17c478bd9Sstevel@tonic-gate /*
27c478bd9Sstevel@tonic-gate * CDDL HEADER START
37c478bd9Sstevel@tonic-gate *
47c478bd9Sstevel@tonic-gate * The contents of this file are subject to the terms of the
5c39996a7Sstevel * Common Development and Distribution License (the "License").
6c39996a7Sstevel * You may not use this file except in compliance with the License.
77c478bd9Sstevel@tonic-gate *
87c478bd9Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
97c478bd9Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing.
107c478bd9Sstevel@tonic-gate * See the License for the specific language governing permissions
117c478bd9Sstevel@tonic-gate * and limitations under the License.
127c478bd9Sstevel@tonic-gate *
137c478bd9Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each
147c478bd9Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
157c478bd9Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the
167c478bd9Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying
177c478bd9Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner]
187c478bd9Sstevel@tonic-gate *
197c478bd9Sstevel@tonic-gate * CDDL HEADER END
207c478bd9Sstevel@tonic-gate */
21c39996a7Sstevel
227c478bd9Sstevel@tonic-gate /*
237417cfdeSKuriakose Kuruvilla * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
247c478bd9Sstevel@tonic-gate */
25a3114836SGerry Liu /*
26a3114836SGerry Liu * Copyright (c) 2010, Intel Corporation.
27a3114836SGerry Liu * All rights reserved.
28a3114836SGerry Liu */
297c478bd9Sstevel@tonic-gate
302e2c009bSjjc /*
312e2c009bSjjc * LOCALITY GROUP (LGROUP) PLATFORM SUPPORT FOR X86/AMD64 PLATFORMS
322e2c009bSjjc * ================================================================
332e2c009bSjjc * Multiprocessor AMD and Intel systems may have Non Uniform Memory Access
342e2c009bSjjc * (NUMA). A NUMA machine consists of one or more "nodes" that each consist of
352e2c009bSjjc * one or more CPUs and some local memory. The CPUs in each node can access
362e2c009bSjjc * the memory in the other nodes but at a higher latency than accessing their
372e2c009bSjjc * local memory. Typically, a system with only one node has Uniform Memory
382e2c009bSjjc * Access (UMA), but it may be possible to have a one node system that has
392e2c009bSjjc * some global memory outside of the node which is higher latency.
402e2c009bSjjc *
412e2c009bSjjc * Module Description
422e2c009bSjjc * ------------------
432e2c009bSjjc * This module provides a platform interface for determining which CPUs and
442e2c009bSjjc * which memory (and how much) are in a NUMA node and how far each node is from
452e2c009bSjjc * each other. The interface is used by the Virtual Memory (VM) system and the
462e2c009bSjjc * common lgroup framework. The VM system uses the plat_*() routines to fill
472e2c009bSjjc * in its memory node (memnode) array with the physical address range spanned
482e2c009bSjjc * by each NUMA node to know which memory belongs to which node, so it can
492e2c009bSjjc * build and manage a physical page free list for each NUMA node and allocate
502e2c009bSjjc * local memory from each node as needed. The common lgroup framework uses the
512e2c009bSjjc * exported lgrp_plat_*() routines to figure out which CPUs and memory belong
522e2c009bSjjc * to each node (leaf lgroup) and how far each node is from each other, so it
532e2c009bSjjc * can build the latency (lgroup) topology for the machine in order to optimize
542e2c009bSjjc * for locality. Also, an lgroup platform handle instead of lgroups are used
552e2c009bSjjc * in the interface with this module, so this module shouldn't need to know
562e2c009bSjjc * anything about lgroups. Instead, it just needs to know which CPUs, memory,
572e2c009bSjjc * etc. are in each NUMA node, how far each node is from each other, and to use
582e2c009bSjjc * a unique lgroup platform handle to refer to each node through the interface.
592e2c009bSjjc *
602e2c009bSjjc * Determining NUMA Configuration
612e2c009bSjjc * ------------------------------
622e2c009bSjjc * By default, this module will try to determine the NUMA configuration of the
632e2c009bSjjc * machine by reading the ACPI System Resource Affinity Table (SRAT) and System
642e2c009bSjjc * Locality Information Table (SLIT). The SRAT contains info to tell which
652e2c009bSjjc * CPUs and memory are local to a given proximity domain (NUMA node). The SLIT
662e2c009bSjjc * is a matrix that gives the distance between each system locality (which is
672e2c009bSjjc * a NUMA node and should correspond to proximity domains in the SRAT). For
682e2c009bSjjc * more details on the SRAT and SLIT, please refer to an ACPI 3.0 or newer
692e2c009bSjjc * specification.
702e2c009bSjjc *
712e2c009bSjjc * If the SRAT doesn't exist on a system with AMD Opteron processors, we
722e2c009bSjjc * examine registers in PCI configuration space to determine how many nodes are
732e2c009bSjjc * in the system and which CPUs and memory are in each node.
742e2c009bSjjc * do while booting the kernel.
752e2c009bSjjc *
762e2c009bSjjc * NOTE: Using these PCI configuration space registers to determine this
772e2c009bSjjc * locality info is not guaranteed to work or be compatible across all
782e2c009bSjjc * Opteron processor families.
792e2c009bSjjc *
802e2c009bSjjc * If the SLIT does not exist or look right, the kernel will probe to determine
812e2c009bSjjc * the distance between nodes as long as the NUMA CPU and memory configuration
822e2c009bSjjc * has been determined (see lgrp_plat_probe() for details).
832e2c009bSjjc *
842e2c009bSjjc * Data Structures
852e2c009bSjjc * ---------------
862e2c009bSjjc * The main data structures used by this code are the following:
872e2c009bSjjc *
88dae2fa37Sjjc * - lgrp_plat_cpu_node[] CPU to node ID mapping table indexed by
89dae2fa37Sjjc * CPU ID (only used for SRAT)
902e2c009bSjjc *
912e2c009bSjjc * - lgrp_plat_lat_stats.latencies[][] Table of latencies between same and
922e2c009bSjjc * different nodes indexed by node ID
932e2c009bSjjc *
94a3114836SGerry Liu * - lgrp_plat_node_cnt Number of NUMA nodes in system for
95a3114836SGerry Liu * non-DR-capable systems,
96a3114836SGerry Liu * maximum possible number of NUMA nodes
97a3114836SGerry Liu * in system for DR capable systems.
982e2c009bSjjc *
992e2c009bSjjc * - lgrp_plat_node_domain[] Node ID to proximity domain ID mapping
1002e2c009bSjjc * table indexed by node ID (only used
1012e2c009bSjjc * for SRAT)
1022e2c009bSjjc *
103a3114836SGerry Liu * - lgrp_plat_memnode_info[] Table with physical address range for
104a3114836SGerry Liu * each memory node indexed by memory node
105a3114836SGerry Liu * ID
1062e2c009bSjjc *
1072e2c009bSjjc * The code is implemented to make the following always be true:
1082e2c009bSjjc *
1092e2c009bSjjc * lgroup platform handle == node ID == memnode ID
1102e2c009bSjjc *
1112e2c009bSjjc * Moreover, it allows for the proximity domain ID to be equal to all of the
1122e2c009bSjjc * above as long as the proximity domains IDs are numbered from 0 to <number of
1132e2c009bSjjc * nodes - 1>. This is done by hashing each proximity domain ID into the range
1142e2c009bSjjc * from 0 to <number of nodes - 1>. Then proximity ID N will hash into node ID
1152e2c009bSjjc * N and proximity domain ID N will be entered into lgrp_plat_node_domain[N]
1162e2c009bSjjc * and be assigned node ID N. If the proximity domain IDs aren't numbered
1172e2c009bSjjc * from 0 to <number of nodes - 1>, then hashing the proximity domain IDs into
1182e2c009bSjjc * lgrp_plat_node_domain[] will still work for assigning proximity domain IDs
1192e2c009bSjjc * to node IDs. However, the proximity domain IDs may not map to the
1202e2c009bSjjc * equivalent node ID since we want to keep the node IDs numbered from 0 to
1212e2c009bSjjc * <number of nodes - 1> to minimize cost of searching and potentially space.
12281d9ccb6SJonathan Chew *
123a3114836SGerry Liu * With the introduction of support of memory DR operations on x86 platforms,
124a3114836SGerry Liu * things get a little complicated. The addresses of hot-added memory may not
125a3114836SGerry Liu * be continuous with other memory connected to the same lgrp node. In other
126a3114836SGerry Liu * words, memory addresses may get interleaved among lgrp nodes after memory
127a3114836SGerry Liu * DR operations. To work around this limitation, we have extended the
128a3114836SGerry Liu * relationship between lgrp node and memory node from 1:1 map to 1:N map,
129a3114836SGerry Liu * that means there may be multiple memory nodes associated with a lgrp node
130a3114836SGerry Liu * after memory DR operations.
13181d9ccb6SJonathan Chew *
132a3114836SGerry Liu * To minimize the code changes to support memory DR operations, the
133a3114836SGerry Liu * following policies have been adopted.
134a3114836SGerry Liu * 1) On non-DR-capable systems, the relationship among lgroup platform handle,
135a3114836SGerry Liu * node ID and memnode ID is still kept as:
136a3114836SGerry Liu * lgroup platform handle == node ID == memnode ID
137a3114836SGerry Liu * 2) For memory present at boot time on DR capable platforms, the relationship
138a3114836SGerry Liu * is still kept as is.
139a3114836SGerry Liu * lgroup platform handle == node ID == memnode ID
140a3114836SGerry Liu * 3) For hot-added memory, the relationship between lgrp ID and memnode ID have
141a3114836SGerry Liu * been changed from 1:1 map to 1:N map. Memnode IDs [0 - lgrp_plat_node_cnt)
142a3114836SGerry Liu * are reserved for memory present at boot time, and memnode IDs
143a3114836SGerry Liu * [lgrp_plat_node_cnt, max_mem_nodes) are used to dynamically allocate
144a3114836SGerry Liu * memnode ID for hot-added memory.
145a3114836SGerry Liu * 4) All boot code having the assumption "node ID == memnode ID" can live as
146a3114836SGerry Liu * is, that's because node ID is always equal to memnode ID at boot time.
147a3114836SGerry Liu * 5) The lgrp_plat_memnode_info_update(), plat_pfn_to_mem_node() and
148a3114836SGerry Liu * lgrp_plat_mem_size() related logics have been enhanced to deal with
149a3114836SGerry Liu * the 1:N map relationship.
150a3114836SGerry Liu * 6) The latency probing related logics, which have the assumption
151a3114836SGerry Liu * "node ID == memnode ID" and may be called at run time, is disabled if
152a3114836SGerry Liu * memory DR operation is enabled.
1532e2c009bSjjc */
1542e2c009bSjjc
1552e2c009bSjjc
1567c478bd9Sstevel@tonic-gate #include <sys/archsystm.h> /* for {in,out}{b,w,l}() */
157a3114836SGerry Liu #include <sys/atomic.h>
158dae2fa37Sjjc #include <sys/bootconf.h>
1597c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h>
160f78a91cdSjjc #include <sys/controlregs.h>
1617c478bd9Sstevel@tonic-gate #include <sys/cpupart.h>
1627c478bd9Sstevel@tonic-gate #include <sys/cpuvar.h>
1637c478bd9Sstevel@tonic-gate #include <sys/lgrp.h>
1647c478bd9Sstevel@tonic-gate #include <sys/machsystm.h>
1657c478bd9Sstevel@tonic-gate #include <sys/memlist.h>
1667c478bd9Sstevel@tonic-gate #include <sys/memnode.h>
1677c478bd9Sstevel@tonic-gate #include <sys/mman.h>
168a3114836SGerry Liu #include <sys/note.h>
169ef50d8c0Sesaxe #include <sys/pci_cfgspace.h>
170ef50d8c0Sesaxe #include <sys/pci_impl.h>
1717c478bd9Sstevel@tonic-gate #include <sys/param.h>
172fb2f18f8Sesaxe #include <sys/pghw.h>
1737c478bd9Sstevel@tonic-gate #include <sys/promif.h> /* for prom_printf() */
1742e2c009bSjjc #include <sys/sysmacros.h>
1757c478bd9Sstevel@tonic-gate #include <sys/systm.h>
1767c478bd9Sstevel@tonic-gate #include <sys/thread.h>
1777c478bd9Sstevel@tonic-gate #include <sys/types.h>
1787c478bd9Sstevel@tonic-gate #include <sys/var.h>
1797417cfdeSKuriakose Kuruvilla #include <sys/x86_archext.h>
1807c478bd9Sstevel@tonic-gate #include <vm/hat_i86.h>
1817c478bd9Sstevel@tonic-gate #include <vm/seg_kmem.h>
182affbd3ccSkchow #include <vm/vm_dep.h>
1837c478bd9Sstevel@tonic-gate
184a3114836SGerry Liu #include <sys/acpidev.h>
185*8d8feb1bSToomas Soome #include <sys/acpi/acpi.h> /* for SRAT, SLIT and MSCT */
1867c478bd9Sstevel@tonic-gate
187*8d8feb1bSToomas Soome /* from fakebop.c */
188*8d8feb1bSToomas Soome extern ACPI_TABLE_SRAT *srat_ptr;
189*8d8feb1bSToomas Soome extern ACPI_TABLE_SLIT *slit_ptr;
190*8d8feb1bSToomas Soome extern ACPI_TABLE_MSCT *msct_ptr;
1917c478bd9Sstevel@tonic-gate
1927c478bd9Sstevel@tonic-gate #define MAX_NODES 8
1937c478bd9Sstevel@tonic-gate #define NLGRP (MAX_NODES * (MAX_NODES - 1) + 1)
1947c478bd9Sstevel@tonic-gate
1952e2c009bSjjc /*
1962e2c009bSjjc * Constants for configuring probing
1972e2c009bSjjc */
1987c478bd9Sstevel@tonic-gate #define LGRP_PLAT_PROBE_NROUNDS 64 /* default laps for probing */
1997c478bd9Sstevel@tonic-gate #define LGRP_PLAT_PROBE_NSAMPLES 1 /* default samples to take */
2008949bcd6Sandrei #define LGRP_PLAT_PROBE_NREADS 256 /* number of vendor ID reads */
2017c478bd9Sstevel@tonic-gate
2027c478bd9Sstevel@tonic-gate /*
2032e2c009bSjjc * Flags for probing
2042e2c009bSjjc */
2052e2c009bSjjc #define LGRP_PLAT_PROBE_ENABLE 0x1 /* enable probing */
2062e2c009bSjjc #define LGRP_PLAT_PROBE_PGCPY 0x2 /* probe using page copy */
2072e2c009bSjjc #define LGRP_PLAT_PROBE_VENDOR 0x4 /* probe vendor ID register */
2082e2c009bSjjc
2092e2c009bSjjc /*
21081d9ccb6SJonathan Chew * Hash proximity domain ID into node to domain mapping table "mod" number of
21181d9ccb6SJonathan Chew * nodes to minimize span of entries used and try to have lowest numbered
21281d9ccb6SJonathan Chew * proximity domain be node 0
2132e2c009bSjjc */
21481d9ccb6SJonathan Chew #define NODE_DOMAIN_HASH(domain, node_cnt) \
21581d9ccb6SJonathan Chew ((lgrp_plat_prox_domain_min == UINT32_MAX) ? (domain) % node_cnt : \
21681d9ccb6SJonathan Chew ((domain) - lgrp_plat_prox_domain_min) % node_cnt)
2172e2c009bSjjc
2182e2c009bSjjc /*
219dae2fa37Sjjc * CPU to node ID mapping structure (only used with SRAT)
2202e2c009bSjjc */
2212e2c009bSjjc typedef struct cpu_node_map {
2222e2c009bSjjc int exists;
2232e2c009bSjjc uint_t node;
2242e2c009bSjjc uint32_t apicid;
2252e2c009bSjjc uint32_t prox_domain;
2262e2c009bSjjc } cpu_node_map_t;
2272e2c009bSjjc
2282e2c009bSjjc /*
2292e2c009bSjjc * Latency statistics
2302e2c009bSjjc */
2312e2c009bSjjc typedef struct lgrp_plat_latency_stats {
2322e2c009bSjjc hrtime_t latencies[MAX_NODES][MAX_NODES];
2332e2c009bSjjc hrtime_t latency_max;
2342e2c009bSjjc hrtime_t latency_min;
2352e2c009bSjjc } lgrp_plat_latency_stats_t;
2362e2c009bSjjc
2372e2c009bSjjc /*
2382e2c009bSjjc * Memory configuration for probing
2392e2c009bSjjc */
2402e2c009bSjjc typedef struct lgrp_plat_probe_mem_config {
2412e2c009bSjjc size_t probe_memsize; /* how much memory to probe per node */
2422e2c009bSjjc caddr_t probe_va[MAX_NODES]; /* where memory mapped for probing */
2432e2c009bSjjc pfn_t probe_pfn[MAX_NODES]; /* physical pages to map for probing */
2442e2c009bSjjc } lgrp_plat_probe_mem_config_t;
2452e2c009bSjjc
2462e2c009bSjjc /*
2472e2c009bSjjc * Statistics kept for probing
2482e2c009bSjjc */
2492e2c009bSjjc typedef struct lgrp_plat_probe_stats {
2502e2c009bSjjc hrtime_t flush_cost;
2512e2c009bSjjc hrtime_t probe_cost;
2522e2c009bSjjc hrtime_t probe_cost_total;
2532e2c009bSjjc hrtime_t probe_error_code;
2542e2c009bSjjc hrtime_t probe_errors[MAX_NODES][MAX_NODES];
2552e2c009bSjjc int probe_suspect[MAX_NODES][MAX_NODES];
2562e2c009bSjjc hrtime_t probe_max[MAX_NODES][MAX_NODES];
2572e2c009bSjjc hrtime_t probe_min[MAX_NODES][MAX_NODES];
2582e2c009bSjjc } lgrp_plat_probe_stats_t;
2592e2c009bSjjc
2602e2c009bSjjc /*
2612e2c009bSjjc * Node to proximity domain ID mapping structure (only used with SRAT)
2622e2c009bSjjc */
2632e2c009bSjjc typedef struct node_domain_map {
2642e2c009bSjjc int exists;
2652e2c009bSjjc uint32_t prox_domain;
2662e2c009bSjjc } node_domain_map_t;
2672e2c009bSjjc
2682e2c009bSjjc /*
269a3114836SGerry Liu * Node ID and starting and ending page for physical memory in memory node
2702e2c009bSjjc */
271a3114836SGerry Liu typedef struct memnode_phys_addr_map {
2722e2c009bSjjc pfn_t start;
2732e2c009bSjjc pfn_t end;
2742e2c009bSjjc int exists;
2752e2c009bSjjc uint32_t prox_domain;
276a3114836SGerry Liu uint32_t device_id;
277a3114836SGerry Liu uint_t lgrphand;
278a3114836SGerry Liu } memnode_phys_addr_map_t;
2792e2c009bSjjc
280dae2fa37Sjjc /*
281d821f0f0Sjjc * Number of CPUs for which we got APIC IDs
282dae2fa37Sjjc */
283d821f0f0Sjjc static int lgrp_plat_apic_ncpus = 0;
2842e2c009bSjjc
2852e2c009bSjjc /*
286d5d7cf4eSJonathan Chew * CPU to node ID mapping table (only used for SRAT) and its max number of
287d5d7cf4eSJonathan Chew * entries
2882e2c009bSjjc */
289d5d7cf4eSJonathan Chew static cpu_node_map_t *lgrp_plat_cpu_node = NULL;
290d5d7cf4eSJonathan Chew static uint_t lgrp_plat_cpu_node_nentries = 0;
2912e2c009bSjjc
2922e2c009bSjjc /*
2932e2c009bSjjc * Latency statistics
2942e2c009bSjjc */
2952e2c009bSjjc lgrp_plat_latency_stats_t lgrp_plat_lat_stats;
2962e2c009bSjjc
2972e2c009bSjjc /*
2982e2c009bSjjc * Whether memory is interleaved across nodes causing MPO to be disabled
2992e2c009bSjjc */
3002e2c009bSjjc static int lgrp_plat_mem_intrlv = 0;
3012e2c009bSjjc
3022e2c009bSjjc /*
3032e2c009bSjjc * Node ID to proximity domain ID mapping table (only used for SRAT)
3042e2c009bSjjc */
3052e2c009bSjjc static node_domain_map_t lgrp_plat_node_domain[MAX_NODES];
3062e2c009bSjjc
3072e2c009bSjjc /*
3082e2c009bSjjc * Physical address range for memory in each node
3092e2c009bSjjc */
310a3114836SGerry Liu static memnode_phys_addr_map_t lgrp_plat_memnode_info[MAX_MEM_NODES];
3112e2c009bSjjc
3122e2c009bSjjc /*
3132e2c009bSjjc * Statistics gotten from probing
3142e2c009bSjjc */
3152e2c009bSjjc static lgrp_plat_probe_stats_t lgrp_plat_probe_stats;
3162e2c009bSjjc
3172e2c009bSjjc /*
3182e2c009bSjjc * Memory configuration for probing
3192e2c009bSjjc */
3202e2c009bSjjc static lgrp_plat_probe_mem_config_t lgrp_plat_probe_mem_config;
3212e2c009bSjjc
3222e2c009bSjjc /*
32381d9ccb6SJonathan Chew * Lowest proximity domain ID seen in ACPI SRAT
32481d9ccb6SJonathan Chew */
32581d9ccb6SJonathan Chew static uint32_t lgrp_plat_prox_domain_min = UINT32_MAX;
32681d9ccb6SJonathan Chew
32781d9ccb6SJonathan Chew /*
3282e2c009bSjjc * Error code from processing ACPI SRAT
3292e2c009bSjjc */
3302e2c009bSjjc static int lgrp_plat_srat_error = 0;
3312e2c009bSjjc
3322e2c009bSjjc /*
3332e2c009bSjjc * Error code from processing ACPI SLIT
3342e2c009bSjjc */
3352e2c009bSjjc static int lgrp_plat_slit_error = 0;
3362e2c009bSjjc
3372e2c009bSjjc /*
338a3114836SGerry Liu * Whether lgrp topology has been flattened to 2 levels.
339a3114836SGerry Liu */
340a3114836SGerry Liu static int lgrp_plat_topo_flatten = 0;
341a3114836SGerry Liu
342a3114836SGerry Liu
343a3114836SGerry Liu /*
344a3114836SGerry Liu * Maximum memory node ID in use.
345a3114836SGerry Liu */
346a3114836SGerry Liu static uint_t lgrp_plat_max_mem_node;
347a3114836SGerry Liu
348a3114836SGerry Liu /*
3492e2c009bSjjc * Allocate lgroup array statically
3502e2c009bSjjc */
3512e2c009bSjjc static lgrp_t lgrp_space[NLGRP];
3522e2c009bSjjc static int nlgrps_alloc;
3532e2c009bSjjc
3542e2c009bSjjc
3552e2c009bSjjc /*
35681d9ccb6SJonathan Chew * Enable finding and using minimum proximity domain ID when hashing
35781d9ccb6SJonathan Chew */
35881d9ccb6SJonathan Chew int lgrp_plat_domain_min_enable = 1;
35981d9ccb6SJonathan Chew
36081d9ccb6SJonathan Chew /*
361a3114836SGerry Liu * Maximum possible number of nodes in system
3622e2c009bSjjc */
3632e2c009bSjjc uint_t lgrp_plat_node_cnt = 1;
3642e2c009bSjjc
3652e2c009bSjjc /*
36681d9ccb6SJonathan Chew * Enable sorting nodes in ascending order by starting physical address
36781d9ccb6SJonathan Chew */
36881d9ccb6SJonathan Chew int lgrp_plat_node_sort_enable = 1;
36981d9ccb6SJonathan Chew
37081d9ccb6SJonathan Chew /*
3712e2c009bSjjc * Configuration Parameters for Probing
3722e2c009bSjjc * - lgrp_plat_probe_flags Flags to specify enabling probing, probe
3732e2c009bSjjc * operation, etc.
3742e2c009bSjjc * - lgrp_plat_probe_nrounds How many rounds of probing to do
3752e2c009bSjjc * - lgrp_plat_probe_nsamples Number of samples to take when probing each
3762e2c009bSjjc * node
3772e2c009bSjjc * - lgrp_plat_probe_nreads Number of times to read vendor ID from
3782e2c009bSjjc * Northbridge for each probe
3792e2c009bSjjc */
3802e2c009bSjjc uint_t lgrp_plat_probe_flags = 0;
3812e2c009bSjjc int lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS;
3822e2c009bSjjc int lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES;
3832e2c009bSjjc int lgrp_plat_probe_nreads = LGRP_PLAT_PROBE_NREADS;
3842e2c009bSjjc
3852e2c009bSjjc /*
386a3114836SGerry Liu * Enable use of ACPI System Resource Affinity Table (SRAT), System
387a3114836SGerry Liu * Locality Information Table (SLIT) and Maximum System Capability Table (MSCT)
3882e2c009bSjjc */
3892e2c009bSjjc int lgrp_plat_srat_enable = 1;
3902e2c009bSjjc int lgrp_plat_slit_enable = 1;
391a3114836SGerry Liu int lgrp_plat_msct_enable = 1;
3922e2c009bSjjc
3932e2c009bSjjc /*
39418968004SKit Chow * mnode_xwa: set to non-zero value to initiate workaround if large pages are
39518968004SKit Chow * found to be crossing memory node boundaries. The workaround will eliminate
39618968004SKit Chow * a base size page at the end of each memory node boundary to ensure that
39718968004SKit Chow * a large page with constituent pages that span more than 1 memory node
39818968004SKit Chow * can never be formed.
