1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/segments.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 41 #include <sys/proc.h> 42 #include <sys/buf.h> 43 #include <sys/kmem.h> 44 45 #include <sys/reboot.h> 46 #include <sys/uadmin.h> 47 #include <sys/callb.h> 48 49 #include <sys/cred.h> 50 #include <sys/vnode.h> 51 #include <sys/file.h> 52 53 #include <sys/procfs.h> 54 #include <sys/acct.h> 55 56 #include <sys/vfs.h> 57 #include <sys/dnlc.h> 58 #include <sys/var.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 63 #include <sys/dumphdr.h> 64 #include <sys/bootconf.h> 65 #include <sys/varargs.h> 66 #include <sys/promif.h> 67 #include <sys/modctl.h> 68 69 #include <sys/consdev.h> 70 #include <sys/frame.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/privregs.h> 77 #include <sys/clock.h> 78 #include <sys/tss.h> 79 #include <sys/cpu.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/pic.h> 83 #include <vm/hat.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_map.h> 90 #include <vm/seg_vn.h> 91 #include <vm/seg_kp.h> 92 #include <vm/hat_i86.h> 93 #include <sys/swap.h> 94 #include <sys/thread.h> 95 #include <sys/sysconf.h> 96 #include <sys/vm_machparam.h> 97 #include <sys/archsystm.h> 98 #include <sys/machsystm.h> 99 #include <sys/machlock.h> 100 #include <sys/x_call.h> 101 #include <sys/instance.h> 102 103 #include <sys/time.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/psm_types.h> 106 #include <sys/atomic.h> 107 #include <sys/panic.h> 108 #include <sys/cpuvar.h> 109 #include <sys/dtrace.h> 110 #include <sys/bl.h> 111 #include <sys/nvpair.h> 112 #include <sys/x86_archext.h> 113 #include <sys/pool_pset.h> 114 #include <sys/autoconf.h> 115 #include <sys/mem.h> 116 #include <sys/dumphdr.h> 117 #include <sys/compress.h> 118 #include <sys/cpu_module.h> 119 #if defined(__xpv) 120 #include <sys/hypervisor.h> 121 #include <sys/xpv_panic.h> 122 #endif 123 124 #include <sys/fastboot.h> 125 #include <sys/machelf.h> 126 #include <sys/kobj.h> 127 #include <sys/multiboot.h> 128 129 #ifdef TRAPTRACE 130 #include <sys/traptrace.h> 131 #endif /* TRAPTRACE */ 132 133 #include <sys/clock_impl.h> 134 135 extern void audit_enterprom(int); 136 extern void audit_exitprom(int); 137 138 /* 139 * Occassionally the kernel knows better whether to power-off or reboot. 140 */ 141 int force_shutdown_method = AD_UNKNOWN; 142 143 /* 144 * The panicbuf array is used to record messages and state: 145 */ 146 char panicbuf[PANICBUFSIZE]; 147 148 /* 149 * maxphys - used during physio 150 * klustsize - used for klustering by swapfs and specfs 151 */ 152 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 153 int klustsize = 56 * 1024; 154 155 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 156 157 /* 158 * defined here, though unused on x86, 159 * to make kstat_fr.c happy. 160 */ 161 int vac; 162 163 void debug_enter(char *); 164 165 extern void pm_cfb_check_and_powerup(void); 166 extern void pm_cfb_rele(void); 167 168 extern fastboot_info_t newkernel; 169 170 /* 171 * Machine dependent code to reboot. 172 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 173 * to a string to be used as the argument string when rebooting. 174 * 175 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 176 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 177 * we are in a normal shutdown sequence (interrupts are not blocked, the 178 * system is not panic'ing or being suspended). 179 */ 180 /*ARGSUSED*/ 181 void 182 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 183 { 184 processorid_t bootcpuid = 0; 185 static int is_first_quiesce = 1; 186 static int is_first_reset = 1; 187 int reset_status = 0; 188 static char fallback_str[] = "Falling back to regular reboot.\n"; 189 190 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) 191 fcn = AD_BOOT; 192 193 if (!panicstr) { 194 kpreempt_disable(); 195 if (fcn == AD_FASTREBOOT) { 196 mutex_enter(&cpu_lock); 197 if (CPU_ACTIVE(cpu_get(bootcpuid))) { 198 affinity_set(bootcpuid); 199 } 200 mutex_exit(&cpu_lock); 201 } else { 202 affinity_set(CPU_CURRENT); 203 } 204 } 205 206 if (force_shutdown_method != AD_UNKNOWN) 207 fcn = force_shutdown_method; 208 209 /* 210 * XXX - rconsvp is set to NULL to ensure that output messages 211 * are sent to the underlying "hardware" device using the 212 * monitor's printf routine since we are in the process of 213 * either rebooting or halting the machine. 