xref: /titanic_44/usr/src/uts/i86pc/os/machdep.c (revision 1bc9f3f58793fef9170c3afd7d01d0b5882c48e9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /*
27  * Copyright (c) 2010, Intel Corporation.
28  * All rights reserved.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/segments.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/systm.h>
38 #include <sys/user.h>
39 #include <sys/mman.h>
40 #include <sys/vm.h>
41 
42 #include <sys/disp.h>
43 #include <sys/class.h>
44 
45 #include <sys/proc.h>
46 #include <sys/buf.h>
47 #include <sys/kmem.h>
48 
49 #include <sys/reboot.h>
50 #include <sys/uadmin.h>
51 #include <sys/callb.h>
52 
53 #include <sys/cred.h>
54 #include <sys/vnode.h>
55 #include <sys/file.h>
56 
57 #include <sys/procfs.h>
58 #include <sys/acct.h>
59 
60 #include <sys/vfs.h>
61 #include <sys/dnlc.h>
62 #include <sys/var.h>
63 #include <sys/cmn_err.h>
64 #include <sys/utsname.h>
65 #include <sys/debug.h>
66 
67 #include <sys/dumphdr.h>
68 #include <sys/bootconf.h>
69 #include <sys/varargs.h>
70 #include <sys/promif.h>
71 #include <sys/modctl.h>
72 
73 #include <sys/consdev.h>
74 #include <sys/frame.h>
75 
76 #include <sys/sunddi.h>
77 #include <sys/ddidmareq.h>
78 #include <sys/psw.h>
79 #include <sys/regset.h>
80 #include <sys/privregs.h>
81 #include <sys/clock.h>
82 #include <sys/tss.h>
83 #include <sys/cpu.h>
84 #include <sys/stack.h>
85 #include <sys/trap.h>
86 #include <sys/pic.h>
87 #include <vm/hat.h>
88 #include <vm/anon.h>
89 #include <vm/as.h>
90 #include <vm/page.h>
91 #include <vm/seg.h>
92 #include <vm/seg_kmem.h>
93 #include <vm/seg_map.h>
94 #include <vm/seg_vn.h>
95 #include <vm/seg_kp.h>
96 #include <vm/hat_i86.h>
97 #include <sys/swap.h>
98 #include <sys/thread.h>
99 #include <sys/sysconf.h>
100 #include <sys/vm_machparam.h>
101 #include <sys/archsystm.h>
102 #include <sys/machsystm.h>
103 #include <sys/machlock.h>
104 #include <sys/x_call.h>
105 #include <sys/instance.h>
106 
107 #include <sys/time.h>
108 #include <sys/smp_impldefs.h>
109 #include <sys/psm_types.h>
110 #include <sys/atomic.h>
111 #include <sys/panic.h>
112 #include <sys/cpuvar.h>
113 #include <sys/dtrace.h>
114 #include <sys/bl.h>
115 #include <sys/nvpair.h>
116 #include <sys/x86_archext.h>
117 #include <sys/pool_pset.h>
118 #include <sys/autoconf.h>
119 #include <sys/mem.h>
120 #include <sys/dumphdr.h>
121 #include <sys/compress.h>
122 #include <sys/cpu_module.h>
123 #if defined(__xpv)
124 #include <sys/hypervisor.h>
125 #include <sys/xpv_panic.h>
126 #endif
127 
128 #include <sys/fastboot.h>
129 #include <sys/machelf.h>
130 #include <sys/kobj.h>
131 #include <sys/multiboot.h>
132 
133 #ifdef	TRAPTRACE
134 #include <sys/traptrace.h>
135 #endif	/* TRAPTRACE */
136 
137 #include <c2/audit.h>
138 #include <sys/clock_impl.h>
139 
140 extern void audit_enterprom(int);
141 extern void audit_exitprom(int);
142 
143 /*
144  * Occassionally the kernel knows better whether to power-off or reboot.
145  */
146 int force_shutdown_method = AD_UNKNOWN;
147 
148 /*
149  * The panicbuf array is used to record messages and state:
150  */
151 char panicbuf[PANICBUFSIZE];
152 
153 /*
154  * Flags to control Dynamic Reconfiguration features.
155  */
156 uint64_t plat_dr_options;
157 
158 /*
159  * Maximum physical address for memory DR operations.
160  */
161 uint64_t plat_dr_physmax;
162 
163 /*
164  * maxphys - used during physio
165  * klustsize - used for klustering by swapfs and specfs
166  */
167 int maxphys = 56 * 1024;    /* XXX See vm_subr.c - max b_count in physio */
168 int klustsize = 56 * 1024;
169 
170 caddr_t	p0_va;		/* Virtual address for accessing physical page 0 */
171 
172 /*
173  * defined here, though unused on x86,
174  * to make kstat_fr.c happy.
175  */
176 int vac;
177 
178 void debug_enter(char *);
179 
180 extern void pm_cfb_check_and_powerup(void);
181 extern void pm_cfb_rele(void);
182 
183 extern fastboot_info_t newkernel;
184 
185 /*
186  * Machine dependent code to reboot.
187  * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
188  * to a string to be used as the argument string when rebooting.
189  *
190  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
191  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
192  * we are in a normal shutdown sequence (interrupts are not blocked, the
193  * system is not panic'ing or being suspended).