39918968004SKit Chow *
40018968004SKit Chow */
40118968004SKit Chow int mnode_xwa = 1;
40218968004SKit Chow
40318968004SKit Chow /*
4042e2c009bSjjc * Static array to hold lgroup statistics
4052e2c009bSjjc */
4062e2c009bSjjc struct lgrp_stats lgrp_stats[NLGRP];
4072e2c009bSjjc
4082e2c009bSjjc
4092e2c009bSjjc /*
4102e2c009bSjjc * Forward declarations of platform interface routines
4112e2c009bSjjc */
4122e2c009bSjjc void plat_build_mem_nodes(struct memlist *list);
4132e2c009bSjjc
414a3114836SGerry Liu int plat_mnode_xcheck(pfn_t pfncnt);
4152e2c009bSjjc
4162e2c009bSjjc lgrp_handle_t plat_mem_node_to_lgrphand(int mnode);
4172e2c009bSjjc
4182e2c009bSjjc int plat_pfn_to_mem_node(pfn_t pfn);
4192e2c009bSjjc
4202e2c009bSjjc /*
4212e2c009bSjjc * Forward declarations of lgroup platform interface routines
4222e2c009bSjjc */
4232e2c009bSjjc lgrp_t *lgrp_plat_alloc(lgrp_id_t lgrpid);
4242e2c009bSjjc
4252e2c009bSjjc void lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg);
4262e2c009bSjjc
4272e2c009bSjjc lgrp_handle_t lgrp_plat_cpu_to_hand(processorid_t id);
4282e2c009bSjjc
429d5d7cf4eSJonathan Chew void lgrp_plat_init(lgrp_init_stages_t stage);
4302e2c009bSjjc
4312e2c009bSjjc int lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to);
4322e2c009bSjjc
4332e2c009bSjjc int lgrp_plat_max_lgrps(void);
4342e2c009bSjjc
4352e2c009bSjjc pgcnt_t lgrp_plat_mem_size(lgrp_handle_t plathand,
4362e2c009bSjjc lgrp_mem_query_t query);
4372e2c009bSjjc
4382e2c009bSjjc lgrp_handle_t lgrp_plat_pfn_to_hand(pfn_t pfn);
4392e2c009bSjjc
4402e2c009bSjjc void lgrp_plat_probe(void);
4412e2c009bSjjc
4422e2c009bSjjc lgrp_handle_t lgrp_plat_root_hand(void);
4432e2c009bSjjc
4442e2c009bSjjc
4452e2c009bSjjc /*
4462e2c009bSjjc * Forward declarations of local routines
4472e2c009bSjjc */
4482e2c009bSjjc static int is_opteron(void);
4492e2c009bSjjc
450dae2fa37Sjjc static int lgrp_plat_cpu_node_update(node_domain_map_t *node_domain,
451d821f0f0Sjjc int node_cnt, cpu_node_map_t *cpu_node, int nentries, uint32_t apicid,
452d821f0f0Sjjc uint32_t domain);
453dae2fa37Sjjc
454d5d7cf4eSJonathan Chew static int lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node,
455d5d7cf4eSJonathan Chew int cpu_node_nentries);
4562e2c009bSjjc
4572e2c009bSjjc static int lgrp_plat_domain_to_node(node_domain_map_t *node_domain,
458d821f0f0Sjjc int node_cnt, uint32_t domain);
4592e2c009bSjjc
460d5d7cf4eSJonathan Chew static void lgrp_plat_get_numa_config(void);
461d5d7cf4eSJonathan Chew
462a3114836SGerry Liu static void lgrp_plat_latency_adjust(memnode_phys_addr_map_t *memnode_info,
4632e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats,
4642e2c009bSjjc lgrp_plat_probe_stats_t *probe_stats);
4652e2c009bSjjc
466a3114836SGerry Liu static int lgrp_plat_latency_verify(memnode_phys_addr_map_t *memnode_info,
4672e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats);
4682e2c009bSjjc
469d5d7cf4eSJonathan Chew static void lgrp_plat_main_init(void);
470d5d7cf4eSJonathan Chew
4712e2c009bSjjc static pgcnt_t lgrp_plat_mem_size_default(lgrp_handle_t, lgrp_mem_query_t);
4722e2c009bSjjc
4732e2c009bSjjc static int lgrp_plat_node_domain_update(node_domain_map_t *node_domain,
474d821f0f0Sjjc int node_cnt, uint32_t domain);
4752e2c009bSjjc
476a3114836SGerry Liu static int lgrp_plat_memnode_info_update(node_domain_map_t *node_domain,
477a3114836SGerry Liu int node_cnt, memnode_phys_addr_map_t *memnode_info, int memnode_cnt,
478a3114836SGerry Liu uint64_t start, uint64_t end, uint32_t domain, uint32_t device_id);
4792e2c009bSjjc
48081d9ccb6SJonathan Chew static void lgrp_plat_node_sort(node_domain_map_t *node_domain,
48181d9ccb6SJonathan Chew int node_cnt, cpu_node_map_t *cpu_node, int cpu_count,
482a3114836SGerry Liu memnode_phys_addr_map_t *memnode_info);
48381d9ccb6SJonathan Chew
4842e2c009bSjjc static hrtime_t lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node,
485d5d7cf4eSJonathan Chew int cpu_node_nentries, lgrp_plat_probe_mem_config_t *probe_mem_config,
486d5d7cf4eSJonathan Chew lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats);
4872e2c009bSjjc
488d821f0f0Sjjc static int lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node);
489dae2fa37Sjjc
490*8d8feb1bSToomas Soome static int lgrp_plat_process_slit(ACPI_TABLE_SLIT *tp,
491a3114836SGerry Liu node_domain_map_t *node_domain, uint_t node_cnt,
492a3114836SGerry Liu memnode_phys_addr_map_t *memnode_info,
493a3114836SGerry Liu lgrp_plat_latency_stats_t *lat_stats);
4942e2c009bSjjc
495a3114836SGerry Liu static int lgrp_plat_process_sli(uint32_t domain, uchar_t *sli_info,
496a3114836SGerry Liu uint32_t sli_cnt, node_domain_map_t *node_domain, uint_t node_cnt,
497a3114836SGerry Liu lgrp_plat_latency_stats_t *lat_stats);
498a3114836SGerry Liu
499*8d8feb1bSToomas Soome static int lgrp_plat_process_srat(ACPI_TABLE_SRAT *tp, ACPI_TABLE_MSCT *mp,
50081d9ccb6SJonathan Chew uint32_t *prox_domain_min, node_domain_map_t *node_domain,
50181d9ccb6SJonathan Chew cpu_node_map_t *cpu_node, int cpu_count,
502a3114836SGerry Liu memnode_phys_addr_map_t *memnode_info);
5032e2c009bSjjc
504d5d7cf4eSJonathan Chew static void lgrp_plat_release_bootstrap(void);
505d5d7cf4eSJonathan Chew
506*8d8feb1bSToomas Soome static int lgrp_plat_srat_domains(ACPI_TABLE_SRAT *tp,
50781d9ccb6SJonathan Chew uint32_t *prox_domain_min);
5082e2c009bSjjc
509*8d8feb1bSToomas Soome static int lgrp_plat_msct_domains(ACPI_TABLE_MSCT *tp,
510a3114836SGerry Liu uint32_t *prox_domain_min);
511a3114836SGerry Liu
512a3114836SGerry Liu static void lgrp_plat_2level_setup(lgrp_plat_latency_stats_t *lat_stats);
5132e2c009bSjjc
5142e2c009bSjjc static void opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv,
515a3114836SGerry Liu memnode_phys_addr_map_t *memnode_info);
5162e2c009bSjjc
5172e2c009bSjjc static hrtime_t opt_probe_vendor(int dest_node, int nreads);
5182e2c009bSjjc
5192e2c009bSjjc
5202e2c009bSjjc /*
5212e2c009bSjjc * PLATFORM INTERFACE ROUTINES
5227c478bd9Sstevel@tonic-gate */
5237c478bd9Sstevel@tonic-gate
5247c478bd9Sstevel@tonic-gate /*
5252e2c009bSjjc * Configure memory nodes for machines with more than one node (ie NUMA)
5262e2c009bSjjc */
5272e2c009bSjjc void
plat_build_mem_nodes(struct memlist * list)5282e2c009bSjjc plat_build_mem_nodes(struct memlist *list)
5292e2c009bSjjc {
5302e2c009bSjjc pfn_t cur_start; /* start addr of subrange */
5312e2c009bSjjc pfn_t cur_end; /* end addr of subrange */
5322e2c009bSjjc pfn_t start; /* start addr of whole range */
5332e2c009bSjjc pfn_t end; /* end addr of whole range */
53418968004SKit Chow pgcnt_t endcnt; /* pages to sacrifice */
5352e2c009bSjjc
5362e2c009bSjjc /*
5372e2c009bSjjc * Boot install lists are arranged <addr, len>, ...
5382e2c009bSjjc */
5392e2c009bSjjc while (list) {
5402e2c009bSjjc int node;
5412e2c009bSjjc
54256f33205SJonathan Adams start = list->ml_address >> PAGESHIFT;
54356f33205SJonathan Adams end = (list->ml_address + list->ml_size - 1) >> PAGESHIFT;
5442e2c009bSjjc
5452e2c009bSjjc if (start > physmax) {
54656f33205SJonathan Adams list = list->ml_next;
5472e2c009bSjjc continue;
5482e2c009bSjjc }
5492e2c009bSjjc if (end > physmax)
5502e2c009bSjjc end = physmax;
5512e2c009bSjjc
5522e2c009bSjjc /*
5532e2c009bSjjc * When there is only one memnode, just add memory to memnode
5542e2c009bSjjc */
5552e2c009bSjjc if (max_mem_nodes == 1) {
5562e2c009bSjjc mem_node_add_slice(start, end);
55756f33205SJonathan Adams list = list->ml_next;
5582e2c009bSjjc continue;
5592e2c009bSjjc }
5602e2c009bSjjc
5612e2c009bSjjc /*
5622e2c009bSjjc * mem_node_add_slice() expects to get a memory range that
5632e2c009bSjjc * is within one memnode, so need to split any memory range
5642e2c009bSjjc * that spans multiple memnodes into subranges that are each
5652e2c009bSjjc * contained within one memnode when feeding them to
5662e2c009bSjjc * mem_node_add_slice()
5672e2c009bSjjc */
5682e2c009bSjjc cur_start = start;
5692e2c009bSjjc do {
5702e2c009bSjjc node = plat_pfn_to_mem_node(cur_start);
5712e2c009bSjjc
5722e2c009bSjjc /*
5732e2c009bSjjc * Panic if DRAM address map registers or SRAT say
5742e2c009bSjjc * memory in node doesn't exist or address from
5752e2c009bSjjc * boot installed memory list entry isn't in this node.
5762e2c009bSjjc * This shouldn't happen and rest of code can't deal
5772e2c009bSjjc * with this if it does.
5782e2c009bSjjc */
579a3114836SGerry Liu if (node < 0 || node >= lgrp_plat_max_mem_node ||
580a3114836SGerry Liu !lgrp_plat_memnode_info[node].exists ||
581a3114836SGerry Liu cur_start < lgrp_plat_memnode_info[node].start ||
582a3114836SGerry Liu cur_start > lgrp_plat_memnode_info[node].end) {
5832e2c009bSjjc cmn_err(CE_PANIC, "Don't know which memnode "
5842e2c009bSjjc "to add installed memory address 0x%lx\n",
5852e2c009bSjjc cur_start);
5862e2c009bSjjc }
5872e2c009bSjjc
5882e2c009bSjjc /*
5892e2c009bSjjc * End of current subrange should not span memnodes
5902e2c009bSjjc */
5912e2c009bSjjc cur_end = end;
59218968004SKit Chow endcnt = 0;
593a3114836SGerry Liu if (lgrp_plat_memnode_info[node].exists &&
594a3114836SGerry Liu cur_end > lgrp_plat_memnode_info[node].end) {
595a3114836SGerry Liu cur_end = lgrp_plat_memnode_info[node].end;
59618968004SKit Chow if (mnode_xwa > 1) {
59718968004SKit Chow /*
59818968004SKit Chow * sacrifice the last page in each
59918968004SKit Chow * node to eliminate large pages
60018968004SKit Chow * that span more than 1 memory node.
60118968004SKit Chow */
60218968004SKit Chow endcnt = 1;
603bcee7a0bSKit Chow physinstalled--;
60418968004SKit Chow }
60518968004SKit Chow }
6062e2c009bSjjc
60718968004SKit Chow mem_node_add_slice(cur_start, cur_end - endcnt);
6082e2c009bSjjc
6092e2c009bSjjc /*
6102e2c009bSjjc * Next subrange starts after end of current one
6112e2c009bSjjc */
6122e2c009bSjjc cur_start = cur_end + 1;
6132e2c009bSjjc } while (cur_end < end);
6142e2c009bSjjc
61556f33205SJonathan Adams list = list->ml_next;
6162e2c009bSjjc }
6172e2c009bSjjc mem_node_physalign = 0;
6182e2c009bSjjc mem_node_pfn_shift = 0;
6192e2c009bSjjc }
6202e2c009bSjjc
6212e2c009bSjjc
6222e2c009bSjjc /*
6232e2c009bSjjc * plat_mnode_xcheck: checks the node memory ranges to see if there is a pfncnt
6242e2c009bSjjc * range of pages aligned on pfncnt that crosses an node boundary. Returns 1 if
6252e2c009bSjjc * a crossing is found and returns 0 otherwise.
6262e2c009bSjjc */
6272e2c009bSjjc int
plat_mnode_xcheck(pfn_t pfncnt)6282e2c009bSjjc plat_mnode_xcheck(pfn_t pfncnt)
6292e2c009bSjjc {
6302e2c009bSjjc int node, prevnode = -1, basenode;
6312e2c009bSjjc pfn_t ea, sa;
6322e2c009bSjjc
633a3114836SGerry Liu for (node = 0; node < lgrp_plat_max_mem_node; node++) {
6342e2c009bSjjc
635a3114836SGerry Liu if (lgrp_plat_memnode_info[node].exists == 0)
6362e2c009bSjjc continue;
6372e2c009bSjjc
6382e2c009bSjjc if (prevnode == -1) {
6392e2c009bSjjc prevnode = node;
6402e2c009bSjjc basenode = node;
6412e2c009bSjjc continue;
6422e2c009bSjjc }
6432e2c009bSjjc
6442e2c009bSjjc /* assume x86 node pfn ranges are in increasing order */
645a3114836SGerry Liu ASSERT(lgrp_plat_memnode_info[node].start >
646a3114836SGerry Liu lgrp_plat_memnode_info[prevnode].end);
6472e2c009bSjjc
6482e2c009bSjjc /*
6492e2c009bSjjc * continue if the starting address of node is not contiguous
6502e2c009bSjjc * with the previous node.
6512e2c009bSjjc */
6522e2c009bSjjc
653a3114836SGerry Liu if (lgrp_plat_memnode_info[node].start !=
654a3114836SGerry Liu (lgrp_plat_memnode_info[prevnode].end + 1)) {
6552e2c009bSjjc basenode = node;
6562e2c009bSjjc prevnode = node;
6572e2c009bSjjc continue;
6582e2c009bSjjc }
6592e2c009bSjjc
6602e2c009bSjjc /* check if the starting address of node is pfncnt aligned */
661a3114836SGerry Liu if ((lgrp_plat_memnode_info[node].start & (pfncnt - 1)) != 0) {
6622e2c009bSjjc
6632e2c009bSjjc /*
6642e2c009bSjjc * at this point, node starts at an unaligned boundary
6652e2c009bSjjc * and is contiguous with the previous node(s) to
6662e2c009bSjjc * basenode. Check if there is an aligned contiguous
6672e2c009bSjjc * range of length pfncnt that crosses this boundary.
6682e2c009bSjjc */
6692e2c009bSjjc
670a3114836SGerry Liu sa = P2ALIGN(lgrp_plat_memnode_info[prevnode].end,
6712e2c009bSjjc pfncnt);
672a3114836SGerry Liu ea = P2ROUNDUP((lgrp_plat_memnode_info[node].start),
6732e2c009bSjjc pfncnt);
6742e2c009bSjjc
6752e2c009bSjjc ASSERT((ea - sa) == pfncnt);
676a3114836SGerry Liu if (sa >= lgrp_plat_memnode_info[basenode].start &&
677a3114836SGerry Liu ea <= (lgrp_plat_memnode_info[node].end + 1)) {
67818968004SKit Chow /*
67918968004SKit Chow * large page found to cross mnode boundary.
68018968004SKit Chow * Return Failure if workaround not enabled.
68118968004SKit Chow */
68218968004SKit Chow if (mnode_xwa == 0)
6832e2c009bSjjc return (1);
68418968004SKit Chow mnode_xwa++;
68518968004SKit Chow }
6862e2c009bSjjc }
6872e2c009bSjjc prevnode = node;
6882e2c009bSjjc }
6892e2c009bSjjc return (0);
6902e2c009bSjjc }
6912e2c009bSjjc
6922e2c009bSjjc
6932e2c009bSjjc lgrp_handle_t
plat_mem_node_to_lgrphand(int mnode)6942e2c009bSjjc plat_mem_node_to_lgrphand(int mnode)
6952e2c009bSjjc {
6962e2c009bSjjc if (max_mem_nodes == 1)
6972e2c009bSjjc return (LGRP_DEFAULT_HANDLE);
6982e2c009bSjjc
699a3114836SGerry Liu ASSERT(0 <= mnode && mnode < lgrp_plat_max_mem_node);
7002e2c009bSjjc
701a3114836SGerry Liu return ((lgrp_handle_t)(lgrp_plat_memnode_info[mnode].lgrphand));
702a3114836SGerry Liu }
7032e2c009bSjjc
7042e2c009bSjjc int
plat_pfn_to_mem_node(pfn_t pfn)7052e2c009bSjjc plat_pfn_to_mem_node(pfn_t pfn)
7062e2c009bSjjc {
7072e2c009bSjjc int node;
7082e2c009bSjjc
7092e2c009bSjjc if (max_mem_nodes == 1)
7102e2c009bSjjc return (0);
7112e2c009bSjjc
712a3114836SGerry Liu for (node = 0; node < lgrp_plat_max_mem_node; node++) {
7132e2c009bSjjc /*
7142e2c009bSjjc * Skip nodes with no memory
7152e2c009bSjjc */
716a3114836SGerry Liu if (!lgrp_plat_memnode_info[node].exists)
7172e2c009bSjjc continue;
7182e2c009bSjjc
719a3114836SGerry Liu membar_consumer();
720a3114836SGerry Liu if (pfn >= lgrp_plat_memnode_info[node].start &&
721a3114836SGerry Liu pfn <= lgrp_plat_memnode_info[node].end)
7222e2c009bSjjc return (node);
7232e2c009bSjjc }
7242e2c009bSjjc
7252e2c009bSjjc /*
7262e2c009bSjjc * Didn't find memnode where this PFN lives which should never happen
7272e2c009bSjjc */
728a3114836SGerry Liu ASSERT(node < lgrp_plat_max_mem_node);
7292e2c009bSjjc return (-1);
7302e2c009bSjjc }
7312e2c009bSjjc
7322e2c009bSjjc
7332e2c009bSjjc /*
7342e2c009bSjjc * LGROUP PLATFORM INTERFACE ROUTINES
7352e2c009bSjjc */
7362e2c009bSjjc
7372e2c009bSjjc /*
7382e2c009bSjjc * Allocate additional space for an lgroup.
7392e2c009bSjjc */
7402e2c009bSjjc lgrp_t *
lgrp_plat_alloc(lgrp_id_t lgrpid)7412e2c009bSjjc lgrp_plat_alloc(lgrp_id_t lgrpid)
7422e2c009bSjjc {
7432e2c009bSjjc lgrp_t *lgrp;
7442e2c009bSjjc
7452e2c009bSjjc lgrp = &lgrp_space[nlgrps_alloc++];
7462e2c009bSjjc if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP)
7472e2c009bSjjc return (NULL);
7482e2c009bSjjc return (lgrp);
7492e2c009bSjjc }
7502e2c009bSjjc
7512e2c009bSjjc
7522e2c009bSjjc /*
7532e2c009bSjjc * Platform handling for (re)configuration changes
754a3114836SGerry Liu *
755a3114836SGerry Liu * Mechanism to protect lgrp_plat_cpu_node[] at CPU hotplug:
756a3114836SGerry Liu * 1) Use cpu_lock to synchronize between lgrp_plat_config() and
757a3114836SGerry Liu * lgrp_plat_cpu_to_hand().
758a3114836SGerry Liu * 2) Disable latency probing logic by making sure that the flag
759a3114836SGerry Liu * LGRP_PLAT_PROBE_ENABLE is cleared.
760a3114836SGerry Liu *
761a3114836SGerry Liu * Mechanism to protect lgrp_plat_memnode_info[] at memory hotplug:
762a3114836SGerry Liu * 1) Only inserts into lgrp_plat_memnode_info at memory hotplug, no removal.
763a3114836SGerry Liu * 2) Only expansion to existing entries, no shrinking.
764a3114836SGerry Liu * 3) On writing side, DR framework ensures that lgrp_plat_config() is called
765a3114836SGerry Liu * in single-threaded context. And membar_producer() is used to ensure that
766a3114836SGerry Liu * all changes are visible to other CPUs before setting the "exists" flag.
767a3114836SGerry Liu * 4) On reading side, membar_consumer() after checking the "exists" flag
768a3114836SGerry Liu * ensures that right values are retrieved.
769a3114836SGerry Liu *
770a3114836SGerry Liu * Mechanism to protect lgrp_plat_node_domain[] at hotplug:
771a3114836SGerry Liu * 1) Only insertion into lgrp_plat_node_domain at hotplug, no removal.
772a3114836SGerry Liu * 2) On writing side, it's single-threaded and membar_producer() is used to
773a3114836SGerry Liu * ensure all changes are visible to other CPUs before setting the "exists"
774a3114836SGerry Liu * flag.
775a3114836SGerry Liu * 3) On reading side, membar_consumer() after checking the "exists" flag
776a3114836SGerry Liu * ensures that right values are retrieved.
7772e2c009bSjjc */
7782e2c009bSjjc void
lgrp_plat_config(lgrp_config_flag_t flag,uintptr_t arg)7792e2c009bSjjc lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg)
7802e2c009bSjjc {
781a3114836SGerry Liu #ifdef __xpv
782a3114836SGerry Liu _NOTE(ARGUNUSED(flag, arg));
783a3114836SGerry Liu #else
784a3114836SGerry Liu int rc, node;
785a3114836SGerry Liu cpu_t *cp;
786a3114836SGerry Liu void *hdl = NULL;
787a3114836SGerry Liu uchar_t *sliptr = NULL;
788a3114836SGerry Liu uint32_t domain, apicid, slicnt = 0;
789a3114836SGerry Liu update_membounds_t *mp;
790a3114836SGerry Liu
791a3114836SGerry Liu extern int acpidev_dr_get_cpu_numa_info(cpu_t *, void **, uint32_t *,
792a3114836SGerry Liu uint32_t *, uint32_t *, uchar_t **);
793a3114836SGerry Liu extern void acpidev_dr_free_cpu_numa_info(void *);
794a3114836SGerry Liu
795a3114836SGerry Liu /*
796a3114836SGerry Liu * This interface is used to support CPU/memory DR operations.
797a3114836SGerry Liu * Don't bother here if it's still during boot or only one lgrp node
798a3114836SGerry Liu * is supported.
799a3114836SGerry Liu */
800a3114836SGerry Liu if (!lgrp_topo_initialized || lgrp_plat_node_cnt == 1)
801a3114836SGerry Liu return;
802a3114836SGerry Liu
803a3114836SGerry Liu switch (flag) {
804a3114836SGerry Liu case LGRP_CONFIG_CPU_ADD:
805a3114836SGerry Liu cp = (cpu_t *)arg;
806a3114836SGerry Liu ASSERT(cp != NULL);
807a3114836SGerry Liu ASSERT(MUTEX_HELD(&cpu_lock));
808a3114836SGerry Liu
809a3114836SGerry Liu /* Check whether CPU already exists. */
810a3114836SGerry Liu ASSERT(!lgrp_plat_cpu_node[cp->cpu_id].exists);
811a3114836SGerry Liu if (lgrp_plat_cpu_node[cp->cpu_id].exists) {
812a3114836SGerry Liu cmn_err(CE_WARN,
813a3114836SGerry Liu "!lgrp: CPU(%d) already exists in cpu_node map.",
814a3114836SGerry Liu cp->cpu_id);
815a3114836SGerry Liu break;
816a3114836SGerry Liu }
817a3114836SGerry Liu
818a3114836SGerry Liu /* Query CPU lgrp information. */
819a3114836SGerry Liu rc = acpidev_dr_get_cpu_numa_info(cp, &hdl, &apicid, &domain,
820a3114836SGerry Liu &slicnt, &sliptr);
821a3114836SGerry Liu ASSERT(rc == 0);
822a3114836SGerry Liu if (rc != 0) {
823a3114836SGerry Liu cmn_err(CE_WARN,
824a3114836SGerry Liu "!lgrp: failed to query lgrp info for CPU(%d).",
825a3114836SGerry Liu cp->cpu_id);
826a3114836SGerry Liu break;
827a3114836SGerry Liu }
828a3114836SGerry Liu
829a3114836SGerry Liu /* Update node to proximity domain mapping */
830a3114836SGerry Liu node = lgrp_plat_domain_to_node(lgrp_plat_node_domain,
831a3114836SGerry Liu lgrp_plat_node_cnt, domain);
832a3114836SGerry Liu if (node == -1) {
833a3114836SGerry Liu node = lgrp_plat_node_domain_update(
834a3114836SGerry Liu lgrp_plat_node_domain, lgrp_plat_node_cnt, domain);
835a3114836SGerry Liu ASSERT(node != -1);
836a3114836SGerry Liu if (node == -1) {
837a3114836SGerry Liu acpidev_dr_free_cpu_numa_info(hdl);
838a3114836SGerry Liu cmn_err(CE_WARN, "!lgrp: failed to update "
839a3114836SGerry Liu "node_domain map for domain(%u).", domain);
840a3114836SGerry Liu break;
841a3114836SGerry Liu }
842a3114836SGerry Liu }
843a3114836SGerry Liu
844a3114836SGerry Liu /* Update latency information among lgrps. */
845a3114836SGerry Liu if (slicnt != 0 && sliptr != NULL) {
846a3114836SGerry Liu if (lgrp_plat_process_sli(domain, sliptr, slicnt,
847a3114836SGerry Liu lgrp_plat_node_domain, lgrp_plat_node_cnt,
848a3114836SGerry Liu &lgrp_plat_lat_stats) != 0) {
849a3114836SGerry Liu cmn_err(CE_WARN, "!lgrp: failed to update "
850a3114836SGerry Liu "latency information for domain (%u).",
851a3114836SGerry Liu domain);
852a3114836SGerry Liu }
853a3114836SGerry Liu }
854a3114836SGerry Liu
855a3114836SGerry Liu /* Update CPU to node mapping. */
856a3114836SGerry Liu lgrp_plat_cpu_node[cp->cpu_id].prox_domain = domain;
857a3114836SGerry Liu lgrp_plat_cpu_node[cp->cpu_id].node = node;
858a3114836SGerry Liu lgrp_plat_cpu_node[cp->cpu_id].apicid = apicid;
859a3114836SGerry Liu lgrp_plat_cpu_node[cp->cpu_id].exists = 1;
860a3114836SGerry Liu lgrp_plat_apic_ncpus++;
861a3114836SGerry Liu
862a3114836SGerry Liu acpidev_dr_free_cpu_numa_info(hdl);
863a3114836SGerry Liu break;
864a3114836SGerry Liu
865a3114836SGerry Liu case LGRP_CONFIG_CPU_DEL:
866a3114836SGerry Liu cp = (cpu_t *)arg;
867a3114836SGerry Liu ASSERT(cp != NULL);
868a3114836SGerry Liu ASSERT(MUTEX_HELD(&cpu_lock));
869a3114836SGerry Liu
870a3114836SGerry Liu /* Check whether CPU exists. */
871a3114836SGerry Liu ASSERT(lgrp_plat_cpu_node[cp->cpu_id].exists);
872a3114836SGerry Liu if (!lgrp_plat_cpu_node[cp->cpu_id].exists) {
873a3114836SGerry Liu cmn_err(CE_WARN,
874a3114836SGerry Liu "!lgrp: CPU(%d) doesn't exist in cpu_node map.",
875a3114836SGerry Liu cp->cpu_id);
876a3114836SGerry Liu break;
877a3114836SGerry Liu }
878a3114836SGerry Liu
879a3114836SGerry Liu /* Query CPU lgrp information. */
880a3114836SGerry Liu rc = acpidev_dr_get_cpu_numa_info(cp, &hdl, &apicid, &domain,
881a3114836SGerry Liu NULL, NULL);
882a3114836SGerry Liu ASSERT(rc == 0);
883a3114836SGerry Liu if (rc != 0) {
884a3114836SGerry Liu cmn_err(CE_WARN,
885a3114836SGerry Liu "!lgrp: failed to query lgrp info for CPU(%d).",
886a3114836SGerry Liu cp->cpu_id);
887a3114836SGerry Liu break;
888a3114836SGerry Liu }
889a3114836SGerry Liu
890a3114836SGerry Liu /* Update map. */
891a3114836SGerry Liu ASSERT(lgrp_plat_cpu_node[cp->cpu_id].apicid == apicid);
892a3114836SGerry Liu ASSERT(lgrp_plat_cpu_node[cp->cpu_id].prox_domain == domain);
893a3114836SGerry Liu lgrp_plat_cpu_node[cp->cpu_id].exists = 0;
894a3114836SGerry Liu lgrp_plat_cpu_node[cp->cpu_id].apicid = UINT32_MAX;
895a3114836SGerry Liu lgrp_plat_cpu_node[cp->cpu_id].prox_domain = UINT32_MAX;
896a3114836SGerry Liu lgrp_plat_cpu_node[cp->cpu_id].node = UINT_MAX;
897a3114836SGerry Liu lgrp_plat_apic_ncpus--;
898a3114836SGerry Liu
899a3114836SGerry Liu acpidev_dr_free_cpu_numa_info(hdl);
900a3114836SGerry Liu break;
901a3114836SGerry Liu
902a3114836SGerry Liu case LGRP_CONFIG_MEM_ADD:
903a3114836SGerry Liu mp = (update_membounds_t *)arg;
904a3114836SGerry Liu ASSERT(mp != NULL);
905a3114836SGerry Liu
906a3114836SGerry Liu /* Update latency information among lgrps. */
907a3114836SGerry Liu if (mp->u_sli_cnt != 0 && mp->u_sli_ptr != NULL) {
908a3114836SGerry Liu if (lgrp_plat_process_sli(mp->u_domain,
909a3114836SGerry Liu mp->u_sli_ptr, mp->u_sli_cnt,
910a3114836SGerry Liu lgrp_plat_node_domain, lgrp_plat_node_cnt,
911a3114836SGerry Liu &lgrp_plat_lat_stats) != 0) {
912a3114836SGerry Liu cmn_err(CE_WARN, "!lgrp: failed to update "
913a3114836SGerry Liu "latency information for domain (%u).",
914a3114836SGerry Liu domain);
915a3114836SGerry Liu }
916a3114836SGerry Liu }
917a3114836SGerry Liu
918a3114836SGerry Liu if (lgrp_plat_memnode_info_update(lgrp_plat_node_domain,
919a3114836SGerry Liu lgrp_plat_node_cnt, lgrp_plat_memnode_info, max_mem_nodes,
920a3114836SGerry Liu mp->u_base, mp->u_base + mp->u_length,
921a3114836SGerry Liu mp->u_domain, mp->u_device_id) < 0) {
922a3114836SGerry Liu cmn_err(CE_WARN,
923a3114836SGerry Liu "!lgrp: failed to update latency information for "
924a3114836SGerry Liu "memory (0x%" PRIx64 " - 0x%" PRIx64 ").",
925a3114836SGerry Liu mp->u_base, mp->u_base + mp->u_length);
926a3114836SGerry Liu }
927a3114836SGerry Liu break;
928a3114836SGerry Liu
929a3114836SGerry Liu default:
930a3114836SGerry Liu break;
931a3114836SGerry Liu }
932a3114836SGerry Liu #endif /* __xpv */
9332e2c009bSjjc }
9342e2c009bSjjc
9352e2c009bSjjc
9362e2c009bSjjc /*
9372e2c009bSjjc * Return the platform handle for the lgroup containing the given CPU
9382e2c009bSjjc */
9392e2c009bSjjc lgrp_handle_t
lgrp_plat_cpu_to_hand(processorid_t id)9402e2c009bSjjc lgrp_plat_cpu_to_hand(processorid_t id)
9412e2c009bSjjc {
9422e2c009bSjjc lgrp_handle_t hand;
9432e2c009bSjjc
944a3114836SGerry Liu ASSERT(!lgrp_initialized || MUTEX_HELD(&cpu_lock));
945a3114836SGerry Liu
9462e2c009bSjjc if (lgrp_plat_node_cnt == 1)
9472e2c009bSjjc return (LGRP_DEFAULT_HANDLE);
9482e2c009bSjjc
9492e2c009bSjjc hand = (lgrp_handle_t)lgrp_plat_cpu_to_node(cpu[id],
950d5d7cf4eSJonathan Chew lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries);
9512e2c009bSjjc
9522e2c009bSjjc ASSERT(hand != (lgrp_handle_t)-1);
9532e2c009bSjjc if (hand == (lgrp_handle_t)-1)
9542e2c009bSjjc return (LGRP_NULL_HANDLE);
9552e2c009bSjjc
9562e2c009bSjjc return (hand);
9572e2c009bSjjc }
9582e2c009bSjjc
9592e2c009bSjjc
9602e2c009bSjjc /*
9612e2c009bSjjc * Platform-specific initialization of lgroups
9622e2c009bSjjc */
9632e2c009bSjjc void
lgrp_plat_init(lgrp_init_stages_t stage)964d5d7cf4eSJonathan Chew lgrp_plat_init(lgrp_init_stages_t stage)
9652e2c009bSjjc {
9662e2c009bSjjc #if defined(__xpv)
967d5d7cf4eSJonathan Chew #else /* __xpv */
968d5d7cf4eSJonathan Chew u_longlong_t value;
969d5d7cf4eSJonathan Chew #endif /* __xpv */
970d5d7cf4eSJonathan Chew
971d5d7cf4eSJonathan Chew switch (stage) {
972d5d7cf4eSJonathan Chew case LGRP_INIT_STAGE1:
973d5d7cf4eSJonathan Chew #if defined(__xpv)
9742e2c009bSjjc /*
9752e2c009bSjjc * XXPV For now, the hypervisor treats all memory equally.