214 */ 215 rconsvp = NULL; 216 217 /* 218 * Print the reboot message now, before pausing other cpus. 219 * There is a race condition in the printing support that 220 * can deadlock multiprocessor machines. 221 */ 222 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 223 prom_printf("rebooting...\n"); 224 225 if (IN_XPV_PANIC()) 226 reset(); 227 228 /* 229 * We can't bring up the console from above lock level, so do it now 230 */ 231 pm_cfb_check_and_powerup(); 232 233 /* make sure there are no more changes to the device tree */ 234 devtree_freeze(); 235 236 if (invoke_cb) 237 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 238 239 /* 240 * Clear any unresolved UEs from memory. 241 */ 242 page_retire_mdboot(); 243 244 #if defined(__xpv) 245 /* 246 * XXPV Should probably think some more about how we deal 247 * with panicing before it's really safe to panic. 248 * On hypervisors, we reboot very quickly.. Perhaps panic 249 * should only attempt to recover by rebooting if, 250 * say, we were able to mount the root filesystem, 251 * or if we successfully launched init(1m). 252 */ 253 if (panicstr && proc_init == NULL) 254 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 255 #endif 256 /* 257 * stop other cpus and raise our priority. since there is only 258 * one active cpu after this, and our priority will be too high 259 * for us to be preempted, we're essentially single threaded 260 * from here on out. 261 */ 262 (void) spl6(); 263 if (!panicstr) { 264 mutex_enter(&cpu_lock); 265 pause_cpus(NULL); 266 mutex_exit(&cpu_lock); 267 } 268 269 /* 270 * If the system is panicking, the preloaded kernel is valid, and 271 * fastreboot_onpanic has been set, and the system has been up for 272 * longer than fastreboot_onpanic_uptime (default to 10 minutes), 273 * choose Fast Reboot. 274 */ 275 if (fcn == AD_BOOT && panicstr && newkernel.fi_valid && 276 fastreboot_onpanic && 277 (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) { 278 fcn = AD_FASTREBOOT; 279 } 280 281 /* 282 * Try to quiesce devices. 283 */ 284 if (is_first_quiesce) { 285 /* 286 * Clear is_first_quiesce before calling quiesce_devices() 287 * so that if quiesce_devices() causes panics, it will not 288 * be invoked again. 289 */ 290 is_first_quiesce = 0; 291 292 quiesce_active = 1; 293 quiesce_devices(ddi_root_node(), &reset_status); 294 if (reset_status == -1) { 295 if (fcn == AD_FASTREBOOT && !force_fastreboot) { 296 prom_printf("Driver(s) not capable of fast " 297 "reboot.\n"); 298 prom_printf(fallback_str); 299 fastreboot_capable = 0; 300 fcn = AD_BOOT; 301 } else if (fcn != AD_FASTREBOOT) 302 fastreboot_capable = 0; 303 } 304 quiesce_active = 0; 305 } 306 307 /* 308 * Try to reset devices. reset_leaves() should only be called 309 * a) when there are no other threads that could be accessing devices, 310 * and 311 * b) on a system that's not capable of fast reboot (fastreboot_capable 312 * being 0), or on a system where quiesce_devices() failed to 313 * complete (quiesce_active being 1). 314 */ 315 if (is_first_reset && (!fastreboot_capable || quiesce_active)) { 316 /* 317 * Clear is_first_reset before calling reset_devices() 318 * so that if reset_devices() causes panics, it will not 319 * be invoked again. 320 */ 321 is_first_reset = 0; 322 reset_leaves(); 323 } 324 325 /* Verify newkernel checksum */ 326 if (fastreboot_capable && fcn == AD_FASTREBOOT && 327 fastboot_cksum_verify(&newkernel) != 0) { 328 fastreboot_capable = 0; 329 prom_printf("Fast reboot: checksum failed for the new " 330 "kernel.\n"); 331 prom_printf(fallback_str); 332 } 333 334 (void) spl8(); 335 336 if (fastreboot_capable && fcn == AD_FASTREBOOT) { 337 /* 338 * psm_shutdown is called within fast_reboot() 339 */ 340 fast_reboot(); 341 } else { 342 (*psm_shutdownf)(cmd, fcn); 343 344 if (fcn == AD_HALT || fcn == AD_POWEROFF) 345 halt((char *)NULL); 346 else 347 prom_reboot(""); 348 } 349 /*NOTREACHED*/ 350 } 351 352 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 353 /*ARGSUSED*/ 354 void 355 mdpreboot(int cmd, int fcn, char *mdep) 356 { 357 if (fcn == AD_FASTREBOOT && !fastreboot_capable) { 358 fcn = AD_BOOT; 359 #ifdef __xpv 360 cmn_err(CE_WARN, "Fast reboot is not supported on xVM"); 361 #else 362 cmn_err(CE_WARN, 363 "Fast reboot is not supported on this platform%s", 364 fastreboot_nosup_message()); 365 #endif 366 } 367 368 if (fcn == AD_FASTREBOOT) { 369 fastboot_load_kernel(mdep); 370 if (!newkernel.fi_valid) 371 fcn = AD_BOOT; 372 } 373 374 (*psm_preshutdownf)(cmd, fcn); 375 } 376 377 static void 378 stop_other_cpus(void) 379 { 380 ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */ 381 cpuset_t xcset; 382 383 CPUSET_ALL_BUT(xcset, CPU->cpu_id); 384 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt); 385 restore_int_flag(s); 386 } 387 388 /* 389 * Machine dependent abort sequence handling 390 */ 391 void 392 abort_sequence_enter(char *msg) 393 { 394 if (abort_enable == 0) { 395 if (audit_active) 396 audit_enterprom(0); 397 return; 398 } 399 if (audit_active) 400 audit_enterprom(1); 401 debug_enter(msg); 402 if (audit_active) 403 audit_exitprom(1); 404 } 405 406 /* 407 * Enter debugger. Called when the user types ctrl-alt-d or whenever 408 * code wants to enter the debugger and possibly resume later. 