194  */
195 /*ARGSUSED*/
196 void
197 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
198 {
199 	processorid_t bootcpuid = 0;
200 	static int is_first_quiesce = 1;
201 	static int is_first_reset = 1;
202 	int reset_status = 0;
203 	static char fallback_str[] = "Falling back to regular reboot.\n";
204 
205 	if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
206 		fcn = AD_BOOT;
207 
208 	if (!panicstr) {
209 		kpreempt_disable();
210 		if (fcn == AD_FASTREBOOT) {
211 			mutex_enter(&cpu_lock);
212 			if (CPU_ACTIVE(cpu_get(bootcpuid))) {
213 				affinity_set(bootcpuid);
214 			}
215 			mutex_exit(&cpu_lock);
216 		} else {
217 			affinity_set(CPU_CURRENT);
218 		}
219 	}
220 
221 	if (force_shutdown_method != AD_UNKNOWN)
222 		fcn = force_shutdown_method;
223 
224 	/*
225 	 * XXX - rconsvp is set to NULL to ensure that output messages
226 	 * are sent to the underlying "hardware" device using the
227 	 * monitor's printf routine since we are in the process of
228 	 * either rebooting or halting the machine.
229 	 */
230 	rconsvp = NULL;
231 
232 	/*
233 	 * Print the reboot message now, before pausing other cpus.
234 	 * There is a race condition in the printing support that
235 	 * can deadlock multiprocessor machines.
236 	 */
237 	if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
238 		prom_printf("rebooting...\n");
239 
240 	if (IN_XPV_PANIC())
241 		reset();
242 
243 	/*
244 	 * We can't bring up the console from above lock level, so do it now
245 	 */
246 	pm_cfb_check_and_powerup();
247 
248 	/* make sure there are no more changes to the device tree */
249 	devtree_freeze();
250 
251 	if (invoke_cb)
252 		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
253 
254 	/*
255 	 * Clear any unresolved UEs from memory.
256 	 */
257 	page_retire_mdboot();
258 
259 #if defined(__xpv)
260 	/*
261 	 * XXPV	Should probably think some more about how we deal
262 	 *	with panicing before it's really safe to panic.
263 	 *	On hypervisors, we reboot very quickly..  Perhaps panic
264 	 *	should only attempt to recover by rebooting if,
265 	 *	say, we were able to mount the root filesystem,
266 	 *	or if we successfully launched init(1m).
267 	 */
268 	if (panicstr && proc_init == NULL)
269 		(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
270 #endif
271 	/*
272 	 * stop other cpus and raise our priority.  since there is only
273 	 * one active cpu after this, and our priority will be too high
274 	 * for us to be preempted, we're essentially single threaded
275 	 * from here on out.
276 	 */
277 	(void) spl6();
278 	if (!panicstr) {
279 		mutex_enter(&cpu_lock);
280 		pause_cpus(NULL);
281 		mutex_exit(&cpu_lock);
282 	}
283 
284 	/*
285 	 * If the system is panicking, the preloaded kernel is valid, and
286 	 * fastreboot_onpanic has been set, and the system has been up for
287 	 * longer than fastreboot_onpanic_uptime (default to 10 minutes),
288 	 * choose Fast Reboot.
289 	 */
290 	if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
291 	    fastreboot_onpanic &&
292 	    (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
293 		fcn = AD_FASTREBOOT;
294 	}
295 
296 	/*
297 	 * Try to quiesce devices.
298 	 */
299 	if (is_first_quiesce) {
300 		/*
301 		 * Clear is_first_quiesce before calling quiesce_devices()
302 		 * so that if quiesce_devices() causes panics, it will not
303 		 * be invoked again.
304 		 */
305 		is_first_quiesce = 0;
306 
307 		quiesce_active = 1;
308 		quiesce_devices(ddi_root_node(), &reset_status);
309 		if (reset_status == -1) {
310 			if (fcn == AD_FASTREBOOT && !force_fastreboot) {
311 				prom_printf("Driver(s) not capable of fast "
312 				    "reboot.\n");
313 				prom_printf(fallback_str);
314 				fastreboot_capable = 0;
315 				fcn = AD_BOOT;
316 			} else if (fcn != AD_FASTREBOOT)
317 				fastreboot_capable = 0;
318 		}
319 		quiesce_active = 0;
320 	}
321 
322 	/*
323 	 * Try to reset devices. reset_leaves() should only be called
324 	 * a) when there are no other threads that could be accessing devices,
325 	 *    and
326 	 * b) on a system that's not capable of fast reboot (fastreboot_capable
327 	 *    being 0), or on a system where quiesce_devices() failed to
328 	 *    complete (quiesce_active being 1).
329 	 */
330 	if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
331 		/*
332 		 * Clear is_first_reset before calling reset_devices()
333 		 * so that if reset_devices() causes panics, it will not
334 		 * be invoked again.