9762e2c009bSjjc */
9772e2c009bSjjc lgrp_plat_node_cnt = max_mem_nodes = 1;
9782e2c009bSjjc #else /* __xpv */
979a3114836SGerry Liu
9802baa66a0SJonathan Chew /*
9812baa66a0SJonathan Chew * Get boot property for lgroup topology height limit
9822baa66a0SJonathan Chew */
9832baa66a0SJonathan Chew if (bootprop_getval(BP_LGRP_TOPO_LEVELS, &value) == 0)
9842baa66a0SJonathan Chew (void) lgrp_topo_ht_limit_set((int)value);
9852baa66a0SJonathan Chew
9862baa66a0SJonathan Chew /*
9872baa66a0SJonathan Chew * Get boot property for enabling/disabling SRAT
9882baa66a0SJonathan Chew */
9892baa66a0SJonathan Chew if (bootprop_getval(BP_LGRP_SRAT_ENABLE, &value) == 0)
9902baa66a0SJonathan Chew lgrp_plat_srat_enable = (int)value;
9912baa66a0SJonathan Chew
9922baa66a0SJonathan Chew /*
9932baa66a0SJonathan Chew * Get boot property for enabling/disabling SLIT
9942baa66a0SJonathan Chew */
9952baa66a0SJonathan Chew if (bootprop_getval(BP_LGRP_SLIT_ENABLE, &value) == 0)
9962baa66a0SJonathan Chew lgrp_plat_slit_enable = (int)value;
9972e2c009bSjjc
9982e2c009bSjjc /*
999a3114836SGerry Liu * Get boot property for enabling/disabling MSCT
1000a3114836SGerry Liu */
1001a3114836SGerry Liu if (bootprop_getval(BP_LGRP_MSCT_ENABLE, &value) == 0)
1002a3114836SGerry Liu lgrp_plat_msct_enable = (int)value;
1003a3114836SGerry Liu
1004a3114836SGerry Liu /*
10052e2c009bSjjc * Initialize as a UMA machine
10062e2c009bSjjc */
10072e2c009bSjjc if (lgrp_topo_ht_limit() == 1) {
10082e2c009bSjjc lgrp_plat_node_cnt = max_mem_nodes = 1;
1009a3114836SGerry Liu lgrp_plat_max_mem_node = 1;
10102e2c009bSjjc return;
10112e2c009bSjjc }
10122e2c009bSjjc
1013d5d7cf4eSJonathan Chew lgrp_plat_get_numa_config();
1014a3114836SGerry Liu
1015a3114836SGerry Liu /*
1016a3114836SGerry Liu * Each lgrp node needs MAX_MEM_NODES_PER_LGROUP memnodes
1017a3114836SGerry Liu * to support memory DR operations if memory DR is enabled.
1018a3114836SGerry Liu */
1019a3114836SGerry Liu lgrp_plat_max_mem_node = lgrp_plat_node_cnt;
1020a3114836SGerry Liu if (plat_dr_support_memory() && lgrp_plat_node_cnt != 1) {
1021a3114836SGerry Liu max_mem_nodes = MAX_MEM_NODES_PER_LGROUP *
1022a3114836SGerry Liu lgrp_plat_node_cnt;
1023a3114836SGerry Liu ASSERT(max_mem_nodes <= MAX_MEM_NODES);
1024a3114836SGerry Liu }
10252e2c009bSjjc #endif /* __xpv */
1026d5d7cf4eSJonathan Chew break;
1027d5d7cf4eSJonathan Chew
1028d5d7cf4eSJonathan Chew case LGRP_INIT_STAGE3:
1029d5d7cf4eSJonathan Chew lgrp_plat_probe();
1030d5d7cf4eSJonathan Chew lgrp_plat_release_bootstrap();
1031d5d7cf4eSJonathan Chew break;
1032d5d7cf4eSJonathan Chew
1033d5d7cf4eSJonathan Chew case LGRP_INIT_STAGE4:
1034d5d7cf4eSJonathan Chew lgrp_plat_main_init();
1035d5d7cf4eSJonathan Chew break;
1036d5d7cf4eSJonathan Chew
1037d5d7cf4eSJonathan Chew default:
1038d5d7cf4eSJonathan Chew break;
1039d5d7cf4eSJonathan Chew }
10402e2c009bSjjc }
10412e2c009bSjjc
10422e2c009bSjjc
10432e2c009bSjjc /*
10442e2c009bSjjc * Return latency between "from" and "to" lgroups
10452e2c009bSjjc *
10462e2c009bSjjc * This latency number can only be used for relative comparison
10472e2c009bSjjc * between lgroups on the running system, cannot be used across platforms,
10482e2c009bSjjc * and may not reflect the actual latency. It is platform and implementation
10492e2c009bSjjc * specific, so platform gets to decide its value. It would be nice if the
10502e2c009bSjjc * number was at least proportional to make comparisons more meaningful though.
10512e2c009bSjjc */
10522e2c009bSjjc int
lgrp_plat_latency(lgrp_handle_t from,lgrp_handle_t to)10532e2c009bSjjc lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to)
10542e2c009bSjjc {
10552e2c009bSjjc lgrp_handle_t src, dest;
10562e2c009bSjjc int node;
10572e2c009bSjjc
10582e2c009bSjjc if (max_mem_nodes == 1)
10592e2c009bSjjc return (0);
10602e2c009bSjjc
10612e2c009bSjjc /*
10622e2c009bSjjc * Return max latency for root lgroup
10632e2c009bSjjc */
10642e2c009bSjjc if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)
10652e2c009bSjjc return (lgrp_plat_lat_stats.latency_max);
10662e2c009bSjjc
10672e2c009bSjjc src = from;
10682e2c009bSjjc dest = to;
10692e2c009bSjjc
10702e2c009bSjjc /*
10712e2c009bSjjc * Return 0 for nodes (lgroup platform handles) out of range
10722e2c009bSjjc */
10732e2c009bSjjc if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES)
10742e2c009bSjjc return (0);
10752e2c009bSjjc
10762e2c009bSjjc /*
10772e2c009bSjjc * Probe from current CPU if its lgroup latencies haven't been set yet
1078a3114836SGerry Liu * and we are trying to get latency from current CPU to some node.
1079a3114836SGerry Liu * Avoid probing if CPU/memory DR is enabled.
10802e2c009bSjjc */
1081a3114836SGerry Liu if (lgrp_plat_lat_stats.latencies[src][src] == 0) {
1082a3114836SGerry Liu /*
1083a3114836SGerry Liu * Latency information should be updated by lgrp_plat_config()
1084a3114836SGerry Liu * for DR operations. Something is wrong if reaches here.
1085a3114836SGerry Liu * For safety, flatten lgrp topology to two levels.
1086a3114836SGerry Liu */
1087a3114836SGerry Liu if (plat_dr_support_cpu() || plat_dr_support_memory()) {
1088a3114836SGerry Liu ASSERT(lgrp_plat_lat_stats.latencies[src][src]);
1089a3114836SGerry Liu cmn_err(CE_WARN,
1090a3114836SGerry Liu "lgrp: failed to get latency information, "
1091a3114836SGerry Liu "fall back to two-level topology.");
1092a3114836SGerry Liu lgrp_plat_2level_setup(&lgrp_plat_lat_stats);
1093a3114836SGerry Liu } else {
1094d5d7cf4eSJonathan Chew node = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node,
1095d5d7cf4eSJonathan Chew lgrp_plat_cpu_node_nentries);
10962e2c009bSjjc ASSERT(node >= 0 && node < lgrp_plat_node_cnt);
1097a3114836SGerry Liu if (node == src)
10982e2c009bSjjc lgrp_plat_probe();
1099a3114836SGerry Liu }
1100a3114836SGerry Liu }
11012e2c009bSjjc
11022e2c009bSjjc return (lgrp_plat_lat_stats.latencies[src][dest]);
11032e2c009bSjjc }
11042e2c009bSjjc
11052e2c009bSjjc
11062e2c009bSjjc /*
11072e2c009bSjjc * Return the maximum number of lgrps supported by the platform.
11082e2c009bSjjc * Before lgrp topology is known it returns an estimate based on the number of
1109a3114836SGerry Liu * nodes. Once topology is known it returns:
1110a3114836SGerry Liu * 1) the actual maximim number of lgrps created if CPU/memory DR operations
1111a3114836SGerry Liu * are not suppported.
1112a3114836SGerry Liu * 2) the maximum possible number of lgrps if CPU/memory DR operations are
1113a3114836SGerry Liu * supported.
11142e2c009bSjjc */
11152e2c009bSjjc int
lgrp_plat_max_lgrps(void)11162e2c009bSjjc lgrp_plat_max_lgrps(void)
11172e2c009bSjjc {
1118a3114836SGerry Liu if (!lgrp_topo_initialized || plat_dr_support_cpu() ||
1119a3114836SGerry Liu plat_dr_support_memory()) {
1120a3114836SGerry Liu return (lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1);
1121a3114836SGerry Liu } else {
1122a3114836SGerry Liu return (lgrp_alloc_max + 1);
1123a3114836SGerry Liu }
11242e2c009bSjjc }
11252e2c009bSjjc
11262e2c009bSjjc
11272e2c009bSjjc /*
1128a3114836SGerry Liu * Count number of memory pages (_t) based on mnode id (_n) and query type (_t).
1129a3114836SGerry Liu */
1130a3114836SGerry Liu #define _LGRP_PLAT_MEM_SIZE(_n, _q, _t) \
1131a3114836SGerry Liu if (mem_node_config[_n].exists) { \
1132a3114836SGerry Liu switch (_q) { \
1133a3114836SGerry Liu case LGRP_MEM_SIZE_FREE: \
1134a3114836SGerry Liu _t += MNODE_PGCNT(_n); \
1135a3114836SGerry Liu break; \
1136a3114836SGerry Liu case LGRP_MEM_SIZE_AVAIL: \
1137a3114836SGerry Liu _t += mem_node_memlist_pages(_n, phys_avail); \
1138a3114836SGerry Liu break; \
1139a3114836SGerry Liu case LGRP_MEM_SIZE_INSTALL: \
1140a3114836SGerry Liu _t += mem_node_memlist_pages(_n, phys_install); \
1141a3114836SGerry Liu break; \
1142a3114836SGerry Liu default: \
1143a3114836SGerry Liu break; \
1144a3114836SGerry Liu } \
1145a3114836SGerry Liu }
1146a3114836SGerry Liu
1147a3114836SGerry Liu /*
11482e2c009bSjjc * Return the number of free pages in an lgroup.
11492e2c009bSjjc *
11502e2c009bSjjc * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize
11512e2c009bSjjc * pages on freelists. For query of LGRP_MEM_SIZE_AVAIL, return the
11522e2c009bSjjc * number of allocatable base pagesize pages corresponding to the
11532e2c009bSjjc * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..)
11542e2c009bSjjc * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical
11552e2c009bSjjc * memory installed, regardless of whether or not it's usable.
11562e2c009bSjjc */
11572e2c009bSjjc pgcnt_t
lgrp_plat_mem_size(lgrp_handle_t plathand,lgrp_mem_query_t query)11582e2c009bSjjc lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query)
11592e2c009bSjjc {
11602e2c009bSjjc int mnode;
11612e2c009bSjjc pgcnt_t npgs = (pgcnt_t)0;
11622e2c009bSjjc extern struct memlist *phys_avail;
11632e2c009bSjjc extern struct memlist *phys_install;
11642e2c009bSjjc
11652e2c009bSjjc
11662e2c009bSjjc if (plathand == LGRP_DEFAULT_HANDLE)
11672e2c009bSjjc return (lgrp_plat_mem_size_default(plathand, query));
11682e2c009bSjjc
11692e2c009bSjjc if (plathand != LGRP_NULL_HANDLE) {
1170a3114836SGerry Liu /* Count memory node present at boot. */
1171a3114836SGerry Liu mnode = (int)plathand;
1172a3114836SGerry Liu ASSERT(mnode < lgrp_plat_node_cnt);
1173a3114836SGerry Liu _LGRP_PLAT_MEM_SIZE(mnode, query, npgs);
1174a3114836SGerry Liu
1175a3114836SGerry Liu /* Count possible hot-added memory nodes. */
1176a3114836SGerry Liu for (mnode = lgrp_plat_node_cnt;
1177a3114836SGerry Liu mnode < lgrp_plat_max_mem_node; mnode++) {
1178a3114836SGerry Liu if (lgrp_plat_memnode_info[mnode].lgrphand == plathand)
1179a3114836SGerry Liu _LGRP_PLAT_MEM_SIZE(mnode, query, npgs);
11802e2c009bSjjc }
11812e2c009bSjjc }
1182a3114836SGerry Liu
11832e2c009bSjjc return (npgs);
11842e2c009bSjjc }
11852e2c009bSjjc
11862e2c009bSjjc
11872e2c009bSjjc /*
11882e2c009bSjjc * Return the platform handle of the lgroup that contains the physical memory
11892e2c009bSjjc * corresponding to the given page frame number
11902e2c009bSjjc */
11912e2c009bSjjc lgrp_handle_t
lgrp_plat_pfn_to_hand(pfn_t pfn)11922e2c009bSjjc lgrp_plat_pfn_to_hand(pfn_t pfn)
11932e2c009bSjjc {
11942e2c009bSjjc int mnode;
11952e2c009bSjjc
11962e2c009bSjjc if (max_mem_nodes == 1)
11972e2c009bSjjc return (LGRP_DEFAULT_HANDLE);
11982e2c009bSjjc
11992e2c009bSjjc if (pfn > physmax)
12002e2c009bSjjc return (LGRP_NULL_HANDLE);
12012e2c009bSjjc
12022e2c009bSjjc mnode = plat_pfn_to_mem_node(pfn);
12032e2c009bSjjc if (mnode < 0)
12042e2c009bSjjc return (LGRP_NULL_HANDLE);
12052e2c009bSjjc
12062e2c009bSjjc return (MEM_NODE_2_LGRPHAND(mnode));
12072e2c009bSjjc }
12082e2c009bSjjc
12092e2c009bSjjc
12102e2c009bSjjc /*
12112e2c009bSjjc * Probe memory in each node from current CPU to determine latency topology
12122e2c009bSjjc *
12132e2c009bSjjc * The probing code will probe the vendor ID register on the Northbridge of
12142e2c009bSjjc * Opteron processors and probe memory for other processors by default.
12152e2c009bSjjc *
12162e2c009bSjjc * Since probing is inherently error prone, the code takes laps across all the
12172e2c009bSjjc * nodes probing from each node to each of the other nodes some number of
12182e2c009bSjjc * times. Furthermore, each node is probed some number of times before moving
12192e2c009bSjjc * onto the next one during each lap. The minimum latency gotten between nodes
12202e2c009bSjjc * is kept as the latency between the nodes.
12212e2c009bSjjc *
12222e2c009bSjjc * After all that, the probe times are adjusted by normalizing values that are
12232e2c009bSjjc * close to each other and local latencies are made the same. Lastly, the
12242e2c009bSjjc * latencies are verified to make sure that certain conditions are met (eg.
12252e2c009bSjjc * local < remote, latency(a, b) == latency(b, a), etc.).
12262e2c009bSjjc *
12272e2c009bSjjc * If any of the conditions aren't met, the code will export a NUMA
12282e2c009bSjjc * configuration with the local CPUs and memory given by the SRAT or PCI config
12292e2c009bSjjc * space registers and one remote memory latency since it can't tell exactly
12302e2c009bSjjc * how far each node is from each other.
12312e2c009bSjjc */
12322e2c009bSjjc void
lgrp_plat_probe(void)12332e2c009bSjjc lgrp_plat_probe(void)
12342e2c009bSjjc {
12352e2c009bSjjc int from;
12362e2c009bSjjc int i;
12372e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats;
12381ce8847aSJonathan Chew boolean_t probed;
12392e2c009bSjjc hrtime_t probe_time;
12402e2c009bSjjc int to;
12412e2c009bSjjc
12422e2c009bSjjc if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) ||
12432e2c009bSjjc max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2)
12442e2c009bSjjc return;
12452e2c009bSjjc
1246a3114836SGerry Liu /* SRAT and SLIT should be enabled if DR operations are enabled. */
1247a3114836SGerry Liu if (plat_dr_support_cpu() || plat_dr_support_memory())
1248a3114836SGerry Liu return;
1249a3114836SGerry Liu
12502e2c009bSjjc /*
12512e2c009bSjjc * Determine ID of node containing current CPU
12522e2c009bSjjc */
1253d5d7cf4eSJonathan Chew from = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node,
1254d5d7cf4eSJonathan Chew lgrp_plat_cpu_node_nentries);
12552e2c009bSjjc ASSERT(from >= 0 && from < lgrp_plat_node_cnt);
12562e2c009bSjjc if (srat_ptr && lgrp_plat_srat_enable && !lgrp_plat_srat_error)
12572e2c009bSjjc ASSERT(lgrp_plat_node_domain[from].exists);
12582e2c009bSjjc
12592e2c009bSjjc /*
12602e2c009bSjjc * Don't need to probe if got times already
12612e2c009bSjjc */
12622e2c009bSjjc lat_stats = &lgrp_plat_lat_stats;
12632e2c009bSjjc if (lat_stats->latencies[from][from] != 0)
12642e2c009bSjjc return;
12652e2c009bSjjc
12662e2c009bSjjc /*
12672e2c009bSjjc * Read vendor ID in Northbridge or read and write page(s)
12682e2c009bSjjc * in each node from current CPU and remember how long it takes,
12692e2c009bSjjc * so we can build latency topology of machine later.
12702e2c009bSjjc * This should approximate the memory latency between each node.
12712e2c009bSjjc */
12721ce8847aSJonathan Chew probed = B_FALSE;
12732e2c009bSjjc for (i = 0; i < lgrp_plat_probe_nrounds; i++) {
12742e2c009bSjjc for (to = 0; to < lgrp_plat_node_cnt; to++) {
12752e2c009bSjjc /*
12761ce8847aSJonathan Chew * Get probe time and skip over any nodes that can't be
12771ce8847aSJonathan Chew * probed yet or don't have memory
12782e2c009bSjjc */
12792e2c009bSjjc probe_time = lgrp_plat_probe_time(to,
1280d5d7cf4eSJonathan Chew lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries,
1281d5d7cf4eSJonathan Chew &lgrp_plat_probe_mem_config, &lgrp_plat_lat_stats,
1282d5d7cf4eSJonathan Chew &lgrp_plat_probe_stats);
12832e2c009bSjjc if (probe_time == 0)
12841ce8847aSJonathan Chew continue;
12851ce8847aSJonathan Chew
12861ce8847aSJonathan Chew probed = B_TRUE;
12872e2c009bSjjc
12882e2c009bSjjc /*
12892e2c009bSjjc * Keep lowest probe time as latency between nodes
12902e2c009bSjjc */
12912e2c009bSjjc if (lat_stats->latencies[from][to] == 0 ||
12922e2c009bSjjc probe_time < lat_stats->latencies[from][to])
12932e2c009bSjjc lat_stats->latencies[from][to] = probe_time;
12942e2c009bSjjc
12952e2c009bSjjc /*
12962e2c009bSjjc * Update overall minimum and maximum probe times
12972e2c009bSjjc * across all nodes
12982e2c009bSjjc */
12992e2c009bSjjc if (probe_time < lat_stats->latency_min ||
13002e2c009bSjjc lat_stats->latency_min == -1)
13012e2c009bSjjc lat_stats->latency_min = probe_time;
13022e2c009bSjjc if (probe_time > lat_stats->latency_max)
13032e2c009bSjjc lat_stats->latency_max = probe_time;
13042e2c009bSjjc }
13052e2c009bSjjc }
13062e2c009bSjjc
13072e2c009bSjjc /*
13081ce8847aSJonathan Chew * Bail out if weren't able to probe any nodes from current CPU
13091ce8847aSJonathan Chew */
13101ce8847aSJonathan Chew if (probed == B_FALSE)
13111ce8847aSJonathan Chew return;
13121ce8847aSJonathan Chew
13131ce8847aSJonathan Chew /*
13142e2c009bSjjc * - Fix up latencies such that local latencies are same,
13152e2c009bSjjc * latency(i, j) == latency(j, i), etc. (if possible)
13162e2c009bSjjc *
13172e2c009bSjjc * - Verify that latencies look ok
13182e2c009bSjjc *
13192e2c009bSjjc * - Fallback to just optimizing for local and remote if
13202e2c009bSjjc * latencies didn't look right
13212e2c009bSjjc */
1322a3114836SGerry Liu lgrp_plat_latency_adjust(lgrp_plat_memnode_info, &lgrp_plat_lat_stats,
13232e2c009bSjjc &lgrp_plat_probe_stats);
13242e2c009bSjjc lgrp_plat_probe_stats.probe_error_code =
1325a3114836SGerry Liu lgrp_plat_latency_verify(lgrp_plat_memnode_info,
13262e2c009bSjjc &lgrp_plat_lat_stats);
13272e2c009bSjjc if (lgrp_plat_probe_stats.probe_error_code)
1328a3114836SGerry Liu lgrp_plat_2level_setup(&lgrp_plat_lat_stats);
13292e2c009bSjjc }
13302e2c009bSjjc
13312e2c009bSjjc
13322e2c009bSjjc /*
13332e2c009bSjjc * Return platform handle for root lgroup
13342e2c009bSjjc */
13352e2c009bSjjc lgrp_handle_t
lgrp_plat_root_hand(void)13362e2c009bSjjc lgrp_plat_root_hand(void)
13372e2c009bSjjc {
13382e2c009bSjjc return (LGRP_DEFAULT_HANDLE);
13392e2c009bSjjc }
13402e2c009bSjjc
13412e2c009bSjjc
13422e2c009bSjjc /*
13432e2c009bSjjc * INTERNAL ROUTINES
13442e2c009bSjjc */
13452e2c009bSjjc
13462e2c009bSjjc
13472e2c009bSjjc /*
1348a3114836SGerry Liu * Update CPU to node mapping for given CPU and proximity domain.
