1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/cpuvar.h> 30 #include <sys/regset.h> 31 #include <sys/psw.h> 32 #include <sys/types.h> 33 #include <sys/thread.h> 34 #include <sys/systm.h> 35 #include <sys/segments.h> 36 #include <sys/pcb.h> 37 #include <sys/trap.h> 38 #include <sys/ftrace.h> 39 #include <sys/traptrace.h> 40 #include <sys/clock.h> 41 #include <sys/panic.h> 42 #include <sys/disp.h> 43 #include <vm/seg_kp.h> 44 #include <sys/stack.h> 45 #include <sys/sysmacros.h> 46 #include <sys/cmn_err.h> 47 #include <sys/kstat.h> 48 #include <sys/smp_impldefs.h> 49 #include <sys/pool_pset.h> 50 #include <sys/zone.h> 51 #include <sys/bitmap.h> 52 53 #if defined(__amd64) 54 55 #if defined(__lint) 56 /* 57 * atomic_btr32() is a gcc __inline__ function, defined in <asm/bitmap.h> 58 * For lint purposes, define it here. 59 */ 60 uint_t 61 atomic_btr32(uint32_t *pending, uint_t pil) 62 { 63 return (*pending &= ~(1 << pil)); 64 } 65 #else 66 67 extern uint_t atomic_btr32(uint32_t *pending, uint_t pil); 68 69 #endif 70 71 /* 72 * This code is amd64-only for now, but as time permits, we should 73 * use this on i386 too. 74 */ 75 76 /* 77 * Some questions to ponder: 78 * - in several of these routines, we make multiple calls to tsc_read() 79 * without invoking functions .. couldn't we just reuse the same 80 * timestamp sometimes? 81 * - if we have the inline, we can probably make set_base_spl be a 82 * C routine too. 83 */ 84 85 static uint_t 86 bsrw_insn(uint16_t mask) 87 { 88 uint_t index = sizeof (mask) * NBBY - 1; 89 90 ASSERT(mask != 0); 91 92 while ((mask & (1 << index)) == 0) 93 index--; 94 return (index); 95 } 96 97 /* 98 * Do all the work necessary to set up the cpu and thread structures 99 * to dispatch a high-level interrupt. 100 * 101 * Returns 0 if we're -not- already on the high-level interrupt stack, 102 * (and *must* switch to it), non-zero if we are already on that stack. 103 * 104 * Called with interrupts masked. 105 * The 'pil' is already set to the appropriate level for rp->r_trapno. 106 */ 107 int 108 hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 109 { 110 struct machcpu *mcpu = &cpu->cpu_m; 111 uint_t mask; 112 113 ASSERT(pil > LOCK_LEVEL); 114 115 if (pil == CBE_HIGH_PIL) { 116 cpu->cpu_profile_pil = oldpil; 117 if (USERMODE(rp->r_cs)) { 118 cpu->cpu_profile_pc = 0; 119 cpu->cpu_profile_upc = rp->r_pc; 120 } else { 121 cpu->cpu_profile_pc = rp->r_pc; 122 cpu->cpu_profile_upc = 0; 123 } 124 } 125 126 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 127 if (mask != 0) { 128 int nestpil; 129 130 /* 131 * We have interrupted another high-level interrupt. 132 * Load starting timestamp, compute interval, update 133 * cumulative counter. 134 */ 135 nestpil = bsrw_insn((uint16_t)mask); 136 ASSERT(nestpil < pil); 137 mcpu->intrstat[nestpil] += tsc_read() - 138 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 139 /* 140 * Another high-level interrupt is active below this one, so 141 * there is no need to check for an interrupt thread. That 142 * will be done by the lowest priority high-level interrupt 143 * active. 144 */ 145 } else { 146 kthread_t *t = cpu->cpu_thread; 147 148 /* 149 * See if we are interrupting a low-level interrupt thread. 150 * If so, account for its time slice only if its time stamp 151 * is non-zero. 152 */ 153 if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 154 mcpu->intrstat[t->t_pil] += 155 tsc_read() - t->t_intr_start; 156 t->t_intr_start = 0; 157 } 158 } 159 160 /* 161 * Store starting timestamp in CPU structure for this PIL. 162 */ 163 mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = tsc_read(); 164 165 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 166 167 if (pil == 15) { 168 /* 169 * To support reentrant level 15 interrupts, we maintain a 170 * recursion count in the top half of cpu_intr_actv. Only 171 * when this count hits zero do we clear the PIL 15 bit from 172 * the lower half of cpu_intr_actv. 173 */ 174 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 175 (*refcntp)++; 176 } 177 178 mask = cpu->cpu_intr_actv; 179 180 cpu->cpu_intr_actv |= (1 << pil); 181 182 return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 183 } 184 185 /* 186 * Does most of the work of returning from a high level interrupt. 