1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/segments.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 41 #include <sys/proc.h> 42 #include <sys/buf.h> 43 #include <sys/kmem.h> 44 45 #include <sys/reboot.h> 46 #include <sys/uadmin.h> 47 #include <sys/callb.h> 48 49 #include <sys/cred.h> 50 #include <sys/vnode.h> 51 #include <sys/file.h> 52 53 #include <sys/procfs.h> 54 #include <sys/acct.h> 55 56 #include <sys/vfs.h> 57 #include <sys/dnlc.h> 58 #include <sys/var.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 63 #include <sys/dumphdr.h> 64 #include <sys/bootconf.h> 65 #include <sys/varargs.h> 66 #include <sys/promif.h> 67 #include <sys/modctl.h> 68 69 #include <sys/consdev.h> 70 #include <sys/frame.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/privregs.h> 77 #include <sys/clock.h> 78 #include <sys/tss.h> 79 #include <sys/cpu.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/pic.h> 83 #include <vm/hat.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_map.h> 90 #include <vm/seg_vn.h> 91 #include <vm/seg_kp.h> 92 #include <vm/hat_i86.h> 93 #include <sys/swap.h> 94 #include <sys/thread.h> 95 #include <sys/sysconf.h> 96 #include <sys/vm_machparam.h> 97 #include <sys/archsystm.h> 98 #include <sys/machsystm.h> 99 #include <sys/machlock.h> 100 #include <sys/x_call.h> 101 #include <sys/instance.h> 102 103 #include <sys/time.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/psm_types.h> 106 #include <sys/atomic.h> 107 #include <sys/panic.h> 108 #include <sys/cpuvar.h> 109 #include <sys/dtrace.h> 110 #include <sys/bl.h> 111 #include <sys/nvpair.h> 112 #include <sys/x86_archext.h> 113 #include <sys/pool_pset.h> 114 #include <sys/autoconf.h> 115 #include <sys/mem.h> 116 #include <sys/dumphdr.h> 117 #include <sys/compress.h> 118 #include <sys/cpu_module.h> 119 #if defined(__xpv) 120 #include <sys/hypervisor.h> 121 #include <sys/xpv_panic.h> 122 #endif 123 124 #include <sys/fastboot.h> 125 #include <sys/machelf.h> 126 #include <sys/kobj.h> 127 #include <sys/multiboot.h> 128 129 #ifdef TRAPTRACE 130 #include <sys/traptrace.h> 131 #endif /* TRAPTRACE */ 132 133 extern void audit_enterprom(int); 134 extern void audit_exitprom(int); 135 136 /* 137 * Occassionally the kernel knows better whether to power-off or reboot. 138 */ 139 int force_shutdown_method = AD_UNKNOWN; 140 141 /* 142 * The panicbuf array is used to record messages and state: 143 */ 144 char panicbuf[PANICBUFSIZE]; 145 146 /* 147 * maxphys - used during physio 148 * klustsize - used for klustering by swapfs and specfs 149 */ 150 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 151 int klustsize = 56 * 1024; 152 153 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 154 155 /* 156 * defined here, though unused on x86, 157 * to make kstat_fr.c happy. 158 */ 159 int vac; 160 161 void stop_other_cpus(); 162 void debug_enter(char *); 163 164 extern void pm_cfb_check_and_powerup(void); 165 extern void pm_cfb_rele(void); 166 167 extern fastboot_info_t newkernel; 168 169 int quiesce_active = 0; 170 171 /* 172 * Machine dependent code to reboot. 173 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 174 * to a string to be used as the argument string when rebooting. 175 * 176 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 177 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 178 * we are in a normal shutdown sequence (interrupts are not blocked, the 179 * system is not panic'ing or being suspended). 180 */ 181 /*ARGSUSED*/ 182 void 183 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 184 { 185 processorid_t bootcpuid = 0; 186 187 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) 188 fcn = AD_BOOT; 189 190 if (!panicstr) { 191 kpreempt_disable(); 192 if (fcn == AD_FASTREBOOT) { 193 mutex_enter(&cpu_lock); 194 if (CPU_ACTIVE(cpu_get(bootcpuid))) { 195 affinity_set(bootcpuid); 196 } 197 mutex_exit(&cpu_lock); 198 } else { 199 affinity_set(CPU_CURRENT); 200 } 201 } 202 203 if (force_shutdown_method != AD_UNKNOWN) 204 fcn = force_shutdown_method; 205 206 /* 207 * XXX - rconsvp is set to NULL to ensure that output messages 208 * are sent to the underlying "hardware" device using the 209 * monitor's printf routine since we are in the process of 210 * either rebooting or halting the machine. 