1349a3114836SGerry Liu * Return values:
1350a3114836SGerry Liu * - zero for success
1351a3114836SGerry Liu * - positive numbers for warnings
1352a3114836SGerry Liu * - negative numbers for errors
13532e2c009bSjjc */
13542e2c009bSjjc static int
lgrp_plat_cpu_node_update(node_domain_map_t * node_domain,int node_cnt,cpu_node_map_t * cpu_node,int nentries,uint32_t apicid,uint32_t domain)1355d821f0f0Sjjc lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, int node_cnt,
1356dae2fa37Sjjc cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, uint32_t domain)
13572e2c009bSjjc {
13582e2c009bSjjc uint_t i;
13592e2c009bSjjc int node;
13602e2c009bSjjc
13612e2c009bSjjc /*
13622e2c009bSjjc * Get node number for proximity domain
13632e2c009bSjjc */
1364d821f0f0Sjjc node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain);
13652e2c009bSjjc if (node == -1) {
1366d821f0f0Sjjc node = lgrp_plat_node_domain_update(node_domain, node_cnt,
1367d821f0f0Sjjc domain);
13682e2c009bSjjc if (node == -1)
13692e2c009bSjjc return (-1);
13702e2c009bSjjc }
13712e2c009bSjjc
13722e2c009bSjjc /*
1373dae2fa37Sjjc * Search for entry with given APIC ID and fill in its node and
1374dae2fa37Sjjc * proximity domain IDs (if they haven't been set already)
13752e2c009bSjjc */
1376dae2fa37Sjjc for (i = 0; i < nentries; i++) {
13772e2c009bSjjc /*
1378dae2fa37Sjjc * Skip nonexistent entries and ones without matching APIC ID
13792e2c009bSjjc */
1380dae2fa37Sjjc if (!cpu_node[i].exists || cpu_node[i].apicid != apicid)
1381dae2fa37Sjjc continue;
1382dae2fa37Sjjc
13832e2c009bSjjc /*
1384dae2fa37Sjjc * Just return if entry completely and correctly filled in
1385dae2fa37Sjjc * already
13862e2c009bSjjc */
13872e2c009bSjjc if (cpu_node[i].prox_domain == domain &&
13882e2c009bSjjc cpu_node[i].node == node)
13892e2c009bSjjc return (1);
13902e2c009bSjjc
13912e2c009bSjjc /*
1392a3114836SGerry Liu * It's invalid to have more than one entry with the same
1393a3114836SGerry Liu * local APIC ID in SRAT table.
1394a3114836SGerry Liu */
1395a3114836SGerry Liu if (cpu_node[i].node != UINT_MAX)
1396a3114836SGerry Liu return (-2);
1397a3114836SGerry Liu
1398a3114836SGerry Liu /*
1399dae2fa37Sjjc * Fill in node and proximity domain IDs
14002e2c009bSjjc */
14012e2c009bSjjc cpu_node[i].prox_domain = domain;
14022e2c009bSjjc cpu_node[i].node = node;
1403dae2fa37Sjjc
14042e2c009bSjjc return (0);
14052e2c009bSjjc }
14062e2c009bSjjc
14072e2c009bSjjc /*
1408a3114836SGerry Liu * It's possible that an apicid doesn't exist in the cpu_node map due
1409a3114836SGerry Liu * to user limits number of CPUs powered on at boot by specifying the
1410a3114836SGerry Liu * boot_ncpus kernel option.
14112e2c009bSjjc */
1412a3114836SGerry Liu return (2);
14132e2c009bSjjc }
14142e2c009bSjjc
14152e2c009bSjjc
14162e2c009bSjjc /*
1417dae2fa37Sjjc * Get node ID for given CPU
14182e2c009bSjjc */
14192e2c009bSjjc static int
lgrp_plat_cpu_to_node(cpu_t * cp,cpu_node_map_t * cpu_node,int cpu_node_nentries)1420d5d7cf4eSJonathan Chew lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node,
1421d5d7cf4eSJonathan Chew int cpu_node_nentries)
14222e2c009bSjjc {
1423dae2fa37Sjjc processorid_t cpuid;
14242e2c009bSjjc
14252e2c009bSjjc if (cp == NULL)
14262e2c009bSjjc return (-1);
14272e2c009bSjjc
1428dae2fa37Sjjc cpuid = cp->cpu_id;
1429dae2fa37Sjjc if (cpuid < 0 || cpuid >= max_ncpus)
1430dae2fa37Sjjc return (-1);
1431dae2fa37Sjjc
14322e2c009bSjjc /*
14332e2c009bSjjc * SRAT doesn't exist, isn't enabled, or there was an error processing
14348031591dSSrihari Venkatesan * it, so return node ID for Opteron and -1 otherwise.
14352e2c009bSjjc */
14362e2c009bSjjc if (srat_ptr == NULL || !lgrp_plat_srat_enable ||
14372e2c009bSjjc lgrp_plat_srat_error) {
14382e2c009bSjjc if (is_opteron())
14398031591dSSrihari Venkatesan return (pg_plat_hw_instance_id(cp, PGHW_PROCNODE));
14402e2c009bSjjc return (-1);
14412e2c009bSjjc }
14422e2c009bSjjc
14432e2c009bSjjc /*
1444dae2fa37Sjjc * Return -1 when CPU to node ID mapping entry doesn't exist for given
1445dae2fa37Sjjc * CPU
14462e2c009bSjjc */
1447d5d7cf4eSJonathan Chew if (cpuid >= cpu_node_nentries || !cpu_node[cpuid].exists)
14482e2c009bSjjc return (-1);
1449dae2fa37Sjjc
1450dae2fa37Sjjc return (cpu_node[cpuid].node);
14512e2c009bSjjc }
14522e2c009bSjjc
14532e2c009bSjjc
14542e2c009bSjjc /*
14552e2c009bSjjc * Return node number for given proximity domain/system locality
14562e2c009bSjjc */
14572e2c009bSjjc static int
lgrp_plat_domain_to_node(node_domain_map_t * node_domain,int node_cnt,uint32_t domain)1458d821f0f0Sjjc lgrp_plat_domain_to_node(node_domain_map_t *node_domain, int node_cnt,
1459d821f0f0Sjjc uint32_t domain)
14602e2c009bSjjc {
14612e2c009bSjjc uint_t node;
14622e2c009bSjjc uint_t start;
14632e2c009bSjjc
14642e2c009bSjjc /*
14652e2c009bSjjc * Hash proximity domain ID into node to domain mapping table (array),
14662e2c009bSjjc * search for entry with matching proximity domain ID, and return index
14672e2c009bSjjc * of matching entry as node ID.
14682e2c009bSjjc */
1469d821f0f0Sjjc node = start = NODE_DOMAIN_HASH(domain, node_cnt);
14702e2c009bSjjc do {
1471a3114836SGerry Liu if (node_domain[node].exists) {
1472a3114836SGerry Liu membar_consumer();
1473a3114836SGerry Liu if (node_domain[node].prox_domain == domain)
14742e2c009bSjjc return (node);
1475a3114836SGerry Liu }
1476cf5755f2SJonathan Chew node = (node + 1) % node_cnt;
14772e2c009bSjjc } while (node != start);
14782e2c009bSjjc return (-1);
14792e2c009bSjjc }
14802e2c009bSjjc
14812e2c009bSjjc
14822e2c009bSjjc /*
1483d5d7cf4eSJonathan Chew * Get NUMA configuration of machine
1484d5d7cf4eSJonathan Chew */
1485d5d7cf4eSJonathan Chew static void
lgrp_plat_get_numa_config(void)1486d5d7cf4eSJonathan Chew lgrp_plat_get_numa_config(void)
1487d5d7cf4eSJonathan Chew {
1488d5d7cf4eSJonathan Chew uint_t probe_op;
1489d5d7cf4eSJonathan Chew
1490d5d7cf4eSJonathan Chew /*
1491d5d7cf4eSJonathan Chew * Read boot property with CPU to APIC ID mapping table/array to
1492d5d7cf4eSJonathan Chew * determine number of CPUs
1493d5d7cf4eSJonathan Chew */
1494d5d7cf4eSJonathan Chew lgrp_plat_apic_ncpus = lgrp_plat_process_cpu_apicids(NULL);
1495d5d7cf4eSJonathan Chew
1496d5d7cf4eSJonathan Chew /*
1497d5d7cf4eSJonathan Chew * Determine which CPUs and memory are local to each other and number
1498d5d7cf4eSJonathan Chew * of NUMA nodes by reading ACPI System Resource Affinity Table (SRAT)
1499d5d7cf4eSJonathan Chew */
1500d5d7cf4eSJonathan Chew if (lgrp_plat_apic_ncpus > 0) {
1501d5d7cf4eSJonathan Chew int retval;
1502d5d7cf4eSJonathan Chew
1503a3114836SGerry Liu /* Reserve enough resources if CPU DR is enabled. */
1504a3114836SGerry Liu if (plat_dr_support_cpu() && max_ncpus > lgrp_plat_apic_ncpus)
1505a3114836SGerry Liu lgrp_plat_cpu_node_nentries = max_ncpus;
1506a3114836SGerry Liu else
1507a3114836SGerry Liu lgrp_plat_cpu_node_nentries = lgrp_plat_apic_ncpus;
1508a3114836SGerry Liu
1509d5d7cf4eSJonathan Chew /*
1510d5d7cf4eSJonathan Chew * Temporarily allocate boot memory to use for CPU to node
1511d5d7cf4eSJonathan Chew * mapping since kernel memory allocator isn't alive yet
1512d5d7cf4eSJonathan Chew */
1513d5d7cf4eSJonathan Chew lgrp_plat_cpu_node = (cpu_node_map_t *)BOP_ALLOC(bootops,
1514a3114836SGerry Liu NULL, lgrp_plat_cpu_node_nentries * sizeof (cpu_node_map_t),
1515d5d7cf4eSJonathan Chew sizeof (int));
1516d5d7cf4eSJonathan Chew
1517d5d7cf4eSJonathan Chew ASSERT(lgrp_plat_cpu_node != NULL);
1518d5d7cf4eSJonathan Chew if (lgrp_plat_cpu_node) {
1519d5d7cf4eSJonathan Chew bzero(lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries *
1520d5d7cf4eSJonathan Chew sizeof (cpu_node_map_t));
1521a3114836SGerry Liu } else {
1522a3114836SGerry Liu lgrp_plat_cpu_node_nentries = 0;
1523d5d7cf4eSJonathan Chew }
1524d5d7cf4eSJonathan Chew
1525d5d7cf4eSJonathan Chew /*
1526d5d7cf4eSJonathan Chew * Fill in CPU to node ID mapping table with APIC ID for each
1527d5d7cf4eSJonathan Chew * CPU
1528d5d7cf4eSJonathan Chew */
1529d5d7cf4eSJonathan Chew (void) lgrp_plat_process_cpu_apicids(lgrp_plat_cpu_node);
1530d5d7cf4eSJonathan Chew
1531a3114836SGerry Liu retval = lgrp_plat_process_srat(srat_ptr, msct_ptr,
1532d5d7cf4eSJonathan Chew &lgrp_plat_prox_domain_min,
1533d5d7cf4eSJonathan Chew lgrp_plat_node_domain, lgrp_plat_cpu_node,
1534a3114836SGerry Liu lgrp_plat_apic_ncpus, lgrp_plat_memnode_info);
1535d5d7cf4eSJonathan Chew if (retval <= 0) {
1536d5d7cf4eSJonathan Chew lgrp_plat_srat_error = retval;
1537d5d7cf4eSJonathan Chew lgrp_plat_node_cnt = 1;
1538d5d7cf4eSJonathan Chew } else {
1539d5d7cf4eSJonathan Chew lgrp_plat_srat_error = 0;
1540d5d7cf4eSJonathan Chew lgrp_plat_node_cnt = retval;
1541d5d7cf4eSJonathan Chew }
1542d5d7cf4eSJonathan Chew }
1543d5d7cf4eSJonathan Chew
1544d5d7cf4eSJonathan Chew /*
1545d5d7cf4eSJonathan Chew * Try to use PCI config space registers on Opteron if there's an error
1546d5d7cf4eSJonathan Chew * processing CPU to APIC ID mapping or SRAT
1547d5d7cf4eSJonathan Chew */
1548d5d7cf4eSJonathan Chew if ((lgrp_plat_apic_ncpus <= 0 || lgrp_plat_srat_error != 0) &&
1549d5d7cf4eSJonathan Chew is_opteron())
1550d5d7cf4eSJonathan Chew opt_get_numa_config(&lgrp_plat_node_cnt, &lgrp_plat_mem_intrlv,
1551a3114836SGerry Liu lgrp_plat_memnode_info);
1552d5d7cf4eSJonathan Chew
1553d5d7cf4eSJonathan Chew /*
1554d5d7cf4eSJonathan Chew * Don't bother to setup system for multiple lgroups and only use one
1555d5d7cf4eSJonathan Chew * memory node when memory is interleaved between any nodes or there is
1556d5d7cf4eSJonathan Chew * only one NUMA node
1557d5d7cf4eSJonathan Chew */
1558d5d7cf4eSJonathan Chew if (lgrp_plat_mem_intrlv || lgrp_plat_node_cnt == 1) {
1559d5d7cf4eSJonathan Chew lgrp_plat_node_cnt = max_mem_nodes = 1;
1560d5d7cf4eSJonathan Chew (void) lgrp_topo_ht_limit_set(1);
1561d5d7cf4eSJonathan Chew return;
1562d5d7cf4eSJonathan Chew }
1563d5d7cf4eSJonathan Chew
1564d5d7cf4eSJonathan Chew /*
1565d5d7cf4eSJonathan Chew * Leaf lgroups on x86/x64 architectures contain one physical
1566d5d7cf4eSJonathan Chew * processor chip. Tune lgrp_expand_proc_thresh and
1567d5d7cf4eSJonathan Chew * lgrp_expand_proc_diff so that lgrp_choose() will spread
1568d5d7cf4eSJonathan Chew * things out aggressively.
1569d5d7cf4eSJonathan Chew */
1570d5d7cf4eSJonathan Chew lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2;
1571d5d7cf4eSJonathan Chew lgrp_expand_proc_diff = 0;
1572d5d7cf4eSJonathan Chew
1573d5d7cf4eSJonathan Chew /*
1574d5d7cf4eSJonathan Chew * There should be one memnode (physical page free list(s)) for
1575a3114836SGerry Liu * each node if memory DR is disabled.
1576d5d7cf4eSJonathan Chew */
1577d5d7cf4eSJonathan Chew max_mem_nodes = lgrp_plat_node_cnt;
1578d5d7cf4eSJonathan Chew
1579d5d7cf4eSJonathan Chew /*
1580d5d7cf4eSJonathan Chew * Initialize min and max latency before reading SLIT or probing
1581d5d7cf4eSJonathan Chew */
1582d5d7cf4eSJonathan Chew lgrp_plat_lat_stats.latency_min = -1;
1583d5d7cf4eSJonathan Chew lgrp_plat_lat_stats.latency_max = 0;
1584d5d7cf4eSJonathan Chew
1585d5d7cf4eSJonathan Chew /*
1586d5d7cf4eSJonathan Chew * Determine how far each NUMA node is from each other by
1587d5d7cf4eSJonathan Chew * reading ACPI System Locality Information Table (SLIT) if it
1588d5d7cf4eSJonathan Chew * exists
1589d5d7cf4eSJonathan Chew */
1590d5d7cf4eSJonathan Chew lgrp_plat_slit_error = lgrp_plat_process_slit(slit_ptr,
1591a3114836SGerry Liu lgrp_plat_node_domain, lgrp_plat_node_cnt, lgrp_plat_memnode_info,
1592d5d7cf4eSJonathan Chew &lgrp_plat_lat_stats);
1593a3114836SGerry Liu
1594a3114836SGerry Liu /*
1595a3114836SGerry Liu * Disable support of CPU/memory DR operations if multiple locality
1596a3114836SGerry Liu * domains exist in system and either of following is true.
1597a3114836SGerry Liu * 1) Failed to process SLIT table.
1598a3114836SGerry Liu * 2) Latency probing is enabled by user.
1599a3114836SGerry Liu */
1600a3114836SGerry Liu if (lgrp_plat_node_cnt > 1 &&
1601a3114836SGerry Liu (plat_dr_support_cpu() || plat_dr_support_memory())) {
1602a3114836SGerry Liu if (!lgrp_plat_slit_enable || lgrp_plat_slit_error != 0 ||
1603a3114836SGerry Liu !lgrp_plat_srat_enable || lgrp_plat_srat_error != 0 ||
1604a3114836SGerry Liu lgrp_plat_apic_ncpus <= 0) {
1605a3114836SGerry Liu cmn_err(CE_CONT,
1606a3114836SGerry Liu "?lgrp: failed to process ACPI SRAT/SLIT table, "
1607a3114836SGerry Liu "disable support of CPU/memory DR operations.");
1608a3114836SGerry Liu plat_dr_disable_cpu();
1609a3114836SGerry Liu plat_dr_disable_memory();
1610a3114836SGerry Liu } else if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) {
1611a3114836SGerry Liu cmn_err(CE_CONT,
1612a3114836SGerry Liu "?lgrp: latency probing enabled by user, "
1613a3114836SGerry Liu "disable support of CPU/memory DR operations.");
1614a3114836SGerry Liu plat_dr_disable_cpu();
1615a3114836SGerry Liu plat_dr_disable_memory();
1616a3114836SGerry Liu }
1617a3114836SGerry Liu }
1618a3114836SGerry Liu
1619a3114836SGerry Liu /* Done if succeeded to process SLIT table. */
1620d5d7cf4eSJonathan Chew if (lgrp_plat_slit_error == 0)
1621d5d7cf4eSJonathan Chew return;
1622d5d7cf4eSJonathan Chew
1623d5d7cf4eSJonathan Chew /*
1624d5d7cf4eSJonathan Chew * Probe to determine latency between NUMA nodes when SLIT
1625d5d7cf4eSJonathan Chew * doesn't exist or make sense
1626d5d7cf4eSJonathan Chew */
1627d5d7cf4eSJonathan Chew lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_ENABLE;
1628d5d7cf4eSJonathan Chew
1629d5d7cf4eSJonathan Chew /*
1630d5d7cf4eSJonathan Chew * Specify whether to probe using vendor ID register or page copy
1631d5d7cf4eSJonathan Chew * if hasn't been specified already or is overspecified
1632d5d7cf4eSJonathan Chew */
1633d5d7cf4eSJonathan Chew probe_op = lgrp_plat_probe_flags &
1634d5d7cf4eSJonathan Chew (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR);
1635d5d7cf4eSJonathan Chew
1636d5d7cf4eSJonathan Chew if (probe_op == 0 ||
1637d5d7cf4eSJonathan Chew probe_op == (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR)) {
1638d5d7cf4eSJonathan Chew lgrp_plat_probe_flags &=
1639d5d7cf4eSJonathan Chew ~(LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR);
1640d5d7cf4eSJonathan Chew if (is_opteron())
1641d5d7cf4eSJonathan Chew lgrp_plat_probe_flags |=
1642d5d7cf4eSJonathan Chew LGRP_PLAT_PROBE_VENDOR;
1643d5d7cf4eSJonathan Chew else
1644d5d7cf4eSJonathan Chew lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_PGCPY;
1645d5d7cf4eSJonathan Chew }
1646d5d7cf4eSJonathan Chew
1647d5d7cf4eSJonathan Chew /*
1648d5d7cf4eSJonathan Chew * Probing errors can mess up the lgroup topology and
1649d5d7cf4eSJonathan Chew * force us fall back to a 2 level lgroup topology.
1650d5d7cf4eSJonathan Chew * Here we bound how tall the lgroup topology can grow
1651d5d7cf4eSJonathan Chew * in hopes of avoiding any anamolies in probing from
1652d5d7cf4eSJonathan Chew * messing up the lgroup topology by limiting the
1653d5d7cf4eSJonathan Chew * accuracy of the latency topology.