409 */ 410 void 411 debug_enter( 412 char *msg) /* message to print, possibly NULL */ 413 { 414 if (dtrace_debugger_init != NULL) 415 (*dtrace_debugger_init)(); 416 417 if (msg) 418 prom_printf("%s\n", msg); 419 420 if (boothowto & RB_DEBUG) 421 kmdb_enter(); 422 423 if (dtrace_debugger_fini != NULL) 424 (*dtrace_debugger_fini)(); 425 } 426 427 void 428 reset(void) 429 { 430 extern void acpi_reset_system(); 431 #if !defined(__xpv) 432 ushort_t *bios_memchk; 433 434 /* 435 * Can't use psm_map_phys or acpi_reset_system before the hat is 436 * initialized. 437 */ 438 if (khat_running) { 439 bios_memchk = (ushort_t *)psm_map_phys(0x472, 440 sizeof (ushort_t), PROT_READ | PROT_WRITE); 441 if (bios_memchk) 442 *bios_memchk = 0x1234; /* bios memory check disable */ 443 444 if (options_dip != NULL && 445 ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, 446 "efi-systab")) { 447 efi_reset(); 448 } 449 450 /* 451 * The problem with using stubs is that we can call 452 * acpi_reset_system only after the kernel is up and running. 453 * 454 * We should create a global state to keep track of how far 455 * up the kernel is but for the time being we will depend on 456 * bootops. bootops cleared in startup_end(). 457 */ 458 if (bootops == NULL) 459 acpi_reset_system(); 460 } 461 462 pc_reset(); 463 #else 464 if (IN_XPV_PANIC()) { 465 if (khat_running && bootops == NULL) { 466 acpi_reset_system(); 467 } 468 469 pc_reset(); 470 } 471 472 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 473 panic("HYPERVISOR_shutdown() failed"); 474 #endif 475 /*NOTREACHED*/ 476 } 477 478 /* 479 * Halt the machine and return to the monitor 480 */ 481 void 482 halt(char *s) 483 { 484 stop_other_cpus(); /* send stop signal to other CPUs */ 485 if (s) 486 prom_printf("(%s) \n", s); 487 prom_exit_to_mon(); 488 /*NOTREACHED*/ 489 } 490 491 /* 492 * Initiate interrupt redistribution. 493 */ 494 void 495 i_ddi_intr_redist_all_cpus() 496 { 497 } 498 499 /* 500 * XXX These probably ought to live somewhere else 501 * XXX They are called from mem.c 502 */ 503 504 /* 505 * Convert page frame number to an OBMEM page frame number 506 * (i.e. put in the type bits -- zero for this implementation) 507 */ 508 pfn_t 509 impl_obmem_pfnum(pfn_t pf) 510 { 511 return (pf); 512 } 513 514 #ifdef NM_DEBUG 515 int nmi_test = 0; /* checked in intentry.s during clock int */ 516 int nmtest = -1; 517 nmfunc1(arg, rp) 518 int arg; 519 struct regs *rp; 520 { 521 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 522 nmtest += 50; 523 if (arg == nmtest) { 524 printf("ip = %x\n", rp->r_pc); 525 return (1); 526 } 527 return (0); 528 } 529 530 #endif 531 532 #include <sys/bootsvcs.h> 533 534 /* Hacked up initialization for initial kernel check out is HERE. */ 535 /* The basic steps are: */ 536 /* kernel bootfuncs definition/initialization for KADB */ 537 /* kadb bootfuncs pointer initialization */ 538 /* putchar/getchar (interrupts disabled) */ 539 540 /* kadb bootfuncs pointer initialization */ 541 542 int 543 sysp_getchar() 544 { 545 int i; 546 ulong_t s; 547 548 if (cons_polledio == NULL) { 549 /* Uh oh */ 550 prom_printf("getchar called with no console\n"); 551 for (;;) 552 /* LOOP FOREVER */; 553 } 554 555 s = clear_int_flag(); 556 i = cons_polledio->cons_polledio_getchar( 557 cons_polledio->cons_polledio_argument); 558 restore_int_flag(s); 559 return (i); 560 } 561 562 void 563 sysp_putchar(int c) 564 { 565 ulong_t s; 566 567 /* 568 * We have no alternative but to drop the output on the floor. 