211 */ 212 rconsvp = NULL; 213 214 /* 215 * Print the reboot message now, before pausing other cpus. 216 * There is a race condition in the printing support that 217 * can deadlock multiprocessor machines. 218 */ 219 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 220 prom_printf("rebooting...\n"); 221 222 if (IN_XPV_PANIC()) 223 reset(); 224 225 /* 226 * We can't bring up the console from above lock level, so do it now 227 */ 228 pm_cfb_check_and_powerup(); 229 230 /* make sure there are no more changes to the device tree */ 231 devtree_freeze(); 232 233 if (invoke_cb) 234 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 235 236 /* 237 * Clear any unresolved UEs from memory. 238 */ 239 page_retire_mdboot(); 240 241 #if defined(__xpv) 242 /* 243 * XXPV Should probably think some more about how we deal 244 * with panicing before it's really safe to panic. 245 * On hypervisors, we reboot very quickly.. Perhaps panic 246 * should only attempt to recover by rebooting if, 247 * say, we were able to mount the root filesystem, 248 * or if we successfully launched init(1m). 249 */ 250 if (panicstr && proc_init == NULL) 251 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 252 #endif 253 /* 254 * stop other cpus and raise our priority. since there is only 255 * one active cpu after this, and our priority will be too high 256 * for us to be preempted, we're essentially single threaded 257 * from here on out. 258 */ 259 (void) spl6(); 260 if (!panicstr) { 261 mutex_enter(&cpu_lock); 262 pause_cpus(NULL); 263 mutex_exit(&cpu_lock); 264 } 265 266 /* 267 * Try to quiesce devices. 268 */ 269 if (!panicstr) { 270 int reset_status = 0; 271 272 quiesce_active = 1; 273 274 quiesce_devices(ddi_root_node(), &reset_status); 275 if (reset_status == -1) { 276 if (fcn == AD_FASTREBOOT && !force_fastreboot) { 277 prom_printf("Driver(s) not capable of fast " 278 "reboot. Fall back to regular reboot.\n"); 279 fastreboot_capable = 0; 280 } else if (fcn != AD_FASTREBOOT) 281 fastreboot_capable = 0; 282 } 283 284 quiesce_active = 0; 285 } 286 287 /* 288 * try to reset devices. reset_leaves() should only be called when 289 * there are no other threads that could be accessing devices 290 */ 291 if (!panicstr && !fastreboot_capable) 292 reset_leaves(); 293 294 (void) spl8(); 295 (*psm_shutdownf)(cmd, fcn); 296 297 if (fcn == AD_FASTREBOOT && !panicstr && fastreboot_capable) 298 fast_reboot(); 299 else if (fcn == AD_HALT || fcn == AD_POWEROFF) 300 halt((char *)NULL); 301 else 302 prom_reboot(""); 303 /*NOTREACHED*/ 304 } 305 306 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 307 /*ARGSUSED*/ 308 void 309 mdpreboot(int cmd, int fcn, char *mdep) 310 { 311 if (fcn == AD_FASTREBOOT && !fastreboot_capable) { 312 fcn = AD_BOOT; 313 #ifdef __xpv 314 cmn_err(CE_WARN, "Fast reboot not supported on xVM"); 315 #else 316 cmn_err(CE_WARN, "Fast reboot not supported on this platform"); 317 #endif 318 } 319 320 if (fcn == AD_FASTREBOOT) { 321 load_kernel(mdep); 322 if (!newkernel.fi_valid) 323 fcn = AD_BOOT; 324 } 325 326 (*psm_preshutdownf)(cmd, fcn); 327 } 328 329 void 330 idle_other_cpus() 331 { 332 int cpuid = CPU->cpu_id; 333 cpuset_t xcset; 334 335 ASSERT(cpuid < NCPU); 336 CPUSET_ALL_BUT(xcset, cpuid); 337 xc_capture_cpus(xcset); 338 } 339 340 void 341 resume_other_cpus() 342 { 343 ASSERT(CPU->cpu_id < NCPU); 344 345 xc_release_cpus(); 346 } 347 348 void 349 stop_other_cpus() 350 { 351 int cpuid = CPU->cpu_id; 352 cpuset_t xcset; 353 354 ASSERT(cpuid < NCPU); 355 356 /* 357 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt, 358 * and will return immediately regardless of whether or not it was 359 * able to make them do it. 360 */ 361 CPUSET_ALL_BUT(xcset, cpuid); 362 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt); 363 } 364 365 /* 366 * Machine dependent abort sequence handling 367 */ 368 void 369 abort_sequence_enter(char *msg) 370 { 371 if (abort_enable == 0) { 372 if (audit_active) 373 audit_enterprom(0); 374 return; 375 } 376 if (audit_active) 377 audit_enterprom(1); 378 debug_enter(msg); 379 if (audit_active) 380 audit_exitprom(1); 381 } 382 383 /* 384 * Enter debugger. Called when the user types ctrl-alt-d or whenever 385 * code wants to enter the debugger and possibly resume later. 