1654d5d7cf4eSJonathan Chew *
1655d5d7cf4eSJonathan Chew * Assume that nodes will at least be configured in a
1656d5d7cf4eSJonathan Chew * ring, so limit height of lgroup topology to be less
1657d5d7cf4eSJonathan Chew * than number of nodes on a system with 4 or more
1658d5d7cf4eSJonathan Chew * nodes
1659d5d7cf4eSJonathan Chew */
1660d5d7cf4eSJonathan Chew if (lgrp_plat_node_cnt >= 4 && lgrp_topo_ht_limit() ==
1661d5d7cf4eSJonathan Chew lgrp_topo_ht_limit_default())
1662d5d7cf4eSJonathan Chew (void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1);
1663d5d7cf4eSJonathan Chew }
1664d5d7cf4eSJonathan Chew
1665d5d7cf4eSJonathan Chew
1666d5d7cf4eSJonathan Chew /*
16672e2c009bSjjc * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to
16682e2c009bSjjc * be considered same
16692e2c009bSjjc */
16702e2c009bSjjc #define LGRP_LAT_TOLERANCE_SHIFT 4
16712e2c009bSjjc
16722e2c009bSjjc int lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT;
16732e2c009bSjjc
16742e2c009bSjjc
16752e2c009bSjjc /*
16762e2c009bSjjc * Adjust latencies between nodes to be symmetric, normalize latencies between
16772e2c009bSjjc * any nodes that are within some tolerance to be same, and make local
16782e2c009bSjjc * latencies be same
16792e2c009bSjjc */
16802e2c009bSjjc static void
lgrp_plat_latency_adjust(memnode_phys_addr_map_t * memnode_info,lgrp_plat_latency_stats_t * lat_stats,lgrp_plat_probe_stats_t * probe_stats)1681a3114836SGerry Liu lgrp_plat_latency_adjust(memnode_phys_addr_map_t *memnode_info,
16822e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats)
16832e2c009bSjjc {
16842e2c009bSjjc int i;
16852e2c009bSjjc int j;
16862e2c009bSjjc int k;
16872e2c009bSjjc int l;
16882e2c009bSjjc u_longlong_t max;
16892e2c009bSjjc u_longlong_t min;
16902e2c009bSjjc u_longlong_t t;
16912e2c009bSjjc u_longlong_t t1;
16922e2c009bSjjc u_longlong_t t2;
16932e2c009bSjjc const lgrp_config_flag_t cflag = LGRP_CONFIG_LAT_CHANGE_ALL;
16942e2c009bSjjc int lat_corrected[MAX_NODES][MAX_NODES];
16952e2c009bSjjc
16962e2c009bSjjc /*
16972e2c009bSjjc * Nothing to do when this is an UMA machine or don't have args needed
16982e2c009bSjjc */
16992e2c009bSjjc if (max_mem_nodes == 1)
17002e2c009bSjjc return;
17012e2c009bSjjc
1702a3114836SGerry Liu ASSERT(memnode_info != NULL && lat_stats != NULL &&
17032e2c009bSjjc probe_stats != NULL);
17042e2c009bSjjc
17052e2c009bSjjc /*
17062e2c009bSjjc * Make sure that latencies are symmetric between any two nodes
17072e2c009bSjjc * (ie. latency(node0, node1) == latency(node1, node0))
17082e2c009bSjjc */
17092e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) {
1710a3114836SGerry Liu if (!memnode_info[i].exists)
17112e2c009bSjjc continue;
17122e2c009bSjjc
17132e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) {
1714a3114836SGerry Liu if (!memnode_info[j].exists)
17152e2c009bSjjc continue;
17162e2c009bSjjc
17172e2c009bSjjc t1 = lat_stats->latencies[i][j];
17182e2c009bSjjc t2 = lat_stats->latencies[j][i];
17192e2c009bSjjc
17202e2c009bSjjc if (t1 == 0 || t2 == 0 || t1 == t2)
17212e2c009bSjjc continue;
17222e2c009bSjjc
17232e2c009bSjjc /*
17242e2c009bSjjc * Latencies should be same
17252e2c009bSjjc * - Use minimum of two latencies which should be same
17262e2c009bSjjc * - Track suspect probe times not within tolerance of
17272e2c009bSjjc * min value
17282e2c009bSjjc * - Remember how much values are corrected by
17292e2c009bSjjc */
17302e2c009bSjjc if (t1 > t2) {
17312e2c009bSjjc t = t2;
17322e2c009bSjjc probe_stats->probe_errors[i][j] += t1 - t2;
17332e2c009bSjjc if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) {
17342e2c009bSjjc probe_stats->probe_suspect[i][j]++;
17352e2c009bSjjc probe_stats->probe_suspect[j][i]++;
17362e2c009bSjjc }
17372e2c009bSjjc } else if (t2 > t1) {
17382e2c009bSjjc t = t1;
17392e2c009bSjjc probe_stats->probe_errors[j][i] += t2 - t1;
17402e2c009bSjjc if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) {
17412e2c009bSjjc probe_stats->probe_suspect[i][j]++;
17422e2c009bSjjc probe_stats->probe_suspect[j][i]++;
17432e2c009bSjjc }
17442e2c009bSjjc }
17452e2c009bSjjc
17462e2c009bSjjc lat_stats->latencies[i][j] =
17472e2c009bSjjc lat_stats->latencies[j][i] = t;
17482e2c009bSjjc lgrp_config(cflag, t1, t);
17492e2c009bSjjc lgrp_config(cflag, t2, t);
17502e2c009bSjjc }
17512e2c009bSjjc }
17522e2c009bSjjc
17532e2c009bSjjc /*
17542e2c009bSjjc * Keep track of which latencies get corrected
17552e2c009bSjjc */
17562e2c009bSjjc for (i = 0; i < MAX_NODES; i++)
17572e2c009bSjjc for (j = 0; j < MAX_NODES; j++)
17582e2c009bSjjc lat_corrected[i][j] = 0;
17592e2c009bSjjc
17602e2c009bSjjc /*
17612e2c009bSjjc * For every two nodes, see whether there is another pair of nodes which
17622e2c009bSjjc * are about the same distance apart and make the latencies be the same
17632e2c009bSjjc * if they are close enough together
17642e2c009bSjjc */
17652e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) {
17662e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) {
1767a3114836SGerry Liu if (!memnode_info[j].exists)
17682e2c009bSjjc continue;
17692e2c009bSjjc /*
17702e2c009bSjjc * Pick one pair of nodes (i, j)
17712e2c009bSjjc * and get latency between them
17722e2c009bSjjc */
17732e2c009bSjjc t1 = lat_stats->latencies[i][j];
17742e2c009bSjjc
17752e2c009bSjjc /*
17762e2c009bSjjc * Skip this pair of nodes if there isn't a latency
17772e2c009bSjjc * for it yet
17782e2c009bSjjc */
17792e2c009bSjjc if (t1 == 0)
17802e2c009bSjjc continue;
17812e2c009bSjjc
17822e2c009bSjjc for (k = 0; k < lgrp_plat_node_cnt; k++) {
17832e2c009bSjjc for (l = 0; l < lgrp_plat_node_cnt; l++) {
1784a3114836SGerry Liu if (!memnode_info[l].exists)
17852e2c009bSjjc continue;
17862e2c009bSjjc /*
17872e2c009bSjjc * Pick another pair of nodes (k, l)
17882e2c009bSjjc * not same as (i, j) and get latency
17892e2c009bSjjc * between them
17902e2c009bSjjc */
17912e2c009bSjjc if (k == i && l == j)
17922e2c009bSjjc continue;
17932e2c009bSjjc
17942e2c009bSjjc t2 = lat_stats->latencies[k][l];
17952e2c009bSjjc
17962e2c009bSjjc /*
17972e2c009bSjjc * Skip this pair of nodes if there
17982e2c009bSjjc * isn't a latency for it yet
17992e2c009bSjjc */
18002e2c009bSjjc
18012e2c009bSjjc if (t2 == 0)
18022e2c009bSjjc continue;
18032e2c009bSjjc
18042e2c009bSjjc /*
18052e2c009bSjjc * Skip nodes (k, l) if they already
18062e2c009bSjjc * have same latency as (i, j) or
18072e2c009bSjjc * their latency isn't close enough to
18082e2c009bSjjc * be considered/made the same
18092e2c009bSjjc */
18102e2c009bSjjc if (t1 == t2 || (t1 > t2 && t1 - t2 >
18112e2c009bSjjc t1 >> lgrp_plat_probe_lt_shift) ||
18122e2c009bSjjc (t2 > t1 && t2 - t1 >
18132e2c009bSjjc t2 >> lgrp_plat_probe_lt_shift))
18142e2c009bSjjc continue;
18152e2c009bSjjc
18162e2c009bSjjc /*
18172e2c009bSjjc * Make latency(i, j) same as
18182e2c009bSjjc * latency(k, l), try to use latency
18192e2c009bSjjc * that has been adjusted already to get
18202e2c009bSjjc * more consistency (if possible), and
18212e2c009bSjjc * remember which latencies were
18222e2c009bSjjc * adjusted for next time
18232e2c009bSjjc */
18242e2c009bSjjc if (lat_corrected[i][j]) {
18252e2c009bSjjc t = t1;
18262e2c009bSjjc lgrp_config(cflag, t2, t);
18272e2c009bSjjc t2 = t;
18282e2c009bSjjc } else if (lat_corrected[k][l]) {
18292e2c009bSjjc t = t2;
18302e2c009bSjjc lgrp_config(cflag, t1, t);
18312e2c009bSjjc t1 = t;
18322e2c009bSjjc } else {
18332e2c009bSjjc if (t1 > t2)
18342e2c009bSjjc t = t2;
18352e2c009bSjjc else
18362e2c009bSjjc t = t1;
18372e2c009bSjjc lgrp_config(cflag, t1, t);
18382e2c009bSjjc lgrp_config(cflag, t2, t);
18392e2c009bSjjc t1 = t2 = t;
18402e2c009bSjjc }
18412e2c009bSjjc
18422e2c009bSjjc lat_stats->latencies[i][j] =
18432e2c009bSjjc lat_stats->latencies[k][l] = t;
18442e2c009bSjjc
18452e2c009bSjjc lat_corrected[i][j] =
18462e2c009bSjjc lat_corrected[k][l] = 1;
18472e2c009bSjjc }
18482e2c009bSjjc }
18492e2c009bSjjc }
18502e2c009bSjjc }
18512e2c009bSjjc
18522e2c009bSjjc /*
18532e2c009bSjjc * Local latencies should be same
18542e2c009bSjjc * - Find min and max local latencies
18552e2c009bSjjc * - Make all local latencies be minimum
18562e2c009bSjjc */
18572e2c009bSjjc min = -1;
18582e2c009bSjjc max = 0;
18592e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) {
1860a3114836SGerry Liu if (!memnode_info[i].exists)
18612e2c009bSjjc continue;
18622e2c009bSjjc t = lat_stats->latencies[i][i];
18632e2c009bSjjc if (t == 0)
18642e2c009bSjjc continue;
18652e2c009bSjjc if (min == -1 || t < min)
18662e2c009bSjjc min = t;
18672e2c009bSjjc if (t > max)
18682e2c009bSjjc max = t;
18692e2c009bSjjc }
18702e2c009bSjjc if (min != max) {
18712e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) {
18722e2c009bSjjc int local;
18732e2c009bSjjc
1874a3114836SGerry Liu if (!memnode_info[i].exists)
18752e2c009bSjjc continue;
18762e2c009bSjjc
18772e2c009bSjjc local = lat_stats->latencies[i][i];
18782e2c009bSjjc if (local == 0)
18792e2c009bSjjc continue;
18802e2c009bSjjc
18812e2c009bSjjc /*
18822e2c009bSjjc * Track suspect probe times that aren't within
18832e2c009bSjjc * tolerance of minimum local latency and how much
18842e2c009bSjjc * probe times are corrected by
18852e2c009bSjjc */
18862e2c009bSjjc if (local - min > min >> lgrp_plat_probe_lt_shift)
18872e2c009bSjjc probe_stats->probe_suspect[i][i]++;
18882e2c009bSjjc
18892e2c009bSjjc probe_stats->probe_errors[i][i] += local - min;
18902e2c009bSjjc
18912e2c009bSjjc /*
18922e2c009bSjjc * Make local latencies be minimum
18932e2c009bSjjc */
18942e2c009bSjjc lgrp_config(LGRP_CONFIG_LAT_CHANGE, i, min);
18952e2c009bSjjc lat_stats->latencies[i][i] = min;
18962e2c009bSjjc }
18972e2c009bSjjc }
18982e2c009bSjjc
18992e2c009bSjjc /*
19002e2c009bSjjc * Determine max probe time again since just adjusted latencies
19012e2c009bSjjc */
19022e2c009bSjjc lat_stats->latency_max = 0;
19032e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) {
19042e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) {
1905a3114836SGerry Liu if (!memnode_info[j].exists)
19062e2c009bSjjc continue;
19072e2c009bSjjc t = lat_stats->latencies[i][j];
19082e2c009bSjjc if (t > lat_stats->latency_max)
19092e2c009bSjjc lat_stats->latency_max = t;
19102e2c009bSjjc }
19112e2c009bSjjc }
19122e2c009bSjjc }
19132e2c009bSjjc
19142e2c009bSjjc
19152e2c009bSjjc /*
19162e2c009bSjjc * Verify following about latencies between nodes:
19172e2c009bSjjc *
19182e2c009bSjjc * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a))
19192e2c009bSjjc * - Local latencies same
19202e2c009bSjjc * - Local < remote
19212e2c009bSjjc * - Number of latencies seen is reasonable
19222e2c009bSjjc * - Number of occurrences of a given latency should be more than 1
19232e2c009bSjjc *
19242e2c009bSjjc * Returns:
19252e2c009bSjjc * 0 Success
19262e2c009bSjjc * -1 Not symmetric
19272e2c009bSjjc * -2 Local latencies not same
19282e2c009bSjjc * -3 Local >= remote
19292e2c009bSjjc */
19302e2c009bSjjc static int
lgrp_plat_latency_verify(memnode_phys_addr_map_t * memnode_info,lgrp_plat_latency_stats_t * lat_stats)1931a3114836SGerry Liu lgrp_plat_latency_verify(memnode_phys_addr_map_t *memnode_info,
19322e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats)
19332e2c009bSjjc {
19342e2c009bSjjc int i;
19352e2c009bSjjc int j;
19362e2c009bSjjc u_longlong_t t1;
19372e2c009bSjjc u_longlong_t t2;
19382e2c009bSjjc
1939a3114836SGerry Liu ASSERT(memnode_info != NULL && lat_stats != NULL);
19402e2c009bSjjc
19412e2c009bSjjc /*
19422e2c009bSjjc * Nothing to do when this is an UMA machine, lgroup topology is
19432e2c009bSjjc * limited to 2 levels, or there aren't any probe times yet
19442e2c009bSjjc */
19452e2c009bSjjc if (max_mem_nodes == 1 || lgrp_topo_levels < 2 ||
19462e2c009bSjjc lat_stats->latencies[0][0] == 0)
19472e2c009bSjjc return (0);
19482e2c009bSjjc
19492e2c009bSjjc /*
19502e2c009bSjjc * Make sure that latencies are symmetric between any two nodes
19512e2c009bSjjc * (ie. latency(node0, node1) == latency(node1, node0))
19522e2c009bSjjc */
19532e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) {
1954a3114836SGerry Liu if (!memnode_info[i].exists)
19552e2c009bSjjc continue;
19562e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) {
1957a3114836SGerry Liu if (!memnode_info[j].exists)
19582e2c009bSjjc continue;
19592e2c009bSjjc t1 = lat_stats->latencies[i][j];
19602e2c009bSjjc t2 = lat_stats->latencies[j][i];
19612e2c009bSjjc
19622e2c009bSjjc if (t1 == 0 || t2 == 0 || t1 == t2)
19632e2c009bSjjc continue;
19642e2c009bSjjc
19652e2c009bSjjc return (-1);
19662e2c009bSjjc }
19672e2c009bSjjc }
19682e2c009bSjjc
19692e2c009bSjjc /*
19702e2c009bSjjc * Local latencies should be same
19712e2c009bSjjc */
19722e2c009bSjjc t1 = lat_stats->latencies[0][0];
19732e2c009bSjjc for (i = 1; i < lgrp_plat_node_cnt; i++) {
1974a3114836SGerry Liu if (!memnode_info[i].exists)
19752e2c009bSjjc continue;
19762e2c009bSjjc
19772e2c009bSjjc t2 = lat_stats->latencies[i][i];
19782e2c009bSjjc if (t2 == 0)
19792e2c009bSjjc continue;
19802e2c009bSjjc
19812e2c009bSjjc if (t1 == 0) {
19822e2c009bSjjc t1 = t2;
19832e2c009bSjjc continue;
19842e2c009bSjjc }
19852e2c009bSjjc
19862e2c009bSjjc if (t1 != t2)
19872e2c009bSjjc return (-2);
19882e2c009bSjjc }
19892e2c009bSjjc
19902e2c009bSjjc /*
19912e2c009bSjjc * Local latencies should be less than remote
19922e2c009bSjjc */
19932e2c009bSjjc if (t1) {
19942e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) {
19952e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) {
1996a3114836SGerry Liu if (!memnode_info[j].exists)
19972e2c009bSjjc continue;
19982e2c009bSjjc t2 = lat_stats->latencies[i][j];
19992e2c009bSjjc if (i == j || t2 == 0)
20002e2c009bSjjc continue;
20012e2c009bSjjc
20022e2c009bSjjc if (t1 >= t2)
20032e2c009bSjjc return (-3);
20042e2c009bSjjc }
20052e2c009bSjjc }
20062e2c009bSjjc }
20072e2c009bSjjc
20082e2c009bSjjc return (0);
20092e2c009bSjjc }
20102e2c009bSjjc
20112e2c009bSjjc
20122e2c009bSjjc /*
2013d5d7cf4eSJonathan Chew * Platform-specific initialization
2014d5d7cf4eSJonathan Chew */
2015d5d7cf4eSJonathan Chew static void
lgrp_plat_main_init(void)2016d5d7cf4eSJonathan Chew lgrp_plat_main_init(void)
2017d5d7cf4eSJonathan Chew {
2018d5d7cf4eSJonathan Chew int curnode;
2019d5d7cf4eSJonathan Chew int ht_limit;
2020d5d7cf4eSJonathan Chew int i;
2021d5d7cf4eSJonathan Chew
2022d5d7cf4eSJonathan Chew /*
2023d5d7cf4eSJonathan Chew * Print a notice that MPO is disabled when memory is interleaved
2024d5d7cf4eSJonathan Chew * across nodes....Would do this when it is discovered, but can't
2025d5d7cf4eSJonathan Chew * because it happens way too early during boot....
2026d5d7cf4eSJonathan Chew */
2027d5d7cf4eSJonathan Chew if (lgrp_plat_mem_intrlv)
2028d5d7cf4eSJonathan Chew cmn_err(CE_NOTE,
2029d5d7cf4eSJonathan Chew "MPO disabled because memory is interleaved\n");
2030d5d7cf4eSJonathan Chew
2031d5d7cf4eSJonathan Chew /*
2032d5d7cf4eSJonathan Chew * Don't bother to do any probing if it is disabled, there is only one
2033d5d7cf4eSJonathan Chew * node, or the height of the lgroup topology less than or equal to 2
2034d5d7cf4eSJonathan Chew */
2035d5d7cf4eSJonathan Chew ht_limit = lgrp_topo_ht_limit();
2036d5d7cf4eSJonathan Chew if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) ||
2037d5d7cf4eSJonathan Chew max_mem_nodes == 1 || ht_limit <= 2) {
2038d5d7cf4eSJonathan Chew /*
2039d5d7cf4eSJonathan Chew * Setup lgroup latencies for 2 level lgroup topology
2040d5d7cf4eSJonathan Chew * (ie. local and remote only) if they haven't been set yet
2041d5d7cf4eSJonathan Chew */
2042d5d7cf4eSJonathan Chew if (ht_limit == 2 && lgrp_plat_lat_stats.latency_min == -1 &&
2043d5d7cf4eSJonathan Chew lgrp_plat_lat_stats.latency_max == 0)
2044a3114836SGerry Liu lgrp_plat_2level_setup(&lgrp_plat_lat_stats);
2045d5d7cf4eSJonathan Chew return;
2046d5d7cf4eSJonathan Chew }
2047d5d7cf4eSJonathan Chew
2048d5d7cf4eSJonathan Chew if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) {
2049d5d7cf4eSJonathan Chew /*
2050d5d7cf4eSJonathan Chew * Should have been able to probe from CPU 0 when it was added
2051d5d7cf4eSJonathan Chew * to lgroup hierarchy, but may not have been able to then
2052d5d7cf4eSJonathan Chew * because it happens so early in boot that gethrtime() hasn't
2053d5d7cf4eSJonathan Chew * been initialized. (:-(
2054d5d7cf4eSJonathan Chew */
2055d5d7cf4eSJonathan Chew curnode = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node,
2056d5d7cf4eSJonathan Chew lgrp_plat_cpu_node_nentries);
2057d5d7cf4eSJonathan Chew ASSERT(curnode >= 0 && curnode < lgrp_plat_node_cnt);
2058d5d7cf4eSJonathan Chew if (lgrp_plat_lat_stats.latencies[curnode][curnode] == 0)
2059d5d7cf4eSJonathan Chew lgrp_plat_probe();
2060d5d7cf4eSJonathan Chew
2061d5d7cf4eSJonathan Chew return;
2062d5d7cf4eSJonathan Chew }
2063d5d7cf4eSJonathan Chew
2064d5d7cf4eSJonathan Chew /*
2065d5d7cf4eSJonathan Chew * When probing memory, use one page for every sample to determine
2066d5d7cf4eSJonathan Chew * lgroup topology and taking multiple samples
2067d5d7cf4eSJonathan Chew */
2068d5d7cf4eSJonathan Chew if (lgrp_plat_probe_mem_config.probe_memsize == 0)
2069d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_memsize = PAGESIZE *
2070d5d7cf4eSJonathan Chew lgrp_plat_probe_nsamples;
2071d5d7cf4eSJonathan Chew
2072d5d7cf4eSJonathan Chew /*
2073d5d7cf4eSJonathan Chew * Map memory in each node needed for probing to determine latency
2074d5d7cf4eSJonathan Chew * topology
2075d5d7cf4eSJonathan Chew */
2076d5d7cf4eSJonathan Chew for (i = 0; i < lgrp_plat_node_cnt; i++) {
2077d5d7cf4eSJonathan Chew int mnode;
2078d5d7cf4eSJonathan Chew
2079d5d7cf4eSJonathan Chew /*
2080d5d7cf4eSJonathan Chew * Skip this node and leave its probe page NULL
2081d5d7cf4eSJonathan Chew * if it doesn't have any memory
2082d5d7cf4eSJonathan Chew */
2083a3114836SGerry Liu mnode = i;
2084d5d7cf4eSJonathan Chew if (!mem_node_config[mnode].exists) {
2085d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_va[i] = NULL;
2086d5d7cf4eSJonathan Chew continue;
2087d5d7cf4eSJonathan Chew }
2088d5d7cf4eSJonathan Chew
2089d5d7cf4eSJonathan Chew /*
2090d5d7cf4eSJonathan Chew * Allocate one kernel virtual page
2091d5d7cf4eSJonathan Chew */
2092d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_va[i] = vmem_alloc(heap_arena,
2093d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_memsize, VM_NOSLEEP);
2094d5d7cf4eSJonathan Chew if (lgrp_plat_probe_mem_config.probe_va[i] == NULL) {
2095d5d7cf4eSJonathan Chew cmn_err(CE_WARN,
2096d5d7cf4eSJonathan Chew "lgrp_plat_main_init: couldn't allocate memory");
2097d5d7cf4eSJonathan Chew return;
2098d5d7cf4eSJonathan Chew }
2099d5d7cf4eSJonathan Chew
2100d5d7cf4eSJonathan Chew /*
2101d5d7cf4eSJonathan Chew * Get PFN for first page in each node
2102d5d7cf4eSJonathan Chew */
2103d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_pfn[i] =
2104d5d7cf4eSJonathan Chew mem_node_config[mnode].physbase;
2105d5d7cf4eSJonathan Chew
2106d5d7cf4eSJonathan Chew /*
2107d5d7cf4eSJonathan Chew * Map virtual page to first page in node
2108d5d7cf4eSJonathan Chew */
2109d5d7cf4eSJonathan Chew hat_devload(kas.a_hat, lgrp_plat_probe_mem_config.probe_va[i],
2110d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_memsize,
2111d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_pfn[i],
2112d5d7cf4eSJonathan Chew PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE,
2113d5d7cf4eSJonathan Chew HAT_LOAD_NOCONSIST);
2114d5d7cf4eSJonathan Chew }
2115d5d7cf4eSJonathan Chew
2116d5d7cf4eSJonathan Chew /*
2117d5d7cf4eSJonathan Chew * Probe from current CPU
2118d5d7cf4eSJonathan Chew */
2119d5d7cf4eSJonathan Chew lgrp_plat_probe();
2120d5d7cf4eSJonathan Chew }
2121d5d7cf4eSJonathan Chew
2122d5d7cf4eSJonathan Chew
2123d5d7cf4eSJonathan Chew /*
21242e2c009bSjjc * Return the number of free, allocatable, or installed
21252e2c009bSjjc * pages in an lgroup
21262e2c009bSjjc * This is a copy of the MAX_MEM_NODES == 1 version of the routine
21272e2c009bSjjc * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup
21282e2c009bSjjc */
21292e2c009bSjjc static pgcnt_t
lgrp_plat_mem_size_default(lgrp_handle_t lgrphand,lgrp_mem_query_t query)21302e2c009bSjjc lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query)
21312e2c009bSjjc {
2132a3114836SGerry Liu _NOTE(ARGUNUSED(lgrphand));
2133a3114836SGerry Liu
21342e2c009bSjjc struct memlist *mlist;
21352e2c009bSjjc pgcnt_t npgs = 0;
21362e2c009bSjjc extern struct memlist *phys_avail;
21372e2c009bSjjc extern struct memlist *phys_install;
21382e2c009bSjjc
21392e2c009bSjjc switch (query) {
21402e2c009bSjjc case LGRP_MEM_SIZE_FREE:
21412e2c009bSjjc return ((pgcnt_t)freemem);
21422e2c009bSjjc case LGRP_MEM_SIZE_AVAIL:
21432e2c009bSjjc memlist_read_lock();
214456f33205SJonathan Adams for (mlist = phys_avail; mlist; mlist = mlist->ml_next)
214556f33205SJonathan Adams npgs += btop(mlist->ml_size);
21462e2c009bSjjc memlist_read_unlock();
21472e2c009bSjjc return (npgs);
21482e2c009bSjjc case LGRP_MEM_SIZE_INSTALL:
21492e2c009bSjjc memlist_read_lock();
215056f33205SJonathan Adams for (mlist = phys_install; mlist; mlist = mlist->ml_next)
215156f33205SJonathan Adams npgs += btop(mlist->ml_size);
21522e2c009bSjjc memlist_read_unlock();
21532e2c009bSjjc return (npgs);
21542e2c009bSjjc default:
21552e2c009bSjjc return ((pgcnt_t)0);
21562e2c009bSjjc }
21572e2c009bSjjc }
21582e2c009bSjjc
21592e2c009bSjjc
21602e2c009bSjjc /*
21612e2c009bSjjc * Update node to proximity domain mappings for given domain and return node ID
21622e2c009bSjjc */
21632e2c009bSjjc static int
lgrp_plat_node_domain_update(node_domain_map_t * node_domain,int node_cnt,uint32_t domain)2164d821f0f0Sjjc lgrp_plat_node_domain_update(node_domain_map_t *node_domain, int node_cnt,
2165d821f0f0Sjjc uint32_t domain)
21662e2c009bSjjc {
21672e2c009bSjjc uint_t node;
21682e2c009bSjjc uint_t start;
21692e2c009bSjjc
21702e2c009bSjjc /*
21712e2c009bSjjc * Hash proximity domain ID into node to domain mapping table (array)
21722e2c009bSjjc * and add entry for it into first non-existent or matching entry found
21732e2c009bSjjc */
2174d821f0f0Sjjc node = start = NODE_DOMAIN_HASH(domain, node_cnt);
21752e2c009bSjjc do {
21762e2c009bSjjc /*
21772e2c009bSjjc * Entry doesn't exist yet, so create one for this proximity
21782e2c009bSjjc * domain and return node ID which is index into mapping table.
21792e2c009bSjjc */
21802e2c009bSjjc if (!node_domain[node].exists) {
21812e2c009bSjjc node_domain[node].prox_domain = domain;
2182a3114836SGerry Liu membar_producer();
2183a3114836SGerry Liu node_domain[node].exists = 1;
21842e2c009bSjjc return (node);
21852e2c009bSjjc }
21862e2c009bSjjc
21872e2c009bSjjc /*
21882e2c009bSjjc * Entry exists for this proximity domain already, so just
21892e2c009bSjjc * return node ID (index into table).
21902e2c009bSjjc */
21912e2c009bSjjc if (node_domain[node].prox_domain == domain)
21922e2c009bSjjc return (node);
2193d821f0f0Sjjc node = NODE_DOMAIN_HASH(node + 1, node_cnt);
21942e2c009bSjjc } while (node != start);
21952e2c009bSjjc
21962e2c009bSjjc /*
21972e2c009bSjjc * Ran out of supported number of entries which shouldn't happen....
21982e2c009bSjjc */
21992e2c009bSjjc ASSERT(node != start);
22002e2c009bSjjc return (-1);
22012e2c009bSjjc }
22022e2c009bSjjc
22032e2c009bSjjc /*
22042e2c009bSjjc * Update node memory information for given proximity domain with specified
22052e2c009bSjjc * starting and ending physical address range (and return positive numbers for
22062e2c009bSjjc * success and negative ones for errors)
22072e2c009bSjjc */
22082e2c009bSjjc static int
lgrp_plat_memnode_info_update(node_domain_map_t * node_domain,int node_cnt,memnode_phys_addr_map_t * memnode_info,int memnode_cnt,uint64_t start,uint64_t end,uint32_t domain,uint32_t device_id)2209a3114836SGerry Liu lgrp_plat_memnode_info_update(node_domain_map_t *node_domain, int node_cnt,
2210a3114836SGerry Liu memnode_phys_addr_map_t *memnode_info, int memnode_cnt, uint64_t start,
2211a3114836SGerry Liu uint64_t end, uint32_t domain, uint32_t device_id)
22122e2c009bSjjc {
2213a3114836SGerry Liu int node, mnode;
22142e2c009bSjjc
22152e2c009bSjjc /*
22162e2c009bSjjc * Get node number for proximity domain
22172e2c009bSjjc */
2218d821f0f0Sjjc node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain);
22192e2c009bSjjc if (node == -1) {
2220d821f0f0Sjjc node = lgrp_plat_node_domain_update(node_domain, node_cnt,
2221d821f0f0Sjjc domain);
22222e2c009bSjjc if (node == -1)
22232e2c009bSjjc return (-1);
22242e2c009bSjjc }
22252e2c009bSjjc
22262e2c009bSjjc /*
2227a3114836SGerry Liu * This function is called during boot if device_id is
2228a3114836SGerry Liu * ACPI_MEMNODE_DEVID_BOOT, otherwise it's called at runtime for
2229a3114836SGerry Liu * memory DR operations.
2230a3114836SGerry Liu */
2231a3114836SGerry Liu if (device_id != ACPI_MEMNODE_DEVID_BOOT) {
2232a3114836SGerry Liu ASSERT(lgrp_plat_max_mem_node <= memnode_cnt);
2233a3114836SGerry Liu
2234a3114836SGerry Liu for (mnode = lgrp_plat_node_cnt;
2235a3114836SGerry Liu mnode < lgrp_plat_max_mem_node; mnode++) {
2236a3114836SGerry Liu if (memnode_info[mnode].exists &&
2237a3114836SGerry Liu memnode_info[mnode].prox_domain == domain &&
2238a3114836SGerry Liu memnode_info[mnode].device_id == device_id) {
2239a3114836SGerry Liu if (btop(start) < memnode_info[mnode].start)
2240a3114836SGerry Liu memnode_info[mnode].start = btop(start);
2241a3114836SGerry Liu if (btop(end) > memnode_info[mnode].end)
2242a3114836SGerry Liu memnode_info[mnode].end = btop(end);
2243a3114836SGerry Liu return (1);
2244a3114836SGerry Liu }
2245a3114836SGerry Liu }
2246a3114836SGerry Liu
2247a3114836SGerry Liu if (lgrp_plat_max_mem_node >= memnode_cnt) {
2248a3114836SGerry Liu return (-3);
2249a3114836SGerry Liu } else {
2250a3114836SGerry Liu lgrp_plat_max_mem_node++;
2251a3114836SGerry Liu memnode_info[mnode].start = btop(start);
2252a3114836SGerry Liu memnode_info[mnode].end = btop(end);
2253a3114836SGerry Liu memnode_info[mnode].prox_domain = domain;
2254a3114836SGerry Liu memnode_info[mnode].device_id = device_id;
2255a3114836SGerry Liu memnode_info[mnode].lgrphand = node;
2256a3114836SGerry Liu membar_producer();
2257a3114836SGerry Liu memnode_info[mnode].exists = 1;
2258a3114836SGerry Liu return (0);
2259a3114836SGerry Liu }
2260a3114836SGerry Liu }
2261a3114836SGerry Liu
2262a3114836SGerry Liu /*
22632e2c009bSjjc * Create entry in table for node if it doesn't exist
22642e2c009bSjjc */
2265a3114836SGerry Liu ASSERT(node < memnode_cnt);
2266a3114836SGerry Liu if (!memnode_info[node].exists) {
2267a3114836SGerry Liu memnode_info[node].start = btop(start);
2268a3114836SGerry Liu memnode_info[node].end = btop(end);
2269a3114836SGerry Liu memnode_info[node].prox_domain = domain;
2270a3114836SGerry Liu memnode_info[node].device_id = device_id;
2271a3114836SGerry Liu memnode_info[node].lgrphand = node;
2272a3114836SGerry Liu membar_producer();
2273a3114836SGerry Liu memnode_info[node].exists = 1;
22742e2c009bSjjc return (0);
22752e2c009bSjjc }
22762e2c009bSjjc
22772e2c009bSjjc /*
22782e2c009bSjjc * Entry already exists for this proximity domain
22792e2c009bSjjc *
22802e2c009bSjjc * There may be more than one SRAT memory entry for a domain, so we may
22812e2c009bSjjc * need to update existing start or end address for the node.
22822e2c009bSjjc */
2283a3114836SGerry Liu if (memnode_info[node].prox_domain == domain) {
2284a3114836SGerry Liu if (btop(start) < memnode_info[node].start)
2285a3114836SGerry Liu memnode_info[node].start = btop(start);
2286a3114836SGerry Liu if (btop(end) > memnode_info[node].end)
2287a3114836SGerry Liu memnode_info[node].end = btop(end);
22882e2c009bSjjc return (1);
22892e2c009bSjjc }
22902e2c009bSjjc return (-2);
22912e2c009bSjjc }
22922e2c009bSjjc
22932e2c009bSjjc
22942e2c009bSjjc /*
2295a3114836SGerry Liu * Have to sort nodes by starting physical address because plat_mnode_xcheck()
2296a3114836SGerry Liu * assumes and expects memnodes to be sorted in ascending order by physical
2297a3114836SGerry Liu * address.
