1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/segments.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 41 #include <sys/proc.h> 42 #include <sys/buf.h> 43 #include <sys/kmem.h> 44 45 #include <sys/reboot.h> 46 #include <sys/uadmin.h> 47 #include <sys/callb.h> 48 49 #include <sys/cred.h> 50 #include <sys/vnode.h> 51 #include <sys/file.h> 52 53 #include <sys/procfs.h> 54 #include <sys/acct.h> 55 56 #include <sys/vfs.h> 57 #include <sys/dnlc.h> 58 #include <sys/var.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 63 #include <sys/dumphdr.h> 64 #include <sys/bootconf.h> 65 #include <sys/varargs.h> 66 #include <sys/promif.h> 67 #include <sys/modctl.h> 68 69 #include <sys/consdev.h> 70 #include <sys/frame.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/privregs.h> 77 #include <sys/clock.h> 78 #include <sys/tss.h> 79 #include <sys/cpu.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/pic.h> 83 #include <vm/hat.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_map.h> 90 #include <vm/seg_vn.h> 91 #include <vm/seg_kp.h> 92 #include <vm/hat_i86.h> 93 #include <sys/swap.h> 94 #include <sys/thread.h> 95 #include <sys/sysconf.h> 96 #include <sys/vm_machparam.h> 97 #include <sys/archsystm.h> 98 #include <sys/machsystm.h> 99 #include <sys/machlock.h> 100 #include <sys/x_call.h> 101 #include <sys/instance.h> 102 103 #include <sys/time.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/psm_types.h> 106 #include <sys/atomic.h> 107 #include <sys/panic.h> 108 #include <sys/cpuvar.h> 109 #include <sys/dtrace.h> 110 #include <sys/bl.h> 111 #include <sys/nvpair.h> 112 #include <sys/x86_archext.h> 113 #include <sys/pool_pset.h> 114 #include <sys/autoconf.h> 115 #include <sys/mem.h> 116 #include <sys/dumphdr.h> 117 #include <sys/compress.h> 118 #include <sys/cpu_module.h> 119 #if defined(__xpv) 120 #include <sys/hypervisor.h> 121 #include <sys/xpv_panic.h> 122 #endif 123 124 #ifdef TRAPTRACE 125 #include <sys/traptrace.h> 126 #endif /* TRAPTRACE */ 127 128 extern void audit_enterprom(int); 129 extern void audit_exitprom(int); 130 131 /* 132 * Occassionally the kernel knows better whether to power-off or reboot. 133 */ 134 int force_shutdown_method = AD_UNKNOWN; 135 136 /* 137 * The panicbuf array is used to record messages and state: 138 */ 139 char panicbuf[PANICBUFSIZE]; 140 141 /* 142 * maxphys - used during physio 143 * klustsize - used for klustering by swapfs and specfs 144 */ 145 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 146 int klustsize = 56 * 1024; 147 148 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 149 150 /* 151 * defined here, though unused on x86, 152 * to make kstat_fr.c happy. 153 */ 154 int vac; 155 156 void stop_other_cpus(); 157 void debug_enter(char *); 158 159 extern void pm_cfb_check_and_powerup(void); 160 extern void pm_cfb_rele(void); 161 162 /* 163 * Machine dependent code to reboot. 164 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 165 * to a string to be used as the argument string when rebooting. 166 * 167 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 168 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 169 * we are in a normal shutdown sequence (interrupts are not blocked, the 170 * system is not panic'ing or being suspended). 171 */ 172 /*ARGSUSED*/ 173 void 174 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 175 { 176 if (!panicstr) { 177 kpreempt_disable(); 178 affinity_set(CPU_CURRENT); 179 } 180 181 if (force_shutdown_method != AD_UNKNOWN) 182 fcn = force_shutdown_method; 183 184 /* 185 * XXX - rconsvp is set to NULL to ensure that output messages 186 * are sent to the underlying "hardware" device using the 187 * monitor's printf routine since we are in the process of 188 * either rebooting or halting the machine. 189 */ 190 rconsvp = NULL; 191 192 /* 193 * Print the reboot message now, before pausing other cpus. 194 * There is a race condition in the printing support that 195 * can deadlock multiprocessor machines. 