386 */ 387 void 388 debug_enter( 389 char *msg) /* message to print, possibly NULL */ 390 { 391 if (dtrace_debugger_init != NULL) 392 (*dtrace_debugger_init)(); 393 394 if (msg) 395 prom_printf("%s\n", msg); 396 397 if (boothowto & RB_DEBUG) 398 kmdb_enter(); 399 400 if (dtrace_debugger_fini != NULL) 401 (*dtrace_debugger_fini)(); 402 } 403 404 void 405 reset(void) 406 { 407 #if !defined(__xpv) 408 ushort_t *bios_memchk; 409 410 /* 411 * Can't use psm_map_phys before the hat is initialized. 412 */ 413 if (khat_running) { 414 bios_memchk = (ushort_t *)psm_map_phys(0x472, 415 sizeof (ushort_t), PROT_READ | PROT_WRITE); 416 if (bios_memchk) 417 *bios_memchk = 0x1234; /* bios memory check disable */ 418 } 419 420 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 421 efi_reset(); 422 pc_reset(); 423 #else 424 if (IN_XPV_PANIC()) 425 pc_reset(); 426 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 427 panic("HYPERVISOR_shutdown() failed"); 428 #endif 429 /*NOTREACHED*/ 430 } 431 432 /* 433 * Halt the machine and return to the monitor 434 */ 435 void 436 halt(char *s) 437 { 438 stop_other_cpus(); /* send stop signal to other CPUs */ 439 if (s) 440 prom_printf("(%s) \n", s); 441 prom_exit_to_mon(); 442 /*NOTREACHED*/ 443 } 444 445 /* 446 * Initiate interrupt redistribution. 447 */ 448 void 449 i_ddi_intr_redist_all_cpus() 450 { 451 } 452 453 /* 454 * XXX These probably ought to live somewhere else 455 * XXX They are called from mem.c 456 */ 457 458 /* 459 * Convert page frame number to an OBMEM page frame number 460 * (i.e. put in the type bits -- zero for this implementation) 461 */ 462 pfn_t 463 impl_obmem_pfnum(pfn_t pf) 464 { 465 return (pf); 466 } 467 468 #ifdef NM_DEBUG 469 int nmi_test = 0; /* checked in intentry.s during clock int */ 470 int nmtest = -1; 471 nmfunc1(arg, rp) 472 int arg; 473 struct regs *rp; 474 { 475 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 476 nmtest += 50; 477 if (arg == nmtest) { 478 printf("ip = %x\n", rp->r_pc); 479 return (1); 480 } 481 return (0); 482 } 483 484 #endif 485 486 #include <sys/bootsvcs.h> 487 488 /* Hacked up initialization for initial kernel check out is HERE. */ 489 /* The basic steps are: */ 490 /* kernel bootfuncs definition/initialization for KADB */ 491 /* kadb bootfuncs pointer initialization */ 492 /* putchar/getchar (interrupts disabled) */ 493 494 /* kadb bootfuncs pointer initialization */ 495 496 int 497 sysp_getchar() 498 { 499 int i; 500 ulong_t s; 501 502 if (cons_polledio == NULL) { 503 /* Uh oh */ 504 prom_printf("getchar called with no console\n"); 505 for (;;) 506 /* LOOP FOREVER */; 507 } 508 509 s = clear_int_flag(); 510 i = cons_polledio->cons_polledio_getchar( 511 cons_polledio->cons_polledio_argument); 512 restore_int_flag(s); 513 return (i); 514 } 515 516 void 517 sysp_putchar(int c) 518 { 519 ulong_t s; 520 521 /* 522 * We have no alternative but to drop the output on the floor. 523 */ 524 if (cons_polledio == NULL || 525 cons_polledio->cons_polledio_putchar == NULL) 526 return; 527 528 s = clear_int_flag(); 529 cons_polledio->cons_polledio_putchar( 530 cons_polledio->cons_polledio_argument, c); 531 restore_int_flag(s); 532 } 533 534 int 535 sysp_ischar() 536 { 537 int i; 538 ulong_t s; 539 540 if (cons_polledio == NULL || 541 cons_polledio->cons_polledio_ischar == NULL) 542 return (0); 543 544 s = clear_int_flag(); 545 i = cons_polledio->cons_polledio_ischar( 546 cons_polledio->cons_polledio_argument); 547 restore_int_flag(s); 548 return (i); 549 } 550 551 int 552 goany(void) 553 { 554 prom_printf("Type any key to continue "); 555 (void) prom_getchar(); 556 prom_printf("\n"); 557 return (1); 558 } 559 560 static struct boot_syscalls kern_sysp = { 561 sysp_getchar, /* unchar (*getchar)(); 7 */ 562 sysp_putchar, /* int (*putchar)(); 8 */ 563 sysp_ischar, /* int (*ischar)(); 9 */ 564 }; 565 566 #if defined(__xpv) 567 int using_kern_polledio; 568 #endif 569 570 void 571 kadb_uses_kernel() 572 { 573 /* 574 * This routine is now totally misnamed, since it does not in fact 575 * control kadb's I/O; it only controls the kernel's prom_* I/O. 576 */ 577 sysp = &kern_sysp; 578 #if defined(__xpv) 579 using_kern_polledio = 1; 580 #endif 581 } 582 583 /* 584 * the interface to the outside world 585 */ 586 587 /* 588 * poll_port -- wait for a register to achieve a 589 * specific state. Arguments are a mask of bits we care about, 590 * and two sub-masks. To return normally, all the bits in the 591 * first sub-mask must be ON, all the bits in the second sub- 592 * mask must be OFF. If about seconds pass without the register 593 * achieving the desired bit configuration, we return 1, else 594 * 0. 