229881d9ccb6SJonathan Chew */
229981d9ccb6SJonathan Chew static void
lgrp_plat_node_sort(node_domain_map_t * node_domain,int node_cnt,cpu_node_map_t * cpu_node,int cpu_count,memnode_phys_addr_map_t * memnode_info)230081d9ccb6SJonathan Chew lgrp_plat_node_sort(node_domain_map_t *node_domain, int node_cnt,
2301a3114836SGerry Liu cpu_node_map_t *cpu_node, int cpu_count,
2302a3114836SGerry Liu memnode_phys_addr_map_t *memnode_info)
230381d9ccb6SJonathan Chew {
230481d9ccb6SJonathan Chew boolean_t found;
230581d9ccb6SJonathan Chew int i;
230681d9ccb6SJonathan Chew int j;
230781d9ccb6SJonathan Chew int n;
230881d9ccb6SJonathan Chew boolean_t sorted;
230981d9ccb6SJonathan Chew boolean_t swapped;
231081d9ccb6SJonathan Chew
231181d9ccb6SJonathan Chew if (!lgrp_plat_node_sort_enable || node_cnt <= 1 ||
2312a3114836SGerry Liu node_domain == NULL || memnode_info == NULL)
231381d9ccb6SJonathan Chew return;
231481d9ccb6SJonathan Chew
231581d9ccb6SJonathan Chew /*
231681d9ccb6SJonathan Chew * Sorted already?
231781d9ccb6SJonathan Chew */
231881d9ccb6SJonathan Chew sorted = B_TRUE;
231981d9ccb6SJonathan Chew for (i = 0; i < node_cnt - 1; i++) {
232081d9ccb6SJonathan Chew /*
232181d9ccb6SJonathan Chew * Skip entries that don't exist
232281d9ccb6SJonathan Chew */
2323a3114836SGerry Liu if (!memnode_info[i].exists)
232481d9ccb6SJonathan Chew continue;
232581d9ccb6SJonathan Chew
232681d9ccb6SJonathan Chew /*
232781d9ccb6SJonathan Chew * Try to find next existing entry to compare against
232881d9ccb6SJonathan Chew */
232981d9ccb6SJonathan Chew found = B_FALSE;
233081d9ccb6SJonathan Chew for (j = i + 1; j < node_cnt; j++) {
2331a3114836SGerry Liu if (memnode_info[j].exists) {
233281d9ccb6SJonathan Chew found = B_TRUE;
233381d9ccb6SJonathan Chew break;
233481d9ccb6SJonathan Chew }
233581d9ccb6SJonathan Chew }
233681d9ccb6SJonathan Chew
233781d9ccb6SJonathan Chew /*
233881d9ccb6SJonathan Chew * Done if no more existing entries to compare against
233981d9ccb6SJonathan Chew */
234081d9ccb6SJonathan Chew if (found == B_FALSE)
234181d9ccb6SJonathan Chew break;
234281d9ccb6SJonathan Chew
234381d9ccb6SJonathan Chew /*
234481d9ccb6SJonathan Chew * Not sorted if starting address of current entry is bigger
234581d9ccb6SJonathan Chew * than starting address of next existing entry
234681d9ccb6SJonathan Chew */
2347a3114836SGerry Liu if (memnode_info[i].start > memnode_info[j].start) {
234881d9ccb6SJonathan Chew sorted = B_FALSE;
234981d9ccb6SJonathan Chew break;
235081d9ccb6SJonathan Chew }
235181d9ccb6SJonathan Chew }
235281d9ccb6SJonathan Chew
235381d9ccb6SJonathan Chew /*
235481d9ccb6SJonathan Chew * Don't need to sort if sorted already
235581d9ccb6SJonathan Chew */
235681d9ccb6SJonathan Chew if (sorted == B_TRUE)
235781d9ccb6SJonathan Chew return;
235881d9ccb6SJonathan Chew
235981d9ccb6SJonathan Chew /*
236081d9ccb6SJonathan Chew * Just use bubble sort since number of nodes is small
236181d9ccb6SJonathan Chew */
236281d9ccb6SJonathan Chew n = node_cnt;
236381d9ccb6SJonathan Chew do {
236481d9ccb6SJonathan Chew swapped = B_FALSE;
236581d9ccb6SJonathan Chew n--;
236681d9ccb6SJonathan Chew for (i = 0; i < n; i++) {
236781d9ccb6SJonathan Chew /*
236881d9ccb6SJonathan Chew * Skip entries that don't exist
236981d9ccb6SJonathan Chew */
2370a3114836SGerry Liu if (!memnode_info[i].exists)
237181d9ccb6SJonathan Chew continue;
237281d9ccb6SJonathan Chew
237381d9ccb6SJonathan Chew /*
237481d9ccb6SJonathan Chew * Try to find next existing entry to compare against
237581d9ccb6SJonathan Chew */
237681d9ccb6SJonathan Chew found = B_FALSE;
237781d9ccb6SJonathan Chew for (j = i + 1; j <= n; j++) {
2378a3114836SGerry Liu if (memnode_info[j].exists) {
237981d9ccb6SJonathan Chew found = B_TRUE;
238081d9ccb6SJonathan Chew break;
238181d9ccb6SJonathan Chew }
238281d9ccb6SJonathan Chew }
238381d9ccb6SJonathan Chew
238481d9ccb6SJonathan Chew /*
238581d9ccb6SJonathan Chew * Done if no more existing entries to compare against
238681d9ccb6SJonathan Chew */
238781d9ccb6SJonathan Chew if (found == B_FALSE)
238881d9ccb6SJonathan Chew break;
238981d9ccb6SJonathan Chew
2390a3114836SGerry Liu if (memnode_info[i].start > memnode_info[j].start) {
2391a3114836SGerry Liu memnode_phys_addr_map_t save_addr;
239281d9ccb6SJonathan Chew node_domain_map_t save_node;
239381d9ccb6SJonathan Chew
239481d9ccb6SJonathan Chew /*
239581d9ccb6SJonathan Chew * Swap node to proxmity domain ID assignments
239681d9ccb6SJonathan Chew */
239781d9ccb6SJonathan Chew bcopy(&node_domain[i], &save_node,
239881d9ccb6SJonathan Chew sizeof (node_domain_map_t));
239981d9ccb6SJonathan Chew bcopy(&node_domain[j], &node_domain[i],
240081d9ccb6SJonathan Chew sizeof (node_domain_map_t));
240181d9ccb6SJonathan Chew bcopy(&save_node, &node_domain[j],
240281d9ccb6SJonathan Chew sizeof (node_domain_map_t));
240381d9ccb6SJonathan Chew
240481d9ccb6SJonathan Chew /*
240581d9ccb6SJonathan Chew * Swap node to physical memory assignments
240681d9ccb6SJonathan Chew */
2407a3114836SGerry Liu bcopy(&memnode_info[i], &save_addr,
2408a3114836SGerry Liu sizeof (memnode_phys_addr_map_t));
2409a3114836SGerry Liu bcopy(&memnode_info[j], &memnode_info[i],
2410a3114836SGerry Liu sizeof (memnode_phys_addr_map_t));
2411a3114836SGerry Liu bcopy(&save_addr, &memnode_info[j],
2412a3114836SGerry Liu sizeof (memnode_phys_addr_map_t));
241381d9ccb6SJonathan Chew swapped = B_TRUE;
241481d9ccb6SJonathan Chew }
241581d9ccb6SJonathan Chew }
241681d9ccb6SJonathan Chew } while (swapped == B_TRUE);
241781d9ccb6SJonathan Chew
241881d9ccb6SJonathan Chew /*
241981d9ccb6SJonathan Chew * Check to make sure that CPUs assigned to correct node IDs now since
242081d9ccb6SJonathan Chew * node to proximity domain ID assignments may have been changed above
242181d9ccb6SJonathan Chew */
242281d9ccb6SJonathan Chew if (n == node_cnt - 1 || cpu_node == NULL || cpu_count < 1)
242381d9ccb6SJonathan Chew return;
242481d9ccb6SJonathan Chew for (i = 0; i < cpu_count; i++) {
242581d9ccb6SJonathan Chew int node;
242681d9ccb6SJonathan Chew
242781d9ccb6SJonathan Chew node = lgrp_plat_domain_to_node(node_domain, node_cnt,
242881d9ccb6SJonathan Chew cpu_node[i].prox_domain);
242981d9ccb6SJonathan Chew if (cpu_node[i].node != node)
243081d9ccb6SJonathan Chew cpu_node[i].node = node;
243181d9ccb6SJonathan Chew }
243281d9ccb6SJonathan Chew
243381d9ccb6SJonathan Chew }
243481d9ccb6SJonathan Chew
243581d9ccb6SJonathan Chew
243681d9ccb6SJonathan Chew /*
24372e2c009bSjjc * Return time needed to probe from current CPU to memory in given node
24382e2c009bSjjc */
24392e2c009bSjjc static hrtime_t
lgrp_plat_probe_time(int to,cpu_node_map_t * cpu_node,int cpu_node_nentries,lgrp_plat_probe_mem_config_t * probe_mem_config,lgrp_plat_latency_stats_t * lat_stats,lgrp_plat_probe_stats_t * probe_stats)2440d5d7cf4eSJonathan Chew lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, int cpu_node_nentries,
24412e2c009bSjjc lgrp_plat_probe_mem_config_t *probe_mem_config,
24422e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats)
24432e2c009bSjjc {
24442e2c009bSjjc caddr_t buf;
24452e2c009bSjjc hrtime_t elapsed;
24462e2c009bSjjc hrtime_t end;
24472e2c009bSjjc int from;
24482e2c009bSjjc int i;
24492e2c009bSjjc int ipl;
24502e2c009bSjjc hrtime_t max;
24512e2c009bSjjc hrtime_t min;
24522e2c009bSjjc hrtime_t start;
24532e2c009bSjjc extern int use_sse_pagecopy;
24542e2c009bSjjc
24552e2c009bSjjc /*
24562e2c009bSjjc * Determine ID of node containing current CPU
24572e2c009bSjjc */
2458d5d7cf4eSJonathan Chew from = lgrp_plat_cpu_to_node(CPU, cpu_node, cpu_node_nentries);
24592e2c009bSjjc ASSERT(from >= 0 && from < lgrp_plat_node_cnt);
24602e2c009bSjjc
24612e2c009bSjjc /*
24622e2c009bSjjc * Do common work for probing main memory
24632e2c009bSjjc */
24642e2c009bSjjc if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_PGCPY) {
24652e2c009bSjjc /*
24662e2c009bSjjc * Skip probing any nodes without memory and
24672e2c009bSjjc * set probe time to 0
24682e2c009bSjjc */
24692e2c009bSjjc if (probe_mem_config->probe_va[to] == NULL) {
24702e2c009bSjjc lat_stats->latencies[from][to] = 0;
24712e2c009bSjjc return (0);
24722e2c009bSjjc }
24732e2c009bSjjc
24742e2c009bSjjc /*
24752e2c009bSjjc * Invalidate caches once instead of once every sample
24762e2c009bSjjc * which should cut cost of probing by a lot
24772e2c009bSjjc */
24782e2c009bSjjc probe_stats->flush_cost = gethrtime();
24792e2c009bSjjc invalidate_cache();
24802e2c009bSjjc probe_stats->flush_cost = gethrtime() -
24812e2c009bSjjc probe_stats->flush_cost;
24822e2c009bSjjc probe_stats->probe_cost_total += probe_stats->flush_cost;
24832e2c009bSjjc }
24842e2c009bSjjc
24852e2c009bSjjc /*
24862e2c009bSjjc * Probe from current CPU to given memory using specified operation
24872e2c009bSjjc * and take specified number of samples
24882e2c009bSjjc */
24892e2c009bSjjc max = 0;
24902e2c009bSjjc min = -1;
24912e2c009bSjjc for (i = 0; i < lgrp_plat_probe_nsamples; i++) {
24922e2c009bSjjc probe_stats->probe_cost = gethrtime();
24932e2c009bSjjc
24942e2c009bSjjc /*
24952e2c009bSjjc * Can't measure probe time if gethrtime() isn't working yet
24962e2c009bSjjc */
24972e2c009bSjjc if (probe_stats->probe_cost == 0 && gethrtime() == 0)
24982e2c009bSjjc return (0);
24992e2c009bSjjc
25002e2c009bSjjc if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) {
25012e2c009bSjjc /*
25022e2c009bSjjc * Measure how long it takes to read vendor ID from
25032e2c009bSjjc * Northbridge
25042e2c009bSjjc */
25052e2c009bSjjc elapsed = opt_probe_vendor(to, lgrp_plat_probe_nreads);
25062e2c009bSjjc } else {
25072e2c009bSjjc /*
25082e2c009bSjjc * Measure how long it takes to copy page
25092e2c009bSjjc * on top of itself
25102e2c009bSjjc */
25112e2c009bSjjc buf = probe_mem_config->probe_va[to] + (i * PAGESIZE);
25122e2c009bSjjc
25132e2c009bSjjc kpreempt_disable();
25142e2c009bSjjc ipl = splhigh();
25152e2c009bSjjc start = gethrtime();
25162e2c009bSjjc if (use_sse_pagecopy)
25172e2c009bSjjc hwblkpagecopy(buf, buf);
25182e2c009bSjjc else
25192e2c009bSjjc bcopy(buf, buf, PAGESIZE);
25202e2c009bSjjc end = gethrtime();
25212e2c009bSjjc elapsed = end - start;
25222e2c009bSjjc splx(ipl);
25232e2c009bSjjc kpreempt_enable();
25242e2c009bSjjc }
25252e2c009bSjjc
25262e2c009bSjjc probe_stats->probe_cost = gethrtime() -
25272e2c009bSjjc probe_stats->probe_cost;
25282e2c009bSjjc probe_stats->probe_cost_total += probe_stats->probe_cost;
25292e2c009bSjjc
25302e2c009bSjjc if (min == -1 || elapsed < min)
25312e2c009bSjjc min = elapsed;
25322e2c009bSjjc if (elapsed > max)
25332e2c009bSjjc max = elapsed;
25342e2c009bSjjc }
25352e2c009bSjjc
25362e2c009bSjjc /*
25372e2c009bSjjc * Update minimum and maximum probe times between
25382e2c009bSjjc * these two nodes
25392e2c009bSjjc */
25402e2c009bSjjc if (min < probe_stats->probe_min[from][to] ||
25412e2c009bSjjc probe_stats->probe_min[from][to] == 0)
25422e2c009bSjjc probe_stats->probe_min[from][to] = min;
25432e2c009bSjjc
25442e2c009bSjjc if (max > probe_stats->probe_max[from][to])
25452e2c009bSjjc probe_stats->probe_max[from][to] = max;
25462e2c009bSjjc
25472e2c009bSjjc return (min);
25482e2c009bSjjc }
25492e2c009bSjjc
25502e2c009bSjjc
25512e2c009bSjjc /*
2552d821f0f0Sjjc * Read boot property with CPU to APIC ID array, fill in CPU to node ID
2553d5d7cf4eSJonathan Chew * mapping table with APIC ID for each CPU (if pointer to table isn't NULL),
2554d5d7cf4eSJonathan Chew * and return number of CPU APIC IDs.
2555dae2fa37Sjjc *
2556dae2fa37Sjjc * NOTE: This code assumes that CPU IDs are assigned in order that they appear
2557dae2fa37Sjjc * in in cpu_apicid_array boot property which is based on and follows
2558dae2fa37Sjjc * same ordering as processor list in ACPI MADT. If the code in
2559dae2fa37Sjjc * usr/src/uts/i86pc/io/pcplusmp/apic.c that reads MADT and assigns
2560dae2fa37Sjjc * CPU IDs ever changes, then this code will need to change too....
2561dae2fa37Sjjc */
2562dae2fa37Sjjc static int
lgrp_plat_process_cpu_apicids(cpu_node_map_t * cpu_node)2563d821f0f0Sjjc lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node)
2564dae2fa37Sjjc {
2565d821f0f0Sjjc int boot_prop_len;
2566dae2fa37Sjjc char *boot_prop_name = BP_CPU_APICID_ARRAY;
2567*8d8feb1bSToomas Soome uint32_t *cpu_apicid_array;
2568dae2fa37Sjjc int i;
2569d821f0f0Sjjc int n;
2570dae2fa37Sjjc
2571dae2fa37Sjjc /*
2572dae2fa37Sjjc * Check length of property value
2573dae2fa37Sjjc */
2574dae2fa37Sjjc boot_prop_len = BOP_GETPROPLEN(bootops, boot_prop_name);
2575*8d8feb1bSToomas Soome if (boot_prop_len <= 0)
2576d5d7cf4eSJonathan Chew return (-1);
2577d821f0f0Sjjc
2578d821f0f0Sjjc /*
2579a3114836SGerry Liu * Calculate number of entries in array and return when the system is
2580a3114836SGerry Liu * not very interesting for NUMA. It's not interesting for NUMA if
2581a3114836SGerry Liu * system has only one CPU and doesn't support CPU hotplug.
2582d821f0f0Sjjc */
2583*8d8feb1bSToomas Soome n = boot_prop_len / sizeof (*cpu_apicid_array);
2584a3114836SGerry Liu if (n == 1 && !plat_dr_support_cpu())
2585d5d7cf4eSJonathan Chew return (-2);
2586dae2fa37Sjjc
2587*8d8feb1bSToomas Soome cpu_apicid_array = (uint32_t *)BOP_ALLOC(bootops, NULL, boot_prop_len,
2588*8d8feb1bSToomas Soome sizeof (*cpu_apicid_array));
2589dae2fa37Sjjc /*
2590dae2fa37Sjjc * Get CPU to APIC ID property value
2591dae2fa37Sjjc */
2592*8d8feb1bSToomas Soome if (cpu_apicid_array == NULL ||
2593*8d8feb1bSToomas Soome BOP_GETPROP(bootops, boot_prop_name, cpu_apicid_array) < 0)
2594d5d7cf4eSJonathan Chew return (-3);
2595d5d7cf4eSJonathan Chew
2596d5d7cf4eSJonathan Chew /*
2597d5d7cf4eSJonathan Chew * Just return number of CPU APIC IDs if CPU to node mapping table is
2598d5d7cf4eSJonathan Chew * NULL
2599d5d7cf4eSJonathan Chew */
2600a3114836SGerry Liu if (cpu_node == NULL) {
2601a3114836SGerry Liu if (plat_dr_support_cpu() && n >= boot_ncpus) {
2602a3114836SGerry Liu return (boot_ncpus);
2603a3114836SGerry Liu } else {
2604d5d7cf4eSJonathan Chew return (n);
2605a3114836SGerry Liu }
2606a3114836SGerry Liu }
2607dae2fa37Sjjc
2608dae2fa37Sjjc /*
2609dae2fa37Sjjc * Fill in CPU to node ID mapping table with APIC ID for each CPU
2610dae2fa37Sjjc */
2611d821f0f0Sjjc for (i = 0; i < n; i++) {
2612a3114836SGerry Liu /* Only add boot CPUs into the map if CPU DR is enabled. */
2613a3114836SGerry Liu if (plat_dr_support_cpu() && i >= boot_ncpus)
2614a3114836SGerry Liu break;
2615dae2fa37Sjjc cpu_node[i].exists = 1;
2616dae2fa37Sjjc cpu_node[i].apicid = cpu_apicid_array[i];
2617a3114836SGerry Liu cpu_node[i].prox_domain = UINT32_MAX;
2618a3114836SGerry Liu cpu_node[i].node = UINT_MAX;
2619dae2fa37Sjjc }
2620dae2fa37Sjjc
2621d821f0f0Sjjc /*
2622d821f0f0Sjjc * Return number of CPUs based on number of APIC IDs
2623d821f0f0Sjjc */
2624a3114836SGerry Liu return (i);
2625dae2fa37Sjjc }
2626dae2fa37Sjjc
2627dae2fa37Sjjc
2628dae2fa37Sjjc /*
26292e2c009bSjjc * Read ACPI System Locality Information Table (SLIT) to determine how far each
26302e2c009bSjjc * NUMA node is from each other
26312e2c009bSjjc */
26322e2c009bSjjc static int
lgrp_plat_process_slit(ACPI_TABLE_SLIT * tp,node_domain_map_t * node_domain,uint_t node_cnt,memnode_phys_addr_map_t * memnode_info,lgrp_plat_latency_stats_t * lat_stats)2633*8d8feb1bSToomas Soome lgrp_plat_process_slit(ACPI_TABLE_SLIT *tp,
2634a3114836SGerry Liu node_domain_map_t *node_domain, uint_t node_cnt,
2635a3114836SGerry Liu memnode_phys_addr_map_t *memnode_info, lgrp_plat_latency_stats_t *lat_stats)
26362e2c009bSjjc {
26372e2c009bSjjc int i;
26382e2c009bSjjc int j;
2639a3114836SGerry Liu int src;
2640a3114836SGerry Liu int dst;
26412e2c009bSjjc int localities;
26422e2c009bSjjc hrtime_t max;
26432e2c009bSjjc hrtime_t min;
26442e2c009bSjjc int retval;
26452e2c009bSjjc uint8_t *slit_entries;
26462e2c009bSjjc
26472e2c009bSjjc if (tp == NULL || !lgrp_plat_slit_enable)
26482e2c009bSjjc return (1);
26492e2c009bSjjc
26502e2c009bSjjc if (lat_stats == NULL)
26512e2c009bSjjc return (2);
26522e2c009bSjjc
2653*8d8feb1bSToomas Soome localities = tp->LocalityCount;
26542e2c009bSjjc
26552e2c009bSjjc min = lat_stats->latency_min;
26562e2c009bSjjc max = lat_stats->latency_max;
26572e2c009bSjjc
26582e2c009bSjjc /*
26592e2c009bSjjc * Fill in latency matrix based on SLIT entries
26602e2c009bSjjc */
2661*8d8feb1bSToomas Soome slit_entries = tp->Entry;
26622e2c009bSjjc for (i = 0; i < localities; i++) {
2663a3114836SGerry Liu src = lgrp_plat_domain_to_node(node_domain,
2664a3114836SGerry Liu node_cnt, i);
2665a3114836SGerry Liu if (src == -1)
2666a3114836SGerry Liu continue;
2667a3114836SGerry Liu
26682e2c009bSjjc for (j = 0; j < localities; j++) {
26692e2c009bSjjc uint8_t latency;
26702e2c009bSjjc
2671a3114836SGerry Liu dst = lgrp_plat_domain_to_node(node_domain,
2672a3114836SGerry Liu node_cnt, j);
2673a3114836SGerry Liu if (dst == -1)
2674a3114836SGerry Liu continue;
2675a3114836SGerry Liu
26762e2c009bSjjc latency = slit_entries[(i * localities) + j];
2677a3114836SGerry Liu lat_stats->latencies[src][dst] = latency;
26785b7cf7f0Sjjc if (latency < min || min == -1)
26792e2c009bSjjc min = latency;
26802e2c009bSjjc if (latency > max)
26812e2c009bSjjc max = latency;
26822e2c009bSjjc }
26832e2c009bSjjc }
26842e2c009bSjjc
26852e2c009bSjjc /*
26862e2c009bSjjc * Verify that latencies/distances given in SLIT look reasonable
26872e2c009bSjjc */
2688a3114836SGerry Liu retval = lgrp_plat_latency_verify(memnode_info, lat_stats);
26892e2c009bSjjc
26902e2c009bSjjc if (retval) {
26912e2c009bSjjc /*
26922e2c009bSjjc * Reinitialize (zero) latency table since SLIT doesn't look
26932e2c009bSjjc * right
26942e2c009bSjjc */
26952e2c009bSjjc for (i = 0; i < localities; i++) {
26962e2c009bSjjc for (j = 0; j < localities; j++)
26972e2c009bSjjc lat_stats->latencies[i][j] = 0;
26982e2c009bSjjc }
26992e2c009bSjjc } else {
27002e2c009bSjjc /*
27012e2c009bSjjc * Update min and max latencies seen since SLIT looks valid
27022e2c009bSjjc */
27032e2c009bSjjc lat_stats->latency_min = min;
27042e2c009bSjjc lat_stats->latency_max = max;
27052e2c009bSjjc }
27062e2c009bSjjc
27072e2c009bSjjc return (retval);
27082e2c009bSjjc }
27092e2c009bSjjc
27102e2c009bSjjc
27112e2c009bSjjc /*
2712a3114836SGerry Liu * Update lgrp latencies according to information returned by ACPI _SLI method.
2713a3114836SGerry Liu */
2714a3114836SGerry Liu static int
lgrp_plat_process_sli(uint32_t domain_id,uchar_t * sli_info,uint32_t sli_cnt,node_domain_map_t * node_domain,uint_t node_cnt,lgrp_plat_latency_stats_t * lat_stats)2715a3114836SGerry Liu lgrp_plat_process_sli(uint32_t domain_id, uchar_t *sli_info,
2716a3114836SGerry Liu uint32_t sli_cnt, node_domain_map_t *node_domain, uint_t node_cnt,
2717a3114836SGerry Liu lgrp_plat_latency_stats_t *lat_stats)
2718a3114836SGerry Liu {
2719a3114836SGerry Liu int i;
2720a3114836SGerry Liu int src, dst;
2721a3114836SGerry Liu uint8_t latency;
2722a3114836SGerry Liu hrtime_t max, min;
2723a3114836SGerry Liu
2724a3114836SGerry Liu if (lat_stats == NULL || sli_info == NULL ||
2725a3114836SGerry Liu sli_cnt == 0 || domain_id >= sli_cnt)
2726a3114836SGerry Liu return (-1);
2727a3114836SGerry Liu
2728a3114836SGerry Liu src = lgrp_plat_domain_to_node(node_domain, node_cnt, domain_id);
2729a3114836SGerry Liu if (src == -1) {
2730a3114836SGerry Liu src = lgrp_plat_node_domain_update(node_domain, node_cnt,
2731a3114836SGerry Liu domain_id);
2732a3114836SGerry Liu if (src == -1)
2733a3114836SGerry Liu return (-1);
2734a3114836SGerry Liu }
2735a3114836SGerry Liu
2736a3114836SGerry Liu /*
2737a3114836SGerry Liu * Don't update latency info if topology has been flattened to 2 levels.
2738a3114836SGerry Liu */
2739a3114836SGerry Liu if (lgrp_plat_topo_flatten != 0) {
2740a3114836SGerry Liu return (0);
2741a3114836SGerry Liu }
2742a3114836SGerry Liu
2743a3114836SGerry Liu /*
2744a3114836SGerry Liu * Latency information for proximity domain is ready.
2745a3114836SGerry Liu * TODO: support adjusting latency information at runtime.