335 		 */
336 		is_first_reset = 0;
337 		reset_leaves();
338 	}
339 
340 	/* Verify newkernel checksum */
341 	if (fastreboot_capable && fcn == AD_FASTREBOOT &&
342 	    fastboot_cksum_verify(&newkernel) != 0) {
343 		fastreboot_capable = 0;
344 		prom_printf("Fast reboot: checksum failed for the new "
345 		    "kernel.\n");
346 		prom_printf(fallback_str);
347 	}
348 
349 	(void) spl8();
350 
351 	if (fastreboot_capable && fcn == AD_FASTREBOOT) {
352 		/*
353 		 * psm_shutdown is called within fast_reboot()
354 		 */
355 		fast_reboot();
356 	} else {
357 		(*psm_shutdownf)(cmd, fcn);
358 
359 		if (fcn == AD_HALT || fcn == AD_POWEROFF)
360 			halt((char *)NULL);
361 		else
362 			prom_reboot("");
363 	}
364 	/*NOTREACHED*/
365 }
366 
367 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
368 /*ARGSUSED*/
369 void
370 mdpreboot(int cmd, int fcn, char *mdep)
371 {
372 	if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
373 		fcn = AD_BOOT;
374 #ifdef	__xpv
375 		cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
376 #else
377 		cmn_err(CE_WARN,
378 		    "Fast reboot is not supported on this platform%s",
379 		    fastreboot_nosup_message());
380 #endif
381 	}
382 
383 	if (fcn == AD_FASTREBOOT) {
384 		fastboot_load_kernel(mdep);
385 		if (!newkernel.fi_valid)
386 			fcn = AD_BOOT;
387 	}
388 
389 	(*psm_preshutdownf)(cmd, fcn);
390 }
391 
392 static void
393 stop_other_cpus(void)
394 {
395 	ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
396 	cpuset_t xcset;
397 
398 	CPUSET_ALL_BUT(xcset, CPU->cpu_id);
399 	xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt);
400 	restore_int_flag(s);
401 }
402 
403 /*
404  *	Machine dependent abort sequence handling
405  */
406 void
407 abort_sequence_enter(char *msg)
408 {
409 	if (abort_enable == 0) {
410 		if (AU_ZONE_AUDITING(GET_KCTX_GZ))
411 			audit_enterprom(0);
412 		return;
413 	}
414 	if (AU_ZONE_AUDITING(GET_KCTX_GZ))
415 		audit_enterprom(1);
416 	debug_enter(msg);
417 	if (AU_ZONE_AUDITING(GET_KCTX_GZ))
418 		audit_exitprom(1);
419 }
420 
421 /*
422  * Enter debugger.  Called when the user types ctrl-alt-d or whenever
423  * code wants to enter the debugger and possibly resume later.
424  */
425 void
426 debug_enter(
427 	char	*msg)		/* message to print, possibly NULL */
428 {
429 	if (dtrace_debugger_init != NULL)
430 		(*dtrace_debugger_init)();
431 
432 	if (msg)
433 		prom_printf("%s\n", msg);
434 
435 	if (boothowto & RB_DEBUG)
436 		kmdb_enter();
437 
438 	if (dtrace_debugger_fini != NULL)
439 		(*dtrace_debugger_fini)();
440 }
441 
442 void
443 reset(void)
444 {
445 	extern	void acpi_reset_system();
446 #if !defined(__xpv)
447 	ushort_t *bios_memchk;
448 
449 	/*
450 	 * Can't use psm_map_phys or acpi_reset_system before the hat is
451 	 * initialized.
452 	 */
453 	if (khat_running) {
454 		bios_memchk = (ushort_t *)psm_map_phys(0x472,
455 		    sizeof (ushort_t), PROT_READ | PROT_WRITE);
456 		if (bios_memchk)
457 			*bios_memchk = 0x1234;	/* bios memory check disable */
458 
459 		if (options_dip != NULL &&
460 		    ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
461 		    "efi-systab")) {
462 			efi_reset();
463 		}
464 
465 		/*
466 		 * The problem with using stubs is that we can call
467 		 * acpi_reset_system only after the kernel is up and running.
468 		 *
469 		 * We should create a global state to keep track of how far
470 		 * up the kernel is but for the time being we will depend on
471 		 * bootops. bootops cleared in startup_end().
472 		 */
473 		if (bootops == NULL)
474 			acpi_reset_system();
475 	}
476 
477 	pc_reset();
478 #else
479 	if (IN_XPV_PANIC()) {
480 		if (khat_running && bootops == NULL) {
481 			acpi_reset_system();
482 		}
483 
484 		pc_reset();
485 	}
486 
487 	(void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
488 	panic("HYPERVISOR_shutdown() failed");
489 #endif
490 	/*NOTREACHED*/
491 }
492 
493 /*
494  * Halt the machine and return to the monitor
495  */
496 void
497 halt(char *s)
498 {
499 	stop_other_cpus();	/* send stop signal to other CPUs */
500 	if (s)
501 		prom_printf("(%s) \n", s);
502 	prom_exit_to_mon();
503 	/*NOTREACHED*/
504 }
505 
506 /*
507  * Initiate interrupt redistribution.
508  */
509 void
510 i_ddi_intr_redist_all_cpus()
511 {
512 }
513 
514 /*
515  * XXX These probably ought to live somewhere else
516  * XXX They are called from mem.c
517  */
518 
519 /*
520  * Convert page frame number to an OBMEM page frame number
521  * (i.e. put in the type bits -- zero for this implementation)
522  */
523 pfn_t
524 impl_obmem_pfnum(pfn_t pf)
525 {
526 	return (pf);
527 }
528 
529 #ifdef	NM_DEBUG
530 int nmi_test = 0;	/* checked in intentry.s during clock int */
531 int nmtest = -1;
532 nmfunc1(arg, rp)
533 int	arg;
534 struct regs *rp;
535 {
536 	printf("nmi called with arg = %x, regs = %x\n", arg, rp);
537 	nmtest += 50;
538 	if (arg == nmtest) {
539 		printf("ip = %x\n", rp->r_pc);
540 		return (1);
541 	}
542 	return (0);
543 }
544 
545 #endif
546 
547 #include <sys/bootsvcs.h>
548 
549 /* Hacked up initialization for initial kernel check out is HERE. */
550 /* The basic steps are: */
551 /*	kernel bootfuncs definition/initialization for KADB */
552 /*	kadb bootfuncs pointer initialization */
553 /*	putchar/getchar (interrupts disabled) */
554 
555 /* kadb bootfuncs pointer initialization */
556 
557 int
558 sysp_getchar()
559 {
560 	int i;
561 	ulong_t s;
562 
563 	if (cons_polledio == NULL) {
564 		/* Uh oh */
565 		prom_printf("getchar called with no console\n");
566 		for (;;)
567 			/* LOOP FOREVER */;
568 	}
569 
570 	s = clear_int_flag();
571 	i = cons_polledio->cons_polledio_getchar(
572 	    cons_polledio->cons_polledio_argument);
573 	restore_int_flag(s);
574 	return (i);
575 }
576 
577 void
578 sysp_putchar(int c)
579 {
580 	ulong_t s;
581 
582 	/*
583 	 * We have no alternative but to drop the output on the floor.