595 */ 596 int 597 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 598 { 599 int i; 600 ushort_t maskval; 601 602 for (i = 500000; i; i--) { 603 maskval = inb(port) & mask; 604 if (((maskval & onbits) == onbits) && 605 ((maskval & offbits) == 0)) 606 return (0); 607 drv_usecwait(10); 608 } 609 return (1); 610 } 611 612 /* 613 * set_idle_cpu is called from idle() when a CPU becomes idle. 614 */ 615 /*LINTED: static unused */ 616 static uint_t last_idle_cpu; 617 618 /*ARGSUSED*/ 619 void 620 set_idle_cpu(int cpun) 621 { 622 last_idle_cpu = cpun; 623 (*psm_set_idle_cpuf)(cpun); 624 } 625 626 /* 627 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 628 */ 629 /*ARGSUSED*/ 630 void 631 unset_idle_cpu(int cpun) 632 { 633 (*psm_unset_idle_cpuf)(cpun); 634 } 635 636 /* 637 * This routine is almost correct now, but not quite. It still needs the 638 * equivalent concept of "hres_last_tick", just like on the sparc side. 639 * The idea is to take a snapshot of the hi-res timer while doing the 640 * hrestime_adj updates under hres_lock in locore, so that the small 641 * interval between interrupt assertion and interrupt processing is 642 * accounted for correctly. Once we have this, the code below should 643 * be modified to subtract off hres_last_tick rather than hrtime_base. 644 * 645 * I'd have done this myself, but I don't have source to all of the 646 * vendor-specific hi-res timer routines (grrr...). The generic hook I 647 * need is something like "gethrtime_unlocked()", which would be just like 648 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 649 * This is what the GET_HRTIME() macro is for on sparc (although it also 650 * serves the function of making time available without a function call 651 * so you don't take a register window overflow while traps are disabled). 652 */ 653 void 654 pc_gethrestime(timestruc_t *tp) 655 { 656 int lock_prev; 657 timestruc_t now; 658 int nslt; /* nsec since last tick */ 659 int adj; /* amount of adjustment to apply */ 660 661 loop: 662 lock_prev = hres_lock; 663 now = hrestime; 664 nslt = (int)(gethrtime() - hres_last_tick); 665 if (nslt < 0) { 666 /* 667 * nslt < 0 means a tick came between sampling 668 * gethrtime() and hres_last_tick; restart the loop 669 */ 670 671 goto loop; 672 } 673 now.tv_nsec += nslt; 674 if (hrestime_adj != 0) { 675 if (hrestime_adj > 0) { 676 adj = (nslt >> ADJ_SHIFT); 677 if (adj > hrestime_adj) 678 adj = (int)hrestime_adj; 679 } else { 680 adj = -(nslt >> ADJ_SHIFT); 681 if (adj < hrestime_adj) 682 adj = (int)hrestime_adj; 683 } 684 now.tv_nsec += adj; 685 } 686 while ((unsigned long)now.tv_nsec >= NANOSEC) { 687 688 /* 689 * We might have a large adjustment or have been in the 690 * debugger for a long time; take care of (at most) four 691 * of those missed seconds (tv_nsec is 32 bits, so 692 * anything >4s will be wrapping around). However, 693 * anything more than 2 seconds out of sync will trigger 694 * timedelta from clock() to go correct the time anyway, 695 * so do what we can, and let the big crowbar do the 696 * rest. A similar correction while loop exists inside 697 * hres_tick(); in all cases we'd like tv_nsec to 698 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 699 * user processes, but if tv_sec's a little behind for a 700 * little while, that's OK; time still monotonically 701 * increases. 