2746a3114836SGerry Liu */
2747a3114836SGerry Liu if (lat_stats->latencies[src][src] != 0) {
2748a3114836SGerry Liu return (0);
2749a3114836SGerry Liu }
2750a3114836SGerry Liu
2751a3114836SGerry Liu /* Validate latency information. */
2752a3114836SGerry Liu for (i = 0; i < sli_cnt; i++) {
2753a3114836SGerry Liu if (i == domain_id) {
2754a3114836SGerry Liu if (sli_info[i] != ACPI_SLIT_SELF_LATENCY ||
2755a3114836SGerry Liu sli_info[sli_cnt + i] != ACPI_SLIT_SELF_LATENCY) {
2756a3114836SGerry Liu return (-1);
2757a3114836SGerry Liu }
2758a3114836SGerry Liu } else {
2759a3114836SGerry Liu if (sli_info[i] <= ACPI_SLIT_SELF_LATENCY ||
2760a3114836SGerry Liu sli_info[sli_cnt + i] <= ACPI_SLIT_SELF_LATENCY ||
2761a3114836SGerry Liu sli_info[i] != sli_info[sli_cnt + i]) {
2762a3114836SGerry Liu return (-1);
2763a3114836SGerry Liu }
2764a3114836SGerry Liu }
2765a3114836SGerry Liu }
2766a3114836SGerry Liu
2767a3114836SGerry Liu min = lat_stats->latency_min;
2768a3114836SGerry Liu max = lat_stats->latency_max;
2769a3114836SGerry Liu for (i = 0; i < sli_cnt; i++) {
2770a3114836SGerry Liu dst = lgrp_plat_domain_to_node(node_domain, node_cnt, i);
2771a3114836SGerry Liu if (dst == -1)
2772a3114836SGerry Liu continue;
2773a3114836SGerry Liu
2774a3114836SGerry Liu ASSERT(sli_info[i] == sli_info[sli_cnt + i]);
2775a3114836SGerry Liu
2776a3114836SGerry Liu /* Update row in latencies matrix. */
2777a3114836SGerry Liu latency = sli_info[i];
2778a3114836SGerry Liu lat_stats->latencies[src][dst] = latency;
2779a3114836SGerry Liu if (latency < min || min == -1)
2780a3114836SGerry Liu min = latency;
2781a3114836SGerry Liu if (latency > max)
2782a3114836SGerry Liu max = latency;
2783a3114836SGerry Liu
2784a3114836SGerry Liu /* Update column in latencies matrix. */
2785a3114836SGerry Liu latency = sli_info[sli_cnt + i];
2786a3114836SGerry Liu lat_stats->latencies[dst][src] = latency;
2787a3114836SGerry Liu if (latency < min || min == -1)
2788a3114836SGerry Liu min = latency;
2789a3114836SGerry Liu if (latency > max)
2790a3114836SGerry Liu max = latency;
2791a3114836SGerry Liu }
2792a3114836SGerry Liu lat_stats->latency_min = min;
2793a3114836SGerry Liu lat_stats->latency_max = max;
2794a3114836SGerry Liu
2795a3114836SGerry Liu return (0);
2796a3114836SGerry Liu }
2797a3114836SGerry Liu
2798a3114836SGerry Liu
2799a3114836SGerry Liu /*
28002e2c009bSjjc * Read ACPI System Resource Affinity Table (SRAT) to determine which CPUs
2801d821f0f0Sjjc * and memory are local to each other in the same NUMA node and return number
2802d821f0f0Sjjc * of nodes
28032e2c009bSjjc */
28042e2c009bSjjc static int
lgrp_plat_process_srat(ACPI_TABLE_SRAT * tp,ACPI_TABLE_MSCT * mp,uint32_t * prox_domain_min,node_domain_map_t * node_domain,cpu_node_map_t * cpu_node,int cpu_count,memnode_phys_addr_map_t * memnode_info)2805*8d8feb1bSToomas Soome lgrp_plat_process_srat(ACPI_TABLE_SRAT *tp, ACPI_TABLE_MSCT *mp,
2806a3114836SGerry Liu uint32_t *prox_domain_min, node_domain_map_t *node_domain,
2807a3114836SGerry Liu cpu_node_map_t *cpu_node, int cpu_count,
2808a3114836SGerry Liu memnode_phys_addr_map_t *memnode_info)
28092e2c009bSjjc {
2810*8d8feb1bSToomas Soome ACPI_SUBTABLE_HEADER *item, *srat_end;
28112e2c009bSjjc int i;
2812d821f0f0Sjjc int node_cnt;
2813dae2fa37Sjjc int proc_entry_count;
2814a3114836SGerry Liu int rc;
28152e2c009bSjjc
2816d821f0f0Sjjc /*
2817d821f0f0Sjjc * Nothing to do when no SRAT or disabled
2818d821f0f0Sjjc */
28192e2c009bSjjc if (tp == NULL || !lgrp_plat_srat_enable)
2820d821f0f0Sjjc return (-1);
28212e2c009bSjjc
28222e2c009bSjjc /*
2823a3114836SGerry Liu * Try to get domain information from MSCT table.
2824a3114836SGerry Liu * ACPI4.0: OSPM will use information provided by the MSCT only
2825a3114836SGerry Liu * when the System Resource Affinity Table (SRAT) exists.
2826a3114836SGerry Liu */
2827a3114836SGerry Liu node_cnt = lgrp_plat_msct_domains(mp, prox_domain_min);
2828a3114836SGerry Liu if (node_cnt <= 0) {
2829a3114836SGerry Liu /*
2830a3114836SGerry Liu * Determine number of nodes by counting number of proximity
2831a3114836SGerry Liu * domains in SRAT.
28322e2c009bSjjc */
283381d9ccb6SJonathan Chew node_cnt = lgrp_plat_srat_domains(tp, prox_domain_min);
2834a3114836SGerry Liu }
2835a3114836SGerry Liu /*
2836a3114836SGerry Liu * Return if number of nodes is 1 or less since don't need to read SRAT.
2837a3114836SGerry Liu */
2838d821f0f0Sjjc if (node_cnt == 1)
2839d821f0f0Sjjc return (1);
2840d821f0f0Sjjc else if (node_cnt <= 0)
2841d821f0f0Sjjc return (-2);
28422e2c009bSjjc
28432e2c009bSjjc /*
28442e2c009bSjjc * Walk through SRAT, examining each CPU and memory entry to determine
28452e2c009bSjjc * which CPUs and memory belong to which node.
28462e2c009bSjjc */
2847*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2848*8d8feb1bSToomas Soome srat_end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2849dae2fa37Sjjc proc_entry_count = 0;
28505b7cf7f0Sjjc while (item < srat_end) {
28512e2c009bSjjc uint32_t apic_id;
28522e2c009bSjjc uint32_t domain;
28532e2c009bSjjc uint64_t end;
28542e2c009bSjjc uint64_t length;
28552e2c009bSjjc uint64_t start;
28562e2c009bSjjc
2857*8d8feb1bSToomas Soome switch (item->Type) {
2858*8d8feb1bSToomas Soome case ACPI_SRAT_TYPE_CPU_AFFINITY: { /* CPU entry */
2859*8d8feb1bSToomas Soome ACPI_SRAT_CPU_AFFINITY *cpu =
2860*8d8feb1bSToomas Soome (ACPI_SRAT_CPU_AFFINITY *) item;
2861*8d8feb1bSToomas Soome
2862*8d8feb1bSToomas Soome if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED) ||
28632e2c009bSjjc cpu_node == NULL)
28642e2c009bSjjc break;
28652e2c009bSjjc
28662e2c009bSjjc /*
28672e2c009bSjjc * Calculate domain (node) ID and fill in APIC ID to
28682e2c009bSjjc * domain/node mapping table
28692e2c009bSjjc */
2870*8d8feb1bSToomas Soome domain = cpu->ProximityDomainLo;
28712e2c009bSjjc for (i = 0; i < 3; i++) {
2872*8d8feb1bSToomas Soome domain += cpu->ProximityDomainHi[i] <<
28732e2c009bSjjc ((i + 1) * 8);
28742e2c009bSjjc }
2875*8d8feb1bSToomas Soome apic_id = cpu->ApicId;
28762e2c009bSjjc
2877a3114836SGerry Liu rc = lgrp_plat_cpu_node_update(node_domain, node_cnt,
2878a3114836SGerry Liu cpu_node, cpu_count, apic_id, domain);
2879a3114836SGerry Liu if (rc < 0)
2880d821f0f0Sjjc return (-3);
2881a3114836SGerry Liu else if (rc == 0)
2882dae2fa37Sjjc proc_entry_count++;
28832e2c009bSjjc break;
2884*8d8feb1bSToomas Soome }
2885*8d8feb1bSToomas Soome case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { /* memory entry */
2886*8d8feb1bSToomas Soome ACPI_SRAT_MEM_AFFINITY *mem =
2887*8d8feb1bSToomas Soome (ACPI_SRAT_MEM_AFFINITY *)item;
28882e2c009bSjjc
2889*8d8feb1bSToomas Soome if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED) ||
2890a3114836SGerry Liu memnode_info == NULL)
28912e2c009bSjjc break;
28922e2c009bSjjc
28932e2c009bSjjc /*
28942e2c009bSjjc * Get domain (node) ID and fill in domain/node
28952e2c009bSjjc * to memory mapping table
28962e2c009bSjjc */
2897*8d8feb1bSToomas Soome domain = mem->ProximityDomain;
2898*8d8feb1bSToomas Soome start = mem->BaseAddress;
2899*8d8feb1bSToomas Soome length = mem->Length;
29002e2c009bSjjc end = start + length - 1;
29012e2c009bSjjc
2902a3114836SGerry Liu /*
2903a3114836SGerry Liu * According to ACPI 4.0, both ENABLE and HOTPLUG flags
2904a3114836SGerry Liu * may be set for memory address range entries in SRAT
2905a3114836SGerry Liu * table which are reserved for memory hot plug.
2906a3114836SGerry Liu * We intersect memory address ranges in SRAT table
2907a3114836SGerry Liu * with memory ranges in physinstalled to filter out
2908a3114836SGerry Liu * memory address ranges reserved for hot plug.
2909a3114836SGerry Liu */
2910*8d8feb1bSToomas Soome if (mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) {
2911a3114836SGerry Liu uint64_t rstart = UINT64_MAX;
2912a3114836SGerry Liu uint64_t rend = 0;
2913a3114836SGerry Liu struct memlist *ml;
2914a3114836SGerry Liu extern struct bootops *bootops;
2915a3114836SGerry Liu
2916a3114836SGerry Liu memlist_read_lock();
2917a3114836SGerry Liu for (ml = bootops->boot_mem->physinstalled;
2918a3114836SGerry Liu ml; ml = ml->ml_next) {
2919a3114836SGerry Liu uint64_t tstart = ml->ml_address;
2920a3114836SGerry Liu uint64_t tend;
2921a3114836SGerry Liu
2922a3114836SGerry Liu tend = ml->ml_address + ml->ml_size;
2923a3114836SGerry Liu if (tstart > end || tend < start)
2924a3114836SGerry Liu continue;
2925a3114836SGerry Liu if (start > tstart)
2926a3114836SGerry Liu tstart = start;
2927a3114836SGerry Liu if (rstart > tstart)
2928a3114836SGerry Liu rstart = tstart;
2929a3114836SGerry Liu if (end < tend)
2930a3114836SGerry Liu tend = end;
2931a3114836SGerry Liu if (rend < tend)
2932a3114836SGerry Liu rend = tend;
2933a3114836SGerry Liu }
2934a3114836SGerry Liu memlist_read_unlock();
2935a3114836SGerry Liu start = rstart;
2936a3114836SGerry Liu end = rend;
2937a3114836SGerry Liu /* Skip this entry if no memory installed. */
2938a3114836SGerry Liu if (start > end)
2939a3114836SGerry Liu break;
2940a3114836SGerry Liu }
2941a3114836SGerry Liu
2942a3114836SGerry Liu if (lgrp_plat_memnode_info_update(node_domain,
2943a3114836SGerry Liu node_cnt, memnode_info, node_cnt,
2944a3114836SGerry Liu start, end, domain, ACPI_MEMNODE_DEVID_BOOT) < 0)
2945d821f0f0Sjjc return (-4);
29462e2c009bSjjc break;
2947*8d8feb1bSToomas Soome }
2948*8d8feb1bSToomas Soome case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { /* x2apic CPU */
2949*8d8feb1bSToomas Soome ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2950*8d8feb1bSToomas Soome (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2951a3114836SGerry Liu
2952*8d8feb1bSToomas Soome if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED) ||
2953b6917abeSmishra cpu_node == NULL)
2954b6917abeSmishra break;
2955b6917abeSmishra
2956b6917abeSmishra /*
2957b6917abeSmishra * Calculate domain (node) ID and fill in APIC ID to
2958b6917abeSmishra * domain/node mapping table
2959b6917abeSmishra */
2960*8d8feb1bSToomas Soome domain = x2cpu->ProximityDomain;
2961*8d8feb1bSToomas Soome apic_id = x2cpu->ApicId;
2962b6917abeSmishra
2963a3114836SGerry Liu rc = lgrp_plat_cpu_node_update(node_domain, node_cnt,
2964a3114836SGerry Liu cpu_node, cpu_count, apic_id, domain);
2965a3114836SGerry Liu if (rc < 0)
2966b6917abeSmishra return (-3);
2967a3114836SGerry Liu else if (rc == 0)
2968b6917abeSmishra proc_entry_count++;
2969b6917abeSmishra break;
2970*8d8feb1bSToomas Soome }
29712e2c009bSjjc default:
29722e2c009bSjjc break;
29732e2c009bSjjc }
29742e2c009bSjjc
2975*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
29762e2c009bSjjc }
2977dae2fa37Sjjc
2978dae2fa37Sjjc /*
2979dae2fa37Sjjc * Should have seen at least as many SRAT processor entries as CPUs
2980dae2fa37Sjjc */
2981d821f0f0Sjjc if (proc_entry_count < cpu_count)
2982d821f0f0Sjjc return (-5);
2983dae2fa37Sjjc
298481d9ccb6SJonathan Chew /*
298581d9ccb6SJonathan Chew * Need to sort nodes by starting physical address since VM system
298681d9ccb6SJonathan Chew * assumes and expects memnodes to be sorted in ascending order by
298781d9ccb6SJonathan Chew * physical address
298881d9ccb6SJonathan Chew */
298981d9ccb6SJonathan Chew lgrp_plat_node_sort(node_domain, node_cnt, cpu_node, cpu_count,
2990a3114836SGerry Liu memnode_info);
299181d9ccb6SJonathan Chew
2992d821f0f0Sjjc return (node_cnt);
29932e2c009bSjjc }
29942e2c009bSjjc
29952e2c009bSjjc
29962e2c009bSjjc /*
2997d5d7cf4eSJonathan Chew * Allocate permanent memory for any temporary memory that we needed to
2998d5d7cf4eSJonathan Chew * allocate using BOP_ALLOC() before kmem_alloc() and VM system were
2999d5d7cf4eSJonathan Chew * initialized and copy everything from temporary to permanent memory since
3000d5d7cf4eSJonathan Chew * temporary boot memory will eventually be released during boot
3001d5d7cf4eSJonathan Chew */
3002d5d7cf4eSJonathan Chew static void
lgrp_plat_release_bootstrap(void)3003d5d7cf4eSJonathan Chew lgrp_plat_release_bootstrap(void)
3004d5d7cf4eSJonathan Chew {
3005d5d7cf4eSJonathan Chew void *buf;
3006d5d7cf4eSJonathan Chew size_t size;
3007d5d7cf4eSJonathan Chew
3008d5d7cf4eSJonathan Chew if (lgrp_plat_cpu_node_nentries > 0) {
3009d5d7cf4eSJonathan Chew size = lgrp_plat_cpu_node_nentries * sizeof (cpu_node_map_t);
3010d5d7cf4eSJonathan Chew buf = kmem_alloc(size, KM_SLEEP);
3011d5d7cf4eSJonathan Chew bcopy(lgrp_plat_cpu_node, buf, size);
3012d5d7cf4eSJonathan Chew lgrp_plat_cpu_node = buf;
3013d5d7cf4eSJonathan Chew }
3014d5d7cf4eSJonathan Chew }
3015d5d7cf4eSJonathan Chew
3016d5d7cf4eSJonathan Chew
3017d5d7cf4eSJonathan Chew /*
30182e2c009bSjjc * Return number of proximity domains given in ACPI SRAT
30192e2c009bSjjc */
30202e2c009bSjjc static int
lgrp_plat_srat_domains(ACPI_TABLE_SRAT * tp,uint32_t * prox_domain_min)3021*8d8feb1bSToomas Soome lgrp_plat_srat_domains(ACPI_TABLE_SRAT *tp, uint32_t *prox_domain_min)
30222e2c009bSjjc {
30232e2c009bSjjc int domain_cnt;
302481d9ccb6SJonathan Chew uint32_t domain_min;
3025*8d8feb1bSToomas Soome ACPI_SUBTABLE_HEADER *item, *end;
30262e2c009bSjjc int i;
30272e2c009bSjjc node_domain_map_t node_domain[MAX_NODES];
30282e2c009bSjjc
30292e2c009bSjjc
30302e2c009bSjjc if (tp == NULL || !lgrp_plat_srat_enable)
30312e2c009bSjjc return (1);
30322e2c009bSjjc
30332e2c009bSjjc /*
303481d9ccb6SJonathan Chew * Walk through SRAT to find minimum proximity domain ID
303581d9ccb6SJonathan Chew */
303681d9ccb6SJonathan Chew domain_min = UINT32_MAX;
3037*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
3038*8d8feb1bSToomas Soome end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
303981d9ccb6SJonathan Chew while (item < end) {
304081d9ccb6SJonathan Chew uint32_t domain;
304181d9ccb6SJonathan Chew
3042*8d8feb1bSToomas Soome switch (item->Type) {
3043*8d8feb1bSToomas Soome case ACPI_SRAT_TYPE_CPU_AFFINITY: { /* CPU entry */
3044*8d8feb1bSToomas Soome ACPI_SRAT_CPU_AFFINITY *cpu =
3045*8d8feb1bSToomas Soome (ACPI_SRAT_CPU_AFFINITY *) item;
3046*8d8feb1bSToomas Soome
3047*8d8feb1bSToomas Soome if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) {
3048*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)
3049*8d8feb1bSToomas Soome ((uintptr_t)item + item->Length);
305081d9ccb6SJonathan Chew continue;
305181d9ccb6SJonathan Chew }
3052*8d8feb1bSToomas Soome domain = cpu->ProximityDomainLo;
305381d9ccb6SJonathan Chew for (i = 0; i < 3; i++) {
3054*8d8feb1bSToomas Soome domain += cpu->ProximityDomainHi[i] <<
305581d9ccb6SJonathan Chew ((i + 1) * 8);
305681d9ccb6SJonathan Chew }
305781d9ccb6SJonathan Chew break;
3058*8d8feb1bSToomas Soome }
3059*8d8feb1bSToomas Soome case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { /* memory entry */
3060*8d8feb1bSToomas Soome ACPI_SRAT_MEM_AFFINITY *mem =
3061*8d8feb1bSToomas Soome (ACPI_SRAT_MEM_AFFINITY *)item;
306281d9ccb6SJonathan Chew
3063*8d8feb1bSToomas Soome if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) {
3064*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)
3065*8d8feb1bSToomas Soome ((uintptr_t)item + item->Length);
306681d9ccb6SJonathan Chew continue;
306781d9ccb6SJonathan Chew }
3068*8d8feb1bSToomas Soome domain = mem->ProximityDomain;
306981d9ccb6SJonathan Chew break;
3070*8d8feb1bSToomas Soome }
3071*8d8feb1bSToomas Soome case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { /* x2apic CPU */
3072*8d8feb1bSToomas Soome ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
3073*8d8feb1bSToomas Soome (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
307481d9ccb6SJonathan Chew
3075*8d8feb1bSToomas Soome if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) {
3076*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)
3077*8d8feb1bSToomas Soome ((uintptr_t)item + item->Length);
307881d9ccb6SJonathan Chew continue;
307981d9ccb6SJonathan Chew }
3080*8d8feb1bSToomas Soome domain = x2cpu->ProximityDomain;
308181d9ccb6SJonathan Chew break;
3082*8d8feb1bSToomas Soome }
308381d9ccb6SJonathan Chew default:
3084*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item +
3085*8d8feb1bSToomas Soome item->Length);
308681d9ccb6SJonathan Chew continue;
308781d9ccb6SJonathan Chew }
308881d9ccb6SJonathan Chew
308981d9ccb6SJonathan Chew /*
309081d9ccb6SJonathan Chew * Keep track of minimum proximity domain ID
309181d9ccb6SJonathan Chew */
309281d9ccb6SJonathan Chew if (domain < domain_min)
309381d9ccb6SJonathan Chew domain_min = domain;
309481d9ccb6SJonathan Chew
3095*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
309681d9ccb6SJonathan Chew }
309781d9ccb6SJonathan Chew if (lgrp_plat_domain_min_enable && prox_domain_min != NULL)
309881d9ccb6SJonathan Chew *prox_domain_min = domain_min;
309981d9ccb6SJonathan Chew
310081d9ccb6SJonathan Chew /*
31012e2c009bSjjc * Walk through SRAT, examining each CPU and memory entry to determine
31022e2c009bSjjc * proximity domain ID for each.
31032e2c009bSjjc */
31042e2c009bSjjc domain_cnt = 0;
3105*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
3106*8d8feb1bSToomas Soome end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
31072e2c009bSjjc bzero(node_domain, MAX_NODES * sizeof (node_domain_map_t));
31082e2c009bSjjc while (item < end) {
31092e2c009bSjjc uint32_t domain;
31102e2c009bSjjc boolean_t overflow;
31112e2c009bSjjc uint_t start;
31122e2c009bSjjc
3113*8d8feb1bSToomas Soome switch (item->Type) {
3114*8d8feb1bSToomas Soome case ACPI_SRAT_TYPE_CPU_AFFINITY: { /* CPU entry */
3115*8d8feb1bSToomas Soome ACPI_SRAT_CPU_AFFINITY *cpu =
3116*8d8feb1bSToomas Soome (ACPI_SRAT_CPU_AFFINITY *) item;
3117*8d8feb1bSToomas Soome
3118*8d8feb1bSToomas Soome if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) {
3119*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)
3120*8d8feb1bSToomas Soome ((uintptr_t)item + item->Length);
312181d9ccb6SJonathan Chew continue;
312281d9ccb6SJonathan Chew }
3123*8d8feb1bSToomas Soome domain = cpu->ProximityDomainLo;
31242e2c009bSjjc for (i = 0; i < 3; i++) {
3125*8d8feb1bSToomas Soome domain += cpu->ProximityDomainHi[i] <<
31262e2c009bSjjc ((i + 1) * 8);
31272e2c009bSjjc }
31282e2c009bSjjc break;
3129*8d8feb1bSToomas Soome }
3130*8d8feb1bSToomas Soome case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { /* memory entry */
3131*8d8feb1bSToomas Soome ACPI_SRAT_MEM_AFFINITY *mem =
3132*8d8feb1bSToomas Soome (ACPI_SRAT_MEM_AFFINITY *)item;
31332e2c009bSjjc
3134*8d8feb1bSToomas Soome if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) {
3135*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)
3136*8d8feb1bSToomas Soome ((uintptr_t)item + item->Length);
313781d9ccb6SJonathan Chew continue;
313881d9ccb6SJonathan Chew }
3139*8d8feb1bSToomas Soome domain = mem->ProximityDomain;
31402e2c009bSjjc break;
3141*8d8feb1bSToomas Soome }
3142*8d8feb1bSToomas Soome case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { /* x2apic CPU */
3143*8d8feb1bSToomas Soome ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
3144*8d8feb1bSToomas Soome (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
31452e2c009bSjjc
3146*8d8feb1bSToomas Soome if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) {
3147*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)
3148*8d8feb1bSToomas Soome ((uintptr_t)item + item->Length);
314981d9ccb6SJonathan Chew continue;
315081d9ccb6SJonathan Chew }
3151*8d8feb1bSToomas Soome domain = x2cpu->ProximityDomain;
3152b6917abeSmishra break;
3153*8d8feb1bSToomas Soome }
31542e2c009bSjjc default:
3155*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item +
3156*8d8feb1bSToomas Soome item->Length);
315781d9ccb6SJonathan Chew continue;
31582e2c009bSjjc }
31592e2c009bSjjc
31602e2c009bSjjc /*
31612e2c009bSjjc * Count and keep track of which proximity domain IDs seen
31622e2c009bSjjc */
31632e2c009bSjjc start = i = domain % MAX_NODES;
31642e2c009bSjjc overflow = B_TRUE;
31652e2c009bSjjc do {
31662e2c009bSjjc /*
31672e2c009bSjjc * Create entry for proximity domain and increment
31682e2c009bSjjc * count when no entry exists where proximity domain
31692e2c009bSjjc * hashed
31702e2c009bSjjc */
31712e2c009bSjjc if (!node_domain[i].exists) {
31722e2c009bSjjc node_domain[i].exists = 1;
31732e2c009bSjjc node_domain[i].prox_domain = domain;
31742e2c009bSjjc domain_cnt++;
31752e2c009bSjjc overflow = B_FALSE;
31762e2c009bSjjc break;
31772e2c009bSjjc }
31782e2c009bSjjc
31792e2c009bSjjc /*
31802e2c009bSjjc * Nothing to do when proximity domain seen already
31812e2c009bSjjc * and its entry exists
31822e2c009bSjjc */
31832e2c009bSjjc if (node_domain[i].prox_domain == domain) {
31842e2c009bSjjc overflow = B_FALSE;
31852e2c009bSjjc break;
31862e2c009bSjjc }
31872e2c009bSjjc
31882e2c009bSjjc /*
31892e2c009bSjjc * Entry exists where proximity domain hashed, but for
31902e2c009bSjjc * different proximity domain so keep search for empty
31912e2c009bSjjc * slot to put it or matching entry whichever comes
31922e2c009bSjjc * first.
31932e2c009bSjjc */
31942e2c009bSjjc i = (i + 1) % MAX_NODES;
31952e2c009bSjjc } while (i != start);
31962e2c009bSjjc
31972e2c009bSjjc /*
31982e2c009bSjjc * Didn't find empty or matching entry which means have more
31992e2c009bSjjc * proximity domains than supported nodes (:-(
32002e2c009bSjjc */
32012e2c009bSjjc ASSERT(overflow != B_TRUE);
32022e2c009bSjjc if (overflow == B_TRUE)
32032e2c009bSjjc return (-1);
32042e2c009bSjjc
3205*8d8feb1bSToomas Soome item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
32062e2c009bSjjc }
32072e2c009bSjjc return (domain_cnt);
32082e2c009bSjjc }
32092e2c009bSjjc
32102e2c009bSjjc
32112e2c009bSjjc /*
3212a3114836SGerry Liu * Parse domain information in ACPI Maximum System Capability Table (MSCT).
3213a3114836SGerry Liu * MSCT table has been verified in function process_msct() in fakebop.c.