187 * 188 * Returns 0 if there are no more high level interrupts (in which 189 * case we must switch back to the interrupted thread stack) or 190 * non-zero if there are more (in which case we should stay on it). 191 * 192 * Called with interrupts masked 193 */ 194 int 195 hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 196 { 197 struct machcpu *mcpu = &cpu->cpu_m; 198 uint_t mask; 199 200 ASSERT(mcpu->mcpu_pri == pil); 201 202 cpu->cpu_stats.sys.intr[pil - 1]++; 203 204 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 205 206 if (pil == 15) { 207 /* 208 * To support reentrant level 15 interrupts, we maintain a 209 * recursion count in the top half of cpu_intr_actv. Only 210 * when this count hits zero do we clear the PIL 15 bit from 211 * the lower half of cpu_intr_actv. 212 */ 213 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 214 215 ASSERT(*refcntp > 0); 216 217 if (--(*refcntp) == 0) 218 cpu->cpu_intr_actv &= ~(1 << pil); 219 } else { 220 cpu->cpu_intr_actv &= ~(1 << pil); 221 } 222 223 ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 224 225 mcpu->intrstat[pil] += 226 tsc_read() - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 227 228 /* 229 * Check for lower-pil nested high-level interrupt beneath 230 * current one. If so, place a starting timestamp in its 231 * pil_high_start entry. 232 */ 233 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 234 if (mask != 0) { 235 int nestpil; 236 237 /* 238 * find PIL of nested interrupt 239 */ 240 nestpil = bsrw_insn((uint16_t)mask); 241 ASSERT(nestpil < pil); 242 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = tsc_read(); 243 /* 244 * (Another high-level interrupt is active below this one, 245 * so there is no need to check for an interrupt 246 * thread. That will be done by the lowest priority 247 * high-level interrupt active.) 248 */ 249 } else { 250 /* 251 * Check to see if there is a low-level interrupt active. 252 * If so, place a starting timestamp in the thread 253 * structure. 254 */ 255 kthread_t *t = cpu->cpu_thread; 256 257 if (t->t_flag & T_INTR_THREAD) 258 t->t_intr_start = tsc_read(); 259 } 260 261 mcpu->mcpu_pri = oldpil; 262 (void) (*setlvlx)(oldpil, vecnum); 263 264 return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 265 } 266 267 /* 268 * Set up the cpu, thread and interrupt thread structures for 269 * executing an interrupt thread. The new stack pointer of the 270 * interrupt thread (which *must* be switched to) is returned. 271 */ 272 caddr_t 273 intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 274 { 275 struct machcpu *mcpu = &cpu->cpu_m; 276 kthread_t *t, *volatile it; 277 278 ASSERT(pil > 0); 279 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 280 cpu->cpu_intr_actv |= (1 << pil); 281 282 /* 283 * Get set to run an interrupt thread. 284 * There should always be an interrupt thread, since we 285 * allocate one for each level on each CPU. 286 * 287 * Note that the code in kcpc_overflow_intr -relies- on the 288 * ordering of events here - in particular that t->t_lwp of 289 * the interrupt thread is set to the pinned thread *before* 290 * curthread is changed. 