584 	 */
585 	if (cons_polledio == NULL ||
586 	    cons_polledio->cons_polledio_putchar == NULL)
587 		return;
588 
589 	s = clear_int_flag();
590 	cons_polledio->cons_polledio_putchar(
591 	    cons_polledio->cons_polledio_argument, c);
592 	restore_int_flag(s);
593 }
594 
595 int
596 sysp_ischar()
597 {
598 	int i;
599 	ulong_t s;
600 
601 	if (cons_polledio == NULL ||
602 	    cons_polledio->cons_polledio_ischar == NULL)
603 		return (0);
604 
605 	s = clear_int_flag();
606 	i = cons_polledio->cons_polledio_ischar(
607 	    cons_polledio->cons_polledio_argument);
608 	restore_int_flag(s);
609 	return (i);
610 }
611 
612 int
613 goany(void)
614 {
615 	prom_printf("Type any key to continue ");
616 	(void) prom_getchar();
617 	prom_printf("\n");
618 	return (1);
619 }
620 
621 static struct boot_syscalls kern_sysp = {
622 	sysp_getchar,	/*	unchar	(*getchar)();	7  */
623 	sysp_putchar,	/*	int	(*putchar)();	8  */
624 	sysp_ischar,	/*	int	(*ischar)();	9  */
625 };
626 
627 #if defined(__xpv)
628 int using_kern_polledio;
629 #endif
630 
631 void
632 kadb_uses_kernel()
633 {
634 	/*
635 	 * This routine is now totally misnamed, since it does not in fact
636 	 * control kadb's I/O; it only controls the kernel's prom_* I/O.
637 	 */
638 	sysp = &kern_sysp;
639 #if defined(__xpv)
640 	using_kern_polledio = 1;
641 #endif
642 }
643 
644 /*
645  *	the interface to the outside world
646  */
647 
648 /*
649  * poll_port -- wait for a register to achieve a
650  *		specific state.  Arguments are a mask of bits we care about,
651  *		and two sub-masks.  To return normally, all the bits in the
652  *		first sub-mask must be ON, all the bits in the second sub-
653  *		mask must be OFF.  If about seconds pass without the register
654  *		achieving the desired bit configuration, we return 1, else
655  *		0.
656  */
657 int
658 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
659 {
660 	int i;
661 	ushort_t maskval;
662 
663 	for (i = 500000; i; i--) {
664 		maskval = inb(port) & mask;
665 		if (((maskval & onbits) == onbits) &&
666 		    ((maskval & offbits) == 0))
667 			return (0);
668 		drv_usecwait(10);
669 	}
670 	return (1);
671 }
672 
673 /*
674  * set_idle_cpu is called from idle() when a CPU becomes idle.
675  */
676 /*LINTED: static unused */
677 static uint_t last_idle_cpu;
678 
679 /*ARGSUSED*/
680 void
681 set_idle_cpu(int cpun)
682 {
683 	last_idle_cpu = cpun;
684 	(*psm_set_idle_cpuf)(cpun);
685 }
686 
687 /*
688  * unset_idle_cpu is called from idle() when a CPU is no longer idle.
689  */
690 /*ARGSUSED*/
691 void
692 unset_idle_cpu(int cpun)
693 {
694 	(*psm_unset_idle_cpuf)(cpun);
695 }
696 
697 /*
698  * This routine is almost correct now, but not quite.  It still needs the
699  * equivalent concept of "hres_last_tick", just like on the sparc side.
700  * The idea is to take a snapshot of the hi-res timer while doing the
701  * hrestime_adj updates under hres_lock in locore, so that the small
702  * interval between interrupt assertion and interrupt processing is
703  * accounted for correctly.  Once we have this, the code below should
704  * be modified to subtract off hres_last_tick rather than hrtime_base.
705  *
706  * I'd have done this myself, but I don't have source to all of the
707  * vendor-specific hi-res timer routines (grrr...).  The generic hook I
708  * need is something like "gethrtime_unlocked()", which would be just like
709  * gethrtime() but would assume that you're already holding CLOCK_LOCK().
710  * This is what the GET_HRTIME() macro is for on sparc (although it also
711  * serves the function of making time available without a function call
712  * so you don't take a register window overflow while traps are disabled).