569 */ 570 if (cons_polledio == NULL || 571 cons_polledio->cons_polledio_putchar == NULL) 572 return; 573 574 s = clear_int_flag(); 575 cons_polledio->cons_polledio_putchar( 576 cons_polledio->cons_polledio_argument, c); 577 restore_int_flag(s); 578 } 579 580 int 581 sysp_ischar() 582 { 583 int i; 584 ulong_t s; 585 586 if (cons_polledio == NULL || 587 cons_polledio->cons_polledio_ischar == NULL) 588 return (0); 589 590 s = clear_int_flag(); 591 i = cons_polledio->cons_polledio_ischar( 592 cons_polledio->cons_polledio_argument); 593 restore_int_flag(s); 594 return (i); 595 } 596 597 int 598 goany(void) 599 { 600 prom_printf("Type any key to continue "); 601 (void) prom_getchar(); 602 prom_printf("\n"); 603 return (1); 604 } 605 606 static struct boot_syscalls kern_sysp = { 607 sysp_getchar, /* unchar (*getchar)(); 7 */ 608 sysp_putchar, /* int (*putchar)(); 8 */ 609 sysp_ischar, /* int (*ischar)(); 9 */ 610 }; 611 612 #if defined(__xpv) 613 int using_kern_polledio; 614 #endif 615 616 void 617 kadb_uses_kernel() 618 { 619 /* 620 * This routine is now totally misnamed, since it does not in fact 621 * control kadb's I/O; it only controls the kernel's prom_* I/O. 622 */ 623 sysp = &kern_sysp; 624 #if defined(__xpv) 625 using_kern_polledio = 1; 626 #endif 627 } 628 629 /* 630 * the interface to the outside world 631 */ 632 633 /* 634 * poll_port -- wait for a register to achieve a 635 * specific state. Arguments are a mask of bits we care about, 636 * and two sub-masks. To return normally, all the bits in the 637 * first sub-mask must be ON, all the bits in the second sub- 638 * mask must be OFF. If about seconds pass without the register 639 * achieving the desired bit configuration, we return 1, else 640 * 0. 641 */ 642 int 643 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 644 { 645 int i; 646 ushort_t maskval; 647 648 for (i = 500000; i; i--) { 649 maskval = inb(port) & mask; 650 if (((maskval & onbits) == onbits) && 651 ((maskval & offbits) == 0)) 652 return (0); 653 drv_usecwait(10); 654 } 655 return (1); 656 } 657 658 /* 659 * set_idle_cpu is called from idle() when a CPU becomes idle. 660 */ 661 /*LINTED: static unused */ 662 static uint_t last_idle_cpu; 663 664 /*ARGSUSED*/ 665 void 666 set_idle_cpu(int cpun) 667 { 668 last_idle_cpu = cpun; 669 (*psm_set_idle_cpuf)(cpun); 670 } 671 672 /* 673 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 674 */ 675 /*ARGSUSED*/ 676 void 677 unset_idle_cpu(int cpun) 678 { 679 (*psm_unset_idle_cpuf)(cpun); 680 } 681 682 /* 683 * This routine is almost correct now, but not quite. It still needs the 684 * equivalent concept of "hres_last_tick", just like on the sparc side. 685 * The idea is to take a snapshot of the hi-res timer while doing the 686 * hrestime_adj updates under hres_lock in locore, so that the small 687 * interval between interrupt assertion and interrupt processing is 688 * accounted for correctly. Once we have this, the code below should 689 * be modified to subtract off hres_last_tick rather than hrtime_base. 690 * 691 * I'd have done this myself, but I don't have source to all of the 692 * vendor-specific hi-res timer routines (grrr...). The generic hook I 693 * need is something like "gethrtime_unlocked()", which would be just like 694 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 695 * This is what the GET_HRTIME() macro is for on sparc (although it also 696 * serves the function of making time available without a function call 697 * so you don't take a register window overflow while traps are disabled). 698 */ 699 void 700 pc_gethrestime(timestruc_t *tp) 701 { 702 int lock_prev; 703 timestruc_t now; 704 int nslt; /* nsec since last tick */ 705 int adj; /* amount of adjustment to apply */ 706 707 loop: 708 lock_prev = hres_lock; 709 now = hrestime; 710 nslt = (int)(gethrtime() - hres_last_tick); 711 if (nslt < 0) { 712 /* 713 * nslt < 0 means a tick came between sampling 714 * gethrtime() and hres_last_tick; restart the loop 715 */ 716 717 goto loop; 718 } 719 now.tv_nsec += nslt; 720 if (hrestime_adj != 0) { 721 if (hrestime_adj > 0) { 722 adj = (nslt >> ADJ_SHIFT); 723 if (adj > hrestime_adj) 724 adj = (int)hrestime_adj; 725 } else { 726 adj = -(nslt >> ADJ_SHIFT); 727 if (adj < hrestime_adj) 728 adj = (int)hrestime_adj; 729 } 730 now.tv_nsec += adj; 731 } 732 while ((unsigned long)now.tv_nsec >= NANOSEC) { 733 734 /* 735 * We might have a large adjustment or have been in the 736 * debugger for a long time; take care of (at most) four 737 * of those missed seconds (tv_nsec is 32 bits, so 738 * anything >4s will be wrapping around). However, 739 * anything more than 2 seconds out of sync will trigger 740 * timedelta from clock() to go correct the time anyway, 741 * so do what we can, and let the big crowbar do the 742 * rest. A similar correction while loop exists inside 743 * hres_tick(); in all cases we'd like tv_nsec to 744 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 745 * user processes, but if tv_sec's a little behind for a 746 * little while, that's OK; time still monotonically 747 * increases. 