196 */ 197 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 198 prom_printf("rebooting...\n"); 199 200 if (IN_XPV_PANIC()) 201 reset(); 202 203 /* 204 * We can't bring up the console from above lock level, so do it now 205 */ 206 pm_cfb_check_and_powerup(); 207 208 /* make sure there are no more changes to the device tree */ 209 devtree_freeze(); 210 211 if (invoke_cb) 212 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 213 214 /* 215 * Clear any unresolved UEs from memory. 216 */ 217 page_retire_mdboot(); 218 219 #if defined(__xpv) 220 /* 221 * XXPV Should probably think some more about how we deal 222 * with panicing before it's really safe to panic. 223 * On hypervisors, we reboot very quickly.. Perhaps panic 224 * should only attempt to recover by rebooting if, 225 * say, we were able to mount the root filesystem, 226 * or if we successfully launched init(1m). 227 */ 228 if (panicstr && proc_init == NULL) 229 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 230 #endif 231 232 /* 233 * stop other cpus and raise our priority. since there is only 234 * one active cpu after this, and our priority will be too high 235 * for us to be preempted, we're essentially single threaded 236 * from here on out. 237 */ 238 (void) spl6(); 239 if (!panicstr) { 240 mutex_enter(&cpu_lock); 241 pause_cpus(NULL); 242 mutex_exit(&cpu_lock); 243 } 244 245 /* 246 * try and reset leaf devices. reset_leaves() should only 247 * be called when there are no other threads that could be 248 * accessing devices 249 */ 250 reset_leaves(); 251 252 (void) spl8(); 253 (*psm_shutdownf)(cmd, fcn); 254 255 if (fcn == AD_HALT || fcn == AD_POWEROFF) 256 halt((char *)NULL); 257 else 258 prom_reboot(""); 259 /*NOTREACHED*/ 260 } 261 262 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 263 /*ARGSUSED*/ 264 void 265 mdpreboot(int cmd, int fcn, char *mdep) 266 { 267 (*psm_preshutdownf)(cmd, fcn); 268 } 269 270 void 271 idle_other_cpus() 272 { 273 int cpuid = CPU->cpu_id; 274 cpuset_t xcset; 275 276 ASSERT(cpuid < NCPU); 277 CPUSET_ALL_BUT(xcset, cpuid); 278 xc_capture_cpus(xcset); 279 } 280 281 void 282 resume_other_cpus() 283 { 284 ASSERT(CPU->cpu_id < NCPU); 285 286 xc_release_cpus(); 287 } 288 289 void 290 stop_other_cpus() 291 { 292 int cpuid = CPU->cpu_id; 293 cpuset_t xcset; 294 295 ASSERT(cpuid < NCPU); 296 297 /* 298 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt, 299 * and will return immediately regardless of whether or not it was 300 * able to make them do it. 301 */ 302 CPUSET_ALL_BUT(xcset, cpuid); 303 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt); 304 } 305 306 /* 307 * Machine dependent abort sequence handling 308 */ 309 void 310 abort_sequence_enter(char *msg) 311 { 312 if (abort_enable == 0) { 313 if (audit_active) 314 audit_enterprom(0); 315 return; 316 } 317 if (audit_active) 318 audit_enterprom(1); 319 debug_enter(msg); 320 if (audit_active) 321 audit_exitprom(1); 322 } 323 324 /* 325 * Enter debugger. Called when the user types ctrl-alt-d or whenever 326 * code wants to enter the debugger and possibly resume later. 327 */ 328 void 329 debug_enter( 330 char *msg) /* message to print, possibly NULL */ 331 { 332 if (dtrace_debugger_init != NULL) 333 (*dtrace_debugger_init)(); 334 335 if (msg) 336 prom_printf("%s\n", msg); 337 338 if (boothowto & RB_DEBUG) 339 kmdb_enter(); 340 341 if (dtrace_debugger_fini != NULL) 342 (*dtrace_debugger_fini)(); 343 } 344 345 void 346 reset(void) 347 { 348 #if !defined(__xpv) 349 ushort_t *bios_memchk; 350 351 /* 352 * Can't use psm_map_phys before the hat is initialized. 353 */ 354 if (khat_running) { 355 bios_memchk = (ushort_t *)psm_map_phys(0x472, 356 sizeof (ushort_t), PROT_READ | PROT_WRITE); 357 if (bios_memchk) 358 *bios_memchk = 0x1234; /* bios memory check disable */ 359 } 360 361 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 362 efi_reset(); 363 pc_reset(); 364 #else 365 if (IN_XPV_PANIC()) 366 pc_reset(); 367 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 368 panic("HYPERVISOR_shutdown() failed"); 369 #endif 370 /*NOTREACHED*/ 371 } 372 373 /* 374 * Halt the machine and return to the monitor 375 */ 376 void 377 halt(char *s) 378 { 379 stop_other_cpus(); /* send stop signal to other CPUs */ 380 if (s) 381 prom_printf("(%s) \n", s); 382 prom_exit_to_mon(); 383 /*NOTREACHED*/ 384 } 385 386 /* 387 * Initiate interrupt redistribution. 