713  */
714 void
715 pc_gethrestime(timestruc_t *tp)
716 {
717 	int lock_prev;
718 	timestruc_t now;
719 	int nslt;		/* nsec since last tick */
720 	int adj;		/* amount of adjustment to apply */
721 
722 loop:
723 	lock_prev = hres_lock;
724 	now = hrestime;
725 	nslt = (int)(gethrtime() - hres_last_tick);
726 	if (nslt < 0) {
727 		/*
728 		 * nslt < 0 means a tick came between sampling
729 		 * gethrtime() and hres_last_tick; restart the loop
730 		 */
731 
732 		goto loop;
733 	}
734 	now.tv_nsec += nslt;
735 	if (hrestime_adj != 0) {
736 		if (hrestime_adj > 0) {
737 			adj = (nslt >> ADJ_SHIFT);
738 			if (adj > hrestime_adj)
739 				adj = (int)hrestime_adj;
740 		} else {
741 			adj = -(nslt >> ADJ_SHIFT);
742 			if (adj < hrestime_adj)
743 				adj = (int)hrestime_adj;
744 		}
745 		now.tv_nsec += adj;
746 	}
747 	while ((unsigned long)now.tv_nsec >= NANOSEC) {
748 
749 		/*
750 		 * We might have a large adjustment or have been in the
751 		 * debugger for a long time; take care of (at most) four
752 		 * of those missed seconds (tv_nsec is 32 bits, so
753 		 * anything >4s will be wrapping around).  However,
754 		 * anything more than 2 seconds out of sync will trigger
755 		 * timedelta from clock() to go correct the time anyway,
756 		 * so do what we can, and let the big crowbar do the
757 		 * rest.  A similar correction while loop exists inside
758 		 * hres_tick(); in all cases we'd like tv_nsec to
759 		 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
760 		 * user processes, but if tv_sec's a little behind for a
761 		 * little while, that's OK; time still monotonically
762 		 * increases.
763 		 */
764 
765 		now.tv_nsec -= NANOSEC;
766 		now.tv_sec++;
767 	}
768 	if ((hres_lock & ~1) != lock_prev)
769 		goto loop;
770 
771 	*tp = now;
772 }
773 
774 void
775 gethrestime_lasttick(timespec_t *tp)
776 {
777 	int s;
778 
779 	s = hr_clock_lock();
780 	*tp = hrestime;
781 	hr_clock_unlock(s);
782 }
783 
784 time_t
785 gethrestime_sec(void)
786 {
787 	timestruc_t now;
788 
789 	gethrestime(&now);
790 	return (now.tv_sec);
791 }
792 
793 /*
794  * Initialize a kernel thread's stack
795  */
796 
797 caddr_t
798 thread_stk_init(caddr_t stk)
799 {
800 	ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
801 	return (stk - SA(MINFRAME));
802 }
803 
804 /*
805  * Initialize lwp's kernel stack.
806  */
807 
808 #ifdef TRAPTRACE
809 /*
810  * There's a tricky interdependency here between use of sysenter and
811  * TRAPTRACE which needs recording to avoid future confusion (this is
812  * about the third time I've re-figured this out ..)
813  *
814  * Here's how debugging lcall works with TRAPTRACE.
815  *
816  * 1 We're in userland with a breakpoint on the lcall instruction.
817  * 2 We execute the instruction - the instruction pushes the userland
818  *   %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
819  *   via the call gate.
820  * 3 The hardware raises a debug trap in kernel mode, the hardware
821  *   pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
822  * 4 dbgtrap pushes the error code and trapno and calls cmntrap
823  * 5 cmntrap finishes building a trap frame
824  * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
825  *   off the stack into the traptrace buffer.
826  *
827  * This means that the traptrace buffer contains the wrong values in
828  * %esp and %ss, but everything else in there is correct.
829  *
830  * Here's how debugging sysenter works with TRAPTRACE.
831  *
832  * a We're in userland with a breakpoint on the sysenter instruction.
833  * b We execute the instruction - the instruction pushes -nothing-
834  *   on the stack, but sets %cs, %eip, %ss, %esp to prearranged
835  *   values to take us to sys_sysenter, at the top of the lwp's
836  *   stack.
837  * c goto 3
838  *
839  * At this point, because we got into the kernel without the requisite
840  * five pushes on the stack, if we didn't make extra room, we'd
841  * end up with the TRACE_REGS macro fetching the saved %ss and %esp
842  * values from negative (unmapped) stack addresses -- which really bites.
843  * That's why we do the '-= 8' below.
844  *
845  * XXX	Note that reading "up" lwp0's stack works because t0 is declared
846  *	right next to t0stack in locore.s
847  */
848 #endif
849 
850 caddr_t
851 lwp_stk_init(klwp_t *lwp, caddr_t stk)
852 {
853 	caddr_t oldstk;
854 	struct pcb *pcb = &lwp->lwp_pcb;
855 
856 	oldstk = stk;
857 	stk -= SA(sizeof (struct regs) + SA(MINFRAME));
858 #ifdef TRAPTRACE
859 	stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
860 #endif
861 	stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
862 	bzero(stk, oldstk - stk);
863 	lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
864 
865 	/*
866 	 * Arrange that the virtualized %fs and %gs GDT descriptors
867 	 * have a well-defined initial state (present, ring 3
868 	 * and of type data).
869 	 */
870 #if defined(__amd64)
871 	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
872 		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
873 	else
874 		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
875 #elif defined(__i386)
876 	pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
877 #endif	/* __i386 */
878 	lwp_installctx(lwp);
879 	return (stk);
880 }
881 
882 /*ARGSUSED*/
883 void
884 lwp_stk_fini(klwp_t *lwp)
885 {}
886 
887 /*
888  * If we're not the panic CPU, we wait in panic_idle for reboot.
889  */
890 void
891 panic_idle(void)
892 {
893 	splx(ipltospl(CLOCK_LEVEL));
894 	(void) setjmp(&curthread->t_pcb);
895 
896 	dumpsys_helper();
897 
898 #ifndef __xpv
899 	for (;;)
900 		i86_halt();
901 #else
902 	for (;;)
903 		;
904 #endif
905 }
906 
907 /*
908  * Stop the other CPUs by cross-calling them and forcing them to enter
909  * the panic_idle() loop above.
