmsg)
1683 {
1684 	/*
1685 	 * SL_FATAL is pass in once panicstr is set, deliver it
1686 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1687 	 * codes for the psmi handler
1688 	 */
1689 	if (level & SL_FATAL)
1690 		(*notify_error)(CE_PANIC, errmsg);
1691 	else if (level & SL_WARN)
1692 		(*notify_error)(CE_WARN, errmsg);
1693 	else if (level & SL_NOTE)
1694 		(*notify_error)(CE_NOTE, errmsg);
1695 	else if (level & SL_CONSOLE)
1696 		(*notify_error)(CE_CONT, errmsg);
1697 }
1698 
1699 /*
1700  * It provides the default basic intr_ops interface for the new DDI
1701  * interrupt framework if the PSM doesn't have one.
1702  *
1703  * Input:
1704  * dip     - pointer to the dev_info structure of the requested device
1705  * hdlp    - pointer to the internal interrupt handle structure for the
1706  *	     requested interrupt
1707  * intr_op - opcode for this call
1708  * result  - pointer to the integer that will hold the result to be
1709  *	     passed back if return value is PSM_SUCCESS
1710  *
1711  * Output:
1712  * return value is either PSM_SUCCESS or PSM_FAILURE
1713  */
1714 static int
1715 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1716     psm_intr_op_t intr_op, int *result)
1717 {
1718 	struct intrspec *ispec;
1719 
1720 	switch (intr_op) {
1721 	case PSM_INTR_OP_CHECK_MSI:
1722 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1723 		    DDI_INTR_TYPE_MSIX);
1724 		break;
1725 	case PSM_INTR_OP_ALLOC_VECTORS:
1726 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1727 			*result = 1;
1728 		else
1729 			*result = 0;
1730 		break;
1731 	case PSM_INTR_OP_FREE_VECTORS:
1732 		break;
1733 	case PSM_INTR_OP_NAVAIL_VECTORS:
1734 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1735 			*result = 1;
1736 		else
1737 			*result = 0;
1738 		break;
1739 	case PSM_INTR_OP_XLATE_VECTOR:
1740 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1741 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1742 		break;
1743 	case PSM_INTR_OP_GET_CAP:
1744 		*result = 0;
1745 		break;
1746 	case PSM_INTR_OP_GET_PENDING:
1747 	case PSM_INTR_OP_CLEAR_MASK:
1748 	case PSM_INTR_OP_SET_MASK:
1749 	case PSM_INTR_OP_GET_SHARED:
1750 	case PSM_INTR_OP_SET_PRI:
1751 	case PSM_INTR_OP_SET_CAP:
1752 	case PSM_INTR_OP_SET_CPU:
1753 	case PSM_INTR_OP_GET_INTR:
1754 	default:
1755 		return (PSM_FAILURE);
1756 	}
1757 	return (PSM_SUCCESS);
1758 }
1759 /*
1760  * Return 1 if CMT load balancing policies should be
1761  * implemented across instances of the specified hardware
1762  * sharing relationship.
1763  */
1764 int
1765 pg_cmt_load_bal_hw(pghw_type_t hw)
1766 {
1767 	if (hw == PGHW_IPIPE ||
1768 	    hw == PGHW_FPU ||
1769 	    hw == PGHW_PROCNODE ||
1770 	    hw == PGHW_CHIP)
1771 		return (1);
1772 	else
1773 		return (0);
1774 }
1775 /*
1776  * Return 1 if thread affinity polices should be implemented
1777  * for instances of the specifed hardware sharing relationship.
1778  */
1779 int
1780 pg_cmt_affinity_hw(pghw_type_t hw)
1781 {
1782 	if (hw == PGHW_CACHE)
1783 		return (1);
1784 	else
1785 		return (0);
1786 }
1787 
1788 /*
1789  * Return number of counter events requested to measure hardware capacity and
1790  * utilization and setup CPC requests for specified CPU as needed
1791  *
1792  * May return 0 when platform or processor specific code knows that no CPC
1793  * events should be programmed on this CPU or -1 when platform or processor
1794  * specific code doesn't know which counter events are best to use and common
1795  * code should decide for itself
1796  */
1797 int
1798 /* LINTED E_FUNC_ARG_UNUSED */
1799 cu_plat_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs)
1800 {
1801 	const char	*impl_name;
1802 
1803 	/*
1804 	 * Return error if pcbe_ops not set
1805 	 */
1806 	if (pcbe_ops == NULL)
1807 		return (-1);
1808 
1809 	/*
1810 	 * Return that no CPC events should be programmed on hyperthreaded
1811 	 * Pentium 4 and return error for all other x86 processors to tell
1812 	 * common code to decide what counter events to program on those CPUs
1813 	 * for measuring hardware capacity and utilization
1814 	 */
1815 	impl_name = pcbe_ops->pcbe_impl_name();
1816 	if (impl_name != NULL && strcmp(impl_name, PCBE_IMPL_NAME_P4HT) == 0)
1817 		return (0);
1818 	else
1819 		return (-1);
1820 }
1821