748 */ 749 750 now.tv_nsec -= NANOSEC; 751 now.tv_sec++; 752 } 753 if ((hres_lock & ~1) != lock_prev) 754 goto loop; 755 756 *tp = now; 757 } 758 759 void 760 gethrestime_lasttick(timespec_t *tp) 761 { 762 int s; 763 764 s = hr_clock_lock(); 765 *tp = hrestime; 766 hr_clock_unlock(s); 767 } 768 769 time_t 770 gethrestime_sec(void) 771 { 772 timestruc_t now; 773 774 gethrestime(&now); 775 return (now.tv_sec); 776 } 777 778 /* 779 * Initialize a kernel thread's stack 780 */ 781 782 caddr_t 783 thread_stk_init(caddr_t stk) 784 { 785 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 786 return (stk - SA(MINFRAME)); 787 } 788 789 /* 790 * Initialize lwp's kernel stack. 791 */ 792 793 #ifdef TRAPTRACE 794 /* 795 * There's a tricky interdependency here between use of sysenter and 796 * TRAPTRACE which needs recording to avoid future confusion (this is 797 * about the third time I've re-figured this out ..) 798 * 799 * Here's how debugging lcall works with TRAPTRACE. 800 * 801 * 1 We're in userland with a breakpoint on the lcall instruction. 802 * 2 We execute the instruction - the instruction pushes the userland 803 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 804 * via the call gate. 805 * 3 The hardware raises a debug trap in kernel mode, the hardware 806 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 807 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 808 * 5 cmntrap finishes building a trap frame 809 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 810 * off the stack into the traptrace buffer. 811 * 812 * This means that the traptrace buffer contains the wrong values in 813 * %esp and %ss, but everything else in there is correct. 814 * 815 * Here's how debugging sysenter works with TRAPTRACE. 816 * 817 * a We're in userland with a breakpoint on the sysenter instruction. 818 * b We execute the instruction - the instruction pushes -nothing- 819 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 820 * values to take us to sys_sysenter, at the top of the lwp's 821 * stack. 822 * c goto 3 823 * 824 * At this point, because we got into the kernel without the requisite 825 * five pushes on the stack, if we didn't make extra room, we'd 826 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 827 * values from negative (unmapped) stack addresses -- which really bites. 828 * That's why we do the '-= 8' below. 829 * 830 * XXX Note that reading "up" lwp0's stack works because t0 is declared 831 * right next to t0stack in locore.s 832 */ 833 #endif 834 835 caddr_t 836 lwp_stk_init(klwp_t *lwp, caddr_t stk) 837 { 838 caddr_t oldstk; 839 struct pcb *pcb = &lwp->lwp_pcb; 840 841 oldstk = stk; 842 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 843 #ifdef TRAPTRACE 844 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 845 #endif 846 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 847 bzero(stk, oldstk - stk); 848 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 849 850 /* 851 * Arrange that the virtualized %fs and %gs GDT descriptors 852 * have a well-defined initial state (present, ring 3 853 * and of type data). 854 */ 855 #if defined(__amd64) 856 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 857 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 858 else 859 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 860 #elif defined(__i386) 861 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 862 #endif /* __i386 */ 863 lwp_installctx(lwp); 864 return (stk); 865 } 866 867 /*ARGSUSED*/ 868 void 869 lwp_stk_fini(klwp_t *lwp) 870 {} 871 872 /* 873 * If we're not the panic CPU, we wait in panic_idle for reboot. 874 */ 875 void 876 panic_idle(void) 877 { 878 splx(ipltospl(CLOCK_LEVEL)); 879 (void) setjmp(&curthread->t_pcb); 880 881 dumpsys_helper(); 882 883 #ifndef __xpv 884 for (;;) 885 i86_halt(); 886 #else 887 for (;;) 888 ; 889 #endif 890 } 891 892 /* 893 * Stop the other CPUs by cross-calling them and forcing them to enter 894 * the panic_idle() loop above. 