291 */ 292 t = cpu->cpu_thread; 293 if (t->t_flag & T_INTR_THREAD) { 294 mcpu->intrstat[t->t_pil] += t->t_intr_start - tsc_read(); 295 t->t_intr_start = 0; 296 } 297 298 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 299 300 t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 301 302 /* 303 * unlink the interrupt thread off the cpu 304 */ 305 it = cpu->cpu_intr_thread; 306 cpu->cpu_intr_thread = it->t_link; 307 it->t_intr = t; 308 it->t_lwp = t->t_lwp; 309 310 /* 311 * (threads on the interrupt thread free list could have state 312 * preset to TS_ONPROC, but it helps in debugging if 313 * they're TS_FREE.) 314 */ 315 it->t_state = TS_ONPROC; 316 317 cpu->cpu_thread = it; /* new curthread on this cpu */ 318 it->t_pil = (uchar_t)pil; 319 it->t_pri = intr_pri + (pri_t)pil; 320 it->t_intr_start = tsc_read(); 321 322 return (it->t_stk); 323 } 324 325 326 #ifdef DEBUG 327 int intr_thread_cnt; 328 #endif 329 330 /* 331 * Called with interrupts disabled 332 */ 333 void 334 intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 335 { 336 struct machcpu *mcpu = &cpu->cpu_m; 337 kthread_t *t; 338 kthread_t *it = cpu->cpu_thread; /* curthread */ 339 uint_t pil, basespl; 340 341 pil = it->t_pil; 342 cpu->cpu_stats.sys.intr[pil - 1]++; 343 344 ASSERT(it->t_intr_start != 0); 345 mcpu->intrstat[pil] += tsc_read() - it->t_intr_start; 346 347 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 348 cpu->cpu_intr_actv &= ~(1 << pil); 349 350 /* 351 * If there is still an interrupted thread underneath this one 352 * then the interrupt was never blocked and the return is 353 * fairly simple. Otherwise it isn't. 354 */ 355 if ((t = it->t_intr) == NULL) { 356 /* 357 * The interrupted thread is no longer pinned underneath 358 * the interrupt thread. This means the interrupt must 359 * have blocked, and the interrupted thread has been 360 * unpinned, and has probably been running around the 361 * system for a while. 362 * 363 * Since there is no longer a thread under this one, put 364 * this interrupt thread back on the CPU's free list and 365 * resume the idle thread which will dispatch the next 366 * thread to run. 367 */ 368 #ifdef DEBUG 369 intr_thread_cnt++; 370 #endif 371 cpu->cpu_stats.sys.intrblk++; 372 /* 373 * Set CPU's base SPL based on active interrupts bitmask 374 */ 375 set_base_spl(); 376 basespl = cpu->cpu_base_spl; 377 mcpu->mcpu_pri = basespl; 378 (*setlvlx)(basespl, vec); 379 (void) splhigh(); 380 it->t_state = TS_FREE; 381 /* 382 * Return interrupt thread to pool 383 */ 384 it->t_link = cpu->cpu_intr_thread; 385 cpu->cpu_intr_thread = it; 386 swtch(); 387 /*NOTREACHED*/ 388 } 389 390 /* 391 * Return interrupt thread to the pool 392 */ 393 it->t_link = cpu->cpu_intr_thread; 394 cpu->cpu_intr_thread = it; 395 it->t_state = TS_FREE; 396 397 basespl = cpu->cpu_base_spl; 398 pil = MAX(oldpil, basespl); 399 mcpu->mcpu_pri = pil; 400 (*setlvlx)(pil, vec); 401 t->t_intr_start = tsc_read(); 402 cpu->cpu_thread = t; 403 } 404 405 caddr_t 406 dosoftint_prolog( 407 struct cpu *cpu, 408 caddr_t stackptr, 409 uint32_t st_pending, 410 uint_t oldpil) 411 { 412 kthread_t *t, *volatile it; 413 struct machcpu *mcpu = &cpu->cpu_m; 414 uint_t pil; 415 416 top: 417 ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 418 419 pil = bsrw_insn((uint16_t)st_pending); 420 if (pil <= oldpil || pil <= cpu->cpu_base_spl) 421 return (0); 422 423 /* 424 * XX64 Sigh. 425 * 426 * This is a transliteration of the i386 assembler code for 427 * soft interrupts. One question is "why does this need 428 * to be atomic?" One possible race is -other- processors 429 * posting soft interrupts to us in set_pending() i.e. the 430 * CPU might get preempted just after the address computation, 431 * but just before the atomic transaction, so another CPU would 432 * actually set the original CPU's st_pending bit. However, 433 * it looks like it would be simpler to disable preemption there. 