702 */ 703 704 now.tv_nsec -= NANOSEC; 705 now.tv_sec++; 706 } 707 if ((hres_lock & ~1) != lock_prev) 708 goto loop; 709 710 *tp = now; 711 } 712 713 void 714 gethrestime_lasttick(timespec_t *tp) 715 { 716 int s; 717 718 s = hr_clock_lock(); 719 *tp = hrestime; 720 hr_clock_unlock(s); 721 } 722 723 time_t 724 gethrestime_sec(void) 725 { 726 timestruc_t now; 727 728 gethrestime(&now); 729 return (now.tv_sec); 730 } 731 732 /* 733 * Initialize a kernel thread's stack 734 */ 735 736 caddr_t 737 thread_stk_init(caddr_t stk) 738 { 739 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 740 return (stk - SA(MINFRAME)); 741 } 742 743 /* 744 * Initialize lwp's kernel stack. 745 */ 746 747 #ifdef TRAPTRACE 748 /* 749 * There's a tricky interdependency here between use of sysenter and 750 * TRAPTRACE which needs recording to avoid future confusion (this is 751 * about the third time I've re-figured this out ..) 752 * 753 * Here's how debugging lcall works with TRAPTRACE. 754 * 755 * 1 We're in userland with a breakpoint on the lcall instruction. 756 * 2 We execute the instruction - the instruction pushes the userland 757 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 758 * via the call gate. 759 * 3 The hardware raises a debug trap in kernel mode, the hardware 760 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 761 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 762 * 5 cmntrap finishes building a trap frame 763 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 764 * off the stack into the traptrace buffer. 765 * 766 * This means that the traptrace buffer contains the wrong values in 767 * %esp and %ss, but everything else in there is correct. 768 * 769 * Here's how debugging sysenter works with TRAPTRACE. 770 * 771 * a We're in userland with a breakpoint on the sysenter instruction. 772 * b We execute the instruction - the instruction pushes -nothing- 773 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 774 * values to take us to sys_sysenter, at the top of the lwp's 775 * stack. 776 * c goto 3 777 * 778 * At this point, because we got into the kernel without the requisite 779 * five pushes on the stack, if we didn't make extra room, we'd 780 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 781 * values from negative (unmapped) stack addresses -- which really bites. 782 * That's why we do the '-= 8' below. 783 * 784 * XXX Note that reading "up" lwp0's stack works because t0 is declared 785 * right next to t0stack in locore.s 786 */ 787 #endif 788 789 caddr_t 790 lwp_stk_init(klwp_t *lwp, caddr_t stk) 791 { 792 caddr_t oldstk; 793 struct pcb *pcb = &lwp->lwp_pcb; 794 795 oldstk = stk; 796 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 797 #ifdef TRAPTRACE 798 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 799 #endif 800 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 801 bzero(stk, oldstk - stk); 802 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 803 804 /* 805 * Arrange that the virtualized %fs and %gs GDT descriptors 806 * have a well-defined initial state (present, ring 3 807 * and of type data). 808 */ 809 #if defined(__amd64) 810 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 811 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 812 else 813 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 814 #elif defined(__i386) 815 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 816 #endif /* __i386 */ 817 lwp_installctx(lwp); 818 return (stk); 819 } 820 821 /*ARGSUSED*/ 822 void 823 lwp_stk_fini(klwp_t *lwp) 824 {} 825 826 /* 827 * If we're not the panic CPU, we wait in panic_idle for reboot. 828 */ 829 static void 830 panic_idle(void) 831 { 832 splx(ipltospl(CLOCK_LEVEL)); 833 (void) setjmp(&curthread->t_pcb); 834 835 for (;;) 836 ; 837 } 838 839 /* 840 * Stop the other CPUs by cross-calling them and forcing them to enter 841 * the panic_idle() loop above. 842 */ 843 /*ARGSUSED*/ 844 void 845 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 846 { 847 processorid_t i; 848 cpuset_t xcset; 849 850 /* 851 * In the case of a Xen panic, the hypervisor has already stopped 852 * all of the CPUs. 853 */ 854 if (!IN_XPV_PANIC()) { 855 (void) splzs(); 856 857 CPUSET_ALL_BUT(xcset, cp->cpu_id); 858 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 859 } 860 861 for (i = 0; i < NCPU; i++) { 862 if (i != cp->cpu_id && cpu[i] != NULL && 863 (cpu[i]->cpu_flags & CPU_EXISTS)) 864 cpu[i]->cpu_flags |= CPU_QUIESCED; 865 } 866 } 867 868 /* 869 * Platform callback following each entry to panicsys(). 