388 */ 389 void 390 i_ddi_intr_redist_all_cpus() 391 { 392 } 393 394 /* 395 * XXX These probably ought to live somewhere else 396 * XXX They are called from mem.c 397 */ 398 399 /* 400 * Convert page frame number to an OBMEM page frame number 401 * (i.e. put in the type bits -- zero for this implementation) 402 */ 403 pfn_t 404 impl_obmem_pfnum(pfn_t pf) 405 { 406 return (pf); 407 } 408 409 #ifdef NM_DEBUG 410 int nmi_test = 0; /* checked in intentry.s during clock int */ 411 int nmtest = -1; 412 nmfunc1(arg, rp) 413 int arg; 414 struct regs *rp; 415 { 416 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 417 nmtest += 50; 418 if (arg == nmtest) { 419 printf("ip = %x\n", rp->r_pc); 420 return (1); 421 } 422 return (0); 423 } 424 425 #endif 426 427 #include <sys/bootsvcs.h> 428 429 /* Hacked up initialization for initial kernel check out is HERE. */ 430 /* The basic steps are: */ 431 /* kernel bootfuncs definition/initialization for KADB */ 432 /* kadb bootfuncs pointer initialization */ 433 /* putchar/getchar (interrupts disabled) */ 434 435 /* kadb bootfuncs pointer initialization */ 436 437 int 438 sysp_getchar() 439 { 440 int i; 441 ulong_t s; 442 443 if (cons_polledio == NULL) { 444 /* Uh oh */ 445 prom_printf("getchar called with no console\n"); 446 for (;;) 447 /* LOOP FOREVER */; 448 } 449 450 s = clear_int_flag(); 451 i = cons_polledio->cons_polledio_getchar( 452 cons_polledio->cons_polledio_argument); 453 restore_int_flag(s); 454 return (i); 455 } 456 457 void 458 sysp_putchar(int c) 459 { 460 ulong_t s; 461 462 /* 463 * We have no alternative but to drop the output on the floor. 464 */ 465 if (cons_polledio == NULL || 466 cons_polledio->cons_polledio_putchar == NULL) 467 return; 468 469 s = clear_int_flag(); 470 cons_polledio->cons_polledio_putchar( 471 cons_polledio->cons_polledio_argument, c); 472 restore_int_flag(s); 473 } 474 475 int 476 sysp_ischar() 477 { 478 int i; 479 ulong_t s; 480 481 if (cons_polledio == NULL || 482 cons_polledio->cons_polledio_ischar == NULL) 483 return (0); 484 485 s = clear_int_flag(); 486 i = cons_polledio->cons_polledio_ischar( 487 cons_polledio->cons_polledio_argument); 488 restore_int_flag(s); 489 return (i); 490 } 491 492 int 493 goany(void) 494 { 495 prom_printf("Type any key to continue "); 496 (void) prom_getchar(); 497 prom_printf("\n"); 498 return (1); 499 } 500 501 static struct boot_syscalls kern_sysp = { 502 sysp_getchar, /* unchar (*getchar)(); 7 */ 503 sysp_putchar, /* int (*putchar)(); 8 */ 504 sysp_ischar, /* int (*ischar)(); 9 */ 505 }; 506 507 #if defined(__xpv) 508 int using_kern_polledio; 509 #endif 510 511 void 512 kadb_uses_kernel() 513 { 514 /* 515 * This routine is now totally misnamed, since it does not in fact 516 * control kadb's I/O; it only controls the kernel's prom_* I/O. 517 */ 518 sysp = &kern_sysp; 519 #if defined(__xpv) 520 using_kern_polledio = 1; 521 #endif 522 } 523 524 /* 525 * the interface to the outside world 526 */ 527 528 /* 529 * poll_port -- wait for a register to achieve a 530 * specific state. Arguments are a mask of bits we care about, 531 * and two sub-masks. To return normally, all the bits in the 532 * first sub-mask must be ON, all the bits in the second sub- 533 * mask must be OFF. If about seconds pass without the register 534 * achieving the desired bit configuration, we return 1, else 535 * 0. 