910  */
911 /*ARGSUSED*/
912 void
913 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
914 {
915 	processorid_t i;
916 	cpuset_t xcset;
917 
918 	/*
919 	 * In the case of a Xen panic, the hypervisor has already stopped
920 	 * all of the CPUs.
921 	 */
922 	if (!IN_XPV_PANIC()) {
923 		(void) splzs();
924 
925 		CPUSET_ALL_BUT(xcset, cp->cpu_id);
926 		xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
927 	}
928 
929 	for (i = 0; i < NCPU; i++) {
930 		if (i != cp->cpu_id && cpu[i] != NULL &&
931 		    (cpu[i]->cpu_flags & CPU_EXISTS))
932 			cpu[i]->cpu_flags |= CPU_QUIESCED;
933 	}
934 }
935 
936 /*
937  * Platform callback following each entry to panicsys().
938  */
939 /*ARGSUSED*/
940 void
941 panic_enter_hw(int spl)
942 {
943 	/* Nothing to do here */
944 }
945 
946 /*
947  * Platform-specific code to execute after panicstr is set: we invoke
948  * the PSM entry point to indicate that a panic has occurred.
949  */
950 /*ARGSUSED*/
951 void
952 panic_quiesce_hw(panic_data_t *pdp)
953 {
954 	psm_notifyf(PSM_PANIC_ENTER);
955 
956 	cmi_panic_callback();
957 
958 #ifdef	TRAPTRACE
959 	/*
960 	 * Turn off TRAPTRACE
961 	 */
962 	TRAPTRACE_FREEZE;
963 #endif	/* TRAPTRACE */
964 }
965 
966 /*
967  * Platform callback prior to writing crash dump.
968  */
969 /*ARGSUSED*/
970 void
971 panic_dump_hw(int spl)
972 {
973 	/* Nothing to do here */
974 }
975 
976 void *
977 plat_traceback(void *fpreg)
978 {
979 #ifdef __xpv
980 	if (IN_XPV_PANIC())
981 		return (xpv_traceback(fpreg));
982 #endif
983 	return (fpreg);
984 }
985 
986 /*ARGSUSED*/
987 void
988 plat_tod_fault(enum tod_fault_type tod_bad)
989 {}
990 
991 /*ARGSUSED*/
992 int
993 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
994 {
995 	return (ENOTSUP);
996 }
997 
998 /*
999  * The underlying console output routines are protected by raising IPL in case
1000  * we are still calling into the early boot services.  Once we start calling
1001  * the kernel console emulator, it will disable interrupts completely during
1002  * character rendering (see sysp_putchar, for example).  Refer to the comments
1003  * and code in common/os/console.c for more information on these callbacks.
1004  */
1005 /*ARGSUSED*/
1006 int
1007 console_enter(int busy)
1008 {
1009 	return (splzs());
1010 }
1011 
1012 /*ARGSUSED*/
1013 void
1014 console_exit(int busy, int spl)
1015 {
1016 	splx(spl);
1017 }
1018 
1019 /*
1020  * Allocate a region of virtual address space, unmapped.
1021  * Stubbed out except on sparc, at least for now.
1022  */
1023 /*ARGSUSED*/
1024 void *
1025 boot_virt_alloc(void *addr, size_t size)
1026 {
1027 	return (addr);
1028 }
1029 
1030 volatile unsigned long	tenmicrodata;
1031 
1032 void
1033 tenmicrosec(void)
1034 {
1035 	extern int gethrtime_hires;
1036 
1037 	if (gethrtime_hires) {
1038 		hrtime_t start, end;
1039 		start = end =  gethrtime();
1040 		while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1041 			SMT_PAUSE();
1042 			end = gethrtime();
1043 		}
1044 	} else {
1045 #if defined(__xpv)
1046 		hrtime_t newtime;
1047 
1048 		newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1049 		while (xpv_gethrtime() < newtime)
1050 			SMT_PAUSE();
1051 #else	/* __xpv */
1052 		int i;
1053 
1054 		/*
1055 		 * Artificial loop to induce delay.
1056 		 */
1057 		for (i = 0; i < microdata; i++)
1058 			tenmicrodata = microdata;
1059 #endif	/* __xpv */
1060 	}
1061 }
1062 
1063 /*
1064  * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1065  * long, and it fills in the array with the time spent on cpu in
1066  * each of the mstates, where time is returned in nsec.
1067  *
1068  * No guarantee is made that the returned values in times[] will
1069  * monotonically increase on sequential calls, although this will
1070  * be true in the long run. Any such guarantee must be handled by
1071  * the caller, if needed. This can happen if we fail to account
1072  * for elapsed time due to a generation counter conflict, yet we
1073  * did account for it on a prior call (see below).
1074  *
1075  * The complication is that the cpu in question may be updating
1076  * its microstate at the same time that we are reading it.
1077  * Because the microstate is only updated when the CPU's state
1078  * changes, the values in cpu_intracct[] can be indefinitely out
1079  * of date. To determine true current values, it is necessary to
1080  * compare the current time with cpu_mstate_start, and add the
1081  * difference to times[cpu_mstate].
1082  *
1083  * This can be a problem if those values are changing out from
1084  * under us. Because the code path in new_cpu_mstate() is
1085  * performance critical, we have not added a lock to it. Instead,
1086  * we have added a generation counter. Before beginning
1087  * modifications, the counter is set to 0. After modifications,
1088  * it is set to the old value plus one.
1089  *
1090  * get_cpu_mstate() will not consider the values of cpu_mstate
1091  * and cpu_mstate_start to be usable unless the value of
1092  * cpu_mstate_gen is both non-zero and unchanged, both before and
1093  * after reading the mstate information. Note that we must
1094  * protect against out-of-order loads around accesses to the
1095  * generation counter. Also, this is a best effort approach in
1096  * that we do not retry should the counter be found to have
1097  * changed.