870 */ 871 /*ARGSUSED*/ 872 void 873 panic_enter_hw(int spl) 874 { 875 /* Nothing to do here */ 876 } 877 878 /* 879 * Platform-specific code to execute after panicstr is set: we invoke 880 * the PSM entry point to indicate that a panic has occurred. 881 */ 882 /*ARGSUSED*/ 883 void 884 panic_quiesce_hw(panic_data_t *pdp) 885 { 886 psm_notifyf(PSM_PANIC_ENTER); 887 888 cmi_panic_callback(); 889 890 #ifdef TRAPTRACE 891 /* 892 * Turn off TRAPTRACE 893 */ 894 TRAPTRACE_FREEZE; 895 #endif /* TRAPTRACE */ 896 } 897 898 /* 899 * Platform callback prior to writing crash dump. 900 */ 901 /*ARGSUSED*/ 902 void 903 panic_dump_hw(int spl) 904 { 905 /* Nothing to do here */ 906 } 907 908 void * 909 plat_traceback(void *fpreg) 910 { 911 #ifdef __xpv 912 if (IN_XPV_PANIC()) 913 return (xpv_traceback(fpreg)); 914 #endif 915 return (fpreg); 916 } 917 918 /*ARGSUSED*/ 919 void 920 plat_tod_fault(enum tod_fault_type tod_bad) 921 {} 922 923 /*ARGSUSED*/ 924 int 925 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 926 { 927 return (ENOTSUP); 928 } 929 930 /* 931 * The underlying console output routines are protected by raising IPL in case 932 * we are still calling into the early boot services. Once we start calling 933 * the kernel console emulator, it will disable interrupts completely during 934 * character rendering (see sysp_putchar, for example). Refer to the comments 935 * and code in common/os/console.c for more information on these callbacks. 936 */ 937 /*ARGSUSED*/ 938 int 939 console_enter(int busy) 940 { 941 return (splzs()); 942 } 943 944 /*ARGSUSED*/ 945 void 946 console_exit(int busy, int spl) 947 { 948 splx(spl); 949 } 950 951 /* 952 * Allocate a region of virtual address space, unmapped. 953 * Stubbed out except on sparc, at least for now. 954 */ 955 /*ARGSUSED*/ 956 void * 957 boot_virt_alloc(void *addr, size_t size) 958 { 959 return (addr); 960 } 961 962 volatile unsigned long tenmicrodata; 963 964 void 965 tenmicrosec(void) 966 { 967 extern int gethrtime_hires; 968 969 if (gethrtime_hires) { 970 hrtime_t start, end; 971 start = end = gethrtime(); 972 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 973 SMT_PAUSE(); 974 end = gethrtime(); 975 } 976 } else { 977 #if defined(__xpv) 978 hrtime_t newtime; 979 980 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 981 while (xpv_gethrtime() < newtime) 982 SMT_PAUSE(); 983 #else /* __xpv */ 984 int i; 985 986 /* 987 * Artificial loop to induce delay. 988 */ 989 for (i = 0; i < microdata; i++) 990 tenmicrodata = microdata; 991 #endif /* __xpv */ 992 } 993 } 994 995 /* 996 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 997 * long, and it fills in the array with the time spent on cpu in 998 * each of the mstates, where time is returned in nsec. 999 * 1000 * No guarantee is made that the returned values in times[] will 1001 * monotonically increase on sequential calls, although this will 1002 * be true in the long run. Any such guarantee must be handled by 1003 * the caller, if needed. This can happen if we fail to account 1004 * for elapsed time due to a generation counter conflict, yet we 1005 * did account for it on a prior call (see below). 1006 * 1007 * The complication is that the cpu in question may be updating 1008 * its microstate at the same time that we are reading it. 1009 * Because the microstate is only updated when the CPU's state 1010 * changes, the values in cpu_intracct[] can be indefinitely out 1011 * of date. To determine true current values, it is necessary to 1012 * compare the current time with cpu_mstate_start, and add the 1013 * difference to times[cpu_mstate]. 1014 * 1015 * This can be a problem if those values are changing out from 1016 * under us. Because the code path in new_cpu_mstate() is 1017 * performance critical, we have not added a lock to it. Instead, 1018 * we have added a generation counter. Before beginning 1019 * modifications, the counter is set to 0. After modifications, 1020 * it is set to the old value plus one. 1021 * 1022 * get_cpu_mstate() will not consider the values of cpu_mstate 1023 * and cpu_mstate_start to be usable unless the value of 1024 * cpu_mstate_gen is both non-zero and unchanged, both before and 1025 * after reading the mstate information. Note that we must 1026 * protect against out-of-order loads around accesses to the 1027 * generation counter. Also, this is a best effort approach in 1028 * that we do not retry should the counter be found to have 1029 * changed. 