536 */ 537 int 538 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 539 { 540 int i; 541 ushort_t maskval; 542 543 for (i = 500000; i; i--) { 544 maskval = inb(port) & mask; 545 if (((maskval & onbits) == onbits) && 546 ((maskval & offbits) == 0)) 547 return (0); 548 drv_usecwait(10); 549 } 550 return (1); 551 } 552 553 /* 554 * set_idle_cpu is called from idle() when a CPU becomes idle. 555 */ 556 /*LINTED: static unused */ 557 static uint_t last_idle_cpu; 558 559 /*ARGSUSED*/ 560 void 561 set_idle_cpu(int cpun) 562 { 563 last_idle_cpu = cpun; 564 (*psm_set_idle_cpuf)(cpun); 565 } 566 567 /* 568 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 569 */ 570 /*ARGSUSED*/ 571 void 572 unset_idle_cpu(int cpun) 573 { 574 (*psm_unset_idle_cpuf)(cpun); 575 } 576 577 /* 578 * This routine is almost correct now, but not quite. It still needs the 579 * equivalent concept of "hres_last_tick", just like on the sparc side. 580 * The idea is to take a snapshot of the hi-res timer while doing the 581 * hrestime_adj updates under hres_lock in locore, so that the small 582 * interval between interrupt assertion and interrupt processing is 583 * accounted for correctly. Once we have this, the code below should 584 * be modified to subtract off hres_last_tick rather than hrtime_base. 585 * 586 * I'd have done this myself, but I don't have source to all of the 587 * vendor-specific hi-res timer routines (grrr...). The generic hook I 588 * need is something like "gethrtime_unlocked()", which would be just like 589 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 590 * This is what the GET_HRTIME() macro is for on sparc (although it also 591 * serves the function of making time available without a function call 592 * so you don't take a register window overflow while traps are disabled). 593 */ 594 void 595 pc_gethrestime(timestruc_t *tp) 596 { 597 int lock_prev; 598 timestruc_t now; 599 int nslt; /* nsec since last tick */ 600 int adj; /* amount of adjustment to apply */ 601 602 loop: 603 lock_prev = hres_lock; 604 now = hrestime; 605 nslt = (int)(gethrtime() - hres_last_tick); 606 if (nslt < 0) { 607 /* 608 * nslt < 0 means a tick came between sampling 609 * gethrtime() and hres_last_tick; restart the loop 610 */ 611 612 goto loop; 613 } 614 now.tv_nsec += nslt; 615 if (hrestime_adj != 0) { 616 if (hrestime_adj > 0) { 617 adj = (nslt >> ADJ_SHIFT); 618 if (adj > hrestime_adj) 619 adj = (int)hrestime_adj; 620 } else { 621 adj = -(nslt >> ADJ_SHIFT); 622 if (adj < hrestime_adj) 623 adj = (int)hrestime_adj; 624 } 625 now.tv_nsec += adj; 626 } 627 while ((unsigned long)now.tv_nsec >= NANOSEC) { 628 629 /* 630 * We might have a large adjustment or have been in the 631 * debugger for a long time; take care of (at most) four 632 * of those missed seconds (tv_nsec is 32 bits, so 633 * anything >4s will be wrapping around). However, 634 * anything more than 2 seconds out of sync will trigger 635 * timedelta from clock() to go correct the time anyway, 636 * so do what we can, and let the big crowbar do the 637 * rest. A similar correction while loop exists inside 638 * hres_tick(); in all cases we'd like tv_nsec to 639 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 640 * user processes, but if tv_sec's a little behind for a 641 * little while, that's OK; time still monotonically 642 * increases. 643 */ 644 645 now.tv_nsec -= NANOSEC; 646 now.tv_sec++; 647 } 648 if ((hres_lock & ~1) != lock_prev) 649 goto loop; 650 651 *tp = now; 652 } 653 654 void 655 gethrestime_lasttick(timespec_t *tp) 656 { 657 int s; 658 659 s = hr_clock_lock(); 660 *tp = hrestime; 661 hr_clock_unlock(s); 662 } 663 664 time_t 665 gethrestime_sec(void) 666 { 667 timestruc_t now; 668 669 gethrestime(&now); 670 return (now.tv_sec); 671 } 672 673 /* 674 * Initialize a kernel thread's stack 675 */ 676 677 caddr_t 678 thread_stk_init(caddr_t stk) 679 { 680 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 681 return (stk - SA(MINFRAME)); 682 } 683 684 /* 685 * Initialize lwp's kernel stack. 686 */ 687 688 #ifdef TRAPTRACE 689 /* 690 * There's a tricky interdependency here between use of sysenter and 691 * TRAPTRACE which needs recording to avoid future confusion (this is 692 * about the third time I've re-figured this out ..) 693 * 694 * Here's how debugging lcall works with TRAPTRACE. 