434 * Are there other races for which preemption control doesn't work? 435 * 436 * The i386 assembler version -also- checks to see if the bit 437 * being cleared was actually set; if it wasn't, it rechecks 438 * for more. This seems a bit strange, as the only code that 439 * ever clears the bit is -this- code running with interrupts 440 * disabled on -this- CPU. This code would probably be cheaper: 441 * 442 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 443 * ~(1 << pil)); 444 * 445 * and t->t_preempt--/++ around set_pending() even cheaper, 446 * but at this point, correctness is critical, so we slavishly 447 * emulate the i386 port. 448 */ 449 if (atomic_btr32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, pil) 450 == 0) { 451 st_pending = mcpu->mcpu_softinfo.st_pending; 452 goto top; 453 } 454 455 mcpu->mcpu_pri = pil; 456 (*setspl)(pil); 457 458 /* 459 * Get set to run interrupt thread. 460 * There should always be an interrupt thread since we 461 * allocate one for each level on the CPU. 462 */ 463 it = cpu->cpu_intr_thread; 464 cpu->cpu_intr_thread = it->t_link; 465 466 /* 467 * Note that the code in kcpc_overflow_intr -relies- on the 468 * ordering of events here - in particular that t->t_lwp of 469 * the interrupt thread is set to the pinned thread *before* 470 * curthread is changed 471 */ 472 t = cpu->cpu_thread; 473 if (t->t_flag & T_INTR_THREAD) 474 mcpu->intrstat[pil] += tsc_read() - t->t_intr_start; 475 it->t_lwp = t->t_lwp; 476 it->t_state = TS_ONPROC; 477 478 /* 479 * Push interrupted thread onto list from new thread. 480 * Set the new thread as the current one. 481 * Set interrupted thread's T_SP because if it is the idle thread, 482 * resume() may use that stack between threads. 483 */ 484 485 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 486 t->t_sp = (uintptr_t)stackptr; 487 488 it->t_intr = t; 489 cpu->cpu_thread = it; 490 491 /* 492 * Set bit for this pil in CPU's interrupt active bitmask. 493 */ 494 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 495 cpu->cpu_intr_actv |= (1 << pil); 496 497 /* 498 * Initialize thread priority level from intr_pri 499 */ 500 it->t_pil = (uchar_t)pil; 501 it->t_pri = (pri_t)pil + intr_pri; 502 it->t_intr_start = tsc_read(); 503 504 return (it->t_stk); 505 } 506 507 void 508 dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 509 { 510 struct machcpu *mcpu = &cpu->cpu_m; 511 kthread_t *t, *it; 512 uint_t pil, basespl; 513 514 it = cpu->cpu_thread; 515 pil = it->t_pil; 516 517 cpu->cpu_stats.sys.intr[pil - 1]++; 518 519 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 520 cpu->cpu_intr_actv &= ~(1 << pil); 521 mcpu->intrstat[pil] += tsc_read() - it->t_intr_start; 522 523 /* 524 * If there is still an interrupted thread underneath this one 525 * then the interrupt was never blocked and the return is 526 * fairly simple. Otherwise it isn't. 527 */ 528 if ((t = it->t_intr) == NULL) { 529 /* 530 * Put thread back on the interrupt thread list. 531 * This was an interrupt thread, so set CPU's base SPL. 532 */ 533 set_base_spl(); 534 it->t_state = TS_FREE; 535 it->t_link = cpu->cpu_intr_thread; 536 cpu->cpu_intr_thread = it; 537 (void) splhigh(); 538 swtch(); 539 /*NOTREACHED*/ 540 } 541 it->t_link = cpu->cpu_intr_thread; 542 cpu->cpu_intr_thread = it; 543 it->t_state = TS_FREE; 544 cpu->cpu_thread = t; 545 if (t->t_flag & T_INTR_THREAD) 546 t->t_intr_start = tsc_read(); 547 basespl = cpu->cpu_base_spl; 548 pil = MAX(oldpil, basespl); 549 mcpu->mcpu_pri = pil; 550 (*setspl)(pil); 551 } 552 553 /* 554 * Make the interrupted thread 'to' be runnable. 555 * 556 * Since t->t_sp has already been saved, t->t_pc is all 557 * that needs to be set in this function. 558 * 559 * Returns the interrupt level of the interrupt thread. 560 */ 561 int 562 intr_passivate( 563 kthread_t *it, /* interrupt thread */ 564 kthread_t *t) /* interrupted thread */ 565 { 566 extern void _sys_rtt(); 567 568 ASSERT(it->t_flag & T_INTR_THREAD); 569 ASSERT(SA(t->t_sp) == t->t_sp); 570 571 t->t_pc = (uintptr_t)_sys_rtt; 572 return (it->t_pil); 573 } 574 575 #endif /* __amd64 */ 576 577 /* 578 * Allocate threads and stacks for interrupt handling. 