1030 * 1031 * cpu_intracct[] is used to identify time spent in each CPU 1032 * mstate while handling interrupts. Such time should be reported 1033 * against system time, and so is subtracted out from its 1034 * corresponding cpu_acct[] time and added to 1035 * cpu_acct[CMS_SYSTEM]. 1036 */ 1037 1038 void 1039 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 1040 { 1041 int i; 1042 hrtime_t now, start; 1043 uint16_t gen; 1044 uint16_t state; 1045 hrtime_t intracct[NCMSTATES]; 1046 1047 /* 1048 * Load all volatile state under the protection of membar. 1049 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 1050 * of (now - cpu_mstate_start) by a change in CPU mstate that 1051 * arrives after we make our last check of cpu_mstate_gen. 1052 */ 1053 1054 now = gethrtime_unscaled(); 1055 gen = cpu->cpu_mstate_gen; 1056 1057 membar_consumer(); /* guarantee load ordering */ 1058 start = cpu->cpu_mstate_start; 1059 state = cpu->cpu_mstate; 1060 for (i = 0; i < NCMSTATES; i++) { 1061 intracct[i] = cpu->cpu_intracct[i]; 1062 times[i] = cpu->cpu_acct[i]; 1063 } 1064 membar_consumer(); /* guarantee load ordering */ 1065 1066 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1067 times[state] += now - start; 1068 1069 for (i = 0; i < NCMSTATES; i++) { 1070 if (i == CMS_SYSTEM) 1071 continue; 1072 times[i] -= intracct[i]; 1073 if (times[i] < 0) { 1074 intracct[i] += times[i]; 1075 times[i] = 0; 1076 } 1077 times[CMS_SYSTEM] += intracct[i]; 1078 scalehrtime(×[i]); 1079 } 1080 scalehrtime(×[CMS_SYSTEM]); 1081 } 1082 1083 /* 1084 * This is a version of the rdmsr instruction that allows 1085 * an error code to be returned in the case of failure. 1086 */ 1087 int 1088 checked_rdmsr(uint_t msr, uint64_t *value) 1089 { 1090 if ((x86_feature & X86_MSR) == 0) 1091 return (ENOTSUP); 1092 *value = rdmsr(msr); 1093 return (0); 1094 } 1095 1096 /* 1097 * This is a version of the wrmsr instruction that allows 1098 * an error code to be returned in the case of failure. 1099 */ 1100 int 1101 checked_wrmsr(uint_t msr, uint64_t value) 1102 { 1103 if ((x86_feature & X86_MSR) == 0) 1104 return (ENOTSUP); 1105 wrmsr(msr, value); 1106 return (0); 1107 } 1108 1109 /* 1110 * The mem driver's usual method of using hat_devload() to establish a 1111 * temporary mapping will not work for foreign pages mapped into this 1112 * domain or for the special hypervisor-provided pages. For the foreign 1113 * pages, we often don't know which domain owns them, so we can't ask the 1114 * hypervisor to set up a new mapping. For the other pages, we don't have 1115 * a pfn, so we can't create a new PTE. For these special cases, we do a 1116 * direct uiomove() from the existing kernel virtual address. 1117 */ 1118 /*ARGSUSED*/ 1119 int 1120 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1121 { 1122 #if defined(__xpv) 1123 void *va = (void *)(uintptr_t)uio->uio_loffset; 1124 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1125 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1126 (size_t)uio->uio_iov->iov_len); 1127 1128 if ((rw == UIO_READ && 1129 (va == HYPERVISOR_shared_info || va == xen_info)) || 1130 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1131 return (uiomove(va, nbytes, rw, uio)); 1132 #endif 1133 return (ENOTSUP); 1134 } 1135 1136 pgcnt_t 1137 num_phys_pages() 1138 { 1139 pgcnt_t npages = 0; 1140 struct memlist *mp; 1141 1142 #if defined(__xpv) 1143 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1144 xen_sysctl_t op; 1145 1146 op.cmd = XEN_SYSCTL_physinfo; 1147 op.interface_version = XEN_SYSCTL_INTERFACE_VERSION; 1148 if (HYPERVISOR_sysctl(&op) != 0) 1149 panic("physinfo op refused"); 1150 1151 return ((pgcnt_t)op.u.physinfo.total_pages); 1152 } 1153 #endif /* __xpv */ 1154 1155 for (mp = phys_install; mp != NULL; mp = mp->next) 1156 npages += mp->size >> PAGESHIFT; 1157 