695 * 696 * 1 We're in userland with a breakpoint on the lcall instruction. 697 * 2 We execute the instruction - the instruction pushes the userland 698 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 699 * via the call gate. 700 * 3 The hardware raises a debug trap in kernel mode, the hardware 701 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 702 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 703 * 5 cmntrap finishes building a trap frame 704 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 705 * off the stack into the traptrace buffer. 706 * 707 * This means that the traptrace buffer contains the wrong values in 708 * %esp and %ss, but everything else in there is correct. 709 * 710 * Here's how debugging sysenter works with TRAPTRACE. 711 * 712 * a We're in userland with a breakpoint on the sysenter instruction. 713 * b We execute the instruction - the instruction pushes -nothing- 714 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 715 * values to take us to sys_sysenter, at the top of the lwp's 716 * stack. 717 * c goto 3 718 * 719 * At this point, because we got into the kernel without the requisite 720 * five pushes on the stack, if we didn't make extra room, we'd 721 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 722 * values from negative (unmapped) stack addresses -- which really bites. 723 * That's why we do the '-= 8' below. 724 * 725 * XXX Note that reading "up" lwp0's stack works because t0 is declared 726 * right next to t0stack in locore.s 727 */ 728 #endif 729 730 caddr_t 731 lwp_stk_init(klwp_t *lwp, caddr_t stk) 732 { 733 caddr_t oldstk; 734 struct pcb *pcb = &lwp->lwp_pcb; 735 736 oldstk = stk; 737 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 738 #ifdef TRAPTRACE 739 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 740 #endif 741 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 742 bzero(stk, oldstk - stk); 743 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 744 745 /* 746 * Arrange that the virtualized %fs and %gs GDT descriptors 747 * have a well-defined initial state (present, ring 3 748 * and of type data). 749 */ 750 #if defined(__amd64) 751 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 752 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 753 else 754 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 755 #elif defined(__i386) 756 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 757 #endif /* __i386 */ 758 lwp_installctx(lwp); 759 return (stk); 760 } 761 762 /*ARGSUSED*/ 763 void 764 lwp_stk_fini(klwp_t *lwp) 765 {} 766 767 /* 768 * If we're not the panic CPU, we wait in panic_idle for reboot. 769 */ 770 static void 771 panic_idle(void) 772 { 773 splx(ipltospl(CLOCK_LEVEL)); 774 (void) setjmp(&curthread->t_pcb); 775 776 for (;;) 777 ; 778 } 779 780 /* 781 * Stop the other CPUs by cross-calling them and forcing them to enter 782 * the panic_idle() loop above. 783 */ 784 /*ARGSUSED*/ 785 void 786 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 787 { 788 processorid_t i; 789 cpuset_t xcset; 790 791 /* 792 * In the case of a Xen panic, the hypervisor has already stopped 793 * all of the CPUs. 794 */ 795 if (!IN_XPV_PANIC()) { 796 (void) splzs(); 797 798 CPUSET_ALL_BUT(xcset, cp->cpu_id); 799 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 800 } 801 802 for (i = 0; i < NCPU; i++) { 803 if (i != cp->cpu_id && cpu[i] != NULL && 804 (cpu[i]->cpu_flags & CPU_EXISTS)) 805 cpu[i]->cpu_flags |= CPU_QUIESCED; 806 } 807 } 808 809 /* 810 * Platform callback following each entry to panicsys(). 811 */ 812 /*ARGSUSED*/ 813 void 814 panic_enter_hw(int spl) 815 { 816 /* Nothing to do here */ 817 } 818 819 /* 820 * Platform-specific code to execute after panicstr is set: we invoke 821 * the PSM entry point to indicate that a panic has occurred. 