3214a3114836SGerry Liu */
3215a3114836SGerry Liu static int
lgrp_plat_msct_domains(ACPI_TABLE_MSCT * tp,uint32_t * prox_domain_min)3216*8d8feb1bSToomas Soome lgrp_plat_msct_domains(ACPI_TABLE_MSCT *tp, uint32_t *prox_domain_min)
3217a3114836SGerry Liu {
3218a3114836SGerry Liu int last_seen = 0;
3219a3114836SGerry Liu uint32_t proxmin = UINT32_MAX;
3220*8d8feb1bSToomas Soome ACPI_MSCT_PROXIMITY *item, *end;
3221a3114836SGerry Liu
3222a3114836SGerry Liu if (tp == NULL || lgrp_plat_msct_enable == 0)
3223a3114836SGerry Liu return (-1);
3224a3114836SGerry Liu
3225*8d8feb1bSToomas Soome if (tp->MaxProximityDomains >= MAX_NODES) {
3226a3114836SGerry Liu cmn_err(CE_CONT,
3227a3114836SGerry Liu "?lgrp: too many proximity domains (%d), max %d supported, "
3228a3114836SGerry Liu "disable support of CPU/memory DR operations.",
3229*8d8feb1bSToomas Soome tp->MaxProximityDomains + 1, MAX_NODES);
3230a3114836SGerry Liu plat_dr_disable_cpu();
3231a3114836SGerry Liu plat_dr_disable_memory();
3232a3114836SGerry Liu return (-1);
3233a3114836SGerry Liu }
3234a3114836SGerry Liu
3235a3114836SGerry Liu if (prox_domain_min != NULL) {
3236*8d8feb1bSToomas Soome end = (void *)(tp->Header.Length + (uintptr_t)tp);
3237a3114836SGerry Liu for (item = (void *)((uintptr_t)tp +
3238*8d8feb1bSToomas Soome tp->ProximityOffset); item < end;
3239*8d8feb1bSToomas Soome item = (void *)(item->Length + (uintptr_t)item)) {
3240*8d8feb1bSToomas Soome if (item->RangeStart < proxmin) {
3241*8d8feb1bSToomas Soome proxmin = item->RangeStart;
3242a3114836SGerry Liu }
3243a3114836SGerry Liu
3244*8d8feb1bSToomas Soome last_seen = item->RangeEnd - item->RangeStart + 1;
3245a3114836SGerry Liu /*
3246a3114836SGerry Liu * Break out if all proximity domains have been
3247a3114836SGerry Liu * processed. Some BIOSes may have unused items
3248a3114836SGerry Liu * at the end of MSCT table.
3249a3114836SGerry Liu */
3250*8d8feb1bSToomas Soome if (last_seen > tp->MaxProximityDomains) {
3251a3114836SGerry Liu break;
3252a3114836SGerry Liu }
3253a3114836SGerry Liu }
3254a3114836SGerry Liu *prox_domain_min = proxmin;
3255a3114836SGerry Liu }
3256a3114836SGerry Liu
3257*8d8feb1bSToomas Soome return (tp->MaxProximityDomains + 1);
3258a3114836SGerry Liu }
3259a3114836SGerry Liu
3260a3114836SGerry Liu
3261a3114836SGerry Liu /*
32622e2c009bSjjc * Set lgroup latencies for 2 level lgroup topology
32632e2c009bSjjc */
32642e2c009bSjjc static void
lgrp_plat_2level_setup(lgrp_plat_latency_stats_t * lat_stats)3265a3114836SGerry Liu lgrp_plat_2level_setup(lgrp_plat_latency_stats_t *lat_stats)
32662e2c009bSjjc {
3267a3114836SGerry Liu int i, j;
32682e2c009bSjjc
3269a3114836SGerry Liu ASSERT(lat_stats != NULL);
32702e2c009bSjjc
32712e2c009bSjjc if (lgrp_plat_node_cnt >= 4)
32722e2c009bSjjc cmn_err(CE_NOTE,
32732e2c009bSjjc "MPO only optimizing for local and remote\n");
32742e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) {
32752e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) {
32762e2c009bSjjc if (i == j)
32772e2c009bSjjc lat_stats->latencies[i][j] = 2;
32782e2c009bSjjc else
32792e2c009bSjjc lat_stats->latencies[i][j] = 3;
32802e2c009bSjjc }
32812e2c009bSjjc }
32822e2c009bSjjc lat_stats->latency_min = 2;
32832e2c009bSjjc lat_stats->latency_max = 3;
3284a3114836SGerry Liu /* TODO: check it. */
32852e2c009bSjjc lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0);
3286a3114836SGerry Liu lgrp_plat_topo_flatten = 1;
32872e2c009bSjjc }
32882e2c009bSjjc
32892e2c009bSjjc
32902e2c009bSjjc /*
32912e2c009bSjjc * The following Opteron specific constants, macros, types, and routines define
32922e2c009bSjjc * PCI configuration space registers and how to read them to determine the NUMA
32932e2c009bSjjc * configuration of *supported* Opteron processors. They provide the same
32942e2c009bSjjc * information that may be gotten from the ACPI System Resource Affinity Table
32952e2c009bSjjc * (SRAT) if it exists on the machine of interest.
32962e2c009bSjjc *
32972e2c009bSjjc * The AMD BIOS and Kernel Developer's Guide (BKDG) for the processor family
32982e2c009bSjjc * of interest describes all of these registers and their contents. The main
32992e2c009bSjjc * registers used by this code to determine the NUMA configuration of the
33002e2c009bSjjc * machine are the node ID register for the number of NUMA nodes and the DRAM
33012e2c009bSjjc * address map registers for the physical address range of each node.
33022e2c009bSjjc *
33032e2c009bSjjc * NOTE: The format and how to determine the NUMA configuration using PCI
33042e2c009bSjjc * config space registers may change or may not be supported in future
33052e2c009bSjjc * Opteron processor families.
33067c478bd9Sstevel@tonic-gate */
33077c478bd9Sstevel@tonic-gate
33087c478bd9Sstevel@tonic-gate /*
33097c478bd9Sstevel@tonic-gate * How many bits to shift Opteron DRAM Address Map base and limit registers
33107c478bd9Sstevel@tonic-gate * to get actual value
33117c478bd9Sstevel@tonic-gate */
3312f78a91cdSjjc #define OPT_DRAMADDR_HI_LSHIFT_ADDR 40 /* shift left for address */
3313f78a91cdSjjc #define OPT_DRAMADDR_LO_LSHIFT_ADDR 8 /* shift left for address */
33147c478bd9Sstevel@tonic-gate
3315f78a91cdSjjc #define OPT_DRAMADDR_HI_MASK_ADDR 0x000000FF /* address bits 47-40 */
3316f78a91cdSjjc #define OPT_DRAMADDR_LO_MASK_ADDR 0xFFFF0000 /* address bits 39-24 */
3317f78a91cdSjjc
3318f78a91cdSjjc #define OPT_DRAMADDR_LO_MASK_OFF 0xFFFFFF /* offset for address */
3319f78a91cdSjjc
3320f78a91cdSjjc /*
3321f78a91cdSjjc * Macros to derive addresses from Opteron DRAM Address Map registers
3322f78a91cdSjjc */
3323f78a91cdSjjc #define OPT_DRAMADDR_HI(reg) \
3324f78a91cdSjjc (((u_longlong_t)reg & OPT_DRAMADDR_HI_MASK_ADDR) << \
3325f78a91cdSjjc OPT_DRAMADDR_HI_LSHIFT_ADDR)
3326f78a91cdSjjc
3327f78a91cdSjjc #define OPT_DRAMADDR_LO(reg) \
3328f78a91cdSjjc (((u_longlong_t)reg & OPT_DRAMADDR_LO_MASK_ADDR) << \
3329f78a91cdSjjc OPT_DRAMADDR_LO_LSHIFT_ADDR)
3330f78a91cdSjjc
3331f78a91cdSjjc #define OPT_DRAMADDR(high, low) \
3332f78a91cdSjjc (OPT_DRAMADDR_HI(high) | OPT_DRAMADDR_LO(low))
33337c478bd9Sstevel@tonic-gate
33347c478bd9Sstevel@tonic-gate /*
33357c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron DRAM Address Map base register
33367c478bd9Sstevel@tonic-gate */
3337f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_RE 0x1 /* read enable */
3338f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_WE 0x2 /* write enable */
3339f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_INTRLVEN 0x700 /* interleave */
33407c478bd9Sstevel@tonic-gate
33417c478bd9Sstevel@tonic-gate /*
33427c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron DRAM Address Map limit register
33437c478bd9Sstevel@tonic-gate */
3344f78a91cdSjjc #define OPT_DRAMLIMIT_LO_MASK_DSTNODE 0x7 /* destination node */
3345f78a91cdSjjc #define OPT_DRAMLIMIT_LO_MASK_INTRLVSEL 0x700 /* interleave select */
33467c478bd9Sstevel@tonic-gate
33477c478bd9Sstevel@tonic-gate
33487c478bd9Sstevel@tonic-gate /*
33497c478bd9Sstevel@tonic-gate * Opteron Node ID register in PCI configuration space contains
33507c478bd9Sstevel@tonic-gate * number of nodes in system, etc. for Opteron K8. The following
33517c478bd9Sstevel@tonic-gate * constants and macros define its contents, structure, and access.
33527c478bd9Sstevel@tonic-gate */
33537c478bd9Sstevel@tonic-gate
33547c478bd9Sstevel@tonic-gate /*
33557c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron Node ID register
33567c478bd9Sstevel@tonic-gate */
33577c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_ID 0x7 /* node ID */
33587c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_CNT 0x70 /* node count */
33597c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_IONODE 0x700 /* Hypertransport I/O hub node ID */
33607c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_LCKNODE 0x7000 /* lock controller node ID */
33617c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_CPUCNT 0xF0000 /* CPUs in system (0 means 1 CPU) */
33627c478bd9Sstevel@tonic-gate
33637c478bd9Sstevel@tonic-gate /*
33647c478bd9Sstevel@tonic-gate * How many bits in Opteron Node ID register to shift right to get actual value
33657c478bd9Sstevel@tonic-gate */
33667c478bd9Sstevel@tonic-gate #define OPT_NODE_RSHIFT_CNT 0x4 /* shift right for node count value */
33677c478bd9Sstevel@tonic-gate
33687c478bd9Sstevel@tonic-gate /*
33697c478bd9Sstevel@tonic-gate * Macros to get values from Opteron Node ID register
33707c478bd9Sstevel@tonic-gate */
33717c478bd9Sstevel@tonic-gate #define OPT_NODE_CNT(reg) \
33727c478bd9Sstevel@tonic-gate ((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT)
33737c478bd9Sstevel@tonic-gate
3374f78a91cdSjjc /*
3375f78a91cdSjjc * Macro to setup PCI Extended Configuration Space (ECS) address to give to
3376f78a91cdSjjc * "in/out" instructions
3377f78a91cdSjjc *
3378f78a91cdSjjc * NOTE: Should only be used in lgrp_plat_init() before MMIO setup because any
3379f78a91cdSjjc * other uses should just do MMIO to access PCI ECS.
3380f78a91cdSjjc * Must enable special bit in Northbridge Configuration Register on
3381f78a91cdSjjc * Greyhound for extended CF8 space access to be able to access PCI ECS
3382f78a91cdSjjc * using "in/out" instructions and restore special bit after done
3383f78a91cdSjjc * accessing PCI ECS.
3384f78a91cdSjjc */
3385f78a91cdSjjc #define OPT_PCI_ECS_ADDR(bus, device, function, reg) \
3386f78a91cdSjjc (PCI_CONE | (((bus) & 0xff) << 16) | (((device & 0x1f)) << 11) | \
3387f78a91cdSjjc (((function) & 0x7) << 8) | ((reg) & 0xfc) | \
3388f78a91cdSjjc ((((reg) >> 8) & 0xf) << 24))
33897c478bd9Sstevel@tonic-gate
33907c478bd9Sstevel@tonic-gate /*
33917c478bd9Sstevel@tonic-gate * PCI configuration space registers accessed by specifying
33927c478bd9Sstevel@tonic-gate * a bus, device, function, and offset. The following constants
33937c478bd9Sstevel@tonic-gate * define the values needed to access Opteron K8 configuration
33947c478bd9Sstevel@tonic-gate * info to determine its node topology
33957c478bd9Sstevel@tonic-gate */
33967c478bd9Sstevel@tonic-gate
33977c478bd9Sstevel@tonic-gate #define OPT_PCS_BUS_CONFIG 0 /* Hypertransport config space bus */
33987c478bd9Sstevel@tonic-gate
33997c478bd9Sstevel@tonic-gate /*
34007c478bd9Sstevel@tonic-gate * Opteron PCI configuration space register function values
34017c478bd9Sstevel@tonic-gate */
34027c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_HT 0 /* Hypertransport configuration */
34037c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_ADDRMAP 1 /* Address map configuration */
34047c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_DRAM 2 /* DRAM configuration */
34057c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_MISC 3 /* Miscellaneous configuration */
34067c478bd9Sstevel@tonic-gate
34077c478bd9Sstevel@tonic-gate /*
34087c478bd9Sstevel@tonic-gate * PCI Configuration Space register offsets
34097c478bd9Sstevel@tonic-gate */
34107c478bd9Sstevel@tonic-gate #define OPT_PCS_OFF_VENDOR 0x0 /* device/vendor ID register */
3411f78a91cdSjjc #define OPT_PCS_OFF_DRAMBASE_HI 0x140 /* DRAM Base register (node 0) */
3412f78a91cdSjjc #define OPT_PCS_OFF_DRAMBASE_LO 0x40 /* DRAM Base register (node 0) */
34137c478bd9Sstevel@tonic-gate #define OPT_PCS_OFF_NODEID 0x60 /* Node ID register */
34147c478bd9Sstevel@tonic-gate
34157c478bd9Sstevel@tonic-gate /*
34167c478bd9Sstevel@tonic-gate * Opteron PCI Configuration Space device IDs for nodes
34177c478bd9Sstevel@tonic-gate */
34187c478bd9Sstevel@tonic-gate #define OPT_PCS_DEV_NODE0 24 /* device number for node 0 */
34197c478bd9Sstevel@tonic-gate
34207c478bd9Sstevel@tonic-gate
34217c478bd9Sstevel@tonic-gate /*
34227c478bd9Sstevel@tonic-gate * Opteron DRAM address map gives base and limit for physical memory in a node
34237c478bd9Sstevel@tonic-gate */
34247c478bd9Sstevel@tonic-gate typedef struct opt_dram_addr_map {
3425f78a91cdSjjc uint32_t base_hi;
3426f78a91cdSjjc uint32_t base_lo;
3427f78a91cdSjjc uint32_t limit_hi;
3428f78a91cdSjjc uint32_t limit_lo;
34297c478bd9Sstevel@tonic-gate } opt_dram_addr_map_t;
34307c478bd9Sstevel@tonic-gate
34317c478bd9Sstevel@tonic-gate
34327c478bd9Sstevel@tonic-gate /*
3433f78a91cdSjjc * Supported AMD processor families
3434f78a91cdSjjc */
3435f78a91cdSjjc #define AMD_FAMILY_HAMMER 15
3436f78a91cdSjjc #define AMD_FAMILY_GREYHOUND 16
34377c478bd9Sstevel@tonic-gate
3438f78a91cdSjjc /*
34392e2c009bSjjc * Whether to have is_opteron() return 1 even when processor isn't supported
3440f78a91cdSjjc */
3441f78a91cdSjjc uint_t is_opteron_override = 0;
3442f78a91cdSjjc
3443f78a91cdSjjc /*
3444f78a91cdSjjc * AMD processor family for current CPU
3445f78a91cdSjjc */
34467c478bd9Sstevel@tonic-gate uint_t opt_family = 0;
3447f78a91cdSjjc
34487c478bd9Sstevel@tonic-gate
34497c478bd9Sstevel@tonic-gate /*
3450f78a91cdSjjc * Determine whether we're running on a supported AMD Opteron since reading
3451f78a91cdSjjc * node count and DRAM address map registers may have different format or
34522e2c009bSjjc * may not be supported across processor families
34537c478bd9Sstevel@tonic-gate */
34542e2c009bSjjc static int
is_opteron(void)34557c478bd9Sstevel@tonic-gate is_opteron(void)
34567c478bd9Sstevel@tonic-gate {
3457f78a91cdSjjc
34587c478bd9Sstevel@tonic-gate if (x86_vendor != X86_VENDOR_AMD)
34597c478bd9Sstevel@tonic-gate return (0);
34607c478bd9Sstevel@tonic-gate
3461f78a91cdSjjc opt_family = cpuid_getfamily(CPU);
3462f78a91cdSjjc if (opt_family == AMD_FAMILY_HAMMER ||
3463f78a91cdSjjc opt_family == AMD_FAMILY_GREYHOUND || is_opteron_override)
34647c478bd9Sstevel@tonic-gate return (1);
34657c478bd9Sstevel@tonic-gate else
34667c478bd9Sstevel@tonic-gate return (0);
34677c478bd9Sstevel@tonic-gate }
34687c478bd9Sstevel@tonic-gate
34692e2c009bSjjc
34702e2c009bSjjc /*
34712e2c009bSjjc * Determine NUMA configuration for Opteron from registers that live in PCI
34722e2c009bSjjc * configuration space
34732e2c009bSjjc */
34742e2c009bSjjc static void
opt_get_numa_config(uint_t * node_cnt,int * mem_intrlv,memnode_phys_addr_map_t * memnode_info)34752e2c009bSjjc opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv,
3476a3114836SGerry Liu memnode_phys_addr_map_t *memnode_info)
34777c478bd9Sstevel@tonic-gate {
34787c478bd9Sstevel@tonic-gate uint_t bus;
34797c478bd9Sstevel@tonic-gate uint_t dev;
34802e2c009bSjjc struct opt_dram_addr_map dram_map[MAX_NODES];
34817c478bd9Sstevel@tonic-gate uint_t node;
34822e2c009bSjjc uint_t node_info[MAX_NODES];
3483f78a91cdSjjc uint_t off_hi;
3484f78a91cdSjjc uint_t off_lo;
3485f78a91cdSjjc uint64_t nb_cfg_reg;
34867c478bd9Sstevel@tonic-gate
34877c478bd9Sstevel@tonic-gate /*
34887c478bd9Sstevel@tonic-gate * Read configuration registers from PCI configuration space to
34897c478bd9Sstevel@tonic-gate * determine node information, which memory is in each node, etc.
34907c478bd9Sstevel@tonic-gate *
34917c478bd9Sstevel@tonic-gate * Write to PCI configuration space address register to specify
34927c478bd9Sstevel@tonic-gate * which configuration register to read and read/write PCI
34937c478bd9Sstevel@tonic-gate * configuration space data register to get/set contents
34947c478bd9Sstevel@tonic-gate */
34957c478bd9Sstevel@tonic-gate bus = OPT_PCS_BUS_CONFIG;
34967c478bd9Sstevel@tonic-gate dev = OPT_PCS_DEV_NODE0;
3497f78a91cdSjjc off_hi = OPT_PCS_OFF_DRAMBASE_HI;
3498f78a91cdSjjc off_lo = OPT_PCS_OFF_DRAMBASE_LO;
34997c478bd9Sstevel@tonic-gate
35007c478bd9Sstevel@tonic-gate /*
35017c478bd9Sstevel@tonic-gate * Read node ID register for node 0 to get node count
35027c478bd9Sstevel@tonic-gate */
35032e2c009bSjjc node_info[0] = pci_getl_func(bus, dev, OPT_PCS_FUNC_HT,
3504ef50d8c0Sesaxe OPT_PCS_OFF_NODEID);
35052e2c009bSjjc *node_cnt = OPT_NODE_CNT(node_info[0]) + 1;
35062e2c009bSjjc
35072e2c009bSjjc /*
35082e2c009bSjjc * If number of nodes is more than maximum supported, then set node
35092e2c009bSjjc * count to 1 and treat system as UMA instead of NUMA.
35102e2c009bSjjc */
35112e2c009bSjjc if (*node_cnt > MAX_NODES) {
35122e2c009bSjjc *node_cnt = 1;
35132e2c009bSjjc return;
35142e2c009bSjjc }
35157c478bd9Sstevel@tonic-gate
3516f78a91cdSjjc /*
3517f78a91cdSjjc * For Greyhound, PCI Extended Configuration Space must be enabled to
3518f78a91cdSjjc * read high DRAM address map base and limit registers
3519f78a91cdSjjc */
3520f78a91cdSjjc if (opt_family == AMD_FAMILY_GREYHOUND) {
3521f78a91cdSjjc nb_cfg_reg = rdmsr(MSR_AMD_NB_CFG);
3522f78a91cdSjjc if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0)
3523f78a91cdSjjc wrmsr(MSR_AMD_NB_CFG,
3524f78a91cdSjjc nb_cfg_reg | AMD_GH_NB_CFG_EN_ECS);
3525f78a91cdSjjc }
3526f78a91cdSjjc
35272e2c009bSjjc for (node = 0; node < *node_cnt; node++) {
3528f78a91cdSjjc uint32_t base_hi;
3529f78a91cdSjjc uint32_t base_lo;
3530f78a91cdSjjc uint32_t limit_hi;
3531f78a91cdSjjc uint32_t limit_lo;
3532f78a91cdSjjc
35337c478bd9Sstevel@tonic-gate /*
35347c478bd9Sstevel@tonic-gate * Read node ID register (except for node 0 which we just read)
35357c478bd9Sstevel@tonic-gate */
35367c478bd9Sstevel@tonic-gate if (node > 0) {
35372e2c009bSjjc node_info[node] = pci_getl_func(bus, dev,
3538ef50d8c0Sesaxe OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID);
35397c478bd9Sstevel@tonic-gate }
35407c478bd9Sstevel@tonic-gate
35417c478bd9Sstevel@tonic-gate /*
35427c478bd9Sstevel@tonic-gate * Read DRAM base and limit registers which specify
35437c478bd9Sstevel@tonic-gate * physical memory range of each node
35447c478bd9Sstevel@tonic-gate */
3545f78a91cdSjjc if (opt_family != AMD_FAMILY_GREYHOUND)
3546f78a91cdSjjc base_hi = 0;
3547f78a91cdSjjc else {
3548f78a91cdSjjc outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev,
3549f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_hi));
35502e2c009bSjjc base_hi = dram_map[node].base_hi =
3551f78a91cdSjjc inl(PCI_CONFDATA);
3552f78a91cdSjjc }
35532e2c009bSjjc base_lo = dram_map[node].base_lo = pci_getl_func(bus, dev,
3554f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_lo);
3555f78a91cdSjjc
35562e2c009bSjjc if ((dram_map[node].base_lo & OPT_DRAMBASE_LO_MASK_INTRLVEN) &&
35572e2c009bSjjc mem_intrlv)
35582e2c009bSjjc *mem_intrlv = *mem_intrlv + 1;
35597c478bd9Sstevel@tonic-gate
3560f78a91cdSjjc off_hi += 4; /* high limit register offset */
3561f78a91cdSjjc if (opt_family != AMD_FAMILY_GREYHOUND)
3562f78a91cdSjjc limit_hi = 0;
3563f78a91cdSjjc else {
3564f78a91cdSjjc outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev,
3565f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_hi));
35662e2c009bSjjc limit_hi = dram_map[node].limit_hi =
3567f78a91cdSjjc inl(PCI_CONFDATA);
3568f78a91cdSjjc }
3569f78a91cdSjjc
3570f78a91cdSjjc off_lo += 4; /* low limit register offset */
35712e2c009bSjjc limit_lo = dram_map[node].limit_lo = pci_getl_func(bus,
3572f78a91cdSjjc dev, OPT_PCS_FUNC_ADDRMAP, off_lo);
35737c478bd9Sstevel@tonic-gate
35747c478bd9Sstevel@tonic-gate /*
3575f78a91cdSjjc * Increment device number to next node and register offsets
3576f78a91cdSjjc * for DRAM base register of next node
35777c478bd9Sstevel@tonic-gate */
3578f78a91cdSjjc off_hi += 4;
3579f78a91cdSjjc off_lo += 4;
35807c478bd9Sstevel@tonic-gate dev++;
35817c478bd9Sstevel@tonic-gate
35827c478bd9Sstevel@tonic-gate /*
3583a940d195Sjjc * Both read and write enable bits must be enabled in DRAM
3584a940d195Sjjc * address map base register for physical memory to exist in
3585a940d195Sjjc * node
3586a940d195Sjjc */
3587f78a91cdSjjc if ((base_lo & OPT_DRAMBASE_LO_MASK_RE) == 0 ||
3588f78a91cdSjjc (base_lo & OPT_DRAMBASE_LO_MASK_WE) == 0) {
3589a940d195Sjjc /*
3590a940d195Sjjc * Mark node memory as non-existent and set start and
3591a3114836SGerry Liu * end addresses to be same in memnode_info[]
3592a940d195Sjjc */
3593a3114836SGerry Liu memnode_info[node].exists = 0;
3594a3114836SGerry Liu memnode_info[node].start = memnode_info[node].end =
35952e2c009bSjjc (pfn_t)-1;
3596a940d195Sjjc continue;
3597a940d195Sjjc }
3598a940d195Sjjc
3599a940d195Sjjc /*
3600a940d195Sjjc * Mark node memory as existing and remember physical address
3601a940d195Sjjc * range of each node for use later
36027c478bd9Sstevel@tonic-gate */
3603a3114836SGerry Liu memnode_info[node].exists = 1;
3604f78a91cdSjjc
3605a3114836SGerry Liu memnode_info[node].start = btop(OPT_DRAMADDR(base_hi, base_lo));
3606f78a91cdSjjc
3607a3114836SGerry Liu memnode_info[node].end = btop(OPT_DRAMADDR(limit_hi, limit_lo) |
3608f78a91cdSjjc OPT_DRAMADDR_LO_MASK_OFF);
3609f78a91cdSjjc }
3610f78a91cdSjjc
3611f78a91cdSjjc /*
3612f78a91cdSjjc * Restore PCI Extended Configuration Space enable bit
3613f78a91cdSjjc */
3614f78a91cdSjjc if (opt_family == AMD_FAMILY_GREYHOUND) {
3615f78a91cdSjjc if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0)
3616f78a91cdSjjc wrmsr(MSR_AMD_NB_CFG, nb_cfg_reg);
36177c478bd9Sstevel@tonic-gate }
36187c478bd9Sstevel@tonic-gate }
36197c478bd9Sstevel@tonic-gate
36207c478bd9Sstevel@tonic-gate
36217c478bd9Sstevel@tonic-gate /*
36222e2c009bSjjc * Return average amount of time to read vendor ID register on Northbridge
36232e2c009bSjjc * N times on specified destination node from current CPU
36247c478bd9Sstevel@tonic-gate */
36257c478bd9Sstevel@tonic-gate static hrtime_t
opt_probe_vendor(int dest_node,int nreads)36262e2c009bSjjc opt_probe_vendor(int dest_node, int nreads)
36277c478bd9Sstevel@tonic-gate {
36282e2c009bSjjc int cnt;
36297c478bd9Sstevel@tonic-gate uint_t dev;
36307c478bd9Sstevel@tonic-gate /* LINTED: set but not used in function */
36317c478bd9Sstevel@tonic-gate volatile uint_t dev_vendor;
36327c478bd9Sstevel@tonic-gate hrtime_t elapsed;
36337c478bd9Sstevel@tonic-gate hrtime_t end;
36347c478bd9Sstevel@tonic-gate int ipl;
36357c478bd9Sstevel@tonic-gate hrtime_t start;
36367c478bd9Sstevel@tonic-gate
36372e2c009bSjjc dev = OPT_PCS_DEV_NODE0 + dest_node;
36387c478bd9Sstevel@tonic-gate kpreempt_disable();
36397c478bd9Sstevel@tonic-gate ipl = spl8();
36402e2c009bSjjc outl(PCI_CONFADD, PCI_CADDR1(0, dev, OPT_PCS_FUNC_DRAM,
36417c478bd9Sstevel@tonic-gate OPT_PCS_OFF_VENDOR));
36427c478bd9Sstevel@tonic-gate start = gethrtime();
36432e2c009bSjjc for (cnt = 0; cnt < nreads; cnt++)
36447c478bd9Sstevel@tonic-gate dev_vendor = inl(PCI_CONFDATA);
36457c478bd9Sstevel@tonic-gate end = gethrtime();
36462e2c009bSjjc elapsed = (end - start) / nreads;
36477c478bd9Sstevel@tonic-gate splx(ipl);
36487c478bd9Sstevel@tonic-gate kpreempt_enable();
36492e2c009bSjjc return (elapsed);
36507c478bd9Sstevel@tonic-gate }
3651