1158 return (npages); 1159 } 1160 1161 int 1162 dump_plat_addr() 1163 { 1164 #ifdef __xpv 1165 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1166 mem_vtop_t mem_vtop; 1167 int cnt; 1168 1169 /* 1170 * On the hypervisor, we want to dump the page with shared_info on it. 1171 */ 1172 if (!IN_XPV_PANIC()) { 1173 mem_vtop.m_as = &kas; 1174 mem_vtop.m_va = HYPERVISOR_shared_info; 1175 mem_vtop.m_pfn = pfn; 1176 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1177 cnt = 1; 1178 } else { 1179 cnt = dump_xpv_addr(); 1180 } 1181 return (cnt); 1182 #else 1183 return (0); 1184 #endif 1185 } 1186 1187 void 1188 dump_plat_pfn() 1189 { 1190 #ifdef __xpv 1191 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1192 1193 if (!IN_XPV_PANIC()) 1194 dumpvp_write(&pfn, sizeof (pfn)); 1195 else 1196 dump_xpv_pfn(); 1197 #endif 1198 } 1199 1200 /*ARGSUSED*/ 1201 int 1202 dump_plat_data(void *dump_cbuf) 1203 { 1204 #ifdef __xpv 1205 uint32_t csize; 1206 int cnt; 1207 1208 if (!IN_XPV_PANIC()) { 1209 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1210 PAGESIZE); 1211 dumpvp_write(&csize, sizeof (uint32_t)); 1212 dumpvp_write(dump_cbuf, csize); 1213 cnt = 1; 1214 } else { 1215 cnt = dump_xpv_data(dump_cbuf); 1216 } 1217 return (cnt); 1218 #else 1219 return (0); 1220 #endif 1221 } 1222 1223 /* 1224 * Calculates a linear address, given the CS selector and PC values 1225 * by looking up the %cs selector process's LDT or the CPU's GDT. 1226 * proc->p_ldtlock must be held across this call. 1227 */ 1228 int 1229 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1230 { 1231 user_desc_t *descrp; 1232 caddr_t baseaddr; 1233 uint16_t idx = SELTOIDX(rp->r_cs); 1234 1235 ASSERT(rp->r_cs <= 0xFFFF); 1236 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1237 1238 if (SELISLDT(rp->r_cs)) { 1239 /* 1240 * Currently 64 bit processes cannot have private LDTs. 1241 */ 1242 ASSERT(p->p_model != DATAMODEL_LP64); 1243 1244 if (p->p_ldt == NULL) 1245 return (-1); 1246 1247 descrp = &p->p_ldt[idx]; 1248 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1249 1250 /* 1251 * Calculate the linear address (wraparound is not only ok, 1252 * it's expected behavior). The cast to uint32_t is because 1253 * LDT selectors are only allowed in 32-bit processes. 1254 */ 1255 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1256 rp->r_pc); 1257 } else { 1258 #ifdef DEBUG 1259 descrp = &CPU->cpu_gdt[idx]; 1260 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1261 /* GDT-based descriptors' base addresses should always be 0 */ 1262 ASSERT(baseaddr == 0); 1263 #endif 1264 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1265 } 1266 1267 return (0); 1268 } 1269 1270 /* 1271 * The implementation of dtrace_linear_pc is similar to the that of 1272 * linear_pc, above, but here we acquire p_ldtlock before accessing 1273 * p_ldt. This implementation is used by the pid provider; we prefix 1274 * it with "dtrace_" to avoid inducing spurious tracing events. 1275 */ 1276 int 1277 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1278 { 1279 user_desc_t *descrp; 1280 caddr_t baseaddr; 1281 uint16_t idx = SELTOIDX(rp->r_cs); 1282 1283 ASSERT(rp->r_cs <= 0xFFFF); 1284 1285 if (SELISLDT(rp->r_cs)) { 1286 /* 1287 * Currently 64 bit processes cannot have private LDTs. 1288 */ 1289 ASSERT(p->p_model != DATAMODEL_LP64); 1290 1291 mutex_enter(&p->p_ldtlock); 1292 if (p->p_ldt == NULL) { 1293 mutex_exit(&p->p_ldtlock); 1294 return (-1); 1295 } 1296 descrp = &p->p_ldt[idx]; 1297 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1298 mutex_exit(&p->p_ldtlock); 1299 1300 /* 1301 * Calculate the linear address (wraparound is not only ok, 1302 * it's expected behavior). The cast to uint32_t is because 1303 * LDT selectors are only allowed in 32-bit processes. 1304 */ 1305 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1306 rp->r_pc); 1307 } else { 1308 #ifdef DEBUG 1309 descrp = &CPU->cpu_gdt[idx]; 1310 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1311 /* GDT-based descriptors' base addresses should always be 0 */ 1312 ASSERT(baseaddr == 0); 1313 #endif 1314 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1315 } 1316 1317 return (0); 1318 } 1319