895 */ 896 /*ARGSUSED*/ 897 void 898 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 899 { 900 processorid_t i; 901 cpuset_t xcset; 902 903 /* 904 * In the case of a Xen panic, the hypervisor has already stopped 905 * all of the CPUs. 906 */ 907 if (!IN_XPV_PANIC()) { 908 (void) splzs(); 909 910 CPUSET_ALL_BUT(xcset, cp->cpu_id); 911 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle); 912 } 913 914 for (i = 0; i < NCPU; i++) { 915 if (i != cp->cpu_id && cpu[i] != NULL && 916 (cpu[i]->cpu_flags & CPU_EXISTS)) 917 cpu[i]->cpu_flags |= CPU_QUIESCED; 918 } 919 } 920 921 /* 922 * Platform callback following each entry to panicsys(). 923 */ 924 /*ARGSUSED*/ 925 void 926 panic_enter_hw(int spl) 927 { 928 /* Nothing to do here */ 929 } 930 931 /* 932 * Platform-specific code to execute after panicstr is set: we invoke 933 * the PSM entry point to indicate that a panic has occurred. 934 */ 935 /*ARGSUSED*/ 936 void 937 panic_quiesce_hw(panic_data_t *pdp) 938 { 939 psm_notifyf(PSM_PANIC_ENTER); 940 941 cmi_panic_callback(); 942 943 #ifdef TRAPTRACE 944 /* 945 * Turn off TRAPTRACE 946 */ 947 TRAPTRACE_FREEZE; 948 #endif /* TRAPTRACE */ 949 } 950 951 /* 952 * Platform callback prior to writing crash dump. 953 */ 954 /*ARGSUSED*/ 955 void 956 panic_dump_hw(int spl) 957 { 958 /* Nothing to do here */ 959 } 960 961 void * 962 plat_traceback(void *fpreg) 963 { 964 #ifdef __xpv 965 if (IN_XPV_PANIC()) 966 return (xpv_traceback(fpreg)); 967 #endif 968 return (fpreg); 969 } 970 971 /*ARGSUSED*/ 972 void 973 plat_tod_fault(enum tod_fault_type tod_bad) 974 {} 975 976 /*ARGSUSED*/ 977 int 978 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 979 { 980 return (ENOTSUP); 981 } 982 983 /* 984 * The underlying console output routines are protected by raising IPL in case 985 * we are still calling into the early boot services. Once we start calling 986 * the kernel console emulator, it will disable interrupts completely during 987 * character rendering (see sysp_putchar, for example). Refer to the comments 988 * and code in common/os/console.c for more information on these callbacks. 989 */ 990 /*ARGSUSED*/ 991 int 992 console_enter(int busy) 993 { 994 return (splzs()); 995 } 996 997 /*ARGSUSED*/ 998 void 999 console_exit(int busy, int spl) 1000 { 1001 splx(spl); 1002 } 1003 1004 /* 1005 * Allocate a region of virtual address space, unmapped. 1006 * Stubbed out except on sparc, at least for now. 1007 */ 1008 /*ARGSUSED*/ 1009 void * 1010 boot_virt_alloc(void *addr, size_t size) 1011 { 1012 return (addr); 1013 } 1014 1015 volatile unsigned long tenmicrodata; 1016 1017 void 1018 tenmicrosec(void) 1019 { 1020 extern int gethrtime_hires; 1021 1022 if (gethrtime_hires) { 1023 hrtime_t start, end; 1024 start = end = gethrtime(); 1025 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 1026 SMT_PAUSE(); 1027 end = gethrtime(); 1028 } 1029 } else { 1030 #if defined(__xpv) 1031 hrtime_t newtime; 1032 1033 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 1034 while (xpv_gethrtime() < newtime) 1035 SMT_PAUSE(); 1036 #else /* __xpv */ 1037 int i; 1038 1039 /* 1040 * Artificial loop to induce delay. 1041 */ 1042 for (i = 0; i < microdata; i++) 1043 tenmicrodata = microdata; 1044 #endif /* __xpv */ 1045 } 1046 } 1047 1048 /* 1049 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 1050 * long, and it fills in the array with the time spent on cpu in 1051 * each of the mstates, where time is returned in nsec. 1052 * 1053 * No guarantee is made that the returned values in times[] will 1054 * monotonically increase on sequential calls, although this will 1055 * be true in the long run. Any such guarantee must be handled by 1056 * the caller, if needed. This can happen if we fail to account 1057 * for elapsed time due to a generation counter conflict, yet we 1058 * did account for it on a prior call (see below). 1059 * 1060 * The complication is that the cpu in question may be updating 1061 * its microstate at the same time that we are reading it. 1062 * Because the microstate is only updated when the CPU's state 1063 * changes, the values in cpu_intracct[] can be indefinitely out 1064 * of date. To determine true current values, it is necessary to 1065 * compare the current time with cpu_mstate_start, and add the 1066 * difference to times[cpu_mstate]. 1067 * 1068 * This can be a problem if those values are changing out from 1069 * under us. Because the code path in new_cpu_mstate() is 1070 * performance critical, we have not added a lock to it. Instead, 1071 * we have added a generation counter. Before beginning 1072 * modifications, the counter is set to 0. After modifications, 1073 * it is set to the old value plus one. 1074 * 1075 * get_cpu_mstate() will not consider the values of cpu_mstate 1076 * and cpu_mstate_start to be usable unless the value of 1077 * cpu_mstate_gen is both non-zero and unchanged, both before and 1078 * after reading the mstate information. Note that we must 1079 * protect against out-of-order loads around accesses to the 1080 * generation counter. Also, this is a best effort approach in 1081 * that we do not retry should the counter be found to have 1082 * changed. 