822 */ 823 /*ARGSUSED*/ 824 void 825 panic_quiesce_hw(panic_data_t *pdp) 826 { 827 psm_notifyf(PSM_PANIC_ENTER); 828 829 cmi_panic_callback(); 830 831 #ifdef TRAPTRACE 832 /* 833 * Turn off TRAPTRACE 834 */ 835 TRAPTRACE_FREEZE; 836 #endif /* TRAPTRACE */ 837 } 838 839 /* 840 * Platform callback prior to writing crash dump. 841 */ 842 /*ARGSUSED*/ 843 void 844 panic_dump_hw(int spl) 845 { 846 /* Nothing to do here */ 847 } 848 849 void * 850 plat_traceback(void *fpreg) 851 { 852 #ifdef __xpv 853 if (IN_XPV_PANIC()) 854 return (xpv_traceback(fpreg)); 855 #endif 856 return (fpreg); 857 } 858 859 /*ARGSUSED*/ 860 void 861 plat_tod_fault(enum tod_fault_type tod_bad) 862 {} 863 864 /*ARGSUSED*/ 865 int 866 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 867 { 868 return (ENOTSUP); 869 } 870 871 /* 872 * The underlying console output routines are protected by raising IPL in case 873 * we are still calling into the early boot services. Once we start calling 874 * the kernel console emulator, it will disable interrupts completely during 875 * character rendering (see sysp_putchar, for example). Refer to the comments 876 * and code in common/os/console.c for more information on these callbacks. 877 */ 878 /*ARGSUSED*/ 879 int 880 console_enter(int busy) 881 { 882 return (splzs()); 883 } 884 885 /*ARGSUSED*/ 886 void 887 console_exit(int busy, int spl) 888 { 889 splx(spl); 890 } 891 892 /* 893 * Allocate a region of virtual address space, unmapped. 894 * Stubbed out except on sparc, at least for now. 895 */ 896 /*ARGSUSED*/ 897 void * 898 boot_virt_alloc(void *addr, size_t size) 899 { 900 return (addr); 901 } 902 903 volatile unsigned long tenmicrodata; 904 905 void 906 tenmicrosec(void) 907 { 908 extern int gethrtime_hires; 909 910 if (gethrtime_hires) { 911 hrtime_t start, end; 912 start = end = gethrtime(); 913 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 914 SMT_PAUSE(); 915 end = gethrtime(); 916 } 917 } else { 918 #if defined(__xpv) 919 hrtime_t newtime; 920 921 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 922 while (xpv_gethrtime() < newtime) 923 SMT_PAUSE(); 924 #else /* __xpv */ 925 int i; 926 927 /* 928 * Artificial loop to induce delay. 929 */ 930 for (i = 0; i < microdata; i++) 931 tenmicrodata = microdata; 932 #endif /* __xpv */ 933 } 934 } 935 936 /* 937 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 938 * long, and it fills in the array with the time spent on cpu in 939 * each of the mstates, where time is returned in nsec. 940 * 941 * No guarantee is made that the returned values in times[] will 942 * monotonically increase on sequential calls, although this will 943 * be true in the long run. Any such guarantee must be handled by 944 * the caller, if needed. This can happen if we fail to account 945 * for elapsed time due to a generation counter conflict, yet we 946 * did account for it on a prior call (see below). 947 * 948 * The complication is that the cpu in question may be updating 949 * its microstate at the same time that we are reading it. 950 * Because the microstate is only updated when the CPU's state 951 * changes, the values in cpu_intracct[] can be indefinitely out 952 * of date. To determine true current values, it is necessary to 953 * compare the current time with cpu_mstate_start, and add the 954 * difference to times[cpu_mstate]. 955 * 956 * This can be a problem if those values are changing out from 957 * under us. Because the code path in new_cpu_mstate() is 958 * performance critical, we have not added a lock to it. Instead, 959 * we have added a generation counter. Before beginning 960 * modifications, the counter is set to 0. After modifications, 961 * it is set to the old value plus one. 962 * 963 * get_cpu_mstate() will not consider the values of cpu_mstate 964 * and cpu_mstate_start to be usable unless the value of 965 * cpu_mstate_gen is both non-zero and unchanged, both before and 966 * after reading the mstate information. Note that we must 967 * protect against out-of-order loads around accesses to the 968 * generation counter. Also, this is a best effort approach in 969 * that we do not retry should the counter be found to have 970 * changed. 