579 */ 580 #define NINTR_THREADS (LOCK_LEVEL-1) /* number of interrupt threads */ 581 582 void 583 init_intr_threads(struct cpu *cp) 584 { 585 int i; 586 587 for (i = 0; i < NINTR_THREADS; i++) 588 thread_create_intr(cp); 589 590 cp->cpu_intr_stack = (caddr_t)segkp_get(segkp, INTR_STACK_SIZE, 591 KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED) + 592 INTR_STACK_SIZE - SA(MINFRAME); 593 } 594 595 /* 596 * Create interrupt kstats for this CPU. 597 */ 598 void 599 cpu_create_intrstat(cpu_t *cp) 600 { 601 int i; 602 kstat_t *intr_ksp; 603 kstat_named_t *knp; 604 char name[KSTAT_STRLEN]; 605 zoneid_t zoneid; 606 607 ASSERT(MUTEX_HELD(&cpu_lock)); 608 609 if (pool_pset_enabled()) 610 zoneid = GLOBAL_ZONEID; 611 else 612 zoneid = ALL_ZONES; 613 614 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 615 KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 616 617 /* 618 * Initialize each PIL's named kstat 619 */ 620 if (intr_ksp != NULL) { 621 intr_ksp->ks_update = cpu_kstat_intrstat_update; 622 knp = (kstat_named_t *)intr_ksp->ks_data; 623 intr_ksp->ks_private = cp; 624 for (i = 0; i < PIL_MAX; i++) { 625 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 626 i + 1); 627 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 628 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 629 i + 1); 630 kstat_named_init(&knp[(i * 2) + 1], name, 631 KSTAT_DATA_UINT64); 632 } 633 kstat_install(intr_ksp); 634 } 635 } 636 637 /* 638 * Delete interrupt kstats for this CPU. 639 */ 640 void 641 cpu_delete_intrstat(cpu_t *cp) 642 { 643 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 644 } 645 646 /* 647 * Convert interrupt statistics from CPU ticks to nanoseconds and 648 * update kstat. 649 */ 650 int 651 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 652 { 653 kstat_named_t *knp = ksp->ks_data; 654 cpu_t *cpup = (cpu_t *)ksp->ks_private; 655 int i; 656 hrtime_t hrt; 657 658 if (rw == KSTAT_WRITE) 659 return (EACCES); 660 661 for (i = 0; i < PIL_MAX; i++) { 662 hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1]; 663 tsc_scalehrtime(&hrt); 664 knp[i * 2].value.ui64 = (uint64_t)hrt; 665 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 666 } 667 668 return (0); 669 } 670 671 /* 672 * An interrupt thread is ending a time slice, so compute the interval it 673 * ran for and update the statistic for its PIL. 674 */ 675 void 676 cpu_intr_swtch_enter(kthread_id_t t) 677 { 678 uint64_t interval; 679 uint64_t start; 680 681 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 682 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 683 684 /* 685 * We could be here with a zero timestamp. This could happen if: 686 * an interrupt thread which no longer has a pinned thread underneath 687 * it (i.e. it blocked at some point in its past) has finished running 688 * its handler. intr_thread() updated the interrupt statistic for its 689 * PIL and zeroed its timestamp. Since there was no pinned thread to 690 * return to, swtch() gets called and we end up here. 691 */ 692 if (t->t_intr_start) { 693 do { 694 start = t->t_intr_start; 695 interval = tsc_read() - start; 696 } while (cas64(&t->t_intr_start, start, 0) != start); 697 CPU->cpu_m.intrstat[t->t_pil] += interval; 698 } else 699 ASSERT(t->t_intr == NULL); 700 } 701 702 /* 703 * An interrupt thread is returning from swtch(). Place a starting timestamp 704 * in its thread structure. 705 */ 706 void 707 cpu_intr_swtch_exit(kthread_id_t t) 708 { 709 uint64_t ts; 710 711 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 712 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 713 714 do { 715 ts = t->t_intr_start; 716 } while (cas64(&t->t_intr_start, ts, tsc_read()) != ts); 717 } 718