1083 * 1084 * cpu_intracct[] is used to identify time spent in each CPU 1085 * mstate while handling interrupts. Such time should be reported 1086 * against system time, and so is subtracted out from its 1087 * corresponding cpu_acct[] time and added to 1088 * cpu_acct[CMS_SYSTEM]. 1089 */ 1090 1091 void 1092 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 1093 { 1094 int i; 1095 hrtime_t now, start; 1096 uint16_t gen; 1097 uint16_t state; 1098 hrtime_t intracct[NCMSTATES]; 1099 1100 /* 1101 * Load all volatile state under the protection of membar. 1102 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 1103 * of (now - cpu_mstate_start) by a change in CPU mstate that 1104 * arrives after we make our last check of cpu_mstate_gen. 1105 */ 1106 1107 now = gethrtime_unscaled(); 1108 gen = cpu->cpu_mstate_gen; 1109 1110 membar_consumer(); /* guarantee load ordering */ 1111 start = cpu->cpu_mstate_start; 1112 state = cpu->cpu_mstate; 1113 for (i = 0; i < NCMSTATES; i++) { 1114 intracct[i] = cpu->cpu_intracct[i]; 1115 times[i] = cpu->cpu_acct[i]; 1116 } 1117 membar_consumer(); /* guarantee load ordering */ 1118 1119 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1120 times[state] += now - start; 1121 1122 for (i = 0; i < NCMSTATES; i++) { 1123 if (i == CMS_SYSTEM) 1124 continue; 1125 times[i] -= intracct[i]; 1126 if (times[i] < 0) { 1127 intracct[i] += times[i]; 1128 times[i] = 0; 1129 } 1130 times[CMS_SYSTEM] += intracct[i]; 1131 scalehrtime(×[i]); 1132 } 1133 scalehrtime(×[CMS_SYSTEM]); 1134 } 1135 1136 /* 1137 * This is a version of the rdmsr instruction that allows 1138 * an error code to be returned in the case of failure. 1139 */ 1140 int 1141 checked_rdmsr(uint_t msr, uint64_t *value) 1142 { 1143 if ((x86_feature & X86_MSR) == 0) 1144 return (ENOTSUP); 1145 *value = rdmsr(msr); 1146 return (0); 1147 } 1148 1149 /* 1150 * This is a version of the wrmsr instruction that allows 1151 * an error code to be returned in the case of failure. 1152 */ 1153 int 1154 checked_wrmsr(uint_t msr, uint64_t value) 1155 { 1156 if ((x86_feature & X86_MSR) == 0) 1157 return (ENOTSUP); 1158 wrmsr(msr, value); 1159 return (0); 1160 } 1161 1162 /* 1163 * The mem driver's usual method of using hat_devload() to establish a 1164 * temporary mapping will not work for foreign pages mapped into this 1165 * domain or for the special hypervisor-provided pages. For the foreign 1166 * pages, we often don't know which domain owns them, so we can't ask the 1167 * hypervisor to set up a new mapping. For the other pages, we don't have 1168 * a pfn, so we can't create a new PTE. For these special cases, we do a 1169 * direct uiomove() from the existing kernel virtual address. 1170 */ 1171 /*ARGSUSED*/ 1172 int 1173 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1174 { 1175 #if defined(__xpv) 1176 void *va = (void *)(uintptr_t)uio->uio_loffset; 1177 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1178 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1179 (size_t)uio->uio_iov->iov_len); 1180 1181 if ((rw == UIO_READ && 1182 (va == HYPERVISOR_shared_info || va == xen_info)) || 1183 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1184 return (uiomove(va, nbytes, rw, uio)); 1185 #endif 1186 return (ENOTSUP); 1187 } 1188 1189 pgcnt_t 1190 num_phys_pages() 1191 { 1192 pgcnt_t npages = 0; 1193 struct memlist *mp; 1194 1195 #if defined(__xpv) 1196 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1197 return (xpv_nr_phys_pages()); 1198 #endif /* __xpv */ 1199 1200 for (mp = phys_install; mp != NULL; mp = mp->ml_next) 1201 npages += mp->ml_size >> PAGESHIFT; 1202 1203 return (npages); 1204 } 1205 1206 /* cpu threshold for compressed dumps */ 1207 #ifdef _LP64 1208 uint_t dump_plat_mincpu = DUMP_PLAT_X86_64_MINCPU; 1209 #else 1210 uint_t dump_plat_mincpu = DUMP_PLAT_X86_32_MINCPU; 1211 #endif 1212 1213 int 1214 dump_plat_addr() 1215 { 1216 #ifdef __xpv 1217 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1218 mem_vtop_t mem_vtop; 1219 int cnt; 1220 1221 /* 1222 * On the hypervisor, we want to dump the page with shared_info on it. 1223 */ 1224 if (!IN_XPV_PANIC()) { 