971 * 972 * cpu_intracct[] is used to identify time spent in each CPU 973 * mstate while handling interrupts. Such time should be reported 974 * against system time, and so is subtracted out from its 975 * corresponding cpu_acct[] time and added to 976 * cpu_acct[CMS_SYSTEM]. 977 */ 978 979 void 980 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 981 { 982 int i; 983 hrtime_t now, start; 984 uint16_t gen; 985 uint16_t state; 986 hrtime_t intracct[NCMSTATES]; 987 988 /* 989 * Load all volatile state under the protection of membar. 990 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 991 * of (now - cpu_mstate_start) by a change in CPU mstate that 992 * arrives after we make our last check of cpu_mstate_gen. 993 */ 994 995 now = gethrtime_unscaled(); 996 gen = cpu->cpu_mstate_gen; 997 998 membar_consumer(); /* guarantee load ordering */ 999 start = cpu->cpu_mstate_start; 1000 state = cpu->cpu_mstate; 1001 for (i = 0; i < NCMSTATES; i++) { 1002 intracct[i] = cpu->cpu_intracct[i]; 1003 times[i] = cpu->cpu_acct[i]; 1004 } 1005 membar_consumer(); /* guarantee load ordering */ 1006 1007 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1008 times[state] += now - start; 1009 1010 for (i = 0; i < NCMSTATES; i++) { 1011 if (i == CMS_SYSTEM) 1012 continue; 1013 times[i] -= intracct[i]; 1014 if (times[i] < 0) { 1015 intracct[i] += times[i]; 1016 times[i] = 0; 1017 } 1018 times[CMS_SYSTEM] += intracct[i]; 1019 scalehrtime(×[i]); 1020 } 1021 scalehrtime(×[CMS_SYSTEM]); 1022 } 1023 1024 /* 1025 * This is a version of the rdmsr instruction that allows 1026 * an error code to be returned in the case of failure. 1027 */ 1028 int 1029 checked_rdmsr(uint_t msr, uint64_t *value) 1030 { 1031 if ((x86_feature & X86_MSR) == 0) 1032 return (ENOTSUP); 1033 *value = rdmsr(msr); 1034 return (0); 1035 } 1036 1037 /* 1038 * This is a version of the wrmsr instruction that allows 1039 * an error code to be returned in the case of failure. 1040 */ 1041 int 1042 checked_wrmsr(uint_t msr, uint64_t value) 1043 { 1044 if ((x86_feature & X86_MSR) == 0) 1045 return (ENOTSUP); 1046 wrmsr(msr, value); 1047 return (0); 1048 } 1049 1050 /* 1051 * The mem driver's usual method of using hat_devload() to establish a 1052 * temporary mapping will not work for foreign pages mapped into this 1053 * domain or for the special hypervisor-provided pages. For the foreign 1054 * pages, we often don't know which domain owns them, so we can't ask the 1055 * hypervisor to set up a new mapping. For the other pages, we don't have 1056 * a pfn, so we can't create a new PTE. For these special cases, we do a 1057 * direct uiomove() from the existing kernel virtual address. 1058 */ 1059 /*ARGSUSED*/ 1060 int 1061 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1062 { 1063 #if defined(__xpv) 1064 void *va = (void *)(uintptr_t)uio->uio_loffset; 1065 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1066 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1067 (size_t)uio->uio_iov->iov_len); 1068 1069 if ((rw == UIO_READ && 1070 (va == HYPERVISOR_shared_info || va == xen_info)) || 1071 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1072 return (uiomove(va, nbytes, rw, uio)); 1073 #endif 1074 return (ENOTSUP); 1075 } 1076 1077 pgcnt_t 1078 num_phys_pages() 1079 { 1080 pgcnt_t npages = 0; 1081 struct memlist *mp; 1082 1083 #if defined(__xpv) 1084 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1085 xen_sysctl_t op; 1086 1087 op.cmd = XEN_SYSCTL_physinfo; 1088 op.interface_version = XEN_SYSCTL_INTERFACE_VERSION; 1089 if (HYPERVISOR_sysctl(&op) != 0) 1090 panic("physinfo op refused"); 1091 1092 return ((pgcnt_t)op.u.physinfo.total_pages); 1093 } 1094 #endif /* __xpv */ 1095 1096 for (mp = phys_install; mp != NULL; mp = mp->next) 1097 npages += mp->size >> PAGESHIFT; 1098 1099 return (npages); 1100 } 1101 1102 int 1103 dump_plat_addr() 1104 { 1105 #ifdef __xpv 1106 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1107 mem_vtop_t mem_vtop; 1108 int cnt; 