1098  *
1099  * cpu_intracct[] is used to identify time spent in each CPU
1100  * mstate while handling interrupts. Such time should be reported
1101  * against system time, and so is subtracted out from its
1102  * corresponding cpu_acct[] time and added to
1103  * cpu_acct[CMS_SYSTEM].
1104  */
1105 
1106 void
1107 get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1108 {
1109 	int i;
1110 	hrtime_t now, start;
1111 	uint16_t gen;
1112 	uint16_t state;
1113 	hrtime_t intracct[NCMSTATES];
1114 
1115 	/*
1116 	 * Load all volatile state under the protection of membar.
1117 	 * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1118 	 * of (now - cpu_mstate_start) by a change in CPU mstate that
1119 	 * arrives after we make our last check of cpu_mstate_gen.
1120 	 */
1121 
1122 	now = gethrtime_unscaled();
1123 	gen = cpu->cpu_mstate_gen;
1124 
1125 	membar_consumer();	/* guarantee load ordering */
1126 	start = cpu->cpu_mstate_start;
1127 	state = cpu->cpu_mstate;
1128 	for (i = 0; i < NCMSTATES; i++) {
1129 		intracct[i] = cpu->cpu_intracct[i];
1130 		times[i] = cpu->cpu_acct[i];
1131 	}
1132 	membar_consumer();	/* guarantee load ordering */
1133 
1134 	if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1135 		times[state] += now - start;
1136 
1137 	for (i = 0; i < NCMSTATES; i++) {
1138 		if (i == CMS_SYSTEM)
1139 			continue;
1140 		times[i] -= intracct[i];
1141 		if (times[i] < 0) {
1142 			intracct[i] += times[i];
1143 			times[i] = 0;
1144 		}
1145 		times[CMS_SYSTEM] += intracct[i];
1146 		scalehrtime(&times[i]);
1147 	}
1148 	scalehrtime(&times[CMS_SYSTEM]);
1149 }
1150 
1151 /*
1152  * This is a version of the rdmsr instruction that allows
1153  * an error code to be returned in the case of failure.
1154  */
1155 int
1156 checked_rdmsr(uint_t msr, uint64_t *value)
1157 {
1158 	if ((x86_feature & X86_MSR) == 0)
1159 		return (ENOTSUP);
1160 	*value = rdmsr(msr);
1161 	return (0);
1162 }
1163 
1164 /*
1165  * This is a version of the wrmsr instruction that allows
1166  * an error code to be returned in the case of failure.
1167  */
1168 int
1169 checked_wrmsr(uint_t msr, uint64_t value)
1170 {
1171 	if ((x86_feature & X86_MSR) == 0)
1172 		return (ENOTSUP);
1173 	wrmsr(msr, value);
1174 	return (0);
1175 }
1176 
1177 /*
1178  * The mem driver's usual method of using hat_devload() to establish a
1179  * temporary mapping will not work for foreign pages mapped into this
1180  * domain or for the special hypervisor-provided pages.  For the foreign
1181  * pages, we often don't know which domain owns them, so we can't ask the
1182  * hypervisor to set up a new mapping.  For the other pages, we don't have
1183  * a pfn, so we can't create a new PTE.  For these special cases, we do a
1184  * direct uiomove() from the existing kernel virtual address.
1185  */
1186 /*ARGSUSED*/
1187 int
1188 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1189 {
1190 #if defined(__xpv)
1191 	void *va = (void *)(uintptr_t)uio->uio_loffset;
1192 	off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1193 	size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1194 	    (size_t)uio->uio_iov->iov_len);
1195 
1196 	if ((rw == UIO_READ &&
1197 	    (va == HYPERVISOR_shared_info || va == xen_info)) ||
1198 	    (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1199 		return (uiomove(va, nbytes, rw, uio));
1200 #endif
1201 	return (ENOTSUP);
1202 }
1203 
1204 pgcnt_t
1205 num_phys_pages()
1206 {
1207 	pgcnt_t npages = 0;
1208 	struct memlist *mp;
1209 
1210 #if defined(__xpv)
1211 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1212 		return (xpv_nr_phys_pages());
1213 #endif /* __xpv */
1214 
1215 	for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1216 		npages += mp->ml_size >> PAGESHIFT;
1217 
1218 	return (npages);
1219 }
1220 
1221 /* cpu threshold for compressed dumps */
1222 #ifdef _LP64
1223 uint_t dump_plat_mincpu = DUMP_PLAT_X86_64_MINCPU;
1224 #else
1225 uint_t dump_plat_mincpu = DUMP_PLAT_X86_32_MINCPU;
1226 #endif
1227 
1228 int
1229 dump_plat_addr()
1230 {
1231 #ifdef __xpv
1232 	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1233 	mem_vtop_t mem_vtop;
1234 	int cnt;
1235 
1236 	/*
1237 	 * On the hypervisor, we want to dump the page with shared_info on it.