1225 mem_vtop.m_as = &kas; 1226 mem_vtop.m_va = HYPERVISOR_shared_info; 1227 mem_vtop.m_pfn = pfn; 1228 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1229 cnt = 1; 1230 } else { 1231 cnt = dump_xpv_addr(); 1232 } 1233 return (cnt); 1234 #else 1235 return (0); 1236 #endif 1237 } 1238 1239 void 1240 dump_plat_pfn() 1241 { 1242 #ifdef __xpv 1243 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1244 1245 if (!IN_XPV_PANIC()) 1246 dumpvp_write(&pfn, sizeof (pfn)); 1247 else 1248 dump_xpv_pfn(); 1249 #endif 1250 } 1251 1252 /*ARGSUSED*/ 1253 int 1254 dump_plat_data(void *dump_cbuf) 1255 { 1256 #ifdef __xpv 1257 uint32_t csize; 1258 int cnt; 1259 1260 if (!IN_XPV_PANIC()) { 1261 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1262 PAGESIZE); 1263 dumpvp_write(&csize, sizeof (uint32_t)); 1264 dumpvp_write(dump_cbuf, csize); 1265 cnt = 1; 1266 } else { 1267 cnt = dump_xpv_data(dump_cbuf); 1268 } 1269 return (cnt); 1270 #else 1271 return (0); 1272 #endif 1273 } 1274 1275 /* 1276 * Calculates a linear address, given the CS selector and PC values 1277 * by looking up the %cs selector process's LDT or the CPU's GDT. 1278 * proc->p_ldtlock must be held across this call. 1279 */ 1280 int 1281 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1282 { 1283 user_desc_t *descrp; 1284 caddr_t baseaddr; 1285 uint16_t idx = SELTOIDX(rp->r_cs); 1286 1287 ASSERT(rp->r_cs <= 0xFFFF); 1288 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1289 1290 if (SELISLDT(rp->r_cs)) { 1291 /* 1292 * Currently 64 bit processes cannot have private LDTs. 1293 */ 1294 ASSERT(p->p_model != DATAMODEL_LP64); 1295 1296 if (p->p_ldt == NULL) 1297 return (-1); 1298 1299 descrp = &p->p_ldt[idx]; 1300 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1301 1302 /* 1303 * Calculate the linear address (wraparound is not only ok, 1304 * it's expected behavior). The cast to uint32_t is because 1305 * LDT selectors are only allowed in 32-bit processes. 1306 */ 1307 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1308 rp->r_pc); 1309 } else { 1310 #ifdef DEBUG 1311 descrp = &CPU->cpu_gdt[idx]; 1312 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1313 /* GDT-based descriptors' base addresses should always be 0 */ 1314 ASSERT(baseaddr == 0); 1315 #endif 1316 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1317 } 1318 1319 return (0); 1320 } 1321 1322 /* 1323 * The implementation of dtrace_linear_pc is similar to the that of 1324 * linear_pc, above, but here we acquire p_ldtlock before accessing 1325 * p_ldt. This implementation is used by the pid provider; we prefix 1326 * it with "dtrace_" to avoid inducing spurious tracing events. 1327 */ 1328 int 1329 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1330 { 1331 user_desc_t *descrp; 1332 caddr_t baseaddr; 1333 uint16_t idx = SELTOIDX(rp->r_cs); 1334 1335 ASSERT(rp->r_cs <= 0xFFFF); 1336 1337 if (SELISLDT(rp->r_cs)) { 1338 /* 1339 * Currently 64 bit processes cannot have private LDTs. 1340 */ 1341 ASSERT(p->p_model != DATAMODEL_LP64); 1342 1343 mutex_enter(&p->p_ldtlock); 1344 if (p->p_ldt == NULL) { 1345 mutex_exit(&p->p_ldtlock); 1346 return (-1); 1347 } 1348 descrp = &p->p_ldt[idx]; 1349 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1350 mutex_exit(&p->p_ldtlock); 1351 1352 /* 1353 * Calculate the linear address (wraparound is not only ok, 1354 * it's expected behavior). The cast to uint32_t is because 1355 * LDT selectors are only allowed in 32-bit processes. 1356 */ 1357 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1358 rp->r_pc); 1359 } else { 1360 #ifdef DEBUG 1361 descrp = &CPU->cpu_gdt[idx]; 1362 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1363 /* GDT-based descriptors' base addresses should always be 0 */ 1364 ASSERT(baseaddr == 0); 1365 #endif 1366 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1367 } 1368 1369 return (0); 1370 } 1371 1372 /* 1373 * We need to post a soft interrupt to reprogram the lbolt cyclic when 1374 * switching from event to cyclic driven lbolt. The following code adds 1375 * and posts the softint for x86. 1376 */ 1377 static ddi_softint_hdl_impl_t lbolt_softint_hdl = 1378 {0, NULL, NULL, NULL, 0, NULL, NULL, NULL}; 1379 1380 void 1381 lbolt_softint_add(void) 1382 { 1383 (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL, 1384 (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL); 1385 } 1386 1387 void 1388 lbolt_softint_post(void) 1389 { 1390 (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending); 1391 } 1392