1109 1110 /* 1111 * On the hypervisor, we want to dump the page with shared_info on it. 1112 */ 1113 if (!IN_XPV_PANIC()) { 1114 mem_vtop.m_as = &kas; 1115 mem_vtop.m_va = HYPERVISOR_shared_info; 1116 mem_vtop.m_pfn = pfn; 1117 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1118 cnt = 1; 1119 } else { 1120 cnt = dump_xpv_addr(); 1121 } 1122 return (cnt); 1123 #else 1124 return (0); 1125 #endif 1126 } 1127 1128 void 1129 dump_plat_pfn() 1130 { 1131 #ifdef __xpv 1132 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1133 1134 if (!IN_XPV_PANIC()) 1135 dumpvp_write(&pfn, sizeof (pfn)); 1136 else 1137 dump_xpv_pfn(); 1138 #endif 1139 } 1140 1141 /*ARGSUSED*/ 1142 int 1143 dump_plat_data(void *dump_cbuf) 1144 { 1145 #ifdef __xpv 1146 uint32_t csize; 1147 int cnt; 1148 1149 if (!IN_XPV_PANIC()) { 1150 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1151 PAGESIZE); 1152 dumpvp_write(&csize, sizeof (uint32_t)); 1153 dumpvp_write(dump_cbuf, csize); 1154 cnt = 1; 1155 } else { 1156 cnt = dump_xpv_data(dump_cbuf); 1157 } 1158 return (cnt); 1159 #else 1160 return (0); 1161 #endif 1162 } 1163 1164 /* 1165 * Calculates a linear address, given the CS selector and PC values 1166 * by looking up the %cs selector process's LDT or the CPU's GDT. 1167 * proc->p_ldtlock must be held across this call. 1168 */ 1169 int 1170 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1171 { 1172 user_desc_t *descrp; 1173 caddr_t baseaddr; 1174 uint16_t idx = SELTOIDX(rp->r_cs); 1175 1176 ASSERT(rp->r_cs <= 0xFFFF); 1177 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1178 1179 if (SELISLDT(rp->r_cs)) { 1180 /* 1181 * Currently 64 bit processes cannot have private LDTs. 1182 */ 1183 ASSERT(p->p_model != DATAMODEL_LP64); 1184 1185 if (p->p_ldt == NULL) 1186 return (-1); 1187 1188 descrp = &p->p_ldt[idx]; 1189 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1190 1191 /* 1192 * Calculate the linear address (wraparound is not only ok, 1193 * it's expected behavior). The cast to uint32_t is because 1194 * LDT selectors are only allowed in 32-bit processes. 1195 */ 1196 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1197 rp->r_pc); 1198 } else { 1199 #ifdef DEBUG 1200 descrp = &CPU->cpu_gdt[idx]; 1201 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1202 /* GDT-based descriptors' base addresses should always be 0 */ 1203 ASSERT(baseaddr == 0); 1204 #endif 1205 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1206 } 1207 1208 return (0); 1209 } 1210 1211 /* 1212 * The implementation of dtrace_linear_pc is similar to the that of 1213 * linear_pc, above, but here we acquire p_ldtlock before accessing 1214 * p_ldt. This implementation is used by the pid provider; we prefix 1215 * it with "dtrace_" to avoid inducing spurious tracing events. 1216 */ 1217 int 1218 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1219 { 1220 user_desc_t *descrp; 1221 caddr_t baseaddr; 1222 uint16_t idx = SELTOIDX(rp->r_cs); 1223 1224 ASSERT(rp->r_cs <= 0xFFFF); 1225 1226 if (SELISLDT(rp->r_cs)) { 1227 /* 1228 * Currently 64 bit processes cannot have private LDTs. 1229 */ 1230 ASSERT(p->p_model != DATAMODEL_LP64); 1231 1232 mutex_enter(&p->p_ldtlock); 1233 if (p->p_ldt == NULL) { 1234 mutex_exit(&p->p_ldtlock); 1235 return (-1); 1236 } 1237 descrp = &p->p_ldt[idx]; 1238 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1239 mutex_exit(&p->p_ldtlock); 1240 1241 /* 1242 * Calculate the linear address (wraparound is not only ok, 1243 * it's expected behavior). The cast to uint32_t is because 1244 * LDT selectors are only allowed in 32-bit processes. 1245 */ 1246 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1247 rp->r_pc); 1248 } else { 1249 #ifdef DEBUG 1250 descrp = &CPU->cpu_gdt[idx]; 1251 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1252 /* GDT-based descriptors' base addresses should always be 0 */ 1253 ASSERT(baseaddr == 0); 1254 #endif 1255 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1256 } 1257 1258 return (0); 1259 } 1260