1238 	 */
1239 	if (!IN_XPV_PANIC()) {
1240 		mem_vtop.m_as = &kas;
1241 		mem_vtop.m_va = HYPERVISOR_shared_info;
1242 		mem_vtop.m_pfn = pfn;
1243 		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1244 		cnt = 1;
1245 	} else {
1246 		cnt = dump_xpv_addr();
1247 	}
1248 	return (cnt);
1249 #else
1250 	return (0);
1251 #endif
1252 }
1253 
1254 void
1255 dump_plat_pfn()
1256 {
1257 #ifdef __xpv
1258 	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1259 
1260 	if (!IN_XPV_PANIC())
1261 		dumpvp_write(&pfn, sizeof (pfn));
1262 	else
1263 		dump_xpv_pfn();
1264 #endif
1265 }
1266 
1267 /*ARGSUSED*/
1268 int
1269 dump_plat_data(void *dump_cbuf)
1270 {
1271 #ifdef __xpv
1272 	uint32_t csize;
1273 	int cnt;
1274 
1275 	if (!IN_XPV_PANIC()) {
1276 		csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1277 		    PAGESIZE);
1278 		dumpvp_write(&csize, sizeof (uint32_t));
1279 		dumpvp_write(dump_cbuf, csize);
1280 		cnt = 1;
1281 	} else {
1282 		cnt = dump_xpv_data(dump_cbuf);
1283 	}
1284 	return (cnt);
1285 #else
1286 	return (0);
1287 #endif
1288 }
1289 
1290 /*
1291  * Calculates a linear address, given the CS selector and PC values
1292  * by looking up the %cs selector process's LDT or the CPU's GDT.
1293  * proc->p_ldtlock must be held across this call.
1294  */
1295 int
1296 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1297 {
1298 	user_desc_t	*descrp;
1299 	caddr_t		baseaddr;
1300 	uint16_t	idx = SELTOIDX(rp->r_cs);
1301 
1302 	ASSERT(rp->r_cs <= 0xFFFF);
1303 	ASSERT(MUTEX_HELD(&p->p_ldtlock));
1304 
1305 	if (SELISLDT(rp->r_cs)) {
1306 		/*
1307 		 * Currently 64 bit processes cannot have private LDTs.
1308 		 */
1309 		ASSERT(p->p_model != DATAMODEL_LP64);
1310 
1311 		if (p->p_ldt == NULL)
1312 			return (-1);
1313 
1314 		descrp = &p->p_ldt[idx];
1315 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1316 
1317 		/*
1318 		 * Calculate the linear address (wraparound is not only ok,
1319 		 * it's expected behavior).  The cast to uint32_t is because
1320 		 * LDT selectors are only allowed in 32-bit processes.
1321 		 */
1322 		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1323 		    rp->r_pc);
1324 	} else {
1325 #ifdef DEBUG
1326 		descrp = &CPU->cpu_gdt[idx];
1327 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1328 		/* GDT-based descriptors' base addresses should always be 0 */
1329 		ASSERT(baseaddr == 0);
1330 #endif
1331 		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1332 	}
1333 
1334 	return (0);
1335 }
1336 
1337 /*
1338  * The implementation of dtrace_linear_pc is similar to the that of
1339  * linear_pc, above, but here we acquire p_ldtlock before accessing
1340  * p_ldt.  This implementation is used by the pid provider; we prefix
1341  * it with "dtrace_" to avoid inducing spurious tracing events.
1342  */
1343 int
1344 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1345 {
1346 	user_desc_t	*descrp;
1347 	caddr_t		baseaddr;
1348 	uint16_t	idx = SELTOIDX(rp->r_cs);
1349 
1350 	ASSERT(rp->r_cs <= 0xFFFF);
1351 
1352 	if (SELISLDT(rp->r_cs)) {
1353 		/*
1354 		 * Currently 64 bit processes cannot have private LDTs.
1355 		 */
1356 		ASSERT(p->p_model != DATAMODEL_LP64);
1357 
1358 		mutex_enter(&p->p_ldtlock);
1359 		if (p->p_ldt == NULL) {
1360 			mutex_exit(&p->p_ldtlock);
1361 			return (-1);
1362 		}
1363 		descrp = &p->p_ldt[idx];
1364 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1365 		mutex_exit(&p->p_ldtlock);
1366 
1367 		/*
1368 		 * Calculate the linear address (wraparound is not only ok,
1369 		 * it's expected behavior).  The cast to uint32_t is because
1370 		 * LDT selectors are only allowed in 32-bit processes.
1371 		 */
1372 		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1373 		    rp->r_pc);
1374 	} else {
1375 #ifdef DEBUG
1376 		descrp = &CPU->cpu_gdt[idx];
1377 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1378 		/* GDT-based descriptors' base addresses should always be 0 */
1379 		ASSERT(baseaddr == 0);
1380 #endif
1381 		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1382 	}
1383 
1384 	return (0);
1385 }
1386 
1387 /*
1388  * We need to post a soft interrupt to reprogram the lbolt cyclic when
1389  * switching from event to cyclic driven lbolt. The following code adds
1390  * and posts the softint for x86.
1391  */
1392 static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1393 	{0, NULL, NULL, NULL, 0, NULL, NULL, NULL};
1394 
1395 void
1396 lbolt_softint_add(void)
1397 {
1398 	(void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1399 	    (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1400 }
1401 
1402 void
1403 lbolt_softint_post(void)
1404 {
1405 	(*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1406 }
1407 
1408 boolean_t
1409 plat_dr_check_capability(uint64_t features)
1410 {
1411 	return ((plat_dr_options & features) == features);
1412 }
1413 
1414 boolean_t
1415 plat_dr_support_cpu(void)
1416 {
1417 	return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1418 }
1419 
1420 boolean_t
1421 plat_dr_support_memory(void)
1422 {
1423 	return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1424 }
1425 
1426 void
1427 plat_dr_enable_capability(uint64_t features)
1428 {
1429 	atomic_or_64(&plat_dr_options, features);
1430 }
1431 
1432 void
1433 plat_dr_disable_capability(uint64_t features)
1434 {
1435 	